14. Oblique detail; understructure beneath short span used for docking ...
14. Oblique detail; understructure beneath short span used for docking fishing boats, north of northen pillar, from northwest. - Puente Ferroviario San Antonio, Spanning San Antonio Channel at PR-1, San Juan, San Juan Municipio, PR
9. OBLIQUE VIEW, PARTIAL WEST SPAN, FROM SOUTHWEST, SHOWING TRUSS ...
9. OBLIQUE VIEW, PARTIAL WEST SPAN, FROM SOUTHWEST, SHOWING TRUSS PANELS AND SOLID CONFIGURATION OF TRUSS MEMBERS, INCLUDING POLYGONAL TOP CHORD, VERTICAL AND DIAGONAL MEMBERS, AND CROSS-STRUTS - Glendale Road Bridge, Spanning Deep Creek Lake on Glendale Road, McHenry, Garrett County, MD
OBLIQUE VIEW FROM SOUTHEAST LOOKING NORTHEAST. NOTE CORNERSTONE IN ABUTMENT. ...
OBLIQUE VIEW FROM SOUTHEAST LOOKING NORTHEAST. NOTE CORNERSTONE IN ABUTMENT. - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN
Swept Impinging Oblique Shock/Boundary-Layer Interactions
NASA Astrophysics Data System (ADS)
Little, Jesse; Threadgill, James; Stab, Ilona
2016-11-01
Oblique shock waves impinging on boundary layers are common flow features associated with high-speed flows around complex body geometries and through internal channel flows. The increasingly three-dimensional surface geometries of modern vehicles has led to a prevalence of complex shock/boundary-layer interactions. Sweep has been observed to vary the interaction structure, unsteadinesses, and similarity scalings. Sharp-fins and highly-swept ramps have been noted to induce a quasi-conical development of the interaction, in contrast to a quasi-cylindrical scaling observed in low-sweep interactions. However, swept impinging oblique shock cases have largely been overlooked, with evidence of only cylindrical similarities observed in hypersonic conditions. Flow deflection beyond the maximum turning angle has been proposed as the mechanism for conical interaction development but such behavior has not been established for the present configuration. This study examines the effect of sweep on the interaction induced by a 12.5° generator in Mach 2.3 flow using oil-flow, Schlieren and PIV. Results document the development of similarity scalings at various angles of sweep, and highlight the difficulty in replicating a quasi-infinite span conditions in a moderately sized wind tun Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430) and Raytheon Missile Systems.
Ono, Yohei; Kashihara, Rina; Yasojima, Nobutoshi; Kasahara, Hideki; Shimizu, Yuka; Tamura, Kenichi; Tsutsumi, Kaori; Sutherland, Kenneth; Koike, Takao; Kamishima, Tamotsu
2016-06-01
Accurate evaluation of joint space width (JSW) is important in the assessment of rheumatoid arthritis (RA). In clinical radiography of bilateral hands, the oblique incidence of X-rays is unavoidable, which may cause perceptional or measurement error of JSW. The objective of this study was to examine whether tomosynthesis, a recently developed modality, can facilitate a more accurate evaluation of JSW than radiography under the condition of oblique incidence of X-rays. We investigated quantitative errors derived from the oblique incidence of X-rays by imaging phantoms simulating various finger joint spaces using radiographs and tomosynthesis images. We then compared the qualitative results of the modified total Sharp score of a total of 320 joints from 20 patients with RA between these modalities. A quantitative error was prominent when the location of the phantom was shifted along the JSW direction. Modified total Sharp scores of tomosynthesis images were significantly higher than those of radiography, that is to say JSW was regarded as narrower in tomosynthesis than in radiography when finger joints were located where the oblique incidence of X-rays is expected in the JSW direction. Tomosynthesis can facilitate accurate evaluation of JSW in finger joints of patients with RA, even with oblique incidence of X-rays. Accurate evaluation of JSW is necessary for the management of patients with RA. Through phantom and clinical studies, we demonstrate that tomosynthesis may achieve more accurate evaluation of JSW.
3. View to southwest. Oblique view of downstream side of ...
3. View to southwest. Oblique view of downstream side of bridge and west pier. (135mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
2. View to east. Oblique view of downstream side of ...
2. View to east. Oblique view of downstream side of bridge and east pier. (135mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
9. View to northeast. Oblique view of upstream side of ...
9. View to northeast. Oblique view of upstream side of bridge from approximately deck level. (90mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
7. CLOSER OBLIQUE VIEW OF WEST TRUSS AND WEST SIDE ...
7. CLOSER OBLIQUE VIEW OF WEST TRUSS AND WEST SIDE OF SOUTH ABUTMENT; VIEW TO NORTHEAST. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD
14. Credit JTL: Detail, oblique view of Egyptian Revival decorative ...
14. Credit JTL: Detail, oblique view of Egyptian Revival decorative motifs used typically at midpoints of diagonals - Reading-Halls Station Bridge, U.S. Route 220, spanning railroad near Halls Station, Muncy, Lycoming County, PA
OBLIQUE VIEW LOOKING NORTHWEST. AveryBartholomew Patent Railroad Iron Bridge, ...
OBLIQUE VIEW LOOKING NORTHWEST. - Avery-Bartholomew Patent Railroad Iron Bridge, Town park south of Route 222, west of Owasco Inlet (moved from Elm Street Extension spanning Fall Creek, Nubia, NY), Groton, Tompkins County, NY
OBLIQUE VIEW, LOOKING EASTNORTHEAST. AveryBartholomew Patent Railroad Iron Bridge, ...
OBLIQUE VIEW, LOOKING EAST-NORTHEAST. - Avery-Bartholomew Patent Railroad Iron Bridge, Town park south of Route 222, west of Owasco Inlet (moved from Elm Street Extension spanning Fall Creek, Nubia, NY), Groton, Tompkins County, NY
4. View to westsouthwest. Oblique view of upstream side of ...
4. View to west-southwest. Oblique view of upstream side of bridge from approximately deck level. (90mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
11. OBLIQUE VIEW OF EAST TRUSS AND EAST SIDE OF ...
11. OBLIQUE VIEW OF EAST TRUSS AND EAST SIDE OF SOUTH ABUTMENT, SEEN FROM SOUTH BANK OF WINTER'S RUN. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD
Oblique perspective of portal, due north. Bridge has gable roof ...
Oblique perspective of portal, due north. Bridge has gable roof clad with wood shingles and has board and batten siding. - Watson Mill Bridge, Spanning South Fork Broad River, Watson Mill Road, Watson Mill Bridge State Park, Comer, Madison County, GA
OBLIQUE/EXTERIOR VIEW, LOOKING NORTHEAST, WITH SINTERING PLANT RUINS AND TRACES ...
OBLIQUE/EXTERIOR VIEW, LOOKING NORTHEAST, WITH SINTERING PLANT RUINS AND TRACES OF L. & N. RAILROAD EXTENDING THROUGH GRACE'S GAP TOWARD THE BIRMINGHAM CITY CENTER. - Republic Steel, Spaulding Red Ore Mine (Ruins), Spanning Grace's Pass at Louisville & Nashville Railroad, Birmingham, Jefferson County, AL
Oblique perspective, due east by 70 degrees. Note concrete pier, ...
Oblique perspective, due east by 70 degrees. Note concrete pier, added CA. 1930's. Other piers and abutments are heavily mortared rubble stone. - Watson Mill Bridge, Spanning South Fork Broad River, Watson Mill Road, Watson Mill Bridge State Park, Comer, Madison County, GA
1. OBLIQUE VIEW, LOOKING NE FROM WEST BANK OF SUSQUEHANNA ...
1. OBLIQUE VIEW, LOOKING NE FROM WEST BANK OF SUSQUEHANNA RIVER. PIERS FROM SOUTH PENNSYLVANIA RAILROAD AT LEFT, PHILADELPHIA & READING RAILROAD BRIDGE AT RIGHT. - Philadelphia & Reading Railroad, Susquehanna River Bridge, Spanning Susquehanna River, North of I-83 Bridge, Harrisburg, Dauphin County, PA
2. X15 RUN UP AREA (Jan 59). A sharp, higher ...
2. X-15 RUN UP AREA (Jan 59). A sharp, higher altitide low oblique aerial view to the north, showing runway, at far left; X-15 Engine Test Complex in the center. This view predates construction of observation bunkers. - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
15. Credit JTL: Detail, oblique view of central panel point ...
15. Credit JTL: Detail, oblique view of central panel point connection at top chord; note recess in chord bar to right of joint, and missing third (central) vertical tie rod - Reading-Halls Station Bridge, U.S. Route 220, spanning railroad near Halls Station, Muncy, Lycoming County, PA
10. OBLIQUE VIEW, PORTION OF SPANDREL WALL AND ARCH BARREL, ...
10. OBLIQUE VIEW, PORTION OF SPANDREL WALL AND ARCH BARREL, FROM SOUTHEAST, SHOWING INTRADOS AND EXTRADOS, JUNCTURE OF BRICK BARREL AND CUT STONE MASONRY FACING STONES, TIE ROD CAPS, AND CONCRETE PARAPET EXTENSION - Boston Street Bridge, Spanning Harris Creek Sewer at Boston Street, Baltimore, Independent City, MD
Conceptual/preliminary design study of subsonic v/stol and stovl aircraft derivatives of the S-3A
NASA Technical Reports Server (NTRS)
Kidwell, G. H., Jr.
1981-01-01
A computerized aircraft synthesis program was used to examine the feasibility and capability of a V/STOL aircraft based on the Navy S-3A aircraft. Two major airframe modifications are considered: replacement of the wing, and substitution of deflected thrust turbofan engines similar to the Pegasus engine. Three planform configurations for the all composite wing were investigated: an unconstrained span design, a design with the span constrained to 64 feet, and an unconstrained span oblique wing design. Each design was optimized using the same design variables, and performance and control analyses were performed. The oblique wing configuration was found to have the greatest potential in this application. The mission performance of these V/STOL aircraft compares favorably with that of the CTOL S-3A.
5. OBLIQUE VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...
5. OBLIQUE VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING SOUTHWEST, FROM THE EASTERN LEVEE. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA
Efficient structure from motion for oblique UAV images based on maximal spanning tree expansion
NASA Astrophysics Data System (ADS)
Jiang, San; Jiang, Wanshou
2017-10-01
The primary contribution of this paper is an efficient Structure from Motion (SfM) solution for oblique unmanned aerial vehicle (UAV) images. First, an algorithm, considering spatial relationship constraints between image footprints, is designed for match pair selection with the assistance of UAV flight control data and oblique camera mounting angles. Second, a topological connection network (TCN), represented by an undirected weighted graph, is constructed from initial match pairs, which encodes the overlap areas and intersection angles into edge weights. Then, an algorithm, termed MST-Expansion, is proposed to extract the match graph from the TCN, where the TCN is first simplified by a maximum spanning tree (MST). By further analysis of the local structure in the MST, expansion operations are performed on the vertices of the MST for match graph enhancement, which is achieved by introducing critical connections in the expansion directions. Finally, guided by the match graph, an efficient SfM is proposed. Under extensive analysis and comparison, its performance is verified by using three oblique UAV datasets captured with different multi-camera systems. Experimental results demonstrate that the efficiency of image matching is improved, with speedup ratios ranging from 19 to 35, and competitive orientation accuracy is achieved from both relative bundle adjustment (BA) without GCPs (Ground Control Points) and absolute BA with GCPs. At the same time, images in the three datasets are successfully oriented. For the orientation of oblique UAV images, the proposed method can be a more efficient solution.
Investigations of ionospheric sporadic Es layer using oblique sounding method
NASA Astrophysics Data System (ADS)
Minullin, R.
The characteristics of Es layer have been studied using oblique sounding at 28 radiolines at the frequencies of 34 -- 73 MHz at the transmission paths 400 -- 1600 km long during 30 years. Reflections from Es layer with a few hours duration were observed. The amplitude of the reflected signal reached 1000 μ V with the registration threshold 0,1 μ V. The borderlines between reflected and scattered signals were observed as sharp curves in 60 -- 100 s range on the distributions of duration of reflected signals for decameter waves. The duration of continuous Es reflections were decreased upon amplification of oblique sounding frequency. The distributions of duration of reflected signals for meter waves showed sharp curves in the range 200 -- 300 s, representing borderlines between signals reflected from meteoric traces and from Es layer. The filling coefficient for the oblique sounding as well as the Es layer emersion probability for the vertical sounding were shown to undergo daily, seasonal and periodic variations. The daily variations of the filling coefficient of Es signals showed clear-cut maximums at 10 -- 12 and 18 -- 20 hours and minimum at 4 -- 6 hours at all paths in summer time and the maximum at 12 -- 14 hours in winter time. The values of the filling coefficient for Es layer declined with the increase of oblique sounding frequency. The minimal values of the filling coefficient were observed in winter and early spring, while the maximal values were observed from May to August. Provided that the averaged filling coefficient is equal to one in summer, it reaches the level 0,25 in equinox and does not exceed the level 0,12 in winter as evident by the of oblique sounding. The filling coefficient relation to the value of the voltage detection threshold was approximated by power-mode law. The filling coefficients for summer period showed exponential relation with equivalent sounding frequencies. The experimental evidence was generalized in an analytical model. Using this model the averaged Es layer filling coefficients for particular season of the year can be forecasted in case of given sounding frequency, path length, and voltage threshold.
Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.
2003-01-01
Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.
On the Nature of Oblique Instability Waves in Boundary Layer Transition.
1986-05-23
analogy with the starting vortex of a finite span airfoil , these vortices ." must also connect to some form of starting vortex system at the heater. The...quite suprising. %’ . .5 % *. % % .~%\\~, *-:. % % % % - 61 - For instance, a series of experiments involving forced oblique waves has shown that several...Morkovin, M. V. (1980). Dialog on Bridging Some Gaps in Stability and Transition Research. Laminar-Turbulent Transition (eds. R. Eppler and H. Fuel
12. Railing and newel post detail on west side of ...
12. Railing and newel post detail on west side of south end of bridge. Oblique view northwest (from roadway). 90 mm lens. - Gault Bridge, Spanning Deer Creek at South Pine Street, Nevada City, Nevada County, CA
Super-resolved microsphere-assisted Mirau digital holography by oblique illumination
NASA Astrophysics Data System (ADS)
Abbasian, Vahid; Ganjkhani, Yasaman; Akhlaghi, Ehsan A.; Anand, Arun; Javidi, Bahram; Moradi, Ali-Reza
2018-06-01
In this paper, oblique illumination is used to improve the lateral resolution and edge sharpness in microsphere (MS)-assisted Mirau digital holographic microscopy (Mirau-DHM). Abbe showed that tilting the illumination light allows entrance of higher spatial frequencies into the imaging system thus increasing the resolution power. We extended the idea to common-path DHM, based on Mirau objective, toward super-resolved 3D imaging. High magnification Mirau objectives are very expensive and low-magnification ones suffer from low resolution, therefore, any attempt to increase the effective resolution of the system may be of a great interest. We have already demonstrated the effective resolution increasing of a Mirau-DHM system by incorporating a transparent MS within the working distance of the objective. Here, we show that by integrating a MS-assisted Mirau-DHM with the oblique illumination even higher resolutions can be achieved. We have applied the technique for various samples and have shown the increase in the lateral resolution for the both cases of Mirau-DHM with and without the MS.
Constraints on the Obliquities of Kepler Planet-hosting Stars
NASA Astrophysics Data System (ADS)
Winn, Joshua N.; Petigura, Erik A.; Morton, Timothy D.; Weiss, Lauren M.; Dai, Fei; Schlaufman, Kevin C.; Howard, Andrew W.; Isaacson, Howard; Marcy, Geoffrey W.; Justesen, Anders Bo; Albrecht, Simon
2017-12-01
Stars with hot Jupiters have obliquities ranging from 0° to 180°, but relatively little is known about the obliquities of stars with smaller planets. Using data from the California-Kepler Survey, we investigate the obliquities of stars with planets spanning a wide range of sizes, most of which are smaller than Neptune. First, we identify 156 planet hosts for which measurements of the projected rotation velocity (v\\sin i) and rotation period are both available. By combining estimates of v and v\\sin i, we find nearly all the stars to be compatible with high inclination, and hence, low obliquity (≲20°). Second, we focus on a sample of 159 hot stars ({T}{eff}> 6000 K) for which v\\sin i is available but not necessarily the rotation period. We find six stars for which v\\sin i is anomalously low, an indicator of high obliquity. Half of these have hot Jupiters, even though only 3% of the stars that were searched have hot Jupiters. We also compare the v\\sin i distribution of the hot stars with planets to that of 83 control stars selected without prior knowledge of planets. The mean v\\sin i of the control stars is lower than that of the planet hosts by a factor of approximately π /4, as one would expect if the planet hosts have low obliquities. All these findings suggest that the Kepler planet-hosting stars generally have low obliquities, with the exception of hot stars with hot Jupiters.
Ultra high tip speed (670.6 m/sec) fan stage with composite rotor: Aerodynamic and mechanical design
NASA Technical Reports Server (NTRS)
Halle, J. E.; Burger, G. D.; Dundas, R. E.
1977-01-01
A highly loaded, single-stage compressor having a tip speed of 670.6 m/sec was designed for the purpose of investigating very high tip speeds and high aerodynamic loadings to obtain high stage pressure ratios at acceptable levels of efficiency. The design pressure ratio is 2.8 at an adiabatic efficiency of 84.4%. Corrected design flow is 83.4 kg/sec; corrected design speed is 15,200 rpm; and rotor inlet tip diameter is 0.853 m. The rotor uses multiple-circular-arc airfoils from 0 to 15% span, precompression airfoils assuming single, strong oblique shocks from 21 to 43% span, and precompression airfoils assuming multiple oblique shocks from 52% span to the tip. Because of the high tip speeds, the rotor blades are designed to be fabricated of composite materials. Two composite materials were investigated: Courtaulds HTS graphite fiber in a Kerimid 601 polyimide matrix and the same fibers in a PMR polyimide matrix. In addition to providing a description of the aerodynamic and mechanical design of the 670.0 m/sec fan, discussion is presented of the results of structural tests of blades fabricated with both types of matrices.
8. West side of north end of bridge resting on ...
8. West side of north end of bridge resting on approach abutment. Oblique detail view northeast (from below roadbed level, beside bridge). 150 mm lens. - Gault Bridge, Spanning Deer Creek at South Pine Street, Nevada City, Nevada County, CA
9. Terminal connection of arch structural member to concrete abutment ...
9. Terminal connection of arch structural member to concrete abutment on east of south end of bridge. Slightly oblique detail view west-northwest (from beside bridge). 150 mm lens. - Gault Bridge, Spanning Deer Creek at South Pine Street, Nevada City, Nevada County, CA
11. Connection of upright structural members to top of arch ...
11. Connection of upright structural members to top of arch member on east side of north end of bridge. Oblique detail view southwest (from beside bridge). 360 mm lens. - Gault Bridge, Spanning Deer Creek at South Pine Street, Nevada City, Nevada County, CA
10. Hingepin connection of arch structural member to concrete footing ...
10. Hinge-pin connection of arch structural member to concrete footing on east of south end of bridge. Slightly oblique detail view west-northwest (from beside bridge). 150 mm lens. - Gault Bridge, Spanning Deer Creek at South Pine Street, Nevada City, Nevada County, CA
NASA Technical Reports Server (NTRS)
Kleinstein, G. G.; Gunzburger, M. D.
1977-01-01
The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.
19. View of dedication plaque on the north tower facing ...
19. View of dedication plaque on the north tower facing south. The view is oblique because that portion of the approach trestles immediately in front of the plaque was removed in 1979. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA
An Oblique View of Uplifted Rocks
2017-05-24
This image from NASA's Mars Reconnaissance Orbiter shows part of the central uplifted region of an impact crater more than 50 kilometers wide. That means that the bedrock has been raised from a depth of about 5 kilometers, exposing ancient materials. The warm (yellowish-reddish) colors mark the presence of minerals altered by water, whereas the bluish and greenish rocks have escaped alteration. Sharp-crested ridges and smooth areas are young windblown materials. https://photojournal.jpl.nasa.gov/catalog/PIA21640
Secular Orbit and Spin Variations of Asteroid (16) Psyche
NASA Astrophysics Data System (ADS)
Bills, B. G.; Park, R. S.; Scott, B.
2016-12-01
The obliquity, or angular separation between spin and orbit poles, of asteroid (16) Psyche is currently 95 degrees. We are interested in knowing how much that angular separation varies, on time scales of 104 to 106 years. To answer that question, we have done several related analyses. On short time scales, the orbital element variations of Psyche are dominated by perturbations from Jupiter. Jupiter's dominance has two basic causes: first is the large mass and relatively close position of Jupiter, and second is a 19:8 mean motion resonance. Jupiter completes 8 orbits in 94.9009 years, while Psyche takes 94.9107 years to complete 19 orbits. As a result of this, all of the orbital elements of Psyche exhibit significant periodic variations, with a 94.9 year period dominating. There are also significant variations at the synodic period, which is 8.628 years, or 1/11 of the resonant period. Over a 1000 year time span, centered on the present, the eccentricity varies from 0.133 to 0.140, and the inclination varies from 2.961 to 3.229 degrees. On longer time scales, the orbital elements of Psyche vary considerably more than that, due to secular perturbations from the planets. The secular variations are modeled as the response of interacting mass rings, rather than point masses. Again, Jupiter is the main perturbing influence on Psyche. The eccentricity and inclination both oscillate, with dominant periods of 18.667 kyr. The range of values seen over a million year time span, is 0.057 to 0.147 for eccentricity, and 0.384 to 4.777 degrees for inclination. Using a recent shape model, and assumption of uniform density, to constrain relevant moments of inertia, we estimate the spin pole precession rate parameter to be 8.53 arcsec/year. The current spin pole is at ecliptic {lon, lat} = { 32, -7} deg, whereas the orbit pole is at {lon, lat} = {60.47, 86.91} deg. The current obliquity is thus 94.3 degree. Using nominal values of the input parameters, the recovered spin pole trajectory is such that, over a million year time span, centered on the present, the minimum and maximum values of obliquity are 92.36 and 98.56 deg. The obliquity oscillates with dominant periods of 18.45 and 48.40 kyr.
7. OBLIQUE VIEW OF NORTH PORTAL AND DOWNSTREAM SIDE OF ...
7. OBLIQUE VIEW OF NORTH PORTAL AND DOWNSTREAM SIDE OF BRIDGE, LOOKING WEST. Lights and illuminated sign on portal bracing were elements of an overheight load warning system designed to eliminate accidents of the type which damaged the bridge. However, the system was in place only on the north side of the bridge, controlling trucks approaching from Oregon. In theory, trucks with overheight, overwidth, or overweight loads from California would be controlled by the State's permit system. In fact, it was a 'permit' load originating in California, being hauled without the requisite permit which struck and damaged the bridge. - Smith River Bridge, CA State Highway 199 Spanning Smith River, Crescent City, Del Norte County, CA
Secular obliquity variations for Ceres
NASA Astrophysics Data System (ADS)
Bills, Bruce; Scott, Bryan R.; Nimmo, Francis
2016-10-01
We have constructed secular variation models for the orbit and spin poles of the asteroid (1) Ceres, and used them to examine how the obliquity, or angular separation between spin and orbit poles, varies over a time span of several million years. The current obliquity is 4.3 degrees, which means that there are some regions near the poles which do not receive any direct Sunlight. The Dawn mission has provided an improved estimate of the spin pole orientation, and of the low degree gravity field. That allows us to estimate the rate at which the spin pole precesses about the instantaneous orbit pole.The orbit of Ceres is secularly perturbed by the planets, with Jupiter's influence dominating. The current inclination of the orbit plane, relative to the ecliptic, is 10.6 degrees. However, it varies between 7.27 and 11.78 degrees, with dominant periods of 22.1 and 39.6 kyr. The spin pole precession rate parameter has a period of 205 kyr, with current uncertainty of 3%, dominated by uncertainty in the mean moment of inertia of Ceres.The obliquity varies, with a dominant period of 24.5 kyr, with maximum values near 26 degrees, and minimum values somewhat less than the present value. Ceres is currently near to a minimum of its secular obliquity variations.The near-surface thermal environment thus has at least 3 important time scales: diurnal (9.07 hours), annual (4.60 years), and obliquity cycle (24.5 kyr). The annual thermal wave likely only penetrates a few meters, but the much long thermal wave associated with the obliquity cycle has a skin depth larger by a factor of 70 or so, depending upon thermal properties in the subsurface.
Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.
2016-01-01
Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.
NASA Astrophysics Data System (ADS)
Couillard, M.; Yurtsever, A.; Muller, D. A.
2010-05-01
Waveguide electromagnetic modes excited by swift electrons traversing Si slabs at normal and oblique incidence are analyzed using monochromated electron energy-loss spectroscopy and interpreted using a local dielectric theory that includes relativistic effects. At normal incidence, sharp spectral features in the visible/near-infrared optical domain are directly assigned to p -polarized modes. When the specimen is tilted, s -polarized modes, which are completely absent at normal incidence, become visible in the loss spectra. In the tilted configuration, the dispersion of p -polarized modes is also modified. For tilt angles higher than ˜50° , Cherenkov radiation, the phenomenon responsible for the excitation of waveguide modes, is expected to partially escape the silicon slab and the influence of this effect on experimental measurements is discussed. Finally, we find evidence for an interference effect at parallel Si/SiO2 interfaces, as well as a delocalized excitation of guided Cherenkov modes.
Perfect transmission at oblique incidence by trigonal warping in graphene P-N junctions
NASA Astrophysics Data System (ADS)
Zhang, Shu-Hui; Yang, Wen
2018-01-01
We develop an analytical mode-matching technique for the tight-binding model to describe electron transport across graphene P-N junctions. This method shares the simplicity of the conventional mode-matching technique for the low-energy continuum model and the accuracy of the tight-binding model over a wide range of energies. It further reveals an interesting phenomenon on a sharp P-N junction: the disappearance of the well-known Klein tunneling (i.e., perfect transmission) at normal incidence and the appearance of perfect transmission at oblique incidence due to trigonal warping at energies beyond the linear Dirac regime. We show that this phenomenon arises from the conservation of a generalized pseudospin in the tight-binding model. We expect this effect to be experimentally observable in graphene and other Dirac fermions systems, such as the surface of three-dimensional topological insulators.
Radiative transport produced by oblique illumination of turbid media with collimated beams
NASA Astrophysics Data System (ADS)
Gardner, Adam R.; Kim, Arnold D.; Venugopalan, Vasan
2013-06-01
We examine the general problem of light transport initiated by oblique illumination of a turbid medium with a collimated beam. This situation has direct relevance to the analysis of cloudy atmospheres, terrestrial surfaces, soft condensed matter, and biological tissues. We introduce a solution approach to the equation of radiative transfer that governs this problem, and develop a comprehensive spherical harmonics expansion method utilizing Fourier decomposition (SHEFN). The SHEFN approach enables the solution of problems lacking azimuthal symmetry and provides both the spatial and directional dependence of the radiance. We also introduce the method of sequential-order smoothing that enables the calculation of accurate solutions from the results of two sequential low-order approximations. We apply the SHEFN approach to determine the spatial and angular dependence of both internal and boundary radiances from strongly and weakly scattering turbid media. These solutions are validated using more costly Monte Carlo simulations and reveal important insights regarding the evolution of the radiant field generated by oblique collimated beams spanning ballistic and diffusely scattering regimes.
3D ion flow measurements and simulations near a boundary at oblique incidence to a magnetic field
NASA Astrophysics Data System (ADS)
Thompson, Derek S.; Keniley, Shane; Khaziev, Rinat; Curreli, Davide; Good, Timothy N.; Henriquez, Miguel; McIlvain, Julianne; Siddiqui, M. Umair; Scime, Earl E.
2016-10-01
Boundaries at oblique incidence to magnetic fields are abundant in magnetic confinement plasmas. The ion dynamics near these boundaries has implications for applications such as tokamak divertor wall loading and Hall thruster channel erosion. We present 3D, non-perturbative measurements of ion velocity distribution functions (IVDFs), providing ion temperatures and flows upstream of a grounded stainless steel limiter plate immersed in an argon plasma, oriented obliquely to the background axial magnetic field (ψ = 74°). The spatial resolution of the measurements is sufficient to probe the kinetic details of magnetic presheath structures, which span several ion Larmor radii ( 1 cm). Furthermore, we report probe measurements of electron density and temperature, and of local electric potential. To complement these measurements, results from particle-in-cell and Boltzmann models of the same region are presented. These models allow for point-to-point comparison of simulated and measured electrostatic structures and IVDFs at high spatial resolution. NSF Award PHYS-1360278.
Effect of wing flexibility on the experimental aerodynamic characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Yee, S. C.
1977-01-01
A solid-aluminum oblique wing was designed to deflect considerably under load so as to relieve the asymmetric spanwise stalling that is characteristic of this type of wing by creating washout on the trailing wing panel and washin on the leading wing panel. Experimental forces, and pitching, rolling and yawing moments were measured with the wing mounted on a body of revolution. In order to vary the dynamic pressure, measurements were made at several unit Reynolds numbers, and at Mach numbers. The wing was investigated when unswept (at subsonic Mach numbers only) and when swept 45 deg, 50 deg, and 60 deg. The wing was straight tapered in planform, had an aspect ratio of 7.9 (based on the unswept span), and a profile with a maximum thickness of 4 percent chord. The results substantiate the concept that an oblique wing designed with the proper amount of flexibility self relieves itself of asymmetric spanwise stalling and the associated nonlinear moment curves.
Obliquity (41kyr) Paced SE Asian Monsoon Variability Following the Miocene Climate Transition
NASA Astrophysics Data System (ADS)
Heitmann, E. O.; Breecker, D.; Ji, S.; Nie, J.
2016-12-01
We investigated Asian monsoon variability during the Miocene, which may provide a good analog for the future given the lack of northern hemisphere ice sheets. In the Miocene Yanwan Section (Tianshui Basin, China) 25cm thick CaCO3-cemented horizons overprint siltstones every 1m. We suggest this rhythmic layering records variations in water availability influenced by the Asian monsoon. We interpret the siltstones as stacked soils that formed in a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13C and δ18O profiles that mimic modern soils. We interpret the CaCO3-cemented horizons as capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The magnetostratigraphy-based age model indicates obliquity-pacing of the CaCO3-cemented horizons suggesting an orbital control on water availability, for which we propose two mechanisms: 1) summer monsoon strength, moderated by the control of obliquity on the cross-equatorial pressure gradient, and 2) PET, moderated by the control of precession on 35oN summer insolation. We use orbital configurations to predict lithology. Coincidence of obliquity minima and insolation maxima drives strong summer monsoons, seasonal variations in water table depth and soil formation. Coincidence of obliquity maxima and insolation minima drives weak summer monsoons, high PET, and carbonate accumulation above a deepened, stable water table. Coincidence of obliquity and insolation minima drives strong monsoons, low PET, and a high water table, explaining the evidence for aquatic plants previously observed in this section. Southern hemisphere control of summer monsoon variability in the Miocene may thus have resulted in large water availability variations in central China.
Analysis of strategies to increase external fixator stiffness: is double stacking worth the cost?
Strebe, Sara; Kim, Hyunchul; Russell, Joseph P; Hsieh, Adam H; Nascone, Jason; O'Toole, Robert V
2014-07-01
We compared the mechanical benefits and costs of 3 strategies that are commonly used to increase knee-spanning external fixator stiffness (resistance to deformation): double stacking, cross-linking, and use of an oblique pin. At our academic trauma centre and biomechanical testing laboratory, we used ultra-high-molecular-weight polyethylene bone models and commercially available external fixator components to simulate knee-spanning external fixation. The models were tested in anterior-posterior bending, medial-lateral bending, axial compression, and torsion. We recorded the construct stiffness for each strategy in all loading modes and assessed a secondary outcome of cost per 10% increase in stiffness. Double stacking significantly increased construct stiffness under anterior-posterior bending (109%), medial-lateral bending (22%), axial compression (150%), and torsion (41%) (p<0.05). Use of an oblique pin significantly increased stiffness under torsion (25%) (p<0.006). Cross-linking significantly increased stiffness only under torsion (29%) (p<0.002). Double stacking increased costs by 84%, cross-linking by 28%, and use of an oblique pin by 15% relative to a standard fixator. All 3 strategies increased stiffness under torsion to varying degrees, but only double stacking increased stiffness in all 4 testing modalities (p<0.05). Double stacking is most effective in increasing resistance to bending, particularly under anterior-posterior bending and axial compression, but requires a relatively high cost increase. Clinicians can use these data to help guide the most cost-effective strategy to increase construct stiffness based on the plane in which stiffness is needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, Benjamin J.; Howard, Andrew W.; Winn, Joshua N.
We present the measured projected obliquity-the sky-projected angle between the stellar spin axis and orbital angular momentum-of the inner planet of the HAT-P-17 multi-planet system. We measure the sky-projected obliquity of the star to be {lambda}=19{sup +14}{sub -16} deg by modeling the Rossiter-McLaughlin effect in Keck/HIRES radial velocities (RVs). The anomalous RV time series shows an asymmetry relative to the midtransit time, ordinarily suggesting a nonzero obliquity-but in this case at least part of the asymmetry may be due to the convective blueshift, increasing the uncertainty in the determination of {lambda}. We employ the semi-analytical approach of Hirano et al.more » that includes the effects of macroturbulence, instrumental broadening, and convective blueshift to accurately model the anomaly in the net RV caused by the planet eclipsing part of the rotating star. Obliquity measurements are an important tool for testing theories of planet formation and migration. To date, the measured obliquities of {approx}50 Jovian planets span the full range, from prograde to retrograde, with planets orbiting cool stars preferentially showing alignment of stellar spins and planetary orbits. Our results are consistent with this pattern emerging from tidal interactions in the convective envelopes of cool stars and close-in planets. In addition, our 1.8 yr of new RVs for this system show that the orbit of the outer planet is more poorly constrained than previously thought, with an orbital period now in the range of 10-36 yr.« less
Stratigraphy of Aeolis Dorsa, Mars: Stratigraphic context of the great river deposits
NASA Astrophysics Data System (ADS)
Kite, Edwin S.; Howard, Alan D.; Lucas, Antoine S.; Armstrong, John C.; Aharonson, Oded; Lamb, Michael P.
2015-06-01
Unraveling the stratigraphic record is the key to understanding ancient climate and past climate changes on Mars (Grotzinger, J. et al. [2011]. Astrobiology 11, 77-87). Stratigraphic records of river deposits hold particular promise because rain or snowmelt must exceed infiltration plus evaporation to allow sediment transport by rivers. Therefore, river deposits when placed in stratigraphic order could constrain the number, magnitudes, and durations of the wettest (and presumably most habitable) climates in Mars history. We use crosscutting relationships to establish the stratigraphic context of river and alluvial-fan deposits in the Aeolis Dorsa sedimentary basin, 10°E of Gale crater. At Aeolis Dorsa, wind erosion has exhumed a stratigraphic section of sedimentary rocks consisting of at least four unconformity-bounded rock packages, recording three or more distinct episodes of surface runoff. Early deposits (>700 m thick) are embayed by river deposits (>400 m thick), which are in turn unconformably draped by fan-shaped deposits (<100 m thick) which we interpret as alluvial fans. Yardang-forming layered deposits (>900 m thick) unconformably drape all previous deposits. River deposits embay a dissected landscape formed of sedimentary rock. The river deposits are eroding out of at least two distinguishable units. There is evidence for pulses of erosion during the interval of river deposition. The total interval spanned by river deposits is >(1 × 106-2 × 107) yr, and this is extended if we include alluvial-fan deposits. Alluvial-fan deposits unconformably postdate thrust faults which crosscut the river deposits. This relationship suggests a relatively dry interval of >4 × 107 yr after the river deposits formed and before the fan-shaped deposits formed, based on probability arguments. Yardang-forming layered deposits unconformably postdate all of the earlier deposits. They contain rhythmite and their induration suggests a damp or wet (near-) surface environment. The time gap between the end of river deposition and the onset of yardang-forming layered deposits is constrained to >1 × 108 yr by the high density of impact craters embedded at the unconformity. The time gap between the end of alluvial-fan deposition and the onset of yardang-forming layered deposits was at least long enough for wind-induced saltation abrasion to erode 20-30 m into the alluvial-fan deposits. We correlate the yardang-forming layered deposits to the upper layers of Gale crater's mound (Mt. Sharp/Aeolis Mons), and the fan-shaped deposits to Peace Vallis fan in Gale crater. Alternations between periods of low mean obliquity and periods of high mean obliquity may have modulated erosion-deposition cycling in Aeolis. This is consistent with the results from an ensemble of simulations of Solar System orbital evolution and the resulting history of the obliquity of Mars. 57 of our 61 simulations produce one or more intervals of continuously low mean Mars obliquity that are long enough to match our Aeolis Dorsa unconformity data.
Collisionless kinetic theory of oblique tearing instabilities
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
2018-02-15
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less
Collisionless kinetic theory of oblique tearing instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less
Collisionless kinetic theory of oblique tearing instabilities
NASA Astrophysics Data System (ADS)
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
2018-02-01
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stability criterion is provided.
Litwiller, Daniel V.; Saranathan, Manojkumar; Vasanawala, Shreyas S.
2017-01-01
Purpose To assess image quality and speed improvements for single-shot fast spin-echo (SSFSE) with variable refocusing flip angles and full-Fourier acquisition (vrfSSFSE) pelvic imaging via a prospective trial performed in the context of uterine leiomyoma evaluation. Materials and Methods Institutional review board approval and informed consent were obtained. vrfSSFSE and conventional SSFSE sagittal and coronal oblique acquisitions were performed in 54 consecutive female patients referred for 3-T magnetic resonance (MR) evaluation of known or suspected uterine leiomyomas. Two radiologists who were blinded to the image acquisition technique semiquantitatively scored images on a scale from −2 to 2 for noise, image contrast, sharpness, artifacts, and perceived ability to evaluate uterine, ovarian, and musculoskeletal structures. The null hypothesis of no significant difference between pulse sequences was assessed with a Wilcoxon signed rank test by using a Holm-Bonferroni correction for multiple comparisons. Results Because of reductions in specific absorption rate, vrfSSFSE imaging demonstrated significantly increased speed (more than twofold, P < .0001), with mean repetition times compared with conventional SSFSE imaging decreasing from 1358 to 613 msec for sagittal acquisitions and from 1494 to 621 msec for coronal oblique acquisitions. Almost all assessed image quality and perceived diagnostic capability parameters were significantly improved with vrfSSFSE imaging. These improvements included noise, sharpness, and ability to evaluate the junctional zone, myometrium, and musculoskeletal structures for both sagittal acquisitions (mean values of 0.56, 0.63, 0.42, 0.56, and 0.80, respectively; all P values < .0001) and coronal oblique acquisitions (mean values of 0.81, 1.09, 0.65, 0.93, and 1.12, respectively; all P values < .0001). For evaluation of artifacts, there was an insufficient number of cases with differences to allow statistical testing. Conclusion Compared with conventional SSFSE acquisition, vrfSSFSE acquisition increases 3-T imaging speed via reduced specific absorption rate and leads to significant improvements in perceived image quality and perceived diagnostic capability when evaluating pelvic structures. © RSNA, 2016 Online supplemental material is available for this article. PMID:27564132
Laser beat wave excitation of terahertz radiation in a plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Santosh; Parashar, Jetendra, E-mail: j.p.parashar@gmail.com
2014-10-15
Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasmamore » boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ∼10{sup 17 }W/cm{sup 2} at 1 μm, one obtains the THz intensity ∼1 GW/cm{sup 2} at 3 THz radiation frequency.« less
Athletic injuries of the lateral abdominal wall: review of anatomy and MR imaging appearance.
Stensby, J Derek; Baker, Jonathan C; Fox, Michael G
2016-02-01
The lateral abdominal wall is comprised of three muscles, each with a different function and orientation. The transversus abdominus, internal oblique, and external oblique muscles span the abdominal cavity between the iliocostalis lumborum and quadratus lumborum posteriorly and the rectus abdominis anteriorly. The lateral abdominal wall is bound superiorly by the lower ribs and costal cartilages and inferiorly by the iliac crest and inguinal ligament. The lateral abdominal wall may be acutely or chronically injured in a variety of athletic endeavors, with occasional acute injuries in the setting of high-energy trauma such as motor vehicle collisions. Injuries to the lateral abdominal wall may result in lumbar hernia formation, unique for its high incarceration rate, and also Spigelian hernias. This article will review the anatomy, the magnetic resonance (MR) imaging approach, and the features and complications of lateral abdominal wall injuries.
Initiation of Gaseous Detonation by Conical Projectiles
NASA Astrophysics Data System (ADS)
Verreault, Jimmy
Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed qualitatively well with the experimental results for relatively blunt projectiles (cone half-angle larger than 35°) and low mixture pressures (lower than 100 kPa). The trend of the critical Damköhler number calculated along the projectile cone surface was similar to that of the experimental results for slender cones (cone half-angles lower 35°) and high mixture pressures (higher than 100 kPa). Steady 2D simulations of reacting flows over finite wedges using the method of characteristics with a one-step Arrhenius chemical reaction model reproduced the three regimes observed for direct initiation of a detonation: the subcritical, critical and supercritical regimes. It is shown that in order for a 2D wedge to be equivalent to the problem of blast initiation of a detonation (which is the essence of the Lee-Vasiljev model), the Mach number normal to the oblique shock needs to be greater than 50 and the wedge angle has to be smaller than 30°. Simulations of reacting flows over semi-infinite wedges and cones were validated with CFD results. Excellent agreement was reached between the angle of overdriven oblique detonations obtained from the simulations and those from a polar analysis. For wedge or cone angles equal or lower than the minimum angle for which an oblique detonation is attached (according to the polar analysis), a Chapman-Jouguet oblique detonation was initiated. In the conical configuration, the curvature around the cone axis allowed an oblique detonation to be self-sustained at an angle less than without the curvature effect. At larger activation energies, the initiation process of an oblique detonation wave at the tip of a semi-infinite wedge or cone was identified. Unsteady 2D computational simulations were also conducted and showed the cellular structure of an oblique detonation wave. Instabilities in the form of transverse shock waves along the oblique detonation front arise for large activation energies.
Development and Application of PIV in Supersonic flows
NASA Astrophysics Data System (ADS)
Rong, Z.; Liu, H.; Chen, F.
2011-09-01
This paper presents PIV measurements obtained in Mach 4.0 flowfields performed in the SJTU Hypersonic wind tunnel (HWT). In order to certificate this technique, PIV experiments were conducted to the empty test section to provide uniform flow data for comparison with analysis data. Dynamical properties of particle tracers were investigated to measure the particle response across an oblique shock wave. The flow over a sharp cone at Ma = 4.0 were tested in comparasion with the CFD and schlieren visualization. It is shown that shock wave angles measured with PIV are in good agreement with theory and schlieren visualization, in addition the overall flow is consistent with the CFD results.
Geology and insolation-driven climatic history of Amazonian north polar materials on Mars
Tanaka, K.L.
2005-01-01
Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (???3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. ?? 2005 Nature Publishing Group.
Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.
Tanaka, Kenneth L
2005-10-13
Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago.
NASA Astrophysics Data System (ADS)
Venti, Nicholas L.; Billups, Katharina; Herbert, Timothy D.
2017-02-01
Alkenone mass accumulation rates (MARs) provide a proxy for export productivity in the northwestern Pacific (Ocean Drilling Program Site 1208) spanning the late Pliocene through early Pleistocene (3.0-1.8 Ma). We investigate changes in productivity associated with global cooling during the onset and expansion of Northern Hemisphere glaciation (NHG). Alkenone MARs vary on obliquity timescales throughout, but the amplitude increases at 2.75 Ma concurrent with the intensification of NHG and cooling of the sea surface by 3°C. The obliquity-scale variations in alkenone MARs parallel shipboard measurements of sediment color reflectance (%) with higher MARs significantly correlated (>95%) with darker (opal-rich) intervals. Variations in both lead benthic foraminiferal δ18O values by 1.5-2 kyr suggesting that export productivity may be a contributing factor, rather than a response, to the extent of continental glaciation. The biological pump is therefore a plausible mechanism for transferring atmospheric CO2 into the deep ocean during the onset of NHG and the ensuing obliquity-dominated climate regime. Obliquity-scale correlation between productivity and magnetic susceptibility is consistent with a link via westerly winds delivering terrigenous sediments and mixing the upper water column. Alkenone MARs also contain a 400 kyr modulation. Because this periodicity is a multiple of the residence time of carbon in the ocean, it may reflect inputs of new nutrients associated with eccentricity-forced changes in the terrestrial biosphere and weathering. We ascribe these findings to interactions between the East Asian winter monsoon and productivity in the North Pacific Ocean, perhaps contributing to Plio-Pleistocene climate change.
13. Looking north, from the southern approach to the bridge. ...
13. Looking north, from the southern approach to the bridge. The bridge deck, which is concrete with several patch coats of asphalt (now chiefly gravel and some turf), demonstrates a sharp gradient from the abutment to the bridge center line. - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN
Cycle/Cocycle Oblique Projections on Oriented Graphs
NASA Astrophysics Data System (ADS)
Polettini, Matteo
2015-01-01
It is well known that the edge vector space of an oriented graph can be decomposed in terms of cycles and cocycles (alias cuts, or bonds), and that a basis for the cycle and the cocycle spaces can be generated by adding and removing edges to an arbitrarily chosen spanning tree. In this paper, we show that the edge vector space can also be decomposed in terms of cycles and the generating edges of cocycles (called cochords), or of cocycles and the generating edges of cycles (called chords). From this observation follows a construction in terms of oblique complementary projection operators. We employ this algebraic construction to prove several properties of unweighted Kirchhoff-Symanzik matrices, encoding the mutual superposition between cycles and cocycles. In particular, we prove that dual matrices of planar graphs have the same spectrum (up to multiplicities). We briefly comment on how this construction provides a refined formalization of Kirchhoff's mesh analysis of electrical circuits, which has lately been applied to generic thermodynamic networks.
NASA Astrophysics Data System (ADS)
Charles, Cyril; Jaeger, Jean-Jacques; Michaux, Jacques; Viriot, Laurent
2007-01-01
Observations of dental microwear are used to analyse the correlation between changes in molar tooth crown morphology and the direction of masticatory movement during the evolution of Myodonta (Rodentia, Mammalia). The studied sample includes 36 specimens representing both superfamilies of Myodonta (Muroidea and Dipodoidea) spanning 16 dipodoid and 9 muroid species. Microscopic scratches on occlusal surfaces resulting from contact between opposite teeth during mastication are analysed. Using these features, we determine the direction of masticatory movements. Microwear patterns display diverse orientations among Dipodoidea: oblique in Sicistinae, Euchoreutinae and Zapodinae, propalinal in Dipodinae and intermediary in Allactaginae. Similarly, Muroidea exhibit the following orientations: oblique in Cricetinae and propalinal in Arvicolinae, Cricetomyinae, Gerbillinae and Murinae. These various chewing types illustrate different evolutionary grades within the superfamilies. Acquisition of the antero-posterior masticatory movement in Dipodoidea is related to flattening of the molar occlusal surface. However, in some muroid subfamilies, this direction of mastication is associated with low-crowned and cuspidate molars (Cricetomyinae, Murinae).
