DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring; David I. Gertman; Jeffrey C. Joe
2005-09-01
An ongoing issue within human-computer interaction (HCI) is the need for simplified or “discount” methods. The current economic slowdown has necessitated innovative methods that are results driven and cost effective. The myriad methods of design and usability are currently being cost-justified, and new techniques are actively being explored that meet current budgets and needs. Recent efforts in human reliability analysis (HRA) are highlighted by the ten-year development of the Standardized Plant Analysis Risk HRA (SPAR-H) method. The SPAR-H method has been used primarily for determining humancentered risk at nuclear power plants. The SPAR-H method, however, shares task analysis underpinnings withmore » HCI. Despite this methodological overlap, there is currently no HRA approach deployed in heuristic usability evaluation. This paper presents an extension of the existing SPAR-H method to be used as part of heuristic usability evaluation in HCI.« less
Advancing Usability Evaluation through Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring; David I. Gertman
2005-07-01
This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probabilitymore » of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. J. Galyean; A. M. Whaley; D. L. Kelly
This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from themore » psychology literature.« less
Multi-Unit Considerations for Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. Germain, S.; Boring, R.; Banaseanu, G.
This paper uses the insights from the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) methodology to help identify human actions currently modeled in the single unit PSA that may need to be modified to account for additional challenges imposed by a multi-unit accident as well as identify possible new human actions that might be modeled to more accurately characterize multi-unit risk. In identifying these potential human action impacts, the use of the SPAR-H strategy to include both errors in diagnosis and errors in action is considered as well as identifying characteristics of a multi-unit accident scenario that may impact themore » selection of the performance shaping factors (PSFs) used in SPAR-H. The lessons learned from the Fukushima Daiichi reactor accident will be addressed to further help identify areas where improved modeling may be required. While these multi-unit impacts may require modifications to a Level 1 PSA model, it is expected to have much more importance for Level 2 modeling. There is little currently written specifically about multi-unit HRA issues. A review of related published research will be presented. While this paper cannot answer all issues related to multi-unit HRA, it will hopefully serve as a starting point to generate discussion and spark additional ideas towards the proper treatment of HRA in a multi-unit PSA.« less
Defining Human Failure Events for Petroleum Risk Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring; Knut Øien
2014-06-01
In this paper, an identification and description of barriers and human failure events (HFEs) for human reliability analysis (HRA) is performed. The barriers, called target systems, are identified from risk significant accident scenarios represented as defined situations of hazard and accident (DSHAs). This report serves as the foundation for further work to develop petroleum HFEs compatible with the SPAR-H method and intended for reuse in future HRAs.
SPAR1/RTEL1 maintains genomic stability by suppressing homologous recombination
Barber, Louise J.; Youds, Jillian L.; Ward, Jordan D.; McIlwraith, Michael J.; O’Neil, Nigel J.; Petalcorin, Mark I.R.; Martin, Julie S.; Collis, Spencer J.; Cantor, Sharon B.; Auclair, Melissa; Tissenbaum, Heidi; West, Stephen C.; Rose, Ann M.; Boulton, Simon J.
2013-01-01
SUMMARY Inappropriate homologous recombination (HR) can cause gross chromosomal rearrangements that in mammalian cells may lead to tumorigenesis. In yeast, the Srs2 protein is an anti-recombinase that eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has proven to be elusive. In this work, we identify C. elegans SPAR-1 as a functional analogue of Srs2 and describe its vertebrate counterpart, SPAR1/RTEL1, which is required for genome stability and tumour avoidance. We find that spar-1 mutant worms and SPAR1 knockdown human cells share characteristic phenotypes with yeast srs2 mutants, including inviability upon deletion of the sgs1/BLM homologue, hyper-recombination, and DNA damage sensitivity. In vitro, purified human SPAR1 antagonises HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control following deregulation of SPAR1/RTEL1 may be a critical event that drives genome instability and cancer. PMID:18957201
SIMULATED HUMAN ERROR PROBABILITY AND ITS APPLICATION TO DYNAMIC HUMAN FAILURE EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herberger, Sarah M.; Boring, Ronald L.
Abstract Objectives: Human reliability analysis (HRA) methods typically analyze human failure events (HFEs) at the overall task level. For dynamic HRA, it is important to model human activities at the subtask level. There exists a disconnect between dynamic subtask level and static task level that presents issues when modeling dynamic scenarios. For example, the SPAR-H method is typically used to calculate the human error probability (HEP) at the task level. As demonstrated in this paper, quantification in SPAR-H does not translate to the subtask level. Methods: Two different discrete distributions were generated for each SPAR-H Performance Shaping Factor (PSF) tomore » define the frequency of PSF levels. The first distribution was a uniform, or uninformed distribution that assumed the frequency of each PSF level was equally likely. The second non-continuous distribution took the frequency of PSF level as identified from an assessment of the HERA database. These two different approaches were created to identify the resulting distribution of the HEP. The resulting HEP that appears closer to the known distribution, a log-normal centered on 1E-3, is the more desirable. Each approach then has median, average and maximum HFE calculations applied. To calculate these three values, three events, A, B and C are generated from the PSF level frequencies comprised of subtasks. The median HFE selects the median PSF level from each PSF and calculates HEP. The average HFE takes the mean PSF level, and the maximum takes the maximum PSF level. The same data set of subtask HEPs yields starkly different HEPs when aggregated to the HFE level in SPAR-H. Results: Assuming that each PSF level in each HFE is equally likely creates an unrealistic distribution of the HEP that is centered at 1. Next the observed frequency of PSF levels was applied with the resulting HEP behaving log-normally with a majority of the values under 2.5% HEP. The median, average and maximum HFE calculations did yield different answers for the HFE. The HFE maximum grossly over estimates the HFE, while the HFE distribution occurs less than HFE median, and greater than HFE average. Conclusions: Dynamic task modeling can be perused through the framework of SPAR-H. Identification of distributions associated with each PSF needs to be defined, and may change depending upon the scenario. However it is very unlikely that each PSF level is equally likely as the resulting HEP distribution is strongly centered at 100%, which is unrealistic. Other distributions may need to be identified for PSFs, to facilitate the transition to dynamic task modeling. Additionally discrete distributions need to be exchanged for continuous so that simulations for the HFE can further advance. This paper provides a method to explore dynamic subtask to task translation and provides examples of the process using the SPAR-H method.« less
SPAR: small RNA-seq portal for analysis of sequencing experiments.
Kuksa, Pavel P; Amlie-Wolf, Alexandre; Katanic, Živadin; Valladares, Otto; Wang, Li-San; Leung, Yuk Yee
2018-05-04
The introduction of new high-throughput small RNA sequencing protocols that generate large-scale genomics datasets along with increasing evidence of the significant regulatory roles of small non-coding RNAs (sncRNAs) have highlighted the urgent need for tools to analyze and interpret large amounts of small RNA sequencing data. However, it remains challenging to systematically and comprehensively discover and characterize sncRNA genes and specifically-processed sncRNA products from these datasets. To fill this gap, we present Small RNA-seq Portal for Analysis of sequencing expeRiments (SPAR), a user-friendly web server for interactive processing, analysis, annotation and visualization of small RNA sequencing data. SPAR supports sequencing data generated from various experimental protocols, including smRNA-seq, short total RNA sequencing, microRNA-seq, and single-cell small RNA-seq. Additionally, SPAR includes publicly available reference sncRNA datasets from our DASHR database and from ENCODE across 185 human tissues and cell types to produce highly informative small RNA annotations across all major small RNA types and other features such as co-localization with various genomic features, precursor transcript cleavage patterns, and conservation. SPAR allows the user to compare the input experiment against reference ENCODE/DASHR datasets. SPAR currently supports analyses of human (hg19, hg38) and mouse (mm10) sequencing data. SPAR is freely available at https://www.lisanwanglab.org/SPAR.
Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant
Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar
2015-01-01
Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485
A human reliability based usability evaluation method for safety-critical software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, R. L.; Tran, T. Q.; Gertman, D. I.
2006-07-01
Boring and Gertman (2005) introduced a novel method that augments heuristic usability evaluation methods with that of the human reliability analysis method of SPAR-H. By assigning probabilistic modifiers to individual heuristics, it is possible to arrive at the usability error probability (UEP). Although this UEP is not a literal probability of error, it nonetheless provides a quantitative basis to heuristic evaluation. This method allows one to seamlessly prioritize and identify usability issues (i.e., a higher UEP requires more immediate fixes). However, the original version of this method required the usability evaluator to assign priority weights to the final UEP, thusmore » allowing the priority of a usability issue to differ among usability evaluators. The purpose of this paper is to explore an alternative approach to standardize the priority weighting of the UEP in an effort to improve the method's reliability. (authors)« less
Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desmond, M.; Hughes, S.; Paquette, J.
Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation ofmore » model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).« less
NASA Astrophysics Data System (ADS)
von Hippel, Matthew Hans Benjamin
A novel vehicle concept is introduced and its feasibility as an autonomous, self-propelled weather buoy for use in violent storm systems is analyzed. The vehicle concept is a spar sailboat -- consisting of only a deep keel and a sailing rig; no hull -- a design which is intended to improve longevity in rough seas as well as provide ideal placement opportunities for meteorological sensors. To evaluate the hypothetical locomotive and meteorological observation capabilities of the concept sailing spar in hurricane-like conditions, several relevant oceanographic phenomena are analyzed with the performance of the concept vehicle in mind. Enthalpy transfer from the ocean to the air is noted as the primary driving force of tropical storms and therefore becomes the measuring objective of the sailing spar. A discrete, iterative process for optimizing driving force while achieving equilibrium between the four airfoil surfaces is used to steer the sailing spar towards any objective despite variable and opposing simulated winds. Based on the limitations of sailing theory, logic is developed to autonomously navigate the sailing spar between human-selected waypoints on a digitized geographic map. Due the perceived inability to measure air-sea enthalpy exchange because the nature of tropical storms and due to its small scale, the sailing spar is deemed infeasible as a hurricane-capable meteorological observation platform.
CCLasso: correlation inference for compositional data through Lasso.
Fang, Huaying; Huang, Chengcheng; Zhao, Hongyu; Deng, Minghua
2015-10-01
Direct analysis of microbial communities in the environment and human body has become more convenient and reliable owing to the advancements of high-throughput sequencing techniques for 16S rRNA gene profiling. Inferring the correlation relationship among members of microbial communities is of fundamental importance for genomic survey study. Traditional Pearson correlation analysis treating the observed data as absolute abundances of the microbes may lead to spurious results because the data only represent relative abundances. Special care and appropriate methods are required prior to correlation analysis for these compositional data. In this article, we first discuss the correlation definition of latent variables for compositional data. We then propose a novel method called CCLasso based on least squares with [Formula: see text] penalty to infer the correlation network for latent variables of compositional data from metagenomic data. An effective alternating direction algorithm from augmented Lagrangian method is used to solve the optimization problem. The simulation results show that CCLasso outperforms existing methods, e.g. SparCC, in edge recovery for compositional data. It also compares well with SparCC in estimating correlation network of microbe species from the Human Microbiome Project. CCLasso is open source and freely available from https://github.com/huayingfang/CCLasso under GNU LGPL v3. dengmh@pku.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Turbine blade with spar and shell
Davies, Daniel O [Palm City, FL; Peterson, Ross H [Loxahatchee, FL
2012-04-24
A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.
Application of shape memory alloy (SMA) spars for aircraft maneuver enhancement
NASA Astrophysics Data System (ADS)
Nam, Changho; Chattopadhyay, Aditi; Kim, Youdan
2002-07-01
Modern combat aircraft are required to achieve aggressive maneuverability and high agility performance, while maintaining handling qualities over a wide range of flight conditions. Recently, a new adaptive-structural concept called variable stiffness spar is proposed in order to increase the maneuverability of the flexible aircraft. The variable stiffness spar controls wing torsional stiffness to enhance roll performance in the complete flight envelope. However, variable stiffness spar requires the mechanical actuation system in order to rotate the Variable stiffness spar during flight. The mechanical actuation system to rotate variable stiffness spar may cause an additional weight increase. In this paper, we will apply Shape Memory Alloy (SMA) spars for aeroelastic performance enhancement. In order to explore the potential of SMA spar design, roll performance of the composite smart wings will be investigated using ASTROS. Parametric study will be conducted to investigate the SMA spar effects by changing the spar locations and geometry. The results show that with activation of the SMA spar, the roll effectiveness can be increased up to 61% compared with the baseline model.
Buckling Tests with a Spar-rib Grill
NASA Technical Reports Server (NTRS)
Weinhold, Josef
1940-01-01
The present report deals with a comparison of mathematically and experimentally defined buckling loads of a spar-rib grill, on the assumption of constant spar section, and infinitely closely spaced ribs with rigidity symmetrical to the grill center. The loads are applied as equal bending moments at both spar ends, as compression in the line connecting the joints, and in the spar center line as the assumedly uniformly distributed spar weight.
76 FR 64038 - Airworthiness Directives; CPAC, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... airplane in the elevator spar area or that could have affected the elevator spar. (5) Type of operation... elevator spar for cracks and, if any crack is found, either replace with a serviceable elevator spar that is found free of cracks or repair/modify the elevator spar with an FAA-approved method. That AD also...
Space Processing Applications Rocket (SPAR) project: SPAR 10
NASA Technical Reports Server (NTRS)
Poorman, R. (Compiler)
1986-01-01
The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space. The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (MSA) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters. This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled, Containerless Processing Technology, SPAR Experiment 76-20/3; Directional Solidification of Magnetic Composites, SPAR Experiment 76-22/3; Comparative Alloy Solidification, SPAR Experiment 76-36/3; and Foam Copper, SPAR Experiment 77-9/1R.
Groth, Katrina M.; Smith, Curtis L.; Swiler, Laura P.
2014-04-05
In the past several years, several international agencies have begun to collect data on human performance in nuclear power plant simulators [1]. This data provides a valuable opportunity to improve human reliability analysis (HRA), but there improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used in to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this article, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existingmore » HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.« less
SPAR improved structure/fluid dynamic analysis capability
NASA Technical Reports Server (NTRS)
Oden, J. T.; Pearson, M. L.
1983-01-01
The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.
Multiple piece turbine rotor blade
Jones, Russell B; Fedock, John A
2013-05-21
A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.
Constant lift rotor for a heavier than air craft
NASA Technical Reports Server (NTRS)
Stroub, R. H. (Inventor)
1979-01-01
A rotor blade extended radially from a hub, characterized by an elongated spar and a plurality of axially aligned shells pivotally mounted on the spar is presented. Each has an aerodynamic center located in trailing relation with the spar and supported thereby for simultaneous axial and angular displacement as centrifugal forces are applied, a pitch controller plus a plurality of pivotal pitch limiting arms transversely related to the spar. A push-pull link interconnecting the arms is used for imparting simultaneous pivotal motion, whereby the angular relationship of the arms to the spar is varied for varying the motion of the trucks along the arms for thus limiting the pitch of the segments about the spar.
33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...
33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...
33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...
33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...
33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...
NASA Astrophysics Data System (ADS)
Lake, Renee C.; Izadpanah, Amir P.; Baucom, Robert M.
1993-02-01
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results.
NASA Technical Reports Server (NTRS)
Lake, Renee C.; Izadpanah, Amir P.; Baucom, Robert M.
1993-01-01
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results.
Multiple piece turbine rotor blade
Kimmel, Keith D.; Plank, William L.
2016-07-19
A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.
33 CFR 147.825 - Chevron Genesis Spar safety zone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Chevron Genesis Spar safety zone... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.825 Chevron Genesis Spar safety zone. (a) Description. The Chevron Genesis Spar, Green Canyon 205A (GC205A), is located at position 27°46′46.365″ N, 90...
33 CFR 147.825 - Chevron Genesis Spar safety zone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Chevron Genesis Spar safety zone... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.825 Chevron Genesis Spar safety zone. (a) Description. The Chevron Genesis Spar, Green Canyon 205A (GC205A), is located at position 27°46′46.365″ N, 90...
33 CFR 147.825 - Chevron Genesis Spar safety zone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Chevron Genesis Spar safety zone... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.825 Chevron Genesis Spar safety zone. (a) Description. The Chevron Genesis Spar, Green Canyon 205A (GC205A), is located at position 27°46′46.365″ N, 90...
33 CFR 147.825 - Chevron Genesis Spar safety zone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Chevron Genesis Spar safety zone... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.825 Chevron Genesis Spar safety zone. (a) Description. The Chevron Genesis Spar, Green Canyon 205A (GC205A), is located at position 27°46′46.365″ N, 90...
Dynamic testing and analysis of extension-twist-coupled composite tubular spars
NASA Astrophysics Data System (ADS)
Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.
Dynamic testing and analysis of extension-twist-coupled composite tubular spars
NASA Technical Reports Server (NTRS)
Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.
1992-01-01
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.
Space processing applications rocket project. SPAR 8
NASA Technical Reports Server (NTRS)
Chassay, R. P. (Editor)
1984-01-01
The Space Processing Applications Rocket Project (SPAR) VIII Final Report contains the engineering report prepared at the Marshall Space Flight Center (MSFC) as well as the three reports from the principal investigators. These reports also describe pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication, and testing, all of which are expected to contribute immeasurably to an improved comprehension of materials processing in space. This technical memorandum is directed entirely to the payload manifest flown in the eighth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled Glass Formation Experiment SPAR 74-42/1R, Glass Fining Experiment in Low-Gravity SPAR 77-13/1, and Dynamics of Liquid Bubbles SPAR Experiment 77-18/2.
Preform spar cap for a wind turbine rotor blade
Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL
2011-07-12
A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.
Aeroelastic airfoil smart spar
NASA Technical Reports Server (NTRS)
Greenhalgh, Skott; Pastore, Christopher M.; Garfinkle, Moishe
1993-01-01
Aircraft wings and rotor-blades are subject to undesirable bending and twisting excursions that arise from unsteady aerodynamic forces during high speed flight, abrupt maneuvers, or hard landings. These bending excursions can range in amplitude from wing-tip flutter to failure. A continuous-filament construction 'smart' laminated composite box-beam spar is described which corrects itself when subject to undesirable bending excursions or flutter. The load-bearing spar is constructed so that any tendency for the wing or rotor-blade to bend from its normal position is met by opposite twisting of the spar to restore the wing to its normal position. Experimental and theoretical characterization of these spars was made to evaluate the torsion-flexure coupling associated with symmetric lay-ups. The materials used were uniweave AS-4 graphite and a matrix comprised of Shell 8132 resin and U-40 hardener. Experimental tests were conducted on five spars to determine spar twist and bend as a function of load for 0, 17, 30, 45 and 60 deg fiber angle lay-ups. Symmetric fiber lay-ups do exhibit torsion-flexure couplings. Predictions of the twist and bend versus load were made for different fiber orientations in laminated spars using a spline function structural analysis. The analytical results were compared with experimental results for validation. Excellent correlation between experimental and analytical values was found.
Space Processing Applications Rocket (SPAR) project, SPAR 9
NASA Technical Reports Server (NTRS)
Poorman, R. (Compiler)
1984-01-01
SPAR 9 (R-17) payload configuration, rocket performance, payload support, science payload instrumentation, and payload recovery are discussed. Directional solidification of magnetic composites, directional solidification of immiscible aluminum-indium alloys, and comparative alloy solidification experiments are reported.
A dynamic spar numerical model for passive shape change
NASA Astrophysics Data System (ADS)
Calogero, J. P.; Frecker, M. I.; Hasnain, Z.; Hubbard, J. E., Jr.
2016-10-01
A three-dimensional constraint-driven dynamic rigid-link numerical model of a flapping wing structure with compliant joints (CJs) called the dynamic spar numerical model is introduced and implemented. CJs are modeled as spherical joints with distributed mass and spring-dampers with coupled nonlinear spring and damping coefficients, which models compliant mechanisms spatially distributed in the structure while greatly reducing computation time compared to a finite element model. The constraints are established, followed by the formulation of a state model used in conjunction with a forward time integrator, an experiment to verify a rigid-link assumption and determine a flapping angle function, and finally several example runs. Modeling the CJs as coupled bi-linear springs shows the wing is able to flex more during upstroke than downstroke. Coupling the spring stiffnesses allows an angular deformation about one axis to induce an angular deformation about another axis, where the magnitude is proportional to the coupling term. Modeling both the leading edge and diagonal spars shows that the diagonal spar changes the kinematics of the leading edge spar verses only considering the leading edge spar, causing much larger axial rotations in the leading edge spar. The kinematics are very sensitive to CJ location, where moving the CJ toward the wing root causes a stronger response, and adding multiple CJs on the leading edge spar with a CJ on the diagonal spar allows the wing to deform with larger magnitude in all directions. This model lays a framework for a tool which can be used to understand flapping wing flight.
Multiple piece turbine airfoil
Kimmel, Keith D
2010-11-09
A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.
SPAR demonstration problems. [for stress analysis
NASA Technical Reports Server (NTRS)
Yen, C. L.; Moore, R. A.; Whetstone, W. D.
1974-01-01
A series of examples are presented to indicate some of the principal functions of the SPAR system and to illustrate SPAR's control card-data card structure. Information in the following categories is given: (1) a description of the problem and, in most cases, comparisons with analytical solutions; (2) a list of the input cards; (3) a printout of the table of contents of the direct access library into which all SPAR output was directed; and (4) a few representative plots.
Multiple piece turbine airfoil
Kimmel, Keith D; Wilson, Jr., Jack W.
2010-11-02
A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.
Choi, Byung Jo; Jeong, Won Jun; Kim, Say-June; Lee, Sang Chul
2018-03-01
To report our experience with solo-surgeon, single-port laparoscopic anterior resection (solo SPAR) for sigmoid colon cancer. Data from sigmoid colon cancer patients who underwent anterior resections (ARs) using the single-port, solo surgery technique (n = 31) or the conventional single-port laparoscopic technique (n = 45), between January 2011 and July 2016, were retrospectively analyzed. In the solo surgeries, making the transumbilical incision into the peritoneal cavity was facilitated through the use of a self-retaining retractor system. After establishing a single port through the umbilicus, an adjustable mechanical camera holder replaced the human scope assistant. Patient and tumor characteristics and operative, pathologic, and postoperative outcomes were compared. The operative times and estimated blood losses were similar for the patients in both treatment groups. In addition, most of the postoperative variables were comparable between the two groups, including postoperative complications and hospital stays. In the solo SPAR group, comparable lymph nodes were attained, and sufficient proximal and distal cut margins were obtained. The difference in the proximal cut margin significantly favored the solo SPAR, compared with the conventional AR group (P = .000). This study shows that solo SPAR, using a passive camera system, is safe and feasible for use in sigmoid colon cancer surgery, if performed by an experienced laparoscopic surgeon. In addition to reducing the need for a surgical assistant, the oncologic requirements, including adequate margins and sufficient lymph node harvesting, could be fulfilled. Further evaluations, including prospective randomized studies, are warranted.
SPAR improved structure-fluid dynamic analysis capability, phase 2
NASA Technical Reports Server (NTRS)
Pearson, M. L.
1984-01-01
An efficient and general method of analyzing a coupled dynamic system of fluid flow and elastic structures is investigated. The improvement of Structural Performance Analysis and Redesign (SPAR) code is summarized. All error codes are documented and the SPAR processor/subroutine cross reference is included.
Trap, Birna; Kikule, Kate; Vialle-Valentin, Catherine; Musoke, Richard; Lajul, Grace Otto; Hoppenworth, Kim; Konradsen, Dorthe
2016-01-01
Since its inception, the Uganda National Drug Authority (NDA) has regularly inspected private sector pharmacies to monitor adherence to Good Pharmacy Practices (GPP). This study reports findings from the first public facility inspections following an intervention (SPARS: Supervision, Performance Assessment, and Recognition Strategy) to build GPP and medicines management capacity in the public sector. The study includes 455 public facilities: 417 facilities were inspected after at least four SPARS visits by trained managerial district staff (SPARS group), 38 before any exposure to SPARS. NDA inspectors measured 10 critical, 20 major, and 37 minor GPP indicators in every facility and only accredited facilities that passed all 10 critical and failed no more than 7 major indicators. Lack of compliance for a given indicator was defined as less than 75 % facilities passing that indicator. We assessed factors associated with certification using logistic regression analysis and compared number of failed indicators between the SPARS and comparative groups using two sample t-tests with equal or unequal variance. 57.4 % of inspected facilities obtained GPP certification: 57.1 % in the SPARS and 60.5 % in the comparative group (Adj. OR = 0.91, 95 % CI 0.45-1.85, p = 0.802). Overall, facilities failed an average of 10 indicators. SPARS facilities performed better than comparative facilities (9 (SD 6.1) vs. 13 (SD 7.7) failed indicators respectively; p = 0.017), and SPARS supported facilities scored better on indicators covered by SPARS. For all indicators but one minor, performance in the SPARS group was equal to or significantly better than in unsupervised facilities. Within the SPARS (intervention) group, certified facilities had < 75 % compliance on 7 indicators (all minor), and uncertified facilities on 19 (4 critical, 2 major, and 13 minor) indicators. Half of the Ugandan population obtains medicines from the public sector. Yet, we found only 3/5 of inspected public health facilities meet GPP standards. SPARS facilities tended to perform better than unsupervised facilities, substantiating the value of supporting supervision interventions in GPP areas that need strengthening. None compliant indicators can be improved through practices and behavioral changes; some require infrastructure investments. We conclude that regular NDA inspections of public sector pharmacies in conjunction with interventions to improve GPP adherence can revolutionize patient care in Uganda.
78 FR 53078 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
.... This proposed AD was prompted by reports of cracks of both lower chords and web on certain outboard struts. This proposed AD would require repetitive inspections for cracking of the lower spar chords and web, web lower spar chord modification, which includes inspections for cracking of the lower spar...
78 FR 76047 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... cracks of both lower chords and web on certain outboard struts. This AD requires repetitive inspections for cracking of the lower spar chords and web, web lower spar chord modification, which includes inspections for cracking of the lower spar chords, and repetitive post modification inspections for cracking...
NASA Astrophysics Data System (ADS)
Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong
2017-10-01
Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.
NASA Technical Reports Server (NTRS)
Patten, J. W.; Greenwell, E. N.
1976-01-01
Metallography from experiment 24-10 obtained on the second space processing applications rocket (SPAR) flight is discussed. Results are considered along with results from the related experiments on the first SPAR flight. Conclusions are presented.
USDA-ARS?s Scientific Manuscript database
Through selection of resistance to sparfloxacin, an attenuated Streptococcus agalactiae strain 138spar was obtained from its virulent parent strain S. agalactiae 138P. The full genome of S. agalactiae 138spar is 1,838,126 bp. The availability of this genome will allow comparative genomics to identi...
75 FR 7557 - Airworthiness Directives; The Boeing Company Model 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... shorts in many systems, including the spar fuel shut off valve, oxygen mask deployment, and burned wires... and wire bundles, causing shorts in many systems, including the spar fuel shut off valve, oxygen mask... and wire bundles, causing shorts in many systems, including the spar fuel shut off valve, oxygen mask...
SPAR improved structural-fluid dynamic analysis capability
NASA Technical Reports Server (NTRS)
Pearson, M. L.
1985-01-01
The results of a study whose objective was to improve the operation of the SPAR computer code by improving efficiency, user features, and documentation is presented. Additional capability was added to the SPAR arithmetic utility system, including trigonometric functions, numerical integration, interpolation, and matrix combinations. Improvements were made in the EIG processor. A processor was created to compute and store principal stresses in table-format data sets. An additional capability was developed and incorporated into the plot processor which permits plotting directly from table-format data sets. Documentation of all these features is provided in the form of updates to the SPAR users manual.
SPAR data set contents. [finite element structural analysis system
NASA Technical Reports Server (NTRS)
Cunningham, S. W.
1981-01-01
The contents of the stored data sets of the SPAR (space processing applications rocket) finite element structural analysis system are documented. The data generated by each of the system's processors are stored in a data file organized as a library. Each data set, containing a two-dimensional table or matrix, is identified by a four-word name listed in a table of contents. The creating SPAR processor, number of rows and columns, and definitions of each of the data items are listed for each data set. An example SPAR problem using these data sets is also presented.
75 FR 7945 - Airworthiness Directives; Augustair, Inc. Models 2150, 2150A, and 2180 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... inspect the vertical stabilizer front spar for cracks and loose fasteners, repair any cracks and loose fasteners found, and reinforce the vertical stabilizer spar regardless if cracks are found. This AD results from six reports of airplanes with a cracked vertical stabilizer front spar. We are issuing this AD to...
Introduction to the computational structural mechanics testbed
NASA Technical Reports Server (NTRS)
Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.
1987-01-01
The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.
77 FR 32892 - Airworthiness Directives; Bombardier Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... inspection area of the rear spar lower cap from WS 51.00 to WS 49.50 and modifying the ultrasonic inspection... inspection area of the rear spar lower cap from WS 51.00 to WS 49.50 and to modify the ultrasonic inspection... spars at wing station (WS) 51.00, and the wing lower skin. Additional actions, if cracking is found...
NASA Technical Reports Server (NTRS)
Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.
1979-01-01
User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.
Fabrication and testing of prestressed composite rotor blade spar specimens
NASA Technical Reports Server (NTRS)
Gleich, D.
1974-01-01
Prestressed composite spar specimens were fabricated and evaluated by crack propagation and ballistic penetration tests. The crack propagation tests on flawed specimens showed that the prestressed composite spar construction significantly suppresses crack growth. Damage from three high velocity 30 caliber projectile hits was confined to three small holes in the ballistic test specimen. No fragmentation or crack propagation was observed indicating good ballistic damage resistance. Rotor attachment approaches and improved structural performance configurations were identified. Design theory was verified by tests. The prestressed composite spar configuration consisted of a compressively prestressed high strength ARDEFORM 301 stainless steel liner overwrapped with pretensioned S-994 fiberglass.
NASA Technical Reports Server (NTRS)
Griffin, Charles F.; Harvill, William E.
1988-01-01
Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
... the inboard side of the rear spar upper cap, which resulted from stress corrosion. We are proposing... the left or right center wing rear spar, which could cause a possible fuel leak, damage to the wing... the center wing rear spar that resulted from stress corrosion. We issued that AD to detect and correct...
Kimmel, Keith D [Jupiter, FL
2012-05-29
A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.
Sparring and neurological function in professional boxers.
Stiller, John W; Yu, Steven S; Brenner, Lisa A; Langenberg, Patricia; Scrofani, Phillip; Pannella, Patrick; Hsu, Edbert B; Roberts, Darryl W; Monsell, Ray M T; Binks, Sidney W; Guzman, Alvaro; Postolache, Teodor T
2014-01-01
Despite increased interest regarding the potentially long-term negative impact of chronic traumatic brain injury, limited research has been conducted regarding such injuries and neurological outcomes in real world settings. To increase understanding regarding the relationship between sparring (e.g., training under the tutelage of an experienced boxing coach for the purpose of improving skills and/or fitness) and neurological functioning, professional boxers (n = 237) who competed in Maryland between 2003 and 2008 completed measures regarding sparring exposure (Cumulative Sparring Index, CSI) and performance on tests of cognition (Symbol Digit Modalities Test, SDMT) and balance (Sharpened Romberg Test, SRT). Measures were completed prior to boxing matches. Higher scores on the CSI (increased sparring exposure) were associated with poorer performance on both tests of cognition (SDMT) and balance (SRT). A threshold effect was noted regarding performance on the SDMT, with those reporting CSI values greater than about 150 experiencing a decline in cognition. A history of frequent and/or intense sparring may pose a significant risk for developing boxing associated neurological sequelae. Implementing administration of clinically meaningful tests before bouts, such as the CSI, SDMT, and/or the SRT, as well as documentation of results into the boxer's physicals or medical profiles may be an important step for improving boxing safety.
Sparring and Neurological Function in Professional Boxers
Stiller, John W.; Yu, Steven S.; Brenner, Lisa A.; Langenberg, Patricia; Scrofani, Phillip; Pannella, Patrick; Hsu, Edbert B.; Roberts, Darryl W.; Monsell, Ray M. T.; Binks, Sidney W.; Guzman, Alvaro; Postolache, Teodor T.
2014-01-01
Despite increased interest regarding the potentially long-term negative impact of chronic traumatic brain injury, limited research has been conducted regarding such injuries and neurological outcomes in real world settings. To increase understanding regarding the relationship between sparring (e.g., training under the tutelage of an experienced boxing coach for the purpose of improving skills and/or fitness) and neurological functioning, professional boxers (n = 237) who competed in Maryland between 2003 and 2008 completed measures regarding sparring exposure (Cumulative Sparring Index, CSI) and performance on tests of cognition (Symbol Digit Modalities Test, SDMT) and balance (Sharpened Romberg Test, SRT). Measures were completed prior to boxing matches. Higher scores on the CSI (increased sparring exposure) were associated with poorer performance on both tests of cognition (SDMT) and balance (SRT). A threshold effect was noted regarding performance on the SDMT, with those reporting CSI values greater than about 150 experiencing a decline in cognition. A history of frequent and/or intense sparring may pose a significant risk for developing boxing associated neurological sequelae. Implementing administration of clinically meaningful tests before bouts, such as the CSI, SDMT, and/or the SRT, as well as documentation of results into the boxer’s physicals or medical profiles may be an important step for improving boxing safety. PMID:25101253
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-28
... spar by using calipers held against the face of the No. 1 spar in alignment with the through pins. [cir... using calipers held against the face of the No. 1 spar in alignment with the through pins as depicted in..., either a crack, an elongated through pinhole, movement of a through pin, or a through pin that is not...
Use of TCSR with Split Windings for Shortening the Spar Cycle Time in 500 kV Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matinyan, A. M., E-mail: al-drm@mail.ru; Peshkov, M. V.; Karpov, V. N.
The arc-fault recharge phenomenon in single-phase automatic reclosure (SPAR) of a line is examined. Abrief description is given of the design of a 500 kV thyristor controlled shunt reactor (TCSR) with split valve-side windings. This type of TCSR is shown to effectively quench a single-phase arc fault in a power transmission line and shortens the SPAR cycle time.
Wind blade spar cap and method of making
Mohamed, Mansour H [Raleigh, NC
2008-05-27
A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludvigson, G.A.; Gonzalez, L.S.; Witzke, B.J.
1993-03-01
The Middle-Upper Devonian Cedar Valley Gp in Iowa is subdivided into four formations each representing a broad transgressive-regressive (T-R) cycle of deposition. Cycles consist of basal open marine facies that shallow upward into capping peritidal facies. Results from ongoing diagenetic studies of the Coralville Fm (late Givetian), the second T-R cycle of the Cedar Valley Gp, have focused attention on the origins of early cements. Early calcite cements in the Coralville Fm of Johnson County, Iowa, include blocky equant spars filling fenestral voids in birdseye limestones of the Iowa City Mbr and isopachous bladed spars that occur throughout the Coralville.more » Bladed spars fill stromatactis and microkarstic voids in the Iowa City Mbr, and sheltered voids in underlying open-marine skeletal packstones of the Cou Falls Mbr (lower Coralville cycle). The bladed spars include nonluminescent inclusion-free domains that contain up to 4,000 ppm Mg, and luminescent inclusion-rich domains that contain less than 2,000 ppm Mg. Birdseye spars have a constructive oscillatory luminescent-nonluminescent zonation controlled by Mn contents and contain less than 1,000 ppm Mg. Nonluminescent domains in bladed spars have the heaviest oxygen isotopic compositions of all components in the Coralville, similar to the isotopically heaviest nonluminescent brachiopods but have [delta][sup 13]C values ranging from [minus]3 to [minus]5 [per thousand]. They are interpreted to have precipitated from marine fluids saturated by CO[sub 2] produced from bacterial oxidation of organic matter. Altered luminescent domains in the bladed spars have the same [delta][sup 13]C compositions, but have widely varying [delta][sup 18]O compositions, ranging to [minus]9 [per thousand].« less
Advanced composite vertical stabilizer for DC-10 transport aircraft
NASA Technical Reports Server (NTRS)
Stephens, C. O.
