2009-06-30
ISS020-E-015987 (30 June 2009) --- An unpiloted ISS Progress 33 cargo craft, filled with trash and unneeded items, departs from the International Space Station?s Pirs Docking Compartment at 1:30 p.m. (CDT) on June 30, 2009. The Progress was commanded into a parking orbit for its re-rendezvous with the ISS on July 12, approaching to within 10-15 meters of the Zvezda Service Module to test new automated rendezvous equipment mounted on Zvezda during a pair of spacewalks earlier this month by Gennady Padalka and Mike Barratt that will be used to guide the new Mini-Research Module-2 (MRM2) to an unpiloted docking to the zenith port of Zvezda later this year. MRM2 will serve as a new docking port for Russian spacecraft and an additional airlock for spacewalks conducted out of the Russian segment.
2012-08-20
ISS032-E-021060 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021061 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021284 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021044 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021296 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021028 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-020884 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021046 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-020610 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021024 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021058 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021085 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-020576 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-020594 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021081 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-020856 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021037 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-020581 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021293 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021286 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-020892 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021054 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021080 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
Russian Extravehicular Activity (EVA) 21A Russian Photo OPS
2009-03-10
ISS018-E-039239 (10 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Lonchakov and astronaut Michael Fincke (out of frame), commander, reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.
Russian Extravehicular Activity (EVA) 21A Russian Photo OPS
2009-03-10
ISS018-E-039241 (10 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Lonchakov and astronaut Michael Fincke (out of frame), commander, reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.
Fincke during Russian Extravehicular Activity (EVA) 21A
2009-03-10
ISS018-E-038951 (10 March 2009) --- Astronaut Michael Fincke, Expedition 18 commander, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Fincke and cosmonaut Yury Lonchakov (out of frame) reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.
2015-03-01
ISS042E292508 (03/01/2015) --- US astronaut Barry "Butch" Wilmore passes a cable to US astronaut Terry Virts during a spacewalk to install a new port for commercial spacecraft to dock to the International Space Station in the near future. Terry twitted this image on March 1, 2015 and remarked "Out on the P3 truss. #AstroButch handing me his cable to install on the new antenna. #spacewalk."
Space Station Upgrades Continue on This Week @NASA – March 31, 2017
2017-03-31
Work continues aboard the International Space Station on upgrades to prepare it for future operational activities. Ground controllers, using the station’s robotic arm, moved the Pressurized Mating Adapter-3 (PMA-3) from the Tranquility module to the station’s Harmony module March 26. PMA-3 will be outfitted with one of two International Docking Adapters to accommodate U.S. commercial spacecraft carrying astronauts on future missions. Four days after the PMA-3 move, NASA’s Shane Kimbrough and Peggy Whitson conducted the second in a series of three planned spacewalks to complete work related to the upgrades. The third spacewalk is planned in April. Also, James Webb Space Telescope Completes Acoustic and Vibration Tests, MAVEN Data Helps Measure Loss of Mars’ Atmosphere, Getting Excited About STEM, and New NASA App for Amazon Fire TV!
2012-08-20
ISS032-E-020596 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.
2012-08-20
ISS032-E-021078 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-020619 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-020601 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.
2012-08-20
ISS032-E-021072 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
2012-08-20
ISS032-E-021067 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, a technician begins checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, technicians begin checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys, and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
STS-97 Post Flight Presentation
NASA Technical Reports Server (NTRS)
2001-01-01
Various shots highlight the STS-97 Endeavour mission. Footage shows the crew suiting up and leaving the Operations and Checkout (O&C) Building, the launch, and landing. Various on-orbit activities are seen, such as docking with the International Space Station (ISS), the spacewalks (installing the PV Module P6), array deployment, meeting the Expedition 1 crew, eating, and undocking. Shots show the northern lights and a meteorite entering Earth's atmosphere from above. The Andes can be seen from the Orbiter while the P6 arrays are deploying.
Lonchakov on Service Module (SM) during Russian Extravehicular Activity (EVA) 21A
2009-03-10
ISS018-E-039196 (10 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Lonchakov and astronaut Michael Fincke (out of frame), commander, reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.
Lonchakov on Service Module (SM) near 2AP-BKA during Russian Extravehicular Activity (EVA) 21A
2009-03-10
ISS018-E-039147 (10 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Lonchakov and astronaut Michael Fincke (out of frame), commander, reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.
Lonchakov on Service Module (SM) near 2AP-BKA during Russian Extravehicular Activity (EVA) 21A
2009-03-10
ISS018-E-039156 (10 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Lonchakov and astronaut Michael Fincke (out of frame), commander, reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.
2009-03-10
ISS018-E-039022 (10 March 2009) --- Astronaut Michael Fincke, Expedition 18 commander, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Fincke and cosmonaut Yury Lonchakov (out of frame) reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.
2011-07-12
S135-E-007656 (12 July 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, waits at an International Space Station's pressurized mating adapter (PMA-2) docked to the space shuttle Atlantis, as the station's robotic system moves the failed pump module (out of frame) over to the spacewalking astronaut and the shuttle's cargo bay. Fossum and crewmate Ron Garan sent six hours and 31 minutes on their July 12 spacewalk. Photo credit: NASA
Power Spacewalk on This Week @NASA - October 17, 2014
2014-10-17
During an October 15 spacewalk outside the International Space Station – the second U.S. spacewalk in as many weeks – Expedition 41 Flight Engineers Reid Wiseman and Barry Wilmore of NASA, replaced a failed voltage regulation device to restore the station’s electrical power output to full capacity. The pair also relocated camera and TV equipment as part of a major reconfiguration to accommodate new docking adapters for use by U.S. commercial crew spacecraft in the next few years. Also, MAVEN’s “First Light”, Hubble finds extremely distant galaxy, Possible bonus destination for New Horizons, New information about volcanic activity on our moon and more!
1997-09-09
STS-86 crew members get a ride in, and learn to operate, an M-113 armored personnel carrier as part of training exercises during the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. George Hoggard, in back at left, a training officer with KSC Fire Services, provides this part of the training to Mission Specialists Wendy B. Lawrence, to the right of Hoggard; Vladimir Georgievich Titov of the Russian Space Agency; and Scott E. Parazynski. STS-86 will be the seventh docking of the Space Shuttle with the Russian Space Station Mir. During the docking, Titov and Parazynski are scheduled to conduct a spacewalk primarily to retrieve four suitcase-sized environmental payloads from the exterior of the Mir docking module. Also during the mission, STS-86 Mission Specialist David A. Wolf will transfer to the orbiting Russian station and become a member of the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who has been on the Mir since the last docking mission, STS-84, in May. Launch of Mission STS-86 aboard the Space Shuttle Atlantis is targeted for Sept. 25 from Launch Pad 39A
Re-rendezvous and approach of Progress 33P
2009-07-12
ISS020-E-018056 (12 July 2009) --- An unpiloted ISS Progress 33 cargo craft approaches the International Space Station. On June 30, the Progress undocked from the station and was commanded into a parking orbit for its re-rendezvous with the ISS on July 12, approaching to within 10-15 meters of the Zvezda Service Module to test new automated rendezvous equipment mounted on Zvezda during a pair of spacewalks earlier this month by Gennady Padalka and Mike Barratt that will be used to guide the new Mini-Research Module-2 (MRM2) to an unpiloted docking to the zenith port of Zvezda later this year. MRM2 will serve as a new docking port for Russian spacecraft and an additional airlock for spacewalks conducted out of the Russian segment.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At the Space Station Processing Facility, a trailer delivers the Cupola, an element scheduled to be installed on the International Space Station in early 2009. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, the Cupola is uncrated. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. The Cupola is an element scheduled to be installed on the International Space Station in early 2009. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The Cupola, an element scheduled to be installed on the International Space Station in early 2009, arrives at KSC on the flatbed of a trailer. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.
1997-01-12
STS-81 Mission Specialist Peter J. K. "Jeff" Wisoff prepares for the fifth ShuttleMir docking as he waits in the Operations and Checkout (O&C) Building for the operation to fit him into his launch/entry suit to be completed. He conducted a spacewalk on his on his first Shuttle mission, STS57 and holds a doctorate degree in applied physics with an emphasis on lasers and semiconductor materials. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12
STS-81 Mission Specialist Peter Wisoff suits up
NASA Technical Reports Server (NTRS)
1997-01-01
STS-81 Mission Specialist Peter J. K. 'Jeff' Wisoff prepares for the fifth Shuttle- Mir docking as he waits in the Operations and Checkout (O&C) Building for the operation to fit him into his launch/entry suit to be completed. He conducted a spacewalk on his on his first Shuttle mission, STS- 57 and holds a doctorate degree in applied physics with an emphasis on lasers and semiconductor materials. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.
Second ISS Spacewalk in Two Weeks on This Week @NASA – September 2, 2016
2016-09-02
Outside the International Space Station, Expedition 48 Commander Jeff Williams and Flight Engineer Kate Rubins of NASA conducted a spacewalk Sept. 1 to retract a thermal radiator, install the first of several enhanced high definition cameras on the station’s truss and tighten bolts on a joint that enables one of the station’s solar arrays to rotate. This was the second spacewalk for the pair in just 13 days. They installed the station’s first international docking adapter during their previous spacewalk on Aug. 19. The adapter will provide a parking place for new U.S. commercial crew spacecraft delivering astronauts to the station on future missions. Also, Space Station Cameras Capture Hurricanes, Future Space Station Crews Prepare for Missions, Record-Breaking Galaxy Cluster Discovered, Up-Close with Jupiter, and more!
2002-08-14
ISS005-E-09725 (14 August 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, attired in his thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Korzun and astronaut Peggy A. Whitson, flight engineer, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts. Korzun, who represents Rosaviakosmos, is also scheduled for a spacewalk on August 22, 2002.
Space Station Cosmonauts Walk in Space to Upgrade Communications Hardware
2018-02-02
Aboard the International Space Station, Expedition 54 Flight Engineers Alexander Misurkin and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) conducted a spacewalk outside the Pirs docking compartment Feb. 2 to install a new high-gain communications antenna on the aft end of the Zvezda Service Module and retrieve science experiment packages from the hull of the module. It was the 208th spacewalk in support of space station assembly and maintenance, the fourth in Misurkin’s career and the second for Shkaplerov.
2016-08-19
ss048e061332 (08/19/2016) --- Checking the space gloves before and after a spacewalk is part of the detailed check list astronauts go through to provide absolute safety. Both NASA astronaut Jeff Williams and Kate Rubens took part in the important inspections before and after their 19 Aug 2016 spacewalk to install a new docking adapter . A cut in the glove could subject the astronaut to the extreme temperatures of outer space and the escape of oxygen, both of which could be fatal.
STS-86 crew members Wolf, Chretien and Titov in M-113
NASA Technical Reports Server (NTRS)
1997-01-01
STS-86 crew members get a ride in, and learn to operate, an M-113 armored personnel carrier as part of training exercises during the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. George Hoggard, in back at left, a training officer with KSC Fire Services, provides this part of the training to Mission Specialists Wendy B. Lawrence, to the right of Hoggard; Vladimir Georgievich Titov of the Russian Space Agency; and Scott E. Parazynski. STS-86 will be the seventh docking of the Space Shuttle with the Russian Space Station Mir. During the docking, Titov and Parazynski are scheduled to conduct a spacewalk primarily to retrieve four suitcase-sized environmental payloads from the exterior of the Mir docking module. Also during the mission, STS-86 Mission Specialist David A. Wolf will transfer to the orbiting Russian station and become a member of the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who has been on the Mir since the last docking mission, STS-84, in May. Launch of Mission STS-86 aboard the Space Shuttle Atlantis is targeted for Sept. 25 from Launch Pad 39A.
STS-106 Post Flight Presentation
NASA Technical Reports Server (NTRS)
2001-01-01
Various shots highlight the STS-106 Atlantis mission. Footage shows the crew suiting up and leaving the Operations and Checkout (O&C) Building, the launch, and landing. Various on-orbit activities are seen, such as docking with the International Space Station (ISS), the spacewalks, eating, exercising, sleeping, and the crew transferring equipment from Atlantis to ISS. Shots show the southern lights and several shots of Earth can be seen, including views of the Mediterranean Sea and the Italian coastline. Footage shows some areas of interest on the ISS, such as the food preparation area, the sleeping rooms, and the toilet.
Space-to-Ground: Light Storm: 180216
2018-02-16
This week on station, a spacewalk and vehicle docking. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. For more information about STEM on Station: https://www.nasa.gov/audience/foreducators/stem_on_station/
2012-08-20
ISS032-E-020683 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.
Kondratyev and Skripochka in the Pirs DC1
2011-01-18
ISS026-E-018417 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.
Kondratyev and Skripochka in the Pirs DC1
2011-01-18
ISS026-E-018421 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.
Kondratyev and Skripochka in the Pirs DC1
2011-01-18
ISS026-E-018429 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.
Kondratyev and Skripochka in the Pirs DC1
2011-01-18
ISS026-E-018411 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.
Kondratyev and Skripochka in the Pirs DC1
2011-01-18
ISS026-E-018424 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.
Portrait view of Whitson in Orlan suit
2002-08-14
ISS005-E-09716 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, wears a Russian Orlan spacesuit as she prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.
Portrait view of Whitson in Orlan suit
2002-08-14
ISS005-E-09713 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, wears a Russian Orlan spacesuit as she prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.
2002-08-14
ISS005-E-09719 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, photographed in her thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.
2004-07-07
KENNEDY SPACE CENTER, FLA. - The boat with NEEMO-6 personnel ties up at the dock in Key Largo after a training session offshore at NASA’s undersea research station, named Aquarius. At right is Bill Todd, project lead. The NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission involves spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station. The NEEMO-6 team comprises astronaut John Herrington, mission commander, astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.
Sharipov holds Nanosputnik in the SM during Expedition 10
2005-03-21
ISS010-E-20722 (21 March 2005) --- Cosmonaut Salizhan S. Sharipov, Expedition 10 flight engineer representing Russia's Federal Space Agency, holds Nanosputnik (TEKh-42) in the Zvezda Service Module of the International Space Station (ISS). This small (5 kilogram mass) satellite, powered by 10 lithium thionyl chloride batteries, will be activated by Sharipov after his egress from the Pirs Docking Compartment and later launched into its own orbit during the spacewalk scheduled for March 28. The purpose of Nanosputnik is to support development of satellite control techniques, monitoring of satellite operations, and research on new attitude system sensors and other components.
STS-88 Crew Interview: Nancy Currie
NASA Technical Reports Server (NTRS)
1998-01-01
Nancy Currie discusses the seven-day mission that will be highlighted by the mating of the U.S.-built Node 1 station element to the Functional Energy Block (FGB) which will already be in orbit, and two spacewalks to connect power and data transmission cables between the Node and the FGB. Node 1 will be the first Space Station hardware delivered by the Space Shuttle. He also disscusses the assembly sequence. The crew will conduct a series of rendezvous maneuvers similar to those conducted on other Shuttle missions to reach the orbiting FGB. Once the two elements are docked, Ross and Newman will conduct two scheduled spacewalks to connect power and data cables between the Node, PMAs and the FGB. The day following the spacewalks, Endeavour will undock from the two components, completing the first Space Station assembly mission.
2014-08-17
ISS040-E-095609 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.
2014-08-17
ISS040-E-095619 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.
2014-08-17
ISS040-E-095615 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.
2014-08-17
ISS040-E-095617 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.
2014-08-17
ISS040-E-095612 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.
Suraev wearing Russian Orlan Spacesuit in the Pirs DC-1 during Expedition 22
2010-01-12
ISS022-E-023793 (12 Jan. 2010) --- Attired in a Russian Orlan spacesuit, Russian cosmonaut Maxim Suraev, Expedition 22 flight engineer, checks out his Orlan suit in preparation for a spacewalk scheduled for Jan. 14 to outfit the new Poisk module for future Russian vehicle dockings.
2013-06-21
ISS036-E-009797 (21 June 2013) --- Russian cosmonauts Fyodor Yurchikhin (left) and Alexander Misurkin, both Expedition 36 flight engineers, participate in a suited exercise dry run in preparation for a spacewalk in their Russian Orlan spacesuits, which is scheduled for June 24 from the International Space Station’s Pirs docking compartment.
2006-12-18
ISS014-E-10089 (18 Dec. 2006) --- European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, uses a digital still camera to expose a photo of his helmet visor during the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station. Also visible in the reflections in the visor is astronaut Robert L. Curbeam Jr., mission specialist, as he works with the port overhead solar array wing on the station's P6 truss. The spacewalkers worked in tandem, using specially prepared, tape-insulated tools, to guide the array wing neatly inside its blanket box during the 6-hour, 38-minute spacewalk.
2004-07-07
KENNEDY SPACE CENTER, FLA. - A boat returns to the dock in Key Largo from a training session offshore at NASA’s undersea research station, named Aquarius. At left is Marc Reagan, lead on the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. In the bow is astronaut John Herrington, mission commander. The others are support personnel. Members of the team also include astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day. While stationed in Aquarius, the team conducted spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station.
Sharipov holds Nanosputnik in the SM during Expedition 10
2005-03-21
ISS010-E-20726 (21 March 2005) --- This close-up view of Nanosputnik (TEKh-42), held by cosmonaut Salizhan S. Sharipov (partially out of frame), Expedition 10 flight engineer representing Russia's Federal Space Agency, was photographed in the Zvezda Service Module of the International Space Station (ISS). This small (5 kilogram mass) satellite, powered by 10 lithium thionyl chloride batteries, will be activated by Sharipov after his egress from the Pirs Docking Compartment and later launched into its own orbit during the spacewalk scheduled for March 28. The purpose of Nanosputnik is to support development of satellite control techniques, monitoring of satellite operations, and research on new attitude system sensors and other components.
2009-11-12
ISS021-E-024527 (12 Nov. 2009) --- The new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
Kotov and Suraev wearing Russian Orlan Spacesuits in the Pirs DC-1 during Expedition 22
2010-01-12
ISS022-E-023790 (12 Jan. 2010) --- Attired in their Russian Orlan spacesuits, Russian cosmonauts Oleg Kotov (left) and Maxim Suraev, both Expedition 22 flight engineers, check out their Orlan suits in preparation for a spacewalk scheduled for Jan. 14 to outfit the new Poisk module for future Russian vehicle dockings.
2009-11-12
ISS021-E-024524 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024520 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024531 (12 Nov. 2009) --- Backdropped by Earth’s horizon and the blackness of space, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024522 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024534 (12 Nov. 2009) --- Backdropped by Earth’s horizon and the blackness of space, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024517 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024516 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024518 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
Suraev and Kotov in the Pirs DC-1 during Expedition 22
2010-01-12
ISS022-E-024463 (12 Jan. 2010) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Maxim Suraev (left) and Oleg Kotov, both Expedition 22 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 14 to outfit the new Poisk module for future Russian vehicle dockings.
View of the Dragon Spacecraft during EVA 26
2014-04-23
ISS039-E-014968 (22 April 2014) --- This snapshot of the SpaceX Dragon spacecraft docked to the International Space Station was photographed by one of two spacewalking astronauts on April 22, 2014. NASA astronauts Rick Mastracchio and Steve Swanson, Expediton 39 flight engineers, replaced a failed backup computer relay box in the S0 truss on the orbital outpost.
Exterior view of ISS taken with a Fisheye Camera during EVA
2011-07-12
ISS028-E-016128 (12 July 2011) --- This picture, photographed by NASA astronaut Ron Garan during the spacewalk conducted on July 12, 2011, shows the International Space Station with space shuttle Atlantis docked at center frame and a Russian Soyuz docked to Pirs, at left. In the center foreground is the Alpha Magnetic Spectrometer (AMS) experiment installed during the STS-134 mission. AMS is a state-of-the-art particle physics detector designed to use the unique environment of space to advance knowledge of the universe and lead to the understanding of the universe's origin by searching for antimatter and dark matter, and measuring cosmic rays.
Exterior view of ISS taken with a Fisheye Camera during EVA
2011-07-12
ISS028-E-016137 (12 July 2011) --- This picture, photographed by NASA astronaut Ron Garan during the spacewalk conducted on July 12, 2011, shows the International Space Station with space shuttle Atlantis docked at right and a Russian Soyuz docked to Pirs, at upper left. In the lower right foreground is the Alpha Magnetic Spectrometer (AMS) experiment installed during the STS-134 mission. AMS is a state-of-the-art particle physics detector designed to use the unique environment of space to advance knowledge of the universe and lead to the understanding of the universe's origin by searching for antimatter and dark matter, and measuring cosmic rays.
New Gateway Installed onto Space Station on This Week @NASA – August 19, 2016
2016-08-19
Outside the International Space Station, Expedition 48 Commander Jeff Williams and Flight Engineer Kate Rubins of NASA installed the first of two International Docking Adapters onto the forward end of the station’s Harmony module, during a spacewalk on Aug. 19. The new docking port will be used by the Boeing CST-100 “Starliner” and SpaceX Crew Dragon commercial crew spacecraft being developed to transport U.S. astronauts to and from the station. The second International Docking Adapter – currently under construction – eventually will be placed on the space-facing side of the Harmony module. Also, Commercial Crew Access Arm Installed on Launchpad, Behind the Scenes of our Journey to Mars, Asteroid Redirect Mission Milestone, Asteroid Sample Return Mission Approaches, and Chasing Greenhouse Gases in the Midwest!
2015-02-25
ISS042E288167 (02/25?2015) --- Expedition 42 astronauts Terry Virts and Barry “Butch” Wilmore worked outside the International Space Station installing cables and equipment Feb. 25, 2015 for the second of three spacewalks to help ready the laboratory complex for dockings by commercial crew capsules. Virts reported a small amount of water in his space helmet, but NASA officials said he was never in any danger
Suraev and Kotov wearing LCVG in the Pirs DC-1 during Expedition 22
2010-01-12
ISS022-E-023778 (12 Jan. 2010) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Maxim Suraev (left) and Oleg Kotov, both Expedition 22 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 14 to outfit the new Poisk module for future Russian vehicle dockings.
Suraev and Kotov wearing LCVG in the Pirs DC-1 during Expedition 22
2010-01-12
ISS022-E-023767 (12 Jan. 2010) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Maxim Suraev (foreground) and Oleg Kotov, both Expedition 22 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 14 to outfit the new Poisk module for future Russian vehicle dockings.
Suraev and Kotov wearing LCVG in the Pirs DC-1 during Expedition 22
2010-01-12
ISS022-E-023766 (12 Jan. 2010) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Maxim Suraev (foreground) and Oleg Kotov, both Expedition 22 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 14 to outfit the new Poisk module for future Russian vehicle dockings.
2013-06-21
ISS036-E-009793 (21 June 2013) --- Russian cosmonauts Fyodor Yurchikhin (left) and Alexander Misurkin, both Expedition 36 flight engineers, participate in a suited exercise dry run in preparation for a spacewalk in their Russian Orlan spacesuits, which is scheduled for June 24 from the International Space Station’s Pirs docking compartment. Russian cosmonaut Pavel Vinogradov (mostly out of frame at right), Expedition 36 commander, assists Yurchikhin and Misurkin.
Stefanyshyn-Piper and Tanner perform first EVA during STS-115 / Expedition 13 joint operations
2006-09-12
S115-E-05663 (12 Sept. 2006) --- Astronauts Joseph R. Tanner (left) and Heidemarie M. Stefanyshyn-Piper, both STS-115 mission specialists, work in tandem during the mission's first session of extravehicular activity (EVA) while the Space Shuttle Atlantis was docked with the International Space Station. During today's spacewalk, Tanner and Stefanyshyn-Piper worked to connect power cables on the P3/P4 truss, release restraints for the Solar Array Blanket Boxes that hold the solar arrays and the Beta Gimbal Assemblies that serve as the structural link between the truss' integrated electronics and the Solar Array Wings. Stefanyshyn-Piper and Tanner also installed the Solar Alpha Rotary Joint and completed the connection of electrical cables between the new P3 truss and the P1 truss.