Elamrani, Driss; Aumar, Aurélien; Wavreille, Guillaume; Fontaine, Christian
2014-05-01
Traumatic tears of the antebrachial interosseous membrane (AIOM) on its whole length are difficult to treat, particularly in the Essex-Lopresti syndrome. The number of ligamentoplasty techniques described in the literature witnesses the difficulty of its reconstruction and the absence of reliable and satisfying procedure. The aim of this study was to explore a new way of treatment, which consists in replacing the AIOM by the crural interosseous membrane (CIOM), harvested from the same patient. A morphometric study of the AIOM and CIOM has been conducted on both sides of 15 formalin preserved corpses (i.e. 30 AIOM and 30 CIOM). Studied data were: length of forearms and legs, length and width (at different locations) of the membranes, in situ and after harvesting, and orientation of their fibers. The thickness of membrane was also measured but only after harvesting. Concerning the AIOM, the mean length was 13.3 cm in situ and 12.8 cm after harvesting. Its width was maximal at the union of middle and distal thirds with an average value of 1.7 cm in situ and 1.45 cm after harvesting. Mean thickness was 1 mm. Anterior fibers were oblique distally and medially (20.5° ± 0.95°), and posterior fibers were oblique distally and laterally (40° ± 3.4°). Concerning the CIOM, the mean length was 24.75 cm in situ and 23.9 cm after harvesting. Its width was maximal at the union of proximal and middle thirds with an average value of 2.3 cm in situ and 1.85 cm after harvesting. Mean thickness was 0.5 mm. Obliquity of its fibers was reverse of that of the AIOM: the anterior fibers were quite oblique distally and laterally (13° ± 2.6°), and the posterior fibers oblique were oblique distally and medially (24.2° ± 2.48°). From these results, one may conclude that the largest length and width of the CIOM allow its use as substitute for the injured AIOM. The orientation of its fibers should necessitate either its reversal while using the same side or the use of the CIOM of the opposite side; its relative sharpness could signify that its biomechanical properties could be worse. A biomechanical study is necessary to evaluate how this new way of replacing the AIOM could resist to the strains imposed on the forearm.
16. A CLOSEUP VIEW OF THE NORTH SIDE OF THE ...
16. A CLOSE-UP VIEW OF THE NORTH SIDE OF THE UPSTREAM SHEARWATER, SHOWING THE WAY IN WHICH THE BRIDGE DESIGNER INTEGRATED THE ROUND BASE WITH THE SHARP-EDGED CUTWATER. ALSO VISIBLE IS THE SIMPLE DECORATIVE BELT COURSE AT THE ROADBEND LNE. - Putnam County Bridge No. 111, Spanning Little Walnut Creek on County Road 50, Greencastle, Putnam County, IN
Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA
NASA Technical Reports Server (NTRS)
Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.
1999-01-01
An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.
Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels
NASA Astrophysics Data System (ADS)
Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi
2009-04-01
Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel.
2018-03-22
This mosaic taken by NASA's Mars Curiosity rover looks uphill at Mount Sharp, which Curiosity has been climbing. Spanning the center of the image is an area with clay-bearing rocks that scientists are eager to explore; it could shed additional light on the role of water in creating Mount Sharp. The mosaic was assembled from dozens of images taken by Curiosity's Mast Camera (Mastcam). It was taken on Sol 1931 back in January. Mount Sharp stands in the middle of Gale Crater, which is 96 miles (154 kilometers) in diameter. This mound, which Curiosity has been climbing since 2014, likely formed in the presence of water at various points of time in Mars ancient history. That makes it an ideal place to study how water influenced the habitability of Mars billions of years ago. The scene has been white-balanced so the colors of the rock materials resemble how they would appear under daytime lighting conditions on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22313
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riegel, A; Klein, E; Sea, P
Purpose: Optically-stimulated luminescent dosimeters (OSLDs) are increasingly utilized for in vivo dosimetry of complex radiation delivery techniques. Measured doses, however, underestimate planned doses for plans that utilize thermoplastic mask immobilization. The purpose of this work was to quantify the effect of beam obliquity and air gap span between the mask and backscatter material, on measured-to-planned OSLD dose agreement. Methods: A previously-used thermoplastic mask was cut, reheated, and flattened to form a 33 by 9 cm{sup 2} stage approximately 2 mm thick. Two OSLDs were placed on the stage on 5 cm of solid water, covered with 50 by 50 bymore » 5 mm{sup 3} square of bolus, and scanned in the CT simulator. Plans were created with 10 by 10 cm{sup 2} open fields using 4, 6, 10, and 15 MV photon beams at 0°, 45°, and 90° incidence. The isocenter was placed between the OSLDs at 5 mm depth. Dose was calculated and averaged for two OSLDs. Artificial air gaps of 3, 5, 10, and 20 mm were introduced in the plan and dose was recalculated for each energy/angle/gap combination. The experimental setup was replicated on a linear accelerator and air gaps were introduced by “bridging” the thermoplastic stage across solid water plastic of varying thickness. Fields were delivered as planned. OSLDs were read 12–15 hours after irradiation. Results: Measured-toplanned percent differences were constant with increasing gap thickness for 0° and 45° beam angles. At 90° and 0 cm gap, planned dose underestimated measured dose by 10–23% for all energies. This discrepancy decreased linearly to 0% with a 20 mm gap. OSLD signal did not decrease more than 6% for any gap span and energy. Conclusion: With the exception of parallel beam incidence, beam obliquity and air gap thickness did not have a substantial effect on measured-to-planned dose agreement.« less
Ventral Dural Injury After Oblique Lumbar Interbody Fusion.
Chang, JaeChil; Kim, Jin-Sung; Jo, Hyunjin
2017-02-01
Oblique lumbar interbody fusion (OLIF) through the oblique corridor between the aorta and anterior border of psoas muscle is favored among spinal surgeons who employ minimally invasive techniques. We report a case of ventral dural tear after OLIF that was associated with the inaccurate trajectory direction of endplate preparation. This is the first report to our knowledge of ventral dural tear associated with OLIF. A 72-year-old woman presented with right leg pain and numbness. X-rays showed degenerative spondylolisthesis and loss of disc height at L4-L5 and L5-S1 levels. Magnetic resonance imaging revealed right-sided paracentral disc herniation at the L3-L4 level and foraminal disc herniation at L4-L5. The initial surgical plan was OLIF of L3-L4 and L4-L5 after percutaneous screw fixation without laminectomy. With the patient in the lateral position, discectomy and endplate preparation were done successfully at the L3-L4 level, and the same procedure was done at the L4-L5 level for OLIF. A sharp Cobbs elevator for endplate preparation triggered a ventral dural defect at the L4-L5 level. We changed the patient's position to attempt dural repair. The ventral dural defect could not be repaired because it was too large. After the herniated rootlets were repositioned, TachoComb was patched over the defect site. Postoperatively, the patient has no definite neurologic deficits. When a surgeon performs OLIF, ventral dural injury should be avoided during the procedure of endplate preparation and contralateral annular release. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Collett, C.; Duvall, A. R.; Flowers, R. M.; Tucker, G. E.
2015-12-01
The Kaikoura Mountains stand high as topographic anomalies in the oblique Pacific-Australian plate boundary zone known as the Marlborough Fault System (MFS), NE South Island New Zealand. The base of both the Inland and Seaward Kaikoura Ranges are bound on the SE by major, steeply NW-dipping, right lateral, active strike-slips (Clarence and Hope faults of the MFS, respectively). Previous geologic mapping, observations of predominantly horizontal fault slip at the surface from GPS and offset Quaternary deposits, and uplift of marine terraces, provide evidence for shortening and mountain-building via distributed deformation off of the main MFS strike-slip faults. However, quantitative estimates of the magnitude and spatial patterns of exhumation and of the timing of mountain-building in the Kaikouras are needed to understand more fully the nature of oblique deformation in the MFS. We present new apatite and zircon (U-Th)/He ages from opposite sides of the Hope and Clarence faults, spanning over 2 km of relief within the Kaikoura Mountains to identify spatial and temporal changes in exhumation rates in relation to the adjacent faults. Young (~3 Ma) apatite He ages and rapid (potentially > 1 mm/yr) exhumation rates from opposite sides of the faults are consistent with previously mentioned evidence of recent, regional, distributed deformation off of the main MFS faults. Moreover, early Miocene zircon He ages imply that parts of this region experienced an earlier phase of fault-related exhumation. Large changes in zircon He ages across the faults from ~20 Ma to > 100 Ma support hypotheses that portions of the Marlborough Faults may be re-activated, early Miocene thrusts. The zircon data are also consistent with the hypothesis of an early Miocene initiation of the oblique Pacific-Australian plate boundary in this region. Evidence for this comes from a change in sedimentation during this time from fine marine sediments to coarse, terrigenous conglomerates. Observing more than one phase of deformation in this active, oblique tectonic setting provides a new quantitative assessment of the evolution of the Pacific-Australian plate boundary in this region and how the accommodation of deformation may change over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szabo, Gy. M.; Szabo, R.; Benko, J. M.
KOI-13.01, a planet-sized companion in an optical double star, was announced as one of the 1235 Kepler planet candidates in 2011 February. The transit curves show significant distortion that was stable over the {approx}130 days time span of the data. Here we investigate the phenomenon via detailed analyses of the two components of the double star and a re-reduction of the Kepler data with pixel-level photometry. Our results indicate that KOI-13 is a common proper motion binary, with two rapidly rotating components (vsin i {approx} 65-70 km s{sup -1}). We identify the host star of KOI-13.01 and conclude that themore » transit curve asymmetry is consistent with a companion orbiting a rapidly rotating, possibly elongated star on an oblique orbit. The radius of the transiter is 2.2 R{sub J} , implying an irradiated late-type dwarf, probably a hot brown dwarf rather than a planet. KOI-13 is the first example for detecting orbital obliquity for a substellar companion without measuring the Rossiter-McLaughlin effect with spectroscopy.« less
Effect of wing bend on the experimental force and moment characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Nelson, E. R.
1976-01-01
Static longitudinal and lateral/directional force and moment characteristics are presented for an elliptical oblique wing mounted on top of a Sears-Haack body of revolution. The wing had an aspect ratio of 6 (based on the unswept span) and was tested at various sweep angles relative to the body axis ranging from 0 to 60 deg. In an attempt to create more symmetrical spanwise wing stalling characteristics, both wing panels were bent upward to produce washout on the trailing wing panel and washing on the leading wing panel. Small fluorescent tufts were attached to the wing surface to indicate the stall progression on the wing. The tests were conducted throughout a Mach number range from 0.6 to 1.4 at a constant unit Reynolds number of 8.2 x 10 per meter. The test results indicate that upward bending of the wing panels had only a small effect on the linearity of the moment curves and would require an impractical wing-pivot location at low lift to eliminate the rolling moment resulting from this bending.
Enumeration of spanning trees in planar unclustered networks
NASA Astrophysics Data System (ADS)
Xiao, Yuzhi; Zhao, Haixing; Hu, Guona; Ma, Xiujuan
2014-07-01
Among a variety of subgraphs, spanning trees are one of the most important and fundamental categories. They are relevant to diverse aspects of networks, including reliability, transport, self-organized criticality, loop-erased random walks and so on. In this paper, we introduce a family of modular, self-similar planar networks with zero clustering. Relevant properties of this family are comparable to those networks associated with technological systems having low clustering, like power grids, some electronic circuits, the Internet and some biological systems. So, it is very significant to research on spanning trees of planar networks. However, for a large network, evaluating the relevant determinant is intractable. In this paper, we propose a fairly generic linear algorithm for counting the number of spanning trees of a planar network. Using the algorithm, we derive analytically the exact numbers of spanning trees in planar networks. Our result shows that the computational complexity is O(t) , which is better than that of the matrix tree theorem with O(m2t2) , where t is the number of steps and m is the girth of the planar network. We also obtain the entropy for the spanning trees of a given planar network. We find that the entropy of spanning trees in the studied network is small, which is in sharp contrast to the previous result for planar networks with the same average degree. We also determine an upper bound and a lower bound for the numbers of spanning trees in the family of planar networks by the algorithm. As another application of the algorithm, we give a formula for the number of spanning trees in an outerplanar network with small-world features.
Investigation of a Major Stratigraphic Unconformity with the Curiosity Rover
NASA Astrophysics Data System (ADS)
Lewis, K. W.; Grotzinger, J. P.; Gupta, S.; Rubin, D. M.
2015-12-01
Since its departure from the plains of Aeolis Palus, the Curiosity rover has traversed through a number of new geologic units at the base of Mount Sharp in Gale crater. These have included both units inferred to comprise the lower strata of Mount Sharp itself, along with units that appear to superpose Mount Sharp. Over the last 100 sols, Curiosity has documented several occurrences of a stratigraphic contact between fine-grained mudstones of the Murray Formation, and coarser sandstones of the overlying Stimson Unit. Detailed mapping from both orbital and rover image and topographic data suggests an unconformable relationship between the two units. From orbit, inferred exposures of the unconformity span at least several tens of meters, climbing up the lowermost slopes of Mount Sharp. Although the absolute timing of the two units is poorly constrained, this unconformity between likely represents a geologically significant gap in time. Deposition of the overlying Stimson Unit is inferred to post-date the large-scale erosion of Mount Sharp, likely requiring late stage aqueous interaction in the lithification of the Stimson Unit. From the rover, stereo imaging reveals the small-scale topography preserved at the Murray-Stimson contact, and allows the determination of bedding geometries within the units. Where laminations are expressed, the basal Mount Sharp rocks exhibit planar stratification at low angles to horizontal. In contrast, the coarser-grained Stimson Unit exhibits large-scale cross stratification. Three dimensional bedding geometry within this unit indicates a predominant southward transport direction uphill towards Mount Sharp. The observation of rounded calcium sulfate clasts in the lowermost Stimson Unit, interpreted to be reworked veins from the underlying Murray formation, supports the interpretation of an erosional unconformity. Investigations at the boundary between these two distinct units present a unique opportunity to probe the long-term environmental history of the Gale crater basin.
NASA Astrophysics Data System (ADS)
Drury, Anna Joy; John, Cédric M.; Shevenell, Amelia E.
2016-01-01
Orbital-scale climate variability during the latest Miocene-early Pliocene is poorly understood due to a lack of high-resolution records spanning 8.0-3.5 Ma, which resolve all orbital cycles. Assessing this variability improves understanding of how Earth's system sensitivity to insolation evolves and provides insight into the factors driving the Messinian Salinity Crisis (MSC) and the Late Miocene Carbon Isotope Shift (LMCIS). New high-resolution benthic foraminiferal Cibicidoides mundulus δ18O and δ13C records from equatorial Pacific International Ocean Drilling Program Site U1338 are correlated to North Atlantic Ocean Drilling Program Site 982 to obtain a global perspective. Four long-term benthic δ18O variations are identified: the Tortonian-Messinian, Miocene-Pliocene, and Early-Pliocene Oxygen Isotope Lows (8-7, 5.9-4.9, and 4.8-3.5 Ma) and the Messinian Oxygen Isotope High (MOH; 7-5.9 Ma). Obliquity-paced variability dominates throughout, except during the MOH. Eleven new orbital-scale isotopic stages are identified between 7.4 and 7.1 Ma. Cryosphere and carbon cycle sensitivities, estimated from δ18O and δ13C variability, suggest a weak cryosphere-carbon cycle coupling. The MSC termination coincided with moderate cryosphere sensitivity and reduced global ice sheets. The LMCIS coincided with reduced carbon cycle sensitivity, suggesting a driving force independent of insolation changes. The response of the cryosphere and carbon cycle to obliquity forcing is established, defined as Earth System Response (ESR). Observations reveal that two late Miocene-early Pliocene climate states existed. The first is a prevailing dynamic state with moderate ESR and obliquity-driven Antarctic ice variations, associated with reduced global ice volumes. The second is a stable state, which occurred during the MOH, with reduced ESR and lower obliquity-driven variability, associated with expanded global ice volumes.
The climatic and hydrologic history of southern Nevada during the late Quaternary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forester, R.M.; Bradbury, J.P.; Carter, C.
Understanding climate change during the expected life span of a potential high-level nuclear-waste repository at Yucca Mountain, Nevada, requires estimates of future climate boundary conditions. These climate boundary conditions are governed by changes in the Earth's orbital properties (eccentricity, obliquity, precession) that determine insolation. Subcycles of the 400,000 year insolation-controlled climate cycles last approximately 100,000 years. This report describes the changes which have occurred in the climatic history of Southern Nevada during the past 400,000 years. These changes provide a basis for understanding the changes which may occur during the long-term future in this area.
Tagliafico, Alberto; Bignotti, Bianca; Tagliafico, Giulio; Martinoli, Carlo
2016-01-01
To quantitatively and qualitatively compare fat-suppressed MR imaging quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency-selective fat-suppressed (FSFS) T2 images of the brachial plexus at 3.0 T. Prospective MR image analysis was performed in 40 volunteers and 40 patients at a single centre. Oblique-sagittal and coronal IDEAL fat-suppressed T2 images and FSFS T2 images were compared. Visual assessment was performed by two independent musculoskeletal radiologists with respect to: (1) susceptibility artefacts around the neck, (2) homogeneity of fat suppression, (3) image sharpness and (4) tissue resolution contrast of pathologies. The signal-to-noise ratios (SNR) for each image sequence were assessed. Compared to FSFS sequences, IDEAL fat-suppressed T2 images significantly reduced artefacts around the brachial plexus and significantly improved homogeneous fat suppression (p < 0.05). IDEAL significantly improved sharpness and lesion-to-tissue contrast (p < 0.05). The mean SNRs were significantly improved on T2-weighted IDEAL images (p < 0.05). IDEAL technique improved image quality by reducing artefacts around the brachial plexus while maintaining a high SNR and provided superior homogeneous fat suppression than FSFS sequences.
Warrick, Jonathan; Ritchie, Andy; Adelman, Gabrielle; Adelman, Ken; Limber, Patrick W.
2017-01-01
Oblique aerial photograph surveys are commonly used to document coastal landscapes. Here it is shown that adequate overlap may exist in these photographic records to develop topographic models with Structure-from-Motion (SfM) photogrammetric techniques. Using photographs of Fort Funston, California, from the California Coastal Records Project, imagery were combined with ground control points in a four-dimensional analysis that produced topographic point clouds of the study area’s cliffs for 5 years spanning 2002 to 2010. Uncertainty was assessed by comparing point clouds with airborne LIDAR data, and these uncertainties were related to the number and spatial distribution of ground control points used in the SfM analyses. With six or more ground control points, the root mean squared errors between the SfM and LIDAR data were less than 0.30 m (minimum 1⁄4 0.18 m), and the mean systematic error was less than 0.10 m. The SfM results had several benefits over traditional airborne LIDAR in that they included point coverage on vertical- to-overhanging sections of the cliff and resulted in 10–100 times greater point densities. Time series of the SfM results revealed topographic changes, including landslides, rock falls, and the erosion of landslide talus along the Fort Funston beach. Thus, it was concluded that SfM photogrammetric techniques with historical oblique photographs allow for the extraction of useful quantitative information for mapping coastal topography and measuring coastal change. The new techniques presented here are likely applicable to many photograph collections and problems in the earth sciences.
12. 'Erection Plan, 1 180'01/4' c. to c. End ...
12. 'Erection Plan, 1 - 180'-0-1/4' c. to c. End Pins Sing. Tr. Thro' Span, 16th Crossing over Sacramento River, Pacific System, Southern Pacific Co., Phoenix Bridge Co., C.O. #842, Drawing #13, Scale 1/8' & 1' = 1'-0', Eng'r C. Scheidl, Draftsman D. Sharp, Scale 1' = 1'-0', May 1st 1901.' - Southern Pacific Railroad Shasta Route, Bridge No. 324.99, Milepost 324.99, Shasta Springs, Siskiyou County, CA
Volatile Transport in Pluto's Super Seasons
NASA Astrophysics Data System (ADS)
Earle, Alissa M.; Binzel, Richard; Young, Leslie; Stern, S. Alan; Olkin, Catherine B.; Ennico, Kimberly; Moore, Jeffrey M.; Weaver, Harold A.; NASA New Horizons Composition Team, The NASA New Horizons GGI Team
2016-10-01
The data returned from NASA's New Horizons' reconnaissance of the Pluto system shows striking albedo variations from polar to equatorial latitudes as well as sharp boundaries for longitudinal variations. Pluto has a high obliquity (currently around 119 degrees) which varies by more than 23 degrees (between roughly 103 and 127 degrees) over a period of less than 3 million years. These obliquity properties, combined with Pluto's orbital regression in longitude of perihelion (360 degrees over 3.7 million years), create epochs of "Super Seasons" on Pluto. A "Super Season" occurs, for example, when Pluto happens to be pole-on towards the Sun at the same time as perihelion. In such a case, one pole experiences a short, intense summer (relative to its long-term average) followed by a longer than average period of winter darkness. By complement, the other pole experiences a much longer, but less intense summer and short winter season. We explore the relationship between albedo variations and volatile transport for the current epoch as well as historical epochs during which Pluto experienced these "Super Seasons". Our investigation suggests Pluto's orbit creates the potential for runaway albedo variations, particularly in the equatorial region, which would create and support stark longitudinal contrasts like the ones we see between the informally named Tombaugh and Cthulhu Regios.This work was supported by the NASA New Horizons mission.
Emergence of power-law scalings in shock-driven mixing transition
NASA Astrophysics Data System (ADS)
Vorobieff, Peter; Wayne, Patrick; Olmstead, Dell; Simons, Dylan; Truman, C. Randall; Kumar, Sanjay
2016-11-01
We present an experimental study of transition to turbulence due to shock-driven instability evolving on an initially cylindrical, diffuse density interface between air and a mixture of sulfur hexafluoride (SF6) and acetone. The plane of the shock is at an initial angle θ with the axis of the heavy-gas cylinder. We present the cases of planar normal (θ = 0) and oblique (θ =20°) shock interaction with the initial conditions. Flow is visualized in two perpendicular planes with planar laser-induced fluorescence (PLIF) triggered in acetone with a pulsed ultraviolet laser. Statistics of the flow are characterized in terms of the second-order structure function of the PLIF intensity. As instabilities in the flow evolve, the structure functions begin to develop power-law scalings, at late times manifesting over a range of scales spanning more than two orders of magnitude. We discuss the effects of the initial conditions on the emergence of these scalings, comparing the fully three-dimensional case (oblique shock interaction) with the quasi-two-dimensional case (planar normal shock interaction). We also discuss the flow anisotropy apparent in statistical differences in data from the two visualization planes. This work is funded by NNSA Grant DE-NA0002913.
Is Asteroid 951 Gaspra in a Resonant State with Its Spin Increasing Due to YORP?
NASA Technical Reports Server (NTRS)
Rubincam, David Parry; Rowlands, David D.; Ray, Richard D.; Smith, David E. (Technical Monitor)
2002-01-01
Asteroid 951 Gaspra appears to be in an obliquity resonance with its spin increasing due to the YORP effect. Gaspra, an asteroid 5.8 km in radius, is a prograde rotator with a rotation period of 7.03 hours. A three million year integration indicates its orbit is stable over at least this time span. From its known shape and spin axis orientation and assuming a uniform density, Gaspra's axial precession period turns out to be nearly commensurate with its orbital precession period, which leads to a resonance condition with consequent huge variations in its obliquity. At the same time its shape is such that the Yarkovsky-O'Keefe-Radzievskii-Paddack effect (YORP effect for short) is increasing its spin rate. The YORP cycle normally leads from spin-up to spin-down and then repeating the cycle; however, it appears possible that resonance trapping can at least temporarily interrupt the YORP cycle, causing spin-up until the resonance is exited. This behavior may partially explain why there is an excess of fast rotators among small asteroids. YORP may also be a reason for small asteroids entering resonances in the first place.
Effect of drooped-nose flaps on the experimental force and moment characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Lovette, G. H.
1976-01-01
Six-component experimental force and moment data are presented for a low aspect ratio, oblique wing equipped with drooped-nose flaps and mounted on top of a body of revolution. These flaps were investigated on the downstream wing panel with the nose drooped 5 deg, 10 deg, 20 deg, and 30 deg, and on both wing panels with the nose drooped 30 deg. It was to determine if such flaps would make the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients. The wing was elliptical in planform and had an aspect ratio of 6.0 (based on the unswept wing span). The wing was tested at sweep angles of 45 deg and 50 deg throughout the Mach number range from 0.25 to 0.95. The drooped-nose flaps alone were not effective in making the moment curves more linear; however, a previous study showed that Kruger nose flaps improved the linearity of the moment curves when the Kruger flaps were used on only the downstream wing panel equipped with drooped-nose flaps deflected 5 deg.
Effect of Krueger nose flaps on the experimental force and moment characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Lovette, G. H.
1976-01-01
Experimental force and moment data are presented for an oblique wing mounted on a body of revolution and equipped with Krueger type nose flaps. The effectiveness of these flaps in making the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients was determined. The investigation of the effects of the Krueger flaps covered two cases: (1) use of the flaps on the downstream wing panel only and (2) use of the flaps on both wing panels. For part of the tests, the Krueger flaps were mounted on nose flaps that were drooped either 5 deg or 10 deg. The wing was elliptical in planform, had an aspect ratio of 6.0 (based on the unswept span) and was tested at sweep angles of 0, 45 deg, and 50 deg. The Mach-number range covered was from 0.25 to 0.95. It was found that the most effective arrangement of the Krueger flaps for making the pitching-, rolling-, and yawing-moment curves more linear at high lift coefficients was having the Krueger flaps mounted on the nose flaps drooped 5 deg and only on the downstream wing panel.
NASA Astrophysics Data System (ADS)
Kuehl, C. Stephen
2003-08-01
Completing its final development and early deployment on the Navy's multi-role aircraft, the F/A-18 E/F Super Hornet, the SHAred Reconnaissance Pod (SHARP) provides the war fighter with the latest digital tactical reconnaissance (TAC Recce) Electro-Optical/Infrared (EO/IR) sensor system. The SHARP program is an evolutionary acquisition that used a spiral development process across a prototype development phase tightly coupled into overlapping Engineering and Manufacturing Development (EMD) and Low Rate Initial Production (LRIP) phases. Under a tight budget environment with a highly compressed schedule, SHARP challenged traditional acquisition strategies and systems engineering (SE) processes. Adopting tailored state-of-the-art systems engineering process models allowd the SHARP program to overcome the technical knowledge transition challenges imposed by a compressed program schedule. The program's original goal was the deployment of digital TAC Recce mission capabilities to the fleet customer by summer of 2003. Hardware and software integration technical challenges resulted from requirements definition and analysis activities performed across a government-industry led Integrated Product Team (IPT) involving Navy engineering and test sites, Boeing, and RTSC-EPS (with its subcontracted hardware and government furnished equipment vendors). Requirements development from a bottoms-up approach was adopted using an electronic requirements capture environment to clarify and establish the SHARP EMD product baseline specifications as relevant technical data became available. Applying Earned-Value Management (EVM) against an Integrated Master Schedule (IMS) resulted in efficiently managing SE task assignments and product deliveries in a dynamically evolving customer requirements environment. Application of Six Sigma improvement methodologies resulted in the uncovering of root causes of errors in wiring interconnectivity drawings, pod manufacturing processes, and avionics requirements specifications. Utilizing the draft NAVAIR SE guideline handbook and the ANSI/EIA-632 standard: Processes for Engineering a System, a systems engineering tailored process approach was adopted for the accelerated SHARP EMD prgram. Tailoring SE processes in this accelerated product delivery environment provided unique opportunities to be technically creative in the establishment of a product performance baseline. This paper provides an historical overview of the systems engineering activities spanning the prototype phase through the EMD SHARP program phase, the performance requirement capture activities and refinement process challenges, and what SE process improvements can be applied to future SHARP-like programs adopting a compressed, evolutionary spiral development acquisition paradigm.
Mantle structure beneath the western edge of the Colorado Plateau
Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.
2008-01-01
Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.
Survey of shock-wave structures of smooth-particle granular flows.
Padgett, D A; Mazzoleni, A P; Faw, S D
2015-12-01
We show the effects of simulated supersonic granular flow made up of smooth particles passing over two prototypical bodies: a wedge and a disk. We describe a way of computationally identifying shock wave locations in granular flows and tabulate the shock wave locations for flow over wedges and disks. We quantify the shock structure in terms of oblique shock angle for wedge impediments and shock standoff distance for disk impediments. We vary granular flow parameters including upstream volume fraction, average upstream velocity, granular temperature, and the collision coefficient of restitution. Both wedges and disks have been used in the aerospace community as prototypical impediments to flowing air in order to investigate the fundamentally different shock structures emanating from sharp and blunt bodies, and we present these results in order to increase the understanding of the fundamental behavior of supersonic granular flow.
2010-03-10
achieved by setting proper driver and driven pressures. A calibration of the tunnel was done for the decided freestream conditions with a pitot rake ...measurement. A rake of 12 pitot probes spanning the diameter of the nozzle (300 mm) was placed facing the freestream. The pitot pressures were... pitot rake and shock tube measurements, the freestream conditions for each of the observed rupture pressure are estimated. It was observed that of
Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan
2017-09-01
To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.
Construction of the Non-Rigid Earth Rotation Series
NASA Astrophysics Data System (ADS)
Pashkevich, V. V.
2007-01-01
Last years a lot of attempts to derive a high-precision theory of the non-rigid Earth rotation are carried out. For these purposes different transfer functions are used. Usually these transfer functions are applied to the series representing the nutation in the longitude and the obliquity of the rigid Earth rotation with respect to the ecliptic of date. The aim of this investigation is a construction of new high-precision non-rigid Earth rotation series (SN9000), dynamically adequate to the DE404/LE404 ephemeris over 2000 time span years, which are presented as functions of the Euler angles Ψ, θ and φ with respect to the fixed ecliptic plane and equinox J2000.0.
Aeroacoustic theory for noncompact wing-gust interaction
NASA Technical Reports Server (NTRS)
Martinez, R.; Widnall, S. E.
1981-01-01
Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.
NASA Astrophysics Data System (ADS)
Nyssen, Jan; Gebremeskel, Gezahegne; Mohamed, Sultan; Petrie, Gordon; Seghers, Valérie; Meles Hadgu, Kiros; De Maeyer, Philippe; Haile, Mitiku; Frankl, Amaury
2013-04-01
8281 assemblages of aerial photographs (APs) acquired by the 7a Sezione Topocartografica during the Italian occupation of Ethiopia (1935-1941) have recently been discovered, scanned and organised. The oldest APs of the country that are known so far were taken in the period 1958-1964. The APs of the 1930s were analysed for their technical characteristics, scale, flight lines, coverage, use in topographic mapping, and potential future uses. The APs over Ethiopia in 1935-1941 are presented as assemblages on approx. 50 cm x 20 cm cardboard tiles, each holding a label, one nadir-pointing photograph flanked by two low-oblique photographs and one high-oblique photograph. The four APs were exposed simultaneously and were taken across the flight line; the high-oblique photograph is presented alternatively at left and at right; there is approx. 60% overlap between subsequent sets of APs. One of Santoni's glass plate multi-cameras was used, with focal length of 178 mm, flight height at 4000-4500 m a.s.l., which results in an approximate scale of 1:11 500 for the central photograph and 1:16 000 to 1:18 000 for the low-oblique APs. The surveyors oriented themselves with maps of Ethiopia at 1:400 000 scale, compiled in 1934. The flights present a dense AP coverage of Northern Ethiopia, where they were acquired in the context of upcoming battles with the Ethiopian army. Several flights preceded the later advance of the Italian army southwards towards the capital Addis Ababa. Further flights took place in central Ethiopia for civilian purposes. As of 1936, the APs were used to prepare highly detailed topographic maps at 1:100 000 scale. These APs (1935-1941) together with APs of 1958-1964, 1994 and recent high-resolution satellite imagery are currently being used in spatially explicit change studies of land cover, land management and (hydro)geomorphology in Ethiopia over a time span of almost 80 years, the first results of which will be presented.
Torsional Growth Modulation of Long Bones by Oblique Plating in a Rabbit Model.
Lazarus, David E; Farnsworth, Christine L; Jeffords, Megan E; Marino, Nikolas; Hallare, Jericho; Edmonds, Eric W
2018-02-01
There is evidence that oblique tension band plating can affect torsional growth in long bones. This study sought to determine if the torsional growth could be modulated based on the angles of the tension band plating and whether or not oblique plating affected overall longitudinal growth. New Zealand White rabbits (10.5 wk old) had one screw placed on the metaphyseal side and one on the epiphyseal side of both medial and lateral sides of the right knee distal femoral physis. The sham group (n=5) included screw placement only. For the plate group (n=13), unlocked plates, angled from 0 to 76 degrees, connected the screws and spanned the physis. Radiographs were taken at biweekly intervals. After 6 weeks of growth, hindlimbs were harvested and microCT scans performed. Femoral length, distances between screw heads and angle between the plates were measured on radiographs. Femoral length differences were compared between groups. Femoral version was measured from 3D microCT. Plate angle changes were correlated to the difference in femoral version between limbs using Pearson correlation (significance was set to P<0.05 for all comparisons). Femur length difference between the contralateral and the operative side was significantly greater in the plate group compared with the sham group over time (P=0.049). Medial and lateral screw distances changed significantly more in the sham group than the plate group on both sides (P<0.001). A greater initial angle between plates resulted in a greater change in the angle between plates (P<0.001). Significant correlations were found between right-left side femoral version differences and initial plate angle (P=0.003) and plate angle change (P=0.014). The torsional effect of oblique plating seems to correlate with the amount of initial plate angle, with an additional, not negligible, longitudinal growth effect. Placing plates at given angles across open physes may result in predictable changes in bone torsion allowing for a safer and less invasive option when treating childhood torsional deformities, but the resulting shortening of the ipsilateral femur must be considered.
Zumsteg, Dominik; Andrade, Danielle M; Wennberg, Richard A
2006-06-01
We have investigated the cortical sources and electroencephalographic (EEG) characteristics of small sharp spikes (SSS) by using statistical non-parametric mapping (SNPM) of low resolution electromagnetic tomography (LORETA). We analyzed 7 SSS patterns (501 individual SSS) in 6 patients who underwent sleep EEG studies with 29 or 23 scalp electrodes. The scalp signals were averaged time-locked to the SSS peak activity and subjected to SNPM of LORETA values. All 7 SSS patterns (mean 72 individual SSS, range 11-200) revealed a very similar and highly characteristic transhemispheric oblique scalp voltage distribution comprising a first negative field maximum over ipsilateral lateral temporal areas, followed by a second negative field maximum over the contralateral subtemporal region approximately 30 ms later. SNPM-LORETA consistently localized the first component into the ipsilateral posterior insular region, and the second component into ipsilateral posterior mesial temporo-occipital structures. SSS comprise an amalgam of two sequential, distinct cortical components, showing a very uniform and peculiar EEG pattern and cortical source solutions. As such, they must be clearly distinguished from interictal epileptiform discharges in patients with epilepsy. The awareness of these peculiar EEG characteristics may increase our ability to differentiate SSS from interictal epileptiform activity. The finding of a posterior insular source might serve as an inspiration for new physiological considerations regarding these enigmatic waveforms.
NASA Astrophysics Data System (ADS)
Hofferth, Jerrod; Saric, William
2012-11-01
Hotwire measurements of second-mode instability waves and the early stages of nonlinear interaction are conducted on a sharp-tipped, 5°-half-angle flared cone at zero angle of attack in a low-disturbance Mach 6 wind tunnel at Re = 10 ×106 m-1. Profiles of mean and fluctuating mass flux are acquired at several axial stations along the cone with a bandwidth of over 300 kHz. Frequencies and relative amplitude growth of second-mode instability waves are characterized and compared with nonlinear parabolized stability (NPSE) computations. Additionally, an azimuthal probe-traversing mechanism is used to investigate the character of the nonlinear stages of transition occurring near the base of the cone. Recent Direct Numerical Simulations (DNS) of a sharp cone at Mach 6 have shown that a fundamental resonance (or Klebanoff-type) breakdown mechanism can arise in the late stages of transition, wherein a pair of oblique waves nonlinearly interacts with the dominant two-dimensional wave to create an azimuthal modulation in the form of Λ-vortex structures and streamwise streaks. The azimuthal measurements will identify periodicity qualitatively consistent with these computations and with ``hot streaks'' observed in temperature sensitive paints at Purdue. AFOSR/NASA National Center for Hypersonic Laminar-Turbulent Transition Research, Grant FA9550-09-1-0341.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, B.J.
1994-06-01
Presently, the water discharge rate to the Black Sea by Turkish rivers is approximately 41 km[sup 3]/yr. The sediment discharge rate of Turkish rivers to the Black Sea is 28 x 10[sup 6] t/yr. Before construction of the hydroelectric dams, the sediment discharge rate was approximately 70 x 10[sup 6] t/yr. The sharp reduction in sediment load is largely a result of the dams near the mouths of the Yesil Irmak and Kizil Irmak rivers. Before the construction of dams, Turkish rivers contributed approximately one third of the total amount of sediment received by the Black Sea from all surroundingmore » rivers. The life-span of the major reservoirs varies from approximately only one century (Yesil Irmak river reservoirs) to several thousand years (Sakarya river reservoirs). Life-span for the large Altinkaya Dam reservoir is estimated with approximately 500 yr.« less
Oblique H.F. radiowave propagation in the main trough region of the ionosphere
NASA Astrophysics Data System (ADS)
Lockwood, M.; Mitchell, V. B.
1980-12-01
The propagation of 7.335 MHz, CW signals over a 5212 km subauroral, west-east path is studied. Measurements and semiempirical predictions are made of the amplitude distributions and Doppler shifts of the received signals. The observed amplitude distribution is fitted with a numerical fading model, yielding the power losses suffered by the signals during propagation via the predominating modes. The mid-latitude trough in the F2 peak ionization density is predicted by a statistical model to be at the latitudes of this path at these times and at low K sub p values; a sharp cut-off in low-power losses at a mean K sub p of 2.75 strongly implicates the trough in the propagation of these signals. It is shown that a simple extension of this model to allow for the trough can reproduce the form of the observed diurnal variation.
Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake.
Donnellan, Andrea; Grant Ludwig, Lisa; Parker, Jay W; Rundle, John B; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott
2015-09-01
Tectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M 6.4 Long Beach and 1994 M 6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north-south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M 5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left-lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still-locked deeper structures. A future M 6.1-6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping.
Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake
Grant Ludwig, Lisa; Parker, Jay W.; Rundle, John B.; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott
2015-01-01
Abstract Tectonic motion across the Los Angeles region is distributed across an intricate network of strike‐slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike‐slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north‐south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left‐lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still‐locked deeper structures. A future M6.1–6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping. PMID:27981074
Diverse Terrain Types on Mount Sharp, Mars
2015-05-08
A sweeping panorama combining 33 telephoto images into one Martian vista presents details of several types of terrain visible on Mount Sharp from a location along the route of NASA's Curiosity Mars rover. The rover's Mast Camera (Mastcam) recorded the component images with its right-eye camera on April 10, 2015, during the 952nd Martian day, or sol, of Curiosity's work on Mars, before that sol's drive. The panorama spans from south-southeast, at left, to west-southwest. The color has been approximately white-balanced to resemble how the scene would appear under daytime lighting conditions on Earth. Higher elevations on Mount Sharp are visible at left, including the jagged skyline to the right of a 100-meter scale bar overlaid on the image. (One hundred meters is about 328 feet.) The 2-meter (7-foot) scale bar near the center of the scene is on an exposure of pale mudstone within Mount Sharp's basal geological unit, the Murray formation, and nearby darker rocks. The 3-meter (10-foot) scale bar farther to the right is at the base of a rise called "Gray Wolf Peak." "Logan Pass," a science destination for the rover, is at a dip on the horizon near the right edge of the panorama. Malin Space Science Systems, San Diego, built and operates the rover's Mastcam. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19397
NASA Astrophysics Data System (ADS)
Gasser, D.; Mancktelow, N. S.
2009-04-01
The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of < 15 km. All three Neogene fault sets (2-4) could have been active under the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.
Milankovitch Cyclicity in the Eocene Green River Formation of Colorado and Wyoming
NASA Astrophysics Data System (ADS)
Machlus, M.; Olsen, P. E.; Christie-Blick, N.; Hemming, S. R.
2001-12-01
The Eocene Green River Formation is a classic example of cyclic lacustrine sediments. Following Bradley (1929, U.S.G.S. Prof. Paper 158-E), many descriptive studies suggested precession and eccentricity as the probable climatic forcing to produce the cyclic pattern. Here we report spectral analysis results that confirm this hypothesis. Furthermore, we have identified the presence of a surprisingly large amplitude obliquity cycle, the long-period eccentricity cycle (400 k.y.) and the long period modulators of obliquity. Spectral analyses of data from Colorado were undertaken on an outcrop section and core data using two different proxies for lake depth. In a section measured in the west Piceance Creek basin, three lithologies (ranks) were used as a proxy for relative water depth, from relatively shallow to deep water: laminated marlstones; microlaminated, light-colored oil-shales; and microlaminated black oil shales. A multi-tapered spectrum of the 190-m-thick record in the depth domain shows significant peaks at periods of 2.1, 3.4, 12 and 39 m. These are interpreted as the precession, obliquity and eccentricity cycles. The precession cycle confirms Bradley's independent estimate of 2.4 m per 20 k.y. cycle, based on varve counts at the same location. A high-amplitude, continuous 3.4 m (obliquity) cycle exists in the evolutive spectrum of this record. A second spectral analysis of an oil-shale-yield record was made on a 530 m core near the basin depocenter. This record includes the time-equivalent of the outcrop section, spans a longer interval of time, and has a higher sedimentation rate. Peaks are found at 5, 10, 25 and 79 m. Again, the probable obliquity peak, at 10 m, is continuous along the record. Initial tuning of this record to a 39.9 k.y. cosine wave improves the resolution of the precession, short and long eccentricity cycles. Spectral analysis of oil shale yield and sonic velocity data of cores from the Green River basin, Wyoming, gives similar results. Spectral peaks at 6, 13, 31 and 122 m appear mainly in the Tipton and the Wilkins Peak members. The correlation between oil shale yield, lithology and relative water depth was examined in the upper part of the Wilkins Peak Member and the Lower part of the Laney Member. The succession from microlaminated black oil shale to laminated micrite corresponds with documented lateral changes in facies from deep to shallow environments, thus confirming the use of these facies as relative water-depth proxies. Furthermore, the upsection record of oil shale yields correlates with these facies, with higher yields corresponding to deeper water facies. This correlation supports the use of the oil shale yield record as a proxy for short-term lake-level changes, and therefore a proxy for climate. The spectral analysis results from both basins show the importance of the obliquity cycle in these continental records. This cycle cannot be identified by cycle-counting, and therefore was not previously recognized. Earlier published attempts at spectral analysis of short records from the Piceance Creek and Uinta basins misinterpreted the observed cycles. This is the first time both the obliquity cycle and the long-term eccentricity cycle have been identified in the Green River and Piceance Creek basins.
Joined-wing research airplane feasibility study
NASA Technical Reports Server (NTRS)
Wolkovitch, J.
1984-01-01
The joined wing is a new type of aircraft configuration which employs tandem wings arranged to form diamond shapes in plan view and front view. Wind-tunnel tests and finite-element structural analyses have shown that the joined wing provides the following advantages over a comparable wing-plus-tail system; lighter weight and higher stiffness, higher span-efficiency factor, higher trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct sideforce control capability. To verify these advantages at full scale a manned research airplane is required. A study has therefore been performed of the feasibility of constructing such an airplane, using the fuselage and engines of the existing NAA AD-1 oblique-wing airplane. Cost and schedule constraints favored converting the AD-1 rather than constructing a totally new airframe. By removing the outboard wing panels the configuration can simulate wings joined at 60, 80, or 100 percent of span. For maximum versatility the aircraft has alternative control surfaces (such as ailerons and elevators on the front and/or rear wings), and a removeable canard to explore canard/joined-wing interactions at high-lift conditions. Design, performance, and flying qualities are discussed.
NASA Astrophysics Data System (ADS)
Heitmann, Emma O.; Ji, Shunchuan; Nie, Junsheng; Breecker, Daniel O.
2017-09-01
Middle Miocene Earth had several boundary conditions similar to those predicted for future Earth including similar atmospheric pCO2 and substantial Antarctic ice cover but no northern hemisphere ice sheets. We describe a 12 m outcrop of the terrestrial Yanwan Section in the Tianshui Basin, Gansu, China, following the Miocene Climate Transition (13.9-13.7 Ma). It consists of ∼25 cm thick CaCO3-cemented horizons that overprint siltstones every ∼1 m. We suggest that stacked soils developed in siltstones under a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13 C and δ18 O profiles that mimic modern soils. We suggest that the CaCO3-cemented horizons are capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration rates (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The CaCO3 of the cemented horizons and the carbonate nodules have similar mean δ18 O and δ13 C values but the cements have significantly smaller variance in δ13 C and δ18 O values and a different δ18 O versus δ13 C slope, supporting the conclusion that these carbonates are from different populations. The magneto-stratigraphic age model indicates obliquity pacing of the arid conditions required to form the CaCO3-cemented horizons suggesting an orbital control on water availability. We suggest two possible drivers for the obliquity pacing of arid conditions: 1) variability in the cross-equatorial pressure gradient that controls summer monsoon (ASM) strength and is influenced by obliquity-paced variations of Antarctic ice volume and 2) variability in Western Pacific Ocean-East Asian continent pressure gradient controlled by the 25-45°N meridional insolation gradient. We also suggest that variations in aridity were influenced by variations in PET and sensible heating of the regional land surface which are both influenced by precession-controlled 35°N summer insolation. We then use orbital configurations to predict lithology. Coincidence of obliquity minima (strong ASM) and 35°N summer insolation maxima (strong ASM) drives strong ASM and high PET, resulting in soil formation in an environment with relatively large seasonal changes in water availability. Coincidence of obliquity maxima (weak ASM) and 35°N summer insolation maxima (strong ASM) moderates the ASM, results in high PET, and thus drives overprinting of soils by capillary fringe carbonates above a deepened and relatively stable water table. Coincidence of obliquity and insolation minima also moderates the ASM but results in low PET and thus a high water table, which explains the previously documented occurrence of aquatic plants in this section. This context allows us to assign an orbital configuration to atmospheric pCO2 determined from the paleosols. Our best estimate of pCO2 during the times of intermediate ice volume is 475 + 650 / - 230 ppmV (median value with error reported as 84th-16th percentile values). Southern hemisphere control of ASM variability during the Middle Miocene may have resulted in larger orbital scale water availability variations compared with the Pleistocene.
[Normal anatomy and related pathological changes of shoulder on MRI].
Zhu, Q; Katsuya, N
2000-04-01
To describe the normal anatomy and common abnormal changes of rotator cuff impingement and tears and recurrent anterior instability of shoulder joint in MRI pictures. MRI was compared in 285 patients with shoulder diseases and 20 patients with symptomatic shoulder diseases. On oblique coronal image, the supraspinatus presented moderate signal intensity and low signal intensity in its tendon-muscle conjunction ranging from the humeral head to the greater tuberosity. The MRI manifestations of impingement lesion of the rotator cuff were as follows: high signal intensity of tendons, changes of their shapes, retraction of tendon-muscle conjunction, and muscle atrophy with high signal intensity. On T1-weighted axial image, the anterior and posterior glenohumeral labrum, the long head biceps tendon were displayed in low signal intensity. The anterior labrum manifested a sharp triangle contour and the posterior labrum a round one. The whole four muscles of the rotator cuff manifested on oblique sagital image. However, it was of less value in detecting the abnormalities of the rotator cuff and the glenohumeral labrum on sagittal imaging. The sensitivity in demonstrating rotator cuff complete tear was 95% for MRI and 91% for arthrography; the specificity was 88% for MRI and 100% for arthrography. The sensitivity and specificity of MRI were 96% and 75% for detecting glenoid labrum abnormalities, and 78% and 88% for detecting labrum tear in anterior recurrent dislocation of the shoulder. Magnetic resonance imaging with its excellent contrast resolution in multiple anatomic planes allows noninvasive visualization of bone and soft tissues in the rotator cuff and labrum.
SHARP pre-release v1.0 - Current Status and Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay S.; Rahaman, Ronald O.