1978-01-01
The structural design configuration for the Composite Vertical Stabilizer is described and the structural design, analysis, and weight activities are presented. The status of fabrication and test activities for the development test portion of the program is described. Test results are presented for the skin panels, spar web, spar cap to cover, and laminate properties specimens. Engineering drawings of vertification test panels and root fittings, rudder support specimens, titanium fittings, and rear spar specimen analysis models are included.
NASA Technical Reports Server (NTRS)
Suarez, J.; Dastin, S.
1992-01-01
Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) Program, Grumman is developing innovative design concepts and cost-effective fabrication processes for damage-tolerant primary structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. Attention has focused on the use of textile high-performance fiber-reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin film infusion (RFI) and resin transfer molding (RTM) processes, and thermoplastic forming concepts. The fabrication of wing 'Y' spars by four different materials/processes methods is described: 'Y' spars fabricated using IM7 angle interlock 0/90 deg woven preforms with +/- 45 deg plies stitched with Toray high-strength graphite thread and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RTM and Tactix 123/H41 epoxy; and 'Y' spars fabricated using AS4(6k)/PEEK 150-g commingled angle interlock 0/90 deg woven preforms with +/- 45 deg commingled plies stitched using high-strength graphite thread and processed by consolidation. A comparison of the structural efficiency, processability, and projected acquisition cost of these representative spars is presented.
SparRec: An effective matrix completion framework of missing data imputation for GWAS
NASA Astrophysics Data System (ADS)
Jiang, Bo; Ma, Shiqian; Causey, Jason; Qiao, Linbo; Hardin, Matthew Price; Bitts, Ian; Johnson, Daniel; Zhang, Shuzhong; Huang, Xiuzhen
2016-10-01
Genome-wide association studies present computational challenges for missing data imputation, while the advances of genotype technologies are generating datasets of large sample sizes with sample sets genotyped on multiple SNP chips. We present a new framework SparRec (Sparse Recovery) for imputation, with the following properties: (1) The optimization models of SparRec, based on low-rank and low number of co-clusters of matrices, are different from current statistics methods. While our low-rank matrix completion (LRMC) model is similar to Mendel-Impute, our matrix co-clustering factorization (MCCF) model is completely new. (2) SparRec, as other matrix completion methods, is flexible to be applied to missing data imputation for large meta-analysis with different cohorts genotyped on different sets of SNPs, even when there is no reference panel. This kind of meta-analysis is very challenging for current statistics based methods. (3) SparRec has consistent performance and achieves high recovery accuracy even when the missing data rate is as high as 90%. Compared with Mendel-Impute, our low-rank based method achieves similar accuracy and efficiency, while the co-clustering based method has advantages in running time. The testing results show that SparRec has significant advantages and competitive performance over other state-of-the-art existing statistics methods including Beagle and fastPhase.
Design study of prestressed rotor spar concept
NASA Technical Reports Server (NTRS)
Gleich, D.
1980-01-01
Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.
Stationary turbine component with laminated skin
James, Allister W [Orlando, FL
2012-08-14
A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.
Space Processing Applications Rocket project SPAR III
NASA Technical Reports Server (NTRS)
Reeves, F.
1978-01-01
This document presented the engineering report and science payload III test report and summarized the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies.
Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Mataix-Solera, Jorge; Úbeda, Xavier
2016-12-01
Intense rainfall events after severe wildfires can have an impact on soil properties, above all in the Mediterranean environment. This study seeks to examine the immediate impact and the effect after a year of an intense rainfall event on a Mediterranean forest affected by a high severity wildfire. The work analyses the following soil properties: soil aggregate stability, total nitrogen, total carbon, organic and inorganic carbon, the C/N ratio, carbonates, pH, electrical conductivity, extractable calcium, magnesium, sodium, potassium, available phosphorous and the sodium and potassium adsorption ratio (SPAR). We sampled soils in the burned area before, immediately after and one year after the rainfall event. The results showed that the intense rainfall event did not have an immediate impact on soil aggregate stability, but a significant difference was recorded one year after. The intense precipitation did not result in any significant changes in soil total nitrogen, total carbon, inorganic carbon, the C/N ratio and carbonates during the study period. Differences were only registered in soil organic carbon. The soil organic carbon content was significantly higher after the rainfall than in the other sampling dates. The rainfall event did increase soil pH, electrical conductivity, major cations, available phosphorous and the SPAR. One year after the fire, a significant decrease in soil aggregate stability was observed that can be attributed to high SPAR levels and human intervention, while the reduction in extractable elements can be attributed to soil leaching and vegetation consumption. Overall, the intense rainfall event, other post-fire rainfall events and human intervention did not have a detrimental impact on soil properties in all probability owing to the flat plot topography. Copyright © 2016 Elsevier B.V. All rights reserved.
WHEN MODEL MEETS REALITY – A REVIEW OF SPAR LEVEL 2 MODEL AGAINST FUKUSHIMA ACCIDENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhegang Ma
The Standardized Plant Analysis Risk (SPAR) models are a set of probabilistic risk assessment (PRA) models used by the Nuclear Regulatory Commission (NRC) to evaluate the risk of operations at U.S. nuclear power plants and provide inputs to risk informed regulatory process. A small number of SPAR Level 2 models have been developed mostly for feasibility study purpose. They extend the Level 1 models to include containment systems, group plant damage states, and model containment phenomenology and accident progression in containment event trees. A severe earthquake and tsunami hit the eastern coast of Japan in March 2011 and caused significantmore » damages on the reactors in Fukushima Daiichi site. Station blackout (SBO), core damage, containment damage, hydrogen explosion, and intensive radioactivity release, which have been previous analyzed and assumed as postulated accident progression in PRA models, now occurred with various degrees in the multi-units Fukushima Daiichi site. This paper reviews and compares a typical BWR SPAR Level 2 model with the “real” accident progressions and sequences occurred in Fukushima Daiichi Units 1, 2, and 3. It shows that the SPAR Level 2 model is a robust PRA model that could very reasonably describe the accident progression for a real and complicated nuclear accident in the world. On the other hand, the comparison shows that the SPAR model could be enhanced by incorporating some accident characteristics for better representation of severe accident progression.« less
USDA-ARS?s Scientific Manuscript database
Food production systems in Africa depend heavily on the use of locally adapted animals. These animals are of agricultural, cultural, and economic importance to humans. Goats, in particular, are critical to the small-scale farmer as they are easier to acquire, maintain, and act as scavengers in spar...
Space processing applications rocket project SPAR 4, engineering report
NASA Technical Reports Server (NTRS)
Reeves, F. (Compiler)
1980-01-01
The materials processing experiments in space, conducted on the SPAR 4 Black Brant VC rocket, are described and discussed. The SPAR 4 payload configuration, the rocket performance, and the flight sequence are reported. The results, analyses, and anomalies of the four experiments are discussed. The experiments conducted were the uniform dispersions of crystallization processing, the contained polycrstalline solidification in low gravity, the containerless processing of ferromagnetic materials, and the containerless processing technology. The instrumentation operations, payload power relay anomaly, relay postflight operational test, and relay postflight shock test are reported.
Multiple piece turbine blade/vane
Kimmel, Keith D
2013-02-05
An air cooled turbine blade or vane of a spar and shell construction with the shell made from a high temperature resistant material that must be formed from an EDM process. The shell and the spar both have a number of hooks extending in a spanwise direction and forming a contact surface that is slanted such that a contact force increases as the engaging hooks move away from one another. The slanted contact surfaces on the hooks provides for an better seal and allows for twisting between the shell and the spar while maintaining a tight fit.
Nondestructive Inspection of Piper PA-25 Forward Spar Fuselage Attachment Fitting
DOT National Transportation Integrated Search
1995-09-01
The Federal Aviation Administration's (FAA's) Aging Aircraft NDI Validation : Center (AANC) at Sandia National Laboratoriess applied two nondestructive : inspection (NDI) techniques for the inspection of a Piper PA-25 forward spar : fuselage attachme...
Direct Adaptive Rejection of Vortex-Induced Disturbances for a Powered SPAR Platform
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Balas, Mark J.; VanZwieten, James H.; Driscoll, Frederick R.
2009-01-01
The Rapidly Deployable Stable Platform (RDSP) is a novel vessel designed to be a reconfigurable, stable at-sea platform. It consists of a detachable catamaran and spar, performing missions with the spar extending vertically below the catamaran and hoisting it completely out of the water. Multiple thrusters located along the spar allow it to be actively controlled in this configuration. A controller is presented in this work that uses an adaptive feedback algorithm in conjunction with Direct Adaptive Disturbance Rejection (DADR) to mitigate persistent, vortex-induced disturbances. Given the frequency of a disturbance, the nominal DADR scheme adaptively compensates for its unknown amplitude and phase. This algorithm is extended to adapt to a disturbance frequency that is only coarsely known by including a Phase Locked Loop (PLL). The PLL improves the frequency estimate on-line, allowing the modified controller to reduce vortex-induced motions by more than 95% using achievable thrust inputs.
NASA Astrophysics Data System (ADS)
Erturk, A.; Anton, S. R.; Inman, D. J.
2009-03-01
This paper discusses the basic design factors for modifying an original wing spar to a multifunctional load-bearing - energy harvester wing spar. A distributed-parameter electromechanical formulation is given for modeling of a multilayer piezoelectric power generator beam for different combinations of the electrical outputs of piezoceramic layers. In addition to the coupled vibration response and voltage response expressions for a multimorph, strength formulations are given in order to estimate the maximum load input that can be sustained by the cantilevered structure without failure for a given safety factor. Embedding piezoceramics into an original wing spar for power generation tends to reduce the maximum load that can be sustained without failure and increase the total mass due to the brittle nature and large mass densities of typical piezoelectric ceramics. Two case studies are presented for demonstration. The theoretical case study discusses modification of a rectangular wing spar to a 3-layer generator wing spar with a certain restriction on mass addition for fixed dimensions. Power generation and strength analyses are provided using the electromechanical model. The experimental case study considers a 9-layer generator beam with aluminum, piezoceramic, Kapton and epoxy layers and investigates its power generation and load-bearing performances experimentally and analytically. This structure constitutes the main body of the multifunctional self-charging structure concept proposed by the authors. The second part of this work (experiments and storage applications) employs this multi-layer generator along with the thin-film battery layers in order to charge the battery layers using the electrical outputs of the piezoceramic layers.
NASA Technical Reports Server (NTRS)
Lopez, O. F.
1984-01-01
Part of the NASA/ACEE Program was to determine the effect of long-term durability testing on the residual strength of graphite-epoxy cover panel and spar components of the Lockheed L-1011 aircraft vertical stabilizer. The results of these residual strength tests are presented herein. The structural behavior and failure mode of both cover panel and spar components were addressed, and the test results obtained were compared with the static test results generated by Lockheed. The effect of damage on one of the spar specimens was described.
Conceptual analyses of extensible booms to support a solar sail
NASA Technical Reports Server (NTRS)
Crawford, R. F.; Benton, M. D.
1977-01-01
Extensible booms which could function as the diagonal spars and central mast of an 800 meter square, non-rotating Solar Sailing Vehicle were conceptually designed and analyzed. The boom design concept that was investigated is an extensible lattice boom which is stowed and deployed by elastically coiling and uncoiling its continuous longerons. The seven different free-span lengths in each spar which would minimize the total weights of the spars and mast were determined. Boom weights were calculated by using a semi-empirical formulation which related the overall weight of a boom to the weight of its longerons.
NASA Technical Reports Server (NTRS)
Naumann, R. J.; Oran, W. A.; Whymark, R. R.; Rey, C.
1981-01-01
The single axis acoustic levitator that was flown on SPAR VI malfunctioned. The results of a series of tests, analyses, and investigation of hypotheses that were undertaken to determine the probable cause of failure are presented, together with recommendations for future flights of the apparatus. The most probable causes of the SPAR VI failure were lower than expected sound intensity due to mechanical degradation of the sound source, and an unexpected external force that caused the experiment sample to move radially and eventually be lost from the acoustic energy well.
Finite element simulation of core inspection in helicopter rotor blades using guided waves.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2015-09-01
This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. Copyright © 2015 Elsevier B.V. All rights reserved.
Lightning protection design and testing of an all composite wet wing for the Egrett
NASA Technical Reports Server (NTRS)
Burrows, B. J. C.; Haigh, S. J.; Chessum, C.; Dunkley, V. P.
1991-01-01
The Egrett aircraft has an all composite wing comprising CFC(carbon fiber composite)/Nomex sandwich skins, full length CFC main spar caps, and GFRP (glass fiber reinforced plastics) main and auxiliary spar webs. It also has short inboard CFC auxiliary spar caps. It has fine aluminum wires woven into the surface for protection. It has an integral fuel tank using the CFC/Nomex skins as the upper and lower tank walls, and lies between the forward auxiliary spar and the forward of the two main spar webs. The fuel tank is not bagged, i.e., it is in effect a wet wing tank. It has conventional capacitive type fuel gauging. The aircraft was cleared to IFR standards and so required full lightning protection and demonstration that it would survive the lightning environment. The lightning protection was designed for the wing (and also for the remainder of the aircraft). An inner wing test samples (which included a part of the fuel tank) were tested as part of the proving program. The protection design and the testing process are described. The intrinsic structural features are indicated that improve lightning protection design and which therefore minimize the weight and cost of any added lightning protection components.
33 CFR 147.825 - Chevron Genesis Spar safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Description. The Chevron Genesis Spar, Green Canyon 205A (GC205A), is located at position 27°46′46.365″ N, 90... is a safety zone. (b) Regulation. No vessel may enter or remain in this safety zone except the...
76 FR 13546 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
76 FR 35342 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M.; Wrenn, Gregory A.; Dovi, Augustine R.; Coen, Peter G.; Hall, Laura E.
1992-01-01
An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars.
Impact resistance of spar-shell composite fan blades
NASA Technical Reports Server (NTRS)
Graff, J.; Stoltze, L.; Varholak, E. M.
1973-01-01
Composite spar-shell fan blades for a 1.83 meter (6 feet) diameter fan stage were fabricated and tested in a whirling arm facility to evaluate foreign object damage (FOD) resistance. The blades were made by adhesively bonding boron-epoxy shells on titanium spars and then adhesively bonding an Inconel 625 sheath on the leading edge. The rotating blades were individually tested at a tip speed of 800 feet per second. Impacting media used were gravel, rivets, bolt, nut, ice balls, simulated birds, and a real bird. Incidence angles were typical of those which might be experienced by STOL aircraft. The tests showed that blades of the design tested in this program have satisfactory impact resistance to small objects such as gravel, rivets, nuts, bolts, and two inch diameter ice balls. The blades suffered nominal damage when impacted with one-pound birds (9 to 10 ounce slice size). However, the shell was removed from the spar for a larger slice size.
Flow-induced oscillations of a floating moored cylinder
NASA Astrophysics Data System (ADS)
Carlson, Daniel; Modarres-Sadeghi, Yahya
2016-11-01
An experimental study of flow-induced oscillations of a floating model spar buoy was conducted. The model spar consisted of a floating uniform cylinder moored in a water tunnel test section, and free to oscillate about its mooring attachment point near the center of mass. For the bare cylinder, counter-clockwise (CCW) figure-eight trajectories approaching A* =1 in amplitude were observed at the lower part of the spar for a reduced velocity range of U* =4-11, while its upper part experienced clockwise (CW) orbits. It was hypothesized that the portion of the spar undergoing CCW figure eights is the portion within which the flow excites the structure. By adding helical strakes to the portion of the cylinder with CCW figure eights, the response amplitude was significantly reduced, while adding strakes to portions with clockwise orbital motion had a minimal influence on the amplitude of response. This work is partially supported by the NSF-sponsored IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant Number 1068864).
SPAR X Technical Report for Experiment 76-22 Directional Solidification of Magnetic Composites
NASA Technical Reports Server (NTRS)
Bethin, J.
1984-01-01
The effects of gravity on Bridgman-Stockbarger directional solidification of off-eutectic Bi/MnBi were studied in reduced gravity aboard the SPAR X flight and compared to normal-gravity investigations and previous eutectic Bi/MnBi SPAR flight experiments. The directional solidification of off-eutectic Bi/MnBi results in either a dendritic structure connected with local cooperative growth or a coupled low volume fraction faceted/non faceted aligned rod eutectic whose Mn macrosegregation, MnBi rod size, interrod spacing, and thermal and magnetic properties are sensitive functions of the solidification processing conditions. Two hypoeutectic and two hypereutectic samples were solidified during 605 sec of furnace travel, with an initial 265 sec low-gravity interval. Comparison Earth-gravity samples were solidified in the same furance assembly under identical processing conditions. Macrosegregation in the low-g samples was consistent with a metastable increase in Mn solubility in the Bi matrix, in partial agreement with previous Bi/MnBi SPAR findings of MnBi volume reduction.
Space Processing Applications Rocket project, SPAR 1
NASA Technical Reports Server (NTRS)
Reeves, F. (Compiler); Chassay, R. (Compiler)
1976-01-01
The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment.
Multiple piece turbine engine airfoil with a structural spar
Vance, Steven J [Orlando, FL
2011-10-11
A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.
1969-12-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.
Analysis of 2-spar cantilever wings with special reference to torsion and load transference
NASA Technical Reports Server (NTRS)
Kuhn, Paul
1936-01-01
This report deals with the analysis of 2-spar cantilever wings in torsion, taking cognizance of the fact that the spars are not independent, but are interconnected by ribs and other structural members. The principles of interaction are briefly explained, showing that the mutual relief action occurring depends on the "pure torsional stiffness" of the wing cross section. Various practical methods of analysis are outlined. The "Friedrichs-Von Karman equations" are shown to require the least amount of labor. Numerical examples by the several methods of analysis are given and the agreement between the calculation and experiment is shown.
The SPAR thermal analyzer: Present and future
NASA Astrophysics Data System (ADS)
Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.
The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.
The SPAR thermal analyzer: Present and future
NASA Technical Reports Server (NTRS)
Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.
1982-01-01
The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.
Graphics and composite material computer program enhancements for SPAR
NASA Technical Reports Server (NTRS)
Farley, G. L.; Baker, D. J.
1980-01-01
User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.
Filament-wound spar shell graphite/epoxy fan blades
NASA Technical Reports Server (NTRS)
Yao, S.
1976-01-01
The methodology for fabrication of wet filament wound spar shell fan blades is presented. All principal structural elements were filament wound, assembled, formed, bonded and co-cured in a female mold. A pair of blades were fabricated as one integral unit and parted into two after curing.
78 FR 52870 - Airworthiness Directives; Beechcraft Corporation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... the front spar cap angles and hat section structure of the vertical stabilizer. This proposed AD would require inspections of the vertical stabilizer spar angles and hat section for cracks with corrective... information identified in this proposed AD, contact Beechcraft Corporation at address: 10511 E. Central...
Boxing sparring complicated by an acute subdural haematoma and brainstem haemorrhage.
Hart, Michael G; Trivedi, Rikin A; Hutchinson, Peter J
2012-10-01
A professional boxer developed an acute subdural haematoma after boxing sparring. Despite timely surgical decompression, he had a poor overall outcome predominantly from a delayed brainstem haematoma. Magnetic resonance imaging (MRI) was used to elucidate the pathophysiology of the patients' injury and clinical condition.
Sparring and Cognitive Function in Professional Boxers.
ERIC Educational Resources Information Center
Jordan, Barry D.; And Others
1996-01-01
Professional boxers provided information about their careers and training practices and completed neuropsychological testing. Test performance did not relate to age, boxing record, career length, or knockout history. The amount of sparring inversely related to performance on several of the tests, with impairment in the areas of attention,…
1971-12-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image depicts the sun end and spar of the ATM flight unit showing individual telescopes. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into a complex frame named the rack, and was protected by the solar shield.
Tip cap for a turbine rotor blade
Kimmel, Keith D
2014-03-25
A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.
77 FR 13228 - Airworthiness Directives; BAE SYSTEMS (Operations) Limited Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... wing rear spar. This proposed AD would require a one-time detailed inspection for cracks, corrosion, and other defects of the rear face of the wing rear spar, and repair if necessary. We are proposing... above, this [EASA] AD requires a one- time [detailed] inspection [for cracks, corrosion, and other...
77 FR 36127 - Airworthiness Directives; BAE SYSTEMS (Operations) Limited Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... by reports of cracking found in the wing rear spar. This AD requires a one-time detailed inspection for cracks, corrosion, and other defects of the rear face of the wing rear spar, and repair if...] AD requires a one- time [detailed] inspection [for cracks, corrosion, and other defects] of the rear...
78 FR 27010 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... flap, and corrective actions if necessary; and eventual rework of the flap track assembly and rear spar... rework of the flap track assembly and rear spar attachments. The NPRM published in the Federal Register... data to support the rework requirements of paragraphs (s) and (t) of the NPRM (77 FR 61542, October 10...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
.... These features are associated with a hybrid construction that uses both composite and metallic materials... wing consists of resin transfer infusion (RTI) skins with composite spars and metallic ribs. The empennage consists of composite sandwich skins with metallic spars and ribs. The airframe has a sandwich...
NASA Technical Reports Server (NTRS)
Whetstone, W. D.
1976-01-01
The functions and operating rules of the SPAR system, which is a group of computer programs used primarily to perform stress, buckling, and vibrational analyses of linear finite element systems, were given. The following subject areas were discussed: basic information, structure definition, format system matrix processors, utility programs, static solutions, stresses, sparse matrix eigensolver, dynamic response, graphics, and substructure processors.
USDA-ARS?s Scientific Manuscript database
The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility (OPF), a United Space Alliance technician examines the attachment points for the spars on the exterior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility (OPF), United Space Alliance technicians replace the attachment points for the spars on the interior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.
2003-09-03
KENNEDY SPACE CENTER, FLA. -In the Orbiter Processing Facility (OPF), a United Space Alliance technician examines the attachment points for the spars on the exterior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.
Development of moving spars for active aeroelastic structures
NASA Astrophysics Data System (ADS)
Amprikidis, Michael; Cooper, Jonathan E.
2003-08-01
This paper describes a research program investigating the development of "moving spars" to enable active aeroelastic control of aerospace structures. A number of different concepts have been considered as part of the EU funded Active Aeroelastic Aircraft Structures (3AS) project that enable the control of the bending and torsional stiffness of aircraft wings through changes in the internal aircraft structure. The aeroelastic behaviour, in particular static deflections, can be controlled as desired through changes in the position, orientation and stiffness of the spars. The concept described in this paper is based upon translational movement of the spars. This will result in changes in the torsional stiffness and shear centre position whilst leaving the bending stiffness unaffected. An analytical study of the aeroelastic behaviour demonstrates the benefits of using such an approach. An experimental investigation involving construction and bench testing of the concepts was undertaken to demonstrate its feasibility. Finally, a wind tunnel test of simple wing models constructed using these concepts was performed. The simulated and experimental results show that it is possible to control the wind twist in practice.
Preliminary structural design of composite main rotor blades for minimum weight
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1987-01-01
A methodology is developed to perform minimum weight structural design for composite or metallic main rotor blades subject to aerodynamic performance, material strength, autorotation, and frequency constraints. The constraints and load cases are developed such that the final preliminary rotor design will satisfy U.S. Army military specifications, as well as take advantage of the versatility of composite materials. A minimum weight design is first developed subject to satisfying the aerodynamic performance, strength, and autorotation constraints for all static load cases. The minimum weight design is then dynamically tuned to avoid resonant frequencies occurring at the design rotor speed. With this methodology, three rotor blade designs were developed based on the geometry of the UH-60A Black Hawk titanium-spar rotor blade. The first design is of a single titanium-spar cross section, which is compared with the UH-60A Black Hawk rotor blade. The second and third designs use single and multiple graphite/epoxy-spar cross sections. These are compared with the titanium-spar design to demonstrate weight savings from use of this design methodology in conjunction with advanced composite materials.
NASA Astrophysics Data System (ADS)
Kooser, A. S.; Crossey, L.; Northup, D.; Spilde, M.; Melim, L.
2008-12-01
Biomarker analysis is an important tool for understanding biogenic carbonates. Past and present bacterial communities utilize chemical species present in the cave environments for metabolic processes and may directly or indirectly contribute to carbonate production. Paleo-communities of bacteria are preserved in speleothems (cave formations) called pool fingers. These speleothems range from 1-4 cm in diameter, 5- 50cm in length and contain alternating layers of micritic calcite and dog tooth spar. The outer portion of the finger can have a moonmilk coating. Pool fingers contain fossilized microbes that can be seen using scanning electron microscopy on etch samples. The lithified communities also leave behind fingerprints in the form of biomarkers. The biomarkers are extracted from pool fingers using a series of solvent washes; the products of each wash are analyzed using gas chromatography followed by gas chromatography/mass spectroscopy. Six samples including pool spar (abiotic speleothem) were examined using this technique. The moonmilk portion of the large pool finger from Cottonwood Cave contained several short-chained fatty acids (C16-C22), which are of microbial origin. In the polar fraction unknown hopanes were detected. The presence of a hopanes with short-chained fatty acids confirms the presence of bacterial biomarkers in the moonmilk portion of the pool finger. The pool spar sample (assumed to be abiotic) produced a different mass spectral pattern for the acid fraction and polar fraction. The acid fraction contains short-chain fatty acids (C16-22), but there are no hopanes present in the other fractions. The polar fraction for the polar spar is dominated by plant biomarkers producing the 'rainbow' spectra of C22 and higher chains. The pool finger, which is thought to be partially biogenic, contains both fossilized bacteria and bacteria biomarkers while the pool spar contains general biomarkers and plant biomarkers. The plant biomarkers found in the pool spar may have originated in the roots of the desert plants over the cave system. The presence of microbial biomarkers in the micritic layer of the pool finger and their absence in the pool spar provide support for the biogenicity of the micritic layers of cave pool fingers.
77 FR 61542 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... flange of the inboard track at the rear spar attachment of each outboard flap, and eventual rework of the... inboard track at the rear spar attachment of each outboard flap, and eventual rework of the flap track... required by paragraph (g) of this AD, before further flight, repair or rework the flap track per the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... cap angles for cracks and/or corrosion and installing inspection access panels. The proposed AD would also require replacing the wing spar cap angles if moderate or severe corrosion is found and applying... the upper and/or lower wing main spar cap angles found on the affected airplanes. We are proposing...
78 FR 42411 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... rear spar, and installation of a TFE sleeve if necessary. This new AD also adds airplanes to the... sources in the auxiliary (center) fuel tank, main fuel tanks, and surge tanks caused by a wiring short or... clamp location on the rear spar, and installation of a TFE sleeve if necessary. The NPRM also proposed...
75 FR 8479 - Airworthiness Directives; Airbus Model A340-541 and -642 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
... A340-600 full scale fatigue test, cracks were found on left and right sides of the rear spar vertical... scale fatigue test, cracks were found on left and right sides of the rear spar vertical cruciform at... this full scale fatigue test completion, it has been determined that the current inspections values...
Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture
NASA Technical Reports Server (NTRS)
Dunning, E. G.; Cobbs, W. L.; Legg, R. L.
1981-01-01
The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.
Dynamic Breaking Tests of Airplane Parts
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1933-01-01
The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.
Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang
2016-02-26
Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack propagation under changing structural boundary conditions can be monitored reliably. The method is not limited by the properties of the structure, and thus it is feasible to be applied to composite structure.
SPAR reference manual update SPAR level 15
NASA Technical Reports Server (NTRS)
Whetstone, W. D.
1980-01-01
Command runstream elements are presented for analyzing structural systems that are composed of a number of cyclically symmetrical sectors. Provisions are included for systems in which each cyclically symmetrical sector also possesses a plane of reflective symmetry. The following types of analysis may be performed: static analysis with and without preload, vibrational analysis with and without preload, and buckling analysis with and without preload.
A procedure for analysis of guyline tension.
Ward W. Carson; Jens E. Jorgensen; Stephen E. Reutebuch; William J. Bramwell
1982-01-01
Most cable logging operations use a spar held in place near the landing by a system of guylines and anchors. Safety and economic considerations require that overloads be avoided and that the spar remain stable. This paper presents a procedure and a computer program to estimate the guyline and anchor loads on a particular system configuration by a specific set of...
76 FR 40288 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
... rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for all Model MD-90-30... cracking on the aft side of the left and right wing rear spar lower caps at station Xrs = 164.000, further.... We are proposing this AD to detect and correct cracking of the left and right rear spar lower caps...
NASA Technical Reports Server (NTRS)
1976-01-01
The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jerry Belt, with United Space Alliance, checks a spar attachment on the wing of the orbiter Atlantis before installing Reinforced Carbon Carbon (RCC) panels on the wing. The spars - floating joints - reduce loading on the panels caused by wing deflections. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2010-01-01
The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.
NASA Technical Reports Server (NTRS)
Razzaq, Zia; Prasad, Venkatesh; Darbhamulla, Siva Prasad; Bhati, Ravinder; Lin, Cai
1987-01-01
Parallel computing studies are presented for a variety of structural analysis problems. Included are the substructure planar analysis of rectangular panels with and without a hole, the static analysis of space mast, using NICE/SPAR and FORCE, and substructure analysis of plane rigid-jointed frames using FORCE. The computations are carried out on the Flex/32 MultiComputer using one to eighteen processors. The NICE/SPAR runstream samples are documented for the panel problem. For the substructure analysis of plane frames, a computer program is developed to demonstrate the effectiveness of a substructuring technique when FORCE is enforced. Ongoing research activities for an elasto-plastic stability analysis problem using FORCE, and stability analysis of the focus problem using NICE/SPAR are briefly summarized. Speedup curves for the panel, the mast, and the frame problems provide a basic understanding of the effectiveness of parallel computing procedures utilized or developed, within the domain of the parameters considered. Although the speedup curves obtained exhibit various levels of computational efficiency, they clearly demonstrate the excellent promise which parallel computing holds for the structural analysis problem. Source code is given for the elasto-plastic stability problem and the FORCE program.
75 FR 3127 - Airworthiness Directives; Thrush Aircraft, Inc. Model 600 S2D and S2R Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... airplanes (type certificate previously held by Quality Aerospace, Inc. and Ayres Corporation). AD 2006-07-15... of AD 2006-07-15 and imposes a life limit on the wing front lower spar caps that requires replacement of the wing front lower spar caps when the life limit is reached. This AD also changes the...
Security and Privacy Assurance Research (SPAR) Pilot Final Report
2015-11-30
for a single querier interacting with a single encrypted database. In order to deploy the technology, the underlying cryptography must support multiple...underlying cryptography . A full SPAR system should be evaluated too including the software itself. Software should be checked for consistency with...ESPADA included cryptography libraries (e.g., gnutls, nettle, and openssl). Consider a hypothetical scenario in which a vulnerability is discovered in
NASA Technical Reports Server (NTRS)
Blyth, J D
1926-01-01
The most usual method of arriving at the maximum amount of spindling or hollowing out permissible in the case of any particular spar section is by trial and error, a process which is apt to become laborious in the absence of good guessing - or luck. The following tables have been got out with the object of making it possible to arrive with certainty at a suitable section at the first attempt.
2012-12-14
Each pair of rollers is designed to capture the shafts mounted to both ends of the tool lid. Additionally, a safety pin can be put in place to...ITRB for the AH-64D. The scope of the program included structural design , materials selection, manufacturing producibility analysis, tooling design ...responsible for tooling design and fabrication, fabrication process development and fabrication of spars and test samples; G3 who designed the RTM
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... one-time high frequency eddy current inspection of fastener holes for cracks at the left and right... frequency eddy current inspection of fastener holes for cracks at the left and right side wing rear spar... frequency eddy current inspection for cracking of fastener holes at the left and right side wing rear spar...
Report on a Highly Used Computer Aid for the Professor in his Grade and Record Keeping Tasks.
ERIC Educational Resources Information Center
Brockmeier, Richard
SPARS is a computer data base management system designed to aid the college professor in handling his students' grades and other classroom data. It can handle multiple sections and labs, and allows the professor to combine and separate these components in a variety of ways. SPARS seeks to meet the sometimes competing goals of simplicity of use and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... the center wing rear spar, and repair if necessary. This new AD expands the area to be inspected by including inspections to detect cracking of the horizontal flange of the upper cap of the left and right center wing rear spar, and repair if necessary. This new AD also adds certain airplanes to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
...: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires installing new in-line fuses for the fuel level float switch and new in-line fuses for... left and right wing forward spars, center wing forward spar, forward auxiliary fuel tank, and aft...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
...), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness... require repetitive inspections for cracking on the lower cap of the rear spar of the left and right wings... detect and correct cracking on the lower cap of the rear spar of the left and right wings between...
Browning, J. R.; Jonkman, J.; Robertson, A.; ...
2014-12-16
In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50 th scalemore » in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less
SPAR: a security- and power-aware routing protocol for wireless ad hoc and sensor networks
NASA Astrophysics Data System (ADS)
Oberoi, Vikram; Chigan, Chunxiao
2005-05-01
Wireless Ad Hoc and Sensor Networks (WAHSNs) are vulnerable to extensive attacks as well as severe resource constraints. To fulfill the security needs, many security enhancements have been proposed. Like wise, from resource constraint perspective, many power aware schemes have been proposed to save the battery power. However, we observe that for the severely resource limited and extremely vulnerable WAHSNs, taking security or power (or any other resource) alone into consideration for protocol design is rather inadequate toward the truly "secure-and-useful" WAHSNs. For example, from resource constraint perspective, we identify one of the potential problems, the Security-Capable-Congestion (SCC) behavior, for the WAHSNs routing protocols where only the security are concerned. On the other hand, the design approach where only scarce resource is concerned, such as many power-aware WAHSNs protocols, leaves security unconsidered and is undesirable to many WAHSNs application scenarios. Motivated by these observations, we propose a co-design approach, where both the high security and effective resource consumption are targeted for WAHSNs protocol design. Specifically, we propose a novel routing protocol, Security- and Power- Aware Routing (SPAR) protocol based on this co-design approach. In SPAR, the routing decisions are made based on both security and power as routing criteria. The idea of the SPAR mechanism is routing protocol independent and therefore can be broadly integrated into any of the existing WAHSNs routing protocols. The simulation results show that SPAR outperforms the WAHSNs routing protocols where security or power alone is considered, significantly. This research finding demonstrates the proposed security- and resource- aware co-design approach is promising towards the truly "secure-and-useful" WAHSNs.
Sodium bicarbonate ingestion and boxing performance.