STS-92 M.S. Koichi Wakata suits up for launch
NASA Technical Reports Server (NTRS)
2000-01-01
During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Koichi Wakata of Japan signals thumbs up for a second launch attempt. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 M.S. Jeff Wisoff suits up for launch
NASA Technical Reports Server (NTRS)
2000-01-01
During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff signals thumbs up for a second launch attempt. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.
Exterior view of ISS taken with a Fisheye Camera during EVA
2011-07-12
ISS028-E-016142 (12 July 2011) --- This picture, photographed by NASA astronaut Ron Garan during the spacewalk conducted on July 12, 2011, shows the International Space Station with space shuttle Atlantis docked at the edge of the frame on the far right and a Russian Soyuz docked to Pirs, below the sun. In the foreground is the Alpha Magnetic Spectrometer (AMS) experiment installed during the STS-134 mission. AMS is a state-of-the-art particle physics detector designed to use the unique environment of space to advance knowledge of the universe and lead to the understanding of the universe's origin by searching for antimatter and dark matter, and measuring cosmic rays.
2007-02-22
ISS014-E-14451 (22 Feb. 2007) --- A close-up view of the Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module was photographed during a session of extravehicular activity (EVA) on Feb. 22, 2007. During the 6-hour, 18-minute spacewalk, astronaut Michael E. Lopez-Alegria (out of frame), Expedition 14 commander and NASA space station science officer; and cosmonaut Mikhail Tyurin (out of frame), flight engineer representing Russia's Federal Space Agency, were able to retract the stuck antenna which did not properly retract when the Progress docked to the station on Oct. 26, 2006. Moving the antenna was necessary to ensure it would not interfere with the undocking scheduled in April.
Exterior view of ISS taken with a Fisheye Camera during EVA
2011-07-12
ISS028-E-016131 (12 July 2011) --- This picture, photographed by NASA astronaut Ron Garan during the spacewalk conducted on July 12, 2011, shows the International Space Station with space shuttle Atlantis docked at right and a Russian Soyuz docked to Pirs, below the sun at far left. In the center foreground is the Alpha Magnetic Spectrometer (AMS) experiment installed during the STS-134 mission. AMS is a state-of-the-art particle physics detector designed to use the unique environment of space to advance knowledge of the universe and lead to the understanding of the universe's origin by searching for antimatter and dark matter, and measuring cosmic rays.
Exterior view of ISS taken with a Fisheye Camera during EVA
2011-07-12
ISS028-E-016138 (12 July 2011) --- This picture, photographed by NASA astronaut Ron Garan during the spacewalk conducted on July 12, 2011, shows the International Space Station with space shuttle Atlantis docked at right and a Russian Soyuz docked to Pirs, below the sun (partially out of frame) at upper left. In the lower right foreground is the Alpha Magnetic Spectrometer (AMS) experiment installed during the STS-134 mission. AMS is a state-of-the-art particle physics detector designed to use the unique environment of space to advance knowledge of the universe and lead to the understanding of the universe's origin by searching for antimatter and dark matter, and measuring cosmic rays.
STS-92 M.S. Leroy Chiao suits up for launch
NASA Technical Reports Server (NTRS)
2000-01-01
During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Leroy Chiao gives thumbs up for launch. With him (left) is VITT Mission Lead Roland Nedelkovich, from Houston. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 Pilot Pam Melroy suits up for launch
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, STS-92 Pilot Pamela Ann Melroy smiles during suit check before heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 Commander Brian Duffy suits up for launch
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, STS-92 Commander Brian Duffy solemnly undergoes suit check before heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.
2014-10-15
ISS041E074458 (10/15/2014) --- NASA Flight Engineers Reid Wiseman and Barry Wilmore ventured out to the starboard truss of the International Space Station to remove and replace a power regulator known as a sequential shunt unit, which failed back in mid-May. The two spacewalkers also moved TV and camera equipment in preparation for the relocation of the Leonardo Permanent Multipurpose Module to accommodate the installation of new docking adapters for future commercial crew vehicles.
STS-120 Flight Controllers on console during mission
2007-10-31
JSC2007-E-095788 (3 Nov. 2007) --- Flight directors Norm Knight (left) and Bryan Lunney, inside the shuttle flight control room of JSC's Mission Control Center, monitor the progress of the Nov. 3 spacewalk by two members of Discovery's crew, while the space shuttle is docked with the International Space Station in Earth orbit. Astronaut Scott Parazynski was busy at work on repairing a tear in a solar panel on the orbiting outpost.
STS-100 Crew Interview: Jeff Ashby
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Pilot Jeff Ashby is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Ashby then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Kent Rominger
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Commander Kent Rominger is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Rominger then discusses his views about space exploration as it becomes an international collaboration.
Exterior view of ISS taken with a Fisheye Camera during EVA
2011-07-12
ISS028-E-016140 (12 July 2011) --- This picture, photographed by NASA astronaut Ron Garan during the spacewalk conducted on July 12, 2011, shows the sun and many components of the International Space Station. In this frame the space shuttle Atlantis cannot be seen but is docked just out of frame right and a Russian Soyuz docked to Pirs, below the sun. In the lower right foreground is the Alpha Magnetic Spectrometer (AMS) experiment installed during the STS-134 mission. AMS is a state-of-the-art particle physics detector designed to use the unique environment of space to advance knowledge of the universe and lead to the understanding of the universe's origin by searching for antimatter and dark matter, and measuring cosmic rays.
STS-86 crew members Wolf and Lawrence at SLF for TCDT
NASA Technical Reports Server (NTRS)
1997-01-01
STS-86 Mission Specialists Wendy B. Lawrence, at left, and David A. Wolf confer -- possibly about the Russian Space Station Mir? - - after their arrival at KSCs Shuttle Landing Facility for the Terminal Countdown Demonstration Test (TCDT). Lawrence was supposed to be the next U.S. astronaut slated for a long-duration stay aboard Mir, but was replaced by Wolf in late July. Unlike Lawrence, Wolf has undergone spacewalk training and fits in the Orlan spacesuit used by Russians on spacewalks. Lawrence will remain on the STS-86 crew, but will return to Earth at the conclusion of the planned 10-day mission. Wolf will take the place on Mir of astronaut C. Michael Foale, who arrived on the Russian space station during the STS-84 mission in May. STS-86 will be the seventh docking of the Space Shuttle with the Mir. The mission is targeted for a Sept. 25 launch aboard the Space Shuttle Atlantis.
STS-100 Crew Interview: John Phillips
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist John Phillips is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Phillips then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Umberto Guidoni
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist Umberto Guidoni is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Guidoni then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Chris Hadfield
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist Chris Hadfield is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Hadfield then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Yuri Lonchakov
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist Yuri Lonchakov is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Lonchakov then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Scott Parazynski
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist Scott Parazynski is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Parazynski then discusses his views about space exploration as it becomes an international collaboration.
2005-08-18
ISS011-E-11944 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (out of frame), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of station assembly and maintenance, the 34th conducted from the station itself, and the 16th from the Pirs Docking Compartment.
STS-92 M.S. Michael Lopez-Alegria suits up for launch
NASA Technical Reports Server (NTRS)
2000-01-01
During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Michael E. Lopez-Alegria smiles and clasps his hands in anticipation of a second launch attempt. He and the rest of the crew will be heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.
M.S. Wakata and the STS-92 crew return to O&C after launch scrub
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Koichi Wakata of Japan exits the Astrovan on its return to the Operations and Checkout Building. Behind him is Mission Specialist Leroy Chiao. The scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.
Pilot Melory and the STS-92 crew return to O&C after launch scrub
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Pilot Pamela Ann Melroy exits the Astrovan on its return to the Operations and Checkout Building. Behind her is Mission Specialist Koichi Wakata of Japan. The scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.
Commander Duffy and the STS-92 crew return to O&C after launch scrub
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Commander Brian Duffy pauses in the door of the Astrovan before exiting at the Operations and Checkout Building. The vehicle is returning the crew after the scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.
STS-104 Crew Interview: Steve Lindsey
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Commander Steve Lindsey is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Lindsey describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Mike Gernhardt
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Mission Specialist Mike Gernhardt is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Gernhardt describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Janet Kavandi
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Mission Specialist Janet Kavandi is seen being interviewed. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Kavandi describes her role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Jim Reilly
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Mission Specialist Jim Reilly is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Reilly describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Charlie Hobaugh
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Pilot Charlie Hobaugh is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Hobaugh describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
2006-11-23
ISS014-E-07953 (22 Nov. 2006) ---This photo shows the position of the KURS antennae on 23 Progress as seen by spacewalkers Michael Lopez-Alegria and Mikhail Tyurin during Russian EVA 17 on Nov. 22. During docking of the Progress to the International Space Station on Oct. 26, 2006, flight controllers were unable to confirm if the antenna had retracted as commanded. On the right-hand side of the photo, there is a visible clearance between the antennae's satellite dish and handrail 2745 on the ISS Service Module.
2015-10-28
ISS045E082789 (10/28/2015) --- NASA astronaut Kjell Lindgren is photographed through a window during a night pass while on his first spacewalk on Oct. 28, 2015. Lindgren and NASA astronaut Scott Kelly worked outside for seven hours and 16 minutes on a series of tasks to service and upgrade the International Space Station. They wrapped a dark matter detection experiment in a thermal blanket, lubricated the tip of the Canadarm2 robotic arm and then routed power and data cables for a future docking port.
View of Kelly outside the A/L during EVA 32
2015-10-28
ISS045E082968 (10/28/2015) --- NASA astronaut Scott Kelly is photographed just outside the airlock during his first ever spacewalk on Oct 28, 2015. Kelly and NASA astronaut Kjell Lindgren worked outside for seven hours and 16 minutes on a series of tasks to service and upgrade the International Space Station. They wrapped a dark matter detection experiment in a thermal blanket, lubricated the tip of the Canadarm2 robotic arm and then routed power and data cables for a future docking port.
Kelly takes a Self-Portrait during EVA 32
2015-10-28
ISS045E082998 (10/28/2015) --- NASA astronaut Scott Kelly snaps a quick space selfie during his first ever spacewalk on Oct 28, 2015. Kelly and NASA astronaut Kjell Lindgren worked outside for seven hours and 16 minutes on a series of tasks to service and upgrade the International Space Station. They wrapped a dark matter detection experiment in a thermal blanket, lubricated the tip of the Canadarm2 robotic arm and then routed power and data cables for a future docking port.
2005-08-18
ISS011-E-11948 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (seen in Phillip;s helmet visor), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of Station assembly and maintenance, the 34th conducted from the Station itself, and the 16th from the Pirs Docking Compartment.
2005-08-18
ISS011-E-11949 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (seen in Phillip;s helmet visor), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of Station assembly and maintenance, the 34th conducted from the Station itself, and the 16th from the Pirs Docking Compartment.
2005-08-18
ISS011-E-11947 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (seen in Phillip;s helmet visor), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of Station assembly and maintenance, the 34th conducted from the Station itself, and the 16th from the Pirs Docking Compartment.
2005-08-18
ISS011-E-11958 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (out of frame), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of Station assembly and maintenance, the 34th conducted from the Station itself, and the 16th from the Pirs Docking Compartment.
2008-06-18
CAPE CANAVERAL, Fla. – The Cupola, another module built in Italy for the United States segment of the International Space Station, resides in the Space Station Processing Facility. With 360-degree windows, it will serve as a literal skylight to control some of the most sophisticated robotics ever built. The space station crew will use Cupola windows, six around the sides and one on the top, for line-of-sight monitoring of outside activities, including spacewalks, docking operations and exterior equipment surveys. The Cupola will be used specifically to monitor the approach and berthing of the Japanese H-2 supply spacecraft and other visiting vehicles. The Cupola also will serve as the primary location for controlling Canadarm2, the 60-foot space station robotic arm. Space station crews currently use two robotic control workstations in the Destiny laboratory to operate the arm. One of the robotic control stations will be placed inside the Cupola. The view from the Cupola will enhance an arm operator's situational awareness, supplementing television cameras and graphics. The Cupola is scheduled to launch on a future space station assembly mission. It will be installed on the forward port of Node 3, a connecting module to be installed as well. Photo credit: NASA/Kim Shiflett
2008-06-18
CAPE CANAVERAL, Fla. – The Cupola, another module built in Italy for the United States segment of the International Space Station, resides in the Space Station Processing Facility. With 360-degree windows, it will serve as a literal skylight to control some of the most sophisticated robotics ever built. The space station crew will use Cupola windows, six around the sides and one on the top, for line-of-sight monitoring of outside activities, including spacewalks, docking operations and exterior equipment surveys. The Cupola will be used specifically to monitor the approach and berthing of the Japanese H-2 supply spacecraft and other visiting vehicles. The Cupola also will serve as the primary location for controlling Canadarm2, the 60-foot space station robotic arm. Space station crews currently use two robotic control workstations in the Destiny laboratory to operate the arm. One of the robotic control stations will be placed inside the Cupola. The view from the Cupola will enhance an arm operator's situational awareness, supplementing television cameras and graphics. The Cupola is scheduled to launch on a future space station assembly mission. It will be installed on the forward port of Node 3, a connecting module to be installed as well. Photo credit: NASA/Kim Shiflett
2008-06-18
CAPE CANAVERAL, Fla. – The Cupola, another module built in Italy for the United States segment of the International Space Station, resides in the Space Station Processing Facility. With 360-degree windows, it will serve as a literal skylight to control some of the most sophisticated robotics ever built. The space station crew will use Cupola windows, six around the sides and one on the top, for line-of-sight monitoring of outside activities, including spacewalks, docking operations and exterior equipment surveys. The Cupola will be used specifically to monitor the approach and berthing of the Japanese H-2 supply spacecraft and other visiting vehicles. The Cupola also will serve as the primary location for controlling Canadarm2, the 60-foot space station robotic arm. Space station crews currently use two robotic control workstations in the Destiny laboratory to operate the arm. One of the robotic control stations will be placed inside the Cupola. The view from the Cupola will enhance an arm operator's situational awareness, supplementing television cameras and graphics. The Cupola is scheduled to launch on a future space station assembly mission. It will be installed on the forward port of Node 3, a connecting module to be installed as well. Photo credit: NASA/Kim Shiflett
2015-02-21
ISS042E283203 (02/21/2015) – NASA astronaut Terry Virts Flight Engineer of Expedition 42 on the International Space Station is seen working to complete a cable routing task while the sun begins to peak over the Earth’s horizon on Feb. 21 2015. Virts and fellow astronaut Barry “Butch” Wilmore completed a 6-hour, 41-minute spacewalk routing more than 300 feet of cable as part of a reconfiguration of the station to enable U.S. commercial crew vehicles under development to dock to the space station in the coming years.
STS-116 MS Fuglesang uses digital camera on the STBD side of the S0 Truss during EVA 4
2006-12-19
S116-E-06882 (18 Dec. 2006) --- European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, uses a digital still camera during the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station. Astronaut Robert L. Curbeam Jr. (out of frame), mission specialist, worked in tandem with Fuglesang, using specially-prepared, tape-insulated tools, to guide the array wing neatly inside its blanket box during the 6-hour, 38-minute spacewalk.
1998-10-03
KENNEDY SPACE CENTER, FLA. -- Lowered on a movable work platform or bucket inside the payload bay of orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (far right) and James H. Newman (second from right) get a close look at the Orbiter Docking System. At left is the bucket operator and Wayne Wedlake, with United Space Alliance at Johnson Space Center. The STS-88 crew members are in Orbiter Processing Facility Bay 1 to participate in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability
2001-05-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, workers check out the placement of one of four gas tanks on the Spacelab Logistics Double Pallet. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system
View of the docked Node 1 and FGB modules with umbilical cables attached
1998-12-08
S88-E-5061 (12-08-98) --- Cables and wires in place on the Unity module signify the end of the first of three spacewalks scheduled for the STS-88 mission. Astronauts Jerry L. Ross and James H. Newman, both mission specialists, were succesful in mating 40 cables and connectors running 76 feet from the Zarya control module (seen at top in this photo) to Unity, with the 35-ton complex towering over Endeavour's cargo bay. This photo was taken with an electronic still camera (ESC) at 03:37:35 GMT, Dec. 8.
Expedition 48/49 crew visit to MSFC
2017-04-06
NASA astronaut Kate Rubins presents highlights from Expedition 48/49, her mission to the International Space Station, to team members and Space Camp students from the U.S. Space & Rocket Center in Huntsville, April 6 at NASA's Marshall Space Flight Center. During her mission, Rubins became the first person to sequence DNA in space, researching technology development for deep-space exploration by humans, Earth and space science. She also conducted two spacewalks, in which she and NASA astronaut Jeff Williams installed an International Docking Adapter and performed maintenance of the station's external thermal control system and installed high-definition cameras.
2001-05-07
KENNEDY SPACE CENTER, FLA. -- An overhead crane in the Operations and Checkout Building lowers one of four gas tanks onto the Spacelab Logistics Double Pallet while workers help guide it. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system
1998-12-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
A storage gas tank is moved to a pallet in the O&C
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, workers check out the placement of one of four gas tanks on the Spacelab Logistics Double Pallet. Part of the STS- 104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.
A storage gas tank is moved to a pallet in the O&C
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Operations and Checkout Building stand by while one of four gas tanks is moved toward the Spacelab Logistics Double Pallet. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.
A storage gas tank is moved to a pallet in the O&C
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Operations and Checkout Building lowers one of four gas tanks onto the Spacelab Logistics Double Pallet while workers help guide it. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.
2008-07-21
CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the protective wrapping has been removed from the Flight Support System for the Hubble Space Telescope revealing the soft capture mechanism , or SCM. The SCM will be permanently attached to Hubble’s aft shroud by spacewalking astronauts and will provide a rendezvous and docking target that can be easily seen and recognized by a docking vehicle. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
International Space Station (ISS)
2002-06-07
Pictured here is the forward docking port on the International Space Station's (ISS) Destiny Laboratory as seen by one of the STS-111 crewmembers from the Space Shuttle Orbiter Endeavour just prior to docking. In June 2002, STS-111 provided the Space Station with a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments form the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
2017-05-12
iss051e041841 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.
2017-05-12
iss051e041847 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.
2017-05-12
iss051e041836 (05/12/2017) -- NASA astronaut Peggy Whitson is seen prior to the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.
2017-05-12
iss051e041849 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.
2017-05-12
iss051e041844 (05/12/2017) -- NASA astronaut Jack Fischer is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.
2017-05-12
iss051e041860 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.
Expedition 6 Crew Interviews: Nikolai Budarin FEI (Flight Engineer 1)
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition 6 Flight Engineer Nikolai Budarin is seen during a prelaunch interview. He provides details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew activities will be like (docking of a Progress unpiloted supply vehicle, maintaining the space station, conducting science experiments and performing one spacewalk), the day-to-day life on an extended stay mission, and the experiments he will be conducting on board. Budarin also discusses how his previous experiences on mir space missions will help him and ends his thoughts on how valuable the International Space Station has proven.
Wheelock during Expedition 16/STS-120 EVA 4
2007-11-03
ISS016-E-009179 (3 Nov. 2007) --- Astronaut Doug Wheelock, STS-120 mission specialist, participates in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery is docked with the International Space Station. During the 7-hour, 19-minute spacewalk, astronaut Scott Parazynski (out of frame), mission specialist, cut a snagged wire and installed homemade stabilizers designed to strengthen the damaged solar array's structure and stability in the vicinity of the damage. Wheelock assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.
Wheelock during Expedition 16/STS-120 EVA 4
2007-11-03
ISS016-E-009192 (3 Nov. 2007) --- Astronaut Doug Wheelock, STS-120 mission specialist, participates in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery is docked with the International Space Station. During the 7-hour, 19-minute spacewalk, astronaut Scott Parazynski (out of frame), mission specialist, cut a snagged wire and installed homemade stabilizers designed to strengthen the damaged solar array's structure and stability in the vicinity of the damage. Wheelock assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.
STS-97 crew looks over the payload from the Payload Changeout Room
NASA Technical Reports Server (NTRS)
2000-01-01
From the payload changeout room on Launch Pad 39B, STS-97 Mission Specialists Joseph Tanner and Marc Garneau (pointing) look over the payload in Endeavour'''s payload bay. At right center of the photo is the orbiter docking system (ODS). At left and below the ODS is the Canadian robotic arm that will be used during spacewalks on the mission to install solar arrays. Each more than 100 feet long, the arrays will capture energy from the sun and convert it to power for the Station. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.
Satellite Docking Simulator with Generic Contact Dynamics Capabilities
NASA Astrophysics Data System (ADS)
Ma, O.; Crabtree, D.; Carr, R.; Gonthier, Y.; Martin, E.; Piedboeuf, J.-C.
2002-01-01
Satellite docking (and capture) systems are critical for the servicing or salvage of satellites. Satellite servicing has comparatively recently become a realistic and promising space operation/mission. Satellite servicing includes several of the following operations: rendezvous; docking (capturing); inspection; towing (transporting); refueling; refurbishing (replacement of faulty or "used-up" modules/boxes); and un-docking (releasing). Because spacecraft servicing has been, until recently non-feasible or non-economical, spacecraft servicing technology has been neglected. Accordingly, spacecraft designs have featured self- contained systems without consideration for operational servicing. Consistent with this view, most spacecrafts were designed and built without docking interfaces. If, through some mishap, a spacecraft was rendered non-operational, it was simply considered expendable. Several feasibility studies are in progress on salvaging stranded satellites (which, in fact had led to this project). The task of the designer of the docking system for a salvaging task is difficult. He/she has to work with whatever it is on orbit, and this excludes any special docking interfaces, which might have made his/her task easier. As satellite servicing becomes an accepted design requirement, many future satellites will be equipped with appropriate docking interfaces. The designer of docking systems will be faced with slightly different challenges: reliable, cost-effective, docking (and re-supply) systems. Thus, the role of designers of docking systems will increase from one of a kind, ad-hoc interfaces intended for salvaging operations, to docking systems for satellites and "caretaker" spacecraft which are meant for servicing and are produced in larger numbers. As in any space system (for which full and representative ground hardware test-beds are very expensive and often impossible to develop), simulations are mandatory for the development of systems and operations for satellite servicing. Simulations are also instrumental in concept studies during proposals and early development stages. Finally, simulations are useful during the operational phase of satellite servicing: improving the operational procedures; training ground operators; command and control, etc. Hence the need exists for a Satellite Servicing Simulator, which will support a project throughout its lifecycle. The paper addresses a project to develop a Simulink-based Satellite Docking Simulator (SDS) with generic Contact Dynamics (CD) capabilities. The simulator is intended to meet immediate practical demands for development of complex docking systems and operations at MD Robotics. The docking phase is the most critical and complex phase of the entire servicing sequence, and without docking there is no servicing. Docking mechanisms are often quite complex, especially when built to dock with a satellite manufactured without special docking interfaces. For successful docking operations, the design of a docking system must take into consideration: complexity of 3D geometric shapes defining the contact interfaces; sophistication of the docking mechanism; friction and stiction at the contacting surfaces; compliance (stiffness) and damping, in all axes; positional (translation and rotation) misalignments and relative velocities, in all axes; inertial properties of the docking satellites (including their distribution); complexity of the drive mechanisms and control sub-systems for the overall docking system; fully autonomous or tele-operated docking from the ground; etc. The docking simulator, which makes use of the proven Contact Dynamics Toolkit (CDT) developed by MD Robotics, is thus practically indispensable for the docking system designer. The use of the simulator could greatly reduce the prototyping and development time of a docking interface. A special feature of the simulator, which required an update of CDT, is variable step-size integration. This new capability permits increases in speed to accomplish all the simulation tasks.