The NEAMS Reactor Product Line effort aims to develop an integrated multiphysics simulation capability for the design and analysis of future generations of nuclear power plants. The Reactor Product Line code suite’s multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. In this report, building on a several previous report issued in September 2014, we describe our continued efforts to integrate thermal/hydraulics, neutronics, and structural mechanics modeling codes to perform coupled analysis of a representativemore » fast sodium-cooled reactor core in preparation for a unified release of the toolkit. The work reported in the current document covers the software engineering aspects of managing the entire stack of components in the SHARP toolkit and the continuous integration efforts ongoing to prepare a release candidate for interested reactor analysis users. Here we report on the continued integration effort of PROTEUS/Nek5000 and Diablo into the NEAMS framework and the software processes that enable users to utilize the capabilities without losing scientific productivity. Due to the complexity of the individual modules and their necessary/optional dependency library chain, we focus on the configuration and build aspects for the SHARP toolkit, which includes capability to autodownload dependencies and configure/install with optimal flags in an architecture-aware fashion. Such complexity is untenable without strong software engineering processes such as source management, source control, change reviews, unit tests, integration tests and continuous test suites. Details on these processes are provided in the report as a building step for a SHARP user guide that will accompany the first release, expected by Mar 2016.« less
Curiosity Rover View of Alluring Martian Geology Ahead
2015-08-05
A southward-looking panorama combining images from both cameras of the Mast Camera Mastcam instrument on NASA Curiosity Mars Rover shows diverse geological textures on Mount Sharp. A southward-looking panorama combining images from both cameras of the Mast Camera (Mastcam) instrument on NASA's Curiosity Mars Rover shows diverse geological textures on Mount Sharp. Three years after landing on Mars, the mission is investigating this layered mountain for evidence about changes in Martian environmental conditions, from an ancient time when conditions were favorable for microbial life to the much-drier present. Gravel and sand ripples fill the foreground, typical of terrains that Curiosity traversed to reach Mount Sharp from its landing site. Outcrops in the midfield are of two types: dust-covered, smooth bedrock that forms the base of the mountain, and sandstone ridges that shed boulders as they erode. Rounded buttes in the distance contain sulfate minerals, perhaps indicating a change in the availability of water when they formed. Some of the layering patterns on higher levels of Mount Sharp in the background are tilted at different angles than others, evidence of complicated relationships still to be deciphered. The scene spans from southeastward at left to southwestward at right. The component images were taken on April 10 and 11, 2015, the 952nd and 953rd Martian days (or sols) since the rover's landing on Mars on Aug. 6, 2012, UTC (Aug. 5, PDT). Images in the central part of the panorama are from Mastcam's right-eye camera, which is equipped with a 100-millimeter-focal-length telephoto lens. Images used in outer portions, including the most distant portions of the mountain in the scene, were taken with Mastcam's left-eye camera, using a wider-angle, 34-millimeter lens. http://photojournal.jpl.nasa.gov/catalog/PIA19803
Guimarães, João Antonio Matheus; Martin, Murphy P; da Silva, Flávio Ribeiro; Duarte, Maria Eugenia Leite; Cavalcanti, Amanda Dos Santos; Machado, Jamila Alessandra Perini; Mauffrey, Cyril; Rojas, David
2018-06-08
Percutaneous fixation of the acetabulum is a treatment option for select acetabular fractures. Intra-operative fluoroscopy is required, and despite various described imaging strategies, it is debatable as to which combination of fluoroscopic views provides the most accurate and reliable assessment of screw position. Using five synthetic pelvic models, an experimental setup was created in which the anterior acetabular columns were instrumented with screws in five distinct trajectories. Five fluoroscopic images were obtained of each model (Pelvic Inlet, Obturator Oblique, Iliac Oblique, Obturator Oblique/Outlet, and Iliac Oblique/Outlet). The images were presented to 32 pelvic and acetabular orthopaedic surgeons, who were asked to draw two conclusions regarding screw position: (1) whether the screw was intra-articular and (2) whether the screw was intraosseous in its distal course through the bony corridor. In the assessment of screw position relative to the hip joint, accuracy of surgeon's response ranged from 52% (iliac oblique/outlet) to 88% (obturator oblique), with surgeon confidence in the interpretation ranging from 60% (pelvic inlet) to 93% (obturator oblique) (P < 0.0001). In the assessment of intraosseous position of the screw, accuracy of surgeon's response ranged from 40% (obturator oblique/outlet) to 79% (iliac oblique/outlet), with surgeon confidence in the interpretation ranging from 66% (iliac oblique) to 88% (pelvic inlet) (P < 0.0001). The obturator oblique and obturator oblique/outlet views afforded the most accurate and reliable assessment of penetration into the hip joint, and intraosseous position of the screw was most accurately assessed with pelvic inlet and iliac oblique/outlet views. Clinical Question.
SERS-based viral fingerprinting: current capabilities and challenges
NASA Astrophysics Data System (ADS)
Driskell, J. D.; Abell, J. L.; Dluhy, R. A.; Zhao, Y.-P.; Tripp, R. A.
2010-04-01
Silver nanorod array substrates are fabricated by oblique angle deposition and characterized for optimal SERS performance. Using UV-visible-NIR spectrophotometry we show that the nanorods have a transverse surface plasmon resonance mode at ~357 nm and a broad absorbance spanning 600-800 nm when excited along the longitudinal direction. We demonstrate that SERS enhancement is optimized using an excitation wavelength of 633 or 785 nm. The large area uniformity in SERS signal (<10% variation) and reproducibility among preparations (<15% variation) provides a unique opportunity for SERS-based whole-organism fingerprinting. Egg prepared avian influenza virus and clinical sputum samples of human influenza virus were investigated to demonstrate SERS-based detection of a virus in a complex sample matrix and to assess the effect of different background matrices on the detection of similar viruses.
Replicating the Ice-Volume Signal of the Early Pleistocene with a Complex Earth System Model
NASA Astrophysics Data System (ADS)
Tabor, C. R.; Poulsen, C. J.; Pollard, D.
2013-12-01
Milankovitch theory proposes high-latitude summer insolation intensity paces the ice ages by controlling perennial snow cover amounts (Milankovitch, 1941). According to theory, the ~21 kyr cycle of precession should dominate the ice-volume records since it has the greatest influence on high-latitude summer insolation. Modeling experiments frequently support Milankovitch theory by attributing the majority of Northern Hemisphere high-latitude summer snowmelt to changes in the cycle of precession (e.g. Jackson and Broccoli, 2003). However, ice-volume proxy records, especially those of the Early Pleistocene (2.6-0.8 Ma), display variability with a period of ~41 kyr (Raymo and Lisiecki, 2005), indicative of insolation forcing from obliquity, which has a much smaller influence on summer insolation intensity than precession. Several hypotheses attempt to explain the discrepancies between Milkankovitch theory and the proxy records by invoking phenomena such as insolation gradients (Raymo and Nisancioglu, 2003), hemispheric offset (Raymo et al., 2006; Lee and Poulsen, 2009), and integrated summer energy (Huybers, 2006); however, all of these hypotheses contain caveats (Ruddiman, 2006) and have yet to be supported by modeling studies that use a complex GCM. To explore potential solutions to this '41 kyr problem,' we use an Earth system model composed of the GENESIS GCM and Land Surface model, the BIOME4 vegetation model, and the Pennsylvania State ice-sheet model. Using an asynchronous coupling technique, we run four idealized transient combinations of obliquity and precession, representing the orbital extremes of the Pleistocene (Berger and Loutre, 1991). Each experiment is run through several complete orbital cycles with a dynamic ice domain spanning North America and Greenland, and fixed preindustrial greenhouse-gas concentrations. For all orbital configurations, model results produce greater ice-volume spectral power at the frequency of obliquity despite significantly greater summer insolation variability from the cycle of precession. We find obliquity enhances the climate sensitivity to direct insolation forcing through positive high-latitude surface feedbacks between vegetation, sea-ice, and mean-annual insolation while the seasonal dichotomy of precessional forcing leads to climate counterbalancing that dampens the annual ice-volume response. Longer cycle duration further amplifies the ice-volume response to obliquity. Our results help remedy the discrepancies between Milankovitch theory and the ice-volume proxy records. However, summer insolation intensity remains the most important factor for determining ice-volume rate-of-change in our experiments. Consequently, we still find a significant ice-volume response to precession, which is inconsistent with the Early Pleistocene records. The disconnect is likely attributable to climate phenomena not accounted for in the model or our choice of initial conditions, which are poorly constrained for the Early Pleistocene and ice-sheet modeling in general. Future work will examine the importance of initial climate conditions on ice-volume response.
NASA Astrophysics Data System (ADS)
Audin, Laurence; Benavente, Carlos; Zerathe, Swann; Saillard, Marianne; Hall, Sarah R.; Farber, Daniel L.
2015-04-01
Understanding the forearc structure and processes related to Quaternary evolution and uplift of the Western Andean Cordillera remains an outstanding scientific issue. Models of Andean Plateau evolution based on Tertiary volcanic stratigraphy since 5Ma suggest that the deformation was focused along the eastern margin of the plateau and that minimal uplift occurred along the Pacific margin. On the contrary, new tectonic data and Quaternary surface 10Be dating highlight the presence of recently active deformation, incision and alluvial processes within the upper Andean forearc together with a regional uplift of the coastal zone. Additionally, the high obliquity observed in the northern Arica Bend region makes it an ideal target to discuss whether partitioning of the oblique convergence is accommodated by the neotectonic features that dissect the Quaternary forearc. Our goals are both to decipher the Quaternary tectonic and climatic processes shaping the hyperarid forearc along strike and across strike. Finally, we aim to quantify the respective influence of these factors in the overall uplift of the Western Andes. Indeed, sequences of pediment surfaces, landslide products, paleolake deposits and marine terraces found along the oblique Peruvian margin are a unique set of datable markers that can be used to quantify the rates of Quaternary processes. In this study, we focus on the southern Peru hyperarid Atacama area where regional surfaces and tectonic markers (scarps, folds, temporary streams and paleolake levels offsets…) are well preserved for the Quaternary timescale. Numerous landsliding events align on the major fault segments and reflect Plio-Pleistocene climatic and tectonic activity together with filled and strath terraces. As the present day sea-level is one of the highest levels recorded for Quaternary time span, any emerged marine terrace is preserved by tectonic coastal uplift. In particular, the geomorphic and chronologic correlation between marine and continental planation surfaces or terraces permit to deduce net vertical rates and suggests that the along strike uplift affected not only the coast but also the overall ~50 km-wide forearc of the Western Andes. We produced a chronology of remnant low-relief surfaces and a new neotectonic map of the Central Andean forearc between ~14° and 18°S based on detailed field mapping and 10Be cosmogenic dating. We address 1) the spatial and temporal correlations of various markers, and 2) the correlation of the surface abandonment ages to various regional climatic events and 3) the description of neotectonic activity accommodating both uplift and partitioning. Multiple markers yield 10Be surface abandonment ages that spanning 35 ka to >2 Ma. Erosion surfaces >2 Ma yield low erosion rates of <0.1mm/yr. However uplift rates of ~0.1-1mm/yr and multiple surfaces dated at ~35 ka suggest that the hyperarid forearc landscape has been recently modified through Quaternary surface uplift and climatic events, contradicting the Miocene fossil forearc hypothesis. Generally, surface abandonment ages and activated landslides periods tend to correlate with cold wet periods preceding Plio Pleistocene deglaciation on the Altiplano. Finally, neotectonic oblique faults connecting at depth participate to topography building in the Arica Bend region and suggest that Quaternary surface abandonment is the result of both surface uplift in the forearc and specific high-discharge climate periods in the high Andes. Obtained Quaternary regional uplift rates and individual slip-rates suggest that the Andean forearc may accommodate as much as 0.5 to 1 mm/yr of regional uplift for the Quaternary time period.
NASA Technical Reports Server (NTRS)
Knight, Doyle D.; Badekas, Dias
1991-01-01
The swept oblique shock-wave/turbulent-boundary-layer interaction generated by a 20-deg sharp fin at Mach 4 and Reynolds number 21,000 is investigated via a series of computations using both conical and three-dimensional Reynolds-averaged Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin-Lomax. Results are compared with known experimental data, and it is concluded that the computed three-dimensional flowfield is quasi-conical (in agreement with the experimental data), the computed three-dimensional and conical surface pressure and surface flow direction are in good agreement with the experiment, and the three-dimensional and conical flows significantly underpredict the peak experimental skin friction. It is pointed out that most of the features of the conical flowfield model in the experiment are observed in the conical computation which also describes the complete conical streamline pattern not included in the model of the experiment.
Critical thickness investigation of magnetic properties in exchange-coupled bilayers
NASA Astrophysics Data System (ADS)
Rodríguez-Suárez, R. L.; Vilela-Leão, L. H.; Bueno, T.; Oliveira, A. B.; de Almeida, J. R. L.; Landeros, P.; Rezende, S. M.; Azevedo, A.
2011-06-01
We present a systematic investigation of the magnetic properties of two series of polycrystalline ferromagnetic-antiferromagnetic bilayers (FM-AF) of Ni81Fe19(10nm)/Ir20Mn80(tAF) grown by dc magnetron sputtering. One series was grown at an oblique angle of 50° and the other one was grown at 0°. Ferromagnetic resonance (FMR) was used to measure the exchange bias field HE, the rotatable anisotropy field HRA, and the FMR linewidth ΔH as a function of the antiferromagnetic layer thickness tAF. Three relaxation channels due to isotropic Gilbert damping, anisotropic two-magnon scattering, and mosaicity effects are simultaneously distinguished through the angular dependence of the FMR linewidth. In the regime of small IrMn layer thicknesses, not enough to establish the exchange bias anisotropy, the FMR linewidth shows a sharp peak due to the contribution of the two-magnon scattering mechanism. The results presented here are of general importance for understanding the dynamics of magnetization in the FM-AF structures.
Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun
2016-06-01
We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (p<0.01) and internal oblique (p<0.01) showed significantly elevated activity compared with the rectus abdominis muscle. Furthermore, at 20% and 30% PEmax, the external oblique (p<0.05 and<0.01, respectively) and the internal oblique (p<0.05 and<0.01, respectively) showed significantly elevated activity compared with the rectus abdominis muscle. At 10% PEmax, no significant differences were observed in muscle activity. Although we observed no significant difference between 10% and 20% PEmax, activity during 30% PEmax was significantly greater than during 20% PEmax (external oblique: p<0.05; internal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Motor mechanisms of vertical fusion in individuals with superior oblique paresis.
Mudgil, Ananth V; Walker, Mark; Steffen, Heimo; Guyton, David L; Zee, David S
2002-06-01
We wanted to determine the mechanisms of motor vertical fusion in patients with superior oblique paresis and to correlate these mechanisms with surgical outcomes. Ten patients with superior oblique paresis underwent 3-axis, bilateral, scleral search coil eye movement recordings. Eye movements associated with fusion were analyzed. Six patients had decompensated congenital superior oblique paresis and 4 had acquired superior oblique paresis. All patients with acquired superior oblique paresis relied predominantly on the vertical rectus muscles for motor fusion. Patients with congenital superior oblique paresis were less uniform in their mechanisms for motor fusion: 2 patients used predominantly the oblique muscles, 2 patients used predominantly the vertical recti, and 2 patients used predominantly the superior oblique in the hyperdeviated eye and the superior rectus in the hypodeviated eye. The last 2 patients developed the largest changes in torsional eye alignment relative to changes in vertical eye alignment and were the only patients to develop symptomatic surgical overcorrections. There are 3 different mechanisms for vertical fusion in individuals with superior oblique paresis, with the predominant mechanism being the vertical recti. A subset of patients with superior oblique paresis uses predominantly the superior oblique muscle in the hyperdeviated paretic eye and the superior rectus muscle in the fellow eye for fusion. This results in intorsion of both eyes, causing a large change in torsional alignment. The consequent cyclodisparity, in addition to the existing vertical deviation, may make fusion difficult. The differing patterns of vertical fusional vergence may have implications for surgical treatment.
Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f
NASA Astrophysics Data System (ADS)
Shan, Yutong; Li, Gongjie
2018-06-01
Obliquity variability could play an important role in the climate and habitability of a planet. Orbital modulations caused by planetary companions and the planet’s spin axis precession due to the torque from the host star may lead to resonant interactions and cause large-amplitude obliquity variability. Here we consider the spin axis dynamics of Kepler-62f and Kepler-186f, both of which reside in the habitable zone around their host stars. Using N-body simulations and secular numerical integrations, we describe their obliquity evolution for particular realizations of the planetary systems. We then use a generalized analytic framework to characterize regions in parameter space where the obliquity is variable with large amplitude. We find that the locations of variability are fine-tuned over the planetary properties and system architecture in the lower-obliquity regimes (≲40°). As an example, assuming a rotation period of 24 hr, the obliquities of both Kepler-62f and Kepler-186f are stable below ∼40°, whereas the high-obliquity regions (60°–90°) allow moderate variabilities. However, for some other rotation periods of Kepler-62f or Kepler-186f, the lower-obliquity regions could become more variable owing to resonant interactions. Even small deviations from coplanarity (e.g., mutual inclinations ∼3°) could stir peak-to-peak obliquity variations up to ∼20°. Undetected planetary companions and/or the existence of a satellite could also destabilize the low-obliquity regions. In all cases, the high-obliquity region allows for moderate variations, and all obliquities corresponding to retrograde motion (i.e., >90°) are stable.
ON THE TIDAL DISSIPATION OF OBLIQUITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T. M.; Lin, D. N. C., E-mail: tami@lpl.arizona.edu, E-mail: lin@ucolick.org
2013-05-20
We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde, or 90 Degree-Sign orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot Jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.
Reaching to virtual targets: The oblique effect reloaded in 3-D.
Kaspiris-Rousellis, Christos; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos
2017-02-20
Perceiving and reproducing direction of visual stimuli in 2-D space produces the visual oblique effect, which manifests as increased precision in the reproduction of cardinal compared to oblique directions. A second cognitive oblique effect emerges when stimulus information is degraded (such as when reproducing stimuli from memory) and manifests as a systematic distortion where reproduced directions close to the cardinal axes deviate toward the oblique, leading to space expansion at cardinal and contraction at oblique axes. We studied the oblique effect in 3-D using a virtual reality system to present a large number of stimuli, covering the surface of an imaginary half sphere, to which subjects had to reach. We used two conditions, one with no delay (no-memory condition) and one where a three-second delay intervened between stimulus presentation and movement initiation (memory condition). A visual oblique effect was observed for the reproduction of cardinal directions compared to oblique, which did not differ with memory condition. A cognitive oblique effect also emerged, which was significantly larger in the memory compared to the no-memory condition, leading to distortion of directional space with expansion near the cardinal axes and compression near the oblique axes on the hemispherical surface. This effect provides evidence that existing models of 2-D directional space categorization could be extended in the natural 3-D space. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Digital Oblique Remote Ionospheric Sensing (DORIS) Program Development
1992-04-01
waveforms. A new with the ARTIST software (Reinisch and Iluang. autoscaling technique for oblique ionograms 1983, Gamache et al., 1985) which is...development and performance of a complete oblique ionogram autoscaling and inversion algorithm is presented. The inver.i-,n algorithm uses a three...OTIH radar. 14. SUBJECT TERMS 15. NUMBER OF PAGES Oblique Propagation; Oblique lonogram Autoscaling ; i Electron Density Profile Inversion; Simulated 16
Mather, Mara
2010-05-01
As we grow older, we gain knowledge and experience greater emotional balance, but we also experience memory loss and difficulties in learning new associations. Which cognitive abilities decline, remain stable or improve with age depends on the health of the brain and body as well as on what skills are practiced or challenged in everyday life. Recent research provides a growing understanding of the relationship between physical and cognitive changes across the life span and reveals ways to increase mental sharpness and avoid cognitive decline. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
Modeling the imprint of Milankovitch cycles on early Pleistocene ice volume
NASA Astrophysics Data System (ADS)
Roychowdhury, R.; DeConto, R.; Pollard, D.
2017-12-01
Global climate during Quaternary and Late Pliocene (present-3.1 Ma) is characterized by alternating glacial and interglacial conditions. Several proposed theories associate these cycles with variations in the Earth's orbital configuration. In this study, we attempt to address the anomalously strong obliquity forcing in the Late Pliocene/Early Pleistocene ice volume records (41 kyr world), which stands in sharp contrast to the primary cyclicity of insolation, which is at precessional periods (23 kyr). Model results from GCM simulations show that at low eccentricities (e<0.015), the effect of precession is minimal, and the integrated insolation metrics (such as summer metric, PDD, etc.) vary in-phase between the two hemispheres. At higher eccentricities (e>0.015), precessional response is important, and the insolation metrics vary out-of-phase between the two hemispheres. Using simulations from a GCM-driven ice sheet model, we simulate time continuous ice volume changes from Northern and Southern Hemispheres. Under eccentricities lower than 0.015, ice sheets in both hemispheres respond only to obliquity cycle, and grow and melt together (in-phase). If the ice sheet is simulated with eccentricity higher than 0.015, both hemispheres become more sensitive to precessional variation, and vary out-of-phase with each other, which is consistent with proxy observations from the late Pleistocene glaciations. We use the simulated ice volumes from 2.0 to 1.0 ma to empirically calculate global benthic δ18O variations based on the assumption that relationships between collapse and growth of ice-sheets and sea level is linear and symmetric and that the isotopic signature of the individual ice-sheets has not changed with time. Our modeled global benthic δ18O values are broadly consistent with the paleoclimate proxy records such as the LR04 stack.
Sani, Karim Ghazikhanlou; Jafari, Mahmoodreza; Rostampoor, Nima
2011-01-01
The use of mammography film-screen is limited in general radiography. The purpose of this study was to compare the effectiveness of mammographic film-screen and standard film-screen systems in the detection of small bone fractures. Radiographs were taken from patients' extremities and neck areas using mammography film-screen and standard film-screen (n=57 each). Fourteen other radiographs were taken from other views (predominantly oblique views), making a total number of 128 radiographs. Paired radiographs, taken from the same areas, were compared by two radiologists in terms of image visual sharpness, presence of bony fractures, and soft tissue injuries. The surface dose received by patients in the two systems was also compared. The radiographs taken by mammography film-screen had a statistically better visual sharpness compared to those taken by the standard film-screen system. However, there was no statistically significant difference between the diagnostic accuracy of the two systems. Mammography film-screen was able to detect only one out of 57 lesions, whereas standard film-screen system did not detec any lesion. The surface dose received by patients in mammography film-screen was higher than that in standard film-screen system. The findings of the present study suggest that mammography film-screen may be recommended as a diagnostic tool for the detection of small fractures of tinny parts of body such as fingers, hand or foot. They also suggest that mammography film-screen has no advantage over standard film-screen for radiography of thick body parts such as neck and knee. PMID:23115417
Sensitive singular-phase optical detection without phase measurements with Tamm plasmons.
Boriskina, Svetlana V; Tsurimaki, Yoichiro
2018-06-06
Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.
Sensitive singular-phase optical detection without phase measurements with Tamm plasmons
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Tsurimaki, Yoichiro
2018-06-01
Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.
Methods of Astrodynamics, a Computer Approach
1991-02-14
Number of days from 1 Jan 2000 I clpLong - Ecliptic longitude I Obliquity - mean Obliquity of the Ecliptic Iconstants I Pi I TwoPi - I Rad -Degrees per...days from 1 ian 2000 * EclpLong - Ecliptic longitude * Obliquity - Mean Obliquity of the Ecliptic * Constants * Pi 3.14159265358979 * TwoPi...3.14159265358979; TwoPi: Extended = 6.28318530717959; Rad :Extended =57.29577951308230; VAR MeanLong, MeanAnomaly, EcipLong, Obliquity , N :Extended; BEGIN
Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos
2015-11-01
The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of orientation in visual working memory.
Electrically tunable laser based on oblique heliconical cholesteric liquid crystal
Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A.; Storey, John M. D.; Imrie, Corrie T.; Lavrentovich, Oleg D.; Palffy-Muhoray, Peter
2016-01-01
A cholesteric liquid crystal (CLC) formed by chiral molecules represents a self-assembled one-dimensionally periodic helical structure with pitch p in the submicrometer and micrometer range. Because of the spatial periodicity of the dielectric permittivity, a CLC doped with a fluorescent dye and pumped optically is capable of mirrorless lasing. An attractive feature of a CLC laser is that the pitch p and thus the wavelength of lasing λ¯ can be tuned, for example, by chemical composition. However, the most desired mode to tune the laser, by an electric field, has so far been elusive. Here we present the realization of an electrically tunable laser with λ¯ spanning an extraordinarily broad range (>100 nm) of the visible spectrum. The effect is achieved by using an electric-field-induced oblique helicoidal (OH) state in which the molecules form an acute angle with the helicoidal axis rather than align perpendicularly to it as in a field-free CLC. The principal advantage of the electrically controlled CLCOH laser is that the electric field is applied parallel to the helical axis and thus changes the pitch but preserves the single-harmonic structure. The preserved single-harmonic structure ensures efficiency of lasing in the entire tunable range of emission. The broad tuning range of CLCOH lasers, coupled with their microscopic size and narrow line widths, may enable new applications in areas such as diagnostics, sensing, microscopy, displays, and holography. PMID:27807135
Electrically tunable laser based on oblique heliconical cholesteric liquid crystal.
Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A; Storey, John M D; Imrie, Corrie T; Lavrentovich, Oleg D; Palffy-Muhoray, Peter
2016-11-15
A cholesteric liquid crystal (CLC) formed by chiral molecules represents a self-assembled one-dimensionally periodic helical structure with pitch [Formula: see text] in the submicrometer and micrometer range. Because of the spatial periodicity of the dielectric permittivity, a CLC doped with a fluorescent dye and pumped optically is capable of mirrorless lasing. An attractive feature of a CLC laser is that the pitch [Formula: see text] and thus the wavelength of lasing [Formula: see text] can be tuned, for example, by chemical composition. However, the most desired mode to tune the laser, by an electric field, has so far been elusive. Here we present the realization of an electrically tunable laser with [Formula: see text] spanning an extraordinarily broad range (>100 nm) of the visible spectrum. The effect is achieved by using an electric-field-induced oblique helicoidal (OH) state in which the molecules form an acute angle with the helicoidal axis rather than align perpendicularly to it as in a field-free CLC. The principal advantage of the electrically controlled CLC OH laser is that the electric field is applied parallel to the helical axis and thus changes the pitch but preserves the single-harmonic structure. The preserved single-harmonic structure ensures efficiency of lasing in the entire tunable range of emission. The broad tuning range of CLC OH lasers, coupled with their microscopic size and narrow line widths, may enable new applications in areas such as diagnostics, sensing, microscopy, displays, and holography.
Analysis of Solar Astrolabe Measurements during 20 Years
NASA Astrophysics Data System (ADS)
Poppe, P. C. R.; Leister, N. V.; Laclare, F.; Delmas, C.
1998-11-01
Recent observations of the Sun made between 1974 and 1995 at two observatories were examined to determine the constant and/or linear terms to the equinox and equator of the FK5 reference frame, the mean obliquity of the ecliptic, the mean longitude of the Sun, the mean eccentricity of the Earth's orbit, and the mean longitude of perihelion. The VSOP82 theory was used to reduce the data. The global solution of the weighted least-squares adjustment shows that the equinox of the FK5 requires a correction of +0.072" +/- 0.005" at the mean epoch 1987.24. The FK5 and dynamical equinox agree closely at J2000.0 (-0.040" +/- 0.020"), but an anomalous negative secular variation with respect to the dynamical equinox was detected: -0.881" +/- 0.116" century^-1. The FK5 equator requires a correction of +0.088" +/- 0.016", and there is no indication of a time rate of change. The corrections to the mean longitude of the Sun (-0.020" +/- 0.010") and to the mean obliquity of the ecliptic (-0.041" +/- 0.016") do appear to be statistically significant, although only marginally. The time rates of change for these quantities are not significant on the system to which the observations are referred. In spite of the short time span used in this analysis, the strong correlation between constant and linear terms was completely eliminated with the complete covering of the orbit by the data sets of both sites.
Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses
NASA Technical Reports Server (NTRS)
Melton, John E. (Inventor); Dudley, Michael R. (Inventor)
2016-01-01
The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.
Astronomically paced middle Eocene deepwater circulation in the western North Atlantic
NASA Astrophysics Data System (ADS)
Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Lohmann, Gerrit; Pälike, Heiko; Zachos, James C.
2017-04-01
The role of the Atlantic Meridional Overturning Circulation (AMOC) as a key player for abrupt climatic changes (e.g. Heinrich Stadials) during the Pleistocene is relatively well constrained. However, the timing of the onset of a „modern" North Atlantic Deepwater (NADW) formation are still debated: Recent estimates range from the middle Miocene to the Early Eocene [Davies et al., 2001, Stoker et al., 2005, Hohbein et al., 2012] and are mainly based on the seismic interpretation contourite drifts. Another understudied aspect of the AMOC is its behavior during climatic variations on orbital time scales and under different climatic boundary conditions (icehouse vs hothouse). IODP Expedition 342 drilled carbonate-rich sequences from sediment drifts offshore Newfoundland that cover the middle Eocene with high sedimentation rates ( 3 cm/ kyr). We present a 2 Myr long stable carbon and oxygen isotope record of benthic foraminifera nuttalides truempyi spanning magnetochron C20r in unprecedented resolution (< 2 kyr/sample), sufficient to resolve dominant Milankovic frequencies. Data from Site U1410 (3400m water depth) indicate an active overturning in the North Atlantic during the middle Eocene, sensitively responding to variations in Earth's axial tilt (obliquity). Experiments in a GCM (ECHAM5 - MPIOM, OASIS 3 coupled) indicate that temperatures in the Norwegian and Labrador Sea could have allowed for sea ice during winter in a minimal obliquity setting (22.1°), whereas temperatures are too high to allow sea ice formation under maximum obliquity (24.5°) winter conditions depending on Eocene boundary conditions (atmospheric CO2 concentration). We hypothesize that the combined effect of low temperatures in the sinking areas, an increased latitudinal SST gradient seasonal, and the potential formation of sea ice during obliquity minima results in an initial shallow NADW formation during the middle Eocene. This hypothesis is in accordance with the astronomical imprint observed in the data from IODP Site U1410. Davies, R., Cartwright, J., Pike, J., and Line, C., 2001, Early Oligocene initiation of North Atlantic deep water formation: Nature, v. 410, no. 6831, p. 917-920. Stoker, M. S., Praeg, D., Hjelstuen, B. O., Laberg, J. S., Nielsen, T., and Shannon, P. M., 2005, Neogene stratigraphy and the sedimentary and oceanographic development of the NW European Atlantic margin: Marine and Petroleum Geology, v. 22, no. 9, p. 977-1005. Hohbein, M. W., Sexton, P. F., and Cartwright, J. A., 2012, Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend: Geology, v. 40, no. 3, p. 255-258.
Huzak, M; Deleuze, M S; Hajgató, B
2011-09-14
An analysis using the formalism of crystalline orbitals for extended systems with periodicity in one dimension demonstrates that any antiferromagnetic and half-metallic spin-polarization of the edge states in n-acenes, and more generally in zigzag graphene nanoislands and nanoribbons of finite width, would imply a spin contamination
López-Torres, M; Pérez-Campo, R; Rojas, C; Cadenas, S; Barja, G
1993-08-01
Catalase was continuously inhibited with aminotriazole in the liver and kidney during 33 months in large populations of old and young frogs in order to study the effects of the modification of the tissue antioxidant/prooxidant balance on the life span of a vertebrate species showing an oxygen consumption rate similar to that of humans. Free-radical-related parameters were measured during three consecutive years at 2.5, 14.5, and 26.5 months of experimentation. Aging per se did not decrease antioxidant enzymes and did not increase peroxidation (thiobarbituric acid positive substances, or high-pressure liquid chromatography [HPLC]-malondialdehyde), either cross sectionally or longitudinally. Long-term catalase inhibition leads to time-dependent increases (100-900%) of endogenous superoxide dismutase, GSH, ascorbate, and especially glutathione reductase at 2.5 and 14.5 months of experimentation. This was positively correlated with a higher survival of treated animals (91% in treated versus 46% in controls at 14.5 months of experimentation). The loss of those inductions after 26.5 months leads to a sharp increase in mortality rate. The results show for the first time that simultaneous induction of various tissue antioxidant enzymes and nonenzymatic antioxidants can increase the mean life span of a vertebrate animal. It is concluded that the tissue antioxidant/prooxidant balance is a strong determinant of mean life span.
An analysis of penetration and ricochet phenomena in oblique hypervelocity impact
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.
1988-01-01
An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.
The Oblique Orbit of WASP-107b from K2 Photometry
NASA Astrophysics Data System (ADS)
Dai, Fei; Winn, Joshua N.
2017-05-01
Observations of nine transits of WASP-107 during the K2 mission reveal three separate occasions when the planet crossed in front of a starspot. The data confirm the stellar rotation period to be 17 days—approximately three times the planet’s orbital period—and suggest that large spots persist for at least one full rotation. If the star had a low obliquity, at least two additional spot crossings should have been observed. They were not observed, giving evidence for a high obliquity. We use a simple geometric model to show that the obliquity is likely in the range 40°-140°, I.e., both spin-orbit alignment and anti-alignment can be ruled out. WASP-107 thereby joins the small collection of relatively low-mass stars with a high obliquity. Most such stars have been observed to have low obliquities; all of the exceptions, including WASP-107, involve planets with relatively wide orbits (“warm Jupiters,” with {a}{{\\min }}/{R}\\star ≳ 8). This demonstrates a connection between stellar obliquity and planet properties, in contradiction to some theories for obliquity excitation.
Freeman, Andrew L; Camisa, William J; Buttermann, Glenn R; Malcolm, James R
2016-01-01
This study was undertaken to quantify the in vitro range of motion (ROM) of oblique as compared with anterior lumbar interbody devices, pullout resistance, and subsidence in fatigue. Anterior and oblique cages with integrated plate fixation (IPF) were tested using lumbar motion segments. Flexibility tests were conducted on the intact segments, cage, cage + IPF, and cage + IPF + pedicle screws (6 anterior, 7 oblique). Pullout tests were then performed on the cage + IPF. Fatigue testing was conducted on the cage + IPF specimens for 30,000 cycles. No ROM differences were observed in any test group between anterior and oblique cage constructs. The greatest reduction in ROM was with supplemental pedicle screw fixation. Peak pullout forces were 637 ± 192 N and 651 ± 127 N for the anterior and oblique implants, respectively. The median cage subsidence was 0.8 mm and 1.4 mm for the anterior and oblique cages, respectively. Anterior and oblique cages similarly reduced ROM in flexibility testing, and the integrated fixation prevented device displacement. Subsidence was minimal during fatigue testing, most of which occurred in the first 2500 cycles.
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.
2013-01-01
We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.
Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting
NASA Astrophysics Data System (ADS)
Huismans, R. S.; Duclaux, G.; May, D.
2017-12-01
Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.
Strike-Slip Fault Patterns on Europa: Obliquity or Polar Wander?
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Hurford, Terry A.; Manga, Michael
2011-01-01
Variations in diurnal tidal stress due to Europa's eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2?, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1? of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value consistent with theoretical expectations and cycloid modeling.
Kintzelé, Laurent; Rehnitz, Christoph; Kauczor, Hans-Ulrich; Weber, Marc-André
2018-06-06
To identify whether standard sagittal MRI images result in underestimation of the neuroforaminal stenosis grade compared to oblique sagittal MRI images in patients with cervical spine disc herniation. 74 patients with a total of 104 cervical disc herniations compromising the corresponding nerve root were evaluated. Neuroforaminal stenosis grades were evaluated in standard and oblique sagittal images by one senior and one resident radiologist experienced in musculoskeletal imaging. Oblique images were angled 30° towards the standard sagittal plane. Neuroforaminal stenosis grades were classified from 0 (no stenosis) to 3 (high grade stenosis). Average neuroforaminal stenosis grades of both readers were significantly lower in standard compared to oblique sagittal images (p < 0.001). For 47.1 % of the cases, one or both readers reported a stenosis grade, which was at least 1 grade lower in standard compared to oblique sagittal images. There was also a significant difference when looking at patients who had neurological symptoms (p = 0.002) or underwent cervical spine surgery subsequently (p = 0.004). Interreader reliability, as measured by kappa value, and accordance rates were better for oblique sagittal images (0.94 vs. 0.88 and 99 % vs. 93 %). Standard sagittal images tend to underestimate neuroforaminal stenosis grades compared to oblique sagittal images and are less reliable in the evaluation of disc herniations within the cervical spine MRI. In order to assess the potential therapeutic consequence, oblique images should therefore be considered as a valuable adjunct to the standard MRI protocol for patients with a radiculopathy. · Neuroforaminal stenosis grades are underestimated in standard compared to oblique sagittal images. · Interreader reliability is higher for oblique sagittal images. · Oblique sagittal images should be performed in patients with a cervical radiculopathy. · Kintzele L, Rehnitz C, Kauczor H et al. Oblique Sagittal Images Prevent Underestimation of the Neuroforaminal Stenosis Grade Caused by Disc Herniation in Cervical Spine MRI. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0612-8205. © Georg Thieme Verlag KG Stuttgart · New York.
Compensation of Corneal Oblique Astigmatism by Internal Optics: a Theoretical Analysis
Liu, Tao; Thibos, Larry N.
2017-01-01
Purpose Oblique astigmatism is a prominent optical aberration of peripheral vision caused by oblique incidence of rays striking the refracting surfaces of the cornea and crystalline lens. We inquired whether oblique astigmatism from these two sources should be expected, theoretically, to have the same or opposite signs across the visual field at various states of accommodation. Methods Oblique astigmatism was computed across the central visual field for a rotationally-symmetric schematic-eye using optical design software. Accommodative state was varied by altering the apical radius of curvature and separation of the biconvex lens’s two aspheric surfaces in a manner consistent with published biometry. Oblique astigmatism was evaluated separately for the whole eye, the cornea, and the isolated lens over a wide range of surface curvatures and asphericity values associated with the accommodating lens. We also computed internal oblique astigmatism by subtracting corneal oblique astigmatism from whole-eye oblique astigmatism. Results A visual field map of oblique astigmatism for the cornea in the Navarro model follows the classic, textbook description of radially-oriented axes everywhere in the field. Despite large changes in surface properties during accommodation, intrinsic astigmatism of the isolated human lens for collimated light is also radially oriented and nearly independent of accommodation both in theory and in real eyes. However, the magnitude of ocular oblique astigmatism is smaller than that of the cornea alone, indicating partial compensation by the internal optics. This implies internal oblique astigmatism (which includes wavefront propagation from the posterior surface of the cornea to the anterior surface of the lens and intrinsic lens astigmatism) must have tangentially-oriented axes. This non-classical pattern of tangential axes for internal astigmatism was traced to the influence of corneal power on the angles of incidence of rays striking the internal lens. Conclusions Partial compensation of corneal astigmatism by internal optics is due mainly to the highly converging nature of wavefronts incident upon the lens resulting from corneal refraction. The degree of compensation is quadratically dependent on eccentricity but is expected to diminish as the eye accommodates. Neutralising the cornea by index-matching defeats internal compensation, revealing classical, radially-oriented oblique astigmatism in the isolated lens. PMID:28281302
Stress analysis for structures with surface cracks
NASA Technical Reports Server (NTRS)
Bell, J. C.
1978-01-01
Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.
Frey, Laurent; Masarotto, Lilian; Armand, Marilyn; Charles, Marie-Lyne; Lartigue, Olivier
2015-05-04
Thin film Fabry-Perot filter arrays with high selectivity can be realized with a single patterning step, generating a spatial modulation of the effective refractive index in the optical cavity. In this paper, we investigate the ability of this technology to address two applications in the field of image sensors. First, the spectral tuning may be used to compensate the blue-shift of the filters in oblique incidence, provided the filter array is located in an image plane of an optical system with higher field of view than aperture angle. The technique is analyzed for various types of filters and experimental evidence is shown with copper-dielectric infrared filters. Then, we propose a design of a multispectral filter array with an extended spectral range spanning the visible and near-infrared range, using a single set of materials and realizable on a single substrate.
NASA Astrophysics Data System (ADS)
Lavier, L. L.; Bennett, R. A.; Anderson, M. L.; Matti, J. C.
2005-05-01
Recent displacement rate and geodetic data on the San Andreas, San Jacinto and eastern California shear zone suggest that changes in the geometry and/or the magnitude of the applied forces on the crust (e.g., a general or local change in fault strike relative to plate motion) can generate strain repartitioning within the crust on time scales of millions to thousands of years. The rates over which this repartitioning takes place in response to changing forces are controlled by the rheological evolution of the lithosphere. We investigate the implications of observed fault displacement histories for the rheology of the lithosphere using 2.5 D numerical experiments of deformation in an analogue system. The numerical technique used allows for the spontaneous formation of elastoplastic shear zones and flow in a Maxwell viscoelastic lower crust. The results show that when a strike slip fault is rotated to strike obliquely to the direction of relative plate motion it causes changes in bending and frictional stresses due to the formation of topography. To accommodate these changes, a conjugate system of oblique-striking strike slip faults develops. The total displacement is then slowly distributed over the new fault system on the time scale of mountain building (i.e. million of years). The rate of change is dependent on the strength of the lithosphere as well as the amount of obliquity applied on the initial strike-slip fault. In other numerical experiments we show that in a system of multiple strike-slip fault zones, displacement rate changes can occur over a time scale of about 100 kyr. This time scale corresponds to the Maxwell time at the brittle ductile transition (BDT). In such a system the lithospheric displacement is alternatively distributed (over 100 kyr) in clusters localized in lower crustal channels and over strike-slip fault zones. We show that the clustering time scale is controlled by the ratio of upper to lower crustal strength. This incomplete exercise shows how displacement rates data sets spanning thousands to millions of years can be used to constrain numerical experiments of lithospheric deformation and, in doing so, place new constraints on the rheology of the lithosphere.
NASA Astrophysics Data System (ADS)
Sadeghi, Shahriar; Yassaghi, Ali
2016-04-01
Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj-Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.
Change in trunk muscle activities with prone bridge exercise in patients with chronic low back pain.
Kong, Yong-Soo; Park, Seol; Kweon, Mi-Gyong; Park, Ji-Won
2016-01-01
[Purpose] The aim of this study was to determine the effect of three different bridge exercises on internal oblique, external oblique, transverse abdominis, and erector spinae activities. [Subjects and Methods] Forty-five subjects with chronic low back pain participated in this study. The training outcome was evaluated with three different testing methods: supine bridge exercise, supine bridge on Swiss ball exercise, and prone bridge exercise. The activities of the transverse abdominis, internal oblique, external oblique, and erector spinae were measured using surface electromyography. [Results] There were significant differences in the internal oblique, external oblique, and erector spinae according to the three kinds of bridging exercises. The internal oblique, external oblique and transverse abdominis activities were highest in the prone bridge exercise, followed by those in the supine bridge on Swiss ball exercise, and supine bridge exercises. The activity of erector spine was highest in the supine bridge on Swiss ball exercise followed by the supine bridge exercise and prone bridge exercise. [Conclusion] These results suggest that prone bridge exercise is more effective than conventional supine bridge exercise and supine bridge on Swiss ball in increasing trunk muscle activity of chronic low back pain patients.
Large capacity oblique all-wing transport aircraft
NASA Technical Reports Server (NTRS)
Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.
1996-01-01
Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.
Acoustic plane waves incident on an oblique clamped panel in a rectangular duct
NASA Technical Reports Server (NTRS)
Unz, H.; Roskam, J.
1980-01-01
The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.
NASA Astrophysics Data System (ADS)
Cai, Z.; Liu, W.; Luo, G.; Xiang, Z.
2018-04-01
The key technologies in the real scene 3D modeling of oblique photography mainly include the data acquisition of oblique photography, layout and surveying of photo control points, oblique camera calibration, aerial triangulation, dense matching of multi-angle image, building of triangulation irregular network (TIN) and TIN simplification and automatic texture mapping, among which aerial triangulation is the core and the results of aerial triangulation directly affect the later model effect and the corresponding data accuracy. Starting from this point of view, this paper aims to study the practical technologies of aerial triangulation for real scene 3D modeling with oblique photography and finally proposes a technical method of aerial triangulation with oblique photography which can be put into practice.
Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow
NASA Technical Reports Server (NTRS)
Cecil, Eric; McDaniel, James C.
2005-01-01
A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I(sub 2)-seeded N(sub 2) hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.
Tidal dissipation in a homogeneous spherical body. II. Three examples: Mercury, Io, and Kepler-10 b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Valeri V.; Efroimsky, Michael, E-mail: vvm@usno.navy.mil, E-mail: michael.efroimsky@usno.navy.mil
In Efroimsky and Makarov (Paper I), we derived from the first principles a formula for the tidal heating rate in a homogeneous sphere, compared it with the previously used formulae, and noted the differences. Now we present case studies: Mercury, Kepler-10 b, and a triaxial Io. A sharp frequency dependence of k {sub 2}/Q near spin-orbit resonances yields a sharp dependence of k {sub 2}/Q (and, therefore, of tidal heating) upon the spin rate. Thereby physical libration plays a major role in tidal heating of synchronously rotating planets. The magnitude of libration in the spin rate being defined by themore » planet's triaxiality, the latter becomes a factor determining the dissipation rate. Other parameters equal, a strongly triaxial synchronized body generates more heat than a similar body of a more symmetrical shape. After an initially triaxial object melts and loses its triaxiality, dissipation becomes less intensive; the body can solidify, with the tidal bulge becoming a new figure with triaxiality lower than the original. We derive approximate expressions for the dissipation rate in a Maxwell planet with the Maxwell time longer than the inverse tidal frequency. The expressions derived pertain to the 1:1 and 3:2 resonances and a nonresonant case; so they are applicable to most close-in super-Earths detected. In these planets, the heating outside synchronism is weakly dependent on the eccentricity and obliquity, provided both these parameters's values are moderate. According to our calculation, Kepler-10 b could hardly survive the intensive tidal heating without being synchronized, circularized, and reshaped through a complete or partial melt-down.« less
Ceres' obliquity history: implications for permanently shadowed regions
NASA Astrophysics Data System (ADS)
Ermakov, A.; Mazarico, E.; Schroeder, S.; Carsenty, U.; Schorghofer, N.; Raymond, C. A.; Zuber, M. T.; Smith, D. E.; Russell, C. T.
2016-12-01
The Dawn spacecraft's Framing Camera (FC) images and radio-tracking data have allowed precise determination of Ceres' rotational pole and obliquity. Presently, the obliquity (ɛ) of Ceres is ≈4°. Because of the low obliquity, permanently shadowed regions (PSRs) can exist on Ceres, and have been identified using both images and shape models (Schorghofer et al., 2016). These observations make Ceres only the third body in the solar system with recognized PSRs after the Moon (Zuber et al., 1997) and Mercury (Chabot et al., 2012). Some craters in Ceres' polar regions possess bright crater floor deposits (BCFD). These crater floors are typically in shadow. However, they receive light scattered from the surrounding sunlit crater walls and therefore can be seen by FC. These bright deposits are hypothesized to be water ice accumulated in PSR cold traps, analogous to the Moon (Watson et al., 1961). The existence of the PSRs critically depends on the body's obliquity. The goal of this work is to study the history of Ceres' obliquity. Knowing past obliquity variations can shed light on the history of PSRs, and can help constrain the water-ice deposition time scales. We integrate the obliquity of Ceres over the last 3 My for the range of C/MR2vol constrained by the Dawn gravity measurements (Park et al., 2016, Ermakov et al., 2016) using methods described in Wisdom & Holman (1991) and Touma & Wisdom (1994). The obliquity history for C/MR2vol=0.392 is shown in Fig. 1. The integrations show that the obliquity of Ceres undergoes large oscillations with the main period of T=25 ky and a maximum of 19.7°. The obliquity oscillations are driven by the periodic change of Ceres' orbit inclination (T=22 ky) and the pole precession (T=210 ky). Ceres passed a local obliquity minimum 1327 years ago when (ɛmin=2.4°). The most recent maximum was 13895 years ago (ɛmax=18.5°). At such high obliquity, most of the present-day PSRs receive direct sunlight. We find a correlation between BCFDs and the most persistent PSRs. In the northern hemisphere, we find that only two PSRs remain at ɛmax. Interestingly, these PSRs contain BCFDs. In the southern hemisphere, we find that only one crater with a BCFD remains in shadow at ɛmax. Ongoing work includes computation of the irradiance of individual BCFDs given the orbital and obliquity history.