Siegler, Jason C; Hirscher, Kristian
2010-01-01
Boxing is a sport that consists of multiple high-intensity bouts separated by minimal recovery time and may benefit from a pre-exercise alkalotic state. The purpose of this study was to observe the ergogenic potential of sodium bicarbonate (NaHCO3) ingestion on boxing performance. Ten amateur boxers volunteered to participate in 2 competitive sparring bouts. The boxers were prematched for weight and boxing ability and consumed either 0.3 g.kg(-1) body weight (BW) of NaHCO3 (BICARB) or 0.045 g.kg(-1) BW of NaCl placebo (PLAC) mixed in diluted low calorie-flavored cordial. The sparring bouts consisted of four 3-minute rounds, each separated by 1-minute seated recovery. Blood acid-base (pH, bicarbonate [HCO3(-)], base excess [BE]), and performance (rates of perceived exertion [RPE], heart rate [HR] [HR(ave) and HR(max)], total punches landed successfully) profiles were analyzed before (where applicable) and after sparring. The results indicated a significant interaction effect for HCO3(-) (p < or = 0.001) and BE (p < 0.001), but not for pH (p = 0.48). Post hoc analysis revealed higher presparring HCO3(-) and BE for the BICARB condition, but no differences between the BICARB and PLAC conditions postsparring. There was a significant increase in punches landed during the BICARB condition (p < 0.001); however, no significant interaction effects for HRave (p = 0.15), HRmax (p = 0.32), or RPE (p = 0.38). The metabolic alkalosis induced by the NaHCO3 loading elevated before and after sparring blood buffering capacity. In practical application, the findings suggest that a standard NaHCO3 loading dose (0.3 g.kg(-1)) improves punch efficacy during 4 rounds of sparring performance.
Hukkanen, Esa; Häkkinen, Keijo
2017-06-01
Seven, male, national-level boxers (age, 20.3 ± 2.7 years; height, 1.80 ± 0.06 m; mass, 73.8 ± 11.1 kg) participated in this study to investigate the effects of sparring on reaction time and punch force of straight punches measured during the precompetition and competition periods. Heart rate and blood lactate concentrations were also monitored. Sparring load was chosen in accordance with the current rules: 3 × 3-minute bouts with 1-minute break in between. Reaction time of rear straight lengthened (p < 0.01) during the sparring load of the precompetition period after the third round (to 390 milliseconds) in comparison to the competition period (to 310 milliseconds). Reaction time of lead straight lengthened (p ≤ 0.05) between the first and third round during the precompetition with no differences during the competition period. Both rear and lead straight punch forces were greater at all measurement points during the precompetition compared with the competition period. Punch forces increased for both rear and lead straight between the first and third rounds with the highest forces after third round during the precompetition (rear straight, 209 kg) and competition (rear straight, 176 kg) periods. Blood lactate levels increased after every round during both periods being at its greatest after the third round (17 mmol·L during the precompetition and 13 mmol·L during the competition period). The present sparring-induced differences in reaction time and punch forces of straight punches during the precompetition compared with the competition period may be the result of different volume and intensity of training with different goals in boxing-specific and explosive strength training.
NASA Technical Reports Server (NTRS)
Jackson, A.; Sandifer, J.; Sandorff, P.; Vancleave, R.
1984-01-01
Twenty-two specimens of each of two key structural elements of the Advance Composite Vertical Fin (ACVF) were fabricated and tested. One element represented the front spar at the fuselage attachment area and the other element represented the cover at the fuselage joint area. Ten specimens of each element were selected for static testing. The coefficient of variation resulting from the tests was 3.28 percent for the ten cover specimens and 6.11 percent for the ten spar specimens, which compare well with metallic structures. The remaining twelve cover and twelve spar specimens were durability tested in environmental chambers which permitted the temperature and humidity environment to be cycled as well as the applied loads. Results of the durability tests indicated that such components will survive the service environment.
Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts
NASA Technical Reports Server (NTRS)
Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.;
1996-01-01
Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.
Promoting response variability and stimulus generalization in martial arts training.
Harding, Jay W; Wacker, David P; Berg, Wendy K; Rick, Gary; Lee, John F
2004-01-01
The effects of reinforcement and extinction on response variability and stimulus generalization in the punching and kicking techniques of 2 martial arts students were evaluated across drill and sparring conditions. During both conditions, the students were asked to demonstrate different techniques in response to an instructor's punching attack. During baseline, the students received no feedback on their responses in either condition. During the intervention phase, the students received differential reinforcement in the form of instructor feedback for each different punching or kicking technique they performed during a session of the drill condition, but no reinforcement was provided for techniques in the sparring condition. Results showed that both students increased the number of different techniques they performed when reinforcement and extinction procedures were conducted during the drill condition, and that this increase in response variability generalized to the sparring condition. PMID:15293637
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... requires repetitive inspections for cracking of the lower rear spar caps of the wings, and related... repaired areas. This AD was prompted by reports of cracking of the wing rear spar lower cap at the outboard flap and inboard drive hinge at station Xrs=164.000; the cracking is due to material fatigue from...
Program for impact testing of spar-shell fan blades, test report
NASA Technical Reports Server (NTRS)
Ravenhall, R.; Salemme, C. T.
1978-01-01
Six filament-wound, composite spar-shell fan blades were impact tested in a whirligig relative to foreign object damage resulting from ingestion of birds into the fan blades of a QCSEE-type engine. Four of the blades were tested by injecting a simulated two pound bird into the path of the rotating blade and two were tested by injecting a starling into the path of the blade.
Space Processing Applications Rocket (SPAR) project SPAR 7
NASA Technical Reports Server (NTRS)
Poorman, R. M.
1983-01-01
The postflight reports of each of the Principal Investigators of three selected science payloads are presented in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). Pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition are described including design, fabrication and testing. Containerless processing technology, containerless processing bubble dynamics, and comparative alloy solidification are the experiments discussed.
Analysis of Progressive Collapse of Complex Structures.
1982-12-01
tions of wing spar roots, although developed from experimental measure- ments, did not produce purely rigid body motions for reasons explained in...support structures in the same manner as the wings had been attached to aircraft fuselages. The support structures were extremely rigid compared to the...support structures and pinned into place within small tolerance; however, some motion of the wing spar roots with respect to the supports was
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... fractured front spar assembly for strut No. 3, which resulted in the loss of the strut upper link load path... of a fractured front spar assembly for strut No. 3, which resulted in the loss of the strut upper... loss of the strut upper link load path and consequent fracture of the diagonal brace, which could...
2012-08-01
U0=15m/s, Lv =350m Cloud Wind and Clear Sky Gust Simulation Using Dryden PSD* Harvested Energy from Normal Vibration (Red) to...energy control law based on limited energy constraints 4) Experimentally validated simultaneous energy harvesting and vibration control Summary...Experimental Characterization and Validation of Simultaneous Gust Alleviation and Energy Harvesting for Multifunctional Wing Spars AFOSR
SPAR reference manual. [for stress analysis
NASA Technical Reports Server (NTRS)
Whetstone, W. D.
1974-01-01
SPAR is a system of related programs which may be operated either in batch or demand (teletype) mode. Information exchange between programs is automatically accomplished through one or more direct access libraries, known collectively as the data complex. Card input is command-oriented, in free-field form. Capabilities available in the first production release of the system are fully documented, and include linear stress analysis, linear bifurcation buckling analysis, and linear vibrational analysis.
Thermo-mechanical cyclic testing of carbon-carbon primary structure for an SSTO vehicle
NASA Astrophysics Data System (ADS)
Croop, Harold C.; Leger, Kenneth B.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.
1999-01-01
An advanced carbon-carbon structural component is being experimentally evaluated for use as primary load carrying structure for future single-stage-to-orbit (SSTO) vehicles. The component is a wing torque box section featuring an advanced, three-spar design. This design features 3D-woven, angle-interlock skins, 3D integrally woven spar webs and caps, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The box spar caps are nested into the skins which, when processed together through the carbon-carbon processing cycle, resulted in monolithic box halves. The box half sections were then joined at the spar web intersections using ceramic matrix composite fasteners. This method of fabrication eliminated fasteners through both the upper and lower skins. Development of the carbon-carbon wing box structure was accomplished in a four phase design and fabrication effort, conducted by Boeing, Information, Space and Defense Systems, Seattle, WA, under contract to the Air Force Research Laboratory (AFRL). The box is now set up for testing and will soon begin cyclic loads testing in the AFRL Structural Test Facility at Wright-Patterson Air Force Base (WPAFB), OH. This paper discusses the latest test setup accomplishments and the results of the pre-cyclic loads testing performed to date.
East Spar: Alliance approach for offshore gasfield development
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-04-01
East spar is a gas/condensate field 25 miles west of Barrow Island, offshore Western Australia. Proved plus probable reserves at the time of development were estimated at 430 Bcf gas and 28 million bbl of condensate. The field was discovered in early 1993 when the Western Australia gas market was deregulated and the concept of a gas pipeline to the gold fields was proposed. This created a window of opportunity for East Spar, but only if plans could be established quickly. A base-case development plan was established to support gas marketing while alternative plans could be developed in parallel. Themore » completed East Spar facilities comprise two subsea wells, a subsea gathering system, and a multiphase (gas/condensate/water) pipeline to new gas-processing facilities. The subsea facilities are controlled through a navigation, communication, and control (NCC) buoy. The control room and gas-processing plant are 39 miles east of the field on Varanus Island. Sales gas is exported through a pre-existing gas-sales pipeline to the Dampier-Bunbury and Goldfields Gas Transmission pipelines. Condensate is stored in and exported by use of pre-existing facilities on Varanus Island. Field development from approval to first production took 22 months. The paper describes its field development.« less
Metal spar/superhybrid shell composite fan blades. [for application to turbofan engins
NASA Technical Reports Server (NTRS)
Salemme, C. T.; Murphy, G. C.
1979-01-01
The use of superhybrid materials in the manufacture and testing of large fan blades is analyzed. The FOD resistance of large metal spar/superhybrid fan blades is investigated. The technical effort reported was comprised of: (1) preliminary blade design; (2) detailed analysis of two selected superhybrid blade designs; (3) manufacture of two process evaluation blades and destructive evaluation; and (4) manufacture and whirligig testing of six prototype superhybrid blades.
Design, fabrication, and test of a steel spar wind turbine blade
NASA Technical Reports Server (NTRS)
Sullivan, T. L.; Sirocky, P. J., Jr.; Viterna, L. A.
1979-01-01
The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.
SPAR electrophoretic separation experiments, part 2
NASA Technical Reports Server (NTRS)
Cosmi, F. M.
1978-01-01
The opportunity to use a sounding rocket for separation experiments is a logical continuation of earlier electrophoresis demonstrations and experiments. A free-flow electrophoresis system, developed under the Advanced Applications Flight Experiment (AAFE) Program, was designed so that it would fit into a rocket payload. The SPAR program provides a unique opportunity to complete the intial stages of microgravity testing prior to any Shuttle applications. The objective of the work described in this report was to ensure proper operating parameters for the defined experimental samples to be used in the SPAR Electrophoretic Separation Experiment. Ground based experiments were undertaken not only to define flight parameters but also to serve as a point of comparison for flight results. Possible flight experiment problem areas were also studied such as sample interaction due to sedimentation, concentration effects and storage effects. Late in the program anomalies of field strengths and buffer conductivities were also investigated.
Regular paths in SparQL: querying the NCI Thesaurus.
Detwiler, Landon T; Suciu, Dan; Brinkley, James F
2008-11-06
OWL, the Web Ontology Language, provides syntax and semantics for representing knowledge for the semantic web. Many of the constructs of OWL have a basis in the field of description logics. While the formal underpinnings of description logics have lead to a highly computable language, it has come at a cognitive cost. OWL ontologies are often unintuitive to readers lacking a strong logic background. In this work we describe GLEEN, a regular path expression library, which extends the RDF query language SparQL to support complex path expressions over OWL and other RDF-based ontologies. We illustrate the utility of GLEEN by showing how it can be used in a query-based approach to defining simpler, more intuitive views of OWL ontologies. In particular we show how relatively simple GLEEN-enhanced SparQL queries can create views of the OWL version of the NCI Thesaurus that match the views generated by the web-based NCI browser.
78 FR 79333 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
...We propose to supersede airworthiness directive (AD) 2000-12- 12, for certain Airbus Model A300, A300-600, and A310 series airplanes. AD 2000-12-12 currently requires inspecting to detect cracks in the lower spar axis of the nacelle pylon between ribs 9 and 10, and repair if necessary. AD 2000-12-12 also provides for optional modification of the pylon, which terminates the inspections for Model A300 series airplanes. Since we issued AD 2000-12-12, we have received reports of cracking of the lower pylon spar after accomplishing the existing modification and have determined that shorter initial and repetitive inspection compliance times are necessary to address the identified unsafe condition. This proposed AD would reduce the initial and repetitive inspection compliance times. We are proposing this AD to detect and correct fatigue cracking, which could result in reduced structural integrity of the lower spar of the nacelle pylon.
Quantification of uncertainties in the performance of smart composite structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1993-01-01
A composite wing with spars, bulkheads, and built-in control devices is evaluated using a method for the probabilistic assessment of smart composite structures. Structural responses (such as change in angle of attack, vertical displacements, and stresses in regular plies with traditional materials and in control plies with mixed traditional and actuation materials) are probabilistically assessed to quantify their respective scatter. Probabilistic sensitivity factors are computed to identify those parameters that have a significant influence on a specific structural response. Results show that the uncertainties in the responses of smart composite structures can be quantified. Responses such as structural deformation, ply stresses, frequencies, and buckling loads in the presence of defects can be reliably controlled to satisfy specified design requirements.
VO₂ requirements of boxing exercises.
Arseneau, Eric; Mekary, Saïd; Léger, Luc A
2011-02-01
The purpose of this study was to quantify the physiological requirements of various boxing exercises such as sparring, pad work, and punching bag. Because it was not possible to measure the oxygen uptake (VO₂) of "true" sparring with a collecting gas valve in the face, we developed and validated a method to measure VO₂ of "true" sparring based on "postexercise" measurements. Nine experienced male amateur boxers (Mean ± SD: age = 22.0 ± 3.5 years, height = 176.0 ± 8.0 cm, weight = 71.4 ± 10.9 kg, number of fights = 13.0 ± 9.5) of regional and provincial level volunteered to participate in 3 testing sessions: (a) maximal treadmill test in the LAB, (b) standardized boxing training in the GYM, and (c) standardized boxing exercises in the LAB. Measures of VO₂, heart rate (HR), blood lactate concentration [LA], rated perceived exertion level, and punching frequencies were collected. VO₂ values of 43.4 ± 5.9, 41.1 ± 5.1, 24.7 ± 6.1, 30.4 ± 5.8, and 38.3 ± 6.5 ml·kg⁻¹·min⁻¹ were obtained, which represent 69.7 ± 8.0, 66.1 ± 8.0, 39.8 ± 10.4, 48.8 ± 8.5, and 61.7 ± 10.3%VO₂peak for sparring, pad work, and punching bag at 60, 120, and 180 b·min⁻¹, respectively. Except for lower VO₂ values for punching the bag at 60 and 120 b·min⁻¹ (p < 0.05), there was no VO₂ difference between exercises. Similar pattern was obtained for %HRmax with respective values of 85.5 ± 5.9, 83.6 ± 6.3, 67.5 ± 3.5, 74.8 ± 5.9, and 83.0 ± 6.0. Finally, sparring %HRmax and [LA] were slightly higher in the GYM (91.7 ± 4.3 and 9.4 ± 2.2 mmol·L⁻¹) vs. LAB (85.5 ± 5.9 and 6.1 ± 2.3 mmol·L⁻¹). Thus, in this study simulated LAB sparring and pad work required similar VO₂ (43-41 ml·kg⁻¹·min⁻¹, respectively), which corresponds to ~70%VO₂peak. These results underline the importance of a minimum of aerobic fitness for boxers and draw some guidelines for the intensity of training.
Space Processing Application Rocket project, SPAR 5
NASA Technical Reports Server (NTRS)
Reeves, F. (Compiler); Schaefer, D. (Compiler)
1980-01-01
Post flight results and analysis are presented on the following experiments: 'Agglomeration in Immiscible Liquids', 'Contained Polycrystalline Solidification in Low G', 'The Direct Observation of Dendrite Remelting and Macrosegregation in Casting', and 'Uniform Dispersion by Crystallization'. An engineering report on the performance of the SPAR Black Brant rocket is also included. Much useful data and information were accumulated for directing and developing experimental techniques and investigations toward an expanding commercially beneficial program of materials processing in the coming shuttle era.
Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downs, James
2014-12-29
In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this newmore » technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).« less
Optimum structural design with static aeroelastic constraints
NASA Technical Reports Server (NTRS)
Bowman, Keith B; Grandhi, Ramana V.; Eastep, F. E.
1989-01-01
The static aeroelastic performance characteristics, divergence velocity, control effectiveness and lift effectiveness are considered in obtaining an optimum weight structure. A typical swept wing structure is used with upper and lower skins, spar and rib thicknesses, and spar cap and vertical post cross-sectional areas as the design parameters. Incompressible aerodynamic strip theory is used to derive the constraint formulations, and aerodynamic load matrices. A Sequential Unconstrained Minimization Technique (SUMT) algorithm is used to optimize the wing structure to meet the desired performance constraints.
1987-03-01
Project (SPAR). An impor- tant issue of the replacement will be the conversion of existing co uter software to allow transition from the current... issue of the replacement will be the conversion of existing computer software to allow transition from the current hardware environment to the replacement...36 G. LOCAL PROGRAM C1/C2 CONVERSION CONTRACT . . . 38 5 H. LOCAL PROGRAM COMMONALITY ISSUES ....... 41 I. SUMMARY
2. Spar, bramble, and the larger cutters storis (W38) make ...
2. Spar, bramble, and the larger cutters storis (W38) make their way through arctic ice during the first transit of the northwest passage by a U.S. vessel. The lead 180 has a weight suspended over its starboard side. By swinging this weight back and forth across the centerline, the vessel can rock to free herself from ice. - U.S. Coast Guard Buoy Tenders, 180' Class, U.S. Coast Guard Headquarters, 2100 Second Street Southwest, Washington, District of Columbia, DC
Telemetry link for an automatic salmon migration monitor
NASA Technical Reports Server (NTRS)
Baldwin, H. A.; Freyman, R. W.
1973-01-01
The antenna and transmitter described in this report were designed for integration into the remote acoustic assessment system for detection of sockeye salmon in the Bristol Bay region of the Bering Sea. The assessment system configuration consists of an upward directed sonar buoy anchored 150 ft below the surface and attached by cable to a spar buoy tethered some 300 ft laterally. The spar buoy contains a telemetry transmitter, power supply, data processing electronics, an antenna and a beacon light.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Langston, Chester W.; Mirick, Paul H.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Yeager, William T., Jr.
1991-01-01
The sensitivity of blade tracking in hover to variations in root pitch was examined for two rotor configurations. Tests were conducted using a four bladed articulated rotor mounted on the NASA-Army aeroelastic rotor experimental system (ARES). Two rotor configurations were tested: one consisting of a blade set with flexible fiberglass spars and one with stiffer (by a factor of five in flapwise and torsional stiffnesses) aluminum spars. Both blade sets were identical in planform and airfoil distribution and were untwisted. The two configurations were ballasted to the same Lock number so that a direct comparison of the tracking sensitivity to a gross change in blade stiffness could be made. Experimental results show no large differences between the two sets of blades in the sensitivity of the blade tracking to root pitch adjustments. However, a measurable reduction in intrack coning of the fiberglass spar blades with respect to the aluminum blades is noted at higher rotor thrust conditions.
NASA Astrophysics Data System (ADS)
Hong, Sinpyo; Lee, Inwon; Park, Seong Hyeon; Lee, Cheolmin; Chun, Ho-Hwan; Lim, Hee Chang
2015-09-01
An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG), mooring line spring constant, and fair-lead location on the turbine's motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT), the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.
East Spar field models new development techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, K.S.
1997-05-01
In recent years, Western Australia`s (WA`s) offshore E and P sector has become a fertile area for field development experimentation and innovation. The region features perhaps the largest concentration of subsea wells and floating production systems outside of the North Sea and Brazil. By all estimates, this trend should continue, given the backlog of discovered fields that increasingly qualify for development through technological progress. One of the most unique projects on the North West Shelf (NWS), East Spar gas and condensate field was completed in late 1996, only three-and-a-half years after it was discovered. On behalf of its partners, operatormore » Western Mining Corp. developed East Spar through an alliance framework with its primary contractors. This unusual relationship proved extremely beneficial for solving technical and logistical problems while still keeping the project on a fast track. The paper discusses the background of the project, field control and Navigation, Communication and Control (NCC) buoy development, subsea systems, processing facilities and logistical review.« less
Diffusion bonded boron/aluminum spar-shell fan blade
NASA Technical Reports Server (NTRS)
Carlson, C. E. K.; Cutler, J. L.; Fisher, W. J.; Memmott, J. V. W.
1980-01-01
Design and process development tasks intended to demonstrate composite blade application in large high by-pass ratio turbofan engines are described. Studies on a 3.0 aspect radio space and shell construction fan blade indicate a potential weight savings for a first stage fan rotor of 39% when a hollow titanium spar is employed. An alternate design which featured substantial blade internal volume filled with titanium honeycomb inserts achieved a 14% potential weight savings over the B/M rotor system. This second configuration requires a smaller development effort and entails less risk to translate a design into a successful product. The feasibility of metal joining large subsonic spar and shell fan blades was demonstrated. Initial aluminum alloy screening indicates a distinct preference for AA6061 aluminum alloy for use as a joint material. The simulated airfoil pressings established the necessity of rigid air surfaces when joining materials of different compressive rigidities. The two aluminum alloy matrix choices both were successfully formed into blade shells.
Composite structural materials. [aircraft structures
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1980-01-01
The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.
NASA Astrophysics Data System (ADS)
Babault, J.; Viaplana-Muzas, M.; Legrand, X.; Van Den Driessche, J.; González-Quijano, M.; Mudd, S. M.; Kergaravat, C.; Ringenbach, J. C.; Callot, J. P.; Vetel, W.; Dhont, D.
2017-12-01
The island of Papua New Guinea is the result of continent-arc collision that began building the island's Central Range during the late Miocene. The tectono-sedimentary evolution of the Cenderawasih Bay, in the northwestern part of the island of Papua New Guinea (Indonesia), which links the Kepala Burung block to the Central Range is still poorly understood. Previous studies have shown that this bay contains a thick (> 8 km) sequence of undated sediments. Hypothesis claim that the embayment resulted from a 3 Ma aperture created by anticlockwise rotation of the Kepala Burung block with respect to the northern rim of the Australian plate, or from the southwest drift of a slice of volcanics/oceanic crust between 8 and 6 Ma. Using a source-to-sink approach, based on i) a geomorphologic analysis of the drainage network dynamics, ii) a reassessment of available thermochronological data, and iii) seismic lines interpretation, we suggest that sediments started to accumulate in the Cenderawasih Bay and onshore in the Waipoga Basin in the late Miocene since the beginning of the Central Range building at 12 Ma, resulting in sediment accumulation of up to 12200 m. At first order, we predict that infilling is mainly composed of siliciclastics sourced in the graphite-bearing Ruffaer Metamorphic Belt and its equivalent in the Weyland Overthrust. From the unroofing paths in the Central Range we deduce two rates of solid phase accumulation (SPAR) since 12 Ma, the first one at a mean SPAR ranging between 0.12-0.25 mm/a with a maximum SPAR of 0.23-0.58 mm/a, and the second during the last 3 Ma, at a mean SPAR ranging between 0.93-1.62 mm/a and with a maximum SPAR between 2.13-3.17 mm/a, i.e., 6700-10000 m of Plio-Pleistocene sediment accumulation. Local transtensional tectonics may explain these unusually high rates of sedimentation in an overall sinistral oblique convergence setting. We further extended this approach to the Gulf of Papua (Papua New Guinea), a foreland basin developed in the passive margin of the Coral Sea and fed by the Papuan fold-and-thrust belt and Aure fold-and-thrust belt. We compare these two source-to-sink systems to highlight the tectonic control on sedimentary flux, provenance and SPAR in the Cenderawasih Bay and Gulf of Papua.
2009-06-24
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers place a protective cover over a reinforced-carbon carbon, or RCC, panel removed from space shuttle Atlantis. for SPAR corrosion inspection. The structural edge of the wing will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
Growian rotor blades: Production development, construction and test
NASA Technical Reports Server (NTRS)
Thiele, H. M.
1984-01-01
Development and construction of three 50 m rotor blades for a 3 MW wind turbine are described. A hybrid concept was chosen, i.e., a load carrying inflexible steel spar and a glass fiber reinforced plastic skin. A test blade was constructed and static loading tests, dynamic vibration tests and fatigue tests on critical welds as well as at the connection between spar and blade skin were performed. All test results show good accordance with calculated values, and were taken into consideration during the construction of two rotor blades.
Progress on S53 for Rotary Gear Actuators
2008-02-01
materials MP35N Ni alloy rods HP-9-4-30 or 4340 high strength steel gears (Cd plated) 17 - 4PH stainless bushings Ti wing spar Bad galvanic couples...Bushings: 17 - 4PH in Ti spar MP35N in gear 6 Galvanic corrosion of current system 7 Extent of the problem This is a problem with all F-18 lugs Matter...Titanium plate with 17 - 4PH bush – also refurbished from previous trials • Gears made from HP9-4-30 or S53 with MP35N bushes STREAMLINED CORROSION TESTING
Time-Motion and Biological Responses in Simulated Mixed Martial Arts Sparring Matches.
Coswig, Victor S; Ramos, Solange de P; Del Vecchio, Fabrício B
2016-08-01
Coswig, VS, Ramos, SdP, and Del Vecchio, FB. Time-motion and biological responses in simulated mixed martial arts sparring matches. J Strength Cond Res 30(8): 2156-2163, 2016-Simulated matches are a relevant component of training for mixed martial arts (MMA) athletes. This study aimed to characterize time-motion responses and investigate physiological stress and neuromuscular changes related to MMA sparring matches. Thirteen athletes with an average age of 25 ± 5 years, body mass of 81.3 ± 9.5 kg, height of 176.2 ± 5.5 cm, and time of practice in MMA of 39 ± 25 months participated in the study. The fighters executed three 5-minute rounds with 1-minute intervals. Blood and salivary samples were collected and physical tests and psychometric questionnaires administered at 3 time points: before (PRE), immediately after (POST), and 48 hours after the combat (48 h). Statistical analysis applied analysis of variance for repeated measurements. In biochemical analysis, significant changes (p ≤ 0.05) were identified between PRE and POST (glucose: 80.3 ± 12.7 to 156.5 ± 19.1 mg·ml; lactate: 4 ± 1.7 to 15.6 ± 4.8 mmol·dl), POST and 48 hours (glucose: 156.5 ± 19.1 to 87.6 ± 15.5 mg·ml; lactate: 15.6 ± 4.8 to 2.9 ± 3.5 mmol·dl; urea: 44.1 ± 8.9 to 36.3 ± 7.8 mg·ml), and PRE and 48 hours (creatine kinase [CK]: 255.8 ± 137.4 to 395.9 ± 188.7 U/L). In addition, time-motion analyses showed a total high:low intensity of 1:2 and an effort:pause ratio of 1:3. In conclusion, simulated MMA sparring matches feature moderate to high intensity and a low degree of musculoskeletal damage, which can be seen by absence of physical performance and decrease in CK. Results of the study indicate that sparring training could be introduced into competitive microcycles to improve technical and tactical aspects of MMA matches, due to the high motor specificity and low muscle damage.
Research on the influence of helical strakes on dynamic response of floating wind turbine platform
NASA Astrophysics Data System (ADS)
Ding, Qin-wei; Li, Chun
2017-04-01
The stability of platform structure is the paramount guarantee of the safe operation of the offshore floating wind turbine. The NREL 5MW floating wind turbine is established based on the OC3-Hywind Spar Buoy platform with the supplement of helical strakes for the purpose to analyze the impact of helical strakes on the dynamic response of the floating wind turbine Spar platform. The dynamic response of floating wind turbine Spar platform under wind, wave and current loading from the impact of number, height and pitch ratio of the helical strakes is analysed by the radiation and diffraction theory, the finite element method and orthogonal design method. The result reveals that the helical strakes can effectively inhibit the dynamic response of the platform but enlarge the wave exciting force; the best parameter combination is two pieces of helical strakes with the height of 15% D ( D is the diameter of the platform) and the pitch ratio of 5; the height of the helical strake and its pitch ratio have significant influence on pitch response.
Approximations for column effect in airplane wing spars
NASA Technical Reports Server (NTRS)
Warner, Edward P; Short, Mac
1927-01-01
The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for approximate column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving approximate values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful approximations can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading.
Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios
2013-08-01
Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.
Criteria for representing circular arc and sine wave spar webs by non-curved elements
NASA Technical Reports Server (NTRS)
Jenkins, J. M.
1979-01-01
The basic problem of how to simply represent a curved web of a spar in a finite element structural model was addressed. The ratio of flat web to curved web axial deformations and longitudinal rotations were calculated using NASTRAN models. Multiplying factors were developed from these calculations for various web thicknesses. These multiplying factors can be applied directly to the area and moment of inertia inputs of the finite element model. This allows the thermal stress relieving configurations of sine wave and circular arc webs to be simply accounted for in finite element structural models.
Numerical wind-tunnel simulation for Spar platform
NASA Astrophysics Data System (ADS)
Shen, Wenjun
2017-05-01
ANSYS Fluent software is used in the simulation analysis of numerical wind tunnel model for the upper Spar platform module. Design Modeler (DM), Meshing, FLUENT and CFD-POST are chosen in the numerical calculation. And DM is used to deal with and repair the geometric model, and Meshing is used to mesh the model, Fluent is used to set up and solve the calculation condition, finally CFD-POST is used for post-processing of the results. The wind loads are obtained under different direction and incidence angles. Finally, comparison is made between numerical results and empirical formula.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1979-01-01
A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.
NASA Technical Reports Server (NTRS)
Gleich, D.
1972-01-01
The fabrication of helicopter rotary wings from composite materials is discussed. Two composite spar specimens consisting of compressively prestressed stainless steel liner over-wrapped with pretensioned fiberglass were constructed. High liner strength and toughness together with the prescribed prestresses and final sizing of the part are achieved by means of cryogenic stretch forming of the fiber wrapped composite spar at minus 320 F, followed by release of the forming pressure and warm up to room temperature. The prestresses are chosen to provide residual compression in the metal liner under operating loads.
Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars
NASA Astrophysics Data System (ADS)
Narayanan Nampy, Sreenivas
Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an existing state-of-the-art and newly developed model to predict the torsion, bending, and axial stiffness of grid and grid-stiffened structures with various stiffening configurations. These predictions were compared to results generated using finite element analysis (FEA) to observe excellent correlation (within 6%) for a range of parameters for grid and grid-stiffened structures such as grid density, stiffener angle, and aspect ratio of the stiffener cross-section. Experimental results from cylindrical grid specimen testing were compared with analytical prediction using the new analysis. The new analysis predicted stiffness coefficients with nearly 7% error compared to FEA results. From the parametric studies conducted, it was observed that the previous state-of-the-art analysis on the other hand exhibited errors of the order of 39% for certain designs. Stability evaluations were also conducted by integrating the new analysis with established stability formulations. A design study was conducted to evaluate the potential weight savings of a simple grid-stiffened rotor blade spar structure compared to a baseline monocoque design. Various design constraints such as stiffness, strength, and stability were imposed. A manual search was conducted for design parameters such as stiffener density, stiffener angle, shell laminate, and stiffener aspect ratio that provide lightweight grid-stiffened designs compared to the baseline. It was found that a weight saving of 9.1% compared to the baseline is possible without violating any of the design constraints.
Airborne Imaging in the Yukon River Basin to Characterize SWOT Mission Phenomenology
NASA Astrophysics Data System (ADS)
Moller, D.; Pavelsky, T.; Arvesen, J. C.
2015-12-01
Remote sensing offers intriguing tools to track Arctic hydrology, but current techniques are largely limited to tracking either inundation or water surface elevation only. For the first time, the proposed Surface Water Ocean Topography (SWOT) satellite mission will provide regular, simultaneous observations of inundation extent and water level from space. SWOT is unique and distinct from precursor altimetry missions in some notable regards: 1) 100km+ of swath will provide complete ocean coverage, 2) in addition to the ocean product, land surface water will be mapped for storage measurement and discharge estimation and 3) Ka-band single-pass interferometry will produce the height measurements introducing a new measurement technique. This new approach introduces additional algorithmic, characterization and calibration/validation needs for which the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) was developed. In May 2015, AirSWOT (comprised of KaSPAR and a color infrared (CIR) high resolution aerial camera) was part of an intensive field campaign including observations of inundation extent and water level and in situ hydrologic measurements in two rivers and 20 lakes within the Yukon River Basin, Alaska. One goal is to explore the fundamental phenomenology of the SWOT measurement. This includes assessment of the effects of vegetation layover and attenuation, wind roughening and classification. Further KaSPAR-derived inundation extent will to be validated using a combination of ground surveys and coregistered CIR imagery. Ultimately, by combining measurements of changing inundation extent and water level between two collection dates, it will be possible to validate lake water storage variations against storage changes computed from in situ water levels and inundation area derived from AirSWOT. Our paper summarizes the campaign, the airborne and in situ measurements and presents some initial KaSPAR and CIR imagery from the Yukon flats region.
Finite-element reentry heat-transfer analysis of space shuttle Orbiter
NASA Technical Reports Server (NTRS)
Ko, William L.; Quinn, Robert D.; Gong, Leslie
1986-01-01
A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.
ATM photoheliograph. [at a solar observatory
NASA Technical Reports Server (NTRS)
Prout, R. A.
1975-01-01
The design and fabrication are presented of a 65 cm photoheliograph functional verification unit (FVU) installed in a major solar observatory. The telescope is used in a daily program of solar observation while serving as a test bed for the development of instrumentation to be included in early space shuttle launched solar telescopes. The 65 cm FVU was designed to be mechanically compatible with the ATM spar/canister and would be adaptable to a second ATM flight utilizing the existing spar/canister configuration. An image motion compensation breadboard and a space-hardened, remotely tuned H alpha filter, as well as solar telescopes of different optical configurations or increased aperture are discussed.
Description of the containerless melting of glass in low gravity
NASA Technical Reports Server (NTRS)
Ray, C. S.; Day, D. E.
1983-01-01
A brief description is given of a single-axis, acoustic levitator/furnace apparatus used to position, heat, melt, and quench multicomponent oxide, glass-forming compositions in low gravity. This apparatus is capable of processing eight approximately spherical samples (about 6 mm diameter) at temperatures up to 1550 C in a dry air atmosphere. Results are also presented for a containerless melting experiment conducted on SPAR VI where a ternary CaO-Ga2O3-SiO2 composition was levitated and quenched to a glass. Selected properties of the glass prepared on SPAR VI are compared with the properties of glass samples of identical composition prepared on earth.
NASA Technical Reports Server (NTRS)
Giles, G. L.; Rogers, J. L., Jr.
1982-01-01
The methodology used to implement structural sensitivity calculations into a major, general-purpose finite-element analysis system (SPAR) is described. This implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calculating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of SPAR are also discussed.
Solar Array Panels With Dust-Removal Capability
NASA Technical Reports Server (NTRS)
Dawson, Stephen; Mardesich, Nick; Spence, Brian; White, Steve
2004-01-01
It has been proposed to incorporate piezoelectric vibrational actuators into the structural supports of solar photovoltaic panels, for the purpose of occasionally inducing vibrations in the panels in order to loosen accumulated dust. Provided that the panels were tilted, the loosened dust would slide off under its own weight. Originally aimed at preventing obscuration of photovoltaic cells by dust accumulating in the Martian environment, the proposal may also offer an option for the design of solar photovoltaic panels for unattended operation at remote locations on Earth. The figure depicts a typical lightweight solar photovoltaic panel comprising a backside grid of structural spars that support a thin face sheet that, in turn, supports an array of photovoltaic cells on the front side. The backside structure includes node points where several spars intersect. According to the proposal, piezoelectric buzzers would be attached to the node points. The process of designing the panel would be an iterative one that would include computational simulation of the vibrations by use of finite- element analysis to guide the selection of the vibrational frequency of the actuators and the cross sections of the spars to maximize the agitation of dust.