1998-10-03
KENNEDY SPACE CENTER, FLA. -- As the bucket operator (left) lowers them into the open payload bay of the orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (second from left) and James H. Newman (second from right) do a sharp-edge inspection. At their right is Wayne Wedlake, with United Space Alliance at Johnson Space Center. Below them is the Orbiter Docking System, the remote manipulator system arm and a tunnel into the payload bay. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability
The high pressure gas assembly is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, an overhead crane moves the high pressure gas assembly -- two gaseous oxygen and two gaseous nitrogen storage tanks -- to the payload canister for transfer to orbiter Atlantis'''s payload bay. The tanks are part of the payload on mission STS- 104. They will be attached to the Joint Airlock Module, also part of the payload, during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B.
STS-114 Crew Interview: Stephen Robinson
NASA Technical Reports Server (NTRS)
2003-01-01
Stephen Robinson, Mission Specialist 2 (MS2), of the STS-114 space mission is seen during a prelaunch interview. He discusses his duties as flight engineer, Extravehicular Activity 2 (EVA 2) spacewalker, and medical officer. Robinson answers questions about his interests in spaceflight and the specific goals of the mission. He identifies this mission as the International Space Station Resupply Mission because supplies and experiments are brought to the International Space Station and Expedition 6 crew of Commander Kenneth Bowersox, and Flight Engineers Donald Pettit and Nikolai Budarin are returning to Earth. Lastly, he talks about the docking of the Space Shuttle Atlantis with the International Space Station. He looks forward to this experience in space.
2001-03-19
KENNEDY SPACE CENTER, FLA. -- Members of the STS-104 crew look over equipment inside the equipment lock component of the Joint Airlock Module. At left is Mission Specialist Janet L. Kavandi, and at right Pilot Charles O. Hobaugh. The crew is at KSC to take part in Crew Equipment Interface Test activities. The mission will carry the Joint Airlock Module to the International Space Station. The U.S.-made module will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which also comprises a crew lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the mission’s spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Station’s Service Module
2001-03-19
KENNEDY SPACE CENTER, FLA. -- Members of the STS-104 crew look over equipment inside the equipment lock component of the Joint Airlock Module. At left is Mission Specialist Janet L. Kavandi, and at right Pilot Charles O. Hobaugh. The crew is at KSC to take part in Crew Equipment Interface Test activities. The mission will carry the Joint Airlock Module to the International Space Station. The U.S.-made module will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which also comprises a crew lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the mission’s spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Station’s Service Module
Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight
NASA Technical Reports Server (NTRS)
Alpert, Brian K.
2015-01-01
As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration
2001-05-18
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, workers wait in the payload canister as an overhead crane moves the high pressure gas assembly two gaseous oxygen and two gaseous nitrogen storage tanks toward it. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis’s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B
2013-06-24
ISS036-E-011590 (24 June 2013) --- Russian cosmonauts Alexander Misurkin (left) and Fyodor Yurchikhin, both Expedition 36 flight engineers, participate in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Yurchikhin replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011593 (24 June 2013) --- Russian cosmonauts Alexander Misurkin (left) and Fyodor Yurchikhin, both Expedition 36 flight engineers, participate in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Yurchikhin replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.
STS-92 Mission Specialist Chiao suits up
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Leroy Chiao signals thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the third for Chiao. Landing is expected Oct. 21 at 3:55 p.m. EDT.
STS-97 crew looks over the payload from the Payload Changeout Room
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the STS-97 crew look into Endeavour'''s payload bay at some of the equipment that will be carried on the mission. On the left, pointing, is Mission Specialist Marc Garneau. Next to him (left to right) are Mission Specialist Carlos Noriega and Pilot Michael Bloomfield. At right center of the photo is the orbiter docking system (ODS). At left and below the ODS is the Canadian robotic arm that will be used during spacewalks on the mission to install solar arrays. Each more than 100 feet long, the arrays will capture energy from the sun and convert it to power for the Station. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.
Cassidy, Marshburn and Barratt in the A/L during STS-127 / Expedition 20 Joint Operations
2009-07-18
S127-E-006871 (18 July 2009) ---Two soon-to-be space-walking astronauts--Dave Wolf and Tim Kopra--although barely visible in the International Space Station's Quest airlock in the rear of this frame, are the primary focus of the three supportive astronauts in the foreground. From the left are astronauts Christopher Cassidy, Mike Barratt and Tom Marshburn. The July 18 extravehicular activity kicks off a series of five spacewalks scheduled over the next several days.
The high pressure gas assembly is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, workers wait in the payload canister as an overhead crane moves the high pressure gas assembly -- two gaseous oxygen and two gaseous nitrogen storage tanks toward it. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis'''s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS- 104 is scheduled for launch June 14 from Launch Pad 39B.
Code of Federal Regulations, 2012 CFR
2012-01-01
... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section....15 Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly... departments where certified products are prepared, handled, or stored. Docks and areas where cars and vehicles...
Code of Federal Regulations, 2014 CFR
2014-01-01
... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section....15 Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly... departments where certified products are prepared, handled, or stored. Docks and areas where cars and vehicles...
Code of Federal Regulations, 2013 CFR
2013-01-01
... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section....15 Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly... departments where certified products are prepared, handled, or stored. Docks and areas where cars and vehicles...
STS-114: Discovery Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
On flight day 13, Leroy Cain, STS-114 Ascent/Entry Flight Director, discusses the condition of the Space Shuttle Discovery, and the weather outlook for landing. He answers questions from the news media about his feelings about re-entry since the Columbia tragedy, possible new information during re-entry, critical moments in the Mission Control Room during landing, and differences between night landing and day landing. Footage of the Mission Control Room and a talk with Soichi Noguchi in orbit is shown. Also, footage of the truss structure of the International Space Station, Destiny Laboratory, crew cabin of Discovery, and the Orbiter Docking System linked up to forward docking port on Discovery is shown. Eileen Collins and Wendy Lawrence are shown in the flight deck of Discovery. Charles Camarda is also shown in the mid-deck. Downlink television from Discovery shows spacewalk choreographer Andy Thomas with Stephen Robinson and Soichi Noguchi preparing for depressurization and pre-breathing activities that will lead to the opening of the hatch. The installation of a replacement GPS antenna, images of the port wing of Discovery and Canadarm moving with the Orbital Boom Sensor System (OBSS) extension is shown.
2013-06-24
ISS036-E-011479 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011459 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011481 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011441 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011747 (24 June 2013) --- Russian cosmonaut Alexander Misurkin (bottom center), Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011642 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011440 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.
2013-06-24
ISS036-E-011480 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011745 (24 June 2013) --- Russian cosmonaut Alexander Misurkin (bottom center), Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011598 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.
2013-06-24
ISS036-E-011477 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011439 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.
2013-06-24
ISS036-E-011640 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2013-06-24
ISS036-E-011608 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.
2001-02-04
KENNEDY SPACE CENTER, FLA. -- The STS-98 crew crosses the parking apron at the KSC Shuttle Landing Facility after their arrival aboard the T-38 jets in the background. Getting ready to greet the media are, left to right, Mission Specialist Thomas Jones, Pilot Mark Polansky, Commander Ken Cockrell, and Mission Specialists Robert Curbeam and Marsha Ivins. The crew has returned to KSC to prepare for their launch to the International Space Station. The seventh construction flight to the Space Station, STS-98 will carry the U.S. Laboratory Destiny, a key module for space experiments. The 11-day mission includes three spacewalks to complete outside assembly and connection of electrical and plumbing lines between the laboratory, Station and a relocated Shuttle docking port. Launch is targeted for Feb. 7 at 6:11 p.m. EST
STS-92 Commander Duffy suits up
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Commander Brian Duffy has his launch and entry suit checked before launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the fourth for Duffy. Landing is expected Oct. 21 at 3:55 p.m. EDT.
STS-92 Mission Specialist Wisoff suits up
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff looks relaxed as he signals a thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the fourth for Wisoff. Landing is expected Oct. 21 at 3:55 p.m. EDT.
STS-92 Mission Specialist McArthur suits up
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist William S. McArthur Jr. signals thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the third for McArthur. Landing is expected Oct. 21 at 3:55 p.m. EDT.
1998-04-10
STS-91 crew members participate in the Crew Equipment Interface Test, or CEIT, in KSC's Orbiter Processing Facility Bay 2. Laying down inspecting a foot restraint for an extravehicular activity (EVA) spacewalk is STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D. Looking over his shoulder is Kieth Johnson, an EVA trainer and flight controller from Johnson Space Center. STS-91 Mission Specialist Janet Kavandi, Ph.D., stands next to Johnson. During CEIT, the crew have an opportunity to get a hands-on look at the payloads with which they'll be working on-orbit. The STS-91 crew are scheduled to launch aboard the Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on May 28 at 8:05 EDT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Pilot Pamela Ann Melroy has her helmet checked during suitup for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the first for Melroy. Landing is expected Oct. 21 at 3:55 p.m. EDT.
STS-97 crew looks over the payload from the Payload Changeout Room
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the STS-97 crew look into Endeavour'''s payload bay at some of the equipment that will be carried on the mission. At far left are (left to right) Commander Brent Jett and Mission Specialist Joseph Tanner, with a technician. At center are Mission Specialists Marc Garneau and Carlos Noriega, plus Pilot Michael Bloomfield. The equipment visible at right are the orbiter docking system (ODS) (center) and Canadian robotic arm (left and below the ODS). The arm will be used during spacewalks on the mission to install solar arrays. Each more than 100 feet long, the arrays will capture energy from the sun and convert it to power for the Station. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.
Large ORU/ Crane evaluations conducted during first EVA of STS-87 (DTO 671)
1997-11-25
STS087-718-069 (19 November ? 5 December 1997) --- On the Space Shuttle Columbia's first ever spacewalk (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time this trip of Columbia. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future spacewalkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations, long ago manifest for this mission, after completing a contingency spacewalk to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).
2001-06-21
KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis, with its orange external tank and white solid rocket boosters, sits on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiter’s tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the mission’s spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Station’s Service Module
2001-06-21
KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis arrives on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiter’s tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the mission’s spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Station’s Service Module
Space Shuttle Atlantis is on Launch Pad 39B
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis, with its orange external tank and white solid rocket boosters, sits on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11- day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.
Space Shuttle Atlantis is on Launch Pad 39B
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis arrives on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11- day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Michael Suffredini, program manager, International Space Station, NASA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Michael Suffredini, program manager, International Space Station, NASA; William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; and Bernardo Patti, head of International Space Station, Program Department, ESA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Kennedy Director Bob Cabana addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; Bernardo Patti, head of International Space Station, Program Department, ESA; and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, at left, head of International Space Station, Program Department, European Space Agency, congratulates Michael Suffredini, program manager, International Space Station, NASA, upon transfer of the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, at left, head of International Space Station, Program Department, European Space Agency, and Michael Suffredini, program manager, International Space Station, NASA, sign documents transferring the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, head of International Space Station, Program Department, European Space Agency, or ESA, is photographed with invited guests of ESA in front of node 3 for the International Space Station following a ceremony transferring the ownership of the node from ESA to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, center, head of International Space Station, Program Department, European Space Agency, or ESA, admires the node 3 for the International Space Station, which his agency provided, following a ceremony transferring the ownership of the node from ESA to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
STS-111 crew exits O&C building on way to LC-39A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-111 and Expedition 5 crews hurry from the Operations and Checkout Building for a second launch attempt aboard Space Shuttle Endeavour. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.
STS-111 crew exits the O&C Building before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews eagerly exit from the Operations and Checkout Building for launch aboard Space Shuttle Endeavour. It is the second launch attempt in six days. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.
1997-09-25
The five STS-86 mission specialists wave to the crowd of press representatives, KSC employees and other well-wishers as they depart from the Operations and Checkout Building. The three U.S. mission specialists (and their nicknames for this flight) are, from left, "too tall" Scott E. Parazynski, "just right" David A. Wolf and "too short" Wendy B. Lawrence. The two mission specialists representing foreign space agencies are Vladimir Georgievich Titov of the Russian Space Agency, in foreground at right, and Jean-Loup J.M. Chretien of the French Space Agency, CNES, in background at right. Commander James D. Wetherbee and Pilot Michael J. Bloomfield are out of the frame. STS-86 is slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Wolf is scheduled to transfer to the Mir 24 crew for an approximate four-month stay aboard the Russian space station. Parazynski and Lawrence were withdrawn from training for an extended stay aboard the Mir Parazynski because he was too tall to fit safely in a Russian Soyuz spacecraft, and Lawrence because she was too short to fit into a Russian spacewalk suit. The crew is en route to Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on the planned 10-day mission
NASA Technical Reports Server (NTRS)
1997-01-01
The five STS-86 mission specialists wave to the crowd of press representatives, KSC employees and other well-wishers as they depart from the Operations and Checkout Building. The three U.S. mission specialists (and their nicknames for this flight) are, from left, 'too tall' Scott E. Parazynski, 'just right' David A. Wolf and 'too short' Wendy B. Lawrence. The two mission specialists representing foreign space agencies are Vladimir Georgievich Titov of the Russian Space Agency, in foreground at right, and Jean-Loup J.M. Chretien of the French Space Agency, CNES, in background at right. Commander James D. Wetherbee and Pilot Michael J. Bloomfield are out of the frame. STS-86 is slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Wolf is scheduled to transfer to the Mir 24 crew for an approximate four-month stay aboard the Russian space station. Parazynski and Lawrence were withdrawn from training for an extended stay aboard the Mir - Parazynski because he was too tall to fit safely in a Russian Soyuz spacecraft, and Lawrence because she was too short to fit into a Russian spacewalk suit. The crew is en route to Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on the planned 10-day mission.
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-92 crew eagerly walk out of the Operations and Checkout Building for the second time for their trip to Launch Pad 39A. On the left side, from front to back, are Pilot Pamela Ann Melroy and Mission Specialists Leroy Chiao and Koichi Wakata of Japan. On the right side, front to back, are Commander Brian Duffy and Mission Specialists Peter J.K . Wisoff, William S. McArthur Jr. and Michael E. Lopez-Alegria. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT. [Photo taken with a Nikon D1 camera.
STS-92 crew exits O&C on way to Launch Pad 39A for the second time
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-92 crew greets cheering onlookers as they exit the Operations and Checkout Building for the trip to Launch Pad 39A and liftoff of Space Shuttle Discovery. In rows of two, starting at front, are Pilot Pamela Ann Melroy and Commander Brian Duffy; Mission Specialists Leroy Chiao, Peter J.K. '''Jeff''' Wisoff; Koichi Wakata, William S. McArthur Jr.; and Michael E. Lopez-Alegria taking up the rear. . This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.
2009-12-14
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the interior of the International Space Station's Node 3, named Tranquility, is seen for the last time on Earth before its hatch is shut. Hatch closure follows the completion of preparations for the node's transport to the pad and is a significant milestone in launch processing activities. The primary payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the space station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Space shuttle Endeavour's STS-130 mission is targeted for launch in early February 2010. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Jim Grossmann
2010-01-18
CAPE CANAVERAL, Fla. - The crew of space shuttle Endeavour's STS-130 mission poses for a group portrait following their arrival at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. From left are Mission Specialists Robert Behnken, Nicholas Patrick, Stephen Robinson and Kathryn Hire; Pilot Terry Virts; and Commander George Zamka. The crew is at Kennedy to participate in training and a dress rehearsal for their upcoming launch, known as the Terminal Countdown Demonstration Test. The primary payload for the STS-130 mission is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Launch of STS-130 is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Kim Shiflett
A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm
Chen, Jui-Le; Yang, Chu-Sing
2013-01-01
The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA), is presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance operators: (1) the novel migration (information exchange) operator is designed specially for cloud-based environments to reduce the computation time; (2) the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation time and the quality of the end result. PMID:23762864
STS-92 Mission Specialist Wakata suits up
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Koichi Wakata of Japan waves while his launch and entry suit is checked during suitup for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the second for Wakata. Landing is expected Oct. 21 at 3:55 p.m. EDT.
Dragon Cargo Spacecraft Departs the ISS on This Week @NASA – August 26, 2016
2016-08-26
The SpaceX Dragon cargo spacecraft left the International Space Station on August 26. The Dragon departed the station five weeks after delivering almost 5,000 pounds of supplies, experiments and equipment to the orbital complex – including an international docking adapter for use by future American commercial crew spacecraft transporting astronauts to the station. The station’s Canadarm2 robotic arm was used to grapple the Dragon, move it away from the ISS, and release it for its return trip to Earth. The capsule is returning with about 3,000 pounds of cargo and experiments for researchers and investigators. Also, New U.S. Endurance Record in Space, Next U.S. Spacewalk Previewed, Boeing CST-100 Starliner Land Drop Test, SLS Liquid Hydrogen Test Tank Moved, and Celebrating National Parks, from Space!
NASA Technical Reports Server (NTRS)
1972-01-01
Detailed and supporting analyses are presented of the hazardous payloads, docking, and on-board survivability aspects connected with earth orbital operations of the space shuttle program. The hazards resulting from delivery, deployment, and retrieval of hazardous payloads, and from handling and transport of cargo between orbiter, sortie modules, and space station are identified and analyzed. The safety aspects of shuttle orbiter to modular space station docking includes docking for assembly of space station, normal resupply docking, and emergency docking. Personnel traffic patterns, escape routes, and on-board survivability are analyzed for orbiter with crew and passenger, sortie modules, and modular space station, under normal, emergency, and EVA and IVA operations.
NASA Briefing Previews Upcoming Spacewalks on ISS
2017-10-02
On Oct. 2, NASA held a briefing at the Johnson Space Center in Houston, to preview a trio of spacewalks in October to perform maintenance outside the International Space Station. Expedition 53 Commander Randy Bresnik of NASA will lead all three spacewalks, joined on Oct. 5 and 10 by Flight Engineer Mark Vande Hei, also of NASA. Flight Engineer Joe Acaba of NASA will join Bresnik on Oct. 18 for the third spacewalk. NASA TV coverage of the spacewalks will begin at 6:30 a.m. on Oct. 5, 10 and 18. Each spacewalk is scheduled to start at approximately 8:05 a.m., however, the spacewalks may begin earlier if the crew is running ahead of schedule.
Large ORU/ Crane evaluations conducted during first EVA of STS-87 (DTO 671)
1997-11-25
STS087-718-073 (19 November ? 5 December 1997) --- On the Space Shuttle Columbia's first ever spacewalk (EVA), astronaut Winston E. Scott works with a simulated battery and 156-pound crane carried onboard for the first time this trip of Columbia. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the ISS. This crane device is designed to aid future spacewalkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier, astronauts Takao Doi (at the base of the crane, out of frame at right), an international mission specialist representing Japan, and Winston E. Scott had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations, long ago manifest for this mission, after completing a contingency spacewalk to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).
Orion Handling Qualities During ISS Proximity Operations and Docking
NASA Technical Reports Server (NTRS)
Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Brazzel, Jack; Spehar, Pete
2011-01-01
NASA's Orion spacecraft is designed to autonomously rendezvous and dock with many vehicles including the International Space Station. However, the crew is able to assume manual control of the vehicle s attitude and flight path. In these instances, Orion must meet handling qualities requirements established by NASA. Two handling qualities assessments were conducted at the Johnson Space Center to evaluate preliminary designs of the vehicle using a six degree of freedom, high-fidelity guidance, navigation, and control simulation. The first assessed Orion s handling qualities during the last 20 ft before docking, and included both steady and oscillatory motions of the docking target. The second focused on manual acquisition of the docking axis during the proximity operations phase and subsequent station-keeping. Cooper-Harper handling qualities ratings, workload ratings and comments were provided by 10 evaluation pilots for the docking study and 5 evaluation pilots for the proximity operations study. For the docking task, both cases received 90% Level 1 (satisfactory) handling qualities ratings, exceeding NASA s requirement. All ratings for the ProxOps task were Level 1. These evaluations indicate that Orion is on course to meet NASA's handling quality requirements for ProxOps and docking.
Astronaut Vance Brand practices operating Docking Module hatch for ASTP
NASA Technical Reports Server (NTRS)
1975-01-01
Astronaut Vance D. Brand, command module pilot of the American Apollo Soyuz Test Project (ASTP) prime crew, practices operating a Docking Module hatch during ASTP pre-flight training at JSC. The Docking Module is designed to link the Apollo and Soyuz spacecraft during their docking in Earth orbit mission. Gary L. Doerre of JSC's Crew Training and Procedures Division is working with Brand. Doerre is wearing a face mask to help prevent possible exposure to Brand of disease prior to the ASTP launch.
The high pressure gas assembly is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- With workers keeping a close watch, the overhead crane lowers the high pressure gas assembly -- two gaseous oxygen and two gaseous nitrogen storage tanks into the payload canister. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis'''s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B.
2001-05-18
KENNEDY SPACE CENTER, FLA. -- With workers keeping a close watch, the overhead crane lowers the high pressure gas assembly two gaseous oxygen and two gaseous nitrogen storage tanks into the payload canister. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis’s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B
STS-74 leaves O&C Building for TCDT
NASA Technical Reports Server (NTRS)
1995-01-01
The STS-74 flight crew walks out of the Operations and Checkout Building on their way to conduct Terminal Countdown Demostration Test (TCDT) exercises while aboard the Space Shuttle orbiter Atlantis at Launch Pad 39A. They are (from right): Mission Commander Kenneth Cameron; Pilot James Halsell; and Mission Specialists William McArthur Jr., Chris Hadfield, and Jerry Ross (back). Hadfield is an international mission specialist representing the Canadian Space Agency. This flight will feature the second docking of the Space Shuttle with the Russian Mir space station. Docking operations will be conducted with the Russian-built Docking Module attached to the end of the Orbiter Docking System (ODS) located in Atlantis payload bay. The DM will be left attached to the Mir when Atlantis undocks. This module will serve as a means to improve future Shuttle-Mir docking operations.
Space Tug Docking Study. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1976-01-01
Results of a detailed systems analysis of the entire rendezvous and docking operation to be performed by the all-up space tug are presented. Specific areas investigated include: generating of operational requirements and a data base of candidate operational techniques and subsystem mechanizations; selection and ranking of integrated system designs capable of meeting the requirements generated; and definition of this simulation/demonstration program required to select and prove the most effective manual, autonomous, and hybrid rendezvous and docking systems.
Operator learning effects in teleoperated rendezvous & docking
NASA Astrophysics Data System (ADS)
Wilde, M.; Harder, J.; Purschke, R.
Teleoperation of spacecraft proximity operations and docking requires delicate timing and coordination of spacecraft maneuvers. Experience has shown that human operators show large performance fluctuations in these areas, which are a major factor to be addressed in operator training. In order to allow the quantification of the impact of these human fluctuations on control system performance and the human perception of this performance, a learning curve study was conducted with teleoperated final approach and docking scenarios. Over a period of ten experiment days, three test participants were tasked with repeatedly completing a set of three training scenarios. The scenarios were designed to contain different combinations of the major elements of any final approach and docking situation, and to feature an increasing difficulty level. The individual difficulty levels for the three operators furthermore differed in the level of operator support functions available in their human-machine interfaces. Operator performance in the test scenarios were evaluated in the fields approach success and precision, docking safety, and approach efficiency by a combination of recorded maneuver data and questionnaires. The results show that operator experience and the associated learning curves increase operator performance substantially, regardless of the support system used. The paper also shows that the fluctuations in operator performance and self-perception are substantial between as well as within experiment days, and must be reckoned with in teleoperation system design and mission planning.