Compensation of corneal oblique astigmatism by internal optics: a theoretical analysis.
Liu, Tao; Thibos, Larry N
2017-05-01
Oblique astigmatism is a prominent optical aberration of peripheral vision caused by oblique incidence of rays striking the refracting surfaces of the cornea and crystalline lens. We inquired whether oblique astigmatism from these two sources should be expected, theoretically, to have the same or opposite signs across the visual field at various states of accommodation. Oblique astigmatism was computed across the central visual field for a rotationally-symmetric schematic-eye using optical design software. Accommodative state was varied by altering the apical radius of curvature and separation of the biconvex lens's two aspheric surfaces in a manner consistent with published biometry. Oblique astigmatism was evaluated separately for the whole eye, the cornea, and the isolated lens over a wide range of surface curvatures and asphericity values associated with the accommodating lens. We also computed internal oblique astigmatism by subtracting corneal oblique astigmatism from whole-eye oblique astigmatism. A visual field map of oblique astigmatism for the cornea in the Navarro model follows the classic, textbook description of radially-oriented axes everywhere in the field. Despite large changes in surface properties during accommodation, intrinsic astigmatism of the isolated human lens for collimated light is also radially oriented and nearly independent of accommodation both in theory and in real eyes. However, the magnitude of ocular oblique astigmatism is smaller than that of the cornea alone, indicating partial compensation by the internal optics. This implies internal oblique astigmatism (which includes wavefront propagation from the posterior surface of the cornea to the anterior surface of the lens and intrinsic lens astigmatism) must have tangentially-oriented axes. This non-classical pattern of tangential axes for internal astigmatism was traced to the influence of corneal power on the angles of incidence of rays striking the internal lens. Partial compensation of corneal astigmatism by internal optics is due mainly to the highly converging nature of wavefronts incident upon the lens resulting from corneal refraction. The degree of compensation is quadratically dependent on eccentricity but is expected to diminish as the eye accommodates. Neutralising the cornea by index-matching defeats internal compensation, revealing classical, radially-oriented oblique astigmatism in the isolated lens. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
A Spine Loading Model of Women in the Military
1996-10-01
latissimuss dorsi, posterior abdominal internal obliques, rectus abdomini and the abdominal external obliques (5,19). MVC exertions consisting of...Women tend to possess greater hip breadth and narrower abdominal depth than men (9). The sacroiliac joint is positioned several centimeters anteriorly...internal obliques, external obliques, rectus abdomini, and psoas major. The sizes and area centriods are also quantified for the vertebral body and the
The Applicability of the Army Physical Fitness Test in the Contemporary Operating Environment
2008-06-13
abdominis, external obliques, internal obliques, latissimus dorsi, lumbar paraspinals, and rectus femoris during performance of different abdominal ...by asserting the need to train soldiers in the most stressful, painful , realistic environment possible in order to prepare them for combat. Both of...In Medicine & Science in Sports & Exercise, researchers specifically identify usage of the rectus abdominis, external oblique, internal oblique
NASA Astrophysics Data System (ADS)
Umhoefer, P. J.
2014-12-01
Oblique-divergent or transtensional zones present particular challenges in ancient belts because of the poor preservation potential of the thinned continental crust and young oceanic crust. Many oblique belts will preferentially preserve their boundary zones that lie within continents rather than the main plate boundary zone, which will be at a much lower elevation and composed of denser crust. Zones of tectonic escape or strike-slip overprinting of arcs or plateaus deform continental crust and may be better preserved. Here I highlight parameters and processes that have major effects on oblique divergent belts. Strain partitioning is common, but not ubiquitous, along and across oblique boundaries; the causes of partitioning are not always clear and make this especially vexing for work in ancient belts. Partitioning causes complexity in the patterns of structures at all scales. Inherited structures commonly determine the orientation and style of structures along oblique boundaries and can control the pattern of faults across transtensional belts. Regionally, inherited trends of arcs or other 1000-km-scale features can control boundary structures. Experiments and natural examples suggest that oblique boundary zones contain less of a record of strike-slip faulting and more extensional structures. The obliquity of divergence produces predictable families of structures that typify (i) strike-slip dominated zones (obliquity <~20°), (ii) mixed zones (~20° - ~35°), and (iii) extension dominated zones (>~35°). The combination of partitioning and mixed structures in oblique zones means that the boundaries of belts with large-magnitude strike-slip faulting will commonly preserve little of no record of that faulting history. Plate boundaries localize strain onto the main plate boundary structures from the broader plate boundary and therefore the boundary zones commonly preserve the earlier structures more than later structures, a major problem in interpreting ancient belts. Sediment input is critical in some oblique plate boundaries because these belts become more pronounced sediment sinks over time. The evolving topography of oblique boundaries means that they have great variability of sediment flux into differing parts of the system; large rivers enter these belts only in special circumstances.
Centrifuge models simulating magma emplacement during oblique rifting
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Bonini, Marco; Innocenti, Fabrizio; Manetti, Piero; Mulugeta, Genene
2001-07-01
A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71-84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity ( α), which determines the ratio between the shearing and stretching components of movement. For α⩽35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α⩾45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α⩽35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).
2018-05-09
Flown in the mid 70's, this Oblique Wing was a large-scale R/C experimental aircraft to demonstrate the ability to pivot its wing to an oblique angle, allowing for a reduced drag penalty at transonic speeds.
Bow and Oblique Shock Formation in Soap Film
NASA Astrophysics Data System (ADS)
Kim, Ildoo; Mandre, Shreyas; Sane, Aakash
2015-11-01
In recent years, soap films have been exploited primarily to approximate two-dimensional flows while their three-dimensional character is relatively unattended. An example of the three-dimensional character of the flow in a soap film is the observed Marangoni shock wave when the flow speed exceeds the wave speed. In this study, we investigated the formation of bow and oblique shocks in soap films generated by wedges with different deflection angles. When the wedge deflection angle is small and the film flows fast, oblique shocks are observed. When the oblique shock cannot exists, bow shock is formed upstream the wedge. We characterized the oblique shock angle as a function of the wedge deflection angle and the flow speed, and we also present the criteria for transition between bow and oblique Marangoni shocks in soap films.
Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD)
Sysoeva, Olga V.; Davletshina, Maria A.; Orekhova, Elena V.; Galuta, Ilia A.; Stroganova, Tatiana A.
2016-01-01
People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the “oblique effect.” Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7–15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity. PMID:26834540
Orientation perception in rhesus monkeys (Macaca mulatta).
Wakita, Masumi
2008-07-01
It was previously demonstrated that monkeys divide the orientation continuum into cardinal and oblique categories. However, it is still unclear how monkeys perceive within-category orientations. To better understand monkeys' perception of orientation, two experiments were conducted using five monkeys. In experiment 1, they were trained to identify either one cardinal or one oblique target orientation out of six orientations. The results showed that they readily identified the cardinal target whether it was oriented horizontally or vertically. However, a longer training period was needed to identify the oblique target orientation regardless of its degree and direction of tilt. In experiment 2, the same monkeys were trained to identify two-oblique target orientations out of six orientations. These orientations were paired, either sharing the degree of tilt, direction of tilt, or neither property. The results showed that the monkeys readily identified oblique orientations when they had either the same degree or direction of tilt. However, when the target orientations had neither the same degree nor direction of tilt, the animals had difficulty in identifying them. In summary, horizontal and vertical orientations are individually processed, indicating that monkeys do not have a category for cardinal orientation, but they may recognize cardinal orientations as non-obliques. In addition, monkeys efficiently abstract either the degree or the direction of tilt from oblique orientations, but they have difficulty combining these features to identify an oblique orientation. Thus, not all orientations within the oblique category are equally perceived.
A numerical study on the oblique focus in MR-guided transcranial focused ultrasound
NASA Astrophysics Data System (ADS)
Hughes, Alec; Huang, Yuexi; Pulkkinen, Aki; Schwartz, Michael L.; Lozano, Andres M.; Hynynen, Kullervo
2016-11-01
Recent clinical data showing thermal lesions from treatments of essential tremor using MR-guided transcranial focused ultrasound shows that in many cases the focus is oblique to the main axis of the phased array. The potential for this obliquity to extend the focus into lateral regions of the brain has led to speculation as to the cause of the oblique focus, and whether it is possible to realign the focus. Numerical simulations were performed on clinical export data to analyze the causes of the oblique focus and determine methods for its correction. It was found that the focal obliquity could be replicated with the numerical simulations to within 23.2+/- {{13.6}\\circ} of the clinical cases. It was then found that a major cause of the focal obliquity was the presence of sidelobes, caused by an unequal deposition of power from the different transducer elements in the array at the focus. In addition, it was found that a 65% reduction in focal obliquity was possible using phase and amplitude corrections. Potential drawbacks include the higher levels of skull heating required when modifying the distribution of power among the transducer elements, and the difficulty at present in obtaining ideal phase corrections from CT information alone. These techniques for the reduction of focal obliquity can be applied to other applications of transcranial focused ultrasound involving lower total energy deposition, such as blood-brain barrier opening, where the issue of skull heating is minimal.
Mostafa, Attiat M; Kassem, Rehab R
2018-05-01
To compare the effect of, and the rate of subsequent development of iatrogenic antielevation syndrome after, unilateral versus bilateral inferior oblique graded recession-anteriorization to treat unilateral inferior oblique overaction. Thirty-four patients with unilateral inferior oblique overaction were included in a randomized prospective study. Patients were equally divided into 2 groups. Group UNI underwent unilateral, group BI bilateral, inferior oblique graded recession-anteriorization. A successful outcome was defined as orthotropia, or within 2 ∆ of a residual hypertropia, in the absence of signs of antielevation syndrome, residual inferior oblique overaction, V-pattern, dissociated vertical deviation, or ocular torticollis. A successful outcome was achieved in 11 (64.7%) and 13 (76.5%) patients in groups UNI and BI, respectively (p = 0.452). Antielevation syndrome was diagnosed as the cause of surgical failure in 6 (35.3%) and 2 (11.8%) patients, in groups UNI and BI, respectively (p = 0.106). The cause of surgical failure in the other 2 patients in group BI was due to persistence of ocular torticollis and hypertropia in a patient with superior oblique palsy and a residual V-pattern and hypertropia in the other patient. The differences between unilateral and bilateral inferior oblique graded recession-anteriorization are insignificant. Unilateral surgery has a higher tendency for the subsequent development of antielevation syndrome. Bilateral surgery may still become complicated by antielevation syndrome, although at a lower rate. In addition, bilateral surgery had a higher rate of undercorrection. Further studies on a larger sample are encouraged.
Color Variations on Mount Sharp, Mars White Balanced
2016-12-13
The foreground of this scene from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows purple-hued rocks near the rover's late-2016 location on lower Mount Sharp. The scene's middle distance includes higher layers that are future destinations for the mission. Variations in color of the rocks hint at the diversity of their composition on lower Mount Sharp. The purple tone of the foreground rocks has been seen in other rocks where Curiosity's Chemical and Mineralogy (CheMin) instrument has detected hematite. Winds and windblown sand in this part of Curiosity's traverse and in this season tend to keep rocks relatively free of dust, which otherwise can cloak rocks' color. The three frames combined into this mosaic were acquired by the Mastcam's right-eye camera on Nov. 10, 2016, during the 1,516th Martian day, or sol, of Curiosity's work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. Sunlight on Mars is tinged by the dusty atmosphere and this adjustment helps geologists recognize color patterns they are familiar with on Earth. The view spans about 15 compass degrees, with the left edge toward southeast. The rover's planned direction of travel from its location when this scene was recorded is generally southeastward. The orange-looking rocks just above the purplish foreground ones are in the upper portion of the Murray formation, which is the basal section of Mount Sharp, extending up to a ridge-forming layer called the Hematite Unit. Beyond that is the Clay Unit, which is relatively flat and hard to see from this viewpoint. The next rounded hills are the Sulfate Unit, Curiosity's highest planned destination. The most distant slopes in the scene are higher levels of Mount Sharp, beyond where Curiosity will drive. Figure 1 is a version of the same scene with annotations added as reference points for distance, size and relative elevation. The annotations are triangles with text telling the distance (in kilometers) to the point in the image marked by the triangle, the point's elevation (in meters) relative to the rover's location, and the size (in meters) of an object as big as the triangle at that distance. An annotated figure is available at http://photojournal.jpl.nasa.gov/catalog/PIA21256
Obliquity evolution of the minor satellites of Pluto and Charon
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Nichols-Fleming, Fiona; Chen, Yuan-Yuan; Noyelles, Benoît
2017-09-01
New Horizons mission observations show that the small satellites Styx, Nix, Kerberos and Hydra, of the Pluto-Charon system, have not tidally spun-down to near synchronous spin states and have high obliquities with respect to their orbit about the Pluto-Charon binary (Weaver, 2016). We use a damped mass-spring model within an N-body simulation to study spin and obliquity evolution for single spinning non-round bodies in circumbinary orbit. Simulations with tidal dissipation alone do not show strong obliquity variations from tidally induced spin-orbit resonance crossing and this we attribute to the high satellite spin rates and low orbital eccentricities. However, a tidally evolving Styx exhibits intermittent obliquity variations and episodes of tumbling. During a previous epoch where Charon migrated away from Pluto, the minor satellites could have been trapped in orbital mean motion inclination resonances. An outward migrating Charon induces large variations in Nix and Styx's obliquities. The cause is a commensurability between the mean motion resonance frequency and the spin precession rate of the spinning body. As the minor satellites are near mean motion resonances, this mechanism could have lifted the obliquities of all four minor satellites. The high obliquities need not be primordial if the minor satellites were at one time captured into mean motion resonances.
Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.
Vectorial point spread function and optical transfer function in oblique plane imaging.
Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang
2014-05-05
Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.
The effect of polar caps on obliquity
NASA Technical Reports Server (NTRS)
Lindner, B. L.
1993-01-01
Rubincam has shown that the Martian obliquity is dependent on the seasonal polar caps. In particular, Rubincam analytically derived this dependence and showed that the change in obliquity is directly proportional to the seasonal polar cap mass. Rubincam concludes that seasonal friction does not appear to have changed Mars' climate significantly. Using a computer model for the evolution of the Martian atmosphere, Haberle et al. have made a convincing case for the possibility of huge polar caps, about 10 times the mass of the current polar caps, that exist for a significant fraction of the planet's history. Since Rubincam showed that the effect of seasonal friction on obliquity is directly proportional to polar cap mass, a scenario with a ten-fold increase in polar cap mass over a significant fraction of the planet's history would result in a secular increase in Mars' obliquity of perhaps 10 degrees. Hence, the Rubincam conclusion of an insignificant contribution to Mars' climate by seasonal friction may be incorrect. Furthermore, if seasonal friction is an important consideration in the obliquity of Mars, this would significantly alter the predictions of past obliquity.
Oblique effect in visual area 2 of macaque monkeys
Shen, Guofu; Tao, Xiaofeng; Zhang, Bin; Smith, Earl L.; Chino, Yuzo M.
2014-01-01
The neural basis of an oblique effect, a reduced visual sensitivity for obliquely oriented stimuli, has been a matter of considerable debate. We have analyzed the orientation tuning of a relatively large number of neurons in the primary visual cortex (V1) and visual area 2 (V2) of anesthetized and paralyzed macaque monkeys. Neurons in V2 but not V1 of macaque monkeys showed clear oblique effects. This orientation anisotropy in V2 was more robust for those neurons that preferred higher spatial frequencies. We also determined whether V1 and V2 neurons exhibit a similar orientation anisotropy soon after birth. The oblique effect was absent in V1 of 4- and 8-week-old infant monkeys, but their V2 neurons showed a significant oblique effect. This orientation anisotropy in infant V2 was milder than that in adults. The results suggest that the oblique effect emerges in V2 based on the pattern of the connections that are established before birth and enhanced by the prolonged experience-dependent modifications of the neural circuitry in V2. PMID:24511142
Long-Term Obliquity Variations of a Moonless Earth
NASA Astrophysics Data System (ADS)
Barnes, Jason W.; Lissauer, J. J.; Chambers, J. E.
2012-05-01
Earth's present-day obliquity varies by +/-1.2 degrees over 100,000-year timescales. Without the Moon's gravity increasing the rotation axis precession rate, prior theory predicted that a moonless Earth's obliquity would be allowed to vary between 0 and 85 degrees -- moreso even than present-day Mars (0 - 60 degrees). We use a modified version of the symplectic orbital integrator `mercury' to numerically investigate the obliquity evolution of hypothetical moonless Earths. Contrary to the large theoretically allowed range, we find that moonless Earths more typically experience obliquity variations of just +/- 10 degrees over Gyr timescales. Some initial conditions for the moonless Earth's rotation rate and obliquity yield slightly greater variations, but the majority have smaller variations. In particular, retrograde rotators are quite stable and should constitute 50% of the population if initial terrestrial planet rotation is isotropic. Our results have important implications for the prospects of long-term habitability of moonless planets in extrasolar systems.
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
NASA Technical Reports Server (NTRS)
Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.
2014-01-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
Kurtulmuş, Tuhan; Sağlam, Necdet; Saka, Gursel; Avcı, Cem Coşkun; Uğurlar, Meriç; Türker, Mehmet
2014-10-01
At first presentation of paediatric humeral lateral condyle fractures, radiological methods such as computerised tomography, ultrasonography, magnetic resonance imaging, arthrography, and internal oblique radiography are used to determine stability. Very few studies show which radiological method should be used to evaluate displacement at follow-up for conservatively treated patients. This study aimed to show that internal oblique radiography is a simple, effective method to determine the subsequent development of fracture displacement in patients with an initially non-displaced or minimally displaced fracture. In this retrospective study, 27 paediatric patients with non-displaced or minimally displaced (<2 mm) humerus lateral condyle fracture were evaluated by elbow anteroposterior radiograph. The degree of fracture displacement was evaluated by anteroposterior then by internal oblique radiographs. The first follow-up was made between the 5th and 8th day and thereafter at intervals of 7-10 days. Of the 27 patients identified with non-displaced or minimally displaced (<2 mm) fracture from the initial anteroposterior radiograph, 16 were accepted as displacement >2 mm as a result of the evaluation of the internal oblique radiography and underwent surgery. At follow-up, 2 of 11 patients were defined with displacement from anteroposterior and internal oblique radiographs and 4 from the internal oblique radiographs and underwent surgery. Conservative treatment was applied to 5 patients. Internal oblique radiography is the best imaging showing subsequent fracture displacement in initially non-displaced or minimally displaced humerus lateral condyle fractures. At the first week follow-up, anteroposterior and particularly internal oblique radiographs should be taken of conservatively treated patients.
Hidden (end-on) patent ductus arteriosus: recognition and device closure.
Garg, Naveen; Madan, Bevunahalli Kantharaj
2016-02-01
Sometimes, it is difficult to visualize a patent ductus arteriosus and deploy a device in the standard lateral view because of an end-on orientation. The right anterior oblique view may be helpful by separating the ductus arteriosus from the aorta. This study was undertaken to evaluate the incidence of end-on patent ductus arteriosus and the utility of the right anterior oblique view during device closure. Aortography was performed in lateral and right anterior oblique views before, during, and after successful device deployment in 117 consecutive patients. When a ductus arteriosus was not clearly visible in the lateral view due to overlapping by the aorta, it was termed "right anterior oblique view useful". The types of patent ductus arteriosus were A, B, C, and E in 86 (73.5%), 20 (17.1%), 4 (3.4%), and 7 (6.0%) patients, respectively. An end-on ductus arteriosus was present in 24 (20.5%) patients (14 type B, 10 type A). The right anterior oblique view was useful during device closure in 15 (12.8%) cases (all end-on type). Among all cases of end-on patent ductus arteriosus, it was useful in 62.5% (most type B and a few type A). In all of these, the device appeared obliquely oriented and foreshortened in the lateral view but fully profiled in the right anterior oblique view. Recognizing an end-on patent ductus arteriosus and utilizing the right anterior oblique view simplified device closure. For ducts well-profiled in the lateral view, the right anterior oblique view is unnecessary and avoidable. © The Author(s) 2016.
Effects of extreme obliquity variations on the habitability of exoplanets.
Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S
2014-04-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
Mass spectrometry. [in organic ion and biorganic chemistry and medicine
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Cox, R. E.; Derrick, P. J.
1974-01-01
Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.
Anatomy of news consumption on Facebook.
Schmidt, Ana Lucía; Zollo, Fabiana; Del Vicario, Michela; Bessi, Alessandro; Scala, Antonio; Caldarelli, Guido; Stanley, H Eugene; Quattrociocchi, Walter
2017-03-21
The advent of social media and microblogging platforms has radically changed the way we consume information and form opinions. In this paper, we explore the anatomy of the information space on Facebook by characterizing on a global scale the news consumption patterns of 376 million users over a time span of 6 y (January 2010 to December 2015). We find that users tend to focus on a limited set of pages, producing a sharp community structure among news outlets. We also find that the preferences of users and news providers differ. By tracking how Facebook pages "like" each other and examining their geolocation, we find that news providers are more geographically confined than users. We devise a simple model of selective exposure that reproduces the observed connectivity patterns.
Surface reconstruction from scattered data through pruning of unstructured grids
NASA Technical Reports Server (NTRS)
Maksymiuk, C. M.; Merriam, M. L.
1991-01-01
This paper describes an algorithm for reconstructing a surface from a randomly digitized object. Scan data (treated as a cloud of points) is first tesselated out to its convex hull using Delaunay triangulation. The line-of-sight between each surface point and the scanning device is traversed, and any tetrahedra which are pierced by it are removed. The remaining tetrahedra form an approximate solid model of the scanned object. Due to the inherently limited resolution of any scan, this algorithm requires two additional procedures to produce a smooth, polyhedral surface: one process removes long, narrow tetrahedra which span indentations in the surface between digitized points; the other smooths sharp edges. The results for a moderately resolved sample body and a highly resolved aircraft are displayed.
Three-dimensional frictional plastic strain partitioning during oblique rifting
NASA Astrophysics Data System (ADS)
Duclaux, Guillaume; Huismans, Ritske S.; May, Dave
2017-04-01
Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.
Evaluation of the oblique detonation wave ramjet
NASA Technical Reports Server (NTRS)
Morrison, R. B.
1978-01-01
The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.
Simulation of an oblique collision of a locomotive and an intermodal container
DOT National Transportation Integrated Search
1999-11-01
This paper presents an approach to modeling an oblique collision of a locomotive and an intermodal container. Previous studies of offset and oblique train collisions have used one and two-dimensional models to determine the trajectories of the equipm...
The scaling of oblique plasma double layers
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1983-01-01
Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three dimensional velocities and angles. These data are then used to constrain Maxwell's Z Model and follow the subsurface evolution of the excavation-stage flow-field center during oblique impacts.
Where Are the Asteroids? The Design of ASTPT and ASTID.
1980-04-15
obliquity A = nutation in longitude = obliquity of ecliptic , of date e 0 obliquity of ecliptic , 1950.0 0O eutra rcsin uniy e q 1c 6 equatorial precession...need an additional rotation by the obliquity of the ecliptic , r- = R1(-Eo)o; Eo = 23*26蠔 (6) There is a very old trick in astronomy to simplify...execution speed. This is accomplished by using an approximate geocentric ecliptic position to eliminate, as quickly (in terms of CPU time) as possible
Comparison of Chevron and Distal Oblique Osteotomy for Bunion Correction.
Scharer, Brandon M; DeVries, J George
2016-01-01
The chevron osteotomy is a standard procedure by which bunions are corrected. One of us routinely performs a distal oblique osteotomy, which, to the best of our knowledge, has not been described for the correction of bunion deformities. The purpose of the present study was to compare the short- and medium-term results of the distal oblique and chevron osteotomies for bunion correction. We performed a retrospective clinical and radiographic comparison of patients who had undergone a distal oblique or chevron osteotomy for the correction of bunion deformity. In addition, a prospective patient satisfaction survey was undertaken. A total of 55 patients were included in the present study and were treated from January 2012 to November 2014. Of the 55 patients, 27 (49.2%) were in the chevron group and 28 (50.8%) in the distal oblique group. Radiographically, no statistically significant difference was found between the 2 groups with respect to postoperative first intermetatarsal angle (p < .0001) and hallux valgus angle (p < .0001), but a greater change was found in the intermetatarsal angle in the distal oblique group (p = .467). Prospective patient satisfaction scores were available for 33 patients (60%), 16 (29%) in the chevron group and 17 (31%) in the distal oblique group. When converting the satisfaction score to a numerical score, the chevron group scored 3.3 ± 1.1 and the distal oblique group scored 3.2 ± 0.8 (p = .812). We found that the distal oblique osteotomy used in the present study is simple and reliable and showed radiographic correction and patient satisfaction equivalent to those in the chevron osteotomy. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
The effect of astigmatism axis on visual acuity.
Mimouni, Michael; Nemet, Achia; Pokroy, Russell; Sela, Tzahi; Munzer, Gur; Kaiserman, Igor
2017-05-11
To evaluate the effect of astigmatism axis on uncorrected distance visual acuity (UDVA) in emmetropic eyes that underwent laser refractive surgery. This retrospective study included patients who underwent laser in situ keratomileusis or photorefractive keratectomy between January 2000 and December 2015 at the Care-Vision Laser Centers, Tel Aviv, Israel. Eyes with a 3-month postoperative spherical equivalent between -0.5 D and 0.5 D were included in this study. Eyes with ocular comorbidities and planned ametropia were excluded. Study eyes were divided into 3 groups according to the steep astigmatic axis: with the rule (WTR) (60-120), oblique (31-59 or 121-149), and against the rule (ATR) (0-30 or 150-180). The UDVA of these 3 groups was compared. The oblique group was divided into oblique ATR and oblique WTR, which were compared with each other. A total of 17,416 consecutive eyes of 8,708 patients were studied. The WTR eyes (n = 10,651) had significantly better UDVA (logMAR 0.01 ± 0.08) than the oblique (n = 3,141, logMAR 0.02 ± 0.09) and ATR eyes (n = 3,624, logMAR 0.02 ± 0.10) (p<0.001). The oblique WTR group had significantly better UDVA than the oblique ATR group (p<0.001). The UDVA of the oblique and ATR groups was similar. Stepwise multiple regression analysis showed that the group accounted for 15% of the UDVA variance (p = 0.04). The astigmatic axis has a small but significant effect on UDVA in emmetropic eyes; WTR was better than oblique and ATR astigmatism. Therefore, when correcting astigmatism, it may be preferable to err towards WTR astigmatism.
Jack, Bradley N; Roeber, Urte; O'Shea, Robert P
2017-01-01
When dissimilar images are presented one to each eye, we do not see both images; rather, we see one at a time, alternating unpredictably. This is called binocular rivalry, and it has recently been used to study brain processes that correlate with visual consciousness, because perception changes without any change in the sensory input. Such studies have used various types of images, but the most popular have been gratings: sets of bright and dark lines of orthogonal orientations presented one to each eye. We studied whether using cardinal rival gratings (vertical, 0°, and horizontal, 90°) versus oblique rival gratings (left-oblique, -45°, and right-oblique, 45°) influences early neural correlates of visual consciousness, because of the oblique effect: the tendency for visual performance to be greater for cardinal gratings than for oblique gratings. Participants viewed rival gratings and pressed keys indicating which of the two gratings they perceived, was dominant. Next, we changed one of the gratings to match the grating shown to the other eye, yielding binocular fusion. Participants perceived the rivalry-to-fusion change to the dominant grating and not to the other, suppressed grating. Using event-related potentials (ERPs), we found neural correlates of visual consciousness at the P1 for both sets of gratings, as well as at the P1-N1 for oblique gratings, and we found a neural correlate of the oblique effect at the N1, but only for perceived changes. These results show that the P1 is the earliest neural activity associated with visual consciousness and that visual consciousness might be necessary to elicit the oblique effect.
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.
2014-01-01
Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714
Yamada, Akira; Terakawa, Mitsuhiro
2015-04-10
We present a design method of a bull's eye structure with asymmetric grooves for focusing oblique incident light. The design method is capable of designing transmission peaks to a desired oblique angle with capability of collecting light from a wider range of angles. The bull's eye groove geometry for oblique incidence is designed based on the electric field intensity pattern around an isolated subwavelength aperture on a thin gold film at oblique incidence, calculated by the finite difference time domain method. Wide angular transmission efficiency is successfully achieved by overlapping two different bull's eye groove patterns designed with different peak angles. Our novel design method would overcome the angular limitations of the conventional methods.
Hyong, In Hyouk; Kang, Jong Ho
2013-08-01
[Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected.
An oblique muscle hematoma as a rare cause of severe abdominal pain: a case report.
Shimodaira, Masanori; Kitano, Tomohiro; Kibata, Minoru; Shirahata, Kumiko
2013-01-18
Abdominal wall hematomas are an uncommon cause of acute abdominal pain and are often misdiagnosed. They are more common in elderly individuals, particularly in those under anticoagulant therapy. Most abdominal wall hematomas occur in the rectus sheath, and hematomas within the oblique muscle are very rare and are poorly described in the literature. Here we report the case of an oblique muscle hematoma in a middle-aged patient who was not under anticoagulant therapy. A 42-year-old Japanese man presented with a painful, enlarging, lateral abdominal wall mass, which appeared after playing baseball. Abdominal computed tomography and ultrasonography showed a large soft tissue mass located in the patient's left internal oblique muscle. A diagnosis of a lateral oblique muscle hematoma was made and the patient was treated conservatively. Physicians should consider an oblique muscle hematoma during the initial differential diagnosis of pain in the lateral abdominal wall even in the absence of anticoagulant therapy or trauma.
Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect
NASA Astrophysics Data System (ADS)
Tardioli, C.; Farnocchia, D.; Rozitis, B.; Cotto-Figueroa, D.; Chesley, S. R.; Statler, T. S.; Vasile, M.
2017-12-01
Aims: From light curve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid's obliquity. Methods: By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution results in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results: We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids.
NASA Astrophysics Data System (ADS)
Urías Espinosa, J.; Bandy, W. L.; Mortera Gutiérrez, C. A.; Núñez Cornú, Fco. J.; Mitchell, N. C.
2016-03-01
The Middle America Trench bends sharply northward at 20°N. This, along with the close proximity of the Rivera-North America Euler pole to the northern end of this trench, sharply increases the obliquity of subduction at 20°N. By analogy with other subduction zones with similar sharply changing obliquity, significant trench parallel extension is expected to exist in the forearc region near the bend. To evaluate this possibility, multibeam bathymetric, seafloor backscatter and sub-bottom seismic reflection data were collected in this area during the MORTIC08 campaign of the B.O. El Puma. These data image in detail a large submarine canyon (the Ipala Canyon) extending from the coast at 20°05‧N to the Middle America Trench at 19°50‧N. This canyon is 114 km long and is fed by sediments originating from two, possibly three, small rivers: the Ipala, Tecolotlán and Maria Garza. This canyon deeply incises (up to 600 m) the entire continental slope and at least the outer part of the shelf. Within the canyon, we observe meanders and narrow channels produced by turbidity flows indicating that the canyon is active. In the marginal areas of the canyon slumps, rills, and uplifts suggest that mass movements and fluid flow have had a major impact on the seafloor morphology. The seafloor bathymetry, backscatter images and sub-bottom reflection profiles evidence the tectonic processes occurring in this area. Of particular interest, the canyon is deflected by almost 90° at three locations, the deflections all having a similar azimuth of between 125° and 130°. Given the prominence and geometry of this canyon, along with its tectonic setting, we propose that the presence of the canyon is related to extension produced by the sharp change in the plate convergence. If so, the canyon may lie along the southeast boundary of a major forearc block (the Banderas Forearc Block).
Spin Vector and Shape of (6070) Rheinland and Their Implications
NASA Astrophysics Data System (ADS)
Vokrouhlický, David; Ďurech, Josef; Polishook, David; Krugly, Yurij N.; Gaftonyuk, Ninel N.; Burkhonov, Otabek A.; Ehgamberdiev, Shukhrat A.; Karimov, Rivkat; Molotov, Igor E.; Pravec, Petr; Hornoch, Kamil; Kušnirák, Peter; Oey, Julian; Galád, Adrián; Žižka, Jindřich
2011-11-01
Main belt asteroids (6070) Rheinland and (54827) 2001 NQ8 belong to a small population of couples of bodies that reside in very similar heliocentric orbits. Vokrouhlický & Nesvorný promoted the term "asteroid pairs," pointing out their common origin within the past tens to hundreds of kyr. Previous attempts to reconstruct the initial configuration of Rheinland and 2001 NQ8 at the time of their separation have led to the prediction that Rheinland's rotation should be retrograde. Here, we report extensive photometric observations of this asteroid and use the light curve inversion technique to directly determine its rotation state and shape. We confirm the retrograde sense of rotation of Rheinland, with obliquity value constrained to be >=140°. The ecliptic longitude of the pole position is not well constrained as yet. The asymmetric behavior of Rheinland's light curve reflects a sharp, near-planar edge in our convex shape representation of this asteroid. Our calibrated observations in the red filter also allow us to determine HR = 13.68 ± 0.05 and G = 0.31 ± 0.05 values of the H-G system. With the characteristic color index V - R = 0.49 ± 0.05 for S-type asteroids, we thus obtain H = 14.17 ± 0.07 for the absolute magnitude of (6070) Rheinland. This is a significantly larger value than previously obtained from analysis of astrometric survey observations. We next use the obliquity constraint for Rheinland to eliminate some degree of uncertainty in the past propagation of its orbit. This is because the sign of the past secular change of its semimajor axis due to the Yarkovsky effect is now constrained. The determination of the rotation state of the secondary component, asteroid (54827) 2001 NQ8, is the key element in further constraining the age of the pair and its formation process.
Geometric Effects on the Amplification of First Mode Instability Waves
NASA Technical Reports Server (NTRS)
Kirk, Lindsay C.; Candler, Graham V.
2013-01-01
The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.
Sediment-starved sand ridges on a mixed carbonate/siliciclastic inner shelf off west-central Florida
Harrison, S.E.; Locker, S.D.; Hine, A.C.; Edwards, J.H.; Naar, D.F.; Twichell, D.C.; Mallinson, D.J.
2003-01-01
High-resolution side-scan mosaics, sediment analyses, and physical process data have revealed that the mixed carbonate/siliciclastic, inner shelf of west-central Florida supports a highly complex field of active sand ridges mantled by a hierarchy of bedforms. The sand ridges, mostly oriented obliquely to the shoreline trend, extend from 2 km to over 25 km offshore. They show many similarities to their well-known counterparts situated along the US Atlantic margin in that both increase in relief with increasing water depth, both are oriented obliquely to the coast, and both respond to modern shelf dynamics. There are significant differences in that the sand ridges on the west-central Florida shelf are smaller in all dimensions, have a relatively high carbonate content, and are separated by exposed rock surfaces. They are also shoreface-detached and are sediment-starved, thus stunting their development. Morphological details are highly distinctive and apparent in side-scan imagery due to the high acoustic contrast. The seafloor is active and not a relict system as indicated by: (1) relatively young AMS 14C dates (< 1600 yr BP) from forams in the shallow subsurface (1.6 meters below seafloor), (2) apparent shifts in sharply distinctive grayscale boundaries seen in time-series side-scan mosaics, (3) maintenance of these sharp acoustic boundaries and development of small bedforms in an area of constant and extensive bioturbation, (4) sediment textural asymmetry indicative of selective transport across bedform topography, (5) morphological asymmetry of sand ridges and 2D dunes, and (6) current-meter data indicating that the critical threshold velocity for sediment transport is frequently exceeded. Although larger sand ridges are found along other portions of the west-central Florida inner shelf, these smaller sand ridges are best developed seaward of a major coastal headland, suggesting some genetic relationship. The headland may focus and accelerate the N-S reversing currents. An elevated rock terrace extending from the headland supports these ridges in a shallower water environment than the surrounding shelf, allowing them to be more easily influenced by currents and surface gravity waves. Tidal currents, storm-generated flows, and seasonally developed flows are shore-parallel and oriented obliquely to the NW-SE trending ridges, indicating that they have developed as described by the Huthnance model. Although inner shelf sand ridges have been extensively examined elsewhere, this study is the first to describe them in a low-energy, sediment-starved, dominantly mixed siliciclastic/carbonate sedimentary environment situated on a former limestone platform. ?? 2003 Elsevier B.V. All rights reserved.
Wiegand, Jean-Paul L.; Gray, Daniel T.; Schimanski, Lesley A.; Lipa, Peter; Barnes, C. A.
2016-01-01
Spatial and episodic memory performance declines with age, and the neural basis for this decline is not well understood. Sharp-wave ripples are brief (∼70 ms) high-frequency oscillatory events generated in the hippocampus and are associated with the consolidation of spatial memories. Given the connection between ripple oscillations and memory consolidation, we investigated whether the structure of ripple oscillations and ripple-triggered patterns of single-unit activity are altered in aged rats. Local field and single-unit activity surrounding sharp-wave ripple events were examined in the CA1 region of the hippocampus of old (n = 5) and young (n = 6) F344 rats during periods of rest preceding and following performance on a place-dependent eyeblink-conditioning task. Neural responses in aged rats differed from responses in young rats in several ways. First, compared with young rats, the rate of ripple occurrence (ripple density) is reduced in aged rats during postbehavior rest. Second, mean ripple frequency during prebehavior and postbehavior rest is lower in aged animals (aged: 132 Hz; young: 146 Hz). Third, single neurons in aged animals responded more consistently from ripple to ripple. Fourth, variability in interspike intervals was greater in aged rats. Finally, neurons were tuned to a narrower range of phases of the ripple oscillation relative to young animals. Together, these results suggest that the CA1 network in aged animals has a reduced “vocabulary” of available representational states. SIGNIFICANCE STATEMENT The hippocampus is a structure that is critical for the formation of episodic memories. Sharp-wave ripple events generated in the hippocampus have been implicated in memory consolidation processes critical to memory stabilization. We examine here whether these ripple oscillations are altered over the course of the life span, which could contribute to hippocampus-dependent memory deficits that occur during aging. This experiment used young and aged memory-impaired rats to examine age-related changes in ripple architecture, ripple-triggered spike variance, and spike-phase coherence. We found that there are, indeed, significant changes in characteristics of ripples in older animals that could impact consolidation processes and memory stabilization in the aged brain. PMID:27194342
Thompson, Ryan F.
2014-01-01
Shoreline erosion rates along Lake Sharpe, a Missouri River reservoir, near the community of Lower Brule, South Dakota, were studied previously during 2011–12 by the U.S. Geological Survey, the Lower Brule Sioux Tribe, and Oglala Lakota College. The rapid shoreline retreat has caused many detrimental effects along the shoreline of Lake Sharpe, including losses of cultural sites, recreation access points, wildlife habitat, irrigated cropland, and landmass. The Lower Brule Sioux Tribe is considering options to reduce or stop erosion. One such option for consideration is the placement of discontinuous rock breakwater structures in shallow water to reduce wave action at shore. Information on the depth of water and stability characteristics of bottom material in nearshore areas of Lake Sharpe is needed by the Lower Brule Sioux Tribe to develop structural mitigation alternatives. To help address this need, a bathymetric survey of nearshore areas of Lake Sharpe near Lower Brule, South Dakota, was completed in 2013 by the U.S. Geological Survey in cooperation with the Lower Brule Sioux Tribe.HYPACK® hydrographic survey software was used to plan data collection transects for a 7-mile reach of Lake Sharpe shoreline near Lower Brule, South Dakota. Regular data collection transects and oblique transects were planned to allow for quality-assurance/quality-control comparisons.Two methods of data collection were used in the bathymetric survey: (1) measurement from a boat using bathymetric instrumentation where water was more than 2 feet deep, and (2) wading using Real-Time Kinematic Global Navigation Satellite System equipment on shore and where water was shallower than 2 feet deep. A dual frequency, 24- or 200-kilohertz narrow beam, depth transducer was used in conjunction with a Teledyne Odom CV100 dual frequency echosounder for boat-based data collection. In water too shallow for boat navigation, the elevation and nature of the reservoir bottom were mapped using Real-Time Kinematic Global Navigation Satellite System equipment.Once the data collection effort was completed, data editing was performed in HYPACK® to remove erroneous data points and to apply water-surface elevations. Maps were developed separately for water depth and bottom elevation for the study area. Lines of equal water depth for 2, 3, 3.5, 4, and 5 feet from the water surface to the lake bottom were mapped in nearshore areas of Lake Sharpe. Overall, water depths stay shallow for quite a distance from shore. In the 288 transects that crossed a 2 foot depth line, this depth occurred an average of 88 feet from shore. Similarly, in the 317 transects that crossed a 3 foot depth line, this did not occur until an average of 343 feet from shore. Elevation contours of the lake bottom were mapped primarily for elevations ranging from 1,419 to 1,416 feet above North American Vertical Datum of 1988.Horizontal errors of the Real-Time Kinematic Global Navigation Satellite System equipment for the study area are essentially inconsequential because water depth and bottom elevation were determined to change relatively slowly. The estimated vertical error associated with the Real-Time Kinematic Global Navigation Satellite System equipment for the study area ranges from 0.6 to 0.9 inch. This vertical error is small relative to the accuracy of the bathymetric data.Accuracy assessments of the data collected for this study were computed according to the National Standard for Spatial Data Accuracy. The maps showing the lines of equal water depth and elevation contours of the lake bottom are able to support a 1-foot contour interval at National Standards for Spatial Data Accuracy vertical accuracy standards, which require a vertical root mean squared error of 0.30 foot or better and a fundamental vertical accuracy calculated at the 95-percent confidence level of 0.60 foot or better.
33 CFR 118.90 - Bridges crossing channel obliquely.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...
33 CFR 118.90 - Bridges crossing channel obliquely.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.
Climate Dynamics and Hysteresis at Low and High Obliquity
NASA Astrophysics Data System (ADS)
Colose, C.; Del Genio, A. D.; Way, M.
2017-12-01
We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.
Obliquity dependence of the tangential YORP
NASA Astrophysics Data System (ADS)
Ševeček, P.; Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.
2016-08-01
Context. The tangential Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a thermophysical effect that can alter the rotation rate of asteroids and is distinct from the so-called normal YORP effect, but to date has only been studied for asteroids with zero obliquity. Aims: We aim to study the tangential YORP force produced by spherical boulders on the surface of an asteroid with an arbitrary obliquity. Methods: A finite element method is used to simulate heat conductivity inside a boulder, to find the recoil force experienced by it. Then an ellipsoidal asteroid uniformly covered by these types of boulders is considered and the torque is numerically integrated over its surface. Results: Tangential YORP is found to operate on non-zero obliquities and decreases by a factor of two for increasing obliquity.
Hyong, In Hyouk
2015-06-01
[Purpose] This study evaluated the effective selective activation method of the vastus medialis oblique for knee joint stabilization in patients with patellofemoral pain syndrome. [Subjects and Methods] Fifteen healthy college students (9 males, 6 females); mean age, height, and weight: 22.2 years, 167.8 cm, and 61.4 kg, respectively) participated. The knee angle was held at 60°. Muscle activities were measured once each during an ordinary squat and a squat accompanied by hip joint adduction. The muscle activities of the vastus medialis oblique and vastus lateralis were measured by electromyography for five seconds while maintaining 60° knee flexion. Electromyography signals were obtained at a sampling rate of 1,000 Hz and band pass filtering at 20-50 Hz. The obtained raw root mean square was divided by the maximal voluntary isometric contraction and expressed as a percentage. The selective activity of the vastus medialis oblique was assessed according to the muscle activity ratio of the vastus medialis oblique to the vastus lateralis. [Results] The activity ratio of the vastus medialis oblique was higher during a squat with hip joint adduction than without. [Conclusion] A squat accompanied by hip joint adduction is effective for the selective activation of the vastus medialis oblique.
NASA Astrophysics Data System (ADS)
Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon
2018-04-01
The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.
NASA Astrophysics Data System (ADS)
Williams, Darren M.; Kasting, James F.; Frakes, Lawrence A.
1998-12-01
Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic, (about 2.4-2.2Gyr ago) and Neoproterozoic (about 820-550Myr ago) eras, although some of the Neoproterozoic data are disputed,. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics - the `snowball Earth' hypothesis - or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54° during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5°. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5°), which is otherwise difficult to explain.
Williams, D M; Kasting, J F; Frakes, L A
1998-12-03
Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic (about 2.4-2.2 Gyr ago) and Neoproterozoic (about 820-550 Myr ago) eras, although some of the Neoproterozoic data are disputed. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics-the 'snowball Earth' hypothesis-or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54 degrees during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5 degrees. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100 Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5 degrees), which is otherwise difficult to explain.
NASA Astrophysics Data System (ADS)
Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko
2018-02-01
North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.
Astronomically Forced Hydrology of the Late Cretaceous Sub-tropical Potosí Basin, Bolivia
NASA Astrophysics Data System (ADS)
Tasistro-Hart, A.; Maloof, A. C.; Schoene, B.; Eddy, M. P.
2017-12-01
Orbital forcings paced the ice ages of the Pleistocene, demonstrating that periodic variations in the latitudinal distribution of insolation amplified by ice-albedo feedbacks can guide global climate. How these forcings operate in the hot-houses that span most of the planet's history, however, is unknown. The lacustrine El Molino formation of the late Cretaceous-early Paleogene Potosí Basin in present-day Bolivia contains carbonate-mud parasequences that record fluctuating hydrological conditions from 73 to 63 Ma. This study presents the first cyclostratigraphic analysis using high-resolution drone-derived imagery and 3D elevation models, combined with conventional stratigraphic measurements and magnetic susceptibility data. The drone-derived data are integrated over the entire outcrop at two field areas using a novel application of stratigraphic potential field modeling that increases signal-to-noise ratios prior to spectral analysis. We demonstrate that these parasequences exhibit significant periodicities consistent with eccentricity (400 and 100 kyr), obliquity (50 kyr, 40 kyr, and 29 kyr), precession (17-23 kyr), and semi-precession (9-11 kyr). New U-Pb ID-TIMS zircon ages from intercalacted ash beds corroborate the interpreted sedimentation rates at two sites, indicating that the Potosí Basin contains evidence for hot-house astronomical forcing of sub-tropical lacustrine hydrology. Global climate simulations of late Cretaceous orbital end-member configurations demonstrate precessional-eccentricity and obliquity driven modulation of basin hydrology. In model simulations, the forcings drive long-term shifts in the location of the intertropical convergence zone, changing precipitation along the northern extent of the Potosí Basin's catchment area. This study is the first to demonstrate orbital forcing of a lacustrine system during the Maastrichtian and could ultimately contribute to a precise age for the Cretaceous-Paleogene boundary.
Why is it so difficult to tilt Uranus?