Damage evaluation by a guided wave-hidden Markov model based method
NASA Astrophysics Data System (ADS)
Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin
2016-02-01
Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.
Analysis of SPAR 8 single-axis levitation experiment
NASA Technical Reports Server (NTRS)
Rush, J. E.; Schafer, C. F.; Holland, R. L.
1981-01-01
The melting and resolidification of SPAR 8 payload melting and resolidification of a glass specimen from the in a containerless condition and the retrieval and examination of the specimen from the. The absence of container contact was assured by use of a single-axis acoustic levitation system. However, the sample contacted a wire cage after being held without container contact by the acoustic field for only approximately 87 seconds. At this time, the sample was still molten and, therefore, flowed aroung the wire and continued to adhere to it. An analysis of why the sample did not remain levitated free of container contact is presented. The experiment is described, and experimental observations are discussed and analyzed.
Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Dunning, Peter D.
2014-01-01
Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.
Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark
2012-01-01
Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.
NASA Astrophysics Data System (ADS)
Babault, Julien; Viaplana-Muzas, Marc; Legrand, Xavier; Van Den Driessche, Jean; González-Quijano, Manuel; Mudd, Simon M.
2018-05-01
The island of New Guinea is the result of continent-arc collision that began building the island's Central Range during the late Miocene. Recent studies have shown that rapid subduction, uplift and exhumation events took place in response to rapid, oblique convergence between the Pacific and the Australian plates. The tectonic and sedimentary evolution of Cenderawasih Bay, in the northwestern part of the New Guinea Island is still poorly understood: this bay links a major structural block, the Kepala Burung block, to the island's Central Ranges. Previous studies have shown that Cenderawasih Bay contains a thick (>8 km) sequence of undated sediments. One hypothesis claims that the embayment resulted from a 3 Ma opening created by anticlockwise rotation of the Kepala Burung block with respect to the northern rim of the Australian plate. Alternatively, the current configuration of Cenderawasih Bay could have resulted from the southwest drift of a slice of volcanics and oceanic crust between 8 and 6 Ma. We test these hypotheses using (i) a geomorphologic analysis of the drainage network dynamics, (ii) a reassessment of available thermochronological data, and (iii) seismic lines interpretation. We suggest that sediments started to accumulate in Cenderawasih Bay and onshore in the Waipoga Basin in the late Miocene since the inception of growth of the Central Range, beginning at 12 Ma, resulting in sediment accumulation of up to 12,200 m. This evidence is more consistent with the second hypothesis, and the volume of sediment accumulated means it is unlikely that the embayment was the result of recent (2-3 Ma) rotation of structural blocks. At first order, we predict that infilling is mainly composed of siliciclastics sourced in the graphite-bearing Ruffaer Metamorphic Belt and its equivalent in the Weyland Overthrust. Ophiolites, volcanic arc rocks and diorites contribute minor proportions. From the unroofing paths in the Central Range we deduce two rates of solid phase accumulation (SPAR) since 12 Ma, the first one at a mean SPAR ranging between 0.12 and 0.25 mm/a with a maximum SPAR of 0.23-0.58 mm/a, and the second during the last 3 Ma, at a mean SPAR ranging between 0.93 and 1.62 mm/a and with a maximum SPAR between 2.13 and 3.17 mm/a, i.e., 6700-10,000 m of Plio-Pleistocene sediment accumulation. Local transtensional tectonics may explain these unusually high rates of sedimentation in an overall sinistral oblique convergence setting.
Description of the three axis low-g accelerometer package
NASA Technical Reports Server (NTRS)
Amalavage, A. J.; Fikes, E. H.; Berry, E. H.
1978-01-01
The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.
NASA Astrophysics Data System (ADS)
Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang
2016-05-01
For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.
A guided-wave system for monitoring the wing skin-to-spar bond in unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco; Marzani, Alessandro; Coccia, Stefano; Oliver, Joseph; Kosmatka, John; Rizzo, Piervincenzo; Restivo, Gaetano
2005-05-01
Unmanned Aerial Vehicles (UAVs) are being increasingly used in military as well as civil applications. A critical part of the structure is the adhesive bond between the wing skin and the supporting spar. If not detected early, bond defects originating during manufacturing or in service flight can lead to inefficient flight performance and eventual global failure. This paper will present results from a bond inspection system based on attached piezoelectric disks probing the skin-to-spar bondline with ultrasonic guided waves in the hundreds of kilohertz range. The test components were CFRP composite panels of two different fiber layups bonded to a CFRP composite tube using epoxy adhesive. Three types of bond conditions were simulated, namely regions of poor cohesive strength, regions with localized disbonds and well bonded regions. The root mean square and variance of the received time-domain signals and their discrete wavelet decompositions were computed for the dominant modes propagating through the various bond regions in two different inspection configurations. Semi-analytical finite element analysis of the bonded multilayer joint was also carried out to identify and predict the sensitivity of the predominant carrier modes to the different bond defects. Emphasis of this research is based upon designing a built-in system for monitoring the structural integrity of bonded joints in UAVs and other aerospace structures.
Performance of a steel spar wind turbine blade on the Mod-0 100 kW experimental wind turbine
NASA Technical Reports Server (NTRS)
Keith, T. G., Jr.; Sullivan, T. L.; Viterna, L. A.
1980-01-01
The performance and loading of a large wind rotor, 38.4 m in diameter and composed of two low-cost steel spar blades were examined. Two blades were fabricated at Lewis Research Center and successfully operated on the Mod-0 wind turbine at Plum Brook. The blades were operated on a tower on which the natural bending frequency were altered by placing the tower on a leaf-spring apparatus. It was found that neither blade performance nor loading were affected significantly by this tower softening technique. Rotor performance exceeded prediction while blade loads were found to be in reasonable agreement with those predicted. Seventy-five hours of operation over a five month period resulted in no deterioration in the blade.
Nondestructive evaluation of helicopter rotor blades using guided Lamb modes.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2014-03-01
This paper presents an application for turning and direct modes in a complex composite laminate structure. The propagation and interaction of turning modes and fundamental Lamb modes are investigated in the skin, spar and web sections of a helicopter rotor blade. Finite element models were used to understand the various mode conversions at geometric discontinuities such as web-spar joints. Experimental investigation was carried out with the help of air coupled ultrasonic transducers. The turning and direct modes were confirmed with the help of particle displacements and velocities. Experimental B-Scans were performed on damaged and undamaged samples for qualitative and quantitative assessment of the structure. A strong correlation between the numerical and experimental results was observed and reported. Copyright © 2013 Elsevier B.V. All rights reserved.
Analytical modeling and experimental evaluation of a passively morphing ornithopter wing
NASA Astrophysics Data System (ADS)
Wissa, Aimy A.
Ornithopters or flapping wing Unmanned Aerial Vehicles (UAVs) have potential applications in both civil and military sectors. Amongst all categories of UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work was to improve the steady level flight wing performance of an ornithopter by implementing the Continuous Vortex Gait (CVG) using a novel passive compliant spine. The CVG is a set of bio-inspired kinematics that natural flyers use to produce lift and thrust during steady level flight. A significant contribution of this work was the recognition that the CVG is an avian gait that could be achieved using a passive morphing mechanism. In contrast to rigid-link mechanisms and active approaches, reported by other researchers in the open literature, passive morphing mechanisms require no additional energy expenditure, while introducing minimal weight addition and complexity. During the execution of the CVG, the avian wing wrist is the primary joint responsible for the wing shape changes. Thus a compliant mechanism, called a compliant spine, was fabricated, and integrated in the ornithopter's wing leading edge spar where an avian wrist would normally exist, namely at 37% of the wing half span. Each compliant spine was designed to be flexible in bending during the wing upstroke and stiff in bending during the wing downstroke. Inserting a variable stiffness compliant mechanism in the leading edge (LE) spar of the ornithopter could affect its structural stability. An analytical model was developed to determine the structural stability of the ornithopter LE spar. The model was validated using experimental measurements. The LE spar equations of motion were then reformulated into Mathieu's equation and the LE spar was proven to be structurally stable with a compliant spine design insert. A research ornithopter platform was tested in air and in vacuum as well as in free and constrained flight with various compliant spine designs inserted in its wings. Results from the constrained flight tests indicated that the ornithopter with a compliant spine inserted in its wings consumed 45% less electrical power and produced 16% of its weight in additional lift, without incurring any thrust penalties. Results from, the vacuum constrained tests attributed these benefits to aerodynamic effects rather than inertial effects. Free flight tests were performed at Wright Patterson Air Force Base, which houses the largest indoor flight laboratory in the country. The wing kinematics along with the vehicle dynamics were captured during this testing using ViconRTM motion tracking cameras. These flight tests proved to be successful in producing consistent and repeatable flight data over more than eight free flight flapping cycles of free flight and validated a new and novel testing technique. The ornithopter body dynamics were shown to be significant, i.e. +/-4gs. Inserting the compliant spine into the leading edge spar of the ornithopter during free flight reduced the baseline configuration body vertical center of mass positive acceleration by 69%, which translates into overall lift gains. It also increased the horizontal propulsive force by 300%, which translates into thrust gains.
Revisiting classical silicate dissolution rate laws under hydrothermal conditions
NASA Astrophysics Data System (ADS)
Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand
2015-04-01
In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an apparent modification of silicate dissolution rate over time. In addition, we evidenced that the relation between K-spar dissolution rate and ΔG depends on the crystallographic orientation of the altered surface, and differs from the transition state theory currently implemented into geochemical codes. Importantly, this theoretical curve overestimates the dissolution rates measured in close-to-equilibrium conditions. Taken together, the new findings show promise as a means for improving the accuracy of geochemical simulations. [1] Schott, J., Pokrovsky, O. S., and Oelkers, E. H., 2009. The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. Rev Mineral Geochem 70, 207-258. [2] Daval, D., Hellmann, R., Saldi, G. D., Wirth, R., and Knauss, K. G., 2013. Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside. Geochim Cosmochim Acta 107, 121-134.
Ouergui, Ibrahim; Houcine, Nizar; Marzouki, Hamza; Davis, Philip; Franchini, Emerson; Gmada, Nabil; Bouhlel, Ezzedine
2017-07-01
Ouergui, I, Houcine, N, Marzouki, H, Davis, P, Franchini, E, Gmada, N, and Bouhlel, E. Physiological responses and time-motion analysis of small combat games in kickboxing: impact of ring size and number of within-round sparring partners. J Strength Cond Res 31(7): 1840-1846, 2017-The study aimed to investigate the physiological responses and time-structure of small combat games (SCGs) in kickboxing according to ring sizes and number of sparring partners. Twenty athletes from regional (n = 13) and national levels (n = 7) participated in the study (mean ± SD, age: 20.3 ± 0.9 years; height: 177 ± 4.8 cm; body mass: 71.8 ± 10.5 kg). Blood lactate concentration [La] was measured before and after bouts, and the delta (Δ) was determined. Heart rate (HR) was measured throughout and HR and rating of perceived exertion (RPE) were also measured postbout. The HRpre, HRmean, and percentage of peak HR (%HRpeak) were used for analysis. The HRpeak was determined during a cycle ergometer graded exercise test. Each athlete was confronted by 1 (1 vs. 1; no sparring partner change), 2 (1 vs. 2) and 4 opponents (1 vs. 4) within-round (sparring partner change every 1 minute or 30 seconds, respectively) in different ring sizes (i.e., 2×2 m, 4×4 m, and 6×6 m). All combats were recorded and analyzed to determine the duration of different activity phases (high-intensity activities [HIA], low-intensity actions [LIA], and referee pause [P]). Results showed that values for HRpre and HRmean when opposed by a single individual (1 vs. 1) were lower than other conditions (all p < 0.001). Moreover, %HRpeak values in 1 vs. 1 were lower than in other conditions and higher in 4 × 4 m compared with other sizes. [La]pre, post, and the Δ did not differ among all conditions (p > 0.05). The RPE scores were lower in 1 vs. 1 compared with other conditions (p < 0.001), with no ring sizes effect (p > 0.05). For time-motion variables, HIA values were lower in 1 vs. 1 than in the 2 other conditions and was longer in 2 × 2 m compared with 4 × 4 m and 6 × 6 m, whereas LIA values were higher in 1 vs. 1 and lower in the 2 × 2 m. In conclusion, SCGs seem to be a good form of exercise for sufficient cardiovascular conditioning specific to kickboxing activity in comparison with data from previous studies.
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
James, A. M.
1984-01-01
Topics addressed include: strength and hygrothermal response of L-1011 fin components; wing fuel containment and damage tolerance development; impact dynamics; acoustic transmission; fuselage structure; composite transport wing technology development; spar/assembly concepts.
NASA Astrophysics Data System (ADS)
Tolson, B.; Mai, J.; Kornelsen, K. C.; Coulibaly, P. D.; Anctil, F.; Fortin, V.; Leahy, M.; Hall, B.
2017-12-01
Environmental models are tools for the modern society for a wide range of applications such as flood and drought monitoring, carbon storage and release estimates, predictions of power generation amounts, or reservoir management amongst others. Environmental models differ in the types of processes they incorporate, where land surface models focus on the energy, water, and carbon cycle of the land and hydrological models concentrate mainly on the water cycle. All these models, however, have in common that they rely on environmental input data from ground observations such as temperature, precipitation and/or radiation to force the model. If the same model is run in forecast mode, numerical weather predictions (NWPs) are needed to replace these ground observations. Therefore, it is critical that NWP data be available to develop models and validate forecast performance. These data are provided by the Meteorological Service of Canada (MSC) on a daily basis. MSC provides multiple products ranging from large scale global models ( 33km/grid cell) to high resolution pan-Canadian models ( 2.5km/grid cell). Operational products providing forecasts in real-time are made publicly available only at the time of issue through various means with new forecasts issued 2-4 times per day. Unfortunately, long term storage of these data are offline and relatively inaccessible to the research and operational communities. The new Canadian Surface Prediction Archive (CaSPAr) platform is an accessible rolling archive of 10 of MSC's NWP products. The 500TB platform will allow users to extract specific time periods, regions of interest and variables of interest in an easy to access NetCDF format. CaSPAr and community contributed post-processing scripts and tools are being developed such that the users, for example, can interpolate the data due to their needs or auto-generate model forcing files. We will present the CaSPAr platform and provide some insights in the current development of the web-based user interface (frontend) and implementations used to retrieve MSC's data and provide the data to the user in the inquired shape (backend).
Extracting and Converting Quantitative Data into Human Error Probabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuan Q. Tran; Ronald L. Boring; Jeffrey C. Joe
2007-08-01
This paper discusses a proposed method using a combination of advanced statistical approaches (e.g., meta-analysis, regression, structural equation modeling) that will not only convert different empirical results into a common metric for scaling individual PSFs effects, but will also examine the complex interrelationships among PSFs. Furthermore, the paper discusses how the derived statistical estimates (i.e., effect sizes) can be mapped onto a HRA method (e.g. SPAR-H) to generate HEPs that can then be use in probabilistic risk assessment (PRA). The paper concludes with a discussion of the benefits of using academic literature in assisting HRA analysts in generating sound HEPsmore » and HRA developers in validating current HRA models and formulating new HRA models.« less
OTEC riser cable system, Phase II: conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
Studies are summarized of conceptual designs of riser cable systems for OTEC pilot plants of both the spar and plantship configurations located at sites off the southeast coast of Puerto Rico. The studies utilize a baseline pilot plant riser cable, the design of which has been developed and reported on in other reports. Baseline riser cable systems for OTEC pilot plants are identified, system hardware consistent with these designs are conceptualized, and comparisons of the various system concepts are provided. It is concluded that there are three riser cable systems feasible for a spar pilot plant platform at the Puntamore » Yeguas site, and two riser cable systems feasible at the plantship pilot plant at the Punta Tuna site. Recommendations for further investigations in the areas of materials, hardware design and pre-installation site surveys are also addressed.« less
NASA Technical Reports Server (NTRS)
Pepper, William B.; Wailes, William K.
1989-01-01
A new three-phase approach to recovery of the large liquid rocket boosters being studied for the Space Shuttle is proposed. The concept consists of a cluster of larger ribbon parachutes, retrorockets, and spar mode flotation. The two inert liquid rocket boosters weighing 115,000 lb to 183,000 lb descend from high altitude in a side-on coning attitude to 16,000 ft altitude where a cluster of large ribbon parachutes are deployed. The terminal velocity near water landing is 80 ft/sec. Retrorockets are used to decrease the velocity to about 40 ft/sec. The third phase is opening of the front end of the cylindrical rocket case to allow flooding to cushion impact and allow vertical flotation in the spar mode keeping the four expensive liquid rocket engines dry.
FOD impact testing of composite fan blades
NASA Technical Reports Server (NTRS)
Johns, R. H.
1974-01-01
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.
FOD impact testing of composite fan blades
NASA Technical Reports Server (NTRS)
Johns, R. H.
1974-01-01
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.
Impact testing on composite fan blades
NASA Technical Reports Server (NTRS)
Johns, R. H.
1974-01-01
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.
Carretié, Luis; Kessel, Dominique; García-Rubio, María J; Giménez-Fernández, Tamara; Hoyos, Sandra; Hernández-Lorca, María
2017-10-01
Exogenous attention is a set of mechanisms that allow us to detect and reorient toward salient events-such as appetitive or aversive-that appear out of the current focus of attention. The nature of these mechanisms, particularly the involvement of the parvocellular and magnocellular visual processing systems, was explored. Thirty-four participants performed a demanding digit categorization task while salient (spiders or S) and neutral (wheels or W) stimuli were presented as distractors under two figure-ground formats: heterochromatic/isoluminant (exclusively processed by the parvocellular system, Par trials) and isochromatic/heteroluminant (preferentially processed by the magnocellular system, Mag trials). This resulted in four conditions: SPar, SMag, WPar, and WMag. Behavioral (RTs and error rates in the task) and electrophysiological (ERPs) indices of exogenous attention were analyzed. Behavior showed greater attentional capture by SMag than by SPar distractors and enhanced modulation of SMag capture as fear of spiders reported by participants increased. ERPs reflected a sequence from magnocellular dominant (P1p, ≃120 msec) to both magnocellular and parvocellular processing (N2p and P2a, ≃200 msec). Importantly, amplitudes in one N2p subcomponent were greater to SMag than to SPar and WMag distractors, indicating greater magnocellular sensitivity to saliency. Taking together, results support a magnocellular bias in exogenous attention toward distractors of any nature during initial processing, a bias that remains in later stages when biologically salient distractors are present.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerda, Artemi; Misiūnė, Ieva
2015-04-01
The soil sodium and potassium adsorption ratio (SPAR) is an index that measures the amount of sodium and potassium adsorbed onto clay and organic matter surfaces, in relation to calcium and magnesium. Assess the potential of soil dispersion or flocculation, a process which has implication in soil hydraulic properties and erosion (Sarah, 2004). Depending on severity and the type of ash produced, fire can changes in the immediate period the soil nutrient status (Bodi et al. 2014). Ash releases onto soil surface a large amount of cations, due the high pH. Previous works showed that SPAR from ash slurries is higher than solutions produced from litter (Pereira et al., 2014a). Normally the spatial distribution of topsoil nutrients in the immediate period after the fire is very heterogeneous, due to the different impacts of fire. Thus it is important to identify the most accurate interpolation method in order to identify with better precision the impacts of fire on soil properties. The objective of this work is to test several interpolation methods. The study area is located in near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire it was designed a plot in a burned area with near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Twenty five samples were collected from the topsoil. The SPAR index was calculated according to the formula: (Na++K+)/(Ca2++Mg2+)1/2 (Sarah, 2004). Data followed the normal distribution, thus no transformation was required previous to data modelling. Several well know interpolation models were tested, as Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF), Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ), Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) and Local Polynomial (LP) with the power of 1 and 2 and Ordinary Kriging. The best interpolator was the one which had the lowest Root Mean Square Error (RMSE) (Pereira et al., 2014b). The results showed that on average, SPAR index was 0.85, with a minimum of 0.18, a maximum of 1.55, a standard deviation of 0.38 and a coefficient of variation of 44.70%. No previous works were carried out on fire-affected soils, however comparing it to ash slurries obtained from previous works (Pereira et al., 2014a), the values were higher. Among all the interpolation methods tested, the most accurate was IDW 1 (RMSE=0.393), and the less precise NCS (RMSE=0.542). This shows that data distribution is highly variable in space, since IDW methods are better interpolators for data irregularly distributed. The high spatial variability distribution of SPAR is very likely to affect soil hydraulic properties and plant recuperation in the immediate period after the fire. More research is needed to identify the SPAR spatio-temporal impacts of fire on soil. Acknowledgments POSTFIRE (Soil quality, erosion control and plant cover recovery under different post-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hyro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014a) Wildfire effects on extractable elements in ash from Pinus Pinaster forest in Portugal. Hydrological Processes, 28, 3681-3690. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2014) Modelling the impacts of wildfire on ash thickness in the immediate period after the fire. Land Degradation and Development. DOI: 10.1002/ldr.2195 Sarah, P. (2004) Soil sodium and potassium adsorption ratio along a Mediterranean-arid transect. Journal of Arid Environments, 59, 731-741.
Haywick, D.W.; Kopaska-Merkel, D. C.; Bersch, M.G.
2009-01-01
The Bangor Limestone is a Mississippian (Chesterian) shallow marine carbonate formation exposed over a large portion of the Interior Low Plateaus province of northern Alabama. It is dominated by oolitic grainstone and skeletal wackestone and packstone, but in one outcrop near Moulton, Alabama, the Bangor contains a five m thick, 25 m wide, oolitebiodetrital moundtidal flat succession. This sequence is interpreted as a 4th order sea level cycle. Four petrofacies (oolite, mound, skeletal and mudstone/dolomicrite) and four diagenetic phases (iron oxide, fibrous calcite cement, calcite spar cement and dolomite) are distinguished at the study site. Iron oxide, a minor component, stained and/or coated some ooids, intraclasts and skeletal components in the oolite petrofacies. Many of the allochems were stained prior to secondary cortical growth suggesting a short period of subaerial exposure during oolite sedimentation. The oolite petrofacies also contains minor amounts of fibrous calcite cement, a first generation marine cement, and rare infiltrated micrite that might represent a second phase of marine cement, or a first phase of meteoric cement (i.e., "vadose silt") (Dunham 1969). Intergranular pore space in all four petrofacies is filled with up to three phases of meteoric calcite spar cement. The most complete record of meteoric cementation is preserved within coralline void spaces in the mound petrofacies and indicates precipitation in the following order: (1) non-ferroan scalenohedral spar, (2) ferroan drusy spar (0.1-0.4 wt% Fe2+) and (3) non-ferroan drusy spar. The first scalenohedral phase of meteoric cement is distributed throughout the oolite and mound petrofacies. The ferroan phase of meteoric calcite is a void-filling cement that is abundant in the mound petrofacies and less common in the skeletal and mudstone/dolomicrite petrofacies. Non-ferroan drusy calcite is pervasive throughout the Bangor Limestone at the Moulton study site. Growth of the fourth diagenetic phase, dolomite, was the dominant event in the micrite/dolomicrite petrofacies, particularly just below an irregular surface overlain by a brecciated interval. The irregular surface is interpreted as an exposure surface. Three phases of dolomite occur below the exposure surface. The majority is finely crystalline, anhedral, and enriched in Si4+, criteria which support a supratidal or mixed hypersaline\\meteoric origin. Secondary phases of coarser euhedral non-ferroan and ferroan dolomite are restricted to fenestrae and other voids in the micrite/dolomicrite petrofacies and were precipitated during subsequent meteoric diagenesis. Diagenesis of the Bangor Limestone at the Moulton outcrop was dominated by synsedimentary and very early meteoric processes driven by periods of subaerial exposure. Large voids within the mound petrofacies were particularly important, as they remained open long enough to record a more detailed early meteoric cement stratigraphy that might not be evident in Bangor Limestone outcrops elsewhere in Alabama.
NASA Technical Reports Server (NTRS)
Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.
1976-01-01
The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.
Structural fatigue test results for large wind turbine blade sections
NASA Technical Reports Server (NTRS)
Faddoul, J. R.; Sullivan, T. L.
1982-01-01
In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).
100-kW hingeless metal wind turbine blade design, analysis and fabrication
NASA Technical Reports Server (NTRS)
Donham, R. E.; Schmidt, J.; Linscott, B. S.
1975-01-01
The design, fabrication and analysis of aluminum wind turbine rotor blades is discussed. The blades are designed to meet criteria established for a 100-kilowatt wind turbine generator operating between 8 and 60-mile-per-hour speeds at 40 revolutions per minute. The design wind speed is 18 miles per hour. Two rotor blades are used on a new facility which includes a hingeless hub and its shaft, gearbox, generator and tower. Experience shows that, for stopped rotors, safe wind speeds are strongly dependent on blade torsional and bending rigidities which the basic D spar structural blade design provides. The 0.25-inch-thick nose skin is brake/bump formed to provide the basic 'D' spar structure for the tapered, twisted blades. Adequate margins for flutter and divergence are predicted from the use of existing, correlated stopped rotor and helicopter rotor analysis programs.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
Evaluation of graphite composite materials for bearingless helicopter rotor application
NASA Technical Reports Server (NTRS)
Ulitchny, M. G.; Lucas, J. J.
1974-01-01
Small scale combined load fatigue tests were conducted on twelve unidirectional graphite-glass scrim-epoxy composite specimens. The specimens were 1 in. (2.54 cm) wide by 0.1 in. (.25 cm) thick by 5 in. (12.70 cm) long. The fatigue data was developed for the preliminary design of the spar for a bearingless helicopter main rotor. Three loading conditions were tested. Combinations of steady axial, vibratory torsion, and vibratory bending stresses were chosen to simulate the calculated stresses which exist at the root and at the outboard end of the pitch change section of the spar. Calculated loads for 150 knots (77.1 m/sec) level flight were chosen as the baseline condition. Test stresses were varied up to 4.4 times the baseline stress levels. Damage resulted in reduced stiffness; however, in no case was complete fracture of the specimen experienced.
Sonic fatigue testing of an advanced composite aileron
NASA Technical Reports Server (NTRS)
Soovere, J.
1982-01-01
The sonic fatigue test program to verify the design of the composite inboard aileron for the L-1011 airplane is described. The composite aileron is fabricated from graphite/epoxy minisandwich covers which are attached to graphite/epoxy front spar and ribs, and to an aluminum rear spar with fasteners. The program covers the development of random fatigue data by means of coupon testing and modal studies on a representative section of the composite aileron, culminating in the accelerated sonic fatigue proof test. The composite aileron sustained nonlinear panel vibration during the proof test without failure. Viscous damping coefficients as low as 0.4% were measured on the panels. The effects of moisture conditioning and elevated temperature on the random fatigue life of both undamaged and impact damaged coupons were investigated. The combination of impact damage, moisture, and a 180 F temperature could reduce the random fatigue life by 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, M.J.; Pryor, W.A.
1985-02-01
The Spar Mountain Member of the Ste. Genevieve Limestone (middle Mississippian) in Hamilton County, Illinois, consists of 40-60 ft (12-18 m) of interbedded limestones, shales, and sandstones. Five cores and 1400 electric logs were used to delineate two shallowing-upward carbonate cycles and 2 major clastic pulses within the Spar Mountain. Eight lithofacies representing 6 depositional environments were identified. They are: (A) echinoderm-brachiopod dolostone to packstone (outer ramp), (B) ooid-peloidal grainstone (intermediate ramp), (C) skeletal grainstone (intermediate ramp), (D) ooid-molluscan-intraclastic wackestone to grainstone (inner ramp), (E) pelletal-skeletal wackestone (inner ramp), (F) quartzarenite (channelized nearshore), (G) quartz-sublithic arenite to wacke (delta platform),more » and (H) quartz mudstone (prodelta, delta platform). Deposition occurred on a southwest-dipping carbonate ramp, with siliciclastic sediments originating from the northeast. The sequence of facies and their inferred depositional environments record 2 major progradational episodes. Oolitic facies are interpreted to be of tidal-bar belt origin and quartzarenite facies are interpreted to be of delta-distributary channel origin. Their distribution is partially controlled by antecedent and syndepositional topography. Many of these paleotopographic highes are positive features today and yield pinch-out stratigraphic relationships. Paleogeographic reconstructions demonstrate that the primary control on facies distribution was the position of the delta proper along strike. However, depositional topography also influenced sedimentation, particularly in the sand-sized fraction. Using this concept, better prediction of underlying porous buildups (ooid shoals) is possible if thickness of the overlying siliciclastic is known. Within buildups, a complex diagenetic history complicates the distribution of porosity.« less
NASA Astrophysics Data System (ADS)
Airoldi, A.; Marelli, L.; Bettini, P.; Sala, G.; Apicella, A.
2017-04-01
Technologies based on optical fibers provide the possibility of installing relatively dense networks of sensors that can perform effective strain sensing functions during the operational life of structures. A contemporary trend is the increasing adoption of composite materials in aerospace constructions, which leads to structural architectures made of large monolithic elements. The paper is aimed at showing the feasibility of a detailed reconstruction of the strain field in a composite spar, which is based on the development of reference finite element models and the identification of load modes, consisting of a parameterized set of forces. The procedure is described and assessed in ideal conditions. Thereafter, a surrogate model is used to obtain realistic representation of the data acquired by the strain sensing system, so that the developed procedure is evaluated considering local effects due to the introduction of loads, significant modelling discrepancy in the development of the reference model and the presence of measurement noise. Results show that the method can obtain a robust and quite detailed reconstruction of strain fields, even at the level of local distributions, of the internal forces in the spars and of the displacements, by identifying an equivalent set of load parameters. Finally, the trade-off between the number of sensor and the accuracy, and the optimal position of the sensors for a given maximum number of sensors is evaluated by performing a multi-objective optimization, thus showing that even a relative dense network of externally applied sensors can be used to achieve good quality results.
Handley Page metal construction
NASA Technical Reports Server (NTRS)
1929-01-01
In this report Handley Page construction techniques are shown such as: solid-drawn tubular duralumin spars are used in the stabilizer; plain channel sections are used extensively for minor components; and the manner of assembling them into a stabilizer compression strut is shown.
78 FR 73689 - Airworthiness Directives; Beechcraft Corporation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... low and that the actual costs are running $5,983 per side for the spar cap angles plus $9,212 for.... Advisory Circular (AC) 23-13A, Chapter 6, dated September 29, 2005, describes what additional data is...
Descriptions of Space Processing Applications Rocket (SPAR) experiments
NASA Technical Reports Server (NTRS)
Naumann, R. J. (Editor)
1979-01-01
The experiments for all the Space Processing Applications Rocket experiments, including those flown on previous Space Processing flights as well as those under development for future flights are described. The experiment objective, rationale, approach, and results or anticipated results are summarized.
SPAR 6 experiment report containerless processing of glass experiment 74-42
NASA Technical Reports Server (NTRS)
Happe, R. A.
1980-01-01
Pertinent portions of the ground based research are described, including experiments leading to the selection of the flight sample composition: a silica modified gallia-calcia glass. Included are details of the preparation of an approximately .25 in diameter flight sample.
Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten
2017-10-03
In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.
Al-Khudairi, Othman; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten
2017-01-01
In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure. PMID:28972548
Papageorgiou, Eleni; Hardiess, Gregor; Ackermann, Hermann; Wiethoelter, Horst; Dietz, Klaus; Mallot, Hanspeter A; Schiefer, Ulrich
2012-01-01
The aim of the present study was to examine the effect of homonymous visual field defects (HVFDs) on collision avoidance of dynamic obstacles at an intersection under virtual reality (VR) conditions. Overall performance was quantitatively assessed as the number of collisions at a virtual intersection at two difficulty levels. HVFDs were assessed by binocular semi-automated kinetic perimetry within the 90° visual field, stimulus III4e and the area of sparing within the affected hemifield (A-SPAR in deg(2)) was calculated. The effect of A-SPAR, age, gender, side of brain lesion, time since brain lesion and presence of macular sparing on the number of collisions, as well as performance over time were investigated. Thirty patients (10 female, 20 male, age range: 19-71 years) with HVFDs due to unilateral vascular brain lesions and 30 group-age-matched subjects with normal visual fields were examined. The mean number of collisions was higher for patients and in the more difficult level they experienced more collisions with vehicles approaching from the blind side than the seeing side. Lower A-SPAR and increasing age were associated with decreasing performance. However, in agreement with previous studies, wide variability in performance among patients with identical visual field defects was observed and performance of some patients was similar to that of normal subjects. Both patients and healthy subjects displayed equal improvement of performance over time in the more difficult level. In conclusion, our results suggest that visual-field related parameters per se are inadequate in predicting successful collision avoidance. Individualized approaches which also consider compensatory strategies by means of eye and head movements should be introduced. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ouergui, I; Hammouda, O; Chtourou, H; Zarrouk, N; Rebai, H; Chaouachi, A
2013-10-01
Objective of the study was to determine the effects of a kick-boxing match on muscle power of the upper and lower body as well as the associated perceived exertion in young men. Eighteen well trained kick-boxers volunteered to participate in a competitive sparring bout preceded and followed by three anaerobic tests as follow: squat jump (SJ) and counter movement jump (CMJ) for legs and 30-s Wingate test for arms. The sparring bout consisted of three 2 min rounds with 1 min recovery period in-between. Blood lactate (BL), heart rate (HR) and rating of perceived exertion (RPE) were analyzed before and after each round. The results showed that vertical jump distance in SJ and CMJ were significantly lower after the kick-boxing match (27.92±3.84 vs. 25.28±4.39 cm; 29.8±5.33 vs 28.48±4.64 cm, for SJ and CMJ respectively). Likewise, peak and mean power in the Wingate test decreased significantly after the sparring bout (5.89±0. 69 vs. 5.26±0.66 W•kg-1 and 4.51±0.53 vs. 4.12±0.51 W•kg-1 for PP and MP respectively; P<0.001). Moreover, we found a significant increase in BL, HR, and RPE after the kick-boxing match (P<0.001). BL increased significantly after the second and third round from the post round one values' (P<0.001). These findings showed that a single kick-boxing match is of sufficient intensity to stress the anaerobic metabolism. Thus, training protocols should include exercises that train the anaerobic energetic pathways for upper and lower body.
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.
2014-01-01
This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.
78 FR 43770 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... elevator rear spar stiffener assembly, which could adversely affect elevator structural stiffness, which... aircraft in air commerce by prescribing regulations for practices, methods, and procedures the... 13132. This AD will not have a substantial direct effect on the States, on the relationship between the...
33 CFR 147.831 - Holstein Truss Spar safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Description. Holstein, Green Canyon 645 (GC 645), located at position 27°19′17″ N, 90°32′08″ W. The area... coordinates are based upon North American Datum 1983. (b) Regulation. No vessel may enter or remain in this...
Cost analysis of composite fan blade manufacturing processes
NASA Technical Reports Server (NTRS)
Stelson, T. S.; Barth, C. F.
1980-01-01
The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.