Developing a cross-docking network design model under uncertain environment
NASA Astrophysics Data System (ADS)
Seyedhoseini, S. M.; Rashid, Reza; Teimoury, E.
2015-06-01
Cross-docking is a logistic concept, which plays an important role in supply chain management by decreasing inventory holding, order packing, transportation costs and delivery time. Paying attention to these concerns, and importance of the congestion in cross docks, we present a mixed-integer model to optimize the location and design of cross docks at the same time to minimize the total transportation and operating costs. The model combines queuing theory for design aspects, for that matter, we consider a network of cross docks and customers where two M/M/c queues have been represented to describe operations of indoor trucks and outdoor trucks in each cross dock. To prepare a perfect illustration for performance of the model, a real case also has been examined that indicated effectiveness of the proposed model.
Space Shuttle Program (SSP) Dual Docked Operations (DDO)
NASA Technical Reports Server (NTRS)
Sills, Joel W., Jr.; Bruno, Erica E.
2016-01-01
This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director; Michael Suffredini, program manager, International Space Station, NASA; William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; and Bernardo Patti, head of International Space Station, Program Department, ESA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2007-06-08
STS117-S-020 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-009 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-011 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-017 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-039 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-016 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-019 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-030 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-027 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-008 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-018 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-010 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-034 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-028 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-026 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-033 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-031 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-037 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-035 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-036 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-023 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-038 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-015 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-024 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-025 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
STS-92 crew heads for Astrovan for trip to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
Three happy astronauts make their way to the waiting Astrovan that will take the STS-92 crew to Launch Pad 39A for liftoff of Space Shuttle Discovery. From left, they are Mission Specialists Michael Lopez-Alegria and Koichi Wakata, and Commander Brian Duffy. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT.
STS-92 Mission Specialist Lopez-Alegria suits up
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Michael E. Lopez-Alegria (right) is visited by astronaut Kent Rominger (left), who was recently named Commander of the STS-100 mission. Lopez-Alegria is getting suited up for launch on mission STS-92, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the second for Lopez-Alegria. Landing is expected Oct. 21 at 3:55 p.m. EDT.
STS-92 M.S. Bill McArthur suits up for launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist William S. McArthur Jr. is fully suited up before the second launch attempt. He and the rest of the crew will be leaving soon for the ride to Launch Pad 39A on the Astrovan. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.
Resiman during Expedition 16/STS-123 EVA 1
2008-03-14
ISS016-E-032705 (13/14 March 2008) --- Astronaut Garrett Reisman, Expedition 16 flight engineer, uses a digital camera to expose a photo of his helmet visor during the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. Also visible in the reflections in the visor are various components of the station, the docked Space Shuttle Endeavour and a blue and white portion of Earth. During the seven-hour and one-minute spacewalk, Reisman and astronaut Rick Linnehan (out of frame), STS-123 mission specialist, prepared the Japanese logistics module-pressurized section (JLP) for removal from Space Shuttle Endeavour's payload bay; opened the Centerline Berthing Camera System on top of the Harmony module; removed the Passive Common Berthing Mechanism and installed both the Orbital Replacement Unit (ORU) tool change out mechanisms on the Canadian-built Dextre robotic system, the final element of the station's Mobile Servicing System.
Linnehan during Expedition 16/STS-123 EVA 3
2008-03-18
ISS016-E-033024 (17/18 March 2008) --- Astronaut Rick Linnehan, STS-123 mission specialist, uses a digital camera to expose a photo of his helmet visor during the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. Also visible in the reflections in the visor are various components of the station, the docked Space Shuttle Endeavour and a blue and white portion of Earth. During the 6-hour, 53-minute spacewalk, Linnehan and astronaut Robert L. Behnken (out of frame), mission specialist, installed a spare-parts platform and tool-handling assembly for Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM). Among other tasks, they also checked out and calibrated Dextre's end effector and attached critical spare parts to an external stowage platform. The new robotic system is scheduled to be activated on a power and data grapple fixture located on the Destiny laboratory on flight day nine.
2000-10-11
STS-92 Mission Specialist Leroy Chiao waves while waiting for suit check in the White Room. Behind him is Commander Brian Duffy. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Chiao, Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Mission Specialist William S. McArthur Jr. undergoes final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. McArthur and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Commander Brian Duffy is helped with final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
Low Impact Docking System (LIDS)
NASA Technical Reports Server (NTRS)
LaBauve, Tobie E.
2009-01-01
Since 1996, NASA has been developing a docking system that will simplify operations and reduce risks associated with mating spacecraft. This effort has focused on developing and testing an original, reconfigurable, active, closed-loop, force-feedback controlled docking system using modern technologies. The primary objective of this effort has been to design a docking interface that is tunable to the unique performance requirements for all types of mating operations (i.e. docking and berthing, autonomous and piloted rendezvous, and in-space assembly of vehicles, modules and structures). The docking system must also support the transfer of crew, cargo, power, fluid, and data. As a result of the past 10 years of docking system advancement, the Low Impact Docking System or LIDS was developed. The current LIDS design incorporates the lessons learned and development experiences from both previous and existing docking systems. LIDS feasibility was established through multiple iterations of prototype hardware development and testing. Benefits of LIDS include safe, low impact mating operations, more effective and flexible mission implementation with an anytime/anywhere mating capability, system level redundancy, and a more affordable and sustainable mission architecture with reduced mission and life cycle costs. In 1996 the LIDS project, then known as the Advanced Docking Berthing System (ADBS) project, launched a four year developmental period. At the end of the four years, the team had built a prototype of the soft-capture hardware and verified the control system that will be used to control the soft-capture system. In 2001, the LIDS team was tasked to work with the X- 38 Crew Return Vehicle (CRV) project and build its first Engineering Development Unit (EDU).
Space Shuttle Atlantis is on Launch Pad 39B
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis sits on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. To the left of the orbiter is the white environmental chamber (white room) that mates with the orbiter and holds six persons. It provides access to the orbiter crew compartment. In the background is the Atlantic Ocean. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, right, head of International Space Station, Program Department, European Space Agency, or ESA, has a lot to smile about as he is photographed in front of the node 3 for the International Space Station following a ceremony transferring the ownership of the node from ESA to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, from left, Michael Suffredini, program manager, International Space Station, NASA; Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy; and Bernardo Patti, head of International Space Station, Program Department, ESA, are photographed in front of node 3 for the International Space Station following a ceremony transferring the ownership of the node from the European Space Agency, or ESA, to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
The STS-92 crew exits O&C on way to Launch Pad 39A for the second time
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-92 crew eagerly walk out of the Operations and Checkout Building for the second time for their trip to Launch Pad 39A. On the left side, from front to back, are Pilot Pamela Ann Melroy and Mission Specialists Leroy Chiao and Koichi Wakata of Japan. On the right side, front to back, are Commander Brian Duffy and Mission Specialists Peter J.K. '''Jeff''' Wisoff, William S. McArthur Jr. and Michael E. Lopez-Alegria. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT. [Photo taken with a Nikon D1 camera.
Wolf during EVA-2 on STS-127 / Expedition 20 Joint Operations
2009-07-20
S127-E-007154 (20 July 2009) --- This is one of a series of digital still images showing astronaut Dave Wolf performing his second spacewalk and the Endeavour’s second also of the scheduled five overall in a little over a week’s time to continue work on the International Space Station. Astronauts Wolf and Tom Marshburn (out of frame), both mission specialists, successfully transferred a spare KU-band antenna to long-term storage on the space station, along with a backup coolant system pump module and a spare drive motor for the station's robot arm transporter. Installation of a television camera on the Japanese Exposed Facility experiment platform was deferred to a later spacewalk.
Wolf during EVA-2 on STS-127 / Expedition 20 Joint Operations
2009-07-20
S127-E-007149 (20 July 2009) --- This is one of a series of digital still images showing astronaut Dave Wolf performing his second spacewalk and the Endeavour’s second also of the scheduled five overall in a little over a week’s time to continue work on the International Space Station. Astronauts Wolf and Tom Marshburn (out of frame), both mission specialists, successfully transferred a spare KU-band antenna to long-term storage on the space station, along with a backup coolant system pump module and a spare drive motor for the station's robot arm transporter. Installation of a television camera on the Japanese Exposed Facility experiment platform was deferred to a later spacewalk.
STS-71 mission highlights resource tape
NASA Astrophysics Data System (ADS)
1995-09-01
This video highlights the international cooperative Shuttle/Mir mission of the STS-71 flight. The STS-71 flightcrew consists of Cmdr. Robert Hoot' Gibson, Pilot Charles Precourt, and Mission Specialists Ellen Baker, Bonnie Dunbar, and Gregory Harbaugh. The Mir 18 flightcrew consisted of Cmdr. Vladamir Dezhurov, Flight Engineer Gennady Strekalov, and Cosmonaut-Research Dr. Norman Thagard. The Mir 18 crew consisted of Cmdr. Anatoly Solovyev and Flight Engineer Nikolai Budarin. The prelaunch, launch, shuttle in-orbit, and in-orbit rendezvous and docking of the Mir Space Station to the Atlantis Space Shuttle are shown. The Mir 19 crew accompanied the STS-71 crew and will replace the Mir 18 crew upon undocking from the Mir Space Station. Shown is on-board footage from the Mir Space Station of the Mir 18 crew engaged in hardware testing and maintenance, medical and physiological tests, and a tour of the Mir. A spacewalk by the two Mir 18 cosmonauts is shown as they performed maintenance of the Mir Space Station. After the docking between Atlantis and Mir is completed, several mid-deck physiological experiments are performed along with a tour of Atlantis. Dr Thagard remained behind with the Shuttle after undocking to return to Earth with reports from his Mir experiments and observations. In-cabin experiments included the IMAX Camera Systems tests and the Shuttle Amateur Radio Experiment-2 (SAREX-2). There is footage of the shuttle landing.
Space Operations Center, Shuttle Interaction Study. Volume 2: Appendices, Book 1 of 2
NASA Technical Reports Server (NTRS)
1981-01-01
The feasibility of shuttle orbiter docking to the Space Operations Center (SOC) is studied. The in-orbit relative motion of the free flying orbiter and SOC was simulated, accounting for the Orbiter RCS and digital autopilot (DAP) systems, orbital mechanics, center of gravity offset of the orbiter docking port, aero and gravity gradient effects, and other pertinent natural and man-made phenomena. Since there is no specified flight path and procedure for docking, terminal closure sensitivities were investigated. Orbiter approach direction, Orbiter approach attitude out of plane, DAP thruster compensation mode, final ballistic docking distance and time to dock, rate and excursion attitude deadbands, and selection of various thruster combinations (differing from nominal) for translational pulses are considered.
2000-01-01
STS097-S-001 (January 2000) --- This is the crew insignia for STS-97, which will deliver, assemble, and activate the U.S. electrical power system on board the International Space Station (ISS). The electrical power system, which is built into a 47-foot integrated truss structure known as P6, consists of solar arrays, radiators, batteries, and electronics. P6 will be attached to the station using the shuttle's robotic arm in coordination with spacewalking crew members that will make the final connections. The spacewalkers will then prepare P6 for the subsequent deployments of the large solar arrays and radiator, which are critical steps in the activation of the electrical power system. The 120-foot solar arrays will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The crew patch depicts the space shuttle docked to ISS in low Earth orbit after the activation of the P6 electrical power system. Gold and silver are used to highlight the portion of ISS that will be installed by the STS-97 crew. The Sun, central to the design, is the source of energy for ISS. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kring, C.T.; Varma, V.K.; Jatko, W.B.
The US Army and Team Crusader (United Defense, Lockheed Martin Armament Systems, etc.) are developing the next generation howitzer, the Crusader. The development program includes an advanced, self-propelled liquid propellant howitzer and a companion resupply vehicle. The resupply vehicle is intended to rendezvous with the howitzer near the battlefront and replenish ammunition, fuel, and other material. The Army has recommended that Crusader incorporate new and innovative technologies to improve performance and safety. One conceptual design proposes a robotic resupply boom on the resupply vehicle to upload supplies to the howitzer. The resupply boom would normally be retracted inside the resupplymore » vehicle during transit. When the two vehicles are within range of the resupply boom, the boom would be extended to a receiving port on the howitzer. In order to reduce exposure to small arms fire or nuclear, biological, and chemical hazards, the crew would remain inside the resupply vehicle during the resupply operation. The process of extending the boom and linking with the receiving port is called docking. A boom operator would be designated to maneuver the boom into contact with the receiving port using a mechanical joystick. The docking operation depends greatly upon the skill of the boom operator to manipulate the boom into docking position. Computer simulations at the National Aeronautics and Space Administration have shown that computer-assisted or autonomous docking can improve the ability of the operator to dock safely and quickly. This document describes the present status of the Crusader Autonomous Docking System (CADS) implemented at Oak Ridge National laboratory (ORNL). The purpose of the CADS project is to determine the feasibility and performance limitations of vision systems to satisfy the autonomous docking requirements for Crusader and conduct a demonstration under controlled conditions.« less
Analysis and Selection of a Remote Docking Simulation Visual Display System
NASA Technical Reports Server (NTRS)
Shields, N., Jr.; Fagg, M. F.
1984-01-01
The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station.
Proximity Operations and Docking Sensor Development
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Bryan, Thomas C.; Brewster, Linda L.; Lee, James E.
2009-01-01
The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the brassboard and proto-type NGAVGS units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.
Manual control aspects of orbital flight
NASA Technical Reports Server (NTRS)
Brody, Adam R.
1990-01-01
Studies of spacecraft rendezvous and docking operations began in the Gemini program in preparation for the two dockings required to send a crew to the moon and return them safely to Earth. However, the goal of getting to the moon before the end of the decade was of greater concern than mission optimization so little or no time or money was expended in researching human factors implications of operational aspects such as braking gates or control modes. Also, with sixteen operational dockings over a six year period (12 Apollo, 3 Skylab, and 1 ASTP) in the United States space program, economies of scale were not yet available to justify extensive research into decreasing the time or fuel necessary for a successful docking. With an operational space station era approaching in which orbital maneuvering vehicle (OMV), orbital transfer vehicle (OTV), shuttle orbiter, and other traffic will play a major role, a concerted research effort now could help avoid many potential problems later in addition to increasing safety, fuel economy, and productivity. A knowledge of manual control capabilities associated with piloted spaceflight could help save a life if the operational flight envelope can be safely enlarged to include faster dockings that currently envisioned. For example, current and future research is designed to acquire the appropriate information.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1993-01-01
As part of the RICIS project, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use these two terms interchangeably to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS) and programming/testing support from other contractor personnel. This report is the final deliverable D4 in our milestones and project activity. It provides the test results for the special testcase of approach/docking scenario for the shuttle and SMM satellite. Based on our experience and analysis with the attitude and translational controllers, we have modified the basic configuration of the reinforcement learning algorithm in ARIC. The shuttle translational controller and its implementation in ARIC is described in our deliverable D3. In order to simulate the final approach and docking operations, we have set-up this special testcase as described in section 2. The ARIC performance results for these operations are discussed in section 3 and conclusions are provided in section 4 along with the summary for the project.
STS-37 crewmembers move CETA electrical cart along rail in JSC's WETF pool
1989-12-06
STS-37 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Jerry L. Ross generates electrical power using hand pedals to move crew and equipment translation aid (CETA) cart along a rail during underwater session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Wearing an extravehicular mobility unit (EMU), Ross operates CETA electrical cart as MS Jerome Apt holds onto the back of the cart. The two crewmembers are practicing a extravehicular activity (EVA) spacewalk they will perform in OV-104's payload bay during STS-37. CETA is a type of railroad hand cart planned as a spacewalker's transportation system along the truss of Space Station Freedom (SSF). SCUBA divers monitor astronauts' underwater activity.
Atlantis returns to VAB after beginning rollout to the pad
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Scattered clouds cast shadows as Space Shuttle Atlantis crawls back inside the Vehicle Assembly Building high bay 1. After earlier starting its trek to Launch Pad 39B, Atlantis was returned to the VAB due to lightning in the area. To the left of the VAB is the Launch Control Center. The four-story building houses the firing rooms that are used to conduct Space Shuttle launches. Leading away from the VAB, in the foreground, is the crawlerway, the 130-foot-wide road specially constructed to transport the Shuttle, mobile launcher platform and crawler-transporter with a combined weight of about 17 million pounds. Space Shuttle Atlantis is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.
Apollo Soyuz, mission evaluation report
NASA Technical Reports Server (NTRS)
1975-01-01
The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.
I-AUV Docking and Panel Intervention at Sea
Palomeras, Narcís; Peñalver, Antonio; Massot-Campos, Miquel; Negre, Pep Lluís; Fernández, José Javier; Ridao, Pere; Sanz, Pedro J.; Oliver-Codina, Gabriel
2016-01-01
The use of commercially available autonomous underwater vehicles (AUVs) has increased during the last fifteen years. While they are mainly used for routine survey missions, there is a set of applications that nowadays can be only addressed by manned submersibles or work-class remotely operated vehicles (ROVs) equipped with teleoperated arms: the intervention applications. To allow these heavy vehicles controlled by human operators to perform intervention tasks, underwater structures like observatory facilities, subsea panels or oil-well Christmas trees have been adapted, making them more robust and easier to operate. The TRITON Spanish founded project proposes the use of a light-weight intervention AUV (I-AUV) to carry out intervention applications simplifying the adaptation of these underwater structures and drastically reducing the operational cost. To prove this concept, the Girona 500 I-AUV is used to autonomously dock into an adapted subsea panel and once docked perform an intervention composed of turning a valve and plugging in/unplugging a connector. The techniques used for the autonomous docking and manipulation as well as the design of an adapted subsea panel with a funnel-based docking system are presented in this article together with the results achieved in a water tank and at sea. PMID:27754348
I-AUV Docking and Panel Intervention at Sea.
Palomeras, Narcís; Peñalver, Antonio; Massot-Campos, Miquel; Negre, Pep Lluís; Fernández, José Javier; Ridao, Pere; Sanz, Pedro J; Oliver-Codina, Gabriel
2016-10-12
The use of commercially available autonomous underwater vehicles (AUVs) has increased during the last fifteen years. While they are mainly used for routine survey missions, there is a set of applications that nowadays can be only addressed by manned submersibles or work-class remotely operated vehicles (ROVs) equipped with teleoperated arms: the intervention applications. To allow these heavy vehicles controlled by human operators to perform intervention tasks, underwater structures like observatory facilities, subsea panels or oil-well Christmas trees have been adapted, making them more robust and easier to operate. The TRITON Spanish founded project proposes the use of a light-weight intervention AUV (I-AUV) to carry out intervention applications simplifying the adaptation of these underwater structures and drastically reducing the operational cost. To prove this concept, the Girona 500 I-AUV is used to autonomously dock into an adapted subsea panel and once docked perform an intervention composed of turning a valve and plugging in/unplugging a connector. The techniques used for the autonomous docking and manipulation as well as the design of an adapted subsea panel with a funnel-based docking system are presented in this article together with the results achieved in a water tank and at sea.
Co-Operative Problem-Solving at the Royal Docks Community School
ERIC Educational Resources Information Center
Martin, Ruth
2013-01-01
This article responds to Henry Tam's article in this issue of FORUM by exploring opportunities for co-operative problem-solving for staff and students of the Royal Docks Community School in the London Borough of Newham. Becoming a co-operative trust helped the school move out of special measures and develop a strategy of participation and…
NASA Technical Reports Server (NTRS)
Gates, R. M.; Williams, J. E.
1974-01-01
Results are given of analytical studies performed in support of the design, implementation, checkout and use of NASA's dynamic docking test system (DDTS). Included are analyses of simulator components, a list of detailed operational test procedures, a summary of simulator performance, and an analysis and comparison of docking dynamics and loads obtained by test and analysis.
Experimental validation of docking and capture using space robotics testbeds
NASA Technical Reports Server (NTRS)
Spofford, John
1991-01-01
Docking concepts include capture, berthing, and docking. The definitions of these terms, consistent with AIAA, are as follows: (1) capture (grasping)--the use of a manipulator to make initial contact and attachment between transfer vehicle and a platform; (2) berthing--positioning of a transfer vehicle or payload into platform restraints using a manipulator; and (3) docking--propulsive mechanical connection between vehicle and platform. The combination of the capture and berthing operations is effectively the same as docking; i.e., capture (grasping) + berthing = docking. These concepts are discussed in terms of Martin Marietta's ability to develop validation methods using robotics testbeds.
Kotov practices the manual docking techniques with the TORU
2013-11-22
ISS038-E-006656 (22 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 38 commander, practices manual docking techniques with the TORU, or telerobotically operated rendezvous system, in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 53 spacecraft. Kotov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system. The Progress 53 craft is scheduled to complete its automated docking to the aft port of Zvezda at 5:28 p.m. (EST) on Nov. 29.
2014-07-22
ISS040-E-070857 (22 July 2014) --- Russian cosmonaut Alexander Skvortsov, Expedition 40 flight engineer, practices manual docking techniques with the TORU, or telerobotically operated rendezvous system, in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 56 spacecraft. Skvortsov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system. The Progress 56 craft is scheduled to complete its automated docking to the Pirs docking compartment at 11:30 p.m. (EDT) on July 23, 2014.
Tyurin practices the manual docking techniques with the TORU
2013-11-22
ISS038-E-006663 (22 Nov. 2013) --- Russian cosmonaut Mikhail Tyurin, Expedition 38 flight engineer, practices manual docking techniques with the TORU, or telerobotically operated rendezvous system, in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 53 spacecraft. Tyurin, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system. The Progress 53 craft is scheduled to complete its automated docking to the aft port of Zvezda at 5:28 p.m. (EST) on Nov. 29.
2014-07-22
ISS040-E-070859 (22 July 2014) --- Russian cosmonaut Alexander Skvortsov, Expedition 40 flight engineer, practices manual docking techniques with the TORU, or telerobotically operated rendezvous system, in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 56 spacecraft. Skvortsov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system. The Progress 56 craft is scheduled to complete its automated docking to the Pirs docking compartment at 11:30 p.m. (EDT) on July 23, 2014.
Navigation and Alignment Aids Concept of Operations and Supplemental Design Information. Revision A
NASA Technical Reports Server (NTRS)
Kelly, Sean M.; Cryan, Scott P.
2016-01-01
The IDSS Navigation and Alignment Aids Concept of Operations and Supplemental Design Information document provides supplemental information to the IDSS IDD. The guide provides insight into the navigation and alignment aids design, and how those aids can be utilized by incoming vehicles for proximity operations and docking. The navigation aids are paramount to successful docking.
Scholz, Christoph; Knorr, Sabine; Hamacher, Kay; Schmidt, Boris
2015-02-23
The formation of a covalent bond with the target is essential for a number of successful drugs, yet tools for covalent docking without significant restrictions regarding warhead or receptor classes are rare and limited in use. In this work we present DOCKTITE, a highly versatile workflow for covalent docking in the Molecular Operating Environment (MOE) combining automated warhead screening, nucleophilic side chain attachment, pharmacophore-based docking, and a novel consensus scoring approach. The comprehensive validation study includes pose predictions of 35 protein/ligand complexes which resulted in a mean RMSD of 1.74 Å and a prediction rate of 71.4% with an RMSD below 2 Å, a virtual screening with an area under the curve (AUC) for the receiver operating characteristics (ROC) of 0.81, and a significant correlation between predicted and experimental binding affinities (ρ = 0.806, R(2) = 0.649, p < 0.005).
Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations
2008-03-21
S123-E-007816 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.
Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations
2008-03-21
S123-E-007832 (21 March 2008) --- Astronaut Mike Foreman, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and astronaut Robert L. Behnken (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.
Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations
2008-03-21
S123-E-007907 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.
Behnken and Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations
2008-03-21
S123-E-007838 (21 March 2008) --- Astronauts Robert L. Behnken (top) and Mike Foreman, both STS-123 mission specialists, participate in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and Foreman replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.
Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations
2008-03-21
S123-E-007906 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.
Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations
2008-03-21
S123-E-007909 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.
Behnken and Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations
2008-03-21
S123-E-007839 (21 March 2008) --- Astronauts Mike Foreman (foreground) and Robert L. Behnken, both STS-123 mission specialists, participate in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and Behnken replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.
Gemini Model in the 10- by 10-Foot Supersonic Wind Tunnel
1962-09-21
A researcher at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a small-scale model of the Gemini capsule in the 10- by 10-Foot Supersonic Wind Tunnel test section. Gemini was added to NASA’s manned space program after its predecessor, Mercury, and its antecedent, Apollo, were already established. Gemini was a transitional mission designed provide the astronauts with practice docking with other spacecraft and withstanding durations in space up to two weeks. The program was officially announced on December 7, 1961, but planning began in mid-1959. It was named Gemini after the zodiac twins because of the spacecraft’s two passenger capacity. The Gemini Program was the first program to start at the new Manned Spacecraft Center in Houston, now the Johnson Space Center. Unlike Mercury and Apollo, Lewis had very little involvement with the Gemini Program. This model was tested in the 10- by 10 tunnel for several weeks in September 1962. Lewis began managing the Agena second-stage rocket program shortly after this photograph was taken. Agenas were used to launch a variety of spacecraft and satellites in the 1960s. They were also used on several Gemini missions to provide targets for the astronauts to practice their rendezvous maneuvers. Gemini had two unmanned and ten manned flights in 1965 and 1966. These yielded the first spacewalks, long-duration space missions, first onboard computer, docking with a second spacecraft, and rendezvous maneuvers.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Michael Suffredini, program manager, International Space Station, NASA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director; Bernardo Patti, head of International Space Station, Program Department, ESA; and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, head of International Space Station, Program Department, ESA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director, and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
1998-10-03
KENNEDY SPACE CENTER, FLA. -- Inside the payload bay of Space Shuttle orbiter Endeavour in Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (crouching at left) and James H. Newman (far right) get a close look at equipment. Looking on is Wayne Wedlake (far left), with United Space Alliance at Johnson Space Center, and a KSC worker (behind Newman) who is operating the movable work platform or bucket. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability
2010-01-06
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, space shuttle Endeavour is reflected in the icy water standing inside the perimeter fence of Launch Pad 39A. The ambient air temperature during Endeavour's 3.4-mile trip from the Vehicle Assembly Building to the pad ranged from 30 to 40 degrees Fahrenheit. First motion for the move, known as rollout, was at 4:13 a.m. EST Jan. 6. Endeavour was secure or "hard down" on the pad at 10:37 a.m. Rollout is a significant milestone in launch processing activities. The primary payload for the STS-130 mission is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Endeavour's STS-130 launch is targeted for 4:39 a.m. EST Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Jim Grossmann
2010-01-06
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, space shuttle Endeavour arrives at Launch Pad 39A during uncustomary conditions -- ice floating in the standing water inside the perimeter fence. The ambient air temperature during Endeavour's 3.4-mile trip from the Vehicle Assembly Building to the pad ranged from 30 to 40 degrees Fahrenheit. First motion for the move, known as rollout, was at 4:13 a.m. EST Jan. 6. Endeavour was secure or "hard down" on the pad at 10:37 a.m. Rollout is a significant milestone in launch processing activities. The primary payload for the STS-130 mission is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Endeavour's STS-130 launch is targeted for 4:39 a.m. EST Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Jim Grossmann
Engineering principles to assure compatible docking between future spacecraft of USA and USSR
NASA Technical Reports Server (NTRS)
Johnson, C. C.
1975-01-01
Working jointly the USA and the USSR have selected an androgynous, peripheral type docking mechanism concept. The mechanical principles inherent to the concept, the rationale supporting its selection, and the probable nature of future designs stemming from the concept, are described. Operational situations just prior to docking, impact conditions, energy absorption, and the structural joining of the spacecraft, are specified. Docking procedures for the Apollo-Soyuz missions are discussed.
2007-06-08
STS117-S-029 (8 June 2007) --- The drifting smoke plumes from the launch of Space Shuttle Atlantis (out of frame) swirl above the Vehicle Assembly Building near sunset. Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-014 (8 June 2007) --- Through the large windows in the Launch Control Center, NASA officials watch the launch of Space Shuttle Atlantis on mission STS-117. Atlantis and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
STS-92 MS Wakata gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 Pilot Melroy gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
2000-10-11
STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
STS-92 MS McArthur gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist William S. McArthur Jr. undergoes final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. McArthur and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 MS Chiao gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Leroy Chiao waves while waiting for suit check in the White Room. Behind him is Commander Brian Duffy. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Chiao, Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 Commander Duffy gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Commander Brian Duffy is helped with final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
2000-10-11
STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
STS-92 MS Lopez-Alegria gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Bryan, Thomas C.
2009-01-01
The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. This paper presents the flight heritage and results of the sensor technology, some hardware trades for the current sensor, and discusses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the various NGAVGS development units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.
2001-06-21
KENNEDY SPACE CENTER, Fla. -- After a journey of more than 8 hours from the Vehicle Assembly Building, Space Shuttle Atlantis sits on Launch Pad 39B. At left is the Rotating Service Structure, which will roll on its axis to enclose the Shuttle until launch. Towering above the Fixed Service Structure next to it is the 80-foot tall lightning mast that provides protection from lightning strikes. On the right is the elevated water tank with a capacity of 300,000 gallons. Part of the Sound Suppression Water System, the water in the tank is released just before ignition of the orbiter’s three main engines and twin solid rocket boosters and flow through parallel 7-foot-diameter pipes to the pad area. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the mission’s spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Station’s Service Module
Space Station Spacewalks Previewed
2018-01-18
On Jan. 18, a briefing was held at NASA’s Johnson Space Center to preview a pair of spacewalks scheduled to take place outside the International Space Station. American and Japanese astronauts aboard the station will conduct spacewalks on Tuesday, Jan. 23 and Monday, Jan. 29 to service the station’s robotic arm.
Action Cam Footage from U.S. Spacewalk 41
2017-05-09
This footage was taken by NASA astronaut Peggy Whitson during a spacewalk on the International Space Station on Thursday, March 30. She was joined on the spacewalk by NASA astronaut Shane Kimbrough. The two spacewalkers reconnected cables and electrical connections on PMA-3 at its new home on top of the Harmony module. They also installed the second of the two upgraded computer relay boxes on the station’s truss and installed shields and covers on PMA-3 and the now-vacant common berthing mechanism port on Tranquility.
SpaceDock: A Performance Task Platform for Spaceflight Operations
NASA Technical Reports Server (NTRS)
Marshburn, Thomas H.; Strangman, Gary E.; Strauss, Monica S.; Sutton, Jeffrey P.
2003-01-01
Preliminary evidence during both short- and long-duration spaceflight indicates that perceptual-motor coordination changes occur and persist in-flight. However, there is presently no in-flight method for evaluating astronaut performance on mission-critical tasks such as docking. We present a portable platform we have developed for attempting and evaluating docking, and describe the results of a pilot study wherein flight novices learned the docking task. Methods: A dual-joystick, six degrees of freedom platform-called SpaceDock-was developed to enable portable, adaptable performance testing in a spaceflight operations setting. Upon this platform, a simplified docking task was created, involving a constant rate of approach towards a docking target and requiring the user to correct translation in two dimensions and attitude orientation along one dimension (either pitch or roll). Ten flight naive subjects performed the task over a 45 min period and all joystick inputs and timings were collected, from which we could successfully reconstruct travel paths, input profiles and relative target displacements. Results: Subjects exhibited significant improvements in docking over the course of the experiment. Learning to compensate for roll-alterations was robust, whereas compensation for pitch-alterations was not in evidence in this population and relatively short training period. Conclusion: The SpaceDock platform can provide a novel method for training and testing subjects, on a spaceflight-relevant task, and can be used to examine behavioral learning, strategy use, and has been adapted for use in brain imaging experiments.
Gemini rendezvous docking simulator
1963-11-04
Multiple exposure of Gemini rendezvous docking simulator. Francis B. Smith wrote in his paper "Simulators for Manned Space Research," "The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. [This figure] illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft." A.W. Vogeley further described the simulator in his paper "Discussion of Existing and Planned Simulators For Space Research," "Docking operations are considered to start when the pilot first can discern vehicle target size and aspect and terminate, of course, when soft contact is made. ... This facility enables simulation of the docking operation from a distance of 200 feet to actual contact with the target. A full-scale mock-up of the target vehicle is suspended near one end of the track. ... On [the Agena target] we have mounted the actual Agena docking mechanism and also various types of visual aids. We have been able to devise visual aids which have made it possible to accomplish nighttime docking with as much success as daytime docking." -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203; Francis B. Smith, "Simulators for Manned Space Research," Paper presented at the 1966 IEEE International convention, March 21-25, 1966; A.W. Vogeley, "Discussion of Existing and Planned Simulators For Space Research," Paper presented at the Conference on the Role of Simulation in Space Technology, August 17-21, 1964.
Global Positioning System Synchronized Active Light Autonomous Docking System
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)
1996-01-01
A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.
Global Positioning System Synchronized Active Light Autonomous Docking System
NASA Technical Reports Server (NTRS)
Howard, Richard (Inventor)
1994-01-01
A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-breeding material; nuisances. All operating and storage rooms and departments of inspected plants used for... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section... premises of every inspected plant shall be kept in clean and orderly condition. All catchbasins on the...
Code of Federal Regulations, 2011 CFR
2011-01-01
...-breeding material; nuisances. All operating and storage rooms and departments of inspected plants used for... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section... premises of every inspected plant shall be kept in clean and orderly condition. All catchbasins on the...
NASA Docking System (NDS) Interface Definitions Document (IDD). Revision C, Nov. 2010
NASA Technical Reports Server (NTRS)
2010-01-01
The NASA Docking System (NDS) mating system supports low approach velocity docking and provides a modular and reconfigurable standard interface, supporting crewed and autonomous vehicles during mating and assembly operations. The NDS is NASA's implementation for the emerging International Docking System Standard (IDSS) using low impact docking technology. All NDS configurations can mate with the configuration specified in the IDSS Interface Definition Document (IDD) released September 21, 2010. The NDS evolved from the Low Impact Docking System (LIDS). The acronym international Low Impact Docking System (iLIDS) is also used to describe this system. NDS and iLIDS may be used interchangeability. Some of the heritage documentation and implementations (e.g., software command names) used on NDS will continue to use the LIDS acronym. The NDS IDD defines the interface characteristics and performance capability of the NDS, including uses ranging from crewed to autonomous space vehicles and from low earth orbit to deep space exploration. The responsibility for developing space vehicles and for making them technically and operationally compatible with the NDS rests with the vehicle providers. Host vehicle examples include crewed/uncrewed spacecraft, space station modules, elements, etc. Within this document, any docking space vehicle will be referred to as the host vehicle. This document defines the NDS-to-NDS interfaces, as well as the NDS-to-host vehicle interfaces and performance capability.
Improved Evolutionary Hybrids for Flexible Ligand Docking in Autodock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belew, R.K.; Hart, W.E.; Morris, G.M.
1999-01-27
In this paper we evaluate the design of the hybrid evolutionary algorithms (EAs) that are currently used to perform flexible ligand binding in the Autodock docking software. Hybrid EAs incorporate specialized operators that exploit domain-specific features to accelerate an EA's search. We consider hybrid EAs that use an integrated local search operator to reline individuals within each iteration of the search. We evaluate several factors that impact the efficacy of a hybrid EA, and we propose new hybrid EAs that provide more robust convergence to low-energy docking configurations than the methods currently available in Autodock.
DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0.
Jiang, Xiaohui; Kumar, Kamal; Hu, Xin; Wallqvist, Anders; Reifman, Jaques
2008-09-08
Small-molecule docking is an important tool in studying receptor-ligand interactions and in identifying potential drug candidates. Previously, we developed a software tool (DOVIS) to perform large-scale virtual screening of small molecules in parallel on Linux clusters, using AutoDock 3.05 as the docking engine. DOVIS enables the seamless screening of millions of compounds on high-performance computing platforms. In this paper, we report significant advances in the software implementation of DOVIS 2.0, including enhanced screening capability, improved file system efficiency, and extended usability. To keep DOVIS up-to-date, we upgraded the software's docking engine to the more accurate AutoDock 4.0 code. We developed a new parallelization scheme to improve runtime efficiency and modified the AutoDock code to reduce excessive file operations during large-scale virtual screening jobs. We also implemented an algorithm to output docked ligands in an industry standard format, sd-file format, which can be easily interfaced with other modeling programs. Finally, we constructed a wrapper-script interface to enable automatic rescoring of docked ligands by arbitrarily selected third-party scoring programs. The significance of the new DOVIS 2.0 software compared with the previous version lies in its improved performance and usability. The new version makes the computation highly efficient by automating load balancing, significantly reducing excessive file operations by more than 95%, providing outputs that conform to industry standard sd-file format, and providing a general wrapper-script interface for rescoring of docked ligands. The new DOVIS 2.0 package is freely available to the public under the GNU General Public License.
1997-02-21
Accompanied by former astronaut Michael J. McCulley, several members of the STS-82 crew look at thermal protection system tile under the Space Shuttle Discovery on the runway at the Shuttle Landing Facility shortly after the conclusion of a 10-day mission to service the orbiting Hubble Space Telescope (HST). From left to right, they are Mission Specialist Steven A. Hawley; Michael J. McCulley, currently vice president and associate program manager for ground operations for the United Space Alliance at KSC; Mission Specialists Joseph R. "Joe" Tanner and Steven L. Smith (back to camera); and Payload Commander Mark C. Lee. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
NASA Technical Reports Server (NTRS)
Emmet, Brian R.
1991-01-01
This paper describes the results of the feasibility study using Centaur or other CTV's to deliver payloads to the Space Station Freedom (SSF). During this study was examined the requirements upon unmanned cargo transfer stages (including Centaur) for phasing, rendezvous, proximity operations and docking/berthing (capture).
Dynamic Responses of Modular Hybrid Pier to Docking and Drifting Ships
2011-10-01
Utilities for ship “ hotel ” services are on the lower, “service” deck. This leaves the operations deck uncluttered for operation of mobile cranes...expand the simulation domain by adding a large outer basin around the core basin as shown in Figure 12 to allow proper propagation of the outbound ...accommodate larger distortions, implying a longer standoff distance once ship docking is completed, hamper cargo transfer and logistic operations
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
As part of the Research Institute for Computing and Information Systems (RICIS) activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This interim report provides the status of the project and outlines the future plans.
NASA Docking System (NDS) Interface Definitions Document (IDD). Revision F, Dec. 15, 2011
NASA Technical Reports Server (NTRS)
Lewis, James
2011-01-01
The NASA Docking System (NDS) mating system supports low approach velocity docking and provides a modular and reconfigurable standard interface, supporting crewed and autonomous vehicles during mating and assembly operations. The NDS is NASA s implementation for the International Docking System Standard (IDSS) using low impact docking technology. All NDS configurations can mate with the configuration specified in the IDSS Interface Definition Document (IDD), Revision A, released May 13, 2011. The NDS evolved from the Low Impact Docking System (LIDS). The term (and its associated acronym), international Low Impact Docking System (iLIDS) is also used to describe this system. NDS and iLIDS may be used interchangeability. Some of the heritage documentation and implementations (e.g., software command names) used on the NDS will continue to use the LIDS acronym.
Suit Up - 50 Years of Spacewalks
2017-01-22
This NASA documentary celebrates 50 years of extravehicular activity (EVA) or spacewalks that began with the first two EVAs conducted by Russian Alexey Leonov in March 1965 and American astronaut Edward White in June 1965 . The documentary features interviews with NASA Administrator and astronaut, Charles Bolden, NASA Deputy Administrator and spacesuit designer, Dava Newman, as well as other astronauts, engineers, technicians, managers and luminaries of spacewalk history. They share their personal stories and thoughts that cover the full EVA experience-- from the early spacewalking experiences, to spacesuit manufacturing, to modern day spacewalks aboard the International Space Station as well as what the future holds for humans working on a tether in space. "Suit Up," is narrated by actor and fan of space exploration Jon Cryer. Cryer recently traveled to Star City, NASA Headquarters and the Johnson Space Center to film an upcoming Travel Channel documentary series.
The Advanced Video Guidance Sensor: Orbital Express and the Next Generation
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Heaton, Andrew F.; Pinson, Robin M.; Carrington, Connie L.; Lee, James E.; Bryan, Thomas C.; Robertson, Bryan A.; Spencer, Susan H.; Johnson, Jimmie E.
2008-01-01
The Orbital Express (OE) mission performed the first autonomous rendezvous and docking in the history of the United States on May 5-6, 2007 with the Advanced Video Guidance Sensor (AVGS) acting as one of the primary docking sensors. Since that event, the OE spacecraft performed four more rendezvous and docking maneuvers, each time using the AVGS as one of the docking sensors. The Marshall Space Flight Center's (MSFC's) AVGS is a nearfield proximity operations sensor that was integrated into the Autonomous Rendezvous and Capture Sensor System (ARCSS) on OE. The ARCSS provided the relative state knowledge to allow the OE spacecraft to rendezvous and dock. The AVGS is a mature sensor technology designed to support Automated Rendezvous and Docking (AR&D) operations. It is a video-based laser-illuminated sensor that can determine the relative position and attitude between itself and its target. Due to parts obsolescence, the AVGS that was flown on OE can no longer be manufactured. MSFC has been working on the next generation of AVGS for application to future Constellation missions. This paper provides an overview of the performance of the AVGS on Orbital Express and discusses the work on the Next Generation AVGS (NGAVGS).
Collignon, Barbara; Schulz, Roland; Smith, Jeremy C; Baudry, Jerome
2011-04-30
A message passing interface (MPI)-based implementation (Autodock4.lga.MPI) of the grid-based docking program Autodock4 has been developed to allow simultaneous and independent docking of multiple compounds on up to thousands of central processing units (CPUs) using the Lamarkian genetic algorithm. The MPI version reads a single binary file containing precalculated grids that represent the protein-ligand interactions, i.e., van der Waals, electrostatic, and desolvation potentials, and needs only two input parameter files for the entire docking run. In comparison, the serial version of Autodock4 reads ASCII grid files and requires one parameter file per compound. The modifications performed result in significantly reduced input/output activity compared with the serial version. Autodock4.lga.MPI scales up to 8192 CPUs with a maximal overhead of 16.3%, of which two thirds is due to input/output operations and one third originates from MPI operations. The optimal docking strategy, which minimizes docking CPU time without lowering the quality of the database enrichments, comprises the docking of ligands preordered from the most to the least flexible and the assignment of the number of energy evaluations as a function of the number of rotatable bounds. In 24 h, on 8192 high-performance computing CPUs, the present MPI version would allow docking to a rigid protein of about 300K small flexible compounds or 11 million rigid compounds.
Space station dynamic modeling, disturbance accommodation, and adaptive control
NASA Technical Reports Server (NTRS)
Wang, S. J.; Ih, C. H.; Lin, Y. H.; Metter, E.
1985-01-01
Dynamic models for two space station configurations were derived. Space shuttle docking disturbances and their effects on the station and solar panels are quantified. It is shown that hard shuttle docking can cause solar panel buckling. Soft docking and berthing can substantially reduce structural loads at the expense of large shuttle and station attitude excursions. It is found predocking shuttle momentum reduction is necessary to achieve safe and routine operations. A direct model reference adaptive control is synthesized and evaluated for the station model parameter errors and plant dynamics truncations. The rigid body and the flexible modes are treated. It is shown that convergence of the adaptive algorithm can be achieved in 100 seconds with reasonable performance even during shuttle hard docking operations in which station mass and inertia are instantaneously changed by more than 100%.
NASA Technical Reports Server (NTRS)
Mitchell, Jennifer D.; Cryan, Scott P.; Baker, Kenneth; Martin, Toby; Goode, Robert; Key, Kevin W.; Manning, Thomas; Chien, Chiun-Hong
2008-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Constellation Program; this is carried as one of the CEV Project top risks. The Exploration Technology Development Program (ETDP) AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation. One of the project activities is a series of "pathfinder" testing and simulation activities to integrate relative navigation sensors with the Johnson Space Center Six-Degree-of-Freedom Test System (SDTS). The SDTS will be the primary testing location for the Orion spacecraft s Low Impact Docking System (LIDS). Project team members have integrated the Orion simulation with the SDTS computer system so that real-time closed loop testing can be performed with relative navigation sensors and the docking system in the loop during docking and undocking scenarios. Two relative navigation sensors are being used as part of a "pathfinder" activity in order to pave the way for future testing with the actual Orion sensors. This paper describes the test configuration and test results.
Kelly and Lindgren conduct EMU Resize OPS
2015-10-07
ISS045E050652 (10/07/2015) --- US astronauts Scott Kelly (bottom)and Kjell Lindgren (top) are counting down to a pair of spacewalks, now targeted for Oct. 28 and Nov. 6. The duo serviced their spacesuits replacing lithium batteries, checking their gloves and verifying power to video cameras. On the first spacewalk, the spacewalkers will lubricate the tip of the robotic arm Canadarm2, route power cables and place a thermal shroud over the Alpha Magnetic Spectrometer. During the second spacewalk, Kelly and Lindgren will refill coolant reservoirs and configure the port truss cooling system back to its original configuration after repair work completed back in 2012.
A multipurpose model of Hermes-Columbus docking mechanism
NASA Technical Reports Server (NTRS)
Gonzalez-Vallejo, J. J.; Fehse, W.; Tobias, A.
1992-01-01
One of the foreseen missions of the HERMES spacevehicle is the servicing to the Columbus Free Flying Laboratory (MTFF). Docking between the two spacecraft is a critical operation in which the Docking Mechanism (DM) has a major role. In order to analyze and assess robustness of initially selected concepts and to identify suitable implementation solutions, through the investigation of main parameters involved in the docking functions, a multipurpose model of DM was developed and tested. This paper describes the main design features as well as the process of calibrating and testing.
NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking convened on May 24 and 25, 1994. Based on the meetings, the Task Force made the following recommendations: at a minimum, the mission commander and payload commander for all subsequent Shuttle-Mir missions should be named at least 18 months in advance of the scheduled launch date; in order to derive early operational experience in advance of the first Mir docking mission, the primary objective of STS-63 should be Mir rendezvous and proximity operations; and if at all possible, the launch date for STS-63 should be moved forward.
Compiling a Comprehensive EVA Training Dataset for NASA Astronauts
NASA Technical Reports Server (NTRS)
Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.
2016-01-01
Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.
Foreman,Behnken,and Linnehan place STS-123 patch on wall in the A/L during Joint Operations
2008-03-23
S123-E-008756 (23 March 2008) --- Astronauts Mike Foreman (left), Robert L. Behnken and Rick Linnehan, all STS-123 mission specialists, add the STS-123 patch to the growing collection of insignias representing crews who have performed spacewalks from the Quest Airlock of the International Space Station.