NASA Astrophysics Data System (ADS)
Rogoszinski, Zeeve; Hamilton, Douglas
2018-04-01
The leading hypothesis for the origin of Uranus' large obliquity (98°) is a polar strike from an Earth sized object, but to tilt Saturn similarly would require an impactor roughly 10x as massive. A more likely cause for Saturn's tilt (27°) is a spin-orbit resonance with Neptune (Ward & Hamilton, 2004; Hamilton & Ward, 2004); might the same process work for Uranus? It initially seems unlikely, as at its current location Uranus' axial precession period is too long to resonate with any of the giant planets' orbital precession frequencies. If we place Uranus between Jupiter and Saturn, however, then Uranus' spin axis would precess much more quickly. Thommes et al. (1999, 2002, 2003) first postulated that Uranus and Neptune were formed between Jupiter and Saturn because the conditions there allow the ice giants to be built rapidly. A resonance for our closer Uranus still requires a distant planet, nevertheless, a condition that can be satisfied if Neptune is ejected from Jupiter and Saturn first with Uranus following significantly later. This scenario, while contrived, is consistent with at least some versions of the Nice model and allows us to fully test the resonance hypothesis. We discovered that even with these optimistic assumptions, i) a resonance capture requires a migration timescale on the order of 100 Myr, and ii) it is impossible to tilt Uranus past 90°. Increasing Neptune's migration speed precludes resonant capture, and instead results in a resonance kick. In the most favorable cases, a resonance kick could raise Uranus' obliquity by 40° on a time span of about 50 Myr. We conclude that even in our best scenario, a resonance cannot fully account for Uranus' tilt. We have investigated some scenarios that include both resonances and collisions, and will report on our findings.
The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.
Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M
2009-04-01
We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.
Habitable planets with high obliquities
NASA Technical Reports Server (NTRS)
Williams, D. M.; Kasting, J. F.
1997-01-01
Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.
NASA Astrophysics Data System (ADS)
Dong, S.; Yan, Q.; Xu, Y.; Bai, J.
2018-04-01
In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.
An "oblique effect" in the visual evoked potential of the cat.
Bonds, A B
1982-01-01
An oblique effect was observed in the amplitude of the VEP recorded from area 17 of the cat. The ratio of the responses to oblique gratings compared with responses to horizontal and vertical gratings averaged 0.77. Orientation dependence was strongest at low spatial frequencies, unlike the effect found in primates.
Hyong, In Hyouk; Kang, Jong Ho
2013-01-01
[Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected. PMID:24259884
Effect of Multiple Scattering on the Compton Recoil Current Generated in an EMP, Revisited
Farmer, William A.; Friedman, Alex
2015-06-18
Multiple scattering has historically been treated in EMP modeling through the obliquity factor. The validity of this approach is examined here. A simplified model problem, which correctly captures cyclotron motion, Doppler shifting due to the electron motion, and multiple scattering is first considered. The simplified problem is solved three ways: the obliquity factor, Monte-Carlo, and Fokker-Planck finite-difference. Because of the Doppler effect, skewness occurs in the distribution. It is demonstrated that the obliquity factor does not correctly capture this skewness, but the Monte-Carlo and Fokker-Planck finite-difference approaches do. Here, the obliquity factor and Fokker-Planck finite-difference approaches are then compared inmore » a fuller treatment, which includes the initial Klein-Nishina distribution of the electrons, and the momentum dependence of both drag and scattering. It is found that, in general, the obliquity factor is adequate for most situations. However, as the gamma energy increases and the Klein-Nishina becomes more peaked in the forward direction, skewness in the distribution causes greater disagreement between the obliquity factor and a more accurate model of multiple scattering.« less
A quantitative analysis of transtensional margin width
NASA Astrophysics Data System (ADS)
Jeanniot, Ludovic; Buiter, Susanne J. H.
2018-06-01
Continental rifted margins show variations between a few hundred to almost a thousand kilometres in their conjugated widths from the relatively undisturbed continent to the oceanic crust. Analogue and numerical modelling results suggest that the conjugated width of rifted margins may have a relationship to their obliquity of divergence, with narrower margins occurring for higher obliquity. We here test this prediction by analysing the obliquity and rift width for 26 segments of transtensional conjugate rifted margins in the Atlantic and Indian Oceans. We use the plate reconstruction software GPlates (http://www.gplates.org) for different plate rotation models to estimate the direction and magnitude of rifting from the initial phases of continental rifting until breakup. Our rift width corresponds to the distance between the onshore maximum topography and the last identified continental crust. We find a weak positive correlation between the obliquity of rifting and rift width. Highly oblique margins are narrower than orthogonal margins, as expected from analogue and numerical models. We find no relationships between rift obliquities and rift duration nor the presence or absence of Large Igneous Provinces (LIPs).
NASA Astrophysics Data System (ADS)
Petronijevic, E.; Leahu, G.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Rizzo Piton, M.; Suomalainen, S.; Guina, M.; Sibilia, C.
2018-04-01
We report on the extrinsic chirality behavior of GaAs-based NWs asymmetrically hybridized with Au. The samples are fabricated by a recently developed, lithography-free self-organized GaAs growth, with the addition of AlGaAs shell and GaAs supershell. The angled Au flux is then used to cover three-out-of-six sidewalls with a thin layer of Au. Oblique incidence and proper sample orientation can lead to circular dichroism. We characterize this chiral behavior at 532 {nm} and 980 {nm} by means of photo-acoustic spectroscopy, which directly measures the difference in absorption for the circularly polarized light of the opposite headedness. For the first time to our knowledge, circular dichroism is observed in both the amplitude and the phase of the photo-acoustic signal. We strongly believe that such samples can be used for chiral applications, spanning from circularly polarized light emission, to the enantioselectivity applications.
Gambling, games of skill and human ecology: a pilot study by a multidimensional analysis approach.
Valera, Luca; Giuliani, Alessandro; Gizzi, Alessio; Tartaglia, Francesco; Tambone, Vittoradolfo
2015-01-01
The present pilot study aims at analyzing the human activity of playing in the light of an indicator of human ecology (HE). We highlighted the four essential anthropological dimensions (FEAD), starting from the analysis of questionnaires administered to actual gamers. The coherence between theoretical construct and observational data is a remarkable proof-of-concept of the possibility of establishing an experimentally motivated link between a philosophical construct (coming from Huizinga's Homo ludens definition) and actual gamers' motivation pattern. The starting hypothesis is that the activity of playing becomes ecological (and thus not harmful) when it achieves the harmony between the FEAD, thus realizing HE; conversely, it becomes at risk of creating some form of addiction, when destroying FEAD balance. We analyzed the data by means of variable clustering (oblique principal components) so to experimentally verify the existence of the hypothesized dimensions. The subsequent projection of statistical units (gamers) on the orthogonal space spanned by principal components allowed us to generate a meaningful, albeit preliminary, clusterization of gamer profiles.
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Matsumoto, H.; Omura, Y.
1993-12-01
Both linear and nonlinear interactions between oblique whistler, electrostatic, quasi-upper hybrid mode waves and an electron beam are studied by linear analyses and electromagnetic particle simulations. In addition to a background cold plasma, we assumed a hot electron beam drifting along a static magnetic field. Growth rates of the oblique whistler, oblique electrostatic, and quasi-upper hybrid instabilities were first calculated. We found that there are four kinds of unstable mode waves for parallel and oblique propagations. They are the electromagnetic whistler mode wave (WW1), the electrostatic whistler mode wave (WW2), the electrostatic mode wave (ESW), and the quasi-upper hybrid mode wave (UHW). A possible mechanism is proposed to explain the satellite observations of whistler mode chorus and accompanied electrostatic waves, whose amplitudes are sometimes modulated at the chorus frequency.
Oblique Wing Research Aircraft on ramp
NASA Technical Reports Server (NTRS)
1976-01-01
This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.
NASA Astrophysics Data System (ADS)
Anderson, Kassandra; Lai, Dong
2018-04-01
Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the formation/migration mechanism. Future observations probing warm Jupiter obliquities may indicate the presence of a hitherto undetected outer companion.
Tilting Uranus without a Collision
NASA Astrophysics Data System (ADS)
Rogoszinski, Zeeve; Hamilton, Douglas P.
2016-10-01
The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about planetary accretion lead to nearly isotropic obliquity distributions for early Uranus. Thus, the odds of Uranus having an initial low obliquity is also about 10%.
Repeatability and oblique flow response characteristics of current meters
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,
1993-01-01
Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.
NASA Astrophysics Data System (ADS)
Williams, George E.
2008-03-01
Sedimentological observations and palaeomagnetic data for Cryogenian glacial deposits present the climatic paradox of grounded glaciers and in situ cold climate near sea-level, glaciomarine deposition, and accompanying large (up to 40 °C) seasonal changes of temperature, all in low to near-equatorial (< 10°) palaeolatitudes (equated with geographic latitudes). Neither the "snowball Earth" nor the "slushball Earth" hypothesis can account for such strong seasonality near the palaeoequator, which together with findings from sedimentology, chemostratigraphy, biogeochemistry, micropalaeontology, geochronology and climate modelling argue against those scenarios. An alternative explanation of glaciation and strong seasonality in low palaeolatitudes is offered by a high (> 54°) obliquity of the ecliptic, which would render the equator cooler than the poles, on average, and amplify global seasonality. A high obliquity per se would not have been a primary trigger for glaciation, but would have strongly influenced the latitudinal distribution of glaciers. The principle of low-latitude glaciation on a terrestrial planet with high obliquity is validated by theoretical studies and observations of Mars. A high obliquity for the early Earth is a likely outcome of a single giant impact at 4.5 Ga, the widely favoured mechanism for lunar origin. This implies that a high obliquity could have prevailed during most of the Precambrian, controlling the low palaeolatitude of glaciations in the early and late Palaeoproterozoic and Cryogenian. It is postulated that the obliquity changed to < 54° between the termination of the last Cryogenian low-palaeolatitude glaciation at ≤ 635 Ma and the initiation of Late Ordovician-Early Silurian circum-polar glaciation at 445 Ma. The High Obliquity, Low-latitude Ice, STrong seasonality (HOLIST) hypothesis for pre-Ediacaran glaciation emerges favourably from numerous glacial and non-glacial tests. The hypothesis is in accord with such established or implied features of Cryogenian glaciogenic successions as extensive and long-lived open seas, an active hydrological cycle, aridity and palaeowesterly (reversed zonal) winds in low palaeolatitudes, and the apparent diachronism or non-correlation of some low-palaeolatitude glaciations. A pre-Ediacaran high obliquity also offers a viable solution of the faint young Sun paradox of a warm Archaean Earth. Furthermore, reduction of obliquity during the Ediacaran-early Palaeozoic would have yielded a more habitable globe with much reduced seasonal stresses and may have been an important factor influencing the unique evolutionary events of the Ediacaran and Cambrian. The palaeolatitudinal distribution of evaporites cannot discriminate unambiguously between high- and low-obliquity states for the pre-Ediacaran Earth. Intervals of true polar wander such as postulated by others for the Ediacaran and Early Cambrian imply major mass-redistributions within the Earth at those times, which may provide a potential mechanism for reducing the obliquity during the Ediacaran-early Palaeozoic.
Anatomy of news consumption on Facebook
Schmidt, Ana Lucía; Del Vicario, Michela; Quattrociocchi, Walter
2017-01-01
The advent of social media and microblogging platforms has radically changed the way we consume information and form opinions. In this paper, we explore the anatomy of the information space on Facebook by characterizing on a global scale the news consumption patterns of 376 million users over a time span of 6 y (January 2010 to December 2015). We find that users tend to focus on a limited set of pages, producing a sharp community structure among news outlets. We also find that the preferences of users and news providers differ. By tracking how Facebook pages “like” each other and examining their geolocation, we find that news providers are more geographically confined than users. We devise a simple model of selective exposure that reproduces the observed connectivity patterns. PMID:28265082
Thermal Remote Sensing with Uav-Based Workflows
NASA Astrophysics Data System (ADS)
Boesch, R.
2017-08-01
Climate change will have a significant influence on vegetation health and growth. Predictions of higher mean summer temperatures and prolonged summer draughts may pose a threat to agriculture areas and forest canopies. Rising canopy temperatures can be an indicator of plant stress because of the closure of stomata and a decrease in the transpiration rate. Thermal cameras are available for decades, but still often used for single image analysis, only in oblique view manner or with visual evaluations of video sequences. Therefore remote sensing using a thermal camera can be an important data source to understand transpiration processes. Photogrammetric workflows allow to process thermal images similar to RGB data. But low spatial resolution of thermal cameras, significant optical distortion and typically low contrast require an adapted workflow. Temperature distribution in forest canopies is typically completely unknown and less distinct than for urban or industrial areas, where metal constructions and surfaces yield high contrast and sharp edge information. The aim of this paper is to investigate the influence of interior camera orientation, tie point matching and ground control points on the resulting accuracy of bundle adjustment and dense cloud generation with a typically used photogrammetric workflow for UAVbased thermal imagery in natural environments.
Albedo matters: Understanding runaway albedo variations on Pluto
NASA Astrophysics Data System (ADS)
Earle, Alissa M.; Binzel, Richard P.; Young, Leslie A.; Stern, S. A.; Ennico, K.; Grundy, W.; Olkin, C. B.; Weaver, H. A.; New Horizons Surface Composition Theme
2018-03-01
The data returned from NASA's New Horizons reconnaissance of the Pluto system show striking albedo variations from polar to equatorial latitudes as well as sharp longitudinal boundaries. Pluto has a high obliquity (currently 119°) that varies by 23° over a period of less than 3 million years. This variation, combined with its regressing longitude of perihelion (360° over 3.7 million years), creates epochs of "Super Seasons" where one pole is pointed at the Sun at perihelion, thereby experiencing a short, relatively warm summer followed by its longest possible period of winter darkness. In contrast, the other pole experiences a much longer, less intense summer and a short winter season. We use a simple volatile sublimation and deposition model to explore the relationship between albedo variations, latitude, and volatile sublimation and deposition for the current epoch as well as historical epochs during which Pluto experienced these "Super Seasons." Our investigation quantitatively shows that Pluto's geometry creates the potential for runaway albedo and volatile variations, particularly in the equatorial region, which can sustain stark longitudinal contrasts like the ones we see between Tombaugh Regio and the informally named Cthulhu Regio.
Design and algorithm research of high precision airborne infrared touch screen
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Bing; Wang, Shuang-Jie; Fu, Yan; Chen, Zhao-Quan
2016-10-01
There are shortcomings of low precision, touch shaking, and sharp decrease of touch precision when emitting and receiving tubes are failure in the infrared touch screen. A high precision positioning algorithm based on extended axis is proposed to solve these problems. First, the unimpeded state of the beam between emitting and receiving tubes is recorded as 0, while the impeded state is recorded as 1. Then, the method of oblique scan is used, in which the light of one emitting tube is used for five receiving tubes. The impeded information of all emitting and receiving tubes is collected as matrix. Finally, according to the method of arithmetic average, the position of the touch object is calculated. The extended axis positioning algorithm is characteristic of high precision in case of failure of individual infrared tube and affects slightly the precision. The experimental result shows that the 90% display area of the touch error is less than 0.25D, where D is the distance between adjacent emitting tubes. The conclusion is gained that the algorithm based on extended axis has advantages of high precision, little impact when individual infrared tube is failure, and using easily.
Kim, Yoon-Chul; Nielsen, Jon-Fredrik; Nayak, Krishna S
2008-01-01
To develop a method that automatically corrects ghosting artifacts due to echo-misalignment in interleaved gradient-echo echo-planar imaging (EPI) in arbitrary oblique or double-oblique scan planes. An automatic ghosting correction technique was developed based on an alternating EPI acquisition and the phased-array ghost elimination (PAGE) reconstruction method. The direction of k-space traversal is alternated at every temporal frame, enabling lower temporal-resolution ghost-free coil sensitivity maps to be dynamically estimated. The proposed method was compared with conventional one-dimensional (1D) phase correction in axial, oblique, and double-oblique scan planes in phantom and cardiac in vivo studies. The proposed method was also used in conjunction with two-fold acceleration. The proposed method with nonaccelerated acquisition provided excellent suppression of ghosting artifacts in all scan planes, and was substantially more effective than conventional 1D phase correction in oblique and double-oblique scan planes. The feasibility of real-time reconstruction using the proposed technique was demonstrated in a scan protocol with 3.1-mm spatial and 60-msec temporal resolution. The proposed technique with nonaccelerated acquisition provides excellent ghost suppression in arbitrary scan orientations without a calibration scan, and can be useful for real-time interactive imaging, in which scan planes are frequently changed with arbitrary oblique orientations.
Ureter Injury as a Complication of Oblique Lumbar Interbody Fusion.
Lee, Hyeong-Jin; Kim, Jin-Sung; Ryu, Kyeong-Sik; Park, Choon Keun
2017-06-01
Oblique lumbar interbody fusion is a commonly used surgical method of achieving lumbar interbody fusion. There have been some reports about complications of oblique lumbar interbody fusion at the L2-L3 level. However, to our knowledge, there have been no reports about ureter injury during oblique lumbar interbody fusion. We report a case of ureter injury during oblique lumbar interbody fusion to share our experience. A 78-year-old male patient presented with a history of lower back pain and neurogenic intermittent claudication. He was diagnosed with spinal stenosis at L2-L3, L4-L5 level and spondylolisthesis at L4-L5 level. Symptoms were not improved after several months of medical treatments. Then, oblique lumbar interbody fusion was performed at L2-L3, L4-L5 level. During the surgery, anesthesiologist noticed hematuria. A retrourethrogram was performed immediately by urologist, and ureter injury was found. Ureteroureterostomy and double-J catheter insertion were performed. The patient was discharged 2 weeks after surgery without urologic or neurologic complications. At 2 months after surgery, an intravenous pyelogram was performed, which showed an intact ureter. Our study shows that a low threshold of suspicion of ureter injury and careful manipulation of retroperitoneal fat can be helpful to prevent ureter injury during oblique lumbar interbody fusion at the upper level. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hofmann, Richard J.
A very general model for the computation of independent cluster solutions in factor analysis is presented. The model is discussed as being either orthogonal or oblique. Furthermore, it is demonstrated that for every orthogonal independent cluster solution there is an oblique analog. Using three illustrative examples, certain generalities are made…
A bottom-driven mechanism for distributed faulting in the Gulf of California rift
NASA Astrophysics Data System (ADS)
Persaud, Patricia; Tan, Eh; Contreras, Juan; Lavier, Luc
2017-11-01
Observations of active faulting in the continent-ocean transition of the Northern Gulf of California show multiple oblique-slip faults distributed in a 200 × 70 km2 area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform Fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear abruptly increases in a step-function manner while oblique-slip on numerous faults dominates when basal shear is distributed. We further explore how the style of faulting varies with obliquity and demonstrate that the style of delocalized faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area.
Yoganandan, Narayan; Pintar, Frank A.; Humm, John R.; Stadter, Gregory W.; Curry, William H.; Brasel, Karen J.
2013-01-01
This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990–1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m2. Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data. PMID:24406958
Complete annular and partial oblique pulley release for pediatric locked trigger thumb
Kuo, Meiying
2010-01-01
Purpose To report the surgical treatment outcome of pediatric locked trigger thumb by sequential release of the annular pulley and partial release of the oblique pulley. Materials and Methods A retrospective review was undertaken on 28 operative thumbs in 24 patients with an average follow-up of 79 months. Intraoperative observations focused on the pathology of the pulley system. Surgical technique involved complete release of the annular pulley, which alone was insufficient in relieving the deformity, along with release of the proximal 50% of the oblique pulley in all patients. Postoperative parameters of bowstringing, resolution of Notta's node, thumb interphalangeal motion, and patient/parent satisfaction were assessed. Results The oblique pulley appeared stenotic, whereas the annular pulley was observed to be membranous and nearly indistinguishable from the tendon sheath. No patients had recurrence of thumb locking or triggering. No bowstringing was detected, and Notta’s node resolved fully in 19 of 20 thumbs. Five thumbs had an average of 12o less active IP joint motion without flexion contracture (i.e., less flexion). All patients or families expressed overall satisfaction with the procedure. Conclusion The annular pulley was attenuated in the majority of cases and the proximal half of the oblique pulley was stenotic in all patients. Releasing 50% of the oblique pulley after complete annular pulley release was necessary in all thumbs to achieve full FPL excursion. Mistaking the constricted proximal oblique pulley for an annular pulley may encourage releasing the entire oblique pulley, leading to an adverse result. Satisfactory outcome was achieved after surgical treatment of pediatric locked trigger thumbs. Type of Study/Level of Evidence Therapeutic IV. PMID:22131924
Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.
Aboud, Damon G K; Kietzig, Anne-Marie
2015-09-15
Oblique drop impacts were performed at high speeds (up to 27 m/s, We > 9000) with millimetric water droplets, and a linear model was applied to define the oblique splashing threshold. Six different sample surfaces were tested: two substrate materials of different inherent surface wettability (PTFE and aluminum), each prepared with three different surface finishes (smooth, rough, and textured to support superhydrophobicity). Our choice of surfaces has allowed us to make several novel comparisons. Considering the inherent surface wettability, we discovered that PTFE, as the more hydrophobic surface, exhibits lower splashing thresholds than the hydrophilic surface of aluminum of comparable roughness. Furthermore, comparing oblique impacts on smooth and textured surfaces, we found that asymmetrical spreading and splashing behaviors occurred under a wide range of experimental conditions on our smooth surfaces; however, impacts occurring on textured surfaces were much more symmetrical, and one-sided splashing occurred only under very specific conditions. We attribute this difference to the air-trapping nature of textured superhydrophobic surfaces, which lowers the drag between the spreading lamella and the surface. The reduced drag affects oblique drop impacts by diminishing the effect of the tangential component of the impact velocity, causing the impact behavior to be governed almost exclusively by the normal velocity. Finally, by comparing oblique impacts on superhydrophobic surfaces at different impact angles, we discovered that although the pinning transition between rebounding and partial rebounding is governed primarily by the normal impact velocity, there is also a weak dependence on the tangential velocity. As a result, pinning is inhibited in oblique impacts. This led to the observation of a new behavior in highly oblique impacts on our superhydrophobic surfaces, which we named the stretched rebound, where the droplet is extended into an elongated pancake shape and rebounds while still outstretched, without exhibiting a recession phase.
Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion
NASA Technical Reports Server (NTRS)
Baring, M. G.; Ellison, D. C.; Jones, F. C.
1995-01-01
The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.
Low Latitude Ionospheric Effects on Radiowave Propagation
1998-06-01
was used. Active earth-based observation equipment includes coherent and non-coherent scatter radars, and vertical and oblique incidence sounders...ionospheric monitoring during this experiment consisted of an oblique sounder, apparatus to measure time-of-flight of transionospheric signals, and an...is configured to monitor the ionosphere directly overhead in the vertical incidence configuration, or with an obliquely -launched antenna elevation
Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock
NASA Astrophysics Data System (ADS)
Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.
2017-12-01
We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.
Redundancy reduction explains the expansion of visual direction space around the cardinal axes.
Perrone, John A; Liston, Dorion B
2015-06-01
Motion direction discrimination in humans is worse for oblique directions than for the cardinal directions (the oblique effect). For some unknown reason, the human visual system makes systematic errors in the estimation of particular motion directions; a direction displacement near a cardinal axis appears larger than it really is whereas the same displacement near an oblique axis appears to be smaller. Although the perceptual effects are robust and are clearly measurable in smooth pursuit eye movements, all attempts to identify the neural underpinnings for the oblique effect have failed. Here we show that a model of image velocity estimation based on the known properties of neurons in primary visual cortex (V1) and the middle temporal (MT) visual area of the primate brain produces the oblique effect. We also provide an explanation for the unusual asymmetric patterns of inhibition that have been found surrounding MT neurons. These patterns are consistent with a mechanism within the visual system that prevents redundant velocity signals from being passed onto the next motion-integration stage, (dorsal Medial superior temporal, MSTd). We show that model redundancy-reduction mechanisms within the MT-MSTd pathway produce the oblique effect. Copyright © 2015 Elsevier Ltd. All rights reserved.
Can activity within the external abdominal oblique be measured using real-time ultrasound imaging?
John, E K; Beith, I D
2007-11-01
Differences in the function of the anterolateral abdominal muscles have been the subject of much investigation, but primarily using electromyography. Recently changes in thickness of transversus abdominis and internal oblique measured from real-time ultrasound images have been shown to represent activity within these muscles. However it is still unclear if such a change in thickness in external oblique similarly represents activity within that muscle. The purpose of this study was to investigate the relationship between change in thickness and muscle activity in the external oblique using real-time ultrasound and surface electromyography. Simultaneous measurements of electromyography and real-time ultrasound images of external oblique were studied in up to 24 subjects during two tasks compared to the muscle at rest (1) isometric trunk rotation and (2) drawing in the lower abdomen. Changes in muscle thickness correlated significantly with electromyography during isometric trunk rotation in the majority of subjects but with a significant difference between subjects. In contrast, the relationship between change in thickness and electrical activity in the muscle when drawing in the lower abdomen was significant in less than 50% of subjects and the muscle often got thinner. Thickness changes of external oblique can be used as a valid indicator of electromyography activity during isometric trunk rotation, though the relationship is not as good as previously published data for transversus abdominis. Thickness changes of external oblique measured during lower abdominal drawing in cannot be used to detect activity within this muscle.
Joshi, A; Kayasth, N; Shrestha, S; Kc, B R
2016-09-01
Autologous hamstring grafts are commonly used for anterior cruciate ligament reconstruction. The injury of infrapatellar branch of saphenous nerve is one of the concerns leading to various pattern of sensory loss in the operated leg. An oblique incision to harvest the graft has been reported to be better than the vertical one.The aim of this study was to compare the incidence, recovery of nerve injury and final outcome in patients with hamstring harvest of vertical or oblique incision. A total of 146 patients who underwent hamstring graft harvest for anterior cruciate ligament reconstruction, were included in the study. They were randomized into two (Vertical and Oblique) groups as per the incisions used. The sensory loss along the Infra Patellar Branch of Saphenous Nerve was documented on 3rd day. Recovery of the nerve injury was monitoredat three, six and 12 months follow-ups. At final follow up Tegner Lysholm score and scale was recorded to compare between two groups. The incidence of infrapatellar branch of saphenous nerve injury was 25% in vertical group and 16.36% in oblique group. Recovery of nerve injury started earlier in oblique group compared to vertical group. The mean TegnerLyshom score was not significantly different in both the groups. Oblique incision to harvest hamstring graft has lesser incidence of infrapatellar branch of saphenous nerve injury, recovers earlier and does not have any adverse effect on final outcome compared to the vertical incision.
Inferring planetary obliquity using rotational and orbital photometry
NASA Astrophysics Data System (ADS)
Schwartz, J. C.; Sekowski, C.; Haggard, H. M.; Pallé, E.; Cowan, N. B.
2016-03-01
The obliquity of a terrestrial planet is an important clue about its formation and critical to its climate. Previous studies using simulated photometry of Earth show that continuous observations over most of a planet's orbit can be inverted to infer obliquity. However, few studies of more general planets with arbitrary albedo markings have been made and, in particular, a simple theoretical understanding of why it is possible to extract obliquity from light curves is missing. Reflected light seen by a distant observer is the product of a planet's albedo map, its host star's illumination, and the visibility of different regions. It is useful to treat the product of illumination and visibility as the kernel of a convolution. Time-resolved photometry constrains both the albedo map and the kernel, the latter of which sweeps over the planet due to rotational and orbital motion. The kernel's movement distinguishes prograde from retrograde rotation for planets with non-zero obliquity on inclined orbits. We demonstrate that the kernel's longitudinal width and mean latitude are distinct functions of obliquity and axial orientation. Notably, we find that a planet's spin axis affects the kernel - and hence time-resolved photometry - even if this planet is east-west uniform or spinning rapidly, or if it is north-south uniform. We find that perfect knowledge of the kernel at 2-4 orbital phases is usually sufficient to uniquely determine a planet's spin axis. Surprisingly, we predict that east-west albedo contrast is more useful for constraining obliquity than north-south contrast.
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi; Bryd, James E.; Parmar, Devendra S.; Bezos-OConnor, Gaudy M.; Forrest, Dana K.; Bowen, Susan
1996-01-01
An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.
ERIC Educational Resources Information Center
Hansen, Karen Kirhofer; Prince, Jeffrey S.; Nixon, G. William
2008-01-01
Objective: To evaluate the utility of oblique chest views in the diagnosis of rib fractures when used as a routine part of the skeletal survey performed for possible physical abuse. Methods: Oblique chest views have been part of the routine skeletal survey protocol at Primary Children's Medical Center since October 2002. Dictated radiology reports…
Obliquity variation in a Mars climate evolution model
NASA Technical Reports Server (NTRS)
Tyler, D.; Haberle, Robert M.
1993-01-01
The existence of layered terrain in both polar regions of Mars is strong evidence supporting a cyclic variation in climate. It has been suggested that periods of net deposition have alternated with periods of net erosion in creating the layered structure that is seen today. The cause for this cyclic climatic behavior is variation in the annually averaged latitudinal distribution of solar insolation in response to obliquity cycles. For Mars, obliquity variation leads to major climatological excursion due to the condensation and sublimation of the major atmospheric constituent, CO2. The atmosphere will collapse into the polar caps, or existing caps will rapidly sublimate into the atmosphere, dependent upon the polar surface heat balance and the direction of the change in obliquity. It has been argued that variations in the obliquity of Mars cause substantial departures from the current climatological values of the surface pressure and the amount of CO2 stored in both the planetary regolith and polar caps. In this new work we have modified the Haberle et al. model to incorporate variable obliquity by allowing the polar and equatorial insolation to become functions of obliquity, which we assume to vary sinusoidally in time. As obliquity varies in the model, there can be discontinuities in the time evolution of the model equilibrium values for surface pressure, regolith, and polar cap storage. The time constant, tau r, for the regolith to find equilibrium with the climate is estimated--depending on the depth, thermal conductivity, and porosity of the regolith--between 10(exp 4) and 10(exp 6) yr. Thus, using 2000-yr timesteps to move smoothly through the 0.1250 m.y. obliquity cycles, we have an atmosphere/regolith system that cannot be assumed in equilibrium. We have dealt with this problem by limiting the rate at which CO2, can move between the atmosphere and regolith, mimicking the diffusive nature and effects of the temperature and pressure waves, by setting the time rate of change of regolith storage proportional to the difference between equilibrium storage and current storage.
Slip re-orientation in the oblique Abiquiu embayment, northern Rio Grande rift
NASA Astrophysics Data System (ADS)
Liu, Y.; Murphy, M. A.; Andrea, R. A.
2015-12-01
Traditional models of oblique rifting predict that an oblique fault accommodates both dip-slip and strike-slip kinematics. However, recent analog experiments suggest that slip can be re-oriented to almost pure dip-slip on oblique faults if a preexisting weak zone is present at the onset of oblique extension. In this study, we use fault slip data from the Abiquiu embayment in northern Rio Grande rift to test the new model. The Rio Grande rift is a Cenozoic oblique rift extending from southern Colorado to New Mexico. From north to south, it comprises three major half grabens (San Luis, Española, and Albuquerque). The Abiquiu embayment is a sub-basin of the San Luis basin in northern New Mexico. Rift-border faults are generally older and oblique to the trend of the rift, whereas internal faults are younger and approximately N-S striking, i.e. orthogonal to the regional extension direction. Rift-border faults are deep-seated in the basement rocks while the internal faults only cut shallow stratigraphic sections. It has been suggested by many that inherited structures may influence the Rio Grande rifting. Particularly, Laramide structures (and possibly the Ancestral Rockies as well) that bound the Abiquiu embayment strike N- to NW. Our data show that internal faults in the Abiquiu embayment exhibit almost pure dip-slip (rake of slickenlines = 90º ± 15º), independent of their orientations with respect to the regional extension direction. On the contrary, border faults show two sets of rakes: almost pure dip-slip (rake = 90º ± 15º) where the fault is sub-parallel to the foliation, and moderately-oblique (rake = 30º ± 15º) where the fault is high angle to the foliation. We conclude that slip re-orientation occurs on most internal faults and some oblique border faults under the influence of inherited structures. Regarding those border faults on which slip is not re-oriented, we hypothesize that it may be caused by the Jemez volcanism or small-scale mantle convection.
Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boruah, A.; Sharma, S. K., E-mail: sumita-sharma82@yahoo.com; Bailung, H.
2015-09-15
The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7more » times the initial soliton amplitude.« less
Liu, S W; Divayana, Y; Sun, X W; Wang, Y; Leck, K S; Demir, H V
2011-02-28
We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/N,N'-Di(naphth-2-yl)-N,N'-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ=60° for MoO3.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou
2018-04-01
The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.
Experimental study on mean overtopping of sloping seawall under oblique irregular waves
NASA Astrophysics Data System (ADS)
Wang, Deng-ting; Ju, Lie-hong; Zhu, Jia-ling; Wang, Zhen; Sun, Tian-ting; Chen, Wei-qiu
2017-06-01
In this paper, domestic and abroad research progresses and related calculation formulae of the mean overtopping discharge are summarized. Through integral physical model experiments, the relation between the wave direction and the overtopping discharge on the top of the sloping dike is focused on and put into analysis and discussion; and a modified formula for mean overtopping discharges under oblique irregular waves is proposed. The study shows that the mean overtopping discharge generally goes down as the relative wave obliquity β increases for a fixed measurement point and the mean overtopping discharge generally increases as the wave steepness H/L decreases (the cycle increases) for a fixed relative wave obliquity.
Zhong, Qun; Wu, Xue-yin; Shen, Qing-yi; Shen, Qing-ping
2012-04-01
To compare the difference in oblique external ridge, oblique internal ridge and alveolar process crest of lower complete denture base made through functional impression and anatomic impression techniques. Fifteen patients were chosen to treat with two kinds of complete dentures through functional impression and anatomic impression technique respectively. 3D laser scanner was used to scan the three-dimensional model of the denture base and the differences of the surface structural between two techniques in alveolar process crest, external and internal oblique ridges were analyzed, using paired t test with SPSS 12.0 software package. Between the two techniques, there were significant differences in the areas of internal and external oblique ridge(P<0.01); there was no significant difference in the main support areas(P>0.05). The results explain why there is less tenderness when functional impression technique is applied. The differences measured also indicate that sufficient buffering should be made in external and internal oblique ridge areas in clinic.
Exo-Milankovitch Cycles. I. Orbits and Rotation States
NASA Astrophysics Data System (ADS)
Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn
2018-02-01
The obliquity of the Earth, which controls our seasons, varies by only ∼2.°5 over ∼40,000 years, and its eccentricity varies by only ∼0.05 over 100,000 years. Nonetheless, these small variations influence Earth’s ice ages. For exoplanets, however, variations can be significantly larger. Previous studies of the habitability of moonless Earth-like exoplanets have found that high obliquities, high eccentricities, and dynamical variations can extend the outer edge of the habitable zone by preventing runaway glaciation (snowball states). We expand upon these studies by exploring the orbital dynamics with a semianalytic model that allows us to map broad regions of parameter space. We find that, in general, the largest drivers of obliquity variations are secular spin–orbit resonances. We show how the obliquity varies in several test cases, including Kepler-62 f, across a wide range of orbital and spin parameters. These obliquity variations, alongside orbital variations, will have a dramatic impact on the climates of such planets.
Molecular cloud formation in high-shear, magnetized colliding flows
NASA Astrophysics Data System (ADS)
Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.
2016-08-01
The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (I.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.
Satomura, Hironori; Adachi, Kohei
2013-07-01
To facilitate the interpretation of canonical correlation analysis (CCA) solutions, procedures have been proposed in which CCA solutions are orthogonally rotated to a simple structure. In this paper, we consider oblique rotation for CCA to provide solutions that are much easier to interpret, though only orthogonal rotation is allowed in the existing formulations of CCA. Our task is thus to reformulate CCA so that its solutions have the freedom of oblique rotation. Such a task can be achieved using Yanai's (Jpn. J. Behaviormetrics 1:46-54, 1974; J. Jpn. Stat. Soc. 11:43-53, 1981) generalized coefficient of determination for the objective function to be maximized in CCA. The resulting solutions are proved to include the existing orthogonal ones as special cases and to be rotated obliquely without affecting the objective function value, where ten Berge's (Psychometrika 48:519-523, 1983) theorems on suborthonormal matrices are used. A real data example demonstrates that the proposed oblique rotation can provide simple, easily interpreted CCA solutions.
Ceres Obliquity History and Its Implications for the Permanently Shadowed Regions
NASA Technical Reports Server (NTRS)
Ermakov, A. I.; Mazarico, E.; Schroder, S. E.; Carsenty, U.; Schorghofer, N.; Preusker, F.; Raymond, C. A.; Russell, C. T.; Zuber, Maria T.
2017-01-01
Due to the small current obliquity of Ceres ( epsilon approximately equal to 4), permanently shadowed regions (PSRs) exist on the dwarf planets surface. Since the existence and persistence of the PSRs depend on the obliquity, we compute the obliquity history over the last 3 My and find that it undergoes large oscillations with a period of 24.5 ky and a maximum of max 19:5. During periods of large obliquity, most of the present-day PSRs receive direct sunlight. Some craters in Ceres polar regions possess bright crater floor deposits (BCFDs).We find an apparent correlation between BCFDs and the most persistent PSRs. In the north, only two PSRs remain at max and they both contain BCFDs. In the south, one of the two only craters that remain in shadow at max contains a BCFD. The location of BCFDs within persistent PSRs strongly suggests BCFDs consist of volatiles accumulated in PSR cold traps: either water molecules trapped from the exosphere or exposed ground ice.
Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree
2008-04-01
REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music
Use of Vertical Aerial Images for Semi-Oblique Mapping
NASA Astrophysics Data System (ADS)
Poli, D.; Moe, K.; Legat, K.; Toschi, I.; Lago, F.; Remondino, F.
2017-05-01
The paper proposes a methodology for the use of the oblique sections of images from large-format photogrammetric cameras, by exploiting the effect of the central perspective geometry in the lateral parts of the nadir images ("semi-oblique" images). The point of origin of the investigation was the execution of a photogrammetric flight over Norcia (Italy), which was seriously damaged after the earthquake of 30/10/2016. Contrary to the original plan of oblique acquisitions, the flight was executed on 15/11/2017 using an UltraCam Eagle camera with focal length 80 mm, and combining two flight plans, rotated by 90º ("crisscross" flight). The images (GSD 5 cm) were used to extract a 2.5D DSM cloud, sampled to a XY-grid size of 2 GSD, a 3D point clouds with a mean spatial resolution of 1 GSD and a 3D mesh model at a resolution of 10 cm of the historic centre of Norcia for a quantitative assessment of the damages. From the acquired nadir images the "semi-oblique" images (forward, backward, left and right views) could be extracted and processed in a modified version of GEOBLY software for measurements and restitution purposes. The potential of such semi-oblique image acquisitions from nadir-view cameras is hereafter shown and commented.
Precessional quantities for the Earth over 10 Myr
NASA Technical Reports Server (NTRS)
Laskar, Jacques
1992-01-01
The insolation parameters of the Earth depend on its orbital parameters and on the precession and obliquity. Until 1988, the usually adopted solution for paleoclimate computation consisted in (Bretagnon, 1974) for the orbital elements of the Earth, which was completed by (Berger, 1976) for the computation of the precession and obliquity of the Earth. In 1988, I issued a solution for the orbital elements of the Earth, which was obtained in a new manner, gathering huge analytical computations and numerical integration (Laskar, 1988). In this solution, which will be denoted La88, the precession and obliquity quantities necessary for paleoclimate computations were integrated at the same time, which insure good consistency of the solutions. Unfortunately, due to various factors, this latter solution for the precession and obliquity was not widely distributed (Berger, Loutre, Laskar, 1988). On the other side, the orbital part of the solution La88 for the Earth, was used in (Berger and Loutre, 1991) to derive another solution for precession and obliquity, aimed to climate computations. I also issued a new solution (La90) which presents some slight improvements with respect to the previous one (Laskar, 1990). As previously, this solution contains orbital, precessional, and obliquity variables. The main features of this new solution are discussed.
On the three-quarter view advantage of familiar object recognition.
Nonose, Kohei; Niimi, Ryosuke; Yokosawa, Kazuhiko
2016-11-01
A three-quarter view, i.e., an oblique view, of familiar objects often leads to a higher subjective goodness rating when compared with other orientations. What is the source of the high goodness for oblique views? First, we confirmed that object recognition performance was also best for oblique views around 30° view, even when the foreshortening disadvantage of front- and side-views was minimized (Experiments 1 and 2). In Experiment 3, we measured subjective ratings of view goodness and two possible determinants of view goodness: familiarity of view, and subjective impression of three-dimensionality. Three-dimensionality was measured as the subjective saliency of visual depth information. The oblique views were rated best, most familiar, and as approximating greatest three-dimensionality on average; however, the cluster analyses showed that the "best" orientation systematically varied among objects. We found three clusters of objects: front-preferred objects, oblique-preferred objects, and side-preferred objects. Interestingly, recognition performance and the three-dimensionality rating were higher for oblique views irrespective of the clusters. It appears that recognition efficiency is not the major source of the three-quarter view advantage. There are multiple determinants and variability among objects. This study suggests that the classical idea that a canonical view has a unique advantage in object perception requires further discussion.
Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2004-01-01
Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.
Variation of axial and oblique astigmatism with accommodation across the visual field
Liu, Tao; Thibos, Larry N.
2017-01-01
In this study we investigated the impact of accommodation on axial and oblique astigmatism along 12 meridians of the central 30° of visual field and explored the compensation of corneal first-surface astigmatism by the remainder of the eye's optical system. Our experimental evidence revealed no systematic effect of accommodation on either axial or oblique astigmatism for two adult populations (myopic and emmetropic eyes). Although a few subjects exhibited systematic changes in axial astigmatism during accommodation, the dioptric value of these changes was much smaller than the amount of accommodation. For most subjects, axial and oblique astigmatism of the whole eye are both less than for the cornea alone, which indicates a compensatory role for internal optics at all accommodative states in both central and peripheral vision. A new method for determining the eye's optical axis based on visual field maps of oblique astigmatism revealed that, on average, the optical axis is 4.8° temporal and 0.39° superior to the foveal line-of-sight in object space, which agrees with previous results obtained by different methodologies and implies that foveal astigmatism includes a small amount of oblique astigmatism (0.06 D on average). Customized optical models of each eye revealed that oblique astigmatism of the corneal first surface is negligible along the pupillary axis for emmetropic and myopic eyes. Individual variation in the eye's optical axis is due in part to misalignment of the corneal and internal components that is consistent with tilting of the crystalline lens relative to the pupillary axis. PMID:28362902
Induced and evoked neural correlates of orientation selectivity in human visual cortex.
Koelewijn, Loes; Dumont, Julie R; Muthukumaraswamy, Suresh D; Rich, Anina N; Singh, Krish D
2011-02-14
Orientation discrimination is much better for patterns oriented along the horizontal or vertical (cardinal) axes than for patterns oriented obliquely, but the neural basis for this is not known. Previous animal neurophysiology and human neuroimaging studies have demonstrated only a moderate bias for cardinal versus oblique orientations, with fMRI showing a larger response to cardinals in primary visual cortex (V1) and EEG demonstrating both increased magnitudes and reduced latencies of transient evoked responses. Here, using MEG, we localised and characterised induced gamma and transient evoked responses to stationary circular grating patches of three orientations (0, 45, and 90° from vertical). Surprisingly, we found that the sustained gamma response was larger for oblique, compared to cardinal, stimuli. This "inverse oblique effect" was also observed in the earliest (80 ms) evoked response, whereas later responses (120 ms) showed a trend towards the reverse, "classic", oblique response. Source localisation demonstrated that the sustained gamma and early evoked responses were localised to medial visual cortex, whilst the later evoked responses came from both this early visual area and a source in a more inferolateral extrastriate region. These results suggest that (1) the early evoked and sustained gamma responses manifest the initial tuning of V1 neurons, with the stronger response to oblique stimuli possibly reflecting increased tuning widths for these orientations, and (2) the classic behavioural oblique effect is mediated by an extrastriate cortical area and may also implicate feedback from extrastriate to primary visual cortex. Copyright © 2010 Elsevier Inc. All rights reserved.
Shape matters: improved flight in tapered auto-rotating wings
NASA Astrophysics Data System (ADS)
Liu, Yucen; Vincent, Lionel; Kanso, Eva
2017-11-01
Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Rhode, R V
1938-01-01
The results of previous reports dealing with airfoil section characteristics and span load distribution data are coordinated into a method for determining the air forces and their distribution on airplane wings. Formulas are given from which the resultant force distribution may be combined to find the wing aerodynamic center and pitching moment. The force distribution may also be resolved to determine the distribution of chord and beam components. The forces are resolved in such a manner that it is unnecessary to take the induced drag into account. An illustration of the method is given for a monoplane and a biplane for the conditions of steady flight and a sharp-edge gust. The force determination is completed by outlining a procedure for finding the distribution of load along the chord of airfoil sections.
The Gale Crater Mound in a Regional Geologic Setting
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Korn, L. K.
2012-01-01
The Mars Science Laboratory Rover Curiosity is commencing a two-year investigation of Gale crater and Mt. Sharp, the crater s prominent central mound. Gale is a 155 km, late Noachian / early Hesperian impact crater located near the dichotomy boundary separating the southern highlands from the northern plains. The central mound is composed of layered sedimentary rock, with upper and lower mound units separated by a prominent erosional unconformity (Milliken et al., 2010). The lower mound is of particular interest, as it contains secondary minerals indicative of a striking shift from water-rich to water-poor conditions on early Mars. A key unknown in the history of Gale is the relationship between the sedimentary units in the mound and sedimentary sequences in the surrounding region. We employed orbital remote sensing data to determine if areas within a 1,000 km radius of Gale match the characteristics of sedimentary units in Mt. Sharp. Regions of interest were defined based on: the mound s inferred age (late Noachian to early Hesperian), altitude range (-4,600 m to +400 m), and THEMIS nighttime brightness (a proxy for thermal inertia). This combination of characteristics is matched by two extensive units, the late Noachian subdued cratered unit Npl2 and Noachian / Hesperian undivided material HNu (Greeley and Guest, 1987), located along the dichotomy. Geomorphic units have been mapped within the Gale mound by Thomson et al. (2011) based on albedo, layering and erosional characteristics. Using orbital CTX, MOC and HiRISE images we examined all areas within our regions of interest for analogous geomorphic units in the same altitude ranges as the corresponding units in Mt. Sharp. The most convincing geomorphic analogs to lower mound units, dominated by fine-scale layering and prominent yardangs, were located approximately 200 km northeast and southeast of Gale in late Noachian unit Npl2. The most convincing geomorphic analogs to upper mound layered units are located 250 900 km northwest of Gale in unit HNu, estimated to span the Noachian / Hesperian boundary.
Wiegand, Jean-Paul L; Gray, Daniel T; Schimanski, Lesley A; Lipa, Peter; Barnes, C A; Cowen, Stephen L
2016-05-18
Spatial and episodic memory performance declines with age, and the neural basis for this decline is not well understood. Sharp-wave ripples are brief (∼70 ms) high-frequency oscillatory events generated in the hippocampus and are associated with the consolidation of spatial memories. Given the connection between ripple oscillations and memory consolidation, we investigated whether the structure of ripple oscillations and ripple-triggered patterns of single-unit activity are altered in aged rats. Local field and single-unit activity surrounding sharp-wave ripple events were examined in the CA1 region of the hippocampus of old (n = 5) and young (n = 6) F344 rats during periods of rest preceding and following performance on a place-dependent eyeblink-conditioning task. Neural responses in aged rats differed from responses in young rats in several ways. First, compared with young rats, the rate of ripple occurrence (ripple density) is reduced in aged rats during postbehavior rest. Second, mean ripple frequency during prebehavior and postbehavior rest is lower in aged animals (aged: 132 Hz; young: 146 Hz). Third, single neurons in aged animals responded more consistently from ripple to ripple. Fourth, variability in interspike intervals was greater in aged rats. Finally, neurons were tuned to a narrower range of phases of the ripple oscillation relative to young animals. Together, these results suggest that the CA1 network in aged animals has a reduced "vocabulary" of available representational states. The hippocampus is a structure that is critical for the formation of episodic memories. Sharp-wave ripple events generated in the hippocampus have been implicated in memory consolidation processes critical to memory stabilization. We examine here whether these ripple oscillations are altered over the course of the life span, which could contribute to hippocampus-dependent memory deficits that occur during aging. This experiment used young and aged memory-impaired rats to examine age-related changes in ripple architecture, ripple-triggered spike variance, and spike-phase coherence. We found that there are, indeed, significant changes in characteristics of ripples in older animals that could impact consolidation processes and memory stabilization in the aged brain. Copyright © 2016 the authors 0270-6474/16/365650-11$15.00/0.
Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.
Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June
2017-10-03
This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.
The conceptual design of a Mach 2 Oblique Flying Wing supersonic transport
NASA Technical Reports Server (NTRS)
Vandervelden, Alexander J. M.
1989-01-01
This paper is based on a performance and economics study of a Mach two oblique flying wing transport aircraft that is to replace the B747B. In order to fairly compare our configuration with the B747B an equal structural technology level is assumed. It will be shown that the oblique flying wing configuration will equal or outperform the B747 in speed, economy and comfort while a modern stability and control system will balance the aircraft and smooth out gusts. The aircraft is designed to comply with the FAR25 airworthiness requirements and FAR36 stage 3 noise regulations. Geometry, aerodynamics, stability and control parameters of the oblique flying wing transport are discussed.
AD-1 with research pilot Richard E. Gray
NASA Technical Reports Server (NTRS)
1982-01-01
Standing in front of the AD-1 Oblique Wing research aircraft is research pilot Richard E. Gray. Richard E. Gray joined National Aeronautics and Space Administration's Johnson Space Center, Houston, Texas, in November 1978, as an aerospace research pilot. In November 1981, Dick joined the NASA's Ames-Dryden Flight Research Facility, Edwards, California, as a research pilot. Dick was a former Co-op at the NASA Flight Research Center (a previous name of the Ames-Dryden Flight Research Facility), serving as an Operations Engineer. At Ames-Dryden, Dick was a pilot for the F-14 Aileron Rudder Interconnect Program, AD-1 Oblique Wing Research Aircraft, F-8 Digital Fly-By-Wire and Pilot Induced Oscillations investigations. He also flew the F-104, T-37, and the F-15. On November 8, 1982, Gray was fatally injured in a T-37 jet aircraft while making a pilot proficiency flight. Dick graduated with a Bachelors degree in Aeronautical Engineering from San Jose State University in 1969. He joined the U.S. Navy in July 1969, becoming a Naval Aviator in January 1971, when he was assigned to F-4 Phantoms at Naval Air Station (NAS) Miramar, California. In 1972, he flew 48 combat missions in Vietnam in F-4s with VF-111 aboard the USS Coral Sea. After making a second cruise in 1973, Dick was assigned to Air Test and Evaluation Squadron Four (VX-4) at NAS Point Mugu, California, as a project pilot on various operational test and evaluation programs. In November 1978, Dick retired from the Navy and joined NASA's Johnson Space Center. At JSC Gray served as chief project pilot on the WB-57F high-altitude research projects and as the prime television chase pilot in a T-38 for the landing portion of the Space Shuttle orbital flight tests. Dick had over 3,000 hours in more than 30 types of aircraft, an airline transport rating, and 252 carrier arrested landings. He was a member of the Society of Experimental Test Pilots serving on the Board of Directors as Southwest Section Technical Adviser in 1981/1982. Richard E. Gray was born March 11, 1945 in Newport News, Virginia; he died on November 8, 1982 at Edwards, California, in a T-37 spin accident. The Ames-Dryden-1 (AD-1) aircraft was designed to investigate the concept of an oblique (pivoting) wing. The wing could be rotated on its center pivot, so that it could be set at its most efficient angle for the speed at which the aircraft was flying. NASA Ames Research Center Aeronautical Engineer Robert T. Jones conceived the idea of an oblique wing. His wind tunnel studies at Ames (Moffett Field, CA) indicated that an oblique wing design on a supersonic transport might achieve twice the fuel economy of an aircraft with conventional wings. The oblique wing on the AD-1 pivoted about the fuselage, remaining perpendicular to it during slow flight and rotating to angles of up to 60 degrees as aircraft speed increased. Analytical and wind tunnel studiesthat Jones conducted at Ames indicated that a transport-sized oblique-wing aircraft flying at speeds of up to Mach 1.4 (1.4 times the speed of sound) would have substantially better aerodynamic performance than aircraft with conventional wings. The AD-1 structure allowed the project to complete all of its technical objectives. The type of low-speed, low-cost vehicle - as expected - exhibited aeroelastic and pitch-roll-coupling effects that contributed to poor handling at sweep angles above 45 degrees. The fiberglass structure limited the wing stiffness that would have improved the handling qualities. Thus, after completion of the AD-1 project, there was still a need for a transonic oblique-wing research aircraft to assess the effects of compressibility, evaluate a more representative structure, and analyze flight performance at transonic speeds (those on either side of the speed of sound). The aircraft was delivered to the Dryden Flight Research Center, Edwards, CA, in March 1979 and its first flight was on December 21, 1979. Piloting the aircraft on that flight, as well as on its last flight on August 7, 1982, was NASA Research Pilot Thomas C. McMurtry. The AD-1 flew a total of 79 times during the research program. The aircraft was constructed by the Ames Industrial Co., Bohemia, NY, under a $240, 000 fixed-price contract. NASA specified the design based on a geometric configuration provided by the Boeing company. The Rutan Aircraft Factory, Mojave, CA, provided the detailed design and loads analysis for the vehicle. The aircraft was 38.8 feet long and 6.75 feet high with a wing span of 32.3 feet, unswept. It was constructed of plastic reinforced with fiberglass and weighed 1,450 pounds,empty. The vehicle was powered by two small turbojet engines, each producing 220 pounds of thrust at sea level. Due to safety concerns, the aircraft was limited to speeds of 170 mph.
NASA Astrophysics Data System (ADS)
Pekar, S. F.; Hauptvogel, D.; Florindo, F.
2012-12-01
Litho- and sequence stratigraphic results from the ANDRILL Southern McMurdo Sound AND-2A Project indicate large variations in glacial conditions in the western Ross Sea, between the two isotopic Mi events (i.e., inferred glacioeustasy), Mi1b (17.8 Ma) and Mi2 (16.1 Ma). Most of this interval had not been previously recovered from the Antarctic continental margin providing the first opportunity to develop direct evidence on the evolution of the ice sheet during this time. During the 2007 austral spring/summer, the ANtarctic Geological DRILLing Program (ANDRILL) Southern McMurdo Sound (SMS) AND-2A drill hole cored 1138 meters of sediments, with ~98% recovery. The interval between 780 and 390 mbsf has high sedimentation rates (133-477 m/ my) and excellent age control, based on radiometric ages and magnetostratigraphy, providing an exceptional record of glacial advances and retreats deposited in a shallow water environment in Antarctica between 18 and 16 Ma. Approximately 34 sequences were identified, which contain bounding surfaces characterized by a pronounced shift in lithofacies, with typically more ice distal facies below and more proximal facies above. Lithofacies and grain size analysis suggest that these cycles are controlled by a combination of ice proximity and water depth. The timing of the sequence boundaries in the upper 300 meters are controlled by the obliquity cycle, with sequences in the lower 100 meters controlled by the precessional and eccentricity cycles. A surface at 774.94 mbsf contains a hiatus spanning 17.8-18.7 Ma, which encompasses the isotopic events Mi1b (17.8 Ma) and Mi1ab (18.3 Ma). This surface separates a prolonged interval of glacial advance over this site above, based on lithofacies and sediment deformation above and more ice distal environments below. A sharp surface at 398.25 mbsf (~16.2±0.2 Ma) interpreted to represent glacial advance to perhaps near or over the site, contains a possible short hiatus and is correlated to the Mi2 event. In contrast, between 400 and 645 mbsf, little evidence exists for subglacial grounding over the site, with sequence boundary formation generally controlled by local sea-level changes, with glacial processes being subdominant. This interval correlates to the early Miocene Climatic Optimum (17.3-16.3 Ma).
Analyzing RCD30 Oblique Performance in a Production Environment
NASA Astrophysics Data System (ADS)
Soler, M. E.; Kornus, W.; Magariños, A.; Pla, M.
2016-06-01
In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC) decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial triangulation and stereo plotting. Furthermore, two different flight configurations have been designed to measure the quality of the absolute radiometric calibration and the resolving power of the system. To quantify the effective resolution power of RCD30 Oblique images, a tool based on the computation of the Line Spread Function has been developed. The tool processes a region of interest that contains a single contour in order to extract a numerical measure of edge smoothness for a same flight session. The ICGC is highly devoted to derive information from satellite and airborne multispectral remote sensing imagery. A seamless Normalized Difference Vegetation Index (NDVI) retrieved from Digital Metric Camera (DMC) reflectance imagery is one of the products of ICGC's portfolio. As an evolution of this well-defined product, this paper presents an evaluation of the absolute radiometric calibration of the RCD30 Oblique sensor. To assess the quality of the measure, the ICGC has developed a procedure based on simultaneous acquisition of RCD30 Oblique imagery and radiometric calibrated AISA (Airborne Hyperspectral Imaging System) imagery.
A bottom-driven mechanism for distributed faulting: Insights from the Gulf of California Rift
NASA Astrophysics Data System (ADS)
Persaud, P.; Tan, E.; Choi, E.; Contreras, J.; Lavier, L. L.
2017-12-01
The Gulf of California is a young oblique rift that displays a variation in rifting style along strike. Despite the rapid localization of strain in the Gulf at 6 Ma, the northern rift segment has the characteristics of a wide rift, with broadly distributed extensional strain and small gradients in topography and crustal thinning. Observations of active faulting in the continent-ocean transition of the Northern Gulf show multiple oblique-slip faults distributed in a 200 x 70 km2area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear is a step-function while oblique-slip on numerous faults dominates when basal shear is distributed. We further investigate how the style of faulting varies with obliquity and demonstrate that the style of faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area. Our findings motivate a suite of 3D models of the early plate boundary evolution in the Gulf, and highlight the importance of local stress field perturbations as a mechanism for broadening the deformation zone in other regions such as the Basin and Range, Rio Grande Rift and Malawi Rift.
NASA Astrophysics Data System (ADS)
Wu, Chi-Hua; Lee, Shih-Yu; Chiang, John C. H.
2018-07-01
On orbital timescales, higher summer insolation is thought to strengthen the continental monsoon while weakening the maritime monsoon in the Northern hemisphere. Through simulations using the Community Earth System Model, we evaluated the relative influence of perihelion precession and high obliquity in the early Holocene during the Asian summer monsoon. The major finding was that precession dominates the atmospheric heating change over the Tibetan Plateau-Himalayas and Maritime Continent, whereas obliquity is responsible for the heating change over the equatorial Indian Ocean. Thus, precession and obliquity can play contrasting roles in driving the monsoons on orbital timescales. In late spring-early summer, interior Asian continental heating drives the South and East Asian monsoons. The broad-scale monsoonal circulation further expands zonally in July-August, corresponding to the development of summer monsoons in West Africa and the subtropical Western North Pacific (WNP) as well as a sizable increase in convection over the equatorial Indian Ocean. Tropical and oceanic heating becomes crucial in late summer. Over South Asia-Indian Ocean (50°E-110°E), the precession maximum intensifies the monsoonal Hadley cell (heating with an inland/highland origin), which is opposite to the meridional circulation change induced by high obliquity (heating with a tropical origin). The existence of the Tibetan Plateau-Himalayas intensifies the precessional impact. During the late-summer phase of the monsoon season, the effect of obliquity on tropical heating can be substantial. In addition to competing with Asian continental heating, obliquity-enhanced heating over the equatorial Indian Ocean also has a Walker-type circulation impact, resulting in suppression of precession-enhanced heating over the Maritime Continent.
Surface dose measurements for highly oblique electron beams.
Ostwald, P M; Kron, T
1996-08-01
Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.
Nearshore shore-oblique bars, gravel outcrops, and their correlation to shoreline change
Schupp, C.A.; McNinch, J.E.; List, J.H.
2006-01-01
This study demonstrates the physical concurrence of shore-oblique bars and gravel outcrops in the surf zone along the northern Outer Banks of North Carolina. These subaqueous features are spatially correlated with shoreline change at a range of temporal and spatial scales. Previous studies have noted the existence of beach-surf zone interactions, but in general, relationships between nearshore geological features and coastal change are poorly understood. These new findings should be considered when exploring coastal zone dynamics and developing predictive engineering models.The surf zone and nearshore region of the Outer Banks is predominantly planar and sandy, but there are several discrete regions with shore-oblique bars and interspersed gravel outcrops. These bar fields have relief up to 3 m, are several kilometers wide, and were relatively stationary over a 1.5 year survey period; however, the shoreward component of the bar field does exhibit change during this time frame. All gravel outcrops observed in the study region, a 40 km longshore length, were located adjacent to a shore-oblique bar, in a trough that had width and length similar to that of the associated bar. Seismic surveys show that the outcrops are part of a gravel stratum underlying the active surface sand layer.Cross-correlation analyses demonstrate high correlation of monthly and multi-decadal shoreline change rates with the adjacent surf-zone bathymetry and sediment distribution. Regionally, areas with shore-oblique bars and gravel outcrops are correlated with on-shore areas of high short-term shoreline variability and high long-term shoreline change rates. The major peaks in long-term shoreline erosion are onshore of shore-oblique bars, but not all areas with high rates of long-term shoreline change are associated with shore-oblique bars and troughs.
Mars Secular Obliquity Change Due to Water Ice Caps
NASA Technical Reports Server (NTRS)
Rubincam, David P.
1998-01-01
Mars may have substantially changed its average axial tilt over geologic time due to the waxing and waning of water ice caps. Depending upon Mars' climate and internal structure, the average obliquity could have increased or decreased through climate friction by tens of degrees. A decrease could account for the apparent youthfulness of the polar layered terrain. Alternatively, Mars' average obliquity may have changed until it became "stuck" at its present value of 24.4 deg.
Inferior oblique muscle paresis as a sign of myasthenia gravis.
Almog, Yehoshua; Ben-David, Merav; Nemet, Arie Y
2016-03-01
Myasthenia gravis may affect any of the six extra-ocular muscles, masquerading as any type of ocular motor pathology. The frequency of involvement of each muscle is not well established in the medical literature. This study was designed to determine whether a specific muscle or combination of muscles tends to be predominantly affected. This retrospective review included 30 patients with a clinical diagnosis of myasthenia gravis who had extra-ocular muscle involvement with diplopia at presentation. The diagnosis was confirmed by at least one of the following tests: Tensilon test, acetylcholine receptor antibodies, thymoma on chest CT scan, or suggestive electromyography. Frequency of involvement of each muscle in this cohort was inferior oblique 19 (63.3%), lateral rectus nine (30%), superior rectus four (13.3%), inferior rectus six (20%), medial rectus four (13.3%), and superior oblique three (10%). The inferior oblique was involved more often than any other muscle (p<0.01). Eighteen (60%) patients had ptosis, six (20%) of whom had bilateral ptosis. Diagnosing myasthenia gravis can be difficult, because the disease may mimic every pupil-sparing pattern of ocular misalignment. In addition diplopia caused by paresis of the inferior oblique muscle is rarely encountered (other than as a part of oculomotor nerve palsy). Hence, when a patient presents with vertical diplopia resulting from an isolated inferior oblique palsy, myasthenic etiology should be highly suspected. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Double Zone Dynamical Model For The Tidal Evolution Of The Obliquity
NASA Astrophysics Data System (ADS)
Damiani, Cilia
2017-10-01
It is debated wether close-in giants planets can form in-situ and if not, which mechanisms are responsible for their migration. One of the observable tests for migration theories is the current value of the obliquity. But after the main migration mechanism has ended, the combined effects of tidal dissipation and the magnetic braking of the star lead to the evolution of both the obliquity and the semi-major axis. The observed correlation between effective temperature and measured projected obliquity has been taken as evidence of such mechanisms being at play. Here I present an improved model for the tidal evolution of the obliquity. It includes all the components of the dynamical tide for circular misaligned systems. It uses an analytical formulation for the frequency-averaged dissipation for each mode, depending only on global stellar parameters, giving a measure of the dissipative properties of the convective zone of the host as it evolves in time. The model also includes the effect of magnetic braking in the framework of the double zone model. This results in the estimation of different tidal evolution timescales for the evolution of the planet's semi-major axis and obliquity depending on the properties of the stellar host. This model can be used to test migration theories, provided that a good determination of stellar radii, masses and ages can be obtained.
Nguyen, Nam P; Krafft, Shane P; Vinh-Hung, Vincent; Vos, Paul; Almeida, Fabio; Jang, Siyoung; Ceizyk, Misty; Desai, Anand; Davis, Rick; Hamilton, Russ; Modarresifar, Homayoun; Abraham, Dave; Smith-Raymond, Lexie
2011-12-01
To compare the effectiveness of tomotherapy and three-dimensional (3D) conformal radiotherapy to spare normal critical structures (spinal cord, lungs, and ventricles) from excessive radiation in patients with distal esophageal cancers. A retrospective dosimetric study of nine patients who had advanced gastro-esophageal (GE) junction cancer (7) or thoracic esophageal cancer (2) extending into the distal esophagus. Two plans were created for each of the patients. A three-dimensional plan was constructed with either three (anteroposterior, right posterior oblique, and left posterior oblique) or four (right anterior oblique, left anterior oblique, right posterior oblique, and left posterior oblique) fields. The second plan was for tomotherapy. Doses were 45 Gy to the PTV with an integrated boost of 5 Gy for tomotherapy. Mean lung dose was respectively 7.4 and 11.8 Gy (p=0.004) for tomotherapy and 3D plans. Corresponding values were 12.4 and 18.3 Gy (p=0.006) for cardiac ventricles. Maximum spinal cord dose was respectively 31.3 and 37.4 Gy (p < 0.007) for tomotherapy and 3D plans. Homogeneity index was two for both groups. Compared to 3D conformal radiotherapy, tomotherapy decreased significantly the amount of normal tissue irradiated and may reduce treatment toxicity for possible dose escalation in future prospective studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kozlovsky, Yonathan; Zimmerberg, Joshua; Kozlov, Michael M.
2004-01-01
We consider the elastic behavior of flat lipid monolayer embedding cylindrical inclusions oriented obliquely with respect to the monolayer plane. An oblique inclusion models a fusion peptide, a part of a specialized protein capable of inducing merger of biological membranes in the course of fundamental cellular processes. Although the crucial importance of the fusion peptides for membrane merger is well established, the molecular mechanism of their action remains unknown. This analysis is aimed at revealing mechanical deformations and stresses of lipid monolayers induced by the fusion peptides, which, potentially, can destabilize the monolayer structure and enhance membrane fusion. We calculate the deformation of a monolayer embedding a single oblique inclusion and subject to a lateral tension. We analyze the membrane-mediated interactions between two inclusions, taking into account bending of the monolayer and tilt of the hydrocarbon chains with respect to the surface normal. In contrast to a straightforward prediction that the oblique inclusions should induce tilt of the lipid chains, our analysis shows that the monolayer accommodates the oblique inclusion solely by bending. We find that the interaction between two inclusions varies nonmonotonically with the interinclusion distance and decays at large separations as square of the distance, similar to the electrostatic interaction between two electric dipoles in two dimensions. This long-range interaction is predicted to dominate the other interactions previously considered in the literature. PMID:15298906
A two-fluid study of oblique tearing modes in a force-free current sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William; Lukin, Vyacheslav S.
2016-01-15
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less
Accuracy Analysis for Automatic Orientation of a Tumbling Oblique Viewing Sensor System
NASA Astrophysics Data System (ADS)
Stebner, K.; Wieden, A.
2014-03-01
Dynamic camera systems with moving parts are difficult to handle in photogrammetric workflow, because it is not ensured that the dynamics are constant over the recording period. Minimum changes of the camera's orientation greatly influence the projection of oblique images. In this publication these effects - originating from the kinematic chain of a dynamic camera system - are analysed and validated. A member of the Modular Airborne Camera System family - MACS-TumbleCam - consisting of a vertical viewing and a tumbling oblique camera was used for this investigation. Focus is on dynamic geometric modeling and the stability of the kinematic chain. To validate the experimental findings, the determined parameters are applied to the exterior orientation of an actual aerial image acquisition campaign using MACS-TumbleCam. The quality of the parameters is sufficient for direct georeferencing of oblique image data from the orientation information of a synchronously captured vertical image dataset. Relative accuracy for the oblique data set ranges from 1.5 pixels when using all images of the image block to 0.3 pixels when using only adjacent images.
Exploratory Bi-factor Analysis: The Oblique Case.
Jennrich, Robert I; Bentler, Peter M
2012-07-01
Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (Psychometrika 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (Psychometrika 76:537-549, 2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bifactor rotation criterion designed to produce a rotated loading matrix that has an approximate bi-factor structure. Among other things this can be used as an aid in finding an explicit bi-factor structure for use in a confirmatory bi-factor analysis. They considered only orthogonal rotation. The purpose of this paper is to consider oblique rotation and to compare it to orthogonal rotation. Because there are many more oblique rotations of an initial loading matrix than orthogonal rotations, one expects the oblique results to approximate a bi-factor structure better than orthogonal rotations and this is indeed the case. A surprising result arises when oblique bi-factor rotation methods are applied to ideal data.
Residual symptoms after surgery for unilateral congenital superior oblique palsy.
Caca, Ihsan; Sahin, Alparslan; Cingu, Abdullah; Ari, Seyhmus; Akbas, Umut
2012-01-01
To establish the surgical results and residual symptoms in 48 cases with unilateral congenital superior oblique muscle palsy that had surgical intervention to the vertical muscles alone. Myectomy and concomitant disinsertion of the inferior oblique (IO) muscle was performed in 38 cases and myectomy and concomitant IO disinsertion and recession of the superior rectus muscle in the ipsilateral eye was performed in 10 cases. The preoperative and postoperative vertical deviation values and surgical results were compared. Of the patients who had myectomy and concomitant IO disinsertion, 74% achieved an "excellent" result, 21% a "good" result, and 5% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Of the patients who had myectomy and concomitant inferior oblique disinsertion and ipsilateral superior rectus recession, 50% achieved an "excellent" result, 20% a "good" result, and 30% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Both procedures are effective and successful in patients with superior oblique muscle palsy, but a secondary surgery may be required. Copyright 2012, SLACK Incorporated.
A two-fluid study of oblique tearing modes in a force-free current sheet
Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; ...
2016-01-01
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less
Application of side-oblique image-motion blur correction to Kuaizhou-1 agile optical images.
Sun, Tao; Long, Hui; Liu, Bao-Cheng; Li, Ying
2016-03-21
Given the recent development of agile optical satellites for rapid-response land observation, side-oblique image-motion (SOIM) detection and blur correction have become increasingly essential for improving the radiometric quality of side-oblique images. The Chinese small-scale agile mapping satellite Kuaizhou-1 (KZ-1) was developed by the Harbin Institute of Technology and launched for multiple emergency applications. Like other agile satellites, KZ-1 suffers from SOIM blur, particularly in captured images with large side-oblique angles. SOIM detection and blur correction are critical for improving the image radiometric accuracy. This study proposes a SOIM restoration method based on segmental point spread function detection. The segment region width is determined by satellite parameters such as speed, height, integration time, and side-oblique angle. The corresponding algorithms and a matrix form are proposed for SOIM blur correction. Radiometric objective evaluation indices are used to assess the restoration quality. Beijing regional images from KZ-1 are used as experimental data. The radiometric quality is found to increase greatly after SOIM correction. Thus, the proposed method effectively corrects image motion for KZ-1 agile optical satellites.
Effects of excimer laser illumination on microdrilling into an oblique polymer surface
NASA Astrophysics Data System (ADS)
Wu, Chih-Yang; Shu, Chun-Wei; Yeh, Zhi-Chang
2006-08-01
In this work, we present the experimental results of micromachining into polymethy-methacrylate exposed to oblique KrF excimer laser beams. The results of low-aspect-ratio ablations show that the ablation rate decreases monotonously with the increase of incident angle for various fluences. The ablation rate of high-aspect-ratio drilling with opening center on the focal plane is almost independent of incident angles and is less than that of low-aspect-ratio ablation. The results of high-aspect-ratio ablations show that the openings of the holes at a distance from the focal plane are enlarged and their edges are blurred. Besides, the depth of a hole in the samples oblique to the laser beam at a distance from the focal plane decreases with the increase of the distance from the focal plane. The number of deep holes generated by oblique laser beams through a matrix of apertures decreases with the increase of incident angle. Those phenomena reveal the influence of the local light intensity on microdrilling into an oblique surface.
OBLIQUE VIEW, REAR ELEVATION, LOOKING NORTHEAST Mountain Home Air ...
OBLIQUE VIEW, REAR ELEVATION, LOOKING NORTHEAST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID
SouthWest view; Station Building north elevation, oblique North ...
South-West view; Station Building - north elevation, oblique - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA
SouthEast view; Station Building north elevation, oblique North ...
South-East view; Station Building - north elevation, oblique - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA
Effect of oblique channel on discharge characteristics of 200-W Hall thruster
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Peng, Wuji; Sun, Hezhi; Xu, Yu; Wei, Liqiu; Li, Hong; Zeng, Ming; Wang, Fufeng; Yu, Daren
2017-02-01
In an experiment involving a 200-W Hall thruster, partial ionization occurs in the plume area because of the extrapolation of the magnetic field. To improve the thruster performance, the concept of an oblique channel is proposed for improving the ionization degree in the plume area. Calculations performed using a Particle-in-cell (PIC) simulator and the experimental results both show that an oblique channel structure can reduce the wall loss. Compared with a straight channel under similar conditions of the discharge voltage and current, the ionization degree in the plume area, thrust, specific impulse, propellant utilization, and anode efficiency are improved by ˜20%. The oblique channel is an important design consideration for improving the partial ionization of the plume area in the thruster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchis-Ojeda, Roberto; Isaacson, Howard; Marcy, Geoffrey W.
We have detected the Rossiter–Mclaughlin effect during a transit of WASP-47b, the only known hot Jupiter with close planetary companions. By combining our spectroscopic observations with Kepler photometry, we show that the projected stellar obliquity is λ = 0° ± 24°. We can firmly exclude a retrograde orbit for WASP-47b, and rule out strongly misaligned prograde orbits. Low obliquities have also been found for most of the other compact multiplanet systems that have been investigated. The Kepler-56 system, with two close-in gas giants transiting their subgiant host star with an obliquity of at least 45{sup ◦}, remains the only clearmore » counterexample.« less
Pre-late heavy bombardment evolution of the Earth's obliquity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu
2014-11-01
The Earth's obliquity is stabilized by the Moon, which facilitates a rapid precession of the Earth's spin axis, detuning the system away from resonance with orbital modulation. It is, however, likely that the architecture of the solar system underwent a dynamical instability-driven transformation, where the primordial configuration was more compact. Hence, the characteristic frequencies associated with orbital perturbations were likely faster in the past, potentially allowing for secular resonant encounters. In this work, we examine if, at any point in the Earth's evolutionary history, the obliquity varied significantly. Our calculations suggest that even though the orbital perturbations were different, themore » system nevertheless avoided resonant encounters throughout its evolution. This indicates that the Earth obtained its current obliquity during the formation of the Moon.« less
Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence
NASA Technical Reports Server (NTRS)
Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.
2015-01-01
The U.S. Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) are actively involved in improving the predictive capabilities of transient finite element computational methods for application to safety issues involving unintended impacts on aircraft and aircraft engine structures. One aspect of this work involves the development of an improved deformation and failure model for metallic materials, known as the Tabulated Johnson-Cook model, or MAT224, which has been implemented in the LS-DYNA commercial transient finite element analysis code (LSTC Corp., Livermore, CA) (Ref. 1). In this model the yield stress is a function of strain, strain rate and temperature and the plastic failure strain is a function of the state of stress, temperature and strain rate. The failure criterion is based on the accumulation of plastic strain in an element. The model also incorporates a regularization scheme to account for the dependency of plastic failure strain on mesh size. For a given material the model requires a significant amount of testing to determine the yield stress and failure strain as a function of the three-dimensional state of stress, strain rate and temperature. In addition, experiments are required to validate the model. Currently the model has been developed for Aluminum 2024 and validated against a series of ballistic impact tests on flat plates of various thicknesses (Refs. 1 to 3). Full development of the model for Titanium 6Al-4V is being completed, and mechanical testing for Inconel 718 has begun. The validation testing for the models involves ballistic impact tests using cylindrical projectiles impacting flat plates at a normal incidence (Ref. 2). By varying the thickness of the plates, different stress states and resulting failure modes are induced, providing a range of conditions over which the model can be validated. The objective of the study reported here was to provide experimental data to evaluate the model under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.
Seismic Imaging Reveals Deep-Penetrating Fault Planes in the Wharton Basin Oceanic Mantle
NASA Astrophysics Data System (ADS)
Carton, H. D.; Singh, S. C.; Dyment, J.; Hananto, N. D.; Chauhan, A.
2011-12-01
We present images from a deep multi-channel seismic reflection survey acquired in 2006 over the oceanic lithosphere of the Wharton Basin offshore northern Sumatra, NW of Simeulue island. The main ~230-km long seismic profile is roughly parallel to the trench at ~32-66 km distance from the subduction front and crosses (at oblique angles to both flow line and isochron directions) an entire segment of 55-57 my-old fast-spread crust formed at the extinct Wharton spreading center, as well as two bounding ~N5°E trending fracture zones near its extremities; complementary data is provided by the oceanic portions of two margin-crossing profiles on either side shot during the same survey. This high-quality, 12-km streamer dataset acquired for deep reflection imaging (10000 cu in tuned airgun array and 15-m source and streamer depths) reveals the presence of mostly SE-dipping (20 to 40 degrees dip) events cutting across and extending below the oceanic Moho, down to a maximum depth below seafloor of ~37 km, at ~5 km spacing along the trench-parallel profile. Similar dipping mantle events are imaged on the oceanic portion of another long-offset profile acquired in 2009 offshore central Sumatra south of Pagai island, which will also be presented. Such events are unlikely to be imaging artefacts of the 2D acquisition, such as out-of-plane energy originating from sharp, buried basement reliefs trending obliquely to the profile. Due to their geometry, they do not seem to be associated with plate bending at the trench outer-rise, which has a relatively modest expression at the seafloor and within the incoming sedimentary section north of the Simeulue elbow. We propose that these deep-penetrating dipping reflectors are fossil fault planes formed due to compressive stresses at the beginning of the continent-continent collision between India and Eurasia, the early stages of which were responsible for the cessation of seafloor spreading at the Wharton ridge at ca 40 Ma.
Climates of Oblique Exoplanets
NASA Astrophysics Data System (ADS)
Dobrovolskis, A. R.
2008-12-01
A previous paper (Dobrovolskis 2007; Icarus 192, 1-23) showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million km of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets, which is particularly effective for solid/liquid bodies like "Super-Earths". Along with friction between a solid mantle and a liquid core, tides also are expected to despin a planet until it is captured in the synchronous resonance, so that its rotation period is identical to its orbital period. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. For comparison, stable Cassini states can exist for practically any obliquity up to 180° for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits. For obliquities greater than 90°, the ground track of the sub-solar point wraps around all longitudes on the surface of such a planet. For smaller obliquities, the sub-solar track takes the figure-8 shape of an analemma. This can be visualized as the intersection of the planet's spherical surface with a right circular cylinder, parallel to the spin axis and tangent to the equator from the inside. The excursion of the sub-solar point in latitude is equal to the obliquity β, while the corresponding libration in longitude is smaller (±arcsin(tan2(β/2))). Obliquity thus affects the distribution of insolation over the planet's surface, particularly near its poles. For β = 0, one hemisphere bakes in permanent sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or night disappear at β = 90°. The insolation regime passes through several more transitions as β continues to increase toward 180°, but the surface distribution of insolation remains non-uniform in both latitude and longitude.
OBLIQUE VIEW, REAR ELEVATION, LOOKING SOUTHSOUTHWEST Mountain Home Air ...
OBLIQUE VIEW, REAR ELEVATION, LOOKING SOUTH-SOUTHWEST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID
OBLIQUE VIEW, FRONT ELEVATION, LOOKING WESTSOUTHWEST Mountain Home Air ...
OBLIQUE VIEW, FRONT ELEVATION, LOOKING WEST-SOUTHWEST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID
NorthWest view; Station Building south (front) elevation, oblique ...
North-West view; Station Building - south (front) elevation, oblique - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA
NorthEast view; Station Building south (front) elevation, oblique ...
North-East view; Station Building - south (front) elevation, oblique - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA
Oblique view of southeast corner; camera facing northwest. Mare ...
Oblique view of southeast corner; camera facing northwest. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Meyers, James F.
2011-01-01
A nonintrusive technique Doppler global velocimetry (DGV) was used to determine conical shock strengths on a supersonic-cruise low-boom aircraft model. The work was performed at approximately Mach 2 in the Unitary Plan Wind Tunnel. Water is added to the wind tunnel flow circuit, generating small ice particles used as seed particles for the laser-based velocimetry. DGV generates two-dimensional (2-D) maps of three components of velocity that span the oblique shock. Shock strength (i.e. fractional pressure increase) is determined from observation of the flow deflection angle across the shock in combination with the standard shock relations. Although DGV had conveniently and accurately determined shock strengths from the homogenous velocity fields behind 2-D planar shocks, the inhomogeneous 3-D velocity fields behind the conical shocks presented additional challenges. Shock strength measurements for the near-field conical nose shock were demonstrated and compared with previously-published static pressure probe data for the same model in the same wind tunnel. Fair agreement was found between the two sets of results.
NASA Astrophysics Data System (ADS)
Massironi, M.; Zampieri, D.; Bianchi, M.; Schiavo, A.; Franceschini, A.
2009-10-01
The Permanent Scatterers Synthetic Aperture Radar INterferometry (PSInSAR™) methodology provides high-resolution assessment of surface deformations (precision ranging from 0.8 to 0.1 mm/year) over long periods of observation. Hence, it is particularly suitable to analyze surface motion over wide regions associated to a weak tectonic activity. For this reason we have adopted the PSInSAR technique to study regional movement across the Giudicarie belt, a NNE-trending trust belt oblique to the Southern Alpine chain and presently characterized by a low to moderate seismicity. Over 11,000 PS velocities along the satellite Line Of Sight (LOS) were calculated using images acquired in descending orbit during the 1992-1996 time span. The PSInSAR data show a differential uplift of around 1.4-1.7 mm/year across the most external WNW-dipping thrusts of the Giudicarie belt (Mt. Baldo, Mt. Stivo and Mt. Grattacul thrusts alignment). This corresponds to a horizontal contraction across the external part of the Giudicarie belt of about 1.3-1.5 mm/year.
NASA Astrophysics Data System (ADS)
Massironi, Matteo; Zampieri, Dario; Schiavo, Alessio; Bianchi, Marco; Franceschini, Andrea
2010-05-01
The Permanent Scatterers Synthetic Aperture Radar INterferometry (PSInSAR) methodology provides high resolution assessment of surface deformations (precision ranging from 0.8 to 0.1 mm/year) over long periods of observation. Hence, it is particularly suitable to analyze surface motion over wide regions associated to a weak tectonic activity. For this reason we have adopted the PSInSAR technique to study regional movement across the Giudicarie belt, a NNE-trending trust belt oblique to the Southern Alpine chain and presently characterized by a low to moderate seismicity. Over 11,000 PS velocities along the satellite Line Of Sight (LOS) were calculated using images acquired in descending orbit during the 1992-1996 time span. The PSInSAR data show a differential uplift of around 1.4-1.7 mm/year across the most external WNW-dipping thrusts of the Giudicarie belt (Mt. Baldo, Mt. Stivo and Mt. Grattacul thrusts alignment). This corresponds to a horizontal contraction across the external part of the Giudicarie belt of about 1.3-1.5 mm/year.
THE DUST ENVIRONMENT OF MAIN-BELT COMET P/2012 T1 (PANSTARRS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, F.; Pozuelos, F.; Cabrera-Lavers, A.
2013-06-20
The Main-Belt Comet P/2012 T1 (PANSTARRS) has been imaged using the 10.4 m Gran Telescopio Canarias and the 4.2 m William Herschel Telescope at six epochs in the period from 2012 November to 2013 February, with the aim of monitoring its dust environment. The dust tails' brightness and morphology are best interpreted in terms of a model of sustained dust emission spanning four to six months. The total dust mass ejected is estimated at {approx}6-25 Multiplication-Sign 10{sup 6} kg. We assume a time-independent power-law size distribution function, with particles in the micrometer to centimeter size range. Based on the qualitymore » of the fits to the isophote fields, an anisotropic emission pattern is favored against an isotropic one, in which the particle ejection is concentrated toward high latitudes ({+-}45 Degree-Sign to {+-}90 Degree-Sign ) in a high-obliquity object (I = 80 Degree-Sign ). This seasonally driven ejection behavior, along with the modeled particle ejection velocities, are in remarkable agreement to those we found for P/2010 R2 (La Sagra).« less
Characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Ikai; Pang, Wen-Yuan; Hsu, Yu-Chi
2013-06-15
The characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy on LiAlO{sub 2} substrate was studied by cathodoluminescence and photoluminescence measurements. We demonstrated that the cathodoluminescence from oblique semi-polar surfaces of mushroom-shaped GaN was much brighter than that from top polar surface due to the reduction of polarization field on the oblique semi-polar surfaces. It implies that the oblique semi-polar surface is superior for the light-emitting surface of wurtzite nano-devices.
1998-01-01
nonideal penetrator on a thin plate at high obliquities. These computations simulated two series of experiments at velocities of 1.5 km/ s and 4.1 km/ s ...3 2. Combined Effects of Obliquity, 0, and Rotation, 4, on Debris Cloud Evolution at 4.1 km/ s and 26 p s ; Impact Velocity Vector Lies in x-z Plane...7 3. Time History of the Penetrator Mass Fraction Exiting the Bottom of the Target at 4.1 km / s
Histologic consequences of inferior oblique anastomosis to denervated lateral rectus muscle.
Christiansen, S; Madhat, M; Baker, R S
1987-01-01
Secondary muscular neurotization has been proposed as a means of restoring contractility to paretic extraocular muscle. We studied this technique by anastomosing healthy inferior oblique muscle to lateral rectus muscle that had been denervated either orbitally or intracranially in 20 dogs. Nerve and muscle fiber growth from the inferior oblique to the lateral rectus was demonstrated but no new neuromuscular junctions were formed. Regeneration of the lesioned sixth nerve occurred frequently and may explain the restoration of function claimed after this procedure.
2000-03-01
oscillations of the ecliptic , and the planetary tilt-e ect. The agreement of the new coecients of Souchay & Kinoshita (1996, 1997) with those of Hartmann & So... obliquity are shown in Tables 1 and 2. Table 1. Principal terms for quasidiurnal nutations in longitude and obliquity for the gure axis. The unit is as...Argument Period Longitude ( ) Obliquity (") lM lS F D sin cos sin cos 1 0 0 1 0 1 0.96215 -38.2313 -4.6980 -1.8567 15.1063 1 0 0 -1 0 -1
Coordinate Conversion Technique for OTH Backscatter Radar
1977-05-01
obliquity of the earth’s equator (=23.0), A is the mean longitude of the sun measured in the ecliptic counterclockwise from the first point of...MODEL FOR Fo-LAYER CORRECTION FACTORS-VERTICAL IO NO GRAM 11. MODEL FOR Fg-LAYER CORRECTION FACTORS- OBLIQUE IO NO GRAM 12. ELEMENTS OF COMMON BLOCK...simulation in (1) to a given oblique ionogram generate range gradient factors to apply to f F9 and I\\1(3000)F„ to force agreement; (3) from the
Modal control of an oblique wing aircraft
NASA Technical Reports Server (NTRS)
Phillips, James D.
1989-01-01
A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.
Oblique nonlinear whistler wave
NASA Astrophysics Data System (ADS)
Yoon, Peter H.; Pandey, Vinay S.; Lee, Dong-Hun
2014-03-01
Motivated by satellite observation of large-amplitude whistler waves propagating in oblique directions with respect to the ambient magnetic field, a recent letter discusses the physics of large-amplitude whistler waves and relativistic electron acceleration. One of the conclusions of that letter is that oblique whistler waves will eventually undergo nonlinear steepening regardless of the amplitude. The present paper reexamines this claim and finds that the steepening associated with the density perturbation almost never occurs, unless whistler waves have sufficiently high amplitude and propagate sufficiently close to the resonance cone angle.
Cosmic-ray shock acceleration in oblique MHD shocks
NASA Technical Reports Server (NTRS)
Webb, G. M.; Drury, L. OC.; Volk, H. J.
1986-01-01
A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.
Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; ...
2016-09-01
In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and tomore » interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.« less
Interface and Electronic Characterization of Thin Epitaxial Co3O4 Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaz, C.A.; Zhu, Y.; Wang, H.-Q.
2009-01-15
The interface and electronic structure of thin ({approx} 20-74 nm) Co{sub 3}O{sub 4}(1 1 0) epitaxial films grown by oxygen-assisted molecular beam epitaxy on MgAl{sub 2}O{sub 4}(1 1 0) single crystal substrates have been investigated by means of real and reciprocal space techniques. As-grown film surfaces are found to be relatively disordered and exhibit an oblique low energy electron diffraction (LEED) pattern associated with the O-rich CoO{sub 2} bulk termination of the (1 1 0) surface. Interface and bulk film structure are found to improve significantly with post-growth annealing at 820 K in air and display sharp rectangular LEED patterns,more » suggesting a surface stoichiometry of the alternative Co{sub 2}O{sub 2} bulk termination of the (1 1 0) surface. Non-contact atomic force microscopy demonstrates the presence of wide terraces separated by atomic steps in the annealed films that are not present in the as-grown structures; the step height of {approx}2.7 {angstrom} corresponds to two atomic layers and confirms a single termination for the annealed films, consistent with the LEED results. A model of the (1 x 1) surfaces that allows for compensation of the polar surfaces is presented.« less
Gottschalk, Hilton P; Bastrom, Tracey P; Edmonds, Eric W
2013-01-01
Standard elbow radiographs (AP and lateral views) are not accurate enough to measure true displacement of medial epicondyle fractures of the humerus. The amount of perceived displacement has been used to determine treatment options. This study assesses the utility of internal oblique radiographs for measurement of true displacement in these fractures. A medial epicondyle fracture was created in a cadaveric specimen. Displacement of the fragment (mm) was set at 5, 10, and 15 in line with the vector of the flexor pronator mass. The fragment was sutured temporarily in place. Radiographs were obtained at 0 (AP), 15, 30, 45, 60, 75, and 90 degrees (lateral) of internal rotation, with the elbow in set positions of flexion. This was done with and without radio-opaque markers placed on the fragment and fracture bed. The 45 and 60 degrees internal oblique radiographs were then presented to 5 separate reviewers (of different levels of training) to evaluate intraobserver and interobserver agreement. Change in elbow position did not affect the perceived displacement (P=0.82) with excellent intraobserver reliability (intraclass correlation coefficient range, 0.979 to 0.988) and interobserver agreement of 0.953. The intraclass correlation coefficient for intraobserver reliability on 45 degrees internal oblique films for all groups ranged from 0.985 to 0.998, with interobserver agreement of 0.953. For predicting displacement, the observers were 60% accurate in predicting the true displacement on the 45 degrees internal oblique films and only 35% accurate using the 60 degrees internal oblique view. Standardizing to a 45 degrees internal oblique radiograph of the elbow (regardless of elbow flexion) can augment the treating surgeon's ability to determine true displacement. At this degree of rotation, the measured number can be multiplied by 1.4 to better estimate displacement. The addition of a 45 degrees internal oblique radiograph in medial humeral epicondyle fractures has good intraobserver and interobserver reliability to more accurately estimate the true displacement of these fractures. Diagnostic study, Level II (Development of diagnostic study with universally applied reference "gold" standard).
2016-01-01
We report a complete structural and magneto-thermodynamic characterization of four samples of the Heusler alloy Ni-Co-Mn-Ga-In, characterized by similar compositions, critical temperatures and high inverse magnetocaloric effect across their metamagnetic transformation, but different transition widths. The object of this study is precisely the sharpness of the martensitic transformation, which plays a key role in the effective use of materials and which has its origin in both intrinsic and extrinsic effects. The influence of the transition width on the magnetocaloric properties has been evaluated by exploiting a phenomenological model of the transformation built through geometrical considerations on the entropy versus temperature curves. A clear result is that a large temperature span of the transformation is unfavourable to the magnetocaloric performance of a material, reducing both isothermal entropy change and adiabatic temperature change obtainable in a given magnetic field and increasing the value of the maximum field needed to fully induce the transformation. The model, which is based on standard magnetometric and conventional calorimetric measurements, turns out to be a convenient tool for the determination of the optimum values of transformation temperature span in a trade-off between sheer performance and amplitude of the operating range of a material. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402934
Effectiveness of the 3D Monitor System for Medical Education During Neurosurgical Operation.
Wanibuchi, Masahiko; Komatsu, Katsuya; Akiyama, Yukinori; Mikami, Takeshi; Mikuni, Nobuhiro
2018-01-01
Three-dimensional (3D) graphics are used in the medical field, especially during surgery. Although 3D monitoring is useful for medical education, its effectiveness needs to be objectively evaluated. The aim of this study was to investigate the efficacy of 3D monitoring in the surgical education of medical students. A questionnaire on high-definition 3D monitoring was given to fifth-year medical students in a 6-year program. Sixty-four students wore polarized glasses and observed a microsurgical operation through a 3D monitor. The questionnaire contained questions on stereopsis, neurosurgical interest, visual impact, comprehension of surgical anatomy and procedures, optical sharpness, active learning enhancement, and eye exhaustion. These parameters were evaluated on a 5-point scale that spanned negative and positive scores. The average score of each parameter ranged from 3.13 to 3.78, except for eye exhaustion, which was 0.88. The items for which the students reported positive perceptions (scores of 4 or 5) were stereopsis (67.2% of students), neurosurgical interest (62.5%), visual impact and optical sharpness (60.9% for both), active learning enhancement (57.8%), and comprehension of surgical anatomy (50.0%) and procedures (42.2%). By contrast, only eye exhaustion was evaluated negatively (26.6%). The use of 3D monitoring systems in medical education offers the advantage of stereopsis and contributes to surgical training. However, improvements are required to decrease eye exhaustion. Copyright © 2017 Elsevier Inc. All rights reserved.
Mode Water Formation via Cabbeling and Submesoscale Lateral Mixing at a Strained Thermohaline Front
NASA Astrophysics Data System (ADS)
Thomas, L. N.; Shakespeare, C. J.
2014-12-01
Mode waters play an important role in interannual climate variability through the temporary storage of heat and carbon in the ocean. The mechanisms explaining their formation are not well understood but appear to be shaped by the dynamics of the ocean fronts that mark their poleward extent. We explore a mode water formation mechanism that has a clear connection to fronts and involves cabbeling. Cabbeling refers to the process by which two water masses of equal density but different temperature and salinity are combined to create a new, denser water mass, as a result of nonlinearities in the equation of state for seawater. The work is motivated in part by recent observations of an extremely sharp, density-compensated front at the north wall of the Gulf Stream, the boundary between the subtropical and subpolar gyres. Here, the inter-gyre salinity/temperature difference is compressed into a span of a few kilometers, making the flow susceptible to cabbeling. The sharpness of the front is caused by frontogenetic strain, which is presumably balanced by submesoscale lateral mixing processes. We study this balance with a simple analytical model of a thermohaline front forced by uniform strain and derive a scaling for the amount of water mass transformation resulting from the ensuing cabbeling. The theory suggests that this mechanism could be responsible for persistent, hence significant, mode water formation. As such, it represents a submesoscale process that impacts the ocean on basin scales that should be resolved or parameterized in realistic numerical simulations.