NASA Astrophysics Data System (ADS)
Wang, Han; Hu, Zhi-qiang; Meng, Xiang-yin
2018-06-01
Both numerical calculation and model test are important techniques to study and forecast the dynamic responses of the floating offshore wind turbine (FOWT). However, both the methods have their own limitations at present. In this study, the dynamic responses of a 5 MW OC3 spar-type floating wind turbine designed for a water depth of 200 m are numerically investigated and validated by a 1:50 scaled model test. Moreover, the discrepancies between the numerical calculations and model tests are obtained and discussed. According to the discussions, it is found that the surge and pitch are coupled with the mooring tensions, but the heave is independent of them. Surge and pitch are mainly induced by wave under wind wave conditions. Wind and current will induce the low-frequency average responses, while wave will induce the fluctuation ranges of the responses. In addition, wave will induce the wavefrequency responses but wind and current will restrain the ranges of the responses.
Heterogeneous chemical reactions: Preparation of monodisperse latexes
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Sterk, A. A.; Bethke, G. W.
1977-01-01
It is demonstrated that a photoinitiated emulsion polymerization can be carried out to a significant conversion in a SPAR rocket prototype polymerization vessel within the six minutes allowed for the experiment. The percentage of conversion was determined by both dilatometry and gravimetric methods with good agreement. The experimental results lead to the following conclusions: (1) emulsion polymerizations can be carried out to conversions as high as 75%, using a stable micellized styrene-SLS system plus photoinitiator; (2) dilatometry can be used to accurately determine both the rate and conversion of polymerization; (3) thermal expansion due to the light source and heat of reaction is small and can be corrected for if necessary; (4) although seeded emulsion polymerizations are unfavorable in photoinitiation, as opposed to chemical initiation, polymerizations can be carried out to at least 15% conversion using 7940A seed particles, with 0.05% solids; and (5) photoinitiation should be used to initiate polymerization in the SPAR rocket experiments because of the mechanical simplicity of the experiment.
MSAT signalling and network management architectures
NASA Technical Reports Server (NTRS)
Garland, Peter; Keelty, J. Malcolm
1989-01-01
Spar Aerospace has been active in the design and definition of Mobile Satellite Systems since the mid 1970's. In work sponsored by the Canadian Department of Communications, various payload configurations have evolved. In addressing the payload configuration, the requirements of the mobile user, the service provider and the satellite operator have always been the most important consideration. The current Spar 11 beam satellite design is reviewed, and its capabilities to provide flexibility and potential for network growth within the WARC87 allocations are explored. To enable the full capabilities of the payload to be realized, a large amount of ground based Switching and Network Management infrastructure will be required, when space segment becomes available. Early indications were that a single custom designed Demand Assignment Multiple Access (DAMA) switch should be implemented to provide efficient use of the space segment. As MSAT has evolved into a multiple service concept, supporting many service providers, this architecture should be reviewed. Some possible signalling and Network Management solutions are explored.
Elimination sequence optimization for SPAR
NASA Technical Reports Server (NTRS)
Hogan, Harry A.
1986-01-01
SPAR is a large-scale computer program for finite element structural analysis. The program allows user specification of the order in which the joints of a structure are to be eliminated since this order can have significant influence over solution performance, in terms of both storage requirements and computer time. An efficient elimination sequence can improve performance by over 50% for some problems. Obtaining such sequences, however, requires the expertise of an experienced user and can take hours of tedious effort to affect. Thus, an automatic elimination sequence optimizer would enhance productivity by reducing the analysts' problem definition time and by lowering computer costs. Two possible methods for automating the elimination sequence specifications were examined. Several algorithms based on the graph theory representations of sparse matrices were studied with mixed results. Significant improvement in the program performance was achieved, but sequencing by an experienced user still yields substantially better results. The initial results provide encouraging evidence that the potential benefits of such an automatic sequencer would be well worth the effort.
Flight service evaluation of composite components on Bell 206L and Sikorsky S-76 helicopters
NASA Technical Reports Server (NTRS)
Baker, D. J.
1983-01-01
Progress on two programs to evaluate composite structural components in flight service on commercial helicopters is described. Thirty-six ship sets of composite components that include the litter door, baggage door, forward fairing, and vertical fin were installed on Bell Model 206L helicopters that are operating in widely different climatic areas. Four horizontal stabilizers and ten tail rotor spars that are production components on the S-76 helicopter were tested after prescribed periods of service to determine the effects of the operating environment on their performance. Concurrent with the flight evaluation, specimens from materials used to fabricate the components were exposed in ground racks and tested at specified intervals to determine the effects of outdoor environments. Results achieved from 14,000 hours of accumulated service on the 206L components, tests on a S-76 horizontal stabilizer after 1600 hours of service, tests on a S-76 tail rotor spar after 2300 hours service, and two years of ground based exposure of material coupons are reported.
1972-02-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). This photograph shows the spar unit, which housed major solar instruments, being lowered into the rack, the outer octagonal complex frame of the ATM flight unit.
Surgical Nondestructive Evaluation (SuNDE)
2011-07-01
Primary selected A-10 wing inspection area, on the stringer runouts opposite the front spar access hole...at Stringer Doubler Runout . .........................................11 Figure 6. A-10 Inspection Required Under Stringer Flange...volume. ................................................14 Figure 9. CAD view of the A10 cavity showing the inspection areas on the stringer runouts
46 CFR 69.65 - Calculation of volumes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accepted naval architectural practices for the spaces concerned. (b) The volume of the hull below the upper... boundary plating, in vessels constructed of metal; and (2) To the outer surface of the shell or to the... cargo space, measurements must be taken without consideration for insulation, sparring, or ceiling...
46 CFR 69.65 - Calculation of volumes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accepted naval architectural practices for the spaces concerned. (b) The volume of the hull below the upper... boundary plating, in vessels constructed of metal; and (2) To the outer surface of the shell or to the... cargo space, measurements must be taken without consideration for insulation, sparring, or ceiling...
46 CFR 69.65 - Calculation of volumes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accepted naval architectural practices for the spaces concerned. (b) The volume of the hull below the upper... boundary plating, in vessels constructed of metal; and (2) To the outer surface of the shell or to the... cargo space, measurements must be taken without consideration for insulation, sparring, or ceiling...
77 FR 19074 - Airworthiness Directives; DASSAULT AVIATION Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... reports of fuel leakage from a defective fuel high-level sensor located in the wing front spar. This AD requires inspecting to determine fuel quantity sensors part numbers and replacing of certain fuel quantity sensors with new fuel quantity sensors. We are issuing this AD to prevent internal fuel leakage with...
78 FR 40069 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... and an updated fatigue and damage tolerance analysis that the risk for fatigue cracking on the front... and correct fatigue cracks in the bolt holes of the wing spars, which could result in reduced..., between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service information...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... window channels, aft cabin pressure web, external wing to fuselage fillets, and fasteners; repair or..., the vertical channels, the upper picture window channels, aft cabin pressure web, external wing to... lower wing main spar, the vertical channels, the upper picture window channels, aft cabin pressure web...
Promoting Response Variability and Stimulus Generalization in Martial Arts Training
ERIC Educational Resources Information Center
Harding, Jay W.; Wacker, David P.; Berg, Wendy K.; Rick, Gary; Lee, John F.
2004-01-01
The effects of reinforcement and extinction on response variability and stimulus generalization in the punching and kicking techniques of 2 martial arts students were evaluated across drill and sparring conditions. During both conditions, the students were asked to demonstrate different techniques in response to an instructor's punching attack.…
Ceramic matrix composite turbine engine vane
NASA Technical Reports Server (NTRS)
Schaff, Jeffery R. (Inventor); Shi, Jun (Inventor)
2012-01-01
A vane has an airfoil shell and a spar within the shell. The vane has an outboard shroud at an outboard end of the shell and an inboard platform at an inboard end of the shell. The shell includes a region having a coefficient of thermal expansion (CTE) varying with depth.
77 FR 34281 - Airworthiness Directives; Schweizer Aircraft Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... brackets, inspecting the mounting brackets for wear greater than 0.002-inch deep, and replacing the mounting bracket if the bracket wear exceeds 0.002-inch deep. [cir] Modifying the aft fuselage assembly by... areas, and replacing the spar if the wear exceeds 0.002-inch deep. [cir] Inspecting for rivet...
Colorado Schools Chief, Local Superintendents Spar over Role of State
ERIC Educational Resources Information Center
McNeil, Michele
2006-01-01
Colorado's 178 district superintendents are embroiled in a polite, yet pointed debate with Commissioner of Education William J. Moloney and the state school board over the state's role in helping districts raise student achievement. In this article, the author discusses Colorado district superintendents' grievances. They are calling for more…
77 FR 29863 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... the left and right wing lower main spar caps for cracks and either replacing cracked wing lower main... found free of cracks or incorporating an FAA-approved modification. This AD also requires reporting the results of the inspections to the FAA. This AD was prompted by reports of cracks found in the wing lower...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... results from a damage tolerance analysis conducted by the manufacturer indicating that fatigue cracking... cracking of the wing rear spar and upper surface zones, and repair if necessary. We are issuing this AD to detect and correct such fatigue cracking, which could result in cracking that grows large enough to...
Advantages of Oxide Films as Bases for Aluminum Pigmented Surface Coatings for Aluminum Alloys
NASA Technical Reports Server (NTRS)
Buzzard, R W; Mutchler, W H
1931-01-01
Both laboratory and weather-exposure corrosion tests showed conclusively that the protection afforded by aluminum pigmented spar varnish coatings applied to previously anodized aluminum surfaces was greatly superior to that afforded by the same coatings applied to surfaces which had simply been cleaned free from grease and not anodized.
75 FR 43097 - Airworthiness Directives; The Boeing Company Model 757 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... must be sealed for lightning strike protection. Relevant Service Information AD 2008-23-19 referred to... additional fasteners in the main fuel tanks must be sealed for lightning strike protection. The Federal... bundles inside the left and right equipment cooling system bays, on the left and right rear spars, and on...
78 FR 37152 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
... rotor (M/R) blade spar space to determine whether it is oversized and reidentifying the blade and... Blvd., Room 663, Fort Worth, Texas 76137. FOR FURTHER INFORMATION CONTACT: Sharon Miles, Aerospace... Management Group, FAA, may approve AMOCs for this AD. Send your proposal to: Sharon Miles, Aerospace Engineer...
12. FLOOR 2; STONE CRANE IN PLACE FOR ROCK STONES; ...
12. FLOOR 2; STONE CRANE IN PLACE FOR ROCK STONES; STONE CRANE HAS OAK SPAR, JIB AND BRACE, METAL SCREW, IRON YOKE AND DOGS; IRON PINS FIT THROUGH HOLES IN DOGS INTO HOLES DRILLED IN RUNNER STONE - Hook Windmill, North Main Street at Pantigo Road, East Hampton, Suffolk County, NY
The Rising Powers and Collective Security in South East Asia
2011-03-22
unassailable and materializes as an overwhelmingly negative force in the region. As Charles de Gaulle once said ―Alliances are like girls and roses. They...62 Government of India, Indian Defence Policy. 63 ― Naked aggression: China and America spar at sea,‖ The Economist, (Mar 12, 2009) 64 John
77 FR 32433 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... front spar of the wing through the slat track housing. This action revises that NPRM by adding...-on actions. Requests To Clarify Reporting Results Boeing, Delta Air Lines (Delta), and FedEx... request is not shown in paragraph (h) of the NPRM (75 FR 31327, June 3, 2010). Delta stated that reporting...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... Sikorsky Model S-64E helicopters. The AD requires repetitive checks of the Blade Inspection Method (BIM... and check procedures for BIM blades installed on the Model S-64F helicopters. Several blade spars with a crack emanating from corrosion pits and other damage have been found because of BIM pressure...
75 FR 81422 - Airworthiness Directives; The Boeing Company Model 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... valve, oxygen mask deployment, and burned wires, which could be an ignition source in a hidden area of... extremely remote, and disagrees with the references to the spar shut-off valve, oxygen masks, and... engine. In regard to the airplane's oxygen system, while failure of the oxygen mask deployment system...
77 FR 6688 - Airworthiness Directives; Bombardier Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... inspection area of the rear spar lower cap from WS 51.00 to WS 49.50 and to modify the ultrasonic inspection... wing station (WS) 51.00, and the wing lower skin. Additional actions, if cracking is found, include... of cracking found outside the inspection area. This proposed AD would extend the inspection area of...
76 FR 68368 - Airworthiness Directives; DASSAULT AVIATION Model MYSTERE-FALCON 900 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... Mystere-Falcon 900 aeroplanes experienced fuel leakage from a defective fuel high-level sensor located in the wing front spar. Investigations revealed that the leakage was due to a defective fuel quantity sensor * * *. This condition, if not detected and corrected, could lead to an internal fuel leakage with...
76 FR 58098 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all The Boeing... inspections for cracks on the area around certain fasteners of the access opening doubler on the left and... area around certain fasteners of the access opening doubler on the left and right wing center spar...
78 FR 28125 - Airworthiness Directives; Twin Commander Aircraft LLC Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
...), DOT. ACTION: Final rule; request for comments. SUMMARY: We are adopting a new airworthiness directive... channels, left- and right-hand wing main spar frame support channels, and aft pressure bulkhead web. This... Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC 20590. Hand Delivery: U.S. Department of...
77 FR 65805 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all The Boeing... current high frequency (ETHF) inspections for cracking on the aft side of the left and right wing rear... and correct cracking of the left and right rear spar lower caps, which could result in fuel leaks and...
NASA Technical Reports Server (NTRS)
Lameris, J.
1984-01-01
The development of a thermal and structural model for a hypersonic wing test structure using the NASTRAN finite-element method as its primary analytical tool is described. A detailed analysis was defined to obtain the temperature and thermal stress distribution in the whole wing as well as the five upper and lower root panels. During the development of the models, it was found that the thermal application of NASTRAN and the VIEW program, used for the generation of the radiation exchange coefficients, were definicent. Although for most of these deficiencies solutions could be found, the existence of one particular deficiency in the current thermal model prevented the final computation of the temperature distributions. A SPAR analysis of a single bay of the wing, using data converted from the original NASTRAN model, indicates that local temperature-time distributions can be obtained with good agreement with the test data. The conversion of the NASTRAN thermal model into a SPAR model is recommended to meet the immediate goal of obtaining an accurate thermal stress distribution.
Fiber composite fan blade impact improvement
NASA Technical Reports Server (NTRS)
Graff, J.; Stoltze, L.; Varholak, E. M.
1976-01-01
The improved foreign object damage resistance of a metal matrix advanced composite fan blade was demonstrated. The fabrication, whirl impact test and subsequent evaluation of nine advanced composite fan blades of the "QCSEE" type design were performed. The blades were designed to operate at a tip speed of 282 m/sec. The blade design was the spar/shell type, consisting of a titanium spar and boron/aluminum composite airfoils. The blade retention was designed to rock on impact with large birds, thereby reducing the blade bending stresses. The program demonstrated the ability of the blades to sustain impacts with up to 681 g slices of birds at 0.38 rad with little damage (only 1.4 percent max weight loss) and 788 g slices of birds at 0.56 rad with only 3.2 percent max weight loss. Unbonding did not exceed 1.1 percent of the post-test blade area during any of the tests. All blades in the post-test condition were judged capable of operation in accordance with the FAA guidelines for medium and large bird impacts.
Advanced manufacturing development of a composite empennage component for L-1011 aircraft
NASA Technical Reports Server (NTRS)
1979-01-01
Work on process verification and tooling development continued. The cover process development was completed with the decision to proceed with low resin content prepreg material (34 + or - 3% by weight) in the fabrication of production readiness verification test (PRVT) specimens and the full-scale covers. The structural integrity of the cover/joint design was verified with the successful test of the cover attachment to fuselage ancillary test specimen (H25). Failure occurred, as predicted, in the skin panel away from the fuselage joint at 141 percent of the design ultimate load. With the successful completion of the H25 test, the PRVT cover specimens, which are identical to the H25 ancillary test specimen, were cleared for production. Eight of the twenty cover specimens were fabricated and are in preparation for test. All twenty of the PRVT spar specimens were fabricated and also were prepared for test. The environmental chambers used in the durability test of ten cover and ten spar PRVT specimens were completed and installed in the load reaction frames.
BMI Sandwich Wing Box Analysis and Test
NASA Technical Reports Server (NTRS)
Palm, Tod; Mahler, Mary; Shah, Chandu; Rouse, Marshall; Bush, Harold; Wu, Chauncey; Small, William J.
2000-01-01
A composite sandwich single bay wing box test article was developed by Northrop Grumman and tested recently at NASA Langley Research Center. The objectives for the wing box development effort were to provide a demonstration article for manufacturing scale up of structural concepts related to a high speed transport wing, and to validate the structural performance of the design. The box concept consisted of highly loaded composite sandwich wing skins, with moderately loaded composite sandwich spars. The dimensions of the box were chosen to represent a single bay of the main wing box, with a spar spacing of 30 inches, height of 20 inches constant depth, and length of 64 inches. The bismaleimide facesheet laminates and titanium honeycomb core chosen for this task are high temperature materials able to sustain a 300F service temperature. The completed test article is shown in Figure 1. The tests at NASA Langley demonstrated the structures ability to sustain axial tension and compression loads in excess of 20,000 lb/in, and to maintain integrity in the thermal environment. Test procedures, analysis failure predictions, and test results are presented.
SSME structural dynamic model development, phase 2
NASA Technical Reports Server (NTRS)
Foley, M. J.; Wilson, V. L.
1985-01-01
A set of test correlated mathematical models of the SSME High Pressure Oxygen Turbopump (HPOTP) housing and rotor assembly was produced. New analysis methods within the EISI/EAL and SPAR systems were investigated and runstreams for future use were developed. The LOX pump models have undergone extensive modification since the first phase of this effort was completed. The rotor assembly from the original model was abandoned and a new, more detailed model constructed. A description of the new rotor math model is presented. Also, the pump housing model was continually modified as additional test data have become available. This model is documented along with measured test results. Many of the more advanced features of the EAL/SPAR finite element analysis system were exercised. These included the cyclic symmetry option, the macro-element procedures, and the fluid analysis capability. In addition, a new tool was developed that allows an automated analysis of a disjoint structure in terms of its component modes. A complete description of the implementation of the Craig-Bampton method is given along with two worked examples.
Study of a heat rejection system for the Nuclear Electric Propulsion (NEP) spacecraft
NASA Technical Reports Server (NTRS)
Ernest, D. M.
1982-01-01
Two different heat pipe radiator elements, one intended for use with the power conversion subsystem of the NASA funded nuclear electric propulsion (NEP) spacecraft, and one intended for use with the DOE funded space power advanced reactor (SPAR) system were tested and evaluated. The NEP stainless steel/sodium heat pipe was 4.42 meters long and had a 1 cm diameter. Thermal performance testing at 920 K showed a non-limited power level of 3560 watts, well in excess of the design power of 2600 watts. This test verified the applicability of screen arteries for use in long radiator heat pipes. The SPAR titanium/potassium heat pipe was 5.5 meters long and had a semicircular crossection with a 4 cm diameter. Thermal performance testing at 775 K showed a maximum power level of 1.86 kW, somewhat short of the desired 2.6 kW beginning of life design requirement. The reduced performance was shown to be the result of the inability of the evaporator wall wick (shot blasted evaporator wall) to handle the required liquid flow.
Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design
NASA Technical Reports Server (NTRS)
Li, Wu; Robinson, Jay
2016-01-01
This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.
Incipient Crack Detection in Composite Wind Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Stuart G.; Choi, Mijin; Jeong, Hyomi
2012-08-28
This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results inmore » detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.« less
Development of the Main Wing Structure of a High Altitude Long Endurance UAV
NASA Astrophysics Data System (ADS)
Park, Sang Wook; Shin, Jeong Woo; Kim, Tae-Uk
2018-04-01
To enhance the flight endurance of a HALE UAV, the main wing of the UAV should have a high aspect ratio and low structural weight. Since a main wing constructed with the thin walled and slender components needed for low structural weight can suffer catastrophic failure during flight, it is important to develop a light-weight airframe without sacrificing structural integrity. In this paper, the design of the main wing of the HALE UAV was conducted using spars which were composed of a carbon-epoxy cylindrical tube and bulkheads to achieve both the weight reduction and structural integrity. The spars were sized using numerical analysis considering non-linear deformation under bending moment. Static strength testing of the wing was conducted under the most critical load condition. Then, the experimental results obtained for the wing were compared to the analytical result from the non-linear finite-element analysis. It was found that the developed main wing reduced its structural weight without any failure under the ultimate load condition of the static strength testing.
NASA Astrophysics Data System (ADS)
Bortolotti, P.; Adolphs, G.; Bottasso, C. L.
2016-09-01
This work is concerned with the development of an optimization methodology for the composite materials used in wind turbine blades. Goal of the approach is to guide designers in the selection of the different materials of the blade, while providing indications to composite manufacturers on optimal trade-offs between mechanical properties and material costs. The method works by using a parametric material model, and including its free parameters amongst the design variables of a multi-disciplinary wind turbine optimization procedure. The proposed method is tested on the structural redesign of a conceptual 10 MW wind turbine blade, its spar caps and shell skin laminates being subjected to optimization. The procedure identifies a blade optimum for a new spar cap laminate characterized by a higher longitudinal Young's modulus and higher cost than the initial one, which however in turn induce both cost and mass savings in the blade. In terms of shell skin, the adoption of a laminate with intermediate properties between a bi-axial one and a tri-axial one also leads to slight structural improvements.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lee, Kyungsun
2013-03-01
In this study, aerodynamic and structural design of the composite propeller blade for a regional turboprop aircraft is performed. The thin and wide chord propeller blade of high speed turboprop aircraft should have proper strength and stiffness to carry various kinds of loads such as high aerodynamic bending and twisting moments and centrifugal forces. Therefore the skin-spar-foam sandwich structure using high strength and stiffness carbon/epoxy composite materials is used to improve the lightness. A specific design procedure is proposed in this work as follows; firstly the aerodynamic configuration design, which is acceptable for the design requirements, is carried out using the in-house code developed by authors, secondly the structure design loads are determined through the aerodynamic load case analysis, thirdly the spar flange and the skin are preliminarily sized by consideration of major bending moments and shear forces using both the netting rule and the rule of mixture, and finally, the stress analysis is performed to confirm the structural safety and stability using finite element analysis commercial code, MSC. NASTRAN/PATRAN. Furthermore the additional analysis is performed to confirm the structural safety due to bird strike impact on the blade during flight operation using a commercial code, ANSYS. To realize the proposed propeller design, the prototype blades are manufactured by the following procedure; the carbon/epoxy composite fabric prepregs are laid up for skin and spar on a mold using the hand lay-up method and consolidated with a proper temperature and vacuum in the oven. To finalize the structural design, the full-scale static structural test is performed under the simulated aerodynamic loads using 3 point loading method. From the experimental results, it is found that the designed blade has a good structural integrity, and the measured results agree well with the analytical results as well.
Alatar, Abdulrahman A; Faisal, Mohammad; Abdel-Salam, Eslam M; Canto, Tomas; Saquib, Quaiser; Javed, Saad B; El-Sheikh, Mohamed A; Al-Khedhairy, Abdulaziz A
2017-09-01
In the present study, we develop an efficient and reproducible in vitro regeneration system for two cultivars viz. , Jamila and Tomaland of Solanum lycopersicum L., an economically important vegetable crop throughout the world. Sterilization of seeds with 2.5% (v/v) NaOCl was found to be most effective, about 97% of seeds germinated on cotton in magenta box moistened with sterile half strength (½)Murashige and Skoog (MS) medium. Regeneration efficiency of cotyledonary leaf (CL) and cotyledonary node (CN) explants derived from 08 days old aseptic seedling were assessed on MS medium supplemented with different concentrations of auxins and cytokinin. CL explants were found more responsive in comparison to CN in both the cultivars. Types of basal media were also assessed and found to have a significant effect on shoot regeneration. Highest regeneration frequency and maximum number of shoots were standardized from CL explants on MS medium supplied with 6-benzyl adenine (BA; 5.0 µM), indole-3-butyric acid (IBA; 2.5 µM) and Kinetin (Kin; 10.0 µM). In vitro regenerated microshoots were rooted on ½MS medium containing 0.5 µM indole-3-butyric acid (IBA). Regenerated plantlets with well-developed roots and shoot system were successfully acclimated to ex vitro condition. Genetic uniformity of tissue culture raised plantlets was first time evaluated using flow cytometry and single primer amplification reaction (SPAR) methods viz ., DAMD and ISSR. No significant changes in ploidy level and nuclear DNA content profile were observed between in vitro propagated plants and normal plants of both the cultivars. Similarly, the SPAR analysis also revealed monomorphic banding patterns in regenerated plantlets of S. lycopersicum verifying their genetic uniformity and clonal fidelity. This efficient regeneration system can be used as a fast and reproducible method for genetic transformation of this important vegetable crop.
Justices Query Lawyers in Florida Court Showdown over Voucher Program
ERIC Educational Resources Information Center
Richard, Alan
2006-01-01
Florida's Opportunity Scholarships faced their most crucial test in June 2005, as the state supreme court heard arguments in a case about the constitutionality of the voucher program. In more than an hour of oral arguments in "Bush v. Holmes," held June 7, in Tallahassee and shown live on the Internet, lawyers sparred over the…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... failure in the wing during a production acceptance flight test. We are issuing this AD to prevent... acceptance flight test. The wing skin disbonded from the upper forward wing spar. The length of the disbond... exist or develop in other products of the same type design. AD Requirements This AD requires obtaining...
Export Controls and the Tensions between Academic Freedom and National Security
ERIC Educational Resources Information Center
Evans, Samuel A. W.; Valdivia, Walter D.
2012-01-01
In the U.S.A., advocates of academic freedom--the ability to pursue research unencumbered by government controls--have long found sparring partners in government officials who regulate technology trade. From concern over classified research in the 1950s, to the expansion of export controls to cover trade in information in the 1970s, to current…
Design and fabrication of durable owner-built wind turbine blades
NASA Astrophysics Data System (ADS)
Queeney, R. A.
To find the configuration of materials that will produce lightweight, durable wind tubine blades, a composite material blade consisting of an aluminum tubing spar, a foam insulating filler and a glass reinforced plastic skin was analyzed. Various tensile and creep tests were conducted on model blades, and a computer analysis determined the best configuration for the blade.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
... to require recurring checks of the Blade Inspection Method (BIM) indicator on each blade to determine whether the BIM indicator is signifying that the blade pressure may have been compromised by a blade crack... check procedures for BIM blades installed on the Model S-64E and S-64F helicopters. Several blade spars...
2004-03-12
KENNEDY SPACE CENTER, FLA. - The body flap is installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - The body flap is installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
77 FR 54850 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... sources in the auxiliary (center) fuel tank, main fuel tanks, and surge tanks caused by a wiring short or... on the rear spar, and installation of a TFE sleeve if necessary. This proposed AD would also add... sources in the auxiliary (center) fuel tank, main fuel tanks, and surge tanks caused by a wiring short or...
78 FR 64159 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... fatigue and damage tolerance analysis indicating a high risk for fatigue cracking on the front and rear spar bottom booms. We are issuing this AD to detect and correct fatigue cracks in the bolt holes of the...; telephone +33 5 61 93 36 96; fax +33 5 61 93 44 51; email [email protected] ; Internet http...
78 FR 57104 - Airworthiness Directives; Diamond Aircraft Industries Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-17
... condition as fatigue strength found in the aft main spar does not ensure unlimited lifetime structural... Building Ground Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC 20590, between 9 a.m. and 5... proposed AD, contact Diamond Aircraft Industries GmbH, N.A. Otto-Str.5, A-2700 Wiener Neustadt, Austria...
78 FR 15658 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-12
... Commercial Airplanes, Attention: Data & Services Management, P. O. Box 3707, MC 2H-65, Seattle, WA 98124-2207... upper skin and rear spar upper chord between LBL 70.50 and RBL 70.50 at STA 870. The crack sizes ranged... We reviewed Boeing Special Attention Service Bulletin 727-57-0187, dated March 8, 2012. For...
McCain, Obama Spar on Education
ERIC Educational Resources Information Center
Hoff, David J.
2008-01-01
The campaigns of Senator John McCain and Senator Barack Obama engaged in a sharp and testy exchange on education last week, making the topic the center of debate for the first time since the long race for the presidency began. Neither candidate changed course on the policies he is promising to pursue. However, Obama sought to distinguish himself…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... cracks and/or corrosion and installing inspection access panels. This AD would also require replacing the wing spar cap angles if moderate or severe corrosion is found and applying corrosion inhibitor. This proposed AD was prompted by reports of intergranular exfoliation and corrosion of the upper and/or lower...
Stiff, Strong Splice For A Composite Sandwich Structure
NASA Technical Reports Server (NTRS)
Schmaling, D.
1991-01-01
New type of splice for composite sandwich structure reduces peak shear stress in structure. Layers of alternating fiber orientation interposed between thin ears in adhesive joint. Developed for structural joint in spar of helicopter rotor blade, increases precision of control over thickness of adhesive at joint. Joint easy to make, requires no additional pieces, and adds little weight.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
..., EPRI/NRC- RES Fire Human Reliability Analysis Guidelines, Draft Report for Comment AGENCY: Nuclear... Human Reliability Analysis Guidelines, Draft Report for Comment'' (December 11, 2009; 74 FR 65810). This... Human Reliability Analysis Guidelines'' is available electronically under ADAMS Accession Number...
1972-02-01
The final version of the Marshall Space Flight Center managed Skylab consisted of four primary parts. One component was the Apollo Telescope Mount (ATM) that housed the first marned scientific telescopes in space. This picture is a view of the ATM spar, which contained the scientific instruments, as the multiple docking adapter (MDA) canister end is lowered over it. The MDA served to link the major parts of Skylab together.
The report evaluates the Kress Indirect Dry Cooling (KIDC) process, an innovative system for handling and cooling coke produced from a slot-type by-product coke oven battery. he report is based on the test work and demonstration of the system at Bethlehem Steel Corporation's Spar...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... rudder assembly for corrosion, taking necessary corrective action if corrosion is found, and applying corrosion protection. This AD retains the requirements of the previous AD and changes the compliance time.... We are issuing this AD to detect and correct corrosion in the rudder main tubular spar, which could...
78 FR 14467 - Airworthiness Directives; Slingsby Sailplanes Ltd. Sailplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... (AD) for all Slingsby Sailplanes Ltd. Models Dart T.51, Dart T.51/17, and Dart T.51/ 17R sailplanes... condition as an incident of glue joint failure on a starboard wing caused by water entering the area of the airbrake box that resulted in delamination and corrosion in the area of the aluminum alloy spar booms and...
78 FR 28723 - Airworthiness Directives; Slingsby Sailplanes Ltd. Sailplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... directive (AD) for all Slingsby Sailplanes Ltd. Models Dart T.51, Dart T.51/17, and Dart T.51/17R sailplanes... failure on a starboard wing caused by water entering the area of the airbrake box that resulted in delamination and corrosion in the area of the aluminum alloy spar booms and the wing attach fittings. We are...
Hyperspectral Image Classification via Kernel Sparse Representation
2013-01-01
classification algorithms. Moreover, the spatial coherency across neighboring pixels is also incorporated through a kernelized joint sparsity model , where...joint sparsity model , where all of the pixels within a small neighborhood are jointly represented in the feature space by selecting a few common training...hyperspectral imagery, joint spar- sity model , kernel methods, sparse representation. I. INTRODUCTION HYPERSPECTRAL imaging sensors capture images
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
... have been due to fatigue. The AD 2010-0119-E required immediate inspection of the main spar at the root of the wing to detect fatigue cracking and the accomplishment of the relevant corrective actions as...., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. Examining...
USDA-ARS?s Scientific Manuscript database
Potato plants (Solanum tuberosum L. cv Kennebec) were grown in outdoor, naturally sunlit, soil-plant-atmosphere research (SPAR) chambers. Drought treatments were imposed at post-tuber initiation stage to assess water stress effects on leaf metabolites, and interactions with enriched CO2 concentrati...
47 CFR 90.621 - Selection and assignment of frequencies.
Code of Federal Regulations, 2010 CFR
2010-10-01
...° 07′ 19.4″ 121° 53′ 34.4″ Grass Mountain 47° 12′ 14.1″ 121° 47′ 42.4″ Spar Pole Hill 47° 02′ 51.4″ 122.... See § 90.16 and the Report and Order in General Docket 87-112. (h) Channel numbers 511-520, 551-560...
47 CFR 90.621 - Selection and assignment of frequencies.
Code of Federal Regulations, 2011 CFR
2011-10-01
...° 07′ 19.4″ 121° 53′ 34.4″ Grass Mountain 47° 12′ 14.1″ 121° 47′ 42.4″ Spar Pole Hill 47° 02′ 51.4″ 122.... See § 90.16 and the Report and Order in General Docket 87-112. (h) Channel numbers 511-520, 551-560...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... airplanes. This AD requires repetitive detailed and high frequency eddy current inspections of the forward... high frequency eddy current (HFEC) inspections of the forward and aft sides of the strut front spar... date of this AD, whichever occurs later: Perform a detailed inspection and a high frequency eddy...
Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen
2015-01-01
The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. PMID:25583870
Transient thermal analysis of a titanium multiwall thermal protection system
NASA Technical Reports Server (NTRS)
Blosser, M. L.
1982-01-01
The application of the SPAR thermal analyzer to the thermal analysis of a thermal protection system concept is discussed. The titanium multiwall thermal protection system concept consists of alternate flat and dimpled sheets which are joined together at the crests of the dimples and formed into 30 cm by 30 cm (12 in. by 12 in.) tiles. The tiles are mechanically attached to the structure. The complex tile geometry complicates thermal analysis. Three modes of heat transfer were considered: conduction through the gas inside the tile, conduction through the metal, and radiation between the various layers. The voids between the dimpled and flat sheets were designed to be small enough so that natural convection is insignificant (e.g., Grashof number 1000). A two step approach was used in the thermal analysis of the multiwall thermal protection system. First, an effective normal (through-the-thickness) thermal conductivity was obtained from a steady state analysis using a detailed SPAR finite element model of a small symmetric section of the multiwall tile. This effective conductivity was then used in simple one dimensional finite element models for preliminary analysis of several transient heat transfer problems.
Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters
NASA Technical Reports Server (NTRS)
Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard
2013-01-01
Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.
Advanced manufacturing development of a composite empennage component for L-1011 aircraft
NASA Technical Reports Server (NTRS)
Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.
1982-01-01
This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.
East Spar development: NCC buoy--The vertical submarine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, E.C.
1998-02-01
The remote East Spar gas/condensate field has been developed using a subsea production system operated by an unmanned navigation, communication, and control (NCC) buoy. The use of this type of system allows control of the field from any convenient location, with the command-response time and the cost of the facility almost completely independent of the distance to the shore or host facility. Successes during the project (such as using model tests to prove the concept and using a tension-leg mooring system to reduce the motion response of the buoy) are discussed and compared to failures, like the weight and sizemore » growth of the structure, caused as the design requirements were finalized and external factors changed. The operation and layout of this facility is summarized, showing why it was described as a vertical submarine. Conclusions are drawn about the use of an NCC buoy to develop this field, showing that the main objectives have been achieved. The limited operating experience to date is also considered in the review of the design objectives. The paper concludes with the possibilities for the future of this type of concept.« less
NASA Astrophysics Data System (ADS)
Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco
2005-10-01
The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic energy transmission through the joint is highly dependent on the bond conditions, with defected bonds resulting in increased transmission strength. Large sensitivity to the bond conditions is found at mode coupling points, as a result of the large interlayer energy transfer.
Laminar flow control leading edge glove flight test article development
NASA Technical Reports Server (NTRS)
Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.
1984-01-01
A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.
Special test equipment and fixturing for MSAT reflector assembly alignment
NASA Technical Reports Server (NTRS)
Young, Jeffrey A.; Zinn, Michael R.; Mccarten, David R.
1994-01-01
The MSAT Reflector Assembly is a state of the art subsystem for Mobile Satellite (MSAT), a geosynchronous-based commercial mobile telecommunication satellite program serving North America. The Reflector Assembly consisted of a deployable, three-hinge, folding-segment Boom, deployable 5.7 x 5.3-meter 16-rib Wrap-Rib Reflector, and a Reflector Pointing Mechanism (RPM). The MSAT spacecraft was based on a Hughes HS601 spacecraft bus carrying two Reflector Assemblies independently dedicated for L-band transmit and receive operations. Lockheed Missiles and Space Company (LMSC) designed and built the Reflector Assembly for MSAT under contract to SPAR Aerospace Ltd. Two MSAT satellites were built jointly by SPAR Aerospace Ltd. and Hughes Space and Communications Co. for this program, the first scheduled for launch in 1994. When scaled for wavelength, the assembly and alignment requirements for the Reflector Assembly were in many instances equivalent to or exceeded that of a diffraction-limited visible light optical system. Combined with logistical constraints inherent to large, compliant, lightweight structures; 'bolt-on' alignment; and remote, indirect spacecraft access; the technical challenges were formidable. This document describes the alignment methods, the special test equipment, and fixturing for Reflector Assembly assembly and alignment.
NASA Technical Reports Server (NTRS)
Ko, William L.; Gong, Leslie; Quinn, Robert D.
2004-01-01
This report deals with hypothetical reentry thermostructural performance of the Space Shuttle orbiter with missing or eroded thermal protection system (TPS) tiles. The original STS-5 heating (normal transition at 1100 sec) and the modified STS-5 heating (premature transition at 800 sec) were used as reentry heat inputs. The TPS missing or eroded site is assumed to be located at the center or corner (spar-rib juncture) of the lower surface of wing midspan bay 3. For cases of missing TPS tiles, under the original STS-5 heating, the orbiter can afford to lose only one TPS tile at the center or two TPS tiles at the corner (spar-rib juncture) of the lower surface of wing midspan bay 3. Under modified STS-5 heating, the orbiter cannot afford to lose even one TPS tile at the center or at the corner of the lower surface of wing midspan bay 3. For cases of eroded TPS tiles, the aluminum skin temperature rises relatively slowly with the decreasing thickness of the eroded central or corner TPS tile until most of the TPS tile is eroded away, and then increases exponentially toward the missing tile case.
Coupled micromorphological and stable isotope analysis of Quaternary calcrete development
NASA Astrophysics Data System (ADS)
Adamson, Kathryn; Candy, Ian; Whitfield, Liz
2015-09-01
Pedogenic calcretes are widespread in arid and semi-arid regions. Using calcrete profiles from four river terraces of the Rio Alias in southeast Spain, this study explores the potential of using detailed micromorphological and stable isotopic analysis to more fully understand the impacts of Quaternary environmental change on calcrete development. The four profiles increase in carbonate complexity with progressive age, reflecting calcretisation over multiple glacial-interglacial cycles since MIS 9 (c. 300 ka). Calcrete profiles contain a mixture of Alpha (non-biogenic) and Beta (biogenic) microfabrics. Alpha fabrics have higher δ13C and δ18O values. The profiles contain a range of crystal textures, but there is little difference between the δ13C and δ18O values of spar, microspar, and micrite cements. Strong positive covariance between δ13C and δ18O suggests that both isotopes are responding to the same environmental parameter, which is inferred to be relative aridity. The study reveals that the detailed co-analysis of calcrete micromorphology and stable isotope signatures can allow patterns of calcrete formation to be placed into a wider palaeoclimatic context. This demonstrates the potential of this technique to more reliably constrain the palaeoenvironmental significance of secondary carbonates in dryland settings where other proxy records may be poorly preserved.
Development and testing of a novel subsea production system and control buoy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The remoteness of Australia`s northwest shelf presents challenges for the economic viability of offshore resource-development projects. Accordingly, the East Spar development has been designed to minimize capital and life-cycle costs to ensure the long-term viability of this offshore gas field. The offshore facilities are made up of a novel unmanned navigation, communication, and control (NCC) buoy linked to a subsea-production system that includes heat exchangers, insert-retrievable choke valves, multiphase flow-meters, and an on-line pipeline-corrosion monitoring system. The technological building blocks for field development are industry proved. However, the novel arrangement of this proven technology into a remotely controlled, self-contained, minimum-maintenancemore » unmanned facility is unique and has led to many challenges during the design and testing of the NCC buoy and subsea facilities. Among these challenges has been the formulation of an integration test program of the NCC buoy and subsea hardware that proves, as far as reasonably possible, the complete functionality of each equipment item and interface, subject to constraints imposed by schedule, cost, and logistics. Integration testing is particularly important to confirm that the offshore facilities will operate as designed with sufficient reliability and system redundancy to ensure continuous operation throughout the 20-year field life.« less
[Study of the relationship between human quality and reliability].
Long, S; Wang, C; Wang, L i; Yuan, J; Liu, H; Jiao, X
1997-02-01
To clarify the relationship between human quality and reliability, 1925 experiments in 20 subjects were carried out to study the relationship between disposition character, digital memory, graphic memory, multi-reaction time and education level and simulated aircraft operation. Meanwhile, effects of task difficulty and enviromental factor on human reliability were also studied. The results showed that human quality can be predicted and evaluated through experimental methods. The better the human quality, the higher the human reliability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability Program General Provisions § 712.1 Purpose. This part establishes the policies and procedures for a Human Reliability Program... judgment and reliability may be impaired by physical or mental/personality disorders, alcohol abuse, use of...
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.
2010-01-01
NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.
NASA Technical Reports Server (NTRS)
1986-01-01
SPAR Aerospace Limited's "Canadarm," Canada's contribution to the space shuttle. It is a crane which can operate as a 50 foot extension of an astronaut's arm. It can lift 65,000 pounds in space and retrieve satellites for repair, etc. Redesigned versions have energy and mining applications. Some of its hardware has been redeveloped for use as a Hydro manipulator in a nuclear reactor where it is expected to be extremely cost effective.
Development Program for Field-Repairable/Expendable Main Rotor Blades
1976-09-01
honeycomb aft 2, and it represents the most cost- core, and extruded aluminum alloy effective approach to a repairable trailing-edge spline (Reference...materials lend themselves to relatively inexpensive fabrication techniques, the questionable torsional stiffness of composite spars eliminated them...values of the fatigue strength of aluminum , the spline and aft doublers are predicted to have a negative margin of safety for infinite life. The
Russell F. Thurow
2015-01-01
On a cool August morning, Chinook salmon (Oncorhynchus tshawytscha) fulfill an ancient ritual in the wilderness. Despite the rigors of an 850-mile journey, the female excavates a redd (nest) by moving stream gravels with her tail while males spar for a place beside her. In an ultimate act of nurturing, these salmon spawn and die, their bodies providing essential...
50th Annual Technical Meeting of the Society of Engineering Science (SES)
2014-08-15
McDowell (Gerogia Tech), Min Zhou () Virtual Characterization of composites with Lamination Defects for wind turbine spar cap MUKUNDAN SRINIVASAN...Zhang (IHCP Singapore) Damage Mechanisms in Irradiated Metallic Glasses Richard Baumer (MIT), Michael Demkowicz (MIT) Slip Avalanches in Amorphous...Michigan, 48090) Atomistic Simulations of c+a Pyramidal Slip in Magnesium Single Crystal under Compression Xiaozhi Tang (MIT & BJTU), Yafang Guo
USDA-ARS?s Scientific Manuscript database
Experiments were performed using naturally sunlit Soil–Plant–Atmosphere-Research chambers that provided ambient or elevated CO2. Potato plants were grown in pots that were water sufficient (W), water insufficient for 12 to 18 days during both vegetative and tuber development stages (VR), or water i...
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility help move the body flap into position on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - A worker on a ladder (lower left) observes installation of the body flap onto the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers on ladders (left and right) check installation of the body flap onto the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the body flap for the orbiter Discovery is prepared for installation. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
Topology Optimization of an Aircraft Wing
2015-06-11
Fraction VWT Virtual Wind Tunnel xvi TOPOLOGY OPTIMIZATION OF AN AIRCRAFT WING I. Introduction 1.1 Background Current aircraft wing design , which...ware in order to optimize the design of individual spars and wing-box structures for large commercial aircraft . They considered a hybrid global/local...weight in an aircraft by eliminating unnecessary material. An optimized approach has the potential to streamline the design process by allowing a
76 FR 428 - Airworthiness Directives; Bombardier, Inc. Model BD-700-1A10 and BD-700-1A11 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... been two in-service reports of main landing gear (MLG) tire failure on landing, during which a flailing tire tread caused damage to No. 2 and No. 3 hydraulic system lines in the wing auxiliary spar area on.... The degradation of the brake system performance could adversely affect the aircraft during landing...
NASA Technical Reports Server (NTRS)
Sanger, Eugen
1932-01-01
In the present report the computation is actually carried through for the case of parallel spars of equal resistance in bending without direct loading, including plotting of the influence lines; for other cases the method of calculation is explained. The development of large size airplanes can be speeded up by accurate methods of calculation such as this.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers on ladders (left and right) check installation of the body flap onto the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new... left and right wing center spar lower cap, and repair, if necessary. This proposed AD results from... cracks in the area around certain fasteners of the access opening doubler on the left and right wing...
Biochemical Differences Between Official and Simulated Mixed Martial Arts (MMA) Matches
Silveira Coswig, Victor; Hideyoshi Fukuda, David; de Paula Ramos, Solange; Boscolo Del Vecchio, Fabricio
2016-01-01
Background One of the goals for training in combat sports is to mimic real situations. For mixed martial arts (MMA), simulated sparring matches are a frequent component during training, but a there is a lack of knowledge considering the differences in sparring and competitive environments. Objectives The main objective of this study was to compare biochemical responses to sparring and official MMA matches. Materials and Methods Twenty five male professional MMA fighters were evaluated during official events (OFF = 12) and simulated matches (SIM = 13). For both situations, blood samples were taken before (PRE) and immediately after (POST) matches. For statistical analysis, two-way analysis of variance (time x group and time x winner) were used to compare the dependent parametric variables. For non-parametric data, the Kruskal-Wallis test was used and differences were confirmed by Mann-Whitney tests. Results No significant differences were observed among the groups for demographic variables. The athletes were 26.5 ± 5 years with 80 ± 10 kg, 1.74 ± 0.05 m and had 39.4 ± 25 months of training experience. Primary results indicated higher blood glucose concentration prior to fights for OFF group (OFF= 6.1 ± 1.2 mmol/L and SIM= 4.4 ± 0.7 mmol/L; P < 0.01) and higher ALT values for OFF group at both time points (OFF: PRE = 41.2 ± 12 U/L, POST = 44.2 ± 14.1 U/L; SIM: PRE = 28.1 ± 13.8 U/L, POST = 30.5 ± 12.5 U/L; P = 0.001). In addition, the blood lactate showed similar responses for both groups (OFF: PRE= 4 [3.4 - 4.4] mmol/L, POST= 16.9 [13.8 - 23.5] mmol/L; SIM: PRE = 3.8 [2.8 - 5.5] mmol/L, POST= 16.8 [12.3 - 19.2] mmol/L; P < 0.001). Conclusions In conclusion, MMA official and simulated matches induce similar high intensity glycolytic demands and minimal changes to biochemical markers of muscle damage immediately following the fights. Glycolytic availability prior to the fights was raised exclusively in response to official matches. PMID:27625756
Energy balance measurements over a small reservoir in Ghana's Upper East Region
NASA Astrophysics Data System (ADS)
van de Giesen, Nick; Ohene Annor, Frank
2013-04-01
Near the small village of Binaba (10.778927 deg N, 0.464859 deg E), a small irrigation reservoir has been instrumented to measure different parts of the energy balance of this water body. Instruments were placed on, or attached to, a spar platform. This platform consisted of a long PVC pipe, the spar, which is closed at the bottom. On the PVC pipe rests an aluminum frame platform that carries instrumentation and solar power panel. In turn, the platform rests partially on a large inflated tire. At the bottom of the PVC pipe, lead weights and batteries were placed to ensure a very low point of gravity to minimize wave impact on the platform movement. The tire ensures a large second moment of the water plane. The combination of large second momentum of the water plane and small displacement, ensures a high placement of the metacenter. The distance between the point of gravity and the metacenter is relatively long and the weight is large due to the weights and batteries. This ensures that the eigenfrequency of the platform is very low. On the platform, we fixed a WindMaster Pro (sonic anemometer for 3D wind speed and air temperature to perform eddy covariance measurements of sensible heat flux), a NR Lite (net radiometer), and air temperature and relative humidity sensors. Water temperature at different depths was measured with a string of TidbiT's (waterproof temperature sensors and loggers). The platform had a wind vane and the spar could turn freely around its anchor cable to ensure that the anemometer always faced upwind. A compass in the logger completed this setup. First results suggest, as expected, that the sensible heat flux is relatively small with on average 20 W/m2 over the course of a day. Sensible heat flux peaked around midnight at 35 W/m2, when the warm water warmed up the air from the colder surrounding land. The dynamics of heat storage during the daytime and longwave radiation during the night time, are important to calculate the latent heat flux.
Biochemical Differences Between Official and Simulated Mixed Martial Arts (MMA) Matches.
Silveira Coswig, Victor; Hideyoshi Fukuda, David; de Paula Ramos, Solange; Boscolo Del Vecchio, Fabricio
2016-06-01
One of the goals for training in combat sports is to mimic real situations. For mixed martial arts (MMA), simulated sparring matches are a frequent component during training, but a there is a lack of knowledge considering the differences in sparring and competitive environments. The main objective of this study was to compare biochemical responses to sparring and official MMA matches. Twenty five male professional MMA fighters were evaluated during official events (OFF = 12) and simulated matches (SIM = 13). For both situations, blood samples were taken before (PRE) and immediately after (POST) matches. For statistical analysis, two-way analysis of variance (time x group and time x winner) were used to compare the dependent parametric variables. For non-parametric data, the Kruskal-Wallis test was used and differences were confirmed by Mann-Whitney tests. No significant differences were observed among the groups for demographic variables. The athletes were 26.5 ± 5 years with 80 ± 10 kg, 1.74 ± 0.05 m and had 39.4 ± 25 months of training experience. Primary results indicated higher blood glucose concentration prior to fights for OFF group (OFF= 6.1 ± 1.2 mmol/L and SIM= 4.4 ± 0.7 mmol/L; P < 0.01) and higher ALT values for OFF group at both time points (OFF: PRE = 41.2 ± 12 U/L, POST = 44.2 ± 14.1 U/L; SIM: PRE = 28.1 ± 13.8 U/L, POST = 30.5 ± 12.5 U/L; P = 0.001). In addition, the blood lactate showed similar responses for both groups (OFF: PRE= 4 [3.4 - 4.4] mmol/L, POST= 16.9 [13.8 - 23.5] mmol/L; SIM: PRE = 3.8 [2.8 - 5.5] mmol/L, POST= 16.8 [12.3 - 19.2] mmol/L; P < 0.001). In conclusion, MMA official and simulated matches induce similar high intensity glycolytic demands and minimal changes to biochemical markers of muscle damage immediately following the fights. Glycolytic availability prior to the fights was raised exclusively in response to official matches.
On modeling human reliability in space flights - Redundancy and recovery operations
NASA Astrophysics Data System (ADS)
Aarset, M.; Wright, J. F.
The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.
Culture Representation in Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Gertman; Julie Marble; Steven Novack
Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991)more » cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.« less
Institutional Memory and the US Air Force
2016-01-01
38 | Air & Space Power Journal Institutional Memory and the US Air Force Lt Col Daniel J. Brown, USAF Disclaimer: The views and opinions expressed...national defense. After each ad- vance is tested in combat, a new round of intellectual sparring commences regarding Summer 2016 | 39 Institutional Memory ...the service’s institutional memory of how it fights and what it fights with—the ways and means of war fighting. Critical to maintaining its
An evaluation of superminicomputers for thermal analysis
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Vidal, J. B.; Jones, G. K.
1982-01-01
The use of superminicomputers for solving a series of increasingly complex thermal analysis problems is investigated. The approach involved (1) installation and verification of the SPAR thermal analyzer software on superminicomputers at Langley Research Center and Goddard Space Flight Center, (2) solution of six increasingly complex thermal problems on this equipment, and (3) comparison of solution (accuracy, CPU time, turnaround time, and cost) with solutions on large mainframe computers.
The Impact of Changes in State Identity on Alliance Cohesion in Northeast Asia
2009-12-01
Taeho Kim, arg R ing arms tran the SIPRI Arm eapons an nsfer Databa 1950 to 200 ar e instance, t PRK relied mou f its policy ar table indicato rd in...th PRK alliance. d, Beijing umb tems, instead p g spar ry t eat,hr nd anti-missile def Beijing has n c sar 183 McVadon, “Ch Strategy he Korean
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility lean toward the body flap to be installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the body flap is moved into position for installation on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - A Hyster forklift in the Orbiter Processing Facility lifts the body flap to be installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility help prepare the body flap for lifting prior to installation on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the body flap is moved into position for installation on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - A Hyster forklift in the Orbiter Processing Facility moves the body flap toward the aft of the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, A Hyster forklift supports the body flap as workers secure it to the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
Improving the Accuracy of Structural Fatigue Life Tracking Through Dynamic Strain Sensor Calibration
2011-09-01
strength corrosion resistant 7075 -T6 alloy, and included hinge lugs, a bulkhead, spars, and wing skins that were fastened together using welds, rivets...release, distribution unlimited 13. SUPPLEMENTARY NOTES See also ADA580921. International Workshop on Structural Health Monitoring: From Condition -based...greater than 10% under the same loading conditions [1]. These differences must be accounted for to have acceptable accuracy levels in the ultimate
Finite element analysis of a deployable space structure
NASA Technical Reports Server (NTRS)
Hutton, D. V.
1982-01-01
To assess the dynamic characteristics of a deployable space truss, a finite element model of the Scientific Applications Space Platform (SASP) truss has been formulated. The model incorporates all additional degrees of freedom associated with the pin-jointed members. Comparison of results with SPAR models of the truss show that the joints of the deployable truss significantly affect the vibrational modes of the structure only if the truss is relatively short.
Water Column Variability in Coastal Regions
1997-09-30
to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data... 1 . REPORT DATE 30 SEP 1997 2. REPORT TYPE 3. DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Water Column Variability in...Andrews, Woods, and Kester deployed a spar buoy at a central location in Narragansett Bay to obtain time-series variations at multiple depths ( 1 , 4
Bubble behavior in molten glass in a temperature gradient. [in reduced gravity rocket experiment
NASA Technical Reports Server (NTRS)
Meyyappan, M.; Subramanian, R. S.; Wilcox, W. R.; Smith, H.
1982-01-01
Gas bubble motion in a temperature gradient was observed in a sodium borate melt in a reduced gravity rocket experiment under the NASA SPAR program. Large bubbles tended to move faster than smaller ones, as predicted by theory. When the bubbles contacted a heated platinum strip, motion virtually ceased because the melt only imperfectly wets platinum. In some cases bubble diameter increased noticeably with time.
Thermo-mechanical evaluation of carbon-carbon primary structure for SSTO vehicles
NASA Astrophysics Data System (ADS)
Croop, Harold C.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.
1998-01-01
An advanced development program to demonstrate carbon-carbon composite structure for use as primary load carrying structure has entered the experimental validation phase. The component being evaluated is a wing torque box section for a single-stage-to-orbit (SSTO) vehicle. The validation or demonstration component features an advanced carbon-carbon design incorporating 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The validation component represents the culmination of a four phase design and fabrication development effort. Extensive developmental testing was performed to verify material properties and integrity of basic design features before committing to fabrication of the full scale box. The wing box component is now being set up for testing in the Air Force Research Laboratory Structural Test Facility at Wright-Patterson Air Force Base, Ohio. One of the important developmental tests performed in support of the design and planned testing of the full scale box was the fabrication and test of a skin/spar trial subcomponent. The trial subcomponent incorporated critical features of the full scale wing box design. This paper discusses the results of the trial subcomponent test which served as a pathfinder for the upcoming full scale box test.
Consolidation of graphite thermoplastic textile preforms for primary aircraft structure
NASA Technical Reports Server (NTRS)
Suarez, J.; Mahon, J.
1991-01-01
The use of innovative cost effective material forms and processes is being considered for fabrication of future primary aircraft structures. Processes that have been identified as meeting these goals are textile preforms that use resin transfer molding (RTM) and consolidation forming. The Novel Composites for Wing and Fuselage Applications (NCWFA) program has as its objective the integration of innovative design concepts with cost effective fabrication processes to develop damage-tolerant structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. In this on-going effort, design trade studies were conducted to arrive at advanced wing designs that integrate new material forms with innovative structural concepts and cost effective fabrication methods. The focus has been on minimizing part count (mechanical fasteners, clips, number of stiffeners, etc.), by using cost effective textile reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin transfer molding processing, and thermoplastic forming concepts. The fabrication of representative Y spars by consolidation methods will be described. The Y spars were fabricated using AS4 (6K)/PEEK 150g commingled angle interlock 0/90-degree woven preforms with +45-degree commingled plies stitched using high strength Toray carbon thread and processed by autoclave consolidation.
Stylolitization as source of cement in Mississippian Salem Limestone, west-central Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkel, E.A.; Wilkinson, B.H.
The Mississippian Salem Limestone of west-central Indiana is a homogeneous cross-bedded grainstone containing numerous stylolites with amplitudes ranging up to 25 cm. Petrographic and geochemical analyses of closely spaced samples from four 1-m thick stylolite-bounded units document spatial trends in grainstone texture and composition, which correlate with proximity to bounding solution seams. Textural data indicate that stylolitization was locally preceded by grain compaction and that seam solution preferentially occurred within layers where grain packing was tightest. Amount of cement largely corresponds to volume of available pore space, and remaining porosity varies inversely to stylolite proximity. Trace-element compositions demonstrate that intergranularmore » spar is enriched in Mn and depleted in Mg relative to grains, and suggest a significant contribution of carbonate cement to grainstone pores from bounding solution seams. Data on grainstone and stylolite insoluble contents indicate that stylolite amplitude records 43% of actual section shortening. On average, seam solution within the Salem Limestone could have provided no less than 47% and no more than 90% of the CaCO{sub 3}, Fe, and Mn mass now in grainstone pores as intergranular spar cement. As such, stylolitization has played an important role during burial diagenesis, porosity occlusion, and permeability reduction within this Mississippian grainstone sequence. 17 figs., 1 tab.« less
Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. L.; Tran, Van t.
2007-01-01
Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.
Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen
2015-02-28
The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview
Teixeira, José; Gaspar, Alexandra; Garrido, E. Manuela; Garrido, Jorge; Borges, Fernanda
2013-01-01
Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure. The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants. The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far. PMID:23956973
Human Reliability Analysis in Support of Risk Assessment for Positive Train Control
DOT National Transportation Integrated Search
2003-06-01
This report describes an approach to evaluating the reliability of human actions that are modeled in a probabilistic risk assessment : (PRA) of train control operations. This approach to human reliability analysis (HRA) has been applied in the case o...
Atlantic Intracoastal Waterway (AIWW) Maintenance Program Evaluation Study.
1983-01-01
offset by rising sea levels. Few plant species can withstand the stress imposed by high salinity and daily inundation by tidal waters, and marsh...related to gradients in salinity and elevation. 7 K-e--.2 The wetlands through which the Atlantic intracoastal Water-day passes are fEeding and nursery...with wetland plant species dominated by salt marsh cotdgra-,s (Spartina alterniflora) in saline areas and giant cordgrass (Spar ti:: cynosurrides) in
NASA Technical Reports Server (NTRS)
Roskam, J.; Hamler, F. R.; Reynolds, D.
1972-01-01
The procedures used to establish the mass matrices characteristics for the fighter type wings studied are given. A description of the procedure used to find the mass associated with a specific aerodynamic panel is presented and some examples of the application of the procedure are included.
Ceramic matrix composite turbine engine vane
NASA Technical Reports Server (NTRS)
Prill, Lisa A. (Inventor); Schaff, Jeffery R. (Inventor); Shi, Jun (Inventor)
2012-01-01
A vane has an airfoil shell and a spar within the shell. The vane has an outboard shroud at an outboard end of the shell and an inboard platform at an inboard end of the shell. The shell includes a region having a depth-wise coefficient of thermal expansion and a second coefficient of thermal expansion transverse thereto, the depth-wise coefficient of thermal expansion being greater than the second coefficient of thermal expansion.
10 CFR 712.19 - Removal from HRP.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability Program... immediately remove that individual from HRP duties pending a determination of the individual's reliability. A... HRP duties pending a determination of the individual's reliability is an interim, precautionary action...
Development of a Sports Specific Aerobic Capacity Test for Karate - A Pilot Study
Nunan, David
2006-01-01
The purpose of the study was to develop an aerobic fitness assessment test for competitive Karate practitioners and describe the preliminary findings. Five well-trained, competitive Karate practitioners participated in this study. A protocol simulating common attack strikes used in competition Karate sparring was developed from video analysis. In addition, pilot testing established a specific sequence of strikes and timings to be used in the test. The time to perform the strike sequence remained the same, whilst the time between strike sequence performances was progressively reduced. The aim of the test was to increase intensity of exercise through a decrease in recovery. On two separate occasions, absolute and relative peak oxygen uptake (VO2peak), peak ventilation (VEpeak), maximum heart rate (HRM), and time to exhaustion (TE) obtained during the test were recorded. Subjective feedback provided by the participants was positive in that participants felt the test accurately simulated actions of a competitive sparring situation, and as a result athletes felt more motivated to perform well on this test. There was no significant between test difference in absolute VO2peak, relative VO2peak, HRM and TE (p > 0.05), indicating a potentially high reproducibility with the new test for these variables (test 1-test 2 difference of 0.04 L·min-1, 1 ml·kg-1·min-1, -3 beats·min-1, and 28 s; respectively). However, VEpeak displayed potentially less reproducibility due to a significant difference observed between tests (test 1- test 2 difference of -2.8 L·min-1, p < 0.05). There was a significant relationship between TE and relative VO2peak (R2 = 0.77, p < 0.001). Further developments to the test will need to address issues with work rate/force output assessment/monitoring. The new test accurately simulates the actions of competitive Karate sparring. Key Points This is the first attempt at an aerobic fitness test specific to competitive Karate practitioners Anecdotal reports are that the new test accurately simulates the actions used in competition Karate Relative VO2peak was significantly related to time to exhaustion, with 63.5% of the variance in time to exhaustion attributed to relative VO2peak. Test developments include the use of force plates and transducers to assess force/power output during the test PMID:24357976
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, Diana
2014-01-01
Most businesses recognize that people will make mistakes and assume errors are just part of the cost of doing business, but does it need to be? Companies with high risk, or major consequences, should consider the effect of human error. In a variety of industries, Human Errors have caused costly failures and workplace injuries. These have included: airline mishaps, medical malpractice, administration of medication and major oil spills have all been blamed on human error. A technique to mitigate or even eliminate some of these costly human errors is the use of Human Reliability Analysis (HRA). Various methodologies are available to perform Human Reliability Assessments that range from identifying the most likely areas for concern to detailed assessments with human error failure probabilities calculated. Which methodology to use would be based on a variety of factors that would include: 1) how people react and act in different industries, and differing expectations based on industries standards, 2) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 3) type and availability of data and 4) how the industry views risk & reliability influences ( types of emergencies, contingencies and routine tasks versus cost based concerns). The Human Reliability Assessments should be the first step to reduce, mitigate or eliminate the costly mistakes or catastrophic failures. Using Human Reliability techniques to identify and classify human error risks allows a company more opportunities to mitigate or eliminate these risks and prevent costly failures.
Computation of wind tunnel model deflections. [for transport type solid wing
NASA Technical Reports Server (NTRS)
Mehrotra, S. C.; Gloss, B. B.
1981-01-01
The experimental deflections for a transport type solid wing model were measured for several single point load conditions. These deflections were compared with those obtained by structural modeling of the wing by using plate and solid elements of Structural Performance Analysis and Redesign (SPAR) program. The solid element representation of the wing showed better agreement with the experimental deflections than the plate representation. The difference between the measured and calculated deflections is about 5 percent.
Structural Area Inspection Frequency Evaluation (SAIFE). Volume 5. Results of Model Demonstration
1978-04-01
serlV ice 11 i Stot’)’ .i ’ base~d Otil narrow -bodly at ir-c t’a ftA wh ich have fewer 0 1 euient~s than thle hypothet i cal widve - A body aircaf...kP1 c u TABLE 14. DL40MRATION RESULTS .M WING - SPAR, FMD Defects Per Million Flight Hours Crack Detected Preflight 0.00 0104 Service 0.00 0.49 Phase
ACOSS FIVE (Active Control of Space Structures). Phase 1A
1982-03-01
The control design MKUCTUKAL MOOC L PtRFOHMANCl MÜDtL DISTURBANCE MODEL I ’ II Q|S£) XM=) STATE SPACE MODEL KEDUCED MODELS (HAC... library ) whose detailed numerical procedures, structural reduction, eigen-computations, etc., are implemented dif- ferently than in NASTRAN. SPAR was...i-i. rCappesser ..ctn. ..ir. A. .^llliars i /ui N. t-t. i.yer orlva ..rlin^ton, ^\\ 22209 o j i c e 7 11 \\ttn. iULO Library
Coast Guard Proceedings. Volume 70, Number 2, Summer 2013
2013-01-01
the vil- lage of Point Hope, as the near-shore depths prevented Spar from anchoring close to the beach. Photo courtesy of Dr. Leslie Wood , U.S...Confer- ence, OTC Paper 909318, February 2011. Story, Jason, and Scot Tripp, lou Steinbrecher, Mike Sprague, Bob McKenna. Arctic Craft Investigation...Report. CG-D-02-12, RDC UDI #1215 Part A, August 2011. Story, Jason, and Scot Tripp, lou Steinbrecher, Mike Sprague, Bob McKenna. Arctic Craft
Mechanical Characterization of 3D Woven Carbon Composite
2017-09-18
Woven Carbon/Glass Hybrid Spar Cap for Wind Turbine Rotor Blade,” Journal of Solar Engineering: Volume 128, November 2006, pp. 562-573. 2. In Tenax...A86AD439 Lead Wire Resistance (Ω, nominal) : 1 Significance : ASTM D7078 specifies that strength, strain and modulus be reported to three significant...0.05 Strain Gage Model / Batch No. : CEA-06-250UW-350 / A86AD438 Lead Wire Resistance (Ω, nominal) : 1 Significance : ASTM D7078 specifies that
Sparse Recovery via Differential Inclusions
2014-07-01
2242. [Wai09] Martin J. Wainwright, Sharp thresholds for high-dimensional and noisy spar- sity recovery using l1 -constrained quadratic programming...solution, (1.11) βt = { 0, if t < 1/y; y(1− e−κ(t−1/y)), otherwise, which converges to the unbiased Bregman ISS estimator exponentially fast. Let us ...are not given the support set S, so the following two prop- erties are used to evaluate the performance of an estimator β̂. 1. Model selection
Failure Analysis of a Missile Locking Hook from the F-14 Jet
1989-09-01
MTL) to determine the probable cause of failure. The component is one of two launcher housing support points for the Spar- row Missile and is located...reference Raytheon Draw- ing No. 685029, Figure 3). Atomic absorpticn and inductively coupled argon plasma emission spectroscopy were used to determine ...microscopy, while Figure 16 is a SEM fractograph taken of the same region. The crack initiation site was determined by tracing the radial marks indicative of
Damage Tolerance Predictions for Spar Web Cracking in a Diminishing Stress Field
2011-12-01
specimen crack. ....................... 40 28 NASGRO material file inputs for 7075 -T6 aluminum . .................................... 43 29 AFGROW...2024-T3511 aluminum end caps riveted to stiffened 7075 -T6 sheet metal aluminum webs. The cap-to-web attachment consisted of a double row of MS20470D8...section stress constant as the cracks 43 Fig. 28 NASGRO material file inputs for 7075 -T6 aluminum . grow. In this case, cracks are assumed to
Modeling Interactions Between Flexible Flapping Wing Spars, Mechanisms, and Drive Motors
2011-09-01
of dynamical equations is presented that allow micro air vehicle (MAV) or- nithopter designers to match drive motors to loads produced by flexible...aeroelastic systems is presented. One potential use for such a model is to serve as the basis for a vehicle design tool that matches drive motors to loads...friction. ∗Senior Aerospace Engineer, Control Design and Analysis Branch, 2210 Eighth Street, Ste. 21, Air Force Research Labora- tory, WPAFB, OH 45433
Khan, Adil Mehmood; Siddiqi, Muhammad Hameed; Lee, Seok-Won
2013-09-27
Smartphone-based activity recognition (SP-AR) recognizes users' activities using the embedded accelerometer sensor. Only a small number of previous works can be classified as online systems, i.e., the whole process (pre-processing, feature extraction, and classification) is performed on the device. Most of these online systems use either a high sampling rate (SR) or long data-window (DW) to achieve high accuracy, resulting in short battery life or delayed system response, respectively. This paper introduces a real-time/online SP-AR system that solves this problem. Exploratory data analysis was performed on acceleration signals of 6 activities, collected from 30 subjects, to show that these signals are generated by an autoregressive (AR) process, and an accurate AR-model in this case can be built using a low SR (20 Hz) and a small DW (3 s). The high within class variance resulting from placing the phone at different positions was reduced using kernel discriminant analysis to achieve position-independent recognition. Neural networks were used as classifiers. Unlike previous works, true subject-independent evaluation was performed, where 10 new subjects evaluated the system at their homes for 1 week. The results show that our features outperformed three commonly used features by 40% in terms of accuracy for the given SR and DW.
Instrumented sparring vest to aid in martial arts scoring.
Harrigan, Katie; Logan, Rachel; Sluti, Anne; Rogge, Renee
2006-01-01
Competitors in certain martial arts, such as Taekwondo, are required to wear protective vests during competition. This article outlines the design and fabrication of an instrumented martial arts sparring vest that will aid in martial arts scoring, which is currently a work in progress. After fabrication, this instrumented vest and associated system will not only provide the same protection as before modification, but will also report the location and force magnitude of strikes applied to the vest. This will aid in scoring of martial arts competitions, as it will determine if a strike is forceful enough to be considered deliberate and therefore is a valid point-scoring strike. This will make scoring of competitions unbiased and equal for all competitors, something that is difficult to achieve based solely on a judge's assessment by observation. The system will also indicate the probable injury resulting from a strike, for example, no injury, bruising or bone fracture. If a competitor's strike force is excessive and serious injury could result, the system will indicate this so action can be taken, such as penalty or disqualification of a competitor. Both tissue testing and force testing will be conducted prior to vest fabrication to determine estimates of forces that will damage tissue and typical forces experienced during competition. After testing is complete, the system will be fabricated and the testing results will be implemented into the associated software.
Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.
2015-01-01
This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.
Shergottite Lead Isotope Signature in Chassigny and the Nakhlites
NASA Technical Reports Server (NTRS)
Jones, J. H.; Simon, J. I.
2017-01-01
The nakhlites/chassignites and the shergottites represent two differing suites of basaltic martian meteorites. The shergottites have ages less than or equal to 0.6 Ga and a large range of initial Sr-/Sr-86 and epsilon (Nd-143) ratios. Conversely, the nakhlites and chassignites cluster at 1.3-1.4 Ga and have a limited range of initial Sr-87/Sr-86 and epsilon (Nd-143). More importantly, the shergottites have epsilon (W-182) less than 1, whereas the nakhlites and chassignites have epsilon (W-182) approximately 3. This latter observation precludes the extraction of both meteorite groups from a single source region. However, recent Pb isotopic analyses indicate that there may have been interaction between shergottite and nakhlite/chassignite Pb reservoirs.Pb Analyses of Chassigny: Two different studies haveinvestigated 207Pb/204Pb vs. 206Pb/204Pb in Chassigny: (i)TIMS bulk-rock analyses of successive leaches and theirresidue [3]; and (ii) SIMS analysis of individual minerals[4]. The bulk-rock analyses fall along a regression of SIMSplagioclase analyses that define an errorchron that is olderthan the Solar System (4.61±0.1 Ga); i.e., these define amixing line between Chassigny’s principal Pb isotopic components(Fig. 1). Augites and olivines in Chassingy (notshown) also fall along or near the plagioclase regression [4].This agreement indicates that the whole-rock leachateslikely measure indigenous, martian Pb, not terrestrial contamination[5]. SIMS analyses of K-spars and sulfides definea separate, sub-parallel trend having higher 207Pb/206Pbvalues ([4]; Fig. 1). The good agreement between the bulkrockanalyses and the SIMS analyses of plagioclases alsoindicates that the Pb in the K-spars and sulfides cannot be amajor component of Chassigny.The depleted reservoir sampled by Chassigny plagioclaseis not the same as the solar system initial (PAT) andrequires a multi-stage origin. Here we show a two-stagemodel (Fig. 1) with a 238U/204Pb (µ) of 0.5 for 4.5-2.4 Gaand a µ of 7 for 2.4-1.4 Ga. This is not a unique model butdoes produce a Pb composition that falls on the plagioclaseregression at 1.4 Ga, the approximate igneous age of Chassigny [1]. It should be noted that low-µ single-stage modelsare not capable of producing sufficiently radiogenic 206Pb/204Pb at 1.4 Ga.Relation to Shergottites: The Chassigny K-spars and sulfides fall along a second mixing line defined by leachesand residues of depleted and intermediate shergottites [6]. This mixing line falls above the plagioclase regression.Therefore, we also interpret the radiogenic component of this mixing line to represent indigenous martian Pb. It ispossible that the depleted and intermediate shergottites and the Chassigny plagioclases sample radiogenic Pb from thethe same source, i.e., the mixing lines may intersect at high 206Pb/204Pb.Both K-spar and sulfide are late-stage phases. At the time of their crystallization, the Chassigny system appearsto have remained open to a depleted shergottite Pb reservoir. The depleted component of the shergottite mixing linecan be generated by a single-stage evolution from PAT (4.5 to 1.4 Ga) in a reservoir having a µ 2. A similar modelfor the most depleted shergottites is also possible: µ = 1.5 for 4.5 to 0.3 Ga.Nakhlites: Nakhlite analyses plot between the shergottite and Chassigny plagioclase regressions [3]. So again,members of the nakhlite/chassignite suite show affinities to shergottite Pb.
Advanced composite vertical stabilizer for DC-10 transport aircraft
NASA Technical Reports Server (NTRS)
Stephens, C. O.
1979-01-01
Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.
1997-12-01
Fracture Analysis of the F-5, 15%-Spar Bolt DR Devendra Kumar SAALC/LD 6- 16 CUNY-City College, New York, NY A Simple, Multiversion Concurrency Control...Program, University of Dayton, Dayton, OH. [3]AFGROW, Air Force Crack Propagation Analysis Program, Version 3.82 (1997) 15-8 A SIMPLE, MULTIVERSION ...Office of Scientific Research Boiling Air Force Base, DC and San Antonio Air Logistic Center August 1997 16-1 A SIMPLE, MULTIVERSION CONCURRENCY
Test evaluation of a laminated wood wind turbine blade concept
NASA Technical Reports Server (NTRS)
Faddoul, J. R.
1981-01-01
A series of tests conducted on a root end section of a laminated wood wind turbine blade are reported. The blade to hub transition of the wood blade uses steel studs cast into the wood D spar with a filled epoxy. Both individual studs and a full scale, short length, root section were tested. Results indicate that the bonded stud concept is more than adequate for both the 30 year life fatigue loads and for the high wind or hurricane gust loads.
Project Cheesebox: a Journey into History. Volume 1
1974-12-01
china and drapes . 89 In addition, the builders were also to provide "masts, spars, sails and rigging of sufficient dimensions to drive the vessel...plate iron 3/8 innh thick with a 4 inch angle iron rivetted at the top extending all round the vessel. A plate iron armour 5 feet deep, 6 inches...thick is firmly bolted to the outside of the wooden bulwark extending all round the upper vessel. This armour is composed of six thicknesses of plate
Drilling Holes in Graphite/Epoxy
NASA Technical Reports Server (NTRS)
Minlionica, Ronald
1987-01-01
Relatively long-lived bit produces high-quality holes. Effective combination of cutting-tool design, feed, and speed determined for drilling 3/16-and-1/4-in. (0.48-and 0.65-cm) diameter holes in 0.18 in. (0.46cm) thick GM3013A or equivalent graphite/epoxy corrugated spar without backup material and without coolant. Developed to produce holes in blind areas, optimal techniques yielded holes of high quality, with minimal or acceptable delamination and/or fiber extension on drill-exit side.
Space Processing Applications Rocket project, SPAR 2
NASA Technical Reports Server (NTRS)
1977-01-01
Experiment objectives, design/operational concepts, and final results are summarized for six materials science experiments conducted during the second space processing applications rocket mission flown by NASA. The individual experiments discussed are: (1) solidification of Pb-Sb eutectic; (2) feasibility of producing closed-cell metal foams; (3) direct observation of dendrite remelting and macrosegregation in castings; (4) agglomeration in immiscible liquids; (5) casting dispersion - strengthened composites at zero gravity; and (6) solidification behavior of Al-In alloys under zero gravity conditions.
Fatigue Testing of Vampire Wings,
1979-06-01
Fork End Upper (Threaded) Lug 2 Lower Root End Filling (R.E.F.) Through Inboard 8 mm (?4 in.) Dia . Bolt Holes. STA.747 (Fig.15) 3 Main Spar Assembl’ at...AD-AOA9 402 AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA) F/G 1/ 3 FATIGUE TESTING OF VAMPIRE WINGS.(U) JUN 79 R A BRUTON. C A PATCHING...Number: (c) Summary in Isolation: ARL-Struc.-Report-378 Unclassified 3 . Title: FATIGUE TESTING OF VAMPIRE WINGS 4. Personal Author(s): 5. Document Date
1987-04-01
to the edge, a process such as cold- expansion needs to be well proven before its adoption in service. Secondly, many Nomad aircraft operate in a...including the third front spar) has included extensive use of the FTI cold- expansion process in the fatigue-critical regions in 89 holes. Testing began...ANALYSIS AND REPAIR 9.4.1 Fatigue Life Enhancement (J.Y. Mann - ARL) Cold expansion of bolt holes was one of the techniques used to improve the
2013-11-13
are important and relevant to any vehicle configuration with either fixed, flapping, or rotary wings. Major Research Activities and Findings A...rotates about the leading edge spar. Analysis also shows that synchronization of normal acceleration and pitching angle is important for achieving...2.5, 2.6] found that twist and camber deformations play an important part in the motion of flapping wings and are attributed to elastic deformations of
Large, low cost composite wind turbine blades
NASA Technical Reports Server (NTRS)
Gewehr, H. W.
1979-01-01
A woven roving E-glass tape, having all of its structural fibers oriented across the tape width was used in the manufacture of the spar for a wind turbine blade. Tests of a 150 ft composite blade show that the transverse filament tape is capable of meeting structural design requirements for wind turbine blades. Composite blades can be designed for interchangeability with steel blades in the MOD-1 wind generator system. The design, analysis, fabrication, and testing of the 150 ft blade are discussed.
NASA Technical Reports Server (NTRS)
Johnson, R. E.
1975-01-01
Surface buoy/subsurface drogue drag coupling was investigated. Data acquisition methods and techniques derived from several experimental cruises on the Chesapeake Bay are presented. Four buoys were utilized: three coupled to steel plates rigidly attached to each other at right angles and at various depths; and one spar type that did not require drag plates. Data from these surface floats and the drogue depth combinations were processed. Errors in tracking the surface buoys are discussed.
NASA Technical Reports Server (NTRS)
Sanger, Eugen
1932-01-01
A method is presented for approximate static calculation, which is based on the customary assumption of rigid ribs, while taking into account the systematic errors in the calculation results due to this arbitrary assumption. The procedure is given in greater detail for semicantilever and cantilever wings with polygonal spar plan form and for wings under direct loading only. The last example illustrates the advantages of the use of influence lines for such wing structures and their practical interpretation.
NASA Technical Reports Server (NTRS)
Stieger, H J
1929-01-01
In the foregoing remarks I have made an attempt to touch on some of the structural problems met with in cantilever wings, and dealt rather fully with a certain type of single-spar construction. The experimental test wing was a first attempt to demonstrate the principles of this departure from orthodox methods. The result was a wing both torsionally stiff and of light weight - lighter than a corresponding biplane construction.
Probabilistic simulation of the human factor in structural reliability
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Chamis, Christos C.
1991-01-01
Many structural failures have occasionally been attributed to human factors in engineering design, analyses maintenance, and fabrication processes. Every facet of the engineering process is heavily governed by human factors and the degree of uncertainty associated with them. Factors such as societal, physical, professional, psychological, and many others introduce uncertainties that significantly influence the reliability of human performance. Quantifying human factors and associated uncertainties in structural reliability require: (1) identification of the fundamental factors that influence human performance, and (2) models to describe the interaction of these factors. An approach is being developed to quantify the uncertainties associated with the human performance. This approach consists of a multi factor model in conjunction with direct Monte-Carlo simulation.
10 CFR 712.12 - HRP implementation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability...) Report any observed or reported behavior or condition of another HRP-certified individual that could indicate a reliability concern, including those behaviors and conditions listed in § 712.13(c), to a...
NASA Astrophysics Data System (ADS)
Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng
2017-12-01
In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.
Stratigraphic and facies analysis of Ste. Genevieve Limestone, Putnam County, Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, G.M.
1987-05-01
The Ste. Genevieve Limestone (Mississippian) in Putnam County, Indiana, was deposited on a southwestward-sloping ramp in the northeastern portion of the Illinois basin. This portion of the Ste. Genevieve Limestone is divided into three members which, in ascending order, are the Fredonia, the Spar Mountain, and the Levias. The Fredonia Member appears to be homogeneous biomicrite on out-crop, but petrographic analysis reveals mottling and distinguishable pellets and is classified as pelbiosparite. Storm deposits are observed and typically are composed of fossil hash zones (biopelsparite) overlain by calcitic shale layers. Bioclasts consist of stenohaline forms with foraminifera, echinoderms, and bryozoans predominant.more » The gray-green shale layers represent punctuated terrigenous influx in this shallow restricted shelf. The Spar Mountain Member is commonly cross-bedded calcarenite but commonly lacks the quartz and is oolitic-pelbiosparite. The dominant particle types are quartz-centered ooids, peloids, and echinoderm fragments. Relatively high energy conditions and herringbone-cross-beds suggest deposition of a shoal with tidal current influence. The Levias Member is thin-bedded biopelsparite which represents shallow shelf deposition. The Bryantsville Breccia Bed varies in thickness across the study area and marks the top of the Levias Member. Oolitic-biopelsparite centimeter-sized clasts are contained in a matrix of similar material, suggesting an intraformational mode of origin, possibly a collapse breccia. Two incomplete shoaling-upward cycles are present in this Ste. Genevieve sequence. The lower portion of each cycle is pelbiosparite/biopelsparite overlain by oolitic-pelbiosparite and/or calcarenite.« less
Sequence stratigraphy of the Aux Vases Sandstone: A major oil producer in the Illinois basin
Leetaru, H.E.
2000-01-01
The Aux Vases Sandstone (Mississippian) has contributed between 10 and 25% of all the oil produced in Illinois. The Aux Vases is not only an important oil reservoir but is also an important source of groundwater, quarrying stone, and fluorspar. Using sequence stratigraphy, a more accurate stratigraphic interpretation of this economically important formation can be discerned and thereby enable more effective exploration for the resources contained therein. Previous studies have assumed that the underlying Spar Mountain, Karnak, and Joppa formations interfingered with the Aux Vases, as did the overlying Renault Limestone. This study demonstrates that these formations instead are separated by sequence boundaries; therefore, they are not genetically related to each other. A result of this sequence stratigraphic approach is the identification of incised valleys, paleotopography, and potential new hydrocarbon reservoirs in the Spar Mountain and Aux Vases. In eastern Illinois, the Aux Vases is bounded by sequence boundaries with 20 ft (6 m) of relief. The Aux Vases oil reservoir facies was deposited as a tidally influenced siliciclastic wedge that prograded over underlying carbonate-rich sediments. The Aux Vases sedimentary succession consists of offshore sediment overlain by intertidal and supratidal sediments. Low-permeability shales and carbonates typically surround the Aux Vases reservoir sandstone and thereby form numerous bypassed compartments from which additional oil can be recovered. The potential for new significant oil fields within the Aux Vases is great, as is the potential for undrained reservoir compartments within existing Aux Vases fields.
Evaluation of composite components on the Bell 206L and Sikorsky S-76 helicopters
NASA Technical Reports Server (NTRS)
Baker, Donald J.
1990-01-01
Progress on two programs to evaluate structural composite components in flight service on Bell 206L and Sikorsky S-76 commercial helicopters is described. Forty ship sets of composite components that include the litter door, baggage door, forward fairing, and vertical fin have been installed on Bell Model 206L helicopters that are operating in widely different climates. Component installation started in 1981 and selected components were removed and tested at prescribed intervals over a ten year evaluation. Four horizontal stabilizers and eleven tail rotor spars that are production components on the S-76 helicopter were tested after prescribed periods of service to determine the effects of the operating environment on their performance. Concurrent with the flight evaluation, materials used to fabricate the components were exposed in ground racks and tested at specified intervals to determine the effects of outdoor environments. Results achieved from 123,000 hours of accumulated service on the Bell 206L components and 53,000 hours on the Sikorsky S-76 components are reported. Seventy-eight Bell 206L components were removed and tested statically. Results of seven years of ground exposure of materials used to fabricate the Bell 206L components are presented. Results of tests on four Sikorsky S-76 horizontal stabilizers and eleven tail rotor spars are also presented. Panels of material used to fabricate the Sikorsky S-76 components that were exposed for six years were tested and results are presented.
Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.
2006-01-01
This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-04-01
The economic success of an Ocean Thermal Energy Conversion (OTEC) system is highly dependent on a platform which provides adequate support for the power system, accommodates reliably the cold water pipe, and is most cost effective. The results of a study conducted for the Department of Energy to assess six generic types of platforms to determine the most satisfactory platform for severl potential sites are presented. The six platform configurations are ship, circular barge, semi-submersible, Tuned Sphere, submersible, and spar. These represent directional and symmetric types of platforms which operate on the surface, at the interface, and submerged. The fivemore » sites for this study were primarily New Orleans, Keahole Point (Hawaii), Brazil, and secondarily Key West and Puerto Rico. Electrical transmission of energy by submarine cable is the planned form of energy transmission for all sites except Brazil, where chemical conversion is to be the method of transmission. This study is devoted to the platform (or ocean systems) of the OTEC plant which is chiefly comprised of the hull and structure, the seawater system, the position control system, and miscellaneous support/assembly systems. The principal elements in the work breakdown structure for the commercial plants are presented. The assessment of the six platform configurations was conducted utilizing a baseline plan (100-MW(e) (Net)) and site (New Orleans) with variations from the baseline to cover the range of interested platforms and sites.« less
NASA Technical Reports Server (NTRS)
Miller, James; Leggett, Jay; Kramer-White, Julie
2008-01-01
A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy.
Method of Testing and Predicting Failures of Electronic Mechanical Systems
NASA Technical Reports Server (NTRS)
Iverson, David L.; Patterson-Hine, Frances A.
1996-01-01
A method employing a knowledge base of human expertise comprising a reliability model analysis implemented for diagnostic routines is disclosed. The reliability analysis comprises digraph models that determine target events created by hardware failures human actions, and other factors affecting the system operation. The reliability analysis contains a wealth of human expertise information that is used to build automatic diagnostic routines and which provides a knowledge base that can be used to solve other artificial intelligence problems.
2016-03-01
A BOUNCE? A STUDY ON RESILIENCE AND HUMAN RELATIONS IN A HIGH RELIABILITY ORGANIZATION by Robert D. Johns March 2016 Thesis Advisor...RELATIONS IN A HIGH RELIABILITY ORGANIZATION 5. FUNDING NUMBERS 6. AUTHOR(S) Robert D. Johns 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...200 words) This study analyzes the various resilience factors associated with a military high reliability organization (HRO). The data measuring
NASA Astrophysics Data System (ADS)
Ha, Taesung
A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.
Reliability of human-supervised formant-trajectory measurement for forensic voice comparison.
Zhang, Cuiling; Morrison, Geoffrey Stewart; Ochoa, Felipe; Enzinger, Ewald
2013-01-01
Acoustic-phonetic approaches to forensic voice comparison often include human-supervised measurement of vowel formants, but the reliability of such measurements is a matter of concern. This study assesses the within- and between-supervisor variability of three sets of formant-trajectory measurements made by each of four human supervisors. It also assesses the validity and reliability of forensic-voice-comparison systems based on these measurements. Each supervisor's formant-trajectory system was fused with a baseline mel-frequency cepstral-coefficient system, and performance was assessed relative to the baseline system. Substantial improvements in validity were found for all supervisors' systems, but some supervisors' systems were more reliable than others.
Wind turbine blade with viscoelastic damping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, Ryan A.; Mullings, Justin L.
A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).
Burn/Blast Tests of Miscellaneous Graphite Composite Parts.
1979-11-01
accommodate the size of the test fixture sample holder. The QCSEE fan blade consisted of various layers of KEVLAR (polyaramid fiber), S-glass, AS graphite...panel tested was a 14-ply laminate of W-134 graphite and MXG 6070 modified phenolic resin. This was an experimental formulation pro- posed as an...166/X-130 T-Section T-300/5209 epoxy 17 x 26 20 1122 skin-to-spar ST-163/X-127 QCSEE Kevlar /AS/Glass/B/PR 24 x 29 20 1204 fan blade BT-164/X-128 Le1C
Center for Micro Air Vehicle Studies
2013-02-01
vacuum oven , unavailable at WSU. The vacuum oven was a crucial step in allowing the epoxy to cure properly, thereby providing the carbon fiber spars...weight of the Modified Standard model is 12g (without a battery). This model uses a 150mAh LiPo battery. The average “Big Bird ” model, weights...23.1g (without a battery), has a wingspan of 340mm and a length of 270mm average (Figure 26). The vehicle uses a 150mAh battery. The “Big Bird ” is a
Materials Processing in Space (MPS) program description
NASA Technical Reports Server (NTRS)
1981-01-01
Insight is provided into the scientific rotationale for materials processing in space (MPS), and a comprehensive and cohesive approach for implementation and integration of the many, diverse aspects of MPS is described. The programmatic and management functions apply to all projects and activities implemented under MPS. It is intended that specific project plans, providing project unique details, will be appended to this document for endeavors such as the Space Processing Applications Rocket (SPAR) Project, the Materials Experiment Assembly (MEA) Project, the MPS/Spacelab (MPS/SL) Project, and the Materials Experiment Carrier (MEC) Payloads.
Baking the first bread in space
NASA Technical Reports Server (NTRS)
1987-01-01
This Getaway Special program is a joint venture between Spar, Monarch flour and Telesat, with Telesat being responsible for the design, manufacture and implementation of the equipment. The purpose of the experiment is to investigate the behavior of bread yeast in the absence of gravity and in the presence of normal atmospheric pressure. The proposed design mixes flour, water and yeast on-orbit, allows the mixture to prove and then bakes it. This paper outlines the development history of the experiment, the various test programs and some of the problems encountered, with their solutions.
2009-06-24
CAPE CANAVERAL, Fla. – A closeup of the wing leading edge on space shuttle Atlantis where a reinforced-carbon carbon, or RCC, panel has been removed. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
Tracking system for solar collectors
Butler, Barry L.
1984-01-01
A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.
Tracking system for solar collectors
Butler, B.
1980-10-01
A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.
Industrial stator vane with sequential impingement cooling inserts
Jones, Russell B; Fedock, John A; Goebel, Gloria E; Krueger, Judson J; Rawlings, Christopher K; Memmen, Robert L
2013-08-06
A turbine stator vane for an industrial engine, the vane having two impingement cooling inserts that produce a series of impingement cooling from the pressure side to the suction side of the vane walls. Each insert includes a spar with a row of alternating impingement cooling channels and return air channels extending in a radial direction. Impingement cooling plates cover the two sides of the insert and having rows of impingement cooling holes aligned with the impingement cooling channels and return air openings aligned with the return air channel.
Preliminary study on the potential usefulness of array processor techniques for structural synthesis
NASA Technical Reports Server (NTRS)
Feeser, L. J.
1980-01-01
The effects of the use of array processor techniques within the structural analyzer program, SPAR, are simulated in order to evaluate the potential analysis speedups which may result. In particular the connection of a Floating Point System AP120 processor to the PRIME computer is discussed. Measurements of execution, input/output, and data transfer times are given. Using these data estimates are made as to the relative speedups that can be executed in a more complete implementation on an array processor maxi-mini computer system.
Vector magnetic field observations with the Haleakala polarimeter
NASA Technical Reports Server (NTRS)
Mickey, D. L.
1985-01-01
Several enhancements were recently made to the Haleakala polarimeter. Linear array detectors provide simultaneous resolution over a 3-A wavelength range, with spectral resolution of 40 mA. Optical fibers are now used to carry the intensity-modulated light from the rotating quarter-wave plate polarimeter to the echelle spectrometer, permitting its removal from the spar to a more stable environment. These changes, together with improved quarter-wave plates, reduced systematic errors to a few parts in 10,000 for routine observations. Examples of Stokes profiles and derived magnetic field maps are presented.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Smith, Guy A.
1997-01-01
A Phase B feasibility study will be performed for the study of the effects of microgravity on the preform processing and fiber pulling of ZBLAN optical glass. Continuing from the positive results achieved in the fiber annealing experiments in 20 second intervals at 0.001 g on the KC-135 and the 5 minute experiments on the SPAR rocket, experiments will continue to work towards design of a fiber sting to initiate fiber pulling operations in space. Anticipated results include less homogeneous nucleation than ground-based annealed fibers. Infrared Fiber Systems and Galileo are the participating industrial investigators.
NASA Technical Reports Server (NTRS)
1978-01-01
Work on advanced concepts for helicopter designs is reported. Emphasis is on use of advanced composites, damage-tolerant design, and load calculations. Topics covered include structural design flight maneuver loads using PDP-10 flight dynamics model, use of 3-D finite element analysis in design of helicopter mechanical components, damage-tolerant design of the YUH-61A main rotor system, survivability of helicopters to rotor blade ballistic damage, development of a multitubular spar composite main rotor blade, and a bearingless main rotor structural design approach using advanced composites.
ACOSS Three (Active Control of Space Structures). Phase I.
1980-05-01
their assorted pitfalls, programs such as NASTRAN, SPAR, ASTRO , etc., are never-the-less the primary tools for generating dynamical models of...proofs and additional details, see Ref [*] Consider the system described in state-space form by: Dynamics: X = FX + Gu Sensors: y = HX = (F +GCH)X (1...input u and output y = Fx + Gu (6) y = Hx+Du (7) The input-output transfer function is given by y = (H(sI- F)-1G +D)u (8) or y(s) _ 1 N u(s) A(s) E
1981-10-01
Protection Resin Nomex Composite Structure Tooling Graphite Electrolysis Ballistic Survivability 24. AUMT ACT’ (Zim llea m di nemsy mitily by block minubr...angles required by the design. 105 , ~ ii i w d q 100 Aluminum male molds (Figure 69) are u~tri to lay up prepreg material to form the angles that attach...aluminum male mold shaped to the airfoil contour as Figure 78 indicates. The spars and ribs are laid up in matched metal molds with silicone rubber
Neural Signatures of Trust During Human-Automation Interactions
2016-04-01
magnetic resonance imaging by manipulating the reliability of advice from a human or automated luggage inspector framed as experts. HAT and HHT were...human-human trust, human-automation trust, brain, functional magnetic resonance imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...behavioral X-ray luggage-screening task with functional magnetic resonance imaging (fMRI) and manipulated reliabilities of advice (unknown to the
A Multi-Methods Approach to HRA and Human Performance Modeling: A Field Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; David I Gertman
2012-06-01
The Advanced Test Reactor (ATR) is a research reactor at the Idaho National Laboratory is primarily designed and used to test materials to be used in other, larger-scale and prototype reactors. The reactor offers various specialized systems and allows certain experiments to be run at their own temperature and pressure. The ATR Canal temporarily stores completed experiments and used fuel. It also has facilities to conduct underwater operations such as experiment examination or removal. In reviewing the ATR safety basis, a number of concerns were identified involving the ATR canal. A brief study identified ergonomic issues involving the manual handlingmore » of fuel elements in the canal that may increase the probability of human error and possible unwanted acute physical outcomes to the operator. In response to this concern, that refined the previous HRA scoping analysis by determining the probability of the inadvertent exposure of a fuel element to the air during fuel movement and inspection was conducted. The HRA analysis employed the SPAR-H method and was supplemented by information gained from a detailed analysis of the fuel inspection and transfer tasks. This latter analysis included ergonomics, work cycles, task duration, and workload imposed by tool and workplace characteristics, personal protective clothing, and operational practices that have the potential to increase physical and mental workload. Part of this analysis consisted of NASA-TLX analyses, combined with operational sequence analysis, computational human performance analysis (CHPA), and 3D graphical modeling to determine task failures and precursors to such failures that have safety implications. Experience in applying multiple analysis techniques in support of HRA methods is discussed.« less
An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.
Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes
2017-10-01
This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.
A comparison of computer-assisted and manual wound size measurement.
Thawer, Habiba A; Houghton, Pamela E; Woodbury, M Gail; Keast, David; Campbell, Karen
2002-10-01
Accurate and precise wound measurements are a critical component of every wound assessment. To examine the reliability and validity of a new computerized technique for measuring human and animal wounds, chronic human wounds (N = 45) and surgical animal wounds (N = 38) were assessed using manual and computerized techniques. Using intraclass correlation coefficients, intrarater and interrater reliability of surface area measurements obtained using the computerized technique were compared to those obtained using acetate tracings and planimetry. A single measurement of surface area using either technique produced excellent intrarater and interrater reliability for both human and animal wounds, but the computerized technique was more precise than the manual technique for measuring the surface area of animal wounds. For both types of wounds and measurement techniques, intrarater and interrater reliability improved when the average of three repeated measurements was obtained. The precision of each technique with human wounds and the precision of the manual technique with animal wounds also improved when three repeated measurement results were averaged. Concurrent validity between the two techniques was excellent for human wounds but poor for the smaller animal wounds, regardless of whether single or the average of three repeated surface area measurements was used. The computerized technique permits reliable and valid assessment of the surface area of both human and animal wounds.
Rotationally Adaptive Flight Test Surface
NASA Technical Reports Server (NTRS)
Barrett, Ron
1999-01-01
Research on a new design of flutter exciter vane using adaptive materials was conducted. This novel design is based on all-moving aerodynamic surface technology and consists of a structurally stiff main spar, a series of piezoelectric actuator elements and an aerodynamic shell which is pivoted around the main spar. The work was built upon the current missile-type all-moving surface designs and change them so they are better suited for flutter excitation through the transonic flight regime. The first portion of research will be centered on aerodynamic and structural modeling of the system. USAF DatCom and vortex lattice codes was used to capture the fundamental aerodynamics of the vane. Finite element codes and laminated plate theory and virtual work analyses will be used to structurally model the aerodynamic vane and wing tip. Following the basic modeling, a flutter test vane was designed. Each component within the structure was designed to meet the design loads. After the design loads are met, then the deflections will be maximized and the internal structure will be laid out. In addition to the structure, a basic electrical control network will be designed which will be capable of driving a scaled exciter vane. The third and final stage of main investigation involved the fabrication of a 1/4 scale vane. This scaled vane was used to verify kinematics and structural mechanics theories on all-moving actuation. Following assembly, a series of bench tests was conducted to determine frequency response, electrical characteristics, mechanical and kinematic properties. Test results indicate peak-to-peak deflections of 1.1 deg with a corner frequency of just over 130 Hz.
Supersonic Wing Optimization Using SpaRibs
NASA Technical Reports Server (NTRS)
Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.
2014-01-01
This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, R.E.; Wilson, T.J.; Wardlaw, M.S.
1985-01-01
The Pan-African Zambezi belt in Zambia contains two major augen gneiss units that are elongated parallel to regional strike. These were previously regarded as slices of sialic basement structurally interleaved with Katangan metasedimentary rocks. New field and geochronologic evidence suggests that the gneisses are syntectonic granites intruded as large concordant sheets during main-phase (D/sub 1/) Pan-African deformation. A pervasive, horizontal or shallowly plunging mineral lineation on S/sub 1/ in the gneisses indicates that the parent granites were injected along major zones of transcurrent shear. The northern gneiss unit shows local discordant contacts against, and contains xenoliths of, adjacent Katangan rocks.more » Large, partly polygonized K-spar augen in the gneiss are wrapped around by S/sub 1/ and offset by microfractures antithetic to S/sub 1/. Finer grained granites intruding the gneiss are penetratively foliated to nondeformed, indicating that they were injected at various times relative to D/sub 1/. In the more intensely deformed southern gneiss unit, local pods of protomylonitic flaser gneiss grade into mylonites containing asymmetric K-spar augen set in a dynamically recrystallized matrix. U-Pb analyses of four fractions plus an air-abraded split of one fraction form a normal linear discordance pattern with an upper intercept of 820 +/- 7 Ma, taken as the age of igneous crystallization. Comparison with other available geochronologic data indicates that this age dates main-phase deformation in the Zambezi belt, and that deformation in the supposedly continuous Damaran belt to the SW was significantly younger.« less
Finite element model correlation of a composite UAV wing using modal frequencies
NASA Astrophysics Data System (ADS)
Oliver, Joseph A.; Kosmatka, John B.; Hemez, François M.; Farrar, Charles R.
2007-04-01
The current work details the implementation of a meta-model based correlation technique on a composite UAV wing test piece and associated finite element (FE) model. This method involves training polynomial models to emulate the FE input-output behavior and then using numerical optimization to produce a set of correlated parameters which can be returned to the FE model. After discussions about the practical implementation, the technique is validated on a composite plate structure and then applied to the UAV wing structure, where it is furthermore compared to a more traditional Newton-Raphson technique which iteratively uses first-order Taylor-series sensitivity. The experimental testpiece wing comprises two graphite/epoxy prepreg and Nomex honeycomb co-cured skins and two prepreg spars bonded together in a secondary process. MSC.Nastran FE models of the four structural components are correlated independently, using modal frequencies as correlation features, before being joined together into the assembled structure and compared to experimentally measured frequencies from the assembled wing in a cantilever configuration. Results show that significant improvements can be made to the assembled model fidelity, with the meta-model procedure producing slightly superior results to Newton-Raphson iteration. Final evaluation of component correlation using the assembled wing comparison showed worse results for each correlation technique, with the meta-model technique worse overall. This can be most likely be attributed to difficultly in correlating the open-section spars; however, there is also some question about non-unique update variable combinations in the current configuration, which lead correlation away from physically probably values.
Stochastic Models of Human Errors
NASA Technical Reports Server (NTRS)
Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)
2002-01-01
Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.
NASA human factors programmatic overview
NASA Technical Reports Server (NTRS)
Connors, Mary M.
1992-01-01
Human factors addresses humans in their active and interactive capacities, i.e., in the mental and physical activities that they perform and in the contributions they make to achieving the goals of the mission. The overall goal of space human factors in NASA is to support the safety, productivity, and reliability of both the on-board crew and the ground support staff. Safety and reliability are fundamental requirements that human factors shares with other disciplines, while productivity represents the defining contribution of the human factors discipline.
NASA Technical Reports Server (NTRS)
DeMott, Diana
2013-01-01
Compared to equipment designed to perform the same function over and over, humans are just not as reliable. Computers and machines perform the same action in the same way repeatedly getting the same result, unless equipment fails or a human interferes. Humans who are supposed to perform the same actions repeatedly often perform them incorrectly due to a variety of issues including: stress, fatigue, illness, lack of training, distraction, acting at the wrong time, not acting when they should, not following procedures, misinterpreting information or inattention to detail. Why not use robots and automatic controls exclusively if human error is so common? In an emergency or off normal situation that the computer, robotic element, or automatic control system is not designed to respond to, the result is failure unless a human can intervene. The human in the loop may be more likely to cause an error, but is also more likely to catch the error and correct it. When it comes to unexpected situations, or performing multiple tasks outside the defined mission parameters, humans are the only viable alternative. Human Reliability Assessments (HRA) identifies ways to improve human performance and reliability and can lead to improvements in systems designed to interact with humans. Understanding the context of the situation that can lead to human errors, which include taking the wrong action, no action or making bad decisions provides additional information to mitigate risks. With improved human reliability comes reduced risk for the overall operation or project.
Tailoring a Human Reliability Analysis to Your Industry Needs
NASA Technical Reports Server (NTRS)
DeMott, D. L.
2016-01-01
Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed versus a requirement to provide a numerical value as part of a probabilistic risk assessment. Industries involved with humans operating large equipment or transport systems (ex. railroads or airlines) would have more need to address the man machine interface than medical workers administering medications. Human error occurs in every industry; in most cases the consequences are relatively benign and occasionally beneficial. In cases where the results can have disastrous consequences, the use of Human Reliability techniques to identify and classify the risk of human errors allows a company more opportunities to mitigate or eliminate these types of risks and prevent costly tragedies.
Second-Order Conditioning of Human Causal Learning
ERIC Educational Resources Information Center
Jara, Elvia; Vila, Javier; Maldonado, Antonio
2006-01-01
This article provides the first demonstration of a reliable second-order conditioning (SOC) effect in human causal learning tasks. It demonstrates the human ability to infer relationships between a cause and an effect that were never paired together during training. Experiments 1a and 1b showed a clear and reliable SOC effect, while Experiments 2a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueydon, Sebastien; Jonkman, Jason
In comparison to other kinds of floaters (like a spar or a semisubmersible), the tension leg platform has several notable advantages: its vertical motions are negligible, its weight is lighter, and its mooring system's footprint is smaller. Although a tension leg platform has a negligible response to first-order vertical wave loads, the second-order wave loads need to be addressed. This paper follows up on a verification study of second-order wave loads on a tension leg platform for wind turbines done by the Maritime Research Institute of The Netherlands and National Renewable Energy Laboratory and it brings some corrections to itsmore » conclusions.« less
Transportation Lines on the Great Lakes System; Transportation Series 3; 1980.