Fast and accurate grid representations for atom-based docking with partner flexibility.
de Vries, Sjoerd J; Zacharias, Martin
2017-06-30
Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Panteleimonitis, Sofoklis; Harper, Mick; Hall, Stuart; Figueiredo, Nuno; Qureshi, Tahseen; Parvaiz, Amjad
2017-09-15
Robotic rectal surgery is becoming increasingly more popular among colorectal surgeons. However, time spent on robotic platform docking, arm clashing and undocking of the platform during the procedure are factors that surgeons often find cumbersome and time consuming. The newest surgical platform, the da Vinci Xi, coupled with integrated table motion can help to overcome these problems. This technical note aims to describe a standardised operative technique of single docking robotic rectal surgery using the da Vinci Xi system and integrated table motion. A stepwise approach of the da Vinci docking process and surgical technique is described accompanied by an intra-operative video that demonstrates this technique. We also present data collected from a prospectively maintained database. 33 consecutive rectal cancer patients (24 male, 9 female) received robotic rectal surgery with the da Vinci Xi during the preparation of this technical note. 29 (88%) patients had anterior resections, and four (12%) had abdominoperineal excisions. There were no conversions, no anastomotic leaks and no mortality. Median operation time was 331 (249-372) min, blood loss 20 (20-45) mls and length of stay 6.5 (4-8) days. 30-day readmission rate and re-operation rates were 3% (n = 1). This standardised technique of single docking robotic rectal surgery with the da Vinci Xi is safe, feasible and reproducible. The technological advances of the new robotic system facilitate the totally robotic single docking approach.
Engineering principles to assure compatible docking between future spacecraft of USA and USSR
NASA Technical Reports Server (NTRS)
Johnson, C. C.
1973-01-01
An androgynous peripheral type docking mechanism concept selected by the U.S. and the USSR is described. The rationale supporting the selection of the concept, the mechanical principles inherent to the concept, and the probable nature of future designs stemming from the concept are discussed. Operational situations prior to docking, impact conditions, energy absorption, and structural joining of two spacecraft are examined.
Marinetto, Eugenio; Victores, Juan González; García-Sevilla, Mónica; Muñoz, Mercedes; Calvo, Felipe Ángel; Balaguer, Carlos; Desco, Manuel; Pascau, Javier
2017-10-01
Intraoperative electron radiation therapy (IOERT) involves the delivery of a high radiation dose during tumor resection in a shorter time than other radiation techniques, thus improving local control of tumors. However, a linear accelerator device is needed to produce the beam safely. Mobile linear accelerators have been designed as dedicated units that can be moved into the operating room and deliver radiation in situ. Correct and safe dose delivery is a key concern when using mobile accelerators. The applicator is commonly fixed to the patient's bed to ensure that the dose is delivered to the prescribed location, and the mobile accelerator is moved to dock the applicator to the radiation beam output (gantry). In a typical clinical set-up, this task is time-consuming because of safety requirements and the limited degree of freedom of the gantry. The objective of this study was to present a navigation solution based on optical tracking for guidance of docking to improve safety and reduce procedure time. We used an optical tracker attached to the mobile linear accelerator to track the prescribed localization of the radiation collimator inside the operating room. Using this information, the integrated navigation system developed computes the movements that the mobile linear accelerator needs to perform to align the applicator and the radiation gantry and warns the physician if docking is unrealizable according to the available degrees of freedom of the mobile linear accelerator. Furthermore, we coded a software application that connects all the necessary functioning elements and provides a user interface for the system calibration and the docking guidance. The system could safeguard against the spatial limitations of the operating room, calculate the optimal arrangement of the accelerator and reduce the docking time in computer simulations and experimental setups. The system could be used to guide docking with any commercial linear accelerator. We believe that the docking navigator we present is a major contribution to IOERT, where docking is critical when attempting to reduce surgical time, ensure patient safety and guarantee that the treatment administered follows the radiation oncologist's prescription. © 2017 American Association of Physicists in Medicine.
Space Station Crew Walks in Space to Conduct Robotics Upgrades
2018-01-23
Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA conducted the first spacewalk this year Jan. 23 to replace a degraded latching end effector (LEE) on one end of the Canadarm2 robotic arm. There are two redundant end effectors on each end of the arm used to grapple visiting vehicles and components during a variety of operational activities. The spacewalk was the 206th in support of space station assembly and maintenance, the third in Vande Hei’s career and the first for Tingle. Vande Hei will venture outside the station again Jan. 29 with Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) to stow a spare latching end effector removed from the robotic arm last October on to the station’s mobile base system rail car for future use.
Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory
NASA Technical Reports Server (NTRS)
Mitchell, J.; Johnston, A.; Howard, R.; Williamson, M.; Brewster, L.; Strack, D.; Cryan, S.
2007-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the CEV requirements. The relatively low technology readiness of relative navigation sensors for AR&D has been carried as one of the CEV Projects top risks. The AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation, and to allow the CEV Project to assess the relative navigation sensors.
Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Williamson, Marlin L.; Johnston, Albert S.; Brewster, Linda L.; Mitchell, Jennifer D.; Cryan, Scott P.; Strack, David; Key, Kevin
2007-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, (AR&D).) The crewed versions of the spacecraft may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the CEV requirements. The relatively low technology readiness of relative navigation sensors for AR&D has been carried as one of the CEV Projects top risks. The AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation, and to allow the CEV Project to assess the relative navigation sensors.
Enhancing AUV Operational Capabilities: Hovering, Rendezvous, and Docking
1997-09-30
ton on the dock that plunges into the bottom of the puck. A rubber sheath insulates the end of the button from the seawater and the exposed current...AUV Navigation and Self -Motion in Shallow Water, ONR. Autonomous Oceanographic Sampling Network Development, ONR. Enhancing AUV Operational...and Failure Recovery, ONR. Dependable Network Topologies with Network Fragment Healing for Component Level Intelli- gent Distributed Control Systems for
NASA Technical Reports Server (NTRS)
Matty, Christopher M.
2010-01-01
Crewed space vehicles have a common requirement to remove the carbon dioxide (CO2) created by the metabolic processes of the crew. The space shuttle [Space Transportation System (STS)] and International Space Station (ISS) each have systems in place that allow control and removal of CO2 from the habitable cabin environment. During periods in which the space shuttle is docked to the ISS, known as "joint docked operations," the space shuttle and ISS share a common atmosphere environment. During this period, an elevated amount of CO2 is produced through the combined metabolic activity of the STS and ISS crews. This elevated CO2 production, together with the large effective atmosphere created by collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe individual CO2 control plans implemented by STS and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. The paper will also discuss some of the issues and anomalies experienced by both engineering teams.
NASA Technical Reports Server (NTRS)
Matty, Christopher M.; Hayley, Elizabeth P.
2009-01-01
Manned space vehicles have a common requirement to remove the Carbon Dioxide (CO2) created by the metabolic processes of the crew. The Space Shuttle and International Space Station (ISS) each have systems in place to allow control and removal of CO2 from the habitable cabin environment. During periods where the Space Shuttle is docked to ISS, known as joint docked operations, the Space Shuttle and ISS share a common atmosphere environment. During this period there is an elevated production of CO2 caused by the combined metabolic activity of the Space Shuttle and ISS crew. This elevated CO2 production, combined with the large effective atmosphere created by the collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe the individual CO2 control plans implemented by the Space Shuttle and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. In addition, the paper will discuss some of the issues and anomalies experienced by both engineering teams.
Autonomous docking ground demonstration
NASA Technical Reports Server (NTRS)
Lamkin, Steve L.; Le, Thomas Quan; Othon, L. T.; Prather, Joseph L.; Eick, Richard E.; Baxter, Jim M.; Boyd, M. G.; Clark, Fred D.; Spehar, Peter T.; Teters, Rebecca T.
1991-01-01
The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved.
Lungu, Claudiu N; Diudea, Mircea V; Putz, Mihai V
2017-06-27
Docking-i.e., interaction of a small molecule (ligand) with a proteic structure (receptor)-represents the ground of drug action mechanism of the vast majority of bioactive chemicals. Ligand and receptor accommodate their geometry and energy, within this interaction, in the benefit of receptor-ligand complex. In an induced fit docking, the structure of ligand is most susceptible to changes in topology and energy, comparative to the receptor. These changes can be described by manifold hypersurfaces, in terms of polynomial discriminant and Laplacian operator. Such topological surfaces were represented for each MraY (phospho-MurNAc-pentapeptide translocase) inhibitor, studied before and after docking with MraY. Binding affinities of all ligands were calculated by this procedure. For each ligand, Laplacian and polynomial discriminant were correlated with the ligand minimum inhibitory concentration (MIC) retrieved from literature. It was observed that MIC is correlated with Laplacian and polynomial discriminant.
2011-06-10
William Gerstenmaier, Associate Administrator for Space Operations, is interviewed by Russian Federal Space Agency (ROSCOSMOS) TV following a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Friday, June 10, 2011. The Soyuz TMA-02M docked to the International Space Station carrying Expedition 28 Soyuz Commander Sergei Volkov, NASA Flight Engineer Mike Fossum and JAXA (Japanase Aerospace Exploration Agency) Flight Engineer Satoshi Furukawa. Photo Credit: (NASA/Carla Cioffi)
2015-11-20
unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 Exhaust Baffles • December Dry ...Docking Canceled – The floating dry dock is not certified so the docking has been canceled. Divers should do hull and prop cleaning prior to builders...operating temperature of 125-degrees F. A cooler may be necessary to correct this issue. • Uncontaminated Sea Chest – Reports from Armstrong indicate
A primer on wood as dock construction material
Stan Lebow
2007-01-01
To be a successful marina owner and operator, itâs important to understand all the facets of oneâs facility, including the intricacies of one part of the marina that most boaters take for granted: the docks. When it comes to dock construction, marinas have a wide-range of materials to choose from, with one of the most commonly used materials being preservative-treated...
Berthing simulator for space station and orbiter
NASA Technical Reports Server (NTRS)
Veerasamy, Sam
1991-01-01
The development of a real-time man-in-the-loop berthing simulator is in progress at NASA Lyndon B. Johnson Space Center (JSC) to conduct a parametric study and to measure forces during contact conditions of the actual docking mechanisms for the Space Station Freedom and the orbiter. In berthing, the docking ports of the Space Station and the orbiter are brought together using the orbiter robotic arm to control the relative motion of the vehicles. The berthing simulator consists of a dynamics docking test system (DDTS), computer system, simulator software, and workstations. In the DDTS, the Space Station, and the orbiter docking mechanisms are mounted on a six-degree-of-freedom (6 DOF) table and a fixed platform above the table. Six load cells are used on the fixed platform to measure forces during contact conditions of the docking mechanisms. Two Encore Concept 32/9780 computers are used to simulate the orbiter robotic arm and to operate the berthing simulator. A systematic procedure for a real-time dynamic initialization is being developed to synchronize the Space Station docking port trajectory with the 6 DOF table movement. The berthing test can be conducted manually or automatically and can be extended for any two orbiting vehicles using a simulated robotic arm. The real-time operation of the berthing simulator is briefly described.
Advanced Video Guidance Sensor and next-generation autonomous docking sensors
NASA Astrophysics Data System (ADS)
Granade, Stephen R.
2004-09-01
In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.
Advanced Video Guidance Sensor and Next Generation Autonomous Docking Sensors
NASA Technical Reports Server (NTRS)
Granade, Stephen R.
2004-01-01
In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.
Logistics and operations implications of manual control of spacecraft docking maneuvers
NASA Technical Reports Server (NTRS)
Brody, Adam R.; Ellis, Stephen R.
1991-01-01
The implications of logistics and operations on the manual control of spacecraft docking are discussed. The results of simulation studies to investigate fuel and time cost tradeoffs are reviewed and discussed. Comparisons of acceleration control and pulse control are presented to evaluate the effects of astronauts being instructed to use pulse mode for fuel conservation. The applications of the findings to moon and Mars missions are addressed.
October Spacewalks Aboard the Space Station on This Week @NASA – October 13, 2017
2017-10-13
The Oct. 10th spacewalk outside the International Space Station was the second in less than a week by NASA’s Randy Bresnik and Mark Vande Hei – and one of three U.S. spacewalks planned for October. The astronauts lubricated the new latching end effector they installed on the Canadarm2 robotic arm on Oct. 5. They also replaced a faulty camera system and completed several other tasks. Joe Acaba will join Bresnik for the next spacewalk – currently scheduled for Oct. 20. Also, California Wildfires Seen from Space, NASA Pinpoints Cause of Earth’s Record CO2 Levels, Send Your Name to Mars, Celebrating the First Piloted Supersonic Flight, and Potential Asteroid Warning Network Tested!
STS-111 crew breakfast before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-111 crew gather for the traditional pre-launch meal before the second launch attempt aboard Space Shuttle Endeavour. Seated left to right are Mission Specialists Franklin Chang-Diaz and Philippe Perrin (CNES); the Expedition 5 crew cosmonauts Sergei Treschev (RSA) and Valeri Korzun (RSA) and astronaut Peggy Whitson; Pilot Paul Lockhart and Commander Kenneth Cockrell. In front of them is the traditional cake. This mission marks the 14th Shuttle flight to the International Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.
STS-88 crew use simulators and virtual reality in preflight training
1998-04-08
S98-05075 (8 Apr. 1998) --- Astronaut Nancy J. Currie, assigned as a mission specialist for the mission, uses hardware in the virtual reality lab at the Johnson Space Center (JSC) to train for her duties aboard the Space Shuttle Endeavour. This type computer interface paired with virtual reality training hardware for the assigned space-walking astronauts -- in this case, Jerry L. Ross and James H. Newman -- helps to prepare the entire team for dealing with International Space Station (ISS) elements. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Endeavour?s cargo bay. In ensuing days, three Extravehicular Activity?s (EVA) by Ross and Newman will be performed to make power, data and utility connections between the two modules.
STS-108 Post Flight Presentation
NASA Technical Reports Server (NTRS)
2002-01-01
The crewmembers of STS-108, Commander Dominic Gorie, Pilot Mark Kelly, and Mission Specialists Linda Godwin and Daniel Tani, narrate this video as footage from the mission is shown. The crew is seen flying into Kennedy Space Center, suiting up, boarding the Endeavour Orbiter, and during launch. Various mission highlights are seen, including the rendezvous with the International Space Station (ISS) and docking of Endeavour, the unloading of the Multipurpose Logistics Module (MPLM), and the spacewalk to install thermal blankets over the Beta Gimbal Assemblies (BGAs) at the bases of the Space Station's solar panels. A glimpse is given into the difficulties of working in a microgravity environment as the crewmembers attempt to eat food before it floats away from them and drink water from a bag. The exchange of the Expedition 4 (Yuri I. Onufrienko, Carl E. Walz, and Daniel W. Bursch) for the Expedition 3 crew (Frank L. Culbertson, Mikhail Turin, and Vladimir N. Dezhurov) is also seen. The Endeavour undocks from the ISS, which is seen over the Caribbean Sea. Endeavour passes over Cuba, and footage of the Swiss Alps is shown. The video ends with the landing of the spacecraft.
STS-92 crew poses for group photo before launch preparations
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-92 crew begin their journey to Launch Pad 39A with a snack. Seated at the table (left to right) are Mission Specialists William S. McArthur Jr., Leroy Chiao and Koichi Wakata of Japan; Commander Brian Duffy; Pilot Pamela Ann Melroy; and Mission Specialists Peter J.K. '''Jeff''' Wisoff and Michael E. Lopez-Alegria. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.
The STS-92 crew exits O&C on way to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
Striding happily to the waiting Astrovan for the trip to Launch Pad 39A are (left to right) STS-92 Mission Specialists Michael E. Lopez-Alegria, Koichi Wakata of Japan, Peter J.K. '''Jeff''' Wisoff, Leroy Chiao and William S. McArthur; Pilot Pamela Ann Melroy; and Commander Brian Duffy. STS-92 is scheduled for liftoff to the International Space Station (ISS) at 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. Landing is expected Oct. 21 at 3:55 p.m. EDT.
The STS-92 crew exits O&C on way to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-92 crew strides eagerly to the waiting Astrovan that will take them to Launch Pad 39A for liftoff at 8:05 p.m. EDT to the International Space Station (ISS). They are (from front to back) Pilot Pamela Ann Melroy and Commander Brian Duffy; and Mission Specialists Leroy Chiao and William S. McArthur Jr.; Peter J.K. Wisoff; Michael E. Lopez-Alegria and Koichi Wakata of Japan. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the second for Wakata. Landing is expected Oct. 21 at 3:55 p.m. EDT.
STS-92 MS Wisoff gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
2000-10-11
STS-92 Mission Specialist Peter J.K. “Jeff” Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Mission Specialist Peter J.K. “Jeff” Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
Enabling Exploration Through Docking Standards
NASA Technical Reports Server (NTRS)
Hatfield, Caris A.
2012-01-01
Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publicly available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.
Remote operation of an orbital maneuvering vehicle in simulated docking maneuvers
NASA Technical Reports Server (NTRS)
Brody, Adam R.
1990-01-01
Simulated docking maneuvers were performed to assess the effect of initial velocity on docking failure rate, mission duration, and delta v (fuel consumption). Subjects performed simulated docking maneuvers of an orbital maneuvering vehicle (OMV) to a space station. The effect of the removal of the range and rate displays (simulating a ranging instrumentation failure) was also examined. Naive subjects were capable of achieving a high success rate in performing simulated docking maneuvers without extensive training. Failure rate was a function of individual differences; there was no treatment effect on failure rate. The amount of time subjects reserved for final approach increased with starting velocity. Piloting of docking maneuvers was not significantly affected in any way by the removal of range and rate displays. Radial impulse was significant both by subject and by treatment. NASA's 0.1 percent rule, dictating an approach rate no greater than 0.1 percent of the range, is seen to be overly conservative for nominal docking missions.
Accessible high-throughput virtual screening molecular docking software for students and educators.
Jacob, Reed B; Andersen, Tim; McDougal, Owen M
2012-05-01
We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms.
Abreu, Rui Mv; Froufe, Hugo Jc; Queiroz, Maria João Rp; Ferreira, Isabel Cfr
2010-10-28
Virtual screening of small molecules using molecular docking has become an important tool in drug discovery. However, large scale virtual screening is time demanding and usually requires dedicated computer clusters. There are a number of software tools that perform virtual screening using AutoDock4 but they require access to dedicated Linux computer clusters. Also no software is available for performing virtual screening with Vina using computer clusters. In this paper we present MOLA, an easy-to-use graphical user interface tool that automates parallel virtual screening using AutoDock4 and/or Vina in bootable non-dedicated computer clusters. MOLA automates several tasks including: ligand preparation, parallel AutoDock4/Vina jobs distribution and result analysis. When the virtual screening project finishes, an open-office spreadsheet file opens with the ligands ranked by binding energy and distance to the active site. All results files can automatically be recorded on an USB-flash drive or on the hard-disk drive using VirtualBox. MOLA works inside a customized Live CD GNU/Linux operating system, developed by us, that bypass the original operating system installed on the computers used in the cluster. This operating system boots from a CD on the master node and then clusters other computers as slave nodes via ethernet connections. MOLA is an ideal virtual screening tool for non-experienced users, with a limited number of multi-platform heterogeneous computers available and no access to dedicated Linux computer clusters. When a virtual screening project finishes, the computers can just be restarted to their original operating system. The originality of MOLA lies on the fact that, any platform-independent computer available can he added to the cluster, without ever using the computer hard-disk drive and without interfering with the installed operating system. With a cluster of 10 processors, and a potential maximum speed-up of 10x, the parallel algorithm of MOLA performed with a speed-up of 8,64× using AutoDock4 and 8,60× using Vina.
A feasibility study of unmanned rendezvous and docking in Mars orbit: Midterm review
NASA Technical Reports Server (NTRS)
1974-01-01
The ascent, rendezvous, docking and sample transfer operations in a potential MSSR mission that uses the Mars orbital rendezvous mode are considered. In order that the design choices made for these operations remain compatible with the rest of the mission, the impact on the Earth launch, Mars landing and orbiting and Earth return phase are also being assessed. The selection and description of a preliminary baseline concept are presented.
Fuzzy logic techniques for rendezvous and docking of two geostationary satellites
NASA Technical Reports Server (NTRS)
Ortega, Guillermo
1995-01-01
Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.
STS-112 Atlantis Launch from LC-39B
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis roars into the clear blue sky from the billows of smoke below after launch on mission STS-112, the 15th assembly flight to the International Space Station. Liftoff from Launch Pad 39B occurred at 3:46 p.m. EDT. Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station.
ISS Expedition 53 U.S. Spacewalk 46
2017-10-20
Outside the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Joe Acaba of NASA conducted a spacewalk Oct. 20 to continue upgrades to and maintenance of station hardware. It was the third spacewalk in two weeks for Expedition 53 crewmembers outside the Quest airlock. During the excursion, Bresnik and Acaba replaced a failed camera light on the new Latching End Effector “hand” on the Canadarm2 robotic arm, installed a new high definition camera on the starboard truss of the complex, replaced a fuse on the Dextre Special Dexterous Manipulator attachment for the arm and removed thermal blankets from two spare electrical routing units for future robotic replacement work, if required. It was the fifth spacewalk in Bresnik’s career and the third for Acaba.
A Comparison of Candidate Seal Designs for Future Docking Systems
NASA Technical Reports Server (NTRS)
Dunlap, Patrick, H., Jr.; Steinetz, Bruce, M.
2012-01-01
NASA is developing a new docking system to support future space exploration missions to low Earth orbit, the Moon, and other destinations. A key component of this system is the seal at the main docking interface which inhibits the loss of cabin air once docking is complete. Depending on the mission, the seal must be able to dock in either a seal-on-flange or seal-on-seal configuration. Seal-on-flange mating would occur when a docking system equipped with a seal docks to a system with a flat metal flange. This would occur when a vehicle docks to a node on the International Space Station. Seal-on-seal mating would occur when two docking systems equipped with seals dock to each other. Two types of seal designs were identified for this application: Gask-O-seals and multi-piece seals. Both types of seals had a pair of seal bulbs to satisfy the redundancy requirement. A series of performance assessments and comparisons were made between the candidate seal designs indicating that they meet the requirements for leak rate and compression and adhesion loads under a range of operating conditions. Other design factors such as part count, integration into the docking system tunnel, seal-on-seal mating, and cost were also considered leading to the selection of the multi-piece seal design for the new docking system. The results of this study can be used by designers of future docking systems and other habitable volumes to select the seal design best-suited for their particular application.
2018-02-02
iss054e027048 (Feb. 2, 2018) --- A Russian spacewalker is seen in an Orlan spacesuit with blue stripes (center image) working outside the Zvezda service module during the longest spacewalk in Russian space program history on Feb. 2, 2018. Cosmonauts Alexander Misurkin and Anton Shkaplerov wrapped up the eight hour and 13 minute spacewalk after installing a new electronics and telemetry box for the high gain antenna on Zvezda. The new gear will enhance communications between Russian flight controllers and the Russian modules.
Spacewalking_in_Ultra_High_Definition
2017-07-21
Ever wonder what the spacewalker sees while you’re looking at him or her? Here’s your answer, courtesy of NASA astronaut Jack Fischer. This Ultra High Definition clip shows Fischer outside the International Space Station during a spacewalk on Expedition 51 in May 2017, and the view from a small camera attached to his spacesuit at the same time. Music by Joakim Karud. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
NASA Technical Reports Server (NTRS)
Matty, Christopher M.; Cover, John M.
2009-01-01
The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.
Review of Full-Scale Docking Seal Testing Capabilities
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.; Steinetz, Bruce M.
2008-01-01
NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. To evaluate the performance of the seals under simulated operating conditions, NASA GRC is developing two new test rigs: a non-actuated version that will be used to measure seal leak rates and an actuated test rig that will be able to measure both seal leak rates and loads. Both test rigs will be able to evaluate the seals under seal-on-seal or seal-on-plate configurations at temperatures from -50 to 50 C (-58 to 122 F) under operational and pre-flight checkout pressure gradients in both aligned and misaligned conditions.