FACILITY 814, FRONT AND SOUTHEAST SIDE, OBLIQUE VIEW FACING NORTH. ...
FACILITY 814, FRONT AND SOUTHEAST SIDE, OBLIQUE VIEW FACING NORTH. - Schofield Barracks Military Reservation, Bachelor Officers' Quarters Type, Between Grimes & Tidball Streets near Ayres Avenue, Wahiawa, Honolulu County, HI
FACILITY 814, COURTYARD AND SOUTHEAST WING, OBLIQUE VIEW FACING SOUTH. ...
FACILITY 814, COURTYARD AND SOUTHEAST WING, OBLIQUE VIEW FACING SOUTH. - Schofield Barracks Military Reservation, Bachelor Officers' Quarters Type, Between Grimes & Tidball Streets near Ayres Avenue, Wahiawa, Honolulu County, HI
Oblique view of arches and ironwork on south breezeway ...
Oblique view of arches and ironwork on south breezeway - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Buildings, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA
Oblique view looking northeast at Machine Shop (Bldg. 163) from ...
Oblique view looking northeast at Machine Shop (Bldg. 163) from Second Street - Atchison, Topeka, Santa Fe Railroad, Albuquerque Shops, Machine Shop, 908 Second Street, Southwest, Albuquerque, Bernalillo County, NM
NASA Astrophysics Data System (ADS)
O'Hara, D.; Lee, J.; Lewis, J. C.; Rau, R.
2013-12-01
Taiwan is the product of modern subduction polarity reversal coupled with arc-continent collision. The NW-moving Philippine Sea plate (PSP) subducts beneath the Eurasian plate (EUR) to the northeast of Taiwan at the Ryukyu trench, while overriding EUR south of Taiwan at the Manila trench, bringing the Luzon volcanic arc into collision with the deforming sediments of the Eurasian passive margin. The obliquity between the N-S trending Luzon Arc (LA) and NE-SW trending passive margin is causing the southward, temporal propagation of collision since ~6 Ma. The collided forearc and clastic sediments accreted by the advancing arc created the Coastal Range (CR), whose western-most extent lies at the suture zone between the two plates, the NNE-SSW trending Longitudinal Valley Fault (LVF). In order to understand the change in stress along the northern LA as it docks onto EUR, we inverted over 1900 relocated earthquake focal mechanism solutions within the on-land CR and offshore LA regions for spatial strain tensors. The focal mechanisms cover seismicity from 1991-2013, ranging in depths 0-112 km and magnitudes 2.22-6.92. For our analyses, we grouped the focal mechanisms based on 15' Latitudinal intervals along the study area and inverted the data for best-fit strain tensors using a micropolar continuum model of crustal deformation. Results suggest dominant compression in all regions with accommodation occurring through oblique reverse faults of varying dips. Trends of σ1 rotate clockwise (CW) from 100° in the south to 155° in the north. This CW rotation is also observed in the preferred nodal plane slip vector trends - from E-W orientation in the south to NW-SE in the north. The rotation of σ1 and slip vector trends creates varying degrees of obliquity with the direction normal (DN) to CR (112°). The trends in the southern part of the study area show obliquity counterclockwise (CCW) to DN; trends in the central part are near parallel to DN; and trends in the northern part show obliquity CW to DN. GPS vectors from 2008-2012 using an ITRF reference frame show similar changes in obliquity with GPS velocity trends oblique CCW and CW to DN in the southern and northern areas, respectively, and near parallel to DN in the central area. Our results suggest the accommodation of three varying strain regimes along the northern LA (CR) system - (1) strain partitioning within the Manila forearc basin due to the obliquity between N-S trending LA and NW trending convergence vector; (2) convergence-related strain in the central LVF and CR along NNE trending major thrust faults with a small oblique component due to the obliquity between DN and the convergence vector; and (3) strain partitioning along the Ryukyu trench and forearc basin due to the obliquity between northward subducting plate along the WNW- ESE trending Ryukyu trench and NW convergence vector. As a result, the different subducting characteristics of strain regimes correspond to the different stages of arc accretion/collision, from south to north: pre-collision, present collision, waning collision, and subduction.
NASA Astrophysics Data System (ADS)
Horálek, Josef; Čermáková, Hana; Fischer, Tomáš
2014-05-01
The origin of earthquake swarms remains still an enigma. The swarms typically accompany volcanic activity at the plate margins but also occur in intracontinental areas. West Bohemia-Vogtland (border area between Czech Republic and Germany) represents one of the most active intraplate earthquake-swarm regions in Europe. Above, this area is characteristic by high activity of crustal fluids. Swarm earthquakes occur persistently in the area of about 3 000 km2. However, the Novö Kostel focal zone (NK), which shows a few tens of thousands events within the last twenty years, dominates the recent seismicity of the whole region. There were swarms in 1997, 2000, 2008 and 20011 followed by reactivation in 2013, and a few tens of microswarms which forming a focal belt of about 15 x 6 km. We analyse geometry of the NK focal zone applying the double-difference method to seismicity in the period 1997 - 2013. The swarms are located close to each other in at depths from 6 to 13 km. The 2000 (MLmax = 3.3) and 2008 (MLmax = 3.8) swarms are 'twins' i.e. their hypocenters fall precisely on the same portion of the NK fault; similarly the 1997 (MLmax = 2.9), 2011 (MLmax = 3.6) and 2013 (MLmax = 2.4) swarms also occurred on the same fault segment. However, the individual swarms differ considerably in their evolution, mainly in the rate of the seismic-moment release and foci migration. Source mechanisms (in the full moment-tensor description) and their time and space variations also show different patterns. All the 2000- and 2008-swarm events are pure shears, signifying both oblique-normal and oblique-thrust faulting but the former prevails. We found a several families of source mechanisms, which fit well geometry of respective fault segments being determined on the basis of the event location: The 2000 and 2008 swarms activated the same portion of the NK fault, hence the source mechanisms are similar. The 1997 and 2011 swarms took place on two differently oriented fault segments, thus two different source mechanisms occurred: the oblique-normal on the one segment and the oblique-thrust type on the other one. Furthermore, we disclose that all the ML ≥ 2.7 swarm events, which occurred in the given time span, are located in a few dense clusters. It implies that the most of seismic energy in the individual swarms has been released in step by step rupturing of one or a few asperities. The existing results do not allow us to explain properly an origin of earthquake swarms. Nevertheless, some results point to a connection between pressurized fluids in the crust and the earthquake swarm occurrence. Taking this into account, we may infer that earthquake swarms occur on short fault segments with heterogeneous stress and strength, which are affected by crustal fluids. Pressurized fluids reduced normal component of the tectonic stress and lower friction. Thus, critically loaded and favourably oriented faults are brought to failure and the swarm activity is driven by the differential local stress.
7. OBLIQUE VIEW, HOME SIGNAL, WESTBOUND ON CATENARY BRIDGE 518 ...
7. OBLIQUE VIEW, HOME SIGNAL, WESTBOUND ON CATENARY BRIDGE 518 - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT
OBLIQUE VIEW OF WEST (FRONT) FACADE, LOOKING EAST/NORTHEAST Eglin ...
OBLIQUE VIEW OF WEST (FRONT) FACADE, LOOKING EAST/NORTHEAST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL
5. OBLIQUE INTERIOR VIEW OF CHEMICAL STORAGE BUILDING (#1776), LOOKING ...
5. OBLIQUE INTERIOR VIEW OF CHEMICAL STORAGE BUILDING (#1776), LOOKING SOUTHEAST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA
4. NORTH SIDE, OBLIQUE VIEW, FROM INTERSECTION OF G AND ...
4. NORTH SIDE, OBLIQUE VIEW, FROM INTERSECTION OF G AND 5TH STREETS, LOOKING SOUTHEAST. - Oakland Naval Supply Center, Storehouse, Between G & H Streets, & Fifth & Sixth Streets, Oakland, Alameda County, CA
2. EXTERIOR OBLIQUE VIEW OF BUILDING 746 FROM EAST K ...
2. EXTERIOR OBLIQUE VIEW OF BUILDING 746 FROM EAST K STREET, LOOKING SOUTHEAST. - Oakland Naval Supply Center, Gymnasium-Cafeteria-Theater, East K Street between Eleventh & Twelfth Streets, Oakland, Alameda County, CA
Building G interior, second floor oblique looking southwest, showing storage ...
Building G interior, second floor oblique looking southwest, showing storage area for samples - Daniel F. Waters Germantown Dye Works, Building G, 37-55 East Wister Street, Philadelphia, Philadelphia County, PA
17. Oblique view of northwest corner of main plant looking ...
17. Oblique view of northwest corner of main plant looking southeast with railroad tracks in foreground - Skinner Meat Packing Plant, Main Plant, 6006 South Twenty-seventh Street, Omaha, Douglas County, NE
2008-09-05
This highly oblique image shot over northwestern part of the African continent captures the curvature of the Earth and shows its atmosphere as seen by NASA EarthKAM. You can see clouds and even the occasional thunderhead.
Building 931, oblique view to northwest, 210 mm lens. ...
Building 931, oblique view to northwest, 210 mm lens. - Travis Air Force Base, Central Battery Charging Building, North of W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
Building 1204, oblique view to east, 90 mm lens. ...
Building 1204, oblique view to east, 90 mm lens. - Travis Air Force Base, Squadron Operations & Readiness Crew Facility, W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
Building 1204, oblique view to west, 135 mm lens. ...
Building 1204, oblique view to west, 135 mm lens. - Travis Air Force Base, Squadron Operations & Readiness Crew Facility, W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
Building 931, oblique view to southeast, 135 mm lens. ...
Building 931, oblique view to southeast, 135 mm lens. - Travis Air Force Base, Central Battery Charging Building, North of W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model
Schad, Daniel J.; Engbert, Ralf
2012-01-01
Assumptions on the allocation of attention during reading are crucial for theoretical models of eye guidance. The zoom lens model of attention postulates that attentional deployment can vary from a sharp focus to a broad window. The model is closely related to the foveal load hypothesis, i.e., the assumption that the perceptual span is modulated by the difficulty of the fixated word. However, these important theoretical concepts for cognitive research have not been tested quantitatively in eye movement models. Here we show that the zoom lens model, implemented in the SWIFT model of saccade generation, captures many important patterns of eye movements. We compared the model's performance to experimental data from normal and shuffled text reading. Our results demonstrate that the zoom lens of attention might be an important concept for eye movement control in reading. PMID:22754295
Comparative Genome Analysis of Basidiomycete Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert; Salamov, Asaf; Morin, Emmanuelle
Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypesmore » found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.« less
Unraveling the Cooling Trend of the Soft Gamma Repeater, SGR162-41
NASA Technical Reports Server (NTRS)
Kouveliotou, C.; Eichler, D.; Woods, P. M.; Lybarsky, Y.; Patel, S. K.; Gogus, E.; vanderKlis, M.; Tennant, A.; Wachter, S.
2003-01-01
SGR 1627-41 was discovered in 1998 after a single active episode which lasted approx. 6 weeks. We report here our monitoring results of the decay trend of the persistent X-ray luminosity of the source during the last 5 years. We find an initial temporal power law decay with index 0.47, reaching a piateau which is followed by a sharp (factor of ten) flux decline approx. 800 days after the source activation. The source spectrum is best described during the entire period by a single power law with high absorption (N(sub H) = 9.0(7) x 10(exp 22)/sq cm); the spectral index, however, varies dramatically between 2.2-3.8 spanning the entire range for all known SGR sources. We discuss the cooling behavior of the neutron star assuming a deep crustal heating initiated by the burst activity of the source during 1998.
Unraveling the Cooling Trend of the Soft Gamma Repeater SGR 1627-41
NASA Technical Reports Server (NTRS)
Kouveliotou, C.; Eichler, D.; Woods, P. M.; Lyubarsky, Y.; Patel, S. K.; Gogus, E.; vanderKlis, M.; Tennant, A.; Wachter, S.; Hurley, K.
2003-01-01
SGR 1627-41 was discovered in 1998 after a single active episode that lasted approximately 6 weeks. We report here our monitoring results of the decay trend of the persistent X-ray luminosity of the source during the last 5 years. We find an initial temporal power-law decay with index 0.47, reaching a plateau that is followed by a sharp (factor of 10) flux decline approximately 800 days after the source activation. The source spectrum is best described during the entire period by a single power law with high absorption [N(sub H) = 9.0(7) x 10(exp 22) per square centimeter]; the spectral index, however, varies dramatically between 2.2 and 3.8 spanning the entire range for all known soft gamma repeater sources. We discuss the cooling behavior of the neutron star assuming a deep crustal heating initiated by the burst activity of the source during 1998.
Slip Face on Downwind Side of Namib Sand Dune on Mars
2016-01-04
This view from NASA's Curiosity Mars Rover shows the downwind side of "Namib Dune," which stands about 13 feet (4 meters) high. The site is part of Bagnold Dunes, a band of dark sand dunes along the northwestern flank of Mars' Mount Sharp. The component images stitched together into this scene were taken with Curiosity's Navigation Camera (Navcam) on Dec. 17, 2015, during the 1,196th Martian day, or sol, of the rover's work on Mars. In late 2015 and early 2016, Curiosity is conducting the first up-close studies ever made of active sand dunes anywhere but on Earth. Under the influence of Martian wind, the Bagnold Dunes are migrating up to about one yard or meter per Earth year. The view spans from westward on the left to east-southeastward on the right. It is presented as a cylindrical perspective projection. http://photojournal.jpl.nasa.gov/catalog/PIA20281
Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance.
Saliba, Michael; Correa-Baena, Juan-Pablo; Grätzel, Michael; Hagfeldt, Anders; Abate, Antonio
2018-03-01
Organic-inorganic perovskites have made tremendous progress in recent years due to exceptional material properties such as high panchromatic absorption, charge carrier diffusion lengths, and a sharp optical band edge. The combination of high-quality semiconductor performance with low-cost deposition techniques seems to be a match made in heaven, creating great excitement far beyond academic ivory towers. This is particularly true for perovskite solar cells (PSCs) that have shown unprecedented gains in efficiency and stability over a time span of just five years. Now there are serious efforts for commercialization with the hope that PSCs can make a major impact in generating inexpensive, sustainable solar electricity. In this Review, we will focus on perovskite material properties as well as on devices from the atomic to the thin film level to highlight the remaining challenges and to anticipate the future developments of PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Isotope analysis in the transmission electron microscope.
Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani
2016-10-10
The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.
Systemic risk and hierarchical transitions of financial networks
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Lee, Jae Woo
2017-06-01
In this paper, the change in topological hierarchy, which is measured by the minimum spanning tree constructed from the cross-correlations between the stock indices from the S & P 500 for 1998-2012 in a one year moving time window, was used to analyze a financial crisis. The hierarchy increased in all minor crises in the observation time window except for the sharp crisis of 2007-2008 when the global financial crisis occurred. The sudden increase in hierarchy just before the global financial crisis can be used for the early detection of an upcoming crisis. Clearly, the higher the hierarchy, the higher the threats to financial stability. The scaling relations were developed to observe the changes in hierarchy with the network topology. These scaling relations can also identify and quantify the financial crisis periods, and appear to contain the predictive power of an upcoming crisis.
Systemic risk and hierarchical transitions of financial networks.
Nobi, Ashadun; Lee, Jae Woo
2017-06-01
In this paper, the change in topological hierarchy, which is measured by the minimum spanning tree constructed from the cross-correlations between the stock indices from the S & P 500 for 1998-2012 in a one year moving time window, was used to analyze a financial crisis. The hierarchy increased in all minor crises in the observation time window except for the sharp crisis of 2007-2008 when the global financial crisis occurred. The sudden increase in hierarchy just before the global financial crisis can be used for the early detection of an upcoming crisis. Clearly, the higher the hierarchy, the higher the threats to financial stability. The scaling relations were developed to observe the changes in hierarchy with the network topology. These scaling relations can also identify and quantify the financial crisis periods, and appear to contain the predictive power of an upcoming crisis.
Independent functions and the geometry of Banach spaces
NASA Astrophysics Data System (ADS)
Astashkin, Sergey V.; Sukochev, Fedor A.
2010-12-01
The main objective of this survey is to present the `state of the art' of those parts of the theory of independent functions which are related to the geometry of function spaces. The `size' of a sum of independent functions is estimated in terms of classical moments and also in terms of general symmetric function norms. The exposition is centred on the Rosenthal inequalities and their various generalizations and sharp conditions under which the latter hold. The crucial tool here is the recently developed construction of the Kruglov operator. The survey also provides a number of applications to the geometry of Banach spaces. In particular, variants of the classical Khintchine-Maurey inequalities, isomorphisms between symmetric spaces on a finite interval and on the semi-axis, and a description of the class of symmetric spaces with any sequence of symmetrically and identically distributed independent random variables spanning a Hilbert subspace are considered. Bibliography: 87 titles.
NASA Technical Reports Server (NTRS)
Back, L. H.; Radbill, J. R.; Cho, Y. I.; Crawford, D. W.
1986-01-01
Pressure distributions were measured along a hollow vascular axisymmetric replica of a segment of the left circumflex coronary artery of man with mildly atherosclerotic diffuse disease. A large range of physiological Reynolds numbers from about 60 to 500, including hyperemic response, was spanned in the flows investigation using a fluid simulating blood kinematic viscosity. Predicted pressure distributions from the numerical solution of the Navier-Stokes equations were similar in trend and magnitude to the measurements. Large variations in the predicted velocity profiles occurred along the lumen. The influence of the smaller scale multiple flow obstacles along the wall (lesion variations) led to sharp spikes in the predicted wall shear stresses. Reynolds number similarity was discussed, and estimates of what time averaged in vivo pressure drop and shear stress might be were given for a vessel segment.
Frequency variations of the earth's obliquity and the 100-kyr ice-age cycles
NASA Technical Reports Server (NTRS)
Liu, Han-Shou
1992-01-01
Changes in the earth's climate are induced by variations in the earth's orbital parameters which modulate the seasonal distribution of solar radiation. Periodicities in the geological climate record with cycles of 100, 41, and 23 kyr have been linked with changes in obliquity, eccentricity, and precession of the equinoxes. The effect of variations of eccentricity during a 100 kyr period is weak relative to the signals from obliquity and precession variations and it may therefore be expected that the 100 kyr signal in the climate record would be of low intensity. However, this signal dominates the climate record and internal nonlinear processes within the climate system have previously been proposed to account for this fact. The author shows that variations in the frequency of the obliquity cycle can give rise to strong 100-kyr forcing of climate.
Design of Human-Machine Interface and altering of pelvic obliquity with RGR Trainer.
Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo
2011-01-01
The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system's ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking - in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. © 2011 IEEE
On the time-variable nature of Titan's obliquity
NASA Astrophysics Data System (ADS)
Noyelles, Benoit; Nimmo, Francis
2014-05-01
Titan presents an unexpectedly high obliquity (Stiles et al. 2008, Meriggiola & Iess 2012) while its topography and gravity suggest a non-hydrostatic ice shell (Hemingway et al. 2013). We here present a 6-dof model of the rotation of Titan simultaneously simulating the full orientation of the shell and the inner core, and considering a global subsurface ocean with a partially-compensated shell of spatially-variable thickness. Between 10 and 13% of our realistic interior models induce a resonance with the annual forcing, that dramatically raises the obliquity. The relevant model Titans are composed of a 130-140 km thick shell floating on a ~250 km thick ocean. The observed obliquity should not be considered as a mean one but as an instantaneous one, that should vary by ~7 arcmin over the duration of the Cassini mission.
Chaotic obliquity and the nature of the Martian climate
NASA Technical Reports Server (NTRS)
Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.
1995-01-01
Recent calculations of the Martian obliquity suggests that it varies chaotically on timescales longer than about 10(exp 7) years and varies between about 0 and 60 deg. We examine the seasonal water behavior at obliquities between 40 and 60 deg. Up to several tens of centimeters of water may sublime from the polar caps each year, and possibly move to the equator, where it is more stable. The CO2 frost and CO2-H2O clathrate hydrate are stable in thepolar deposits below a few tens of meters depth, so that the polar cap could contain a significant CO2 reservoir. If CO2 is present, it could be left over from the early history of Mars; also, it could be released into the atmosphere during periods of high obliquity, causing occasional periods of more-clement climate.
Design of Human – Machine Interface and Altering of Pelvic Obliquity with RGR Trainer
Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo
2012-01-01
The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system’s ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking – in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. PMID:22275693
Treatment of inferior oblique paresis with superior oblique silicone tendon expander.
Greenberg, Marc F; Pollard, Zane F
2005-08-01
Patients with inferior oblique eye muscle paresis may show hypotropia and apparent superior oblique muscle overaction on the side of the presumed weak inferior oblique (IO) muscle. We report 8 such patients successfully treated using unilateral silicone superior oblique (SO) tendon expanders. Eight consecutive cases over the course of 6 years from the authors' private practice are described. None had a history of head trauma or a significant neurologic event. All patients showed IO paresis by 3-step test, with incyclotorsion and SO overacton of the hypotropic (paretic) eye. Forced ductions of the hypotropic eye were normal in all cases, and the vertical strabismus was treated with placement of a 7- mm silicone SO tendon expander in the hypotropic (paretic) eye. Mean preoperative primary position hypotropia was 6.5 prism diopters (PD); mean postoperative was 0.5 PD. Seven of 8 patients had resolution of primary position hypotropia, whereas the eighth was reduced. Mean preoperative SO overaction was 3+; all patients had postoperative resolution of SO overaction. Of 4 patients with preoperative ocular torticollis, mean preoperative head tilt was 9.3 degrees; mean postoperative tilt was 2.9 degrees. Two patients' head tilts had resolved, the other 2 showed improvement. All patients showed preoperative incylclotorsion of the hypotropic (paretic) eye; inclyclotorsion resolved in all patients after the placement of a SO tendon expander. The silicone SO tendon expander effectively restores ocular alignment in IO paresis with apparent SO overaction. Associated ocular torticollis can also be improved.
Rajavi, Zhale; Feizi, Mohadeseh; Naderi, Ali; Sabbaghi, Hamideh; Behradfar, Narges; Yaseri, Mehdi; Faghihi, Mohammad
2017-12-01
To report the surgical outcomes of graded versus ungraded inferior oblique anterior transposition (IOAT) in treatment of patients with asymmetric dissociated vertical deviation (DVD) and bilateral inferior oblique overaction (IOOA). A total of 74 eyes of 37 patients with asymmetric DVD (interocular difference of ≥5 Δ ) and bilateral IOOA of > +1 were included in this randomized clinical trial. In the ungraded group (n = 18), both inferior oblique muscles were sutured at the inferior rectus level; in the graded group (n = 19), the inferior oblique muscles of eyes with more DVD were sutured at the level of the inferior rectus and inferior oblique muscles of eyes with less DVD were sutured 2 mm posterior to the level of the inferior rectus muscle. DVD was significantly reduced in each group (P < 0.001 for both). Although the postoperative mean difference of asymmetry of DVD was less in the ungraded group compared to the graded group (1.2 ± 1.9 vs 3.2 ± 1.2 [P = 0.001]), the absolute amounts of reduction of DVD asymmetry were similar (4.3 ± 2.3 vs 4.4 ± 3.1 [P = 0.78]). IOOA and V patterns were also reduced postoperatively. Each method of IOAT was effective in reducing DVD, asymmetry, IOOA, and V patterns. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hayano, Akira; Ishii, Eiichi
2016-10-01
This study investigates the mechanical relationship between bedding-parallel and bedding-oblique faults in a Neogene massive siliceous mudstone at the site of the Horonobe Underground Research Laboratory (URL) in Hokkaido, Japan, on the basis of observations of drill-core recovered from pilot boreholes and fracture mapping on shaft and gallery walls. Four bedding-parallel faults with visible fault gouge, named respectively the MM Fault, the Last MM Fault, the S1 Fault, and the S2 Fault (stratigraphically, from the highest to the lowest), were observed in two pilot boreholes (PB-V01 and SAB-1). The distribution of the bedding-parallel faults at 350 m depth in the Horonobe URL indicates that these faults are spread over at least several tens of meters in parallel along a bedding plane. The observation that the bedding-oblique fault displaces the Last MM fault is consistent with the previous interpretation that the bedding- oblique faults formed after the bedding-parallel faults. In addition, the bedding-parallel faults terminate near the MM and S1 faults, indicating that the bedding-parallel faults with visible fault gouge act to terminate the propagation of younger bedding-oblique faults. In particular, the MM and S1 faults, which have a relatively thick fault gouge, appear to have had a stronger control on the propagation of bedding-oblique faults than did the Last MM fault, which has a relatively thin fault gouge.
Markkanen, Pia; Galligan, Catherine; Laramie, Angela; Fisher, June; Sama, Susan; Quinn, Margaret
2015-04-11
Home healthcare is one of the fastest growing sectors in the United States. Percutaneous injuries from sharp medical devices (sharps) are a source of bloodborne pathogen infections among home healthcare workers and community members. Sharps use and disposal practices in the home are highly variable and there is no comprehensive analysis of the system of sharps procurement, use and disposal in home healthcare. This gap is a barrier to effective public health interventions. The objectives of this study were to i) identify the full range of pathways by which sharps enter and exit the home, stakeholders involved, and barriers for using sharps with injury prevention features; and ii) assess the leverage points for preventive interventions. This study employed qualitative research methods to develop two systems maps of the use of sharps and prevention of sharps injuries in home healthcare. Twenty-six in-depth interview sessions were conducted including home healthcare agency clinicians, public health practitioners, sharps device manufacturers, injury prevention advocates, pharmacists and others. Interview transcripts were audio-recorded and analyzed thematically using NVIVO qualitative research analysis software. Analysis of supporting archival material also was conducted. All findings guided development of the two maps. Sharps enter the home via multiple complex pathways involving home healthcare providers and home users. The providers reported using sharps with injury prevention features. However, home users' sharps seldom had injury prevention features and sharps were commonly re-used for convenience and cost-savings. Improperly discarded sharps present hazards to caregivers, waste handlers, and community members. The most effective intervention potential exists at the beginning of the sharps systems maps where interventions can eliminate or minimize sharps injuries, in particular with needleless treatment methods and sharps with injury prevention features. Manufacturers and insurance providers can improve safety with more affordable and accessible sharps with injury prevention features for home users. Sharps disposal campaigns, free-of-charge disposal containers, and convenient disposal options remain essential. Sharps injuries are preventable through public health actions that promote needleless treatment methods, sharps with injury prevention features, and safe disposal practices. Communication about hazards regarding sharps is needed for all home healthcare stakeholders.
Lunar Obliquity History Revisited
NASA Astrophysics Data System (ADS)
Siegler, M.; Bills, B.; Paige, D.
2007-12-01
In preparation for a LRO (Lunar Reconnaissance Orbiter) related study of possible lunar polar volatiles, we re- examined the lunar orbital and rotational history, with primary focus on the obliquity history of the Moon. Though broad models have been made of lunar obliquity, a cohesive obliquity history was not found. We report on a new model of lunar obliquity including secular changes in inclination of the lunar orbit, tidal dissipation, lunar moments of inertia, and details for periods outside of the stable configurations known as Cassini states. For planets, the obliquity, or angle between the spin and orbit poles, is the dominant control on incident solar radiation. For planetary satellites, the radiation pattern can be more complex, as it depends on the mutual inclinations of three poles; the satellite spin and orbit poles, and the planetary heliocentric orbit pole. Presently, the lunar spin pole and orbit pole co-precess about the ecliptic pole, in a stable situation known as a Cassini state. As a result, permanently shadowed regions near the poles are expected to exist and act as cold traps, retaining water or other volatiles delivered to the surface by comets, solar wind, or via outgassing of the lunar interior. However, tidally driven secular changes in the lunar semimajor axis cause changes in precession rates of the spin and orbit poles, and thereby alter or destabilize the Cassini states. Only one prograde Cassini state exists at present (state 2). In the standard Cassini state model of Ward [1975], two other such states would have existed in the past (states 1 and 4) with the Moon starting in the low obliquity state 1, and remaining there until states 1 and 4 merged and disappear, at roughly half the present Earth-Moon distance. At that point, the Moon transitioned into the currently occupied state 2, and briefly attained very high obliquity values during the transition, and then stayed in state 2 until the present. If correct, this model implies that the transition from state 1 to state 2 is the most important event in the histories of lunar obliquity and polar volatiles, as it separates two periods in which current lunar cold traps could have existed with a period of high polar insolation which could have mobilized volatiles into space or to greater depths in the lunar near surface. If incorrect, lunar cold traps may prove only a very recent phenomenon. By including secular orbit changes, our model should help determine if this Cassini state stability really dominated in the past and allow detailed examination of extra-Cassini state periods.
Intraplate Stresses Within the North Andes Block; an Enigma Soon to be Clarified
NASA Astrophysics Data System (ADS)
Trenkamp, R.; Mora P., H.
2008-05-01
High precision geodesy (GPS) has given earth scientists the unprecedented opportunity for studying the kinematics and dynamics of present day deformation processes at both plate boundary zones and within areas of wide plate boundary deformation. Global Positioning System (GPS) data from northwestern South America collected between 1991 and 2007 reveal wide plate margin deformation along a 1400 km length of the North Andes associated with the oblique subduction of the Nazca plate at the Colombia-Ecuador trench (CET) and ongoing collision with the Panama microplate. Also associated with this oblique subduction at the CET is the escape of the North Andes block (NAB). The NAB is delineated by the Bocono-East Andean fault systems and the Dolores Guayaquil Megasheare to the east, the South Caribbean deformed belt on the north and the CET and Panama on the west. Within the subduction complex at the CET many damaging earthquakes have occurred in the past, including the 1906-1979 mega-sequence of four earthquakes with moment magnitudes between 7.5 and 8.8. and two moment magnitude 7.1 earthquakes north of the mega-sequence rupture zone that have ruptured the same point within a 13 year time-span. Within the NAB many damaging crustal earthquakes have occurred which is most recently exemplified by the December 5, 1999 Armenia earthquake and the spectacular sequence known as the Bucaramanga nest. Much of the deformation of the NAB is constrained within the S-N and W-E trending fault systems within the NAB which contribute to the continuing seismic hazards within the system. Although the GPS data has been collected intermittently in the past, the many first order observations have been useful for developing strategies for future more extensive occupations and have led to the funding through INGEOMINAS of the Colombian national permanent GPS array; GEORED Geodesia: Red de Estudios de Deformacion.
NASA Astrophysics Data System (ADS)
Duvall, A. R.; Collett, C.; Flowers, R. M.; Tucker, G. E.; Upton, P.
2016-12-01
The 150 km wide Marlborough Fault System (MFS) and adjacent dextral-reverse Alpine Fault accommodate oblique convergence of the Australian and Pacific plates in a broad transform boundary that extends for much of the South Island New Zealand. Understanding the deformation history of the Marlborough region offers the opportunity to study topographic evolution in a strike-slip setting and a fuller picture of the evolving New Zealand plate boundary as the MFS lies at the transition from oceanic Pacific plate subduction to oblique continental collision. Here we present low-temperature thermochronology from the MFS to place new limits on the timing and style of mountain building. We sampled a range of elevations spanning 2 km within and adjacent to the Kaikoura Mountains, which stand high as topographic anomalies above active strike-slip faults. Young apatite (U-Th)/He ages ( 2-5 Ma) on both sides of range-bounding faults are consistent with regional distributed deformation since the Pliocene initiation of strike-slip faulting. However, large differences in both zircon helium and apatite fission track ages, from Paleogene/Neogene ages within hanging walls to unreset >100 Ma ages in footwalls, indicate an early phase of fault-related vertical exhumation. Thermal modeling using the QTQt program reveals two phases of exhumation within the Kaikoura Ranges: rapid cooling at 15-12 Ma localized to hanging wall rocks and regional rapid cooling reflected in all samples starting at 4-5 Ma. These results and landscape evolution models suggest that, despite the presence of active mountain front faults, much of the topographic relief in this region may predate the onset of strike-slip faulting and that portions of the Marlborough Faults are re-activated thrusts that coincide with the early development of the transpressive plate boundary. Regional exhumation after 5 Ma likely reflects increased proximity to the migrating Pacific plate subduction zone and the buoyant Chatham Rise.
Are historical values of ionospheric parameters from ionosondes overestimated?
NASA Astrophysics Data System (ADS)
Laštovička, J.; Koucká Knížová, P.; Kouba, D.
2012-04-01
Ionogram-scaled values from pre-digital ionosonde times had been derived from ionograms under the assumption of the vertical reflection of ordinary mode of sounding radio waves. Classical ionosondes were unable to distinguish between the vertical and oblique reflections and in the case of the Es-layer also between the ordinary and extraordinary mode reflections due to mirror-like reflections. However, modern digisondes determine clearly the oblique or extraordinary mode reflections. Evaluating the Pruhonice digisonde ionograms in "classical" and in "correct" way we found for seven summers (2004-2010) that among strong foEs (> 6 MHz) only 10% of foEs values were correct and 90% were artificially enhanced in average by 1 MHz, in extreme cases by more than 3 MHz (some oblique reflections). 34% of all reflections were oblique reflections. With other ionospheric parameters like foF2 or foE the problem is less severe because non-mirror reflection makes delay of the extraordinary mode with respect to the ordinary mode and they are separated on ionograms, and oblique reflections are less frequent than with the patchy Es layer. At high latitudes another problem is caused by the z-mode, which is sometimes difficult to be distinguished from the ordinary mode.
Obliquity Modulation of the Incoming Solar Radiation
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Smith, David E. (Technical Monitor)
2001-01-01
Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.
Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations
NASA Astrophysics Data System (ADS)
Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.
2018-05-01
We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.
Early climate on earth-reduced gas models and early climate on Mars-reduced gas and obliquity models
NASA Technical Reports Server (NTRS)
Toon, O. B.; Sagan, C.
1978-01-01
At high obliquity, Martian polar ground temperatures could exceed the melting point of ice for considerable periods of time (approximately 90 Earth days). Under special conditions ice itself might melt. Carbon dioxide adsorbed on the Martian regolith is not expected to buffer the seasonal pressure wave except in the unlikely event that the soil pore size is very large (50 micron). For a basaltic soil composition the maximum CO2 that could be desorbed over obliquity time scales due to thermal forces is a few millibars. At low obliquities the atmospheric pressures may drop, desorbing the soil. The only means to achieve higher CO2 pressures is to have much higher planet-wide temperatures due to some greenhouse effect, or to be at an epoch before the regolith or carbonates formed. The water ice budget between north and south polar caps was considered and summer sublimation rates imply that the ice could be exchanged between the poles during obliquity cycles. A critical factor in the polar cap water budget is the interaction of water and dust. The origin of the Martian polar laminae is probably due to variations in this interaction.
Ma, Jian-Xiong; Wang, Jie; Xu, Wei-Guo; Yu, Jing-Tao; Yang, Yang; Ma, Xin-Long
2015-01-01
Reverse obliquity intertrochanteric fractures are a challenge for orthopedic surgeons. The optimal internal fixation for repairing this type of unstable intertrochanteric fractures remains controversial. This study aimed to compare the biomechanical properties in axial load and cyclical axial load of proximal femoral nail antirotation (PFNA) and proximal femoral locking compression plate (PFLCP) for fixation of reverse obliquity intertrochanteric fractures. Sixteen embalmed cadaver femurs were sawed to simulate reverse obliquity intertrochanteric fracture and instrumented with PFNA or PFLCP. Axial loads and axial cyclic loads were applied to the femoral head by an Instron tester. If the implant-femur constructs did not fail, axial failure load was added to the remaining implant-femur constructs. Mean axial stiffness for PFNA was 21.10% greater than that of PFLCP. Cyclic axial loading caused significantly less (p=0.022) mean irreversible deformation in PFNA (3.43 mm) than in PFLCP (4.34 mm). Significantly less (p=0.002) mean total deformation was detected in PFNA (6.16 mm) than in PFLCP (8.67 mm). For fixing reverse obliquity intertrochanteric fractures, PFNA is superior to PFLCP under axial load.
Tilting Styx and Nix but not Uranus with a Spin-Precession-Mean-motion resonance
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Chen, Yuan-Yuan; Noyelles, Benoît; Loane, Santiago
2018-02-01
A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet-planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet's obliquity to near 90° or 180° depending upon whether the spin resonance is first or zeroth order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus's high obliquity. However, we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus's high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.
Origins of oblique-slip faulting during caldera subsidence
NASA Astrophysics Data System (ADS)
Holohan, Eoghan P.; Walter, Thomas R.; Schöpfer, Martin P. J.; Walsh, John J.; van Wyk de Vries, Benjamin; Troll, Valentin R.
2013-04-01
Although conventionally described as purely dip-slip, faults at caldera volcanoes may have a strike-slip displacement component. Examples occur in the calderas of Olympus Mons (Mars), Miyakejima (Japan), and Dolomieu (La Reunion). To investigate this phenomenon, we use numerical and analog simulations of caldera subsidence caused by magma reservoir deflation. The numerical models constrain mechanical causes of oblique-slip faulting from the three-dimensional stress field in the initial elastic phase of subsidence. The analog experiments directly characterize the development of oblique-slip faulting, especially in the later, non-elastic phases of subsidence. The combined results of both approaches can account for the orientation, mode, and location of oblique-slip faulting at natural calderas. Kinematically, oblique-slip faulting originates to resolve the following: (1) horizontal components of displacement that are directed radially toward the caldera center and (2) horizontal translation arising from off-centered or "asymmetric" subsidence. We informally call these two origins the "camera iris" and "sliding trapdoor" effects, respectively. Our findings emphasize the fundamentally three-dimensional nature of deformation during caldera subsidence. They hence provide an improved basis for analyzing structural, geodetic, and geophysical data from calderas, as well as analogous systems, such as mines and producing hydrocarbon reservoirs.
Core Muscle Activation in Suspension Training Exercises.
Cugliari, Giovanni; Boccia, Gennaro
2017-02-01
A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles.
Possible precipitation of ice at low latitudes of Mars during periods of high obliquity
Jakosky, B.M.; Carr, M.H.
1985-01-01
Most of the old cratered highlands of Mars are dissected by branching river valleys that appear to have been cut by running water1,2 yet liquid water is unstable everywhere on the martian surface. In the equatorial region, where most of the valleys are observed, even ice is unstable3,4. It has been suggested, therefore, that Mars had an early denser atmosphere with sufficient greenhouse warming to allow the existence of liquid water 5. Here, we suggest instead that during periods of very high obliquities, ice could accumulate at low latitudes as a result of sustained sublimation of ice from the poles and transport of the water vapour equatorwards. At low latitudes, the water vapour would saturate the atmosphere and condense onto the surface where it would accumulate until lower obliquities prevailed. The mechanism is efficient only at the very high obliquities that occurred before formation of Tharsis very early in the planet's history, but limited equatorial ice accumulation could also have occurred at the highest obliquities during the rest of the planet's history. Partial melting of the ice could have provided runoff to form the channels or replenish the groundwater system. ?? 1985 Nature Publishing Group.
The oblique effect is both allocentric and egocentric
Mikellidou, Kyriaki; Cicchini, Guido Marco; Thompson, Peter G.; Burr, David C.
2016-01-01
Despite continuous movements of the head, humans maintain a stable representation of the visual world, which seems to remain always upright. The mechanisms behind this stability are largely unknown. To gain some insight on how head tilt affects visual perception, we investigate whether a well-known orientation-dependent visual phenomenon, the oblique effect—superior performance for stimuli at cardinal orientations (0° and 90°) compared with oblique orientations (45°)—is anchored in egocentric or allocentric coordinates. To this aim, we measured orientation discrimination thresholds at various orientations for different head positions both in body upright and in supine positions. We report that, in the body upright position, the oblique effect remains anchored in allocentric coordinates irrespective of head position. When lying supine, gravitational effects in the plane orthogonal to gravity are discounted. Under these conditions, the oblique effect was less marked than when upright, and anchored in egocentric coordinates. The results are well explained by a simple “compulsory fusion” model in which the head-based and the gravity-based signals are combined with different weightings (30% and 70%, respectively), even when this leads to reduced sensitivity in orientation discrimination. PMID:26129862
Bowers, Alex R.; Tant, Mark; Peli, Eli
2012-01-01
Aims. Homonymous hemianopia (HH), a severe visual consequence of stroke, causes difficulties in detecting obstacles on the nonseeing (blind) side. We conducted a pilot study to evaluate the effects of oblique peripheral prisms, a novel development in optical treatments for HH, on detection of unexpected hazards when driving. Methods. Twelve people with complete HH (median 49 years, range 29–68) completed road tests with sham oblique prism glasses (SP) and real oblique prism glasses (RP). A masked evaluator rated driving performance along the 25 km routes on busy streets in Ghent, Belgium. Results. The proportion of satisfactory responses to unexpected hazards on the blind side was higher in the RP than the SP drive (80% versus 30%; P = 0.001), but similar for unexpected hazards on the seeing side. Conclusions. These pilot data suggest that oblique peripheral prisms may improve responses of people with HH to blindside hazards when driving and provide the basis for a future, larger-sample clinical trial. Testing responses to unexpected hazards in areas of heavy vehicle and pedestrian traffic appears promising as a real-world outcome measure for future evaluations of HH rehabilitation interventions aimed at improving detection when driving. PMID:23316415
Initiation structure of oblique detonation waves behind conical shocks
NASA Astrophysics Data System (ADS)
Yang, Pengfei; Ng, Hoi Dick; Teng, Honghui; Jiang, Zonglin
2017-08-01
The understanding of oblique detonation dynamics has both inherent basic research value for high-speed compressible reacting flow and propulsion application in hypersonic aerospace systems. In this study, the oblique detonation structures formed by semi-infinite cones are investigated numerically by solving the unsteady, two-dimensional axisymmetric Euler equations with a one-step irreversible Arrhenius reaction model. The present simulation results show that a novel wave structure, featured by two distinct points where there is close-coupling between the shock and combustion front, is depicted when either the cone angle or incident Mach number is reduced. This structure is analyzed by examining the variation of the reaction length scale and comparing the flow field with that of planar, wedge-induced oblique detonations. Further simulations are performed to study the effects of chemical length scale and activation energy, which are both found to influence the formation of this novel structure. The initiation mechanism behind the conical shock is discussed to investigate the interplay between the effect of the Taylor-Maccoll flow, front curvature, and energy releases from the chemical reaction in conical oblique detonations. The observed flow fields are interpreted by means of the energetic limit as in the critical regime for initiation of detonation.
Possible precipitation of ice at low latitudes of Mars during periods of high obliquity
NASA Technical Reports Server (NTRS)
Jakosky, B. M.; Carr, M. H.
1985-01-01
Most of the old cratered highlands of Mars are dissected by branching river valleys that appear to have been cut by running water, yet liquid water is unstable everywhere on the Martian surface. In the equatorial region, where most of the valleys are observed, even ice is unstable. It has been suggested, therefore, that Mars had an early denser atmosphere with sufficient greenhouse warming to allow the existence of liquid water. Here, it is suggested instead that during periods of very high obliquities, ice could accumulate at low latitudes as a result of sustained sublimation of ice from the poles and transport of the water vapor equatorwards. At low latitudes, the water vapor would saturate the atmosphere and condense onto the surface, where it would accumulate until lower obliquities prevailed. The mechanism is efficient only at the very high obliquities that occurred before formation of Tharsis very early in the planet's history, but limited equatorial ice accumulation could also have occurred at the highest obliquities during the rest of the planet's history. Partial melting of the ice could have provided runoff to form the channels or replenish the groundwater system.
Special type culvert headwall, Culvert No. 124 Outlet, oblique view, ...
Special type culvert headwall, Culvert No. 124 Outlet, oblique view, view to southwest - Route No. 1-Overton-Lake Mead Road, Culverts and Headwalls, 6 miles south of Overton, Overton, Clark County, NV
Special type culvert headwall, Culvert No. 109 Outlet, oblique view, ...
Special type culvert headwall, Culvert No. 109 Outlet, oblique view, view to southeast - Route No. 1-Overton-Lake Mead Road, Culverts and Headwalls, 6 miles south of Overton, Overton, Clark County, NV
Straight type culvert headwall, Culvert No. 105 Inlet, oblique view, ...
Straight type culvert headwall, Culvert No. 105 Inlet, oblique view, view to northeast - Route No. 1-Overton-Lake Mead Road, Culverts and Headwalls, 6 miles south of Overton, Overton, Clark County, NV
Oblique view of the south and west sides, view facing ...
Oblique view of the south and west sides, view facing northeast - U.S. Marine Corps Base Hawaii, Kaneohe Bay, Warehouse 250, Aviation Storehouse, C Street between Fifth & Sixth Streets, Kaneohe, Honolulu County, HI
OBLIQUE VIEW OF EAST END WITH SOUTH SIDE TO THE ...
OBLIQUE VIEW OF EAST END WITH SOUTH SIDE TO THE LEFT. VIEW FACING WEST-SOUTHWEST. - U.S. Naval Base, Pearl Harbor, Aviation Storehouse, Vincennes Avenue at Simms Street, Pearl City, Honolulu County, HI
OBLIQUE VIEW OF NORTH SIDE WITH WEST END TO THE ...
OBLIQUE VIEW OF NORTH SIDE WITH WEST END TO THE RIGHT. VIEW FACING EAST-SOUTHEAST. - U.S. Naval Base, Pearl Harbor, Aviation Storehouse, Vincennes Avenue at Simms Street, Pearl City, Honolulu County, HI
Oblique view of the north and east sides, view facing ...
Oblique view of the north and east sides, view facing southwest - U.S. Marine Corps Base Hawaii, Kaneohe Bay, Warehouse 250, Aviation Storehouse, C Street between Fifth & Sixth Streets, Kaneohe, Honolulu County, HI
OBLIQUE VIEW OF PORTION OF SOUTH SIDE AT THE EAST ...
OBLIQUE VIEW OF PORTION OF SOUTH SIDE AT THE EAST END. VIEW FACING NORTH-NORTHEAST. - U.S. Naval Base, Pearl Harbor, Aviation Storehouse, Vincennes Avenue at Simms Street, Pearl City, Honolulu County, HI
BLDG 58, OBLIQUE VIEW FROM NW SHOWING NORTH ENTRY, WEST ...
BLDG 58, OBLIQUE VIEW FROM NW SHOWING NORTH ENTRY, WEST SIDE AND SURROUNDING BERM. - Naval Magazine Lualualei, West Loch Branch, Auto Hobby Shop, South of First Street, Pearl City, Honolulu County, HI
14. GENERAL OBLIQUE VIEW OF WEST CORNER OF SHED, OBSTRUCTED ...
14. GENERAL OBLIQUE VIEW OF WEST CORNER OF SHED, OBSTRUCTED BY LATE METAL BUILDING, LOOKING EAST - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA
OBLIQUE/EXTERIOR VIEW, SIDE AND FRONT ELEVATIONS, FOUR ROOMPYRAMIDAL ROOF COTTAGE ...
OBLIQUE/EXTERIOR VIEW, SIDE AND FRONT ELEVATIONS, FOUR ROOM-PYRAMIDAL ROOF COTTAGE (AT 328 CAMILLE) WITH FRONT YARD LANDSCAPING. - Mulga Community, Off AL 269 at I-20-59, Birmingham, Jefferson County, AL
1. OBLIQUE VIEW OF BUNKER LOOKING NORTHWEST. GERMAN VILLAGE IN ...
1. OBLIQUE VIEW OF BUNKER LOOKING NORTHWEST. GERMAN VILLAGE IN BACKGROUND. - Dugway Proving Ground, German-Japanese Village, Observation Bunker, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT
1. General oblique view of north and east sides, view ...
1. General oblique view of north and east sides, view to southwest, showing main loading docks - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
FACILITY 810, CORNER ENTRY TO UNIT B, OBLIQUE VIEW FACING ...
FACILITY 810, CORNER ENTRY TO UNIT B, OBLIQUE VIEW FACING SOUTH-SOUTHWEST. - Schofield Barracks Military Reservation, Duplex Housing Type with Corner Entries, Between Hamilton & Tidball Streets near Williston Avenue, Wahiawa, Honolulu County, HI
1. EXTERIOR VIEW, OBLIQUE PERSPECTIVE, LOOKING NORTHEAST, WITH SIDE AND ...
1. EXTERIOR VIEW, OBLIQUE PERSPECTIVE, LOOKING NORTHEAST, WITH SIDE AND FRONT ELEVATIONS OF THE CHURCH AND THE GAZEBO BAND STAND (LEFT) - St. Mark's Catholic Church, 1040 Tenth Avenue West, Thomas, Jefferson County, AL
OBLIQUE VIEW OF WEST (FRONT) AND NORTH FACADES, LOOKING SOUTHEAST ...
OBLIQUE VIEW OF WEST (FRONT) AND NORTH FACADES, LOOKING SOUTHEAST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL
3. OBLIQUE DETAIL VIEW OF DOOR AT CHEMICAL STORAGE BUILDING ...
3. OBLIQUE DETAIL VIEW OF DOOR AT CHEMICAL STORAGE BUILDING (#1776), LOOKING NORTHWEST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA
37. OBLIQUE VIEW, INTERIOR, BERK SWITCH TOWER, SOUTH NORWALK, SHOWING ...
37. OBLIQUE VIEW, INTERIOR, BERK SWITCH TOWER, SOUTH NORWALK, SHOWING SWITCHING LEVERS - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT
Oblique view to south OvertheHorizon Backscatter Radar Network, Mountain ...
Oblique view to south - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID
3. OBLIQUE VIEW LOOKING NORTHWEST SHOWING GARAGE EXTENSION WITH DOORS. ...
3. OBLIQUE VIEW LOOKING NORTHWEST SHOWING GARAGE EXTENSION WITH DOORS. VIEW FROM BUILDING 15. - Chollas Heights Naval Radio Transmitting Facility, Public Works Shop, 6410 Zero Road, San Diego, San Diego County, CA
17. Oblique view, typical room; view to south, 65mm lens ...
17. Oblique view, typical room; view to south, 65mm lens plus electronic flash illumination. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA
16. Oblique view, typical room; view to north, 65mm lens ...
16. Oblique view, typical room; view to north, 65mm lens plus electronic flash illumination. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA
2. General oblique view of north loading dock showing loading ...
2. General oblique view of north loading dock showing loading docks with doors opening into refrigerated rooms - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW ...
FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW FACING WEST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI
2. Building J oblique, showing south and east elevations from ...
2. Building J oblique, showing south and east elevations from Lena Street. View looking northwest. - Daniel F. Waters Germantown Dye Works, Building J, 37-55 East Wister Street, Philadelphia, Philadelphia County, PA
12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT ...
12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA
1. WEST AND NORTH (OBLIQUE VIEW) SIDES, FROM ACROSS 4TH ...
1. WEST AND NORTH (OBLIQUE VIEW) SIDES, FROM ACROSS 4TH STREET, LOOKING SOUTHEAST. - Oakland Naval Supply Center, Warehouse, North of A Street, between Fourth & Maritime Streets, Oakland, Alameda County, CA
20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME ...
20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME BOXES FOR COUNTERWEIGHTS, AND FURNACE HEATING PIPES AT RIGHT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA
Building 904, oblique view to southeast, 135 mm lens. ...
Building 904, oblique view to southeast, 135 mm lens. - Travis Air Force Base, Base Spares Warehouse No. 1, Dixon Avenue & W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
Building 904, oblique view to northwest, 135 mm lens ...
Building 904, oblique view to northwest, 135 mm lens - Travis Air Force Base, Base Spares Warehouse No. 1, Dixon Avenue & W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
NASA Astrophysics Data System (ADS)
Burrage, D. M.; Wesson, J. C.; Hwang, P. A.; Wang, D. W.; Wijesekera, H. W.
2016-02-01
Airborne mapping of Sea Surface Salinity (SSS) with L-band radiometers has been practiced for 20 yrs., while global satellite observations began with the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) Satellite launch in 2009. Airborne data with high ( 1km) resolution, but limited coverage, complement the lower resolution ( 35 km at nadir) but global coverage and 3-5 day revisit of SMOS. The record June, 2011 Mississippi R. peak flood, with flows exceeding 42,500 m^3/s, required diversions into Lake Pontchartrain and the Atchafalaya R. to avoid flooding New Orleans and Baton Rouge. The resulting merged outflows formed a single freshwater plume that spanned the Mississippi, Louisiana and Texas `Gulf Coast', and reached up to 300 km across the shelf. SSS was mapped by the NRL airborne Salinity Temperature and Roughness Remote Scanner (STARRS) and SMOS radiometers during a two week (2-13 June 2011) campaign immediately following the flood crest. STARRS obtained oblique across-shelf transects spanning the Northern Gulf of Mexico, under-flying SMOS, and shorter zig-zag coastal transects. SSS samples from a ship near the shelf edge agreed well with STARRS and SMOS after applying standard geophysical correction models and roughness corrections from an SSA/SPM E-M model and an advanced wave spectrum. The minimum SMOS footprint size (35 km at nadir), produced a coastal data gap filled by STARRS transects that reached the coast. The 200 km overlap between the two sensors along coincident ground tracks agreed closely near the frontal boundary, with salinity contrasts of 7-15 psu over a 10 km span at the plume edge evident in both data sets. Successive SMOS Level 2 (L2) SSS data swaths obtained at 2-5 day intervals showed the evolution of the plume in three well-separated seaward extensions located near the Mississippi Delta, and well east and west of the Delta. The dispersal of the plume was also detected by SMOS following the airborne campaign.
F-8 oblique wing structural feasibility study
NASA Technical Reports Server (NTRS)
Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.
1975-01-01
The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.
Analytical and experimental validation of the Oblique Detonation Wave Engine concept
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Cambier, Jean-Luc; Menees, Gene P.; Balboni, John A.
1988-01-01
The Oblique Detonation Wave Engine (ODWE) for hypersonic flight has been analytically studied by NASA using the CFD codes which fully couple finite rate chemistry with fluid dynamics. Fuel injector designs investigated included wall and strut injectors, and the in-stream strut injectors were chosen to provide good mixing with minimal stagnation pressure losses. Plans for experimentally validating the ODWE concept in an arc-jet hypersonic wind tunnel are discussed. Measurements of the flow field properties behind the oblique wave will be compared to analytical predictions.
Exact and approximate solutions to the oblique shock equations for real-time applications
NASA Technical Reports Server (NTRS)
Hartley, T. T.; Brandis, R.; Mossayebi, F.
1991-01-01
The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.
Mean flow characteristics for the oblique impingement of an axisymmetric jet
NASA Technical Reports Server (NTRS)
Foss, J. F.; Kleis, S. J.
1975-01-01
The oblique impingement of an axisymmetric jet has been investigated. A summary of the data and the analytical interpretations of the dominant mechanisms which influence the flow are reported. The major characteristics of the shallow angle oblique jet impingement flow field are: (1) minimal dynamic spreading as revealed by the surface pressure field, (2) pronounced kinematic spreading as revealed by the jet flow velocity field, (3) a pronounced upstream shift of the stagnation point from the maximum pressure point, (4) the production of streamwise vorticity by the impingement process.
Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens
NASA Astrophysics Data System (ADS)
Upton, Phaedra; Craw, Dave
2016-12-01
Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn-orogenic gold becomes diluted by abundant lithic debris in rivers and sedimentary basins except where localised concentration occurs, especially on beaches.
Integrated Aerodynamic and Control System Design of Oblique Wing Aircraft. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Morris, Stephen James
1990-01-01
An efficient high speed aircraft design must achieve a high lift to drag ratio at transonic and supersonic speeds. In 1952 Dr. R. T. Jones proved that for any flight Mach number minimum drag at a fixed lift is achieved by an elliptic wing planform with an appropriate oblique sweep angle. Since then, wind tunnel tests and numerical flow models have confirmed that the compressibility drag of oblique wing aircraft is lower than similar symmetrical sweep designs. At oblique sweep angles above thirty degrees the highly asymmetric planform gives rise to aerodynamic and inertia couplings which affect stability and degrade the aircraft's handling qualities. In the case of the NASA-Rockwell Oblique Wing Research Aircraft, attempts to improve the handling qualities by implementing a stability augmentation system have produced unsatisfactory results because of an inherent lack of controllability in the proposed design. The present work focuses on improving the handling qualities of oblique wing aircraft by including aerodynamic configuration parameters as variables in the control system synthesis to provide additional degrees of freedom with which to further decouple the aircraft's response. Handling qualities are measured using a quadratic cost function identical to that considered in optimal control problems, but the controller architecture is not restricted to full state feedback. An optimization procedure is used to simultaneously solve for the aircraft configuration and control gains which maximize a handling qualities measure, while meeting imposed constraints on trim. In some designs wing flexibility is also modeled and reduced order controllers are implemented. Oblique wing aircraft synthesized by this integrated design method show significant improvement in handling qualities when compared to the originally proposed closed loop aircraft. The integrated design synthesis method is then extended to show how handling qualities may be traded for other types of mission performance (drag, weight, etc.). Examples are presented which show how performance can be maximized while maintaining a desired level of handling quality.
Measurement of superficial and deep abdominal muscle thickness: an ultrasonography study.
Tahan, Nahid; Khademi-Kalantari, Khosro; Mohseni-Bandpei, Mohammad Ali; Mikaili, Saeed; Baghban, Alireza Akbarzadeh; Jaberzadeh, Shapour
2016-08-23
Real-time ultrasound imaging is a valid method in the field of rehabilitation. The ultrasound imaging allows direct visualization for real-time study of the muscles as they contract over the time. Measuring of the size of each abdominal muscle in relation to the others provides useful information about the differences in structure, as well as data on trunk muscle activation patterns. The purpose of this study was to assess the size and symmetry of the abdominal muscles at rest in healthy adults and to provide a reference range of absolute abdominal muscle size in a relatively large population. A total 156 healthy subjects with the age range of 18-44 years were randomly recruited. The thickness of internal oblique, external oblique, transverse abdominis, and rectus abdominis muscles was measured at rest on both right and left sides using ultrasound. Independent t test was used to compare the mean thickness of each abdominal muscle between males and females. Differences on side-to-side thicknesses were assessed using paired t test. The association between abdominal muscle thicknesses with gender and anthropometric variables was examined using the Pearson correlation coefficient. A normal pattern of increasing order of mean abdominal muscle thickness was found in both genders at both right and left sides: transverse abdominis < external oblique < internal oblique < rectus abdominis. There was a significant difference on the size of transverse abdominis, internal oblique, and external oblique muscles between right and left sides in both genders. Males had significantly thicker abdominal muscles than females. Age was significantly correlated with the thickness of internal oblique, external oblique, and rectus abdominis muscles. Body mass index was also positively correlated with muscle thickness of rectus abdominis and external oblique. The results provide a normal reference range for the abdominal muscles in healthy subjects and may be used as an index to find out abnormalities and also to evaluate the effectiveness of different interventions.
Science of Global Climate Modeling: Confirmation from Discoveries on Mars
NASA Astrophysics Data System (ADS)
Hartmann, William K.
2012-10-01
As early as 1993, analysis of obliquity changes on Mars revealed irregular cycles of high excursion, over 45°1. Further obliquity analyses indicated that insolation and climatic conditions vary with time, with the four most recent episodes of obliquity >45° occurring about 5.5, 8, 9, and 15 My.2 Various researchers applied global climate models, using Martian parameters and obliquity changes. The models (independent of Martian geomorphological observations) indicate exceptional climate conditions during the high-obliquity episodes at >45°3,4, with localized massive ice deposition effects east of Hellas and on the west slopes of Tharsis.5 At last year’s DPS my co-authors and I detailed evidence of unusual active glaciation in Greg crater, near the center of the predicted area of ice accumulation during high obliquity.6 We found that the timescale of glacial surface layer activity matches the general 5-15 My timescale of the last episodes of high obliquity and ice deposition. Radar results confirm ice deposits in debris aprons concentrated in the same area.7 Less direct evidence has also been found for glacial ice deposits in the west Tharsis region.8 Here I emphasize that if the models can be adjusted to Mars and then successfully indicate unusual, specific features that we see there, it is an argument for the robustness of climate modeling in general. In recent years we have see various public figures casting doubt on the validity of terrestrial global modeling. The successful match of Martian climate modeling with direct Martian geological and chronometric observations provides an interesting and teachable refutation of the attacks on climate science. References: 1. Science 259:1294-1297; 2. LPSC XXXV, Abs. 1600; 3. Nature 412:411-413; 4. Science 295:110-113; 5. Science 311:368-371; 6. EPSC-DPS Abs. 1394; 7. Science 322:1235-1238; 8. Nature 434:346-351.
Mortera-Gutierrez, C. A.; Scholl, D. W.; Carlson, R.L.
2003-01-01
Normal faults along the seaward trench slope (STS) commonly strike parallel to the trench in response to bending of the oceanic plate into the subduction zone. This is not the circumstance for the Aleutian Trench, where the direction of convergence gradually changes westward, from normal to transform motion. GLORIA side-scan sonar images document that the Aleutian STS is dominated by faults striking oblique to the trench, west of 179??E and east of 172??W. These images also show a pattern of east-west trending seafloor faults that are aligned parallel to the spreading fabric defined by magnetic anomalies. The stress-strain field along the STS is divided into two domains west and east, respectively, of 179??E. Over the western domain, STS faults and nodal planes of earthquakes are oriented oblique (9??-46??) to the trench axis and (69??-90??) to the magnetic fabric. West of 179??E, STS fault strikes change by 36?? from the E-W trend of STS where the trench-parallel slip gets larger than its orthogonal component of convergence. This rotation indicates that horizontal stresses along the western domain of the STS are deflected by the increasing obliquity in convergence. An analytical model supports the idea that strikes of STS faults result from a superposition of stresses associated with the dextral shear couple of the oblique convergence and stresses caused by plate bending. For the eastern domain, most nodal planes of earthquakes strike parallel to the outer rise, indicating bending as the prevailing mechanism causing normal faulting. East of 172??W, STS faults strike parallel to the magnetic fabric but oblique (10??-26??) to the axis of the trench. On the basis of a Coulomb failure criterion the trench-oblique strikes probably result from reactivation of crustal faults generated by spreading. Copyright 2003 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Marshall, J.; Ferreira, D.; O'Gorman, P. A.; Seager, S.
2011-12-01
One method of studying earth-like exoplanets is to view earth as an exoplanet and consider how its climate might change if, for example, its obliquity were ranged from 0 to 90 degrees. High values of obliquity challenge our understanding of climate dynamics because if obliquity exceeds 54 degrees, then polar latitudes receive more energy per unit area than do equatorial latitudes. Thus the pole will become warmer than the equator and we are led to consider a world in which the meridional temperature gradients, and associated prevailing zonal wind, have the opposite sign to the present earth. The problem becomes even richer when one considers the dynamics of an ocean, should one exist below. A central question for the ocean circulation is: what is the pattern of surface winds at high obliquities?, for it is the winds that drive the ocean currents and thermohaline circulation. How do atmospheric weather systems growing in the easterly sheared middle latitude jets determine the surface wind pattern? Should one expect middle latitude easterly winds? Finally, a key aspect with regard to habitability is to understand how the atmosphere and ocean of this high obliquity planet work cooperatively together to transport energy meridionally, mediating the warmth of the poles and the coldness of the equator. How extreme are seasonal temperature fluctuations? Should one expect to find ice around the equator? Possible answers to some of these questions have been sought by experimentation with a coupled atmosphere, ocean and sea-ice General Circulation Model of an earth-like aquaplanet: i.e. a planet like our own but on which there is only an ocean but no land. The coupled climate is studied across a range of obliquities (23.5, 54 and 90). We present some of the descriptive climatology of our solutions and how they shed light on the deeper questions of coupled climate dynamics that motivate them. We also review what they tell us about habitability on such planets.
The Obliquities of the Giant Planets
NASA Astrophysics Data System (ADS)
Hamilton, D. P.; Ward, Wm. R.
2002-09-01
Jupiter has by far the smallest obliquity ( ~ 3o) of the planets (not counting tidally de-spun Mercury and Venus) which may be reflective of its formation by hydrodynamic gas flow rather than stochastic impacts. Saturn's obliquity ( ~ 26o), however, seems to belie this simple formation picture. But since the spin angular momentum of any planet is much smaller than its orbital angular momentum, post-formation obliquity can be strongly modified by passing through secular spin-orbit resonances, i.e., when the spin axis precession rate of the planet matches one of the frequencies describing the precession of the orbit plane. Spin axis precession is due to the solar torque on both the oblate figure of the planet and any orbiting satellites. In the case of Jupiter, the torque on the Galilean satellites is the principal cause of its 4.5*105 year precession; Saturn's precession of 1.8*106 years is dominated by Titan. In the past, the planetary spin axis precession rates should have been much faster due to the massive circumplanetary disks from which the current satellites condensed. The regression of the orbital node of a planet is due to the gravitational perturbations of the other planets. Nodal regression is not uniform, but is instead a composite of the planetary system's normal modes. For Jupiter and Saturn, the principal frequency is the nu16, with a period of ~ 49,000 years; the amplitude of this term is I ~ 0o.36 for Jupiter and I ~ 0o.90 for Saturn. In spite of the small amplitudes, slow adiabatic passages through this resonance (due to circumplanetary disk dispersal) could increase planetary obliquities from near zero to ~ [tan1/3 I] ~ 10o. We will discuss scenarios in which giant planet obliquities are affected by this and other resonances, and will use Jupiter's low obliquity to constrain the mass and duration of a satellite precursor disk. DPH acknowledges support from NSF Career Grant AST 9733789 and WRW is grateful to the NASA OSS and PGG programs.
3. OBLIQUE GENERAL VIEW SHOWING EAST CORNER OF SHED, WITH ...
3. OBLIQUE GENERAL VIEW SHOWING EAST CORNER OF SHED, WITH RAILROAD TRACKS PASSING UNDER DERRICK ALONG WHARF - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA
1. Exterior oblique view of north and east sides showing ...
1. Exterior oblique view of north and east sides showing entrance and typical window - Fort Hood, World War II Temporary Buildings, Dispatcher House, North of Park Avenue at Forty-ninth Street, Killeen, Bell County, TX
OBLIQUE SHOWING NORTHEAST END AND NORTHWEST SIDE. FACILITY 252 PORTION ...
OBLIQUE SHOWING NORTHEAST END AND NORTHWEST SIDE. FACILITY 252 PORTION OF BUILDING IS ON LEFT. - U.S. Naval Base, Pearl Harbor, Combat Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI
OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY ...
OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY 391 IN THE FOREGROUND. - U.S. Naval Base, Pearl Harbor, Joint Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI
OBLIQUE OF THE NORTHEAST END (MAIN ENTRY) AND NORTHWEST SIDE, ...
OBLIQUE OF THE NORTHEAST END (MAIN ENTRY) AND NORTHWEST SIDE, WITH FACILITY 346 ON LEFT. - U.S. Naval Base, Pearl Harbor, Joint Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI
OBLIQUE VIEW OF NORTHEAST AND SOUTHEAST SIDES OF HYDROELECTRIC POWER ...
OBLIQUE VIEW OF NORTHEAST AND SOUTHEAST SIDES OF HYDROELECTRIC POWER HOUSE, VIEW TOWARDS WEST - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL
Oblique view of the mine observation tower and transformer buildings, ...
Oblique view of the mine observation tower and transformer buildings, with the tower building behind. View facing south-southeast - U.S. Naval Base, Pearl Harbor, Waipio Peninsula, Waipo Peninsula, Pearl City, Honolulu County, HI
Oblique of mine observation tower building showing entry door and ...
Oblique of mine observation tower building showing entry door and transformer building behind on right. View facing north-northwest - U.S. Naval Base, Pearl Harbor, Waipio Peninsula, Waipo Peninsula, Pearl City, Honolulu County, HI
16. Oblique, guard quarters; shower stalls at left; view to ...
16. Oblique, guard quarters; shower stalls at left; view to south-southwest, 65mm lens with electronic flash illumination. - Tule Lake Project Jail, Post Mile 44.85, State Route 139, Newell, Modoc County, CA
7. Interior oblique view toward doorway, Oil House, Southern Pacific ...
7. Interior oblique view toward doorway, Oil House, Southern Pacific Railroad Carlin Shops, view to south (90mm lens). - Southern Pacific Railroad, Carlin Shops, Oil House, Foot of Sixth Street, Carlin, Elko County, NV
6. Interior oblique view from doorway, Oil House, Southern Pacific ...
6. Interior oblique view from doorway, Oil House, Southern Pacific Railroad Carlin Shops, view to north (90mm lens). - Southern Pacific Railroad, Carlin Shops, Oil House, Foot of Sixth Street, Carlin, Elko County, NV
OBLIQUE VIEW OF REAR ELEVATION OF MARINE BARRACKS, LOOKING WEST ...
OBLIQUE VIEW OF REAR ELEVATION OF MARINE BARRACKS, LOOKING WEST NORTHWEST. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Marine Barracks, Intersection of Tower Drive & Morse Street, Makaha, Honolulu County, HI
OBLIQUE VIEW OF FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTH. ...
OBLIQUE VIEW OF FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTH. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Marine Barracks, Intersection of Tower Drive & Morse Street, Makaha, Honolulu County, HI
Detail, rear door types, building 242, oblique view to southwest, ...
Detail, rear door types, building 242, oblique view to southwest, 90 mm lens. - Travis Air Force Base, Nuclear Weapons Assembly Building, W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
19. Oblique, typical cell (south cells) from rear of cell; ...
19. Oblique, typical cell (south cells) from rear of cell; view to north, 65mm lens with electronic flash illumination. - Tule Lake Project Jail, Post Mile 44.85, State Route 139, Newell, Modoc County, CA
FACILITY 846, NORTHWEST END AND SOUTHWEST SIDE, QUADRANGLE J, OBLIQUE ...
FACILITY 846, NORTHWEST END AND SOUTHWEST SIDE, QUADRANGLE J, OBLIQUE VIEW FACING EAST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI
1. Building J oblique, showing north and south elevations from ...
1. Building J oblique, showing north and south elevations from cartway (between Building L and M) looking northeast. - Daniel F. Waters Germantown Dye Works, Building J, 37-55 East Wister Street, Philadelphia, Philadelphia County, PA
Red Shifts with Obliquely Approaching Light Sources.
ERIC Educational Resources Information Center
Head, C. E.; Moore-Head, M. E.
1988-01-01
Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)
11. View from heat sink, south oblique of missile site ...
11. View from heat sink, south oblique of missile site control building - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND
OBLIQUE/EXTERIOR VIEW, SIDE AND FRONT ELEVATIONS, FOUR ROOMPYRAMIDAL ROOF COTTAGE ...
OBLIQUE/EXTERIOR VIEW, SIDE AND FRONT ELEVATIONS, FOUR ROOM-PYRAMIDAL ROOF COTTAGE AT 328 CAMILLE STREET WITH SIDE YARD GARDER. - Mulga Community, Off AL 269 at I-20-59, Birmingham, Jefferson County, AL
Yan, Xue-Qiang; Yang, Jun; Zheng, Nan-Nan; Kuang, Hou-Fang; Duan, Xu-Fei; Bian, Hong-Qiang
2017-01-01
This study aims to evaluate the utility of the "Cross-Internal Ring" inguinal oblique incision for the surgical treatment of incarcerated indirect hernia (IIH) complicated with severe abdominal distension. Patients of IIH complicated with severe abdominal distension were reviewed retrospectively. All patients received operation through the "Cross-Internal Ring" inguinal oblique incision. There were totally 13 patients were included, male to female ratio was 9-4. The time for patients to resume oral feeding varying from 2 to 5 days after operation, no complications include delayed intestinal perforation, intra-abdominal abscess, and incision infection happened. Average postoperative hospital stay was 5.2 days. All cases were followed up for 6-18 months. No recurrence or iatrogenic cryptorchidism happened. "Cross-Internal Ring" inguinal oblique incision is a simple, safe, and reliable surgical method to treat pediatric IIH complicated with severe abdominal distension.
Cooper, Minton Truitt; Coughlin, Michael J
2012-10-01
The aim of this study was to compare a distal subcapital oblique fifth metatarsal with a distal chevron osteotomy for correction of bunionette deformity. Twenty cadaveric feet were randomly assigned to undergo either a subcapital oblique or chevron osteotomy of the distal fifth metatarsal. Radiographic measurements, including 4-5 intermetatarsal angle (IMA), fifth metatarsophalangeal angle (5-MPA) and foot width, were compared between the 2 groups. Foot width and 5-MPA was significantly decreased in both groups with no difference between the groups. The 4-5 IMA was not significantly altered in either group. Decrease in foot width and 5-MPA was similarly achieved with either distal chevron or subcapital oblique osteotomy of the fifth metatarsal in normal cadaveric specimens. No significant difference was found between the 2 techniques in any of the radiographic parameters measured.
Oblique impact: Projectile richochet, concomitant ejecta and momentum transfer
NASA Technical Reports Server (NTRS)
Gault, Donald E.; Schultz, Peter H.
1987-01-01
Experimental studies of oblique impact indicate that projectile richochet occurs for trajectory angles less than 30 deg and that the richocheted projectile, accompanied by some target material, are ejected at velocities that are a large fraction of the impact velocity. Because the probability of occurrence of oblique impact less than 30 deg on a planetary body is about one out of every four impact events, oblique impacts would seem to be a potential mechanism to provide a source of meteorites from even the largest atmosphere-free planetary bodies. Because the amount of richocheted target material cannot be determined from previous results, additional experiments in the Ames Vertical Gun laboratory were undertaken toward that purpose using pendulums; one to measure momentum of the richocheted projectile and concomitant target ejecta, and a second to measure the momentum transferred from projectile to target. These experiments are briefly discussed.
Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro
2014-01-01
Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.
Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro
2014-06-18
Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.
NASA Astrophysics Data System (ADS)
Han, Youmei; Jiao, Minglian; Shijuan
2018-04-01
With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.
Proton fire hose instabilities in the expanding solar wind: Role of oblique magnetic field
NASA Astrophysics Data System (ADS)
Hellinger, Petr
2016-04-01
The double adiabatic (CGL) approximation for the ideal (Parker) interplanetary magnetic field (IMF) predicts generation of the parallel particle temperature anisotropy (T∥ > T⊥) for a nearly radial magnetic field whereas for a strongly oblique IMF generation of the opposite temperature anisotropy is expected. The transition between the two behaviours is expected at around 45o, i.e. around 1 AU in the solar wind in the ecliptic plane. We investigate properties of a proton-electron plasma system in the solar wind using hybrid expanding box simulations starting with an oblique IMF. The simulated system becomes unstable with respect to the parallel and oblique fire hose instabilities and is forced to stay around the corresponding marginal stability. Rotation of the IMF reduces the time system stays near the marginal stability regions and for a strongly transverse IMF the system moves away from the regions unstable with respect to the fire hose instabilities.
Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincent, P
2001-10-01
A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreasmore » Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases of this magnitude (equivalent to M{sub w} = 5.3 and 5.6 events on the Superstition Hills and San Andreas Faults respectively) are hitherto unknown and have not been captured previously by any geodetic technique.« less
3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes
NASA Astrophysics Data System (ADS)
Schütt, Jorina M.; Whipp, David M., Jr.
2017-04-01
The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.
Oblique Intrathecal Injection in Lumbar Spine Surgery: A Technical Note.
Jewett, Gordon A E; Yavin, Daniel; Dhaliwal, Perry; Whittaker, Tara; Krupa, JoyAnne; Du Plessis, Stephan
2017-09-01
Intrathecal morphine (ITM) is an efficacious method of providing postoperative analgesia and reducing pain associated complications. Despite adoption in many surgical fields, ITM has yet to become a standard of care in lumbar spine surgery. Spine surgeons' reticence to make use of the technique may in part be attributed to concerns of precipitating a cerebrospinal fluid (CSF) leak. Herein we describe a method for oblique intrathecal injection during lumbar spine surgery to minimize risk of CSF leak. The dural sac is penetrated obliquely at a 30° angle to offset dural and arachnoid puncture sites. Oblique injection in instances of limited dural exposure is made possible by introducing a 60° bend to a standard 30-gauge needle. The technique was applied for injection of ITM or placebo in 104 cases of lumbar surgery in the setting of a randomized controlled trial. Injection was not performed in two cases (2/104, 1.9%) following preinjection dural tear. In the remaining 102 cases no instances of postoperative CSF leakage attributable to oblique intrathecal injection occurred. Three cases (3/102, 2.9%) of transient CSF leakage were observed immediately following intrathecal injection with no associated sequelae or requirement for postsurgical intervention. In two cases, the observed leak was repaired by sealing with fibrin glue, whereas in a single case the leak was self-limited requiring no intervention. Oblique dural puncture was not associated with increased incidence of postoperative CSF leakage. This safe and reliable method of delivery of ITM should therefore be routinely considered in lumbar spine surgery.
Injury risk functions for frontal oblique collisions.
Andricevic, Nino; Junge, Mirko; Krampe, Jonas
2018-03-09
The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set. Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes-a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured). IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18-64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes. The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.
Inferior Oblique Overaction: Anterior Transposition Versus Myectomy.
Rajavi, Zhale; Feizi, Mohadeseh; Behradfar, Narges; Yaseri, Mehdi; Sayanjali, Shima; Motevaseli, Tahmine; Sabbaghi, Hamideh; Faghihi, Mohammad
2017-07-01
To compare the efficacy of inferior oblique myectomy and anterior transposition for correcting inferior oblique overaction (IOOA). This retrospective study was conducted on 56 patients with IOOA who had either myectomy or anterior transposition of the inferior oblique muscle from 2010 to 2015. The authors compared preoperative and postoperative inferior oblique muscle function grading (-4 to +4) as the main outcome measure and vertical and horizontal deviation, dissociated vertical deviation (DVD), and A- and V-pattern between the two surgical groups as secondary outcomes. A total of 99 eyes of 56 patients with a mean age of 5.9 ± 6.5 years were included (47 eyes in the myectomy group and 52 eyes in the anterior transposition group). There were no differences in preoperative best corrected visual acuity, amblyopia, spherical equivalent, and primary versus secondary IOOA between the two groups. Both surgical procedures were effective in reducing IOOA and satisfactory results were similar between the two groups: 61.7% and 67.3% in the myectomy and anterior transposition groups, respectively (P = .56). After adjustment for the preoperative DVD, there was no statistically significant difference between the two groups postoperatively. The preoperative hypertropia was 6 to 14 and 6 to 18 prism diopters (PD) in the myectomy and anterior transposition groups, respectively. After surgery, no patient had a vertical deviation greater than 5 PD. Both the inferior oblique myectomy and anterior transposition procedures are effective in reducing IOOA with similar satisfactory results. DVD and hypertropia were also corrected similarly by these two surgical procedures. [J Pediatr Ophthalmol Strabismus. 2017;54(4):232-237.]. Copyright 2017, SLACK Incorporated.
The effect of short-term training on cardinal and oblique orientation discrimination: an ERP study.
Song, Yan; Sun, Li; Wang, You; Zhang, Xuemin; Kang, Jing; Ma, Xiaoli; Yang, Bin; Guan, Yijie; Ding, Yulong
2010-03-01
The adult brain shows remarkable plasticity, as demonstrated by the improvement in most visual discrimination tasks after intensive practice. However, previous studies have demonstrated that practice improved the discrimination only around oblique orientations, while performance around cardinal orientations (vertical or horizontal orientations) remained stable despite extensive training. The two experiments described here used event-related potentials (ERPs) to investigate the neural substrates underlying different training effects in the two kinds of orientation. Event-related potentials were recorded from subjects when they were trained with a grating orientation discrimination task. Psychophysical threshold measurements were performed before and after the training. For oblique gratings, psychophysical thresholds decreased significantly across training sessions. ERPs showed larger P2 and P3 amplitudes and smaller N1 amplitudes over the parietal/occipital areas with more practice. In line with the psychophysical thresholds, the training effect on the P2 and P3 was specific to stimulus orientation. However, the N1 effect was generalized over differently oriented gratings stimuli. For cardinally oriented gratings, no significant changes were found in the psychophysical thresholds during the training. ERPs still showed similar generalized N1 effect as the oblique gratings. However, the amplitudes of P2 and P3 were unchanged during the whole training. Compared with cardinal orientations, more visual processing stages and later ERP components were involved in the training of oblique orientation discrimination. These results contribute to understanding the neural basis of the asymmetry between cardinal and oblique orientation training effects. Copyright 2009 Elsevier B.V. All rights reserved.
FACILITY 316. EXTERIOR OBLIQUE OF FRONT AS SEEN FROM FACILITY ...
FACILITY 316. EXTERIOR OBLIQUE OF FRONT AS SEEN FROM FACILITY 362. VIEW FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hospital Point, Pharmacist's Quarters Type, 13-16 First Street, Pearl City, Honolulu County, HI
9. GENERAL OBLIQUE VIEW OF SOUTH CORNER OF SHED WITH ...
9. GENERAL OBLIQUE VIEW OF SOUTH CORNER OF SHED WITH DERRICK AND RAILWAY PASS-TROUGH ON WHARF, LOOKING NORTH - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA
1. OBLIQUE VIEW OF THE COMPLEX OF BUILDINGS INCLUDING THE ...
1. OBLIQUE VIEW OF THE COMPLEX OF BUILDINGS INCLUDING THE MESS HALL BUILDING 220 IN THE FOREGROUND, LOOKING NORTH-NORTHEAST. - Mill Valley Air Force Station, Mess Hall, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA
5. Oblique view of center and south sections of building. ...
5. Oblique view of center and south sections of building. VIEW OF NORTHWEST CORNER OF CENTER SECTION. - Department of Energy, Grand Junction Office, Building No. 3022, 2597 B3/4 Road, Grand Junction, Mesa County, CO
Oblique view of rear and south sides of ammunition storage ...
Oblique view of rear and south sides of ammunition storage buildings 4403 and 4404, view towards the north without scale - Fort McClellan Ammunition Storage Area, Building No. 4403, Second Avenue (Magazine Road), Anniston, Calhoun County, AL
Oblique view of rear and south sides of ammunition storage ...
Oblique view of rear and south sides of ammunition storage buildings 4404 and 4405, view towards the north with scale - Fort McClellan Ammunition Storage Area, Building No. 4404, Second Avenue (Magazine Road), Anniston, Calhoun County, AL
Oblique view of rear and south sides of ammunition storage ...
Oblique view of rear and south sides of ammunition storage buildings 4404 and 4405, view towards the north without scale - Fort McClellan Ammunition Storage Area, Building No. 4404, Second Avenue (Magazine Road), Anniston, Calhoun County, AL
3. OBLIQUE VIEW OF THE PRESENT CONTROL ROOM (ORIGINALLY THE ...
3. OBLIQUE VIEW OF THE PRESENT CONTROL ROOM (ORIGINALLY THE TRANSFORMER ROOM). - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID
1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA ...
1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE
FACILITY 52. OBLIQUE OF REAR AND SIDE. VIEW FACING SOUTHEAST. ...
FACILITY 52. OBLIQUE OF REAR AND SIDE. VIEW FACING SOUTHEAST. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Makalapa, Junior Officers' Quarters Type J, Makin Place, & Halawa, Makalapa, & Midway Drives, Pearl City, Honolulu County, HI
OBLIQUE OF NORTHEAST END WITH FACILITY 252 PORTION OF BUILDING ...
OBLIQUE OF NORTHEAST END WITH FACILITY 252 PORTION OF BUILDING (FIRST-FLOOR CONCRETE PORTION) IN FOREGROUND. - U.S. Naval Base, Pearl Harbor, Combat Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI
3. Oblique view of 215 Division Street, looking southeast, showing ...
3. Oblique view of 215 Division Street, looking southeast, showing rear (west) facade and north side, Fairbanks Company appears at left and 215 Division Street is visible at right - 215 Division Street (House), Rome, Floyd County, GA
2. Oblique view of 215 Division Street, looking northeast, showing ...
2. Oblique view of 215 Division Street, looking northeast, showing rear (west) facade and south side, 217 Division Street is visible at left and Fairbanks Company appears at right - 215 Division Street (House), Rome, Floyd County, GA
3. Oblique view of 213 Division Street, looking northeast, showing ...
3. Oblique view of 213 Division Street, looking northeast, showing rear (west) facade and south side, 215 Division Street is visible at left and Fairbanks Company appears at right - 213 Division Street (House), Rome, Floyd County, GA
43. OBLIQUE VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH ...
43. OBLIQUE VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH LEVER ASSEMBLAGE AND DISPLAY BOARD - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT
Oblique view to the west of two communications antennas ...
Oblique view to the west of two communications antennas - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID
Oblique view to the west of the southeast elevation ...
Oblique view to the west of the southeast elevation - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID
Oblique view to the northwest of the Antenna Array ...
Oblique view to the northwest of the Antenna Array - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Six Antenna Array, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR
FACILITY 89. OBLIQUE OF SIDE AND REAR. VIEW FACING SOUTH. ...
FACILITY 89. OBLIQUE OF SIDE AND REAR. VIEW FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Makalapa, Junior Officers' Quarters Type K, Makin Place, & Halawa, Makalapa, & Midway Drives, Pearl City, Honolulu County, HI
FACILITY 89. FRONT OBLIQUE TAKEN FROM DRIVEWAY. VIEW FACING NORTHEAST. ...
FACILITY 89. FRONT OBLIQUE TAKEN FROM DRIVEWAY. VIEW FACING NORTHEAST. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Makalapa, Junior Officers' Quarters Type K, Makin Place, & Halawa, Makalapa, & Midway Drives, Pearl City, Honolulu County, HI
1. OBLIQUE VIEW, NORTH AND EAST SIDES. VIEW SHOWS POSITION ...
1. OBLIQUE VIEW, NORTH AND EAST SIDES. VIEW SHOWS POSITION OF BUILDING UNDER LEG OF TOWER 33. - Chollas Heights Naval Radio Transmitting Facility, PERS Support Storage Building, 6410 Zero Road, San Diego, San Diego County, CA
Building 932, oblique view to northwest, 90 mm lens. Building ...
Building 932, oblique view to northwest, 90 mm lens. Building 933-935 at extreme left. - Travis Air Force Base, Nuclear Weapons Assembly Plant 5, W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
FACILITY 847, NORTHWEST END AND NORTHEAST SIDE, QUADRANGLE J, OBLIQUE ...
FACILITY 847, NORTHWEST END AND NORTHEAST SIDE, QUADRANGLE J, OBLIQUE VIEW FACING SOUTH-SOUTH-SOUTHEAST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI
10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ...
10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA
4. BUILDING 313, EAST AND NORTH SIDES, OBLIQUE VIEW, FROM ...
4. BUILDING 313, EAST AND NORTH SIDES, OBLIQUE VIEW, FROM INTERSECTION OF C AND 4TH STREETS, LOOKING SOUTHWEST. - Oakland Naval Supply Center, General Storehouses, Between Third & Fourth Streets, North of A Street, Oakland, Alameda County, CA
6. View from heat sink (south to north), west oblique ...
6. View from heat sink (south to north), west oblique of missile site control building - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND
12. Oblique view of northeast facade, showing missing rain gutter, ...
12. Oblique view of northeast facade, showing missing rain gutter, deteriorated slate roof, broken windows in tower; view west-northwest, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA
Building 930, oblique view to southeast from fill slope covering ...
Building 930, oblique view to southeast from fill slope covering building 932, 135 mm lens. - Travis Air Force Base, Snack Bar, North of W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
Oblique view looking southeast of Centralized Work Equipment (C.W.E.) Office ...
Oblique view looking southeast of Centralized Work Equipment (C.W.E.) Office (Bldg. 130) - Atchison, Topeka, Santa Fe Railroad, Albuquerque Shops, C.W.E. Office Building, 908 Second Street, Southwest, Albuquerque, Bernalillo County, NM
Oblique view looking southwest of C.W.E. Storage Shed (Bldg. 126), ...
Oblique view looking southwest of C.W.E. Storage Shed (Bldg. 126), with Heavy Equipment Shop (Bldg. 188) at right - Atchison, Topeka, Santa Fe Railroad, Albuquerque Shops, 908 Second Street, Southwest, Albuquerque, Bernalillo County, NM
NASA Astrophysics Data System (ADS)
Lourens, L. J.; Konijnendijk, T.; Ziegler, M.
2015-12-01
We present the first long (~1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (~624 ka), which occurred ~9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5±0.8 kyr for obliquity, and 6.0±1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0±3.3 kyr) prior to ~900 ka than after (5.7±1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ~45±45 degrees with respect to the precession and obliquity-driven increases in 65°N summer insolation, consistent with the general consensus that both obliquity and precession are important for deglaciation during the Late Pleistocene. Exceptions are glacial terminations TIIIb, T36 and potentially T32 (and TVII T24 and T34), which show this consistent phase relationship only with precession (only with obliquity). Our findings point towards an early (>1200 ka) onset of the Mid Pleistocene Transition. Vice versa, the timing of TVII, which can only be explained as a response to obliquity forcing, indicates that the transition lasted until at least after MIS 15.
The saturation of monochromatic lights obliquely incident on the retina.
Alpern, M; Tamaki, R
1983-01-01
Foveal dark-adaptation undertaken to test the hypothesis that the excitation of rods causes the desaturation of 'yellow' lights in a 1 degree field traversing the margin of the pupil, fails to exclude that possibility. The desaturation is largest for a 1 degree outside diameter annular test, is still measurable with a 0.5 degree circular disk, but disappears for a 0.29 degree disk. The supersaturation of obliquely incident 501.2 nm test light follows the opposite pattern; it disappears with an annulus and is largest for a 0.29 degree circular field. It is unlikely that rods replace short-wave sensitive cones in the trichromatic match of an obliquely incident test with normally incident primaries. If rods as well as all three cones species are involved, the matches might not be trichromatic in the strong sense. Grassmann's law of scalar multiplication was tested and shown not to hold for the match of an obliquely incident test with normally incident primaries, though it remains valid whenever, both primaries and test strike the retina at the same angle of incidence (independent of that angle). The result in section 3 (above) cannot be due to rod intrusion. It persists (and becomes more conspicuous) on backgrounds (4.0 log scotopic td) which saturate rods. Moreover obliquely incident 'yellow' lights remain desaturated in intervals in the dark after a full bleach, whilst the test field is below rod threshold. The amount of desaturation does not differ appreciably from that normally found. The assumption of the unified theory of Alpern, Kitahara & Tamaki (1983) that the outer segments of only a single set of three cone species (with acceptance angles wide enough to include the entire exit pupil) contain the visual pigments absorbing both the normally incident primaries and the obliquely incident test is disproved by these results. Failure of Grassmann's law is most conspicuous under the conditions for which the changes in saturation upon changing from normal to oblique incidence are greatest and least when the saturation changes are the smallest. Either all unified theories of the Stiles-Crawford effects are wrong or all the effects of oblique incidence operate at a stage in the visual process at which the effects of radiation of different wave-lengths are no longer compounded by the simple linear laws. PMID:6875976
South Fork Latrine, oblique view showing south and east sides; ...
South Fork Latrine, oblique view showing south and east sides; view northwest - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME
1. Building 15 west elevation oblique showing coal conveyor, chute ...
1. Building 15 west elevation oblique showing coal conveyor, chute and hopper. Coal feeds boiler in Building 3. View looking SE. - John & James Dobson Carpet Mill (West Parcel), Building No. 15, 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA
OBLIQUE VIEW OF EAST AND NORTH SIDES OF FIRE PUMP ...
OBLIQUE VIEW OF EAST AND NORTH SIDES OF FIRE PUMP HOUSE, LOCK CONTROL HOUSES IN BACKGROUND, VIEW TOWARDS SOUTHWEST - Ortona Lock, Lock No. 2, Fire Pump House, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL
EXTERIOR OBLIQUE OF FRONT AND SIDE, AS SEEN FROM FACILITY ...
EXTERIOR OBLIQUE OF FRONT AND SIDE, AS SEEN FROM FACILITY 317. VIEW FACING NORTH. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hospital Point, Pharmacists' Garage Type, First Street near Kean Road, Pearl City, Honolulu County, HI
Oblique view of front (east) and south sides of ammunition ...
Oblique view of front (east) and south sides of ammunition storage buildings 4403 and 4404, view towards the northwest without scale - Fort McClellan Ammunition Storage Area, Building No. 4403, Second Avenue (Magazine Road), Anniston, Calhoun County, AL
Oblique view of building 11050, showing east and south sides, ...
Oblique view of building 11050, showing east and south sides, looking northwest. - Naval Ordnance Test Station Inyokern, China Lake Pilot Plant, Fire Station & Marine Barracks, D Street, at corner of 4th Street, China Lake, Kern County, CA
9. Oblique view from liftbed truck, showing deteriorated slate roof ...
9. Oblique view from lift-bed truck, showing deteriorated slate roof and chimney, bicycle lockers placed against southeast wall; view to north, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA
FRONT OBLIQUE, WITH ENTRY AND WATER FEATURE TO LEFT, TAKEN ...
FRONT OBLIQUE, WITH ENTRY AND WATER FEATURE TO LEFT, TAKEN FROM ENTRY. VIEW FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Makalapa, Senior Officers' Quarters Type A, 37 Makalapa Drive, Pearl City, Honolulu County, HI
OBLIQUE VIEW OF EAST (REAR) AND NORTH FACADES, WITH BUILDING ...
OBLIQUE VIEW OF EAST (REAR) AND NORTH FACADES, WITH BUILDING 792 VISIBLE IN BACKGROUND RIGHT, LOOKING WEST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL
OBLIQUE VIEW OF NORTHWEST AND NORTHEAST SIDES OF HYDROELECTRIC POWER ...
OBLIQUE VIEW OF NORTHWEST AND NORTHEAST SIDES OF HYDROELECTRIC POWER HOUSE, OLD BYPASS IN BACKGROUND, VIEW TOWARDS SOUTH - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL
6. OBLIQUE VIEW OF HOIST, SHOWING WOODEN BRAKE SHOES, REDUCTION ...
6. OBLIQUE VIEW OF HOIST, SHOWING WOODEN BRAKE SHOES, REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING NORTHWEST - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK
1. Oblique view of 215 Division Street, looking southwest, showing ...
1. Oblique view of 215 Division Street, looking southwest, showing front (east) facade and north side, 213 Division Street is visible at left and 217 Division Street appears at right - 215 Division Street (House), Rome, Floyd County, GA
Exterior building details of Building E, oblique west façade: brick ...
Exterior building details of Building E, oblique west façade: brick arch lintel and brick infilled window with brick sill; southeasterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
16. 110 SANSOM STREET, OBLIQUE VIEW OF BAKE OVEN IN ...
16. 110 SANSOM STREET, OBLIQUE VIEW OF BAKE OVEN IN CELLAR (Note the double arch in front of the oven. The front arch supported the structural framing.) - James McCrea Houses, 108-110 Sansom Street, Philadelphia, Philadelphia County, PA
OBLIQUE VIEW FROM THE SOUTH Camp H.M. Smith and ...
OBLIQUE VIEW FROM THE SOUTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
8. OBLIQUE VIEW OF WEST ELEVATION. LOOKING EAST. Route ...
8. OBLIQUE VIEW OF WEST ELEVATION. LOOKING EAST. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ
7. OBLIQUE VIEW OF EAST ELEVATION. LOOKING WEST. Route ...
7. OBLIQUE VIEW OF EAST ELEVATION. LOOKING WEST. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