1982-05-01
I 94 24 29 O 22. SPAR NONE CALCITE, 1952 ELECTRIC, STEEL MICH. (221 LITTON GREAT LA ES CORP, MJV PRESQUE ISLE TOWBOAT; STEEL 107 141 IS S4 5 2 21...1464 - -6 LIGHT NONE ERIE , PA, 1973PRESQUE ISLE BARGE, STEEL 22251 94 974 104 104 . 12 - 5720 7 6, LIGHT SE4F-UNLOADIN- DO 1973 ELEC., 250’ BOOM- 10,000...MOTOR, DIESEL. 1 37 41 I t 230 -, PAST NONE LGONAC. 1948 STEEL NIC. (23) PARKER BOAT 4INI ERIE ISLE MOTOR, DIESEL, 4 6 6 24 2 9 330 2 16014o LIGHT
2009-06-24
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, a worker removes a reinforced-carbon carbon, or RCC, panel from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
2009-06-24
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers remove the reinforced-carbon carbon, or RCC, panels from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
2009-06-24
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers remove the reinforced-carbon carbon, or RCC, panels from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
2009-06-24
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers remove the reinforced-carbon carbon, or RCC, panels from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
Data book for 12.5-inch diameter SRB thermal model water flotation test - 14.7 psia, series P024
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Tests were conducted to determine how thermal conditions affect space shuttle solid rocket booster (SRB) flotation. Acceleration, pressure, and temperature data were recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.
HST WFC3/IR Calibration Updates
NASA Astrophysics Data System (ADS)
Durbin, Meredith; Brammer, Gabriel; Long, Knox S.; Pirzkal, Norbert; Ryan, Russell E.; McCullough, Peter R.; Baggett, Sylvia M.; Gosmeyer, Catherine; Bourque, Matthew; HST WFC3 Team
2016-01-01
We report on several improvements to the characterization, monitoring, and calibration of the HST WFC3/IR detector. The detector performance has remained overall stable since its installation during HST Servicing Mission 4 in 2009. We present an updated persistence model that takes into account effects of exposure time and spatial variations in persistence across the detector, new grism wavelength solutions and master sky images, and a new SPARS sample sequence. We also discuss the stability of the IR gain, the time evolution and photometric properties of IR "snowballs," and the effect of IR "blobs" on point-source photometry.
Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Robynne; Snowberg, David R; Berry, Derek S
Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-lifemore » blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.« less
Performance modeling of unmanned aerial vehicles with on-board energy harvesting
NASA Astrophysics Data System (ADS)
Anton, Steven R.; Inman, Daniel J.
2011-03-01
The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition of flexible piezoelectric patches to the root of the wing spar. Experimental testing is also performed in which the wing spar of the EasyGlider aircraft is modified to include both Macro Fiber Composite and Piezoelectric Fiber Composite piezoelectric patches near the root of the wing and two thin-film solar panels are installed onto the upper wing surface to harvest vibration and solar energy during flight. Testing is performed in which the power output of the various harvesters is measured during flight. Results of the flight testing are used to update the model with accurate measures of the power available from the energy harvesting systems. Finally, the model is used to predict the potential benefits of adding multifunctional self-charging structures to the wing spar of the aircraft in order to harvest vibration energy during flight and provide a local power source for low-power sensors.
NASA Astrophysics Data System (ADS)
Watts, K. E.; Mercer, C. N.; Vazquez, J. A.
2015-12-01
Silicic volcanic and plutonic rocks of an eroded Mesoproterozoic caldera complex were intruded and replaced by iron ore, and cross-cut by REE-enriched breccia pipes (~12% total REO) to form the Pea Ridge iron-oxide-apatite-REE (IOA-REE) deposit. Igneous activity, iron ore formation, and REE mineralization overlapped in space and time, however the source of REEs and other metals (Fe, Cu, Au) integral to these economically important deposits remains unclear. Melt inclusions (MI) hosted in refractory zircon phenocrysts are used to constrain magmatic components and processes in the formation of the Pea Ridge deposit. Homogenized (1.4 kbar, 1000°C, 1 hr) MI in zircons from rhyolites ~600 ft (PR-91) and ~1200 ft (PR-12) laterally from the ore body were analyzed for major elements by EPMA and volatiles and trace elements (H2O, S, F, Cl, REEs, Rb, Sr, Y, Zr, Nb, U, Th) by SHRIMP-RG. Metals (including Cu, Au) will be measured in an upcoming SHRIMP-RG session. U-Pb ages, Ti and REE were determined by SHRIMP-RG for a subset of zircon spots adjacent to MI (1458 ± 18 Ma (PR-12); 1480 ± 45 Ma (PR-91)). MI glasses range from fresh and homogeneous dacite-rhyolite (65-75 wt% SiO2) to heterogeneous, patchy mixtures of K-spar and quartz (PR-12, 91), and more rarely mica, albite and/or anorthoclase (PR-91). MI are commonly attached to monazite and xenotime, particularly along re-entrants and zircon rims (PR-91). Fresh dacite-rhyolite glasses (PR-12) have moderate H2O (~2-2.5 wt%), Rb/Sr ratios (~8) and U (~5-7 ppm), and negative (chondrite-normalized) Eu anomalies (Eu ~0.4-0.7 ppm) (typical of rhyolites), whereas HREEs (Tb, Ho, Tm) are elevated (~2-3 ppm). Patchy K-spar and quartz inclusions (PR-12, 91) have flat LREE patterns, and positive anomalies in Tb, Ho, and Tm. One K-spar inclusion (PR-91) has a ~5-50 fold increase in HREEs (Tb, Dy, Ho, Er, Tm) and U (35 ppm) relative to other MI. U-Pb and REE analyses of its zircon host are not unusual (1484 ± 21 Ma); its irregular shape surrounded by a CL-bright zone (Ti-in-zircon = 713°C) is a commonly observed texture and suggests resorption. Silicic magmatism at Pea Ridge was complex, with zircons trapping both pristine melt and poly-phase mixtures that span a range of REE contents. Most MI have lower REE contents than would be expected for significant magmatic REE contribution to the Pea Ridge IOA-REE deposit.
Abubshait, Abdulaziz; Wiese, Eva
2017-01-01
Gaze following occurs automatically in social interactions, but the degree to which gaze is followed depends on whether an agent is perceived to have a mind, making its behavior socially more relevant for the interaction. Mind perception also modulates the attitudes we have toward others, and determines the degree of empathy, prosociality, and morality invested in social interactions. Seeing mind in others is not exclusive to human agents, but mind can also be ascribed to non-human agents like robots, as long as their appearance and/or behavior allows them to be perceived as intentional beings. Previous studies have shown that human appearance and reliable behavior induce mind perception to robot agents, and positively affect attitudes and performance in human-robot interaction. What has not been investigated so far is whether different triggers of mind perception have an independent or interactive effect on attitudes and performance in human-robot interaction. We examine this question by manipulating agent appearance (human vs. robot) and behavior (reliable vs. random) within the same paradigm and examine how congruent (human/reliable vs. robot/random) versus incongruent (human/random vs. robot/reliable) combinations of these triggers affect performance (i.e., gaze following) and attitudes (i.e., agent ratings) in human-robot interaction. The results show that both appearance and behavior affect human-robot interaction but that the two triggers seem to operate in isolation, with appearance more strongly impacting attitudes, and behavior more strongly affecting performance. The implications of these findings for human-robot interaction are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; Diego Mandelli; Ronald L. Boring
2015-07-01
The United States Department of Energy is sponsoring the Light Water Reactor Sustainability program, which has the overall objective of supporting the near-term and the extended operation of commercial nuclear power plants. One key research and development (R&D) area in this program is the Risk-Informed Safety Margin Characterization pathway, which combines probabilistic risk simulation with thermohydraulic simulation codes to define and manage safety margins. The R&D efforts to date, however, have not included robust simulations of human operators, and how the reliability of human performance or lack thereof (i.e., human errors) can affect risk-margins and plant performance. This paper describesmore » current and planned research efforts to address the absence of robust human reliability simulations and thereby increase the fidelity of simulated accident scenarios.« less
The Importance of Human Reliability Analysis in Human Space Flight: Understanding the Risks
NASA Technical Reports Server (NTRS)
Hamlin, Teri L.
2010-01-01
HRA is a method used to describe, qualitatively and quantitatively, the occurrence of human failures in the operation of complex systems that affect availability and reliability. Modeling human actions with their corresponding failure in a PRA (Probabilistic Risk Assessment) provides a more complete picture of the risk and risk contributions. A high quality HRA can provide valuable information on potential areas for improvement, including training, procedural, equipment design and need for automation.
Pridgeon, Julia W; Klesius, Phillip H
2013-05-31
To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resistant S. agalactiae isolates were tested in 10-12g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, 31 were found to be avirulent to fish. Of the 31 avirulent sparfloxacin-resistant S. agalactiae isolates, 30 provided 75-100% protection to 10-12g Nile tilapia against challenges with a virulent S. agalactiae isolate Sag 50. When the virulence of the 30 sparfloxacin-resistant S. agalactiae isolates was tested in 3-5g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, six were found to be avirulent to 3-5g Nile tilapia. Of the six avirulent sparfloxacin-resistant S. agalactiae isolates, four provided 3-5g Nile tilapia 100% protection against challenges with homologous isolates, including Sag 97-spar isolate that was non-hemolytic. However, Sag 97-spar failed to provide broad cross-protection against challenges with heterologous isolates. When Nile tilapia was vaccinated with a polyvalent vaccine consisting of 30 sparfloxacin-resistant S. agalactiae isolates at dose of 2×10(6)CFU/fish, the polyvalent vaccine provided significant (P<0.001) protection to both 3-5g and 15-20g Nile tilapia against challenges with 30 parent isolates of S. agalactiae. Taken together, our results suggest that a polyvalent vaccine consisting of various strains of S. agalactiae might be essential to provide broader protection to Nile tilapia against infections caused by S. agalactiae. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Dagang; Chen, Yongjun; Zhang, Tianyu
2014-03-01
This paper studies the current available options for floating production platforms in developing deepwater oil fields and the potential development models of future oil and gas exploration in the South China Sea. A detailed review of current deepwater platforms worldwide was performed through the examples of industry projects, and the pros and cons of each platform are discussed. Four types of platforms are currently used for the deepwater development: tension leg platform, Spar, semi-submersible platform, and the floating production system offloading. Among these, the TLP and Spar can be used for dry tree applications, and have gained popularity in recent years. The dry tree application enables the extension of the drilling application for fixed platforms into floating systems, and greatly reduces the cost and complexity of the subsea operation. Newly built wet tree semi-submersible production platforms for ultra deepwater are also getting their application, mainly due to the much needed payload for deepwater making the conversion of the old drilling semi-submersible platforms impossible. These platforms have been used in different fields around the world for different environments; each has its own advantages and disadvantages. There are many challenges with the successful use of these floating platforms. A lot of lessons have been learned and extensive experience accumulated through the many project applications. Key technologies are being reviewed for the successful use of floating platforms for field development, and potential future development needs are being discussed. Some of the technologies and experience of platform applications can be well used for the development of the South China Sea oil and gas field.
Tiltrotor Research Aircraft composite blade repairs - Lessons learned
NASA Technical Reports Server (NTRS)
Espinosa, Paul S.; Groepler, David R.
1992-01-01
The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.
Tiltrotor research aircraft composite blade repairs: Lessons learned
NASA Technical Reports Server (NTRS)
Espinosa, Paul S.; Groepler, David R.
1991-01-01
The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.
NASA Astrophysics Data System (ADS)
Carlowitz, Christian; Girg, Thomas; Ghaleb, Hatem; Du, Xuan-Quang
2017-09-01
For ultra-high speed communication systems at high center frequencies above 100 GHz, we propose a disruptive change in system architecture to address major issues regarding amplifier chains with a large number of amplifier stages. They cause a high noise figure and high power consumption when operating close to the frequency limits of the underlying semiconductor technologies. Instead of scaling a classic homodyne transceiver system, we employ repeated amplification in single-stage amplifiers through positive feedback as well as synthesizer-free self-mixing demodulation at the receiver to simplify the system architecture notably. Since the amplitude and phase information for the emerging oscillation is defined by the input signal and the oscillator is only turned on for a very short time, it can be left unstabilized and thus come without a PLL. As soon as gain is no longer the most prominent issue, relaxed requirements for all the other major components allow reconsidering their implementation concepts to achieve further improvements compared to classic systems. This paper provides the first comprehensive overview of all major design aspects that need to be addressed upon realizing a SPARS-based transceiver. At system level, we show how to achieve high data rates and a noise performance comparable to classic systems, backed by scaled demonstrator experiments. Regarding the transmitter, design considerations for efficient quadrature modulation are discussed. For the frontend components that replace PA and LNA amplifier chains, implementation techniques for regenerative sampling circuits based on super-regenerative oscillators are presented. Finally, an analog-to-digital converter with outstanding performance and complete interfaces both to the analog baseband as well as to the digital side completes the set of building blocks for efficient ultra-high speed communication.
Pereira, Paulo; Cerda, Artemi; Martin, Deborah; Úbeda, Xavier; Depellegrin, Daniel; Novara, Agata; Martínez-Murillo, Juan F; Brevik, Eric C; Menshov, Oleksandr; Comino, Jesus Rodrigo; Miesel, Jessica
2017-02-01
Spring grassland fires are common in boreal areas as a consequence of slash and burn agriculture used to remove dry grass to increase soil nutrient properties and crop production. However, few works have investigated fire impacts on these grassland ecosystems, especially in the immediate period after the fire. The objective of this work was to study the short-term impacts of a spring grassland fire in Lithuania. Four days after the fire we established a 400m 2 sampling grid within the burned area and in an adjacent unburned area with the same topographical, hydrological and pedological characteristics. We collected topsoil samples immediately after the fire (0months), 2, 5, 7 and 9months after the fire. We analysed soil pH, electrical conductivity (EC), major nutrients including calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), and the minor elements aluminium (Al), manganese (Mn), iron (Fe) and zinc (Zn). We also calculated the soil Na and K adsorption ratio (SPAR), Ca:Mg and Ca:Al. The results showed that this low-severity grassland fire significantly decreased soil pH, Al, and Mn but increased EC, Ca, Mg, and K,. There was no effect on Na, Fe, and Zn. There was a decrease of EC, Ca, Mg, and Na from 0months after the fire until 7months after the fire, with an increase during the last sampling period. Fire did not significantly affect SPAR. Ca:Mg decreased significantly immediately after the fire, but not to critical levels. Ca:Al increased after the fire, reducing the potential effects of Al on plants. Overall, fire impacts were mainly limited to the immediate period after the fire. Copyright © 2016 Elsevier B.V. All rights reserved.
Human Support Issues and Systems for the Space Exploration Initiative: Results from Project Outreach
1991-01-01
that human factors were responsible for mission failure more often than equipment factors. Spacecraft habitability and ergonomics also require more...substantial challenges for designing reliable, flexible joints and dexterous, reliable gloves. Submission #100701 dealt with the ergonomics of work...perception that human factors deals primarily with cockpit displays and ergonomics . The success of long-duration missions will be highly dependent on
Evaluation of Human Reliability in Selected Activities in the Railway Industry
NASA Astrophysics Data System (ADS)
Sujová, Erika; Čierna, Helena; Molenda, Michał
2016-09-01
The article focuses on evaluation of human reliability in the human - machine system in the railway industry. Based on a survey of a train dispatcher and of selected activities, we have identified risk factors affecting the dispatcher`s work and the evaluated risk level of their influence on the reliability and safety of preformed activities. The research took place at the authors` work place between 2012-2013. A survey method was used. With its help, authors were able to identify selected work activities of train dispatcher's risk factors that affect his/her work and the evaluated seriousness of its influence on the reliability and safety of performed activities. Amongst the most important finding fall expressions of unclear and complicated internal regulations and work processes, a feeling of being overworked, fear for one's safety at small, insufficiently protected stations.
10 CFR 712.15 - Management evaluation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Management evaluation. 712.15 Section 712.15 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability... workplace substance abuse program for DOE contractor employees, and DOE Order 3792.3, “Drug-Free Federal...
10 CFR 712.15 - Management evaluation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Management evaluation. 712.15 Section 712.15 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability... workplace substance abuse program for DOE contractor employees, and DOE Order 3792.3, “Drug-Free Federal...
10 CFR 712.15 - Management evaluation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Management evaluation. 712.15 Section 712.15 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability... workplace substance abuse program for DOE contractor employees, and DOE Order 3792.3, “Drug-Free Federal...
10 CFR 712.15 - Management evaluation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Management evaluation. 712.15 Section 712.15 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability... workplace substance abuse program for DOE contractor employees, and DOE Order 3792.3, “Drug-Free Federal...
10 CFR 712.18 - Transferring HRP certification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Transferring HRP certification. 712.18 Section 712.18 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability Program Procedures § 712.18 Transferring HRP certification. (a) For HRP certification to be...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Applicability. 712.2 Section 712.2 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability Program General Provisions § 712.2 Applicability. The HRP applies to all applicants for, or current employees of...
10 CFR 712.22 - Hearing officer's report and recommendation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Hearing officer's report and recommendation. 712.22 Section 712.22 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability Program Procedures § 712.22 Hearing officer's report and recommendation. Within...
10 CFR 712.16 - DOE security review.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false DOE security review. 712.16 Section 712.16 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability... part. (c) Any mental/personality disorder or behavioral issues found in a personnel security file...
10 CFR 712.10 - Designation of HRP positions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... duties or has responsibility for working with, protecting, or transporting nuclear explosives, nuclear... 10 Energy 4 2012-01-01 2012-01-01 false Designation of HRP positions. 712.10 Section 712.10 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability...
10 CFR 712.10 - Designation of HRP positions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... duties or has responsibility for working with, protecting, or transporting nuclear explosives, nuclear... 10 Energy 4 2013-01-01 2013-01-01 false Designation of HRP positions. 712.10 Section 712.10 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability...
10 CFR 712.10 - Designation of HRP positions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... duties or has responsibility for working with, protecting, or transporting nuclear explosives, nuclear... 10 Energy 4 2010-01-01 2010-01-01 false Designation of HRP positions. 712.10 Section 712.10 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability...
10 CFR 712.10 - Designation of HRP positions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... duties or has responsibility for working with, protecting, or transporting nuclear explosives, nuclear... 10 Energy 4 2011-01-01 2011-01-01 false Designation of HRP positions. 712.10 Section 712.10 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability...
10 CFR 712.10 - Designation of HRP positions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... duties or has responsibility for working with, protecting, or transporting nuclear explosives, nuclear... 10 Energy 4 2014-01-01 2014-01-01 false Designation of HRP positions. 712.10 Section 712.10 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability...
10 CFR 712.17 - Instructional requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Instructional requirements. 712.17 Section 712.17 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability... responding to behavioral change and aberrant or unusual behavior that may result in a risk to national...
10 CFR 712.17 - Instructional requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Instructional requirements. 712.17 Section 712.17 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability... responding to behavioral change and aberrant or unusual behavior that may result in a risk to national...
10 CFR 712.17 - Instructional requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Instructional requirements. 712.17 Section 712.17 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability... responding to behavioral change and aberrant or unusual behavior that may result in a risk to national...
10 CFR 712.17 - Instructional requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Instructional requirements. 712.17 Section 712.17 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability... responding to behavioral change and aberrant or unusual behavior that may result in a risk to national...
Reliability Analysis and Standardization of Spacecraft Command Generation Processes
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Grenander, Sven; Evensen, Ken
2011-01-01
center dot In order to reduce commanding errors that are caused by humans, we create an approach and corresponding artifacts for standardizing the command generation process and conducting risk management during the design and assurance of such processes. center dot The literature review conducted during the standardization process revealed that very few atomic level human activities are associated with even a broad set of missions. center dot Applicable human reliability metrics for performing these atomic level tasks are available. center dot The process for building a "Periodic Table" of Command and Control Functions as well as Probabilistic Risk Assessment (PRA) models is demonstrated. center dot The PRA models are executed using data from human reliability data banks. center dot The Periodic Table is related to the PRA models via Fault Links.
Fifty Years of THERP and Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring
2012-06-01
In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø Nationalmore » Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.« less
10 CFR 712.21 - Office of Hearings and Appeals.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Office of Hearings and Appeals. 712.21 Section 712.21 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Establishment of and Procedures for the Human Reliability Program Procedures § 712.21 Office of Hearings and Appeals. (a) The certification review hearing...
Human reliability in petrochemical industry: an action research.
Silva, João Alexandre Pinheiro; Camarotto, João Alberto
2012-01-01
This paper aims to identify conflicts and gaps between the operators' strategies and actions and the organizational managerial approach for human reliability. In order to achieve these goals, the research approach adopted encompasses literature review, mixing action research methodology and Ergonomic Workplace Analysis in field research. The result suggests that the studied company has a classical and mechanistic point of view focusing on error identification and building barriers through procedures, checklists and other prescription alternatives to improve performance in reliability area. However, it was evident the fundamental role of the worker as an agent of maintenance and construction of system reliability during the action research cycle.
Data book for 12.5-inch diameter SRB thermal model water flotation test: 14.7 psia, series P020
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Data acquired from the initial series of tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation are presented. Acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure are included. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires installing fuel level float and pressure switch in-line fuses on the wing forward spars and forward and aft auxiliary fuel tanks, depending on the airplane configuration. This AD was prompted by fuel system reviews conducted by the manufacturer. We are issuing this AD to prevent the potential of ignition sources inside fuel tanks, which, in combination with flammable fuel vapors, could result in fuel tank explosions and consequent loss of the airplane.
Antenna system for MSAT mission
NASA Technical Reports Server (NTRS)
Karlsson, Ingmar; Patenaude, Yves; Stipelman, Leora
1988-01-01
Spar has evaluated and compared several antenna concepts for the North American Mobile Satellite. The paper describes some of the requirements and design considerations for the antennas and demonstrates the performance of antenna concepts that can meet them. Multiple beam reflector antennas are found to give best performance and much of the design effort has gone into the design of the primary feed radiators and beam forming networks to achieve efficient beams with good overlap and flexibility. Helices and cup dipole radiators have been breadboarded as feed element candidates and meausured results are presented. The studies and breadboard activities have made it possible to proceed with a flight program.
Design and evaluation of low cost blades for large wind driven generating systems
NASA Technical Reports Server (NTRS)
Eggert, W. S.
1982-01-01
The development and evaluation of a low cost blade concept based on the NASA-Lewis specifications is discussed. A blade structure was designed and construction methods and materials were selected. Complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program was conducted to provide data and to verify the design. A test specimen of the spar assembly, including the root end attachment, was fabricated. This is a full-scale specimen of the root end configuration, 20 ft long. A blade design for the Mod '0' system was completed.
Fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Ostrach, S.
1978-01-01
The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties.
Livermore Big Artificial Neural Network Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essen, Brian Van; Jacobs, Sam; Kim, Hyojin
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Programs for analysis and resizing of complex structures. [computerized minimum weight design
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Prasad, B.
1978-01-01
The paper describes the PARS (Programs for Analysis and Resizing of Structures) system. PARS is a user oriented system of programs for the minimum weight design of structures modeled by finite elements and subject to stress, displacement, flutter and thermal constraints. The system is built around SPAR - an efficient and modular general purpose finite element program, and consists of a series of processors that communicate through the use of a data base. An efficient optimizer based on the Sequence of Unconstrained Minimization Technique (SUMT) with an extended interior penalty function and Newton's method is used. Several problems are presented for demonstration of the system capabilities.
Regulation and policy: International trends and issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, W S
As offshore oil and gas resources become exhausted, the associated production platforms and facilities will be decommissioned. The world-wide oil and gas industry is strictly regulated by global, regional and national guidelines which have been developed by governments to find the most responsible framework to perform the decommissioning. In the summer of 1995, the Brent Spar incident brought uncertainty to decommissioning world-wide. In June of 1995, a moratorium prohibiting sea disposal within the North East Atlantic was imposed by the Oslo Commission, and an unsuccessful attempt was made in December of 1995 to impose a world-wide moratorium on sea disposalmore » at the London Convention.« less
Design of Buoys for Mounting Wind Turbines at Exposed Sites
NASA Astrophysics Data System (ADS)
Erdoğan, Beytullah; Çelıkkol, Barbaros; Swift, Robinson
2018-04-01
In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire's Center of Ocean Renewable Energy testing site located off the Isles of Shoals, New Hampshire. The buoys are to be moored by a catenary chain system. To evaluate wave response, two Froude-scaled models were constructed, tested, and compared at the Ocean Engineering wave tank at the University of New Hampshire. These buoys have been implemented and compared with wave tank measurements of the spar displacement at a reference elevation 2.44 m above the mean water level.
Verification and Validation of Multisegmented Mooring Capabilities in FAST v8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Morten T.; Wendt, Fabian F.; Robertson, Amy N.
2016-07-01
The quasi-static and dynamic mooring modules of the open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, have previously been verified and validated, but only for mooring arrangements consisting of single lines connecting each fairlead and anchor. This paper extends the previous verification and validation efforts to focus on the multisegmented mooring capability of the FAST v8 modules: MAP++, MoorDyn, and the OrcaFlex interface. The OC3-Hywind spar buoy system tested by the DeepCwind consortium at the MARIN ocean basin, which includes a multisegmented bridle layout of the mooring system, was used for the verification and validation activities.
Laidoune, Abdelbaki; Rahal Gharbi, Med El Hadi
2016-09-01
The influence of sociocultural factors on human reliability within an open sociotechnical systems is highlighted. The design of such systems is enhanced by experience feedback. The study was focused on a survey related to the observation of working cases, and by processing of incident/accident statistics and semistructured interviews in the qualitative part. In order to consolidate the study approach, we considered a schedule for the purpose of standard statistical measurements. We tried to be unbiased by supporting an exhaustive list of all worker categories including age, sex, educational level, prescribed task, accountability level, etc. The survey was reinforced by a schedule distributed to 300 workers belonging to two oil companies. This schedule comprises 30 items related to six main factors that influence human reliability. Qualitative observations and schedule data processing had shown that the sociocultural factors can negatively and positively influence operator behaviors. The explored sociocultural factors influence the human reliability both in qualitative and quantitative manners. The proposed model shows how reliability can be enhanced by some measures such as experience feedback based on, for example, safety improvements, training, and information. With that is added the continuous systems improvements to improve sociocultural reality and to reduce negative behaviors.
Applications of Human Performance Reliability Evaluation Concepts and Demonstration Guidelines
1977-03-15
ship stops dead in the water and the AN/SQS-26 operator recommends a new heading (000°). At T + 14 minutes, the target ship begins a hard turn to...Various Simulated Conditions 82 9 Hunan Reliability for Each Simulated Operator (Baseline Run) 83 10 Human and Equipment Availabilit / under
Xu, Ming-Yi; Qu, Ying; Jia, Xiao-Fang; Wang, Mei-Ling; Liu, Heng; Wang, Xing-Peng; Zhang, Li-Jun; Lu, Lun-Gen
2013-09-01
Because of the limitations of liver biopsy, reliable non-invasive serum biomarkers of liver fibrosis are needed. The aim of this study was to identify such markers by the use of serum proteomics in chronic hepatitis B (CHB). Two-dimensional gel electrophoresis (2-DE) was used to identify differentially expressed protein spots in sera from 40 CHB patients [20 with mild fibrosis (S0-S1) and 20 with severe fibrosis (S3-S4)]. Mass spectrometry (MS) based multiple reaction monitoring (MRM) was used to quantify peptide ions of differential protein spots in another set of sera from 86 CHB patients with different liver fibrosis (S0-S4). Seven differentially expressed protein spots were found by 2-DE. Fourteen peptide ions of seven target protein spots were quantified by MS-based MRM. Summed peak areas ratio (SPAR) values of peptide ions from protein spot 1, 4 and 8, identified as apo serum transferrin, complement component C3c and transferrin, were significantly different from non-fibrosis (S0) to fibrosis stage 4. AUROCs of models established by peptide ions (protein spot 1, 4, 8) and model consisting of a combination of all ions were 0.848∼0.966 (S2-S4 versus S0-S1) and 0.785∼0.875 (S3-S4 versus S0-S2). Only the peptide ions model of transferrin had better sensitivity and specificity for predicting fibrosis stages than did aspartate aminotransferase-to-platelet ratio index (APRI), FIB-4 and Forn's index. Serum peptide ions of transferrin, detected by proteomic MRM, are new and promising biomarkers for staging liver fibrosis in CHB patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Regenerative fuel cells for High Altitude Long Endurance Solar Powered Aircraft
NASA Astrophysics Data System (ADS)
Mitlitsky, F.; Colella, N. J.; Myers, B.; Anderson, C. J.
1993-06-01
High Altitude Long Endurance (HALE) unmanned missions appear to be feasible using a lightweight, high efficiency, span-loaded, Solar Powered Aircraft (SPA) which includes a Regenerative Fuel Cell (RFC) system and novel tankage for energy storage. An existing flightworthy electric powered flying wing design was modified to incorporate present and near-term technologies in energy storage, power electronics, aerodynamics, and guidance and control in order to substantiate feasibility. The design philosophy was to work with vendors to identify affordable near-term technological opportunities that could be applied to existing designs in order to reduce weight, increase reliability, and maintain adequate efficiency of components for delivery within 18 months. The energy storage subsystem for a HALE SPA is a key driver for the entire vehicle because it can represent up to half of the vehicle weight and most missions of interest require the specific energy to be considerably higher than 200 W-hr/kg for many cycles. This stringent specific energy requirement precludes the use of rechargeable batteries or flywheels and suggests examination of various RFC designs. An RFC system using lightweight tankage, a single fuel cell (FC) stack, and a single electrolyzer (EC) stack separated by the length of a spar segment (up to 39 ft), has specific energy of approximately 300 W-hr/kg with 45% efficiency, which is adequate for HALE SPA requirements. However, this design has complexity and weight penalties associated with thermal management, electrical wiring, plumbing, and structural weight. A more elegant solution is to use unitized RFC stacks (reversible stacks that act as both FC's and EC's) because these systems have superior specific energy, scale to smaller systems more favorably, and have intrinsically simpler thermal management.
The King-Devick test as a concussion screening tool administered by sports parents.
Leong, D F; Balcer, L J; Galetta, S L; Liu, Z; Master, C L
2014-02-01
Sports-related concussion has received increasing awareness due to short- and long-term neurologic sequelae seen among athletes. The King-Devick (K-D) test captures impairment of eye movements and other correlates of suboptimal brain function. We investigated the K-D test as a screening for concussion when administered by layperson sports parents in a cohort of amateur boxers. The K-D test was administered pre-fight and post-fight by laypersons masked to the head trauma status of each athlete. Matches were watched over by a ringside physician and boxing trainer. Athletes with suspected head trauma received testing with the Military Acute Concussion Evaluation (MACE) by the ringside physician to determine concussion status. Athletes sustaining concussion were compared to the athletes screened using the K-D test. Post-fight K-D scores were lower (better) than the best baseline score (41 vs. 39.3 s, P=0.34, Wilcoxon signed-rank test), in the absence of concussion. One boxer sustained a concussion as determined by the ringside physician. This boxer was accurately identified by the layperson K-D testers due to a worsening in K-D test compared to baseline (3.2 seconds) and an increased number of errors. High levels of test-retest reliability were observed (intraclass correlation coefficient 0.90 [95% CI 0.84-0.97]). Additionally, 6 boxers who participated in multiple bouts showed no worsening of their K-D times further supporting that scores are not affected by the fatigue associated with sparring. The K-D test is a rapid sideline screening tool for concussion that can be effectively administered by non-medically trained laypersons.
Human Factors in Financial Trading: An Analysis of Trading Incidents.
Leaver, Meghan; Reader, Tom W
2016-09-01
This study tests the reliability of a system (FINANS) to collect and analyze incident reports in the financial trading domain and is guided by a human factors taxonomy used to describe error in the trading domain. Research indicates the utility of applying human factors theory to understand error in finance, yet empirical research is lacking. We report on the development of the first system for capturing and analyzing human factors-related issues in operational trading incidents. In the first study, 20 incidents are analyzed by an expert user group against a referent standard to establish the reliability of FINANS. In the second study, 750 incidents are analyzed using distribution, mean, pathway, and associative analysis to describe the data. Kappa scores indicate that categories within FINANS can be reliably used to identify and extract data on human factors-related problems underlying trading incidents. Approximately 1% of trades (n = 750) lead to an incident. Slip/lapse (61%), situation awareness (51%), and teamwork (40%) were found to be the most common problems underlying incidents. For the most serious incidents, problems in situation awareness and teamwork were most common. We show that (a) experts in the trading domain can reliably and accurately code human factors in incidents, (b) 1% of trades incur error, and (c) poor teamwork skills and situation awareness underpin the most critical incidents. This research provides data crucial for ameliorating risk within financial trading organizations, with implications for regulation and policy. © 2016, Human Factors and Ergonomics Society.
Evans, Kate; Moore, Randall; Harris, Stephen
2013-01-01
A rapid rise in the number of captive African elephants (Loxodonta africana) used in the tourism industry in southern Africa and orphaned elephants in human care has led to concerns about their long-term management, particularly males. One solution is to release them into the wild at adolescence, when young males naturally leave their herd. However, this raises significant welfare concerns: little is known about how well released elephants integrate into wild populations and whether they pose a greater threat to humans than wild elephants. We document the release of three captive-raised adolescent male African elephants in the Okavango Delta, Botswana. Despite having been part of a herd of working elephants for at least eight years, the three males progressively integrated into the complex fission-fusion society of wild bull elephants. In the three years following release, they showed no tendency to be closer to human habitation, and there were no significant differences between wild and captive-raised adolescent males in the total number of social interactions, size of ranges and habitat use. However, the captive-raised elephants sparred less and vocalised more, and spent more time alone and in smaller social groups. Thereafter the released elephants continued to expand their ranges and interact with both mixed-sex herds and males. One male was shot by farmers 94 months after release, along with ten wild elephants, on a ranch outside the protected area. We show that captive-raised adolescent male elephants can integrate into a wild population. Long-term studies are required to determine the longevity, breeding success, and eventual fate of released male elephants, but we identified no significant short-term welfare problems for the released elephants or recipient population. Release of captive-raised mammals with complex social systems is a husbandry option that should be explored further.
Evans, Kate; Moore, Randall; Harris, Stephen
2013-01-01
Background A rapid rise in the number of captive African elephants (Loxodonta africana) used in the tourism industry in southern Africa and orphaned elephants in human care has led to concerns about their long-term management, particularly males. One solution is to release them into the wild at adolescence, when young males naturally leave their herd. However, this raises significant welfare concerns: little is known about how well released elephants integrate into wild populations and whether they pose a greater threat to humans than wild elephants. We document the release of three captive-raised adolescent male African elephants in the Okavango Delta, Botswana. Methodology/Principal Findings Despite having been part of a herd of working elephants for at least eight years, the three males progressively integrated into the complex fission-fusion society of wild bull elephants. In the three years following release, they showed no tendency to be closer to human habitation, and there were no significant differences between wild and captive-raised adolescent males in the total number of social interactions, size of ranges and habitat use. However, the captive-raised elephants sparred less and vocalised more, and spent more time alone and in smaller social groups. Thereafter the released elephants continued to expand their ranges and interact with both mixed-sex herds and males. One male was shot by farmers 94 months after release, along with ten wild elephants, on a ranch outside the protected area. Conclusions/Significance We show that captive-raised adolescent male elephants can integrate into a wild population. Long-term studies are required to determine the longevity, breeding success, and eventual fate of released male elephants, but we identified no significant short-term welfare problems for the released elephants or recipient population. Release of captive-raised mammals with complex social systems is a husbandry option that should be explored further. PMID:23437076