Insight into the da Vinci® Xi - technical notes for single-docking left-sided colorectal procedures.
Ngu, James Chi-Yong; Sim, Sarah; Yusof, Sulaiman; Ng, Chee-Yung; Wong, Andrew Siang-Yih
2017-12-01
The adoption of robot-assisted laparoscopic colorectal surgery has been hampered by issues with docking, operative duration, technical difficulties in multi-quadrant access, and cost. The da Vinci® Xi has been designed to overcome some of these limitations. We describe our experience with the system and offer technical insights to its application in left-sided colorectal procedures. Our initial series of left-sided robotic colorectal procedures was evaluated. Patient demographics and operative outcomes were recorded prospectively using a predefined database. Between March 2015 and April 2016, 54 cases of robot-assisted laparoscopic left-sided colorectal procedures were successfully completed with no cases of conversion. The majority were low anterior resections for colorectal malignancies. Using the da Vinci® Xi Surgical System, multi-quadrant surgery involving dissection from the splenic flexure to the pelvis was possible without redocking. The da Vinci® Xi simplifies the docking procedure and makes single-docking feasible for multi-quadrant left-sided colorectal procedures. Copyright © 2016 John Wiley & Sons, Ltd.
Neural networks: Alternatives to conventional techniques for automatic docking
NASA Technical Reports Server (NTRS)
Vinz, Bradley L.
1994-01-01
Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.
18 CFR 1304.404 - Commercial marina harbor limits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... facilities at the dock, navigation and flood control requirements, optimum use of lands and land rights owned... to, changes in the ownership of the land base supporting the marina. ... harbor areas are determined by the extent of land rights held by the dock operator. The lakeward limits...
46 CFR 45.191 - Pre-departure requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., verification of mooring/docking space availability, and weather forecast checks were performed, and record the... voyage, the towing vessel master must conduct the following: (a) Weather forecast. Determine the marine weather forecast along the planned route, and contact the dock operator at the destination port to get an...
46 CFR 45.191 - Pre-departure requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., verification of mooring/docking space availability, and weather forecast checks were performed, and record the... voyage, the towing vessel master must conduct the following: (a) Weather forecast. Determine the marine weather forecast along the planned route, and contact the dock operator at the destination port to get an...
46 CFR 45.191 - Pre-departure requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., verification of mooring/docking space availability, and weather forecast checks were performed, and record the... voyage, the towing vessel master must conduct the following: (a) Weather forecast. Determine the marine weather forecast along the planned route, and contact the dock operator at the destination port to get an...
46 CFR 45.191 - Pre-departure requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., verification of mooring/docking space availability, and weather forecast checks were performed, and record the... voyage, the towing vessel master must conduct the following: (a) Weather forecast. Determine the marine weather forecast along the planned route, and contact the dock operator at the destination port to get an...
International Docking Standard (IDSS) Interface Definition Document (IDD) . E; Revision
NASA Technical Reports Server (NTRS)
Kelly, Sean M.; Cryan, Scott P.
2016-01-01
This International Docking System Standard (IDSS) Interface Definition Document (IDD) is the result of a collaboration by the International Space Station membership to establish a standard docking interface to enable on-orbit crew rescue operations and joint collaborative endeavors utilizing different spacecraft. This IDSS IDD details the physical geometric mating interface and design loads requirements. The physical geometric interface requirements must be strictly followed to ensure physical spacecraft mating compatibility. This includes both defined components and areas that are void of components. The IDD also identifies common design parameters as identified in section 3.0, e.g., docking initial conditions and vehicle mass properties. This information represents a recommended set of design values enveloping a broad set of design reference missions and conditions, which if accommodated in the docking system design, increases the probability of successful docking between different spacecraft. This IDD does not address operational procedures or off-nominal situations, nor does it dictate implementation or design features behind the mating interface. It is the responsibility of the spacecraft developer to perform all hardware verification and validation, and to perform final docking analyses to ensure the needed docking performance and to develop the final certification loads for their application. While there are many other critical requirements needed in the development of a docking system such as fault tolerance, reliability, and environments (e.g. vibration, etc.), it is not the intent of the IDSS IDD to mandate all of these requirements; these requirements must be addressed as part of the specific developer's unique program, spacecraft and mission needs. This approach allows designers the flexibility to design and build docking mechanisms to their unique program needs and requirements. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.
Hydra Rendezvous and Docking Sensor
NASA Technical Reports Server (NTRS)
Roe, Fred; Carrington, Connie
2007-01-01
The U.S. technology to support a CEV AR&D activity is mature and was developed by NASA and supporting industry during an extensive research and development program conducted during the 1990's and early 2000 time frame at the Marshall Space Flight Center. Development and demonstration of a rendezvous/docking sensor was identified early in the AR&D Program as the critical enabling technology that allows automated proxinity operations and docking. A first generation rendezvous/docking sensor, the Video Guidance Sensor (VGS) was developed and successfully flown on STS 87 and again on STS 95, proving the concept of a video-based sensor. Advances in both video and signal processing technologies and the lessons learned from the two successful flight experiments provided a baseline for the development of a new generation of video based rendezvous/docking sensor. The Advanced Video Guidance Sensor (AVGS) has greatly increased performance and additional capability for longer-range operation. A Demonstration Automatic Rendezvous Technology (DART) flight experiment was flown in April 2005 using AVGS as the primary proximity operations sensor. Because of the absence of a docking mechanism on the target satellite, this mission did not demonstrate the ability of the sensor to coltrold ocking. Mission results indicate that the rendezvous sensor operated successfully in "spot mode" (2 km acquisition of the target, bearing data only) but was never commanded to "acquire and track" the docking target. Parts obsolescence issues prevent the construction of current design AVGS units to support the NASA Exploration initiative. This flight proven AR&D technology is being modularized and upgraded with additional capabilities through the Hydra project at the Marshall Space Flight Center. Hydra brings a unique engineering approach and sensor architecture to the table, to solve the continuing issues of parts obsolescence and multiple sensor integration. This paper presents an approach to sensor hardware trades, to address the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS). It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for modularizing the sensor to provide configuration flexibility for multiple vehicle applications. Options for complementary sensors to be integrated into the multi-head Hydra system will also be presented. Complementary sensor options include ULTOR, a digital image correlator system that could provide relative six-degree-of-freedom information independently from AVGS, and time-of-flight sensors, which determine the range between vehicles by timing pulses that travel from the sensor to the target and back. Common targets and integrated targets, suitable for use with the multi-sensor options in Hydra, will also be addressed.
NASA Technical Reports Server (NTRS)
Culbertson, Philip, Jr. (Inventor)
1997-01-01
An environmental protective suit used for hazardous clean-up or space applications includes a suitlock docking mechanism that allows for easy egress and ingress of a crew member between a sealed vessel and a possibly contaminated environment. The suitlock docking mechanism comprises a single actuator that controls latches which, in turn, respectfully control rack and pinion assemblies that allow for easy removal and attachment of a life support equipment enclosure shell to the environmental protective suit or to the vehicle from which the operator performs his/her duties.
NASA Astrophysics Data System (ADS)
Taha, Mutasem O.; Habash, Maha; Khanfar, Mohammad A.
2014-05-01
Glucokinase (GK) is involved in normal glucose homeostasis and therefore it is a valid target for drug design and discovery efforts. GK activators (GKAs) have excellent potential as treatments of hyperglycemia and diabetes. The combined recent interest in GKAs, together with docking limitations and shortages of docking validation methods prompted us to use our new 3D-QSAR analysis, namely, docking-based comparative intermolecular contacts analysis (dbCICA), to validate docking configurations performed on a group of GKAs within GK binding site. dbCICA assesses the consistency of docking by assessing the correlation between ligands' affinities and their contacts with binding site spots. Optimal dbCICA models were validated by receiver operating characteristic curve analysis and comparative molecular field analysis. dbCICA models were also converted into valid pharmacophores that were used as search queries to mine 3D structural databases for new GKAs. The search yielded several potent bioactivators that experimentally increased GK bioactivity up to 7.5-folds at 10 μM.
Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A
NASA Technical Reports Server (NTRS)
Woodcock, G. R.
1982-01-01
The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.
Magnet-Based System for Docking of Miniature Spacecraft
NASA Technical Reports Server (NTRS)
Howard, Nathan; Nguyen, Hai D.
2007-01-01
A prototype system for docking a miniature spacecraft with a larger spacecraft has been developed by engineers at the Johnson Space Center. Engineers working on Mini AERCam, a free-flying robotic camera, needed to find a way to successfully dock and undock their miniature spacecraft to refuel the propulsion and recharge the batteries. The subsystems developed (see figure) include (1) a docking port, designed for the larger spacecraft, which contains an electromagnet, a ball lock mechanism, and a service probe; and (2) a docking cluster, designed for the smaller spacecraft, which contains either a permanent magnet or an electromagnet. A typical docking operation begins with the docking spacecraft maneuvering into position near the docking port on the parent vehicle. The electromagnet( s) are then turned on, and, if necessary, the docking spacecraft is then maneuvered within the capture envelope of the docking port. The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube centered on the front of the docking-port electromagnet and within an angular misalignment of <30 . Thereafter, the magnetic forces draw the smaller spacecraft toward the larger one and this brings the spacecraft into approximate alignment prior to contact. Mechanical alignment guides provide the final rotational alignment into one of 12 positions. Once the docking vehicle has been captured magnetically in the docking port, the ball-lock mechanism is activated, which locks the two spacecraft together. At this point the electromagnet( s) are turned off, and the service probe extended if recharge and refueling are to be performed. Additionally, during undocking, the polarity of one electromagnet can be reversed to provide a gentle push to separate the two spacecraft. This system is currently being incorporated into the design of Mini AERCam vehicle.
STS-112 crew walks out of O&C building before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-112 crew wave to spectators as they exit the Operations and Checkout Building for their ride to Launch Pad 39B and the launch scheduled 3:46 p.m. EDT. Leading the way are Pilot Pamela Melroy and Commander Jeffrey Ashby. In the second row are Mission Specialists David Wolf (left) and Sandra Magnus. Behind them are Mission Specialists Fyodor Yurchikhin and Piers Sellers. Sellers, Magnus and Yurchikhin are making their first Shuttle flights. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station.
STS-112 Crew exit O&C building before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-112 crew eagerly exit the Operations and Checkout Building for their ride to Launch Pad 39B and the launch scheduled 3:46 p.m. EDT. Leading the way are Pilot Pamela Melroy and Commander Jeffrey Ashby. In the second row are Mission Specialists David Wolf (left) and Sandra Magnus. Behind them are Mission Specialists Fyodor Yurchikhin and Piers Sellers. Sellers, Magnus and Yurchikhin are making their first Shuttle flights. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. [Photo courtesy of Scott Andrews
The Mechanical Performance of Subscale Candidate Elastomer Docking Seals
NASA Technical Reports Server (NTRS)
Bastrzyk, Marta B.; Daniels, Christopher C.
2010-01-01
The National Aeronautics and Space Administration is developing a Low Impact Docking System (LIDS) for future exploration missions. The mechanism is a new state-of-the-art device for in-space assembly of structures and rendezvous of vehicles. At the interface between two pressurized modules, each with a version of the LIDS attached, a composite elastomer-metal seal assembly prevents the breathable air from escaping into the vacuum of space. Attached to the active LIDS, this seal mates against the passive LIDS during docking operation. The main interface seal assembly must exhibit low leak and outgas values, must be able to withstand various harsh space environments, must remain operational over a range of temperatures from -50 C to 75 C, and perform after numerous docking cycles. This paper presents results from a comprehensive study of the mechanical performance of four candidate subscale seal assembly designs at -50, 23, 50, and 75 C test temperatures. In particular, the force required to fully compress the seal during docking, and that which is required for separation during the undocking operation were measured. The height of subscale main interface seal bulbs, as well as the test temperature, were shown to have a significant effect on the forces the main interface seal of the LIDS may experience during docking and undocking operations. The average force values required to fully compress each of the seal assemblies were shown to increase with test temperature by approximately 50% from -50 to 75 C. Also, the required compression forces were shown to increase as the height of the seal bulb was increased. The seal design with the tallest elastomer seal bulb, which was 31% taller than that with the shortest bulb, required force values approximately 45% higher than those for the shortest bulb, independent of the test temperature. The force required to separate the seal was shown to increase with decreasing temperature after 15 hours of simulated docking. No adhesion force was observed at 75 C, while magnitudes of up to 235 lbf were recorded at the refrigerated temperature. In addition, the adhesion force was observed to increase with bulb height. When compared with the LIDS program requirements, the measured compression force values were found to be below the maximum allowable load allotted to the main interface seal. However, the measured adhesion force values at the refrigerated test temperature were found to exceed the program limits.
GENERAL VIEW OF FLIGHT LINE BUILDINGS. FROM RIGHT TO LEFT, ...
GENERAL VIEW OF FLIGHT LINE BUILDINGS. FROM RIGHT TO LEFT, PETROLEUM OPERATIONS BUILDING (BUILDING, 2840), SECURITY POLICE CENTRAL CONTROL BUILDING (BUILDING 2841). MAINTENANCE DOCK (BUILDING 2837) AND MAINTENANCE DOCK (BUILDING 2890). VIEW TO NORTHWEST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY
Description of the docking module ECS for the Apollo-Soyuz Test Project.
NASA Technical Reports Server (NTRS)
Guy, W. W.; Jaax, J. R.
1973-01-01
The role of the Docking Module ECS (Environmental Control System) to be used on the Apollo-Soyuz Test mission is to provide a means for crewmen to transfer safely between the Apollo and Soyuz vehicles in a shirtsleeve environment. This paper describes the Docking Module ECS and includes the philosophy and rationale used in evaluating and selecting the capabilities that are required to satisfy the Docking Module's airlock function: (1) adjusting the pressure and composition of the atmosphere to effect crew transfer and (2) providing a shirtsleeve environment during transfer operations. An analytical evaluation is given of the environmental parameters (including CO2 level, humidity, and temperature) during a normal transfer timeline.
1989-12-01
can operate combination of airborne units, air transport - beyond the atmosphere. able units, and types of transport aircraft, de - pending on the mission...amphibious transport dock-(DOD) A ship de - anchor-See sinker. signed to transport and land troops, equip- ment, and supplies by means of embarked...attack and requiring emergency operations dock landing ship-(DOD) A naval ship de - during and following that attack. It may be signed to transport and
Space-to-Ground: Prepping for a Spacewalk: 01/19/2018
2018-01-18
Some station science has successfully returned to Earth, and crewmembers are gearing up for a pair of spacewalks. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
An autonomous rendezvous and docking system using cruise missile technologies
NASA Technical Reports Server (NTRS)
Jones, Ruel Edwin
1991-01-01
In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.
Automated Rendezvous and Capture System Development and Simulation for NASA
NASA Technical Reports Server (NTRS)
Roe, Fred D.; Howard, Richard T.; Murphy, Leslie
2004-01-01
The United States does not have an Automated Rendezvous and Capture/Docking (AR and C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Soviets have the capability to autonomously dock in space, but their system produces a hard docking with excessive force and contact velocity. Automated Rendezvous and Capture/Docking has been identified as a key enabling technology for the Space Launch Initiative (SLI) Program, DARPA Orbital Express and other DOD Programs. The development and implementation of an AR&C capability can significantly enhance system flexibility, improve safety, and lower the cost of maintaining, supplying, and operating the International Space Station. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR and C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004.
Padalka and Polansky in the Node 1 during Joint Operations
2009-07-21
S127-E-007430 (21 July 2009) --- Astronaut Mark Polansky (right) and Russian Federal Space Agency cosmonaut Gennady Padalka take a break from a busy agenda onboard the International Space Station on the eve of the third of five spacewalks scheduled as part of more than a week's worth of joint activities for Endeavour and ISS crewmembers. Polansky is STS-127 commander, and Padalka is the station commander.
Polansky and Padalka in the Node 1 during Joint Operations
2009-07-21
S127-E-007453 (21 July 2009) --- Astronaut Mark Polansky (left) and Russian Federal Space Agency cosmonaut Gennady Padalka take a break from a busy agenda onboard the International Space Station on the eve of the third of five spacewalks scheduled as part of more than a week's worth of joint activities for Endeavour and ISS crewmembers. Polansky is STS-127 commander, and Padalka is the station commander.
Cassidy looks at Crew Procedures in the Aft FD during Joint Operations
2009-07-20
S127-E-007079 (29 July 2009) --- Astronaut Christopher Cassidy is pictured on the flight deck of the Space Shuttle Endeavour during the July 20 spacewalk of astronauts Dave Wolf and Tom Marshburn. Cassidy, Wolf and Marshburn, all three mission specialists, are part of a 13-member station population for now -- an aggregation made up of seven shuttle astronauts and six Expedition 20 crew members.
Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission
NASA Technical Reports Server (NTRS)
Hinkel, Heather D.; Cryan, Scott P.; D'Souza, Christopher; Dannemiller, David P.; Brazzel, Jack P.; Condon, Gerald L.; Othon, William L.; Williams, Jacob
2014-01-01
This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions.
Space tug automatic docking control study. LOCDOK users manual
NASA Technical Reports Server (NTRS)
1974-01-01
A users's manual for the computer programs involved in a study of the space tug docking simulation is presented. The following subjects are considered: (1) subroutine narratives, (2) program elements, (3) system subroutines, and (4) Univac 1108 cross reference listing. The functional and operational requirements for the computer programming are explained.
29 CFR 1952.172 - Level of Federal enforcement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the means of access to said vehicles. (ii) Marine vessels construction operations (from the means of access of the shore). (iii) All afloat marine ship building and repair from the foot of the gangway. (iv) All ship building and repair in graving docks or dry docks. (v) All ship repairing done in marine...
2014-08-12
ISS040-E-091673 (12 Aug. 2014) --- In the Zvezda Service Module, European Space Agency astronaut Alexander Gerst (right) and Russian cosmonaut Alexander Skvortsov, both Expedition 40 flight engineers, take a brief moment for a photo during the approach and docking operations of ESA's "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) to the International Space Station.
The Sensor Test for Orion RelNav Risk Mitigation (STORRM) Development Test Objective
NASA Technical Reports Server (NTRS)
Christian, John A.; Hinkel, Heather; D'Souza, Christopher N.; Maguire, Sean; Patangan, Mogi
2011-01-01
The Sensor Test for Orion Relative-Navigation Risk Mitigation (STORRM) Development Test Objective (DTO) flew aboard the Space Shuttle Endeavour on STS-134 in May- June 2011, and was designed to characterize the performance of the flash LIDAR and docking camera being developed for the Orion Multi-Purpose Crew Vehicle. The flash LIDAR, called the Vision Navigation Sensor (VNS), will be the primary navigation instrument used by the Orion vehicle during rendezvous, proximity operations, and docking. The DC will be used by the Orion crew for piloting cues during docking. This paper provides an overview of the STORRM test objectives and the concept of operations. It continues with a description of STORRM's major hardware components, which include the VNS, docking camera, and supporting avionics. Next, an overview of crew and analyst training activities will describe how the STORRM team prepared for flight. Then an overview of in-flight data collection and analysis is presented. Key findings and results from this project are summarized. Finally, the paper concludes with lessons learned from the STORRM DTO.
Overall view of Mission Control Center during Apollo 14
1971-01-31
S71-16879 (31 Jan. 1971) --- Overall view of activity in the Mission Operations Control Room in the Mission Control Center during the Apollo 14 transposition and docking maneuvers. The Apollo 14 Lunar Module, still attached to the Saturn IVB stage, can be seen on the large television monitor. Due to difficulty with the docking mechanism six attempts were made before a successful "hard dock" of the Command Module with the Lunar Module was accomplished. Aboard the Command Module were astronauts Alan B. Shepard Jr., Stuart A. Roosa, and Edgar D. Mitchell.
Training - Apollo-Soyuz Test Project (ASTP) - JSC
1975-07-12
S75-28485 (12 July 1975) --- Astronaut Vance D. Brand, command module pilot of the American ASTP prime crew, practices operating a Docking Module hatch during Apollo-Soyuz Test Project preflight training at NASA's Johnson Space Center. The Docking Module is designed to link the Apollo and Soyuz spacecraft during their docking mission in Earth orbit. Gary L. Doerre of JSC?s Crew Training and Procedures Division is working with Brand. Doerre is wearing a face mask to help prevent possible exposure to Brand of disease prior to the ASTP launch.
COLUMBIA'S HATCH IS INSPECTED IN OPF BAY 1 AFTER STS-80 LANDING
NASA Technical Reports Server (NTRS)
1996-01-01
United Space Alliance (USA) technicians in Orbiter Processing Facility Bay 1 troubleshoot the orbiter Columbia's outer hatch of the airlock, which failed to open during the recent STS-80 Space Shuttle mission. Mission Specialists Tamara E. Jernigan and Thomas D. Jones did not perform the mission's planned two extravehicular activities (EVAs) or spacewalks because the hatch would not open on orbit. The spacewalks were to be part of the continuing series of EVA Development Flight Tests to evaluate equipment and procedures and to build spacewalking experience in preparation for the International Space Station.
Another Powerful Spacewalk on This Week @NASA – January 13, 2017
2017-01-13
Outside the International Space Station, Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineer Thomas Pesquet of the European Space Agency conducted a spacewalk on Jan. 13, to complete an upgrade that included installing adapter plates and hooking up electrical connections for six new lithium-ion batteries, which were delivered to the station in December. Kimbrough and fellow NASA astronaut Peggy Whitson began the upgrade work during a spacewalk on Jan. 6. Also, NASA at SciTech 2017, Testing How the SLS Deals with Shock, New Earth Science Field Experiments, and NASA Sees Storms Affecting the Western U.S.
Space Station Crew Conducts Spacewalk to Change Cooling Components
2018-05-16
Outside the International Space Station, Expedition 55 NASA Flight Engineers Drew Feustel and Ricky Arnold conducted a spacewalk May 16 to swap out a failed cooling system component called a pump flow control subassembly (PFCS) for a spare. The PFCS is one of several on the truss structure of the station designed to regulate the flow of ammonia coolant through the cooling loops on the station to maintain the proper temperature for critical systems. It was the 210th spacewalk in support of space station assembly, maintenance and upgrades, the eighth in Feustel’s career and the fourth for Arnold.
Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks
NASA Technical Reports Server (NTRS)
Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.
2010-01-01
INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.
Overview of LIDS Docking Seals Development
NASA Technical Reports Server (NTRS)
Dunlap, Pat; Steinetz, Bruce; Daniels, Chris
2008-01-01
NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. GRC is evaluating the performance of candidate seal designs under simulated operating conditions at both sub-scale and full-scale levels. GRC is ultimately responsible for delivering flight hardware seals to NASA Johnson Space Center around 2013 for integration into LIDS flight units.
Space station full-scale docking/berthing mechanisms development
NASA Technical Reports Server (NTRS)
Burns, Gene C.; Price, Harold A.; Buchanan, David B.
1988-01-01
One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.
Hoffer, Laurent; Chira, Camelia; Marcou, Gilles; Varnek, Alexandre; Horvath, Dragos
2015-05-19
This paper describes the development of the unified conformational sampling and docking tool called Sampler for Multiple Protein-Ligand Entities (S4MPLE). The main novelty in S4MPLE is the unified dealing with intra- and intermolecular degrees of freedom (DoF). While classically programs are either designed for folding or docking, S4MPLE transcends this artificial specialization. It supports folding, docking of a flexible ligand into a flexible site and simultaneous docking of several ligands. The trick behind it is the formal assimilation of inter-molecular to intra-molecular DoF associated to putative inter-molecular contact axes. This is implemented within the genetic operators powering a Lamarckian Genetic Algorithm (GA). Further novelty includes differentiable interaction fingerprints to control population diversity, and fitting a simple continuum solvent model and favorable contact bonus terms to the AMBER/GAFF force field. Novel applications-docking of fragment-like compounds, simultaneous docking of multiple ligands, including free crystallographic waters-were published elsewhere. This paper discusses: (a) methodology, (b) set-up of the force field energy functions and (c) their validation in classical redocking tests. More than 80% success in redocking was achieved (RMSD of top-ranked pose < 2.0 Å).
MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP) - JSC
1975-07-17
S75-28682 (17 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. The large television monitor shows a view of the Soyuz spacecraft as seen from the Apollo spacecraft during rendezvous and docking maneuvers. Eugene F. Kranz, JSC Deputy Director of Flight Operations, is standing in the foreground. M.P. Frank, the American senior ASTP flight director, is partially obscured on the right.
STS-114 Discovery's approach for docking
2005-07-28
ISS011-E-11233 (28 July 2005) --- One of a series of photographs showing the Space Shuttle Discovery as taken from aboard the International Space Station during rendezvous and docking operations. The Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) is in the Shuttle;s cargo bay. Earth, dotted with popcorn-like clouds, provides the backdrop for this image.
STS-115 Space Shuttle Atlantis docked on the ISS during Joint Operations
2006-09-12
S115-E-05722 (12 Sept. 2006) --- The Space Shuttle Atlantis will remain docked with the International Space Station like this for several more days as the STS-115 and Expedition 13 crewmembers join efforts to resume construction of the International Space Station. This image was taken during the first of three scheduled space walks.
Photocopy of drawing located at National Archives, Sand Bruno, California ...
Photocopy of drawing located at National Archives, Sand Bruno, California (Navy # 110-A-1 2 of 5. Scofiled Construction Company Mare Island Office, Mare Island Cal. Plan of operating floor, September 2, 1908. - Mare Island Naval Shipyard, Pump House, California Avenue, east side between Dry Dock 1 & Dry Dock 2, near Ninth Street, Vallejo, Solano County, CA
Dry dock gate stability modelling
NASA Astrophysics Data System (ADS)
Oktoberty; Widiyanto; Sasono, E. J.; Pramono, S.; Wandono, A. T.
2018-03-01
The development of marine transportation needs in Indonesia increasingly opens national shipyard business opportunities to provide shipbuilding services to the shipbuilding vessels. That emphasizes the stability of prime. The ship's decking door becomes an integral part of the efficient place and the specification of the use of the asset of its operational ease. This study aims to test the stability of Dry Dock gate with the length of 35.4 meters using Maxsurf and Hydromax in analyzing the calculation were in its assessment using interval per 500 mm length so that it can get detail data toward longitudinal and transverse such as studying Ship planning in general. The test result shows dry dock gate meets IMO standard with ballast construction containing 54% and 68% and using fix ballast can produce GMt 1,924 m, tide height 11,357m. The GMt value indicates dry dick gate can be stable and firmly erect at the base of the mouth dry dock. When empty ballast produces GMt 0.996 which means dry dock date is stable, but can easily be torn down. The condition can be used during dry dock gate treatment.
2005-08-09
The sun rises on the Space Shuttle Discovery as it rests on the runway at Edwards Air Force Base, California, after a safe landing August 9, 2005 to complete the STS-114 mission. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
STS-88 crew use simulators and virtual reality in preflight training
1998-04-08
S98-05078 (8 Apr. 1998) --- With crew mates looking on, astronaut Nancy J. Currie, mission specialist, uses hardware in the virtual reality lab at the Johnson Space Center (JSC) to train for her duties aboard the Space Shuttle Endeavour. She is flanked by astronaut Robert Cabana (left), commander; and Frederick W. Sturckow (right), pilot. This type computer interface paired with virtual reality training hardware for the assigned space-walking astronauts -- Jerry L. Ross and James H. Newman -- helps to prepare the entire team for dealing with International Space Station (ISS) elements. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Endeavour's cargo bay. In ensuing days, three Extravehicular Activity?s (EVA) by Ross and Newman will be performed to make power, data and utility connections between the two modules. Looking on is Scott A. Bleisath (behind Currie), with the EVA Systems Group at JSC.
STS-88 crew use simulators and virtual reality in preflight training
1998-04-08
S98-05077 (8 Apr. 1998) --- With crew mates looking on, astronaut Nancy J. Currie, mission specialist, uses hardware in the virtual reality lab at the Johnson Space Center (JSC) to train for her duties aboard the Space Shuttle Endeavour. She is flanked by astronaut Robert Cabana (left), commander; and Frederick W. Sturckow (right), pilot. This type computer interface paired with virtual reality training hardware for the assigned space-walking astronauts -- Jerry L. Ross and James H. Newman -- helps to prepare the entire team for dealing with International Space Station (ISS) elements. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Endeavour's cargo bay. In ensuing days, three Extravehicular Activity?s (EVA) by Ross and Newman will be performed to make power, data and utility connections between the two modules. Looking on is Scott A. Bleisath (behind Currie), with the EVA Systems Group at JSC.
STS-88 crew use simulators and virtual reality in preflight training
1998-04-08
S98-05074 (8 Apr. 1998) --- Astronaut Jerry L. Ross, assigned as a mission specialist for the mission, uses special gear and software to train for his duties aboard the Space Shuttle Endeavour. This type virtual reality training supplements practice for each of the assigned space-walking astronauts -- Ross and James H. Newman -- during which they wear a helmet and special gloves to look at computer displays simulating actual movements around the various locations on the early International Space Station (ISS) hardware with which they'll be working. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, astronaut Nancy J. Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Shuttle's cargo bay. In ensuing days, three space walks by Ross and Newman will be performed to make power, data and utility connections between the two modules. Currie also uses this same lab to train for her RMS controlling duties.
STS-88 crew use simulators and virtual reality in preflight training
1998-04-08
S98-05076 (8 Apr. 1998) --- Astronaut Jerry L. Ross, assigned as a mission specialist for the mission, uses special gear and software to train for his duties aboard the Space Shuttle Endeavour. This type virtual reality training supplements practice for each of the assigned space-walking astronauts -- Ross and James H. Newman -- during which they wear a helmet and special gloves to look at computer displays simulating actual movements around the various locations on the early International Space Station (ISS) hardware with which they'll be working. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, astronaut Nancy J. Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Shuttle's cargo bay. In ensuing days, three space walks by Ross and Newman will be performed to make power, data and utility connections between the two modules. Currie also uses this same lab to train for her RMS controlling duties.
STS-92 crew heads for Astrovan for trip to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
Eager to get to the launch pad and liftoff of Space Shuttle Discovery on mission STS-92, the crew hurries to the waiting Astrovan for the trip. From left are Mission Specialists Michael E. Lopez-Alegria, Koichi Wakata of Japan, William S. McArthur Jr., Leroy Chiao and Peter J.K. '''Jeff''' Wisoff; Pilot Pamela Ann Melroy; and Commander Brian Duffy. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 crew heads for Astrovan for trip to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
Smiling and waving at photographers and onlookers, the STS-92 crew hurries to the waiting Astrovan for the trip to Launch Pad 39A and liftoff of Space Shuttle Discovery. Clockwise from right, leading the way are Commander Brian Duffy and Pilot Pamela Ann Melroy; then Mission Specialists Leroy Chiao, Koichi Wakata of Japan, Michael Lopez-Alegria, William S. McArthur Jr. and Peter J.K. '''Jeff''' Wisoff. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.
2000-10-10
The STS-92 crew pose for a group photo after a snack prior to suiting up for launch. Seated left to right are Mission Specialists Peter J.K. “Jeff” Wisoff and Michael E. Lopez-Alegria; Pilot Pamela Ann Melory; Commander Brian Duffy; and Mission Specialists Koichi Wakata of Japan, William S. McArthur Jr. and Leroy Chiao. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 8:05 p.m. EDT. Landing is expected Oct. 21 at 3:55 p.m. EDT
The STS-92 crew pose around a table before suiting up .
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-92 crew pose for a group photo after a snack prior to suiting up for launch. Seated left to right are Mission Specialists Peter J.K. '''Jeff''' Wisoff and Michael E. Lopez- Alegria; Pilot Pamela Ann Melory; Commander Brian Duffy; and Mission Specialists Koichi Wakata of Japan, William S. McArthur Jr. and Leroy Chiao. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 8:05 p.m. EDT. Landing is expected Oct. 21 at 3:55 p.m. EDT.
STS-121: Discovery Pre-Flight Crew News Briefing
NASA Technical Reports Server (NTRS)
2006-01-01
The STS-121 crew is shown during this pre-flight news briefing. Steve Lindsey, Commander, begins with saying that they are only a few weeks from flight and the vehicle is in good shape. Mark Kelly, Pilot, is introduced by Lindsey and he discusses Kelly's main objective which is to direct the three spacewalks scheduled. Kelly introduces Mike Fossum, Mission Specialist. Kelly says that Fossum will be involved in three spacewalks. Fossum introduces Lisa Nowak, Mission Specialist, who is involved in robotics. Also Stephanie Wilson, Mission Specialist, will be involved in robotics. Piers Sellers, Mission Specialist, is introduced by Wilson, who is the lead spacewalker for this mission. Sellers then introduce Thomas Reiter, Mission Specialist, who is involved in spacewalks. The educational background of each crew member is given. Questions from the news media on the subjects of long term flights on the International Space Station, Ice frost ramp replacement, Orbiter Boom Sensor System (OBSS) stability, foam loss during STS-114 flight, duration of the mission, and mental preparation for test flights are addressed.
Supervised autonomous rendezvous and docking system technology evaluation
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.
1991-01-01
Technology for manned space flight is mature and has an extensive history of the use of man-in-the-loop rendezvous and docking, but there is no history of automated rendezvous and docking. Sensors exist that can operate in the space environment. The Shuttle radar can be used for ranges down to 30 meters, Japan and France are developing laser rangers, and considerable work is going on in the U.S. However, there is a need to validate a flight qualified sensor for the range of 30 meters to contact. The number of targets and illumination patterns should be minimized to reduce operation constraints with one or more sensors integrated into a robust system for autonomous operation. To achieve system redundancy, it is worthwhile to follow a parallel development of qualifying and extending the range of the 0-12 meter MSFC sensor and to simultaneously qualify the 0-30(+) meter JPL laser ranging system as an additional sensor with overlapping capabilities. Such an approach offers a redundant sensor suite for autonomous rendezvous and docking. The development should include the optimization of integrated sensory systems, packaging, mission envelopes, and computer image processing to mimic brain perception and real-time response. The benefits of the Global Positioning System in providing real-time positioning data of high accuracy must be incorporated into the design. The use of GPS-derived attitude data should be investigated further and validated.
COLUMBIA'S HATCH IS INSPECTED IN OPF BAY 1 AFTER STS-80 LANDING
NASA Technical Reports Server (NTRS)
1996-01-01
In Orbiter Processing Facility Bay 1, United Space Alliance (USA) technicians Dave Lawrence, at left, and James Cullop troubleshoot the orbiter Columbia's outer hatch of the airlock, which failed to open during the recent STS-80 Space Shuttle mission. Mission Specialists Tamara E. Jernigan and Thomas D. Jones did not perform the mission's planned two extravehicular activities (EVAs) or spacewalks because the hatch would not open on orbit. The spacewalks were to be part of the continuing series of EVA Development Flight Tests to evaluate equipment and procedures and to build spacewalking experience in preparation for the International Space Station.
MSFC Three Point Docking Mechanism design review
NASA Technical Reports Server (NTRS)
Schaefer, Otto; Ambrosio, Anthony
1992-01-01
In the next few decades, we will be launching expensive satellites and space platforms that will require recovery for economic reasons, because of initial malfunction, servicing, repairs, or out of a concern for post lifetime debris removal. The planned availability of a Three Point Docking Mechanism (TPDM) is a positive step towards an operational satellite retrieval infrastructure. This study effort supports NASA/MSFC engineering work in developing an automated docking capability. The work was performed by the Grumman Space & Electronics Group as a concept evaluation/test for the Tumbling Satellite Retrieval Kit. Simulation of a TPDM capture was performed in Grumman's Large Amplitude Space Simulator (LASS) using mockups of both parts (the mechanism and payload). Similar TPDM simulation activities and more extensive hardware testing was performed at NASA/MSFC in the Flight Robotics Laboratory and Space Station/Space Operations Mechanism Test Bed (6-DOF Facility).
Preliminary GN&C Design for the On-Orbit Autonomous Assembly of Nanosatellite Demonstration Mission
NASA Technical Reports Server (NTRS)
Pei, Jing; Walsh, Matt; Roithmayr, Carlos; Karlgaard, Chris; Peck, Mason; Murchison, Luke
2017-01-01
Small spacecraft autonomous rendezvous and docking (ARD) is an essential technology for future space structure assembly missions. The On-orbit Autonomous Assembly of Nanosatellites (OAAN) team at NASA Langley Research Center (LaRC) intends to demonstrate the technology to autonomously dock two nanosatellites to form an integrated system. The team has developed a novel magnetic capture and latching mechanism that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats, but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. Prior to demonstrating the docking subsystem capabilities on orbit, the GN&C subsystem should have a robust design such that it is capable of bringing the CubeSats from an arbitrary initial separation distance of as many as a few thousand kilometers down to a few meters. The main OAAN Mission can be separated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field Rendezvous or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper discusses the preliminary GN&C design and simulation results for each phase of the mission.
27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW ...
27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW SKIP TIES UP AT DOCK. THE UNLOADERS OPERATE ALMOST CONTINUOUSLY DURING THE SHIPPING SEASON, WHICH USUALLY RUNS FROM APRIL UNTIL LATE DECEMBER OR EARLY JANUARY. VIEW HERE IS LOOKING NORTHEAST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH
2006-12-22
KENNEDY SPACE CENTER, FLA. -- Bill Gerstenmaier, NASA associate administrator for Space Operations; Sigmar Wittig, head of the DLR, the German Space Agency; Mike Griffin, NASA administrator; and Michel Tognini, head of the European Astronaut Center, examine the thermal protection system tiles beneath Space Shuttle Discovery following the landing of mission STS-116 on Runway 15 at NASA Kennedy Space Center's Shuttle Landing Facility. During the STS-116 mission, three spacewalks attached the P5 integrated truss structure to the station, and completed the rewiring of the orbiting laboratory's power system. A fourth spacewalk retracted a stubborn solar array. Main gear touchdown was at 5:32 p.m. EST. Nose gear touchdown was at 5:32:12 p.m. and wheel stop was at 5:32:52 p.m. At touchdown -- nominally about 2,500 ft. beyond the runway threshold -- the orbiter is traveling at a speed ranging from 213 to 226 mph. Discovery traveled 5,330,000 miles, landing on orbit 204. Mission elapsed time was 12 days, 20 hours, 44 minutes and 16 seconds. This is the 64th landing at KSC. Photo credit: NASA/Kim Shiflett
2006-12-22
KENNEDY SPACE CENTER, FLA. -- Sigmar Wittig, head of the DLR, the German Space Agency; Bill Gerstenmaier, NASA associate administrator for Space Operations; Mike Griffin, NASA administrator; Michel Tognini, head of the European Astronaut Center; and Bill Parsons, Kennedy Space Center deputy director, examine the thermal protection system tiles beneath Space Shuttle Discovery following the landing of mission STS-116 on Runway 15 at NASA Kennedy Space Center's Shuttle Landing Facility. During the STS-116 mission, three spacewalks attached the P5 integrated truss structure to the station, and completed the rewiring of the orbiting laboratory's power system. A fourth spacewalk retracted a stubborn solar array. Main gear touchdown was at 5:32 p.m. EST. Nose gear touchdown was at 5:32:12 p.m. and wheel stop was at 5:32:52 p.m. At touchdown -- nominally about 2,500 ft. beyond the runway threshold -- the orbiter is traveling at a speed ranging from 213 to 226 mph. Discovery traveled 5,330,000 miles, landing on orbit 204. Mission elapsed time was 12 days, 20 hours, 44 minutes and 16 seconds. This is the 64th landing at KSC. Photo credit: NASA/Kim Shiflett
Docking simulation analysis of range data requirements for the orbital maneuvering vehicle
NASA Technical Reports Server (NTRS)
Micheal, J. D.; Vinz, F. L.
1985-01-01
The results of an initial study are reported assess the controllability of the Orbital Maneuvering Vehicle (OMV) for terminal closure and docking are reported. The vehicle characteristics used in this study are those of the Marshall Space Flight Center (MSFC) baseline OMV which were published with the request for proposals for preliminary design of this vehicle. This simulation was conducted at MSFC using the Target Motion Simulator. The study focused on the OMV manual mode capability to accommodate both stabilized and tumbling target engagements with varying complements of range and range rate data displayed to the OMV operator. Four trained test subjects performed over 400 simulated orbital dockings during this study. A firm requirement for radar during the terminal closure and dock phase of the OMV mission was not established by these simulations. Fifteen pound thrusters recommended in the MSFC baseline design were found to be advantageous for initial rate matching maneuvers with unstabilized targets; however, lower thrust levels were desirable for making the final docking maneuvers.
2014-04-23
ISS039-E-014846 (22 April 2014) --- NASA astronaut Steve Swanson is pictured during a spacewalk to replace a failed backup computer relay box in the S0 truss of the International Space Station on April 22, 2014. He was accompanied on the spacewalk by fellow Flight Engineer Rick Mastracchio of NASA.
2014-04-18
ISS039-E-013244 (18 April 2014) --- NASA astronaut Rick Mastracchio, Expeditionn 39 flight engineer, replaces the Enhanced Input/Output Control Unit Circuit Card of the spare External Multiplexer/Demultiplexer (MDM), in preparation for an upcoming spacewalk. He will be joined by fellow NASA astronaut and Flight Engineer Steve Swanson on the spacewalk.
Space-to-Ground: Russian Spacewalk: 02/02/2018
2018-02-02
This week on station, one spacewalk took place, and another one was moved Also, what advice would an astronaut give to students who want to be a part of the exploration of space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
2015-05-24
ISS043E241729 (05/24/2015) --- Expedition 43 commander and NASA astronaut Terry Virts is seen here inside of the station’s Cupola module. The Cupola is designed for the observation of operations outside the ISS such as robotic activities, the approach of vehicles, and spacewalks. It also provides spectacular views of Earth and celestial objects for use in astronaut observation experiments. It houses the robotic workstation that controls the space station’s robotic arm and can accommodate two crewmembers simultaneously.
2017-11-09
iss053e156180 (Nov. 9, 2017) --- Expedition 53 Commander Randy Bresnik (foreground) and Flight Engineer Paolo Nespoli are at the controls of the robotics workstation in the Destiny laboratory module training for the approach, rendezvous and grapple of the Orbital ATK Cygnus resupply ship. Both astronauts were in the cupola operating the Canadarm2 robotic arm to grapple Cygnus when it arrived Nov. 14, 2017, delivering nearly 7,400 pounds of crew supplies, science experiments, computer gear, vehicle equipment and spacewalk hardware.
2017-11-09
iss053e156160 (Nov. 9, 2017) --- Expedition 53 Commander Randy Bresnik is at the controls of the robotics workstation in the Destiny laboratory module training for the approach, rendezvous and grapple of the Orbital ATK Cygnus resupply ship. He and Flight Engineer Paolo Nespoli were in the cupola operating the Canadarm2 robotic arm to grapple Cygnus when it arrived Nov. 14, 2017, delivering nearly 7,400 pounds of crew supplies, science experiments, computer gear, vehicle equipment and spacewalk hardware.
1997-02-11
STS-82 Mission Specialist Joseph R. "Joe" Tanner dons his launch and entry suit in the Operations and Checkout Building with assistance from a suit technician. This is Tanner’s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned
Advanced Docking System With Magnetic Initial Capture
NASA Technical Reports Server (NTRS)
Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang
2004-01-01
An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.
The First U.S. Spacewalk in HD -SILENT
1965-06-03
During the Gemini 4 mission on June 3, 1965, Ed White became the first American to conduct a spacewalk. The spacewalk started at 3:45 p.m. EDT on the third orbit when White opened the hatch and used the hand-held maneuvering oxygen-jet gun to push himself out of the capsule. The EVA started over the Pacific Ocean near Hawaii and lasted 23 minutes, ending over the Gulf of Mexico. Initially, White propelled himself to the end of the 8-meter tether and back to the spacecraft three times using the hand-held gun. After the first three minutes the fuel ran out and White maneuvered by twisting his body and pulling on the tether.
2018-02-20
Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.
2018-02-20
Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.
Space_Station_Crew_Members_Walk_in_Space_to_Complete_Robotics_Upgrades
2018-02-16
Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.
2018-02-21
Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.
2018-02-21
Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.
2018-02-21
Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.
Autonomous docking ground demonstration (category 3)
NASA Technical Reports Server (NTRS)
Lamkin, Steve L.; Eick, Richard E.; Baxter, James M.; Boyd, M. G.; Clark, Fred D.; Lee, Thomas Q.; Othon, L. T.; Prather, Joseph L.; Spehar, Peter T.; Teders, Rebecca J.
1991-01-01
The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented.
Autonomous docking ground demonstration (category 3)
NASA Astrophysics Data System (ADS)
Lamkin, Steve L.; Eick, Richard E.; Baxter, James M.; Boyd, M. G.; Clark, Fred D.; Lee, Thomas Q.; Othon, L. T.; Prather, Joseph L.; Spehar, Peter T.; Teders, Rebecca J.
The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented.
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2013-12-21
Photo Date: 12/21/2013 Location: Bldg. 30 - FCR-1 (30M/231 Subject: ISS Flight Controllers during Expedition 38's 1st Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. Photographer: Robert Markowitz
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2013-12-21
Photo Date: 12/21/2013 Location: Bldg. 30 - FCR-1 (30M/231 Subject: ISS Flight Controllers during Expedition 38's 1st Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. Photographer: Robert Markowitz
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2013-12-21
Photo Date: 12/21/2013 Location: Bldg. 30 - FCR-1 (30M/231 Subject: ISS Flight Controllers during Expedition 38's 1st Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. Photographer: Robert Markowitz
2013-12-24
DATE: 12-24-13 LOCATION: Bldg. 30 - FCR-1 (30M/231) SUBJECT: ISS Flight Controllers during Expedition 38's 2nd Spacewalk to repair a faulty ISS Coolant pump with Astronauts Rick Mastracchio and Mike Hopkins. Flight Director: Dina Contella, Capcom's Doug Wheelock, Aki Hoshide, and Lead U.S. Spacewalk Officer Allison Bolinger. PHOTOGRAPHER: Lauren Harnett
2018-04-25
iss055e032444 (April 25, 2018) --- NASA astronaut Scott Tingle replaces a failed light bulb in a light to be used on a new external television camera group (ETVCG) that will be installed on an upcoming spacewalk. Parts from the old ETVCG, removed during a previous spacewalk, will be shipped back to Earth in Dragon for refurbishment.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030552 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030578 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030563 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030460 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030445 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030584 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030444 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030528 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Automated space vehicle control for rendezvous proximity operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.
1988-01-01
Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.
Automated space vehicle control for rendezvous proximity operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.
1988-01-01
Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision-making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.
2005-08-09
The crew of Space Shuttle mission STS-114 gathered in front of the shuttle Discovery following landing at Edwards Air Force Base, California, August 9, 2005. From left to right: Mission Specialist Stephen Robinson, Commander Eileen Collins, Mission Specialists Andrew Thomas, Wendy Lawrence, Soichi Noguchi and Charles Camarda, and Pilot James Kelly. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.