Sample records for spark gap device

  1. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  2. Spark gap device for precise switching

    DOEpatents

    Boettcher, Gordon E.

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  3. Spark gap device for precise switching

    DOEpatents

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  4. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  5. Experimental verification of the capillary plasma triggered long spark gap under the extremely low working coefficient in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, D.; Yang, L. J., E-mail: yanglj@mail.xjtu.edu.cn; Ma, J. B.

    The paper has proposed a new triggering method for long spark gap based on capillary plasma ejection and conducted the experimental verification under the extremely low working coefficient, which represents that the ratio of the spark gap charging voltage to the breakdown voltage is particularly low. The quasi-neutral plasma is ejected from the capillary and develops through the axial direction of the spark gap. The electric field in the spark gap is thus changed and its breakdown is incurred. It is proved by the experiments that the capillary plasma ejection is effective in triggering the long spark gap under themore » extremely low working coefficient in air. The study also indicates that the breakdown probabilities, the breakdown delay, and the delay dispersion are all mainly determined by the characteristics of the ejected plasma, including the length of the plasma flow, the speed of the plasma ejection, and the ionization degree of the plasma. Moreover, the breakdown delay and the delay dispersion increase with the length of the long spark gap, and the polarity effect exists in the triggering process. Lastly, compared with the working patterns of the triggering device installed in the single electrode, the working pattern of the devices installed in both the two electrodes, though with the same breakdown process, achieves the ignition under longer gap distance. To be specific, at the gap length of 14 cm and the working coefficient of less than 2%, the spark gap is still ignited accurately.« less

  6. ELECTRICAL PROTECTIVE DEVICE

    DOEpatents

    Baker, W.R.

    1958-05-01

    A protective system for high-energy resonant cavities is described. It is particularly directed to the discharging of resonant cavities for preventing energy back flow through associated equipment as a result of faults. The invention in general provides means defining a spark gap communicating with the interior of a cavity or waveguide adapted for high-power energization or an evacuated chamber containing an electrode having a large power differential from the wall or other electrode. A control or trigger circuit is connected between a power supply energizing the cavity and the spark gap whereby reverse current flow in the power supply circuit instantaneously triggers the spark gap to initiate discharge within the cavity, whereupon cavity energy discharges across the gap, or with an electrode present the electrode discharges to one of the spark gap elements.

  7. Pulse power switch development

    NASA Astrophysics Data System (ADS)

    Harvey, R.; Gallagher, H.; Hansen, S.

    1980-01-01

    The objective of this study program has been to define an optimum technical approach to the longer range goal of achieving practical high repetition rate high power spark gap switches. Requirements and possible means of extending the state of the art of crossed field closing switches, vacuum spark gaps, and pressurized spark gaps are presented with emphasis on reliable, efficient and compact devices operable in burst mode at 250-300 kV, 40-60 kA, =1 kHz with approximately 50 nsec pulses rising in approximately 3 ns. Models of these devices are discussed which are based upon published and generated design data and on underlying physical principles. Based upon its relative advantages, limitations and tradeoffs we conclude that the Hughes Crossatron switch is the nearest term approach to reach the switch goal levels. Theoretical, experimental, and computer simulation models of the plasma show a collective ion acceleration mechanism to be active which is predicted to result in current rise times approaching 10 nsec. A preliminary design concept is presented. For faster rise times we have shown a vacuum surface flashover switch to be an interesting candidate. This device is limited by trigger instabilities and will require further basic development. The problem areas relevant to high pressure spark gaps are reviewed.

  8. Initiation devices, initiation systems including initiation devices and related methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Michael A.; Condit, Reston A.; Rasmussen, Nikki

    Initiation devices may include at least one substrate, an initiation element positioned on a first side of the at least one substrate, and a spark gap electrically coupled to the initiation element and positioned on a second side of the at least one substrate. Initiation devices may include a plurality of substrates where at least one substrate of the plurality of substrates is electrically connected to at least one adjacent substrate of the plurality of substrates with at least one via extending through the at least one substrate. Initiation systems may include such initiation devices. Methods of igniting energetic materialsmore » include passing a current through a spark gap formed on at least one substrate of the initiation device, passing the current through at least one via formed through the at least one substrate, and passing the current through an explosive bridge wire of the initiation device.« less

  9. Heat energy of various ignition sparks

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Fonseca, E L

    1920-01-01

    This report describes a method developed at the Bureau of Standards for measuring the total energy liberated as heat in a spark gap by an ignition system. Since this heat energy is obtained from the electromagnetic energy stored in the windings of the magneto or coil, it is a measure of the effectiveness of the device as an electric generator. Part 2 gives the results of measurements in absolute units of the total heat supplied to a spark gap by ignition systems of different types operating at various speeds, under conditions substantially equivalent to those in the cylinder of a high-compression aviation engine.

  10. Portable spark-gap arc generator

    NASA Technical Reports Server (NTRS)

    Ignaczak, L. R.

    1978-01-01

    Self-contained spark generator that simulates electrical noise caused by discharge of static charge is useful tool when checking sensitive component and equipment. In test set-up, device introduces repeatable noise pulses as behavior of components is monitored. Generator uses only standard commercial parts and weighs only 4 pounds; portable dc power supply is used. Two configurations of generator have been developed: one is free-running arc source, and one delivers spark in response to triggering pulse.

  11. CHARACTERISTICS OF A FAST RISE TIME POWER SUPPLY FOR A PULSED PLASMA REACTOR FOR CHEMICAL VAPOR DESTRUCTION

    EPA Science Inventory

    Rotating spark gap devices for switching high-voltage direct current (dc) into a corona plasma reactor can achieve pulse rise times in the range of tens of nanoseconds. The fast rise times lead to vigorous plasma generation without sparking at instantaneous applied voltages highe...

  12. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  13. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOEpatents

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  14. Detonating apparatus

    DOEpatents

    Johnston, Lawrence H.

    1976-01-01

    1. Apparatus for detonation of high explosive in uniform timing comprising in combination, an outer case, spark gap electrodes insulatedly supported in spaced relationship within said case to form a spark gap, high explosive of the class consisting of pentaerythritol tetranitrate and trimethylene trinitramine substantially free from material sensitive to detonation by impact compressed in surrounding relation to said electrodes including said spark gap under a pressure from about 100 psi to about 500 psi, said spark gap with said compressed explosive therein requiring at least 1000 volts for sparking, and means for impressing at least 1000 volts on said spark gap.

  15. Automated qualification and analysis of protective spark gaps for DC accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srutarshi; Rajan, Rehim N.; Dewangan, S.

    2014-07-01

    Protective spark gaps are used in the high voltage multiplier column of a 3 MeV DC Accelerator to prevent excessive voltage build-ups. Precise gap of 5 mm is maintained between the electrodes in these spark gaps for obtaining 120 kV± 5 kV in 6 kg/cm{sup 2} SF{sub 6} environment which is the dielectric medium. There are 74 such spark gaps used in the multiplier. Each spark gap has to be qualified for electrical performance before fitting in the accelerator to ensure reliable operation. As the breakdown voltage stabilizes after a large number of sparks between the electrodes, the qualification processmore » becomes time consuming and cumbersome. For qualifying large number of spark gaps an automatic breakdown analysis setup has been developed. This setup operates in air, a dielectric medium. The setup consists of a flyback topology based high voltage power supply with maximum rating of 25 kV. This setup works in conjunction with spark detection and automated shutdown circuit. The breakdown voltage is sensed using a peak detector circuit. The voltage breakdown data is recorded and statistical distribution of the breakdown voltage has been analyzed. This paper describes details of the diagnostics and the spark gap qualification process based on the experimental data. (author)« less

  16. Modeling of Spark Gap Performance

    DTIC Science & Technology

    1983-06-01

    MODELING OF SPARK GAP PERFORMANCE* A. L. Donaldson, R. Ness, M. Hagler, M. Kristiansen Department of Electrical Engineering and L. L. Hatfield...gas pressure, and chaJ:ging rate on the voltage stability of high energy spark gaps is discussed. Implications of the model include changes in...an extremely useful, and physically reasonable framework, from which the properties of spark gaps under a wide variety of experimental conditions

  17. Damping Resonant Current in a Spark-Gap Trigger Circuit to Reduce Noise

    DTIC Science & Technology

    2009-06-01

    DAMPING RESONANT CURRENT IN A SPARK- GAP TRIGGER CIRCUIT TO REDUCE NOISE E. L. Ruden Air Force Research Laboratory, Directed Energy Directorate, AFRL...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Damping Resonant Current In A Spark- Gap Trigger Circuit To Reduce Noise 5a...thereby triggering 2 after delay 0, is 1. Each of the two rail- gaps (represented by 2) is trig- gered to close after the spark- gap (1) in the

  18. Breakdown voltage determination of gaseous and near cryogenic fluids with application to rocket engine ignition

    NASA Astrophysics Data System (ADS)

    Nugent, Nicholas Jeremy

    Liquid rocket engines extensively use spark-initiated torch igniters for ignition. As the focus shifts to longer missions that require multiple starts of the main engines, there exists a need to solve the significant problems associated with using spark-initiated devices. Improving the fundamental understanding of predicting the required breakdown voltage in rocket environments along with reducing electrical noise is necessary to ensure that missions can be completed successfully. To better understand spark ignition systems and add to the fundamental research on spark development in rocket applications, several parameter categories of interest were hypothesized to affect breakdown voltage: (i) fluid, (ii) electrode, and (iii) electrical. The fluid properties varied were pressure, temperature, density and mass flow rate. Electrode materials, insert electrode angle and spark gap distance were the electrode properties varied. Polarity was the electrical property investigated. Testing how breakdown voltage is affected by each parameter was conducted using three different isolated insert electrodes fabricated from copper and nickel. A spark plug commonly used in torch igniters was the other electrode. A continuous output power source connected to a large impedance source and capacitance provided the pulsing potential. Temperature, pressure and high voltage measurements were recorded for the 418 tests that were successfully completed. Nitrogen, being inert and similar to oxygen, a propellant widely used in torch igniters, was used as the fluid for the majority of testing. There were 68 tests completed with oxygen and 45 with helium. A regression of the nitrogen data produced a correction coefficient to Paschen's Law that predicts the breakdown voltage to within 3000 volts, better than 20%, compared to an over prediction on the order of 100,000 volts using Paschen's Law. The correction coefficient is based on the parameters most influencing breakdown voltage: fluid density, spark gap distance, electrode angles, electrode materials and polarity. The research added to the fundamental knowledge of spark development in rocket ignition applications by determining the parameters that most influence breakdown voltage. Some improvements to the research should include better temperature measurements near the spark gap, additional testing with oxygen and testing with fuels of interest such as hydrogen and methane.

  19. High PRF high current switch

    DOEpatents

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  20. A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Houard, A.; Brelet, Y.; Carbonnel, J.; Larour, J.; André, Y.-B.; Mysyrowicz, A.

    2013-04-01

    We describe a simple, sturdy, and reliable spark gap operating with air at atmospheric pressure and able to switch currents in excess of 10 kA with sub-nanosecond jitter. The spark gap is remotely triggered by a femtosecond laser filament.

  1. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    PubMed

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  2. Energy loss in spark gap switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru; Lavrinovich, I. V.; National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk

    2014-04-15

    The paper reports on numerical study of the energy loss in spark gap switches. The operation of the switches is analyzed using the Braginsky model which allows calculation of the time dependence of the spark channel resistance. The Braginsky equation is solved simultaneously with generator circuit equations for different load types. Based on the numerical solutions, expressions which determine both the energy released in a spark gap switch and the switching time are derived.

  3. Small-size controlled vacuum spark-gap in an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asyunin, V. I., E-mail: asvi@mail.ru; Davydov, S. G.; Dolgov, A. N., E-mail: alnikdolgov@mail.ru

    2015-02-15

    It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.

  4. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  5. Technology of fast spark gaps

    NASA Astrophysics Data System (ADS)

    Standler, Ronald B.

    1989-09-01

    To protect electronic systems from the effects of electromagnetic pulse (EMP) form nuclear weapons and high-power microwave (HPM) weapons, it is desirable to have fast responding protection components. The gas-filled spark gap appears to be an attractive protection component, except that it can be slow to conduct under certain conditions. This report reviews the literature and presents ideas for construction of a spark gap that will conduct in less than one nanosecond. The key concept to making a fast-responding spark gap is to produce a large number of free electrons quickly. Seven different mechanisms for production of free electrons are reviewed, and several that are relevant to miniature spark gaps for protective applications are discussed in detail. These mechanisms include: inclusion of radioactive materials, photoelectric effect, secondary electrode emission from the anode, and field emission from the cathode.

  6. The effect of electrode temperature on the sparking voltage of short spark gaps

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1924-01-01

    This report presents the results of an investigation to determine what effect the temperature of spark plug electrodes might have on the voltage at which a spark occurred. A spark gap was set up so that one electrode could be heated to temperatures up to 700 degrees C., while the other electrode and the air in the gap were maintained at room temperature. The sparking voltages were measured both with direct voltage and with voltage impulse from ignition coil. It was found that the sparking voltage of the gap decreased materially with increase of temperature. This change was more marked when the hot electrode was of negative polarity. The phenomena observed can be explained by the ionic theory of gaseous conduction, and serve to account for certain hitherto unexplained actions in the operation of internal combustion engines. These results indicate that the ignition spark will pass more readily when the spark-plug design is such as to make the electrodes run hot. This possible gain is, however, very closely limited by the danger of producing preignition. These experiments also show that sparking is somewhat easier when the hot electrode (which is almost always the central electrode) is negative than when the polarity is reversed.

  7. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  8. The subsidiary gap as a means for improving ignition

    NASA Technical Reports Server (NTRS)

    Gorton, W S

    1920-01-01

    This report was prepared at the Bureau of Standards for the National Advisory Committee for Aeronautics. Additional or subsidiary gaps have frequently been used in jump-spark ignition systems, in order to cause the resumption of sparking in fouled spark plugs. The series gap, to which the greater part of this report is devoted, is a subsidiary gap in the connection between the high tension terminal of the plug and that of the magneto or coil. A brief account is given of the use of this gap up to the present time and also of the statements concerning it which have gained some currency, most of which are shown to be erroneous. The simple theory of the action of the series gap is discussed and a detailed account given of the effect upon the sparking ability of the plug produced by changes in the values of the electrical resistance of the fouling and of the capacities in parallel with the plug and with the magneto or coil. This report presents the results of an investigation into the utility, action, and design of the auxiliary spark gap as a means for insuring freedom from spark plug failure due to fouling, and also to enable the restarting of fouled plugs.

  9. Comparative study of INPIStron and spark gap

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron.

  10. Application of microplasma discharge in a spark gap for high repetitive switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahaman, Hasibur; Nam, Sang Hoon; Nam, Jong Woo

    2010-04-05

    The electrical breakdown in a spark gap for repetitive switching has been a long research interest. For this purpose, microplasma discharge is implemented in the spark gap which is further integrated inside a coaxial transmission line. This work addresses important physical properties and insights of the microplasma discharge, to be optimized, such as plasma generation in a spark channel, dielectric recovery process, and residual plasma in the postspark discharge period. Although understanding the microplasma discharge is the primary goal, considerable attention has been focused on an external circuit scheme to drive the discharge system at a high repetition rate.

  11. Spark Gap Electrode Erosion

    DTIC Science & Technology

    1984-12-01

    N~JFOSR-TR- 85-0282 o ~FINAL REPORT S SPARK GAP ELECTRODE EROSION 00i Air Force Office of Scientific Research Grant No. 84-0015- Approve", t’r p...OF MONITORING ORGANIZATION Texas Tech University IDibj Air Office of Scientific Research it- ADORESS rCat.. State and ZIP CG*, 7b. ADONESS ’CitY...spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was

  12. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    DTIC Science & Technology

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  13. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  14. Exploratory studies on a passively triggered vacuum spark

    NASA Astrophysics Data System (ADS)

    Rout, R. K.; Auluck, S. K. H.; Nagpal, J. S.; Kulkarni, L. V.

    1999-12-01

    The results of an experimental investigation on a passively triggered vacuum spark device are presented. The diagnostics include the current, x-ray and optical emission measurements. The sharp dips in the current derivative signal indicate the occurrence of pinching at an early stage of the discharge (at current icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 kA). A well-confined plasma with a central hot region was recorded using a streak camera. The pinched plasma was observed to undergo kink-type oscillations with a time period of 10-15 ns. Repeated plasma fronts were seen to move from the anode to the cathode with an average velocity of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 × 106 cm s-1. Soft x-ray emission having a radiation intensity of a few hundred mR per discharge was observed. The x-ray signals obtained using photodiodes showed multiple bursts. A soft x-ray pinhole camera recorded micro-pinches of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>100 µm. The x-ray emitting regions were confined to the inter-electrode gap. The x-ray emission characteristics were influenced by the electrolytic resistance, which was connected across the spark gap to initiate discharge.

  15. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  16. Experimental study of the vidicon system for information recording using the wide-gap spark chamber of gamma - telescope gamma-I

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Bazer-Bashv, R.; Voronov, S. A.; Galper, A. M.; Gro, M.; Kalinkin, L. F.; Kerl, P.; Kozlov, V. D.; Koten, F.; Kretol, D.

    1979-01-01

    The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared.

  17. Spark gaps synchronization using electrical trigger pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Ritu; Saroj, P.C.; Sharma, Archana

    In pulse power systems, it is required to have synchronized triggering of two or more high voltage spark gaps capable of switching large currents, using electrical trigger pulses. This paper intends to study the synchronization of spark gaps using electrical trigger. The trigger generator consists of dc supply, IGBT switch and driver circuit which generates 8kV, 400ns (FWHM) pulses. The experiment was carried out using two 0.15uF/50kV energy storage capacitors charged to 12kV and discharged through stainless steel spark gaps of diameter 9 mm across 10 ohm non inductive load. The initial experiment shows that synchronization has been achieved withmore » jitter of 50 to 100ns. Further studies carried out to reduce the jitter time by varying various electrical parameters will be presented. (author)« less

  18. Laser initiated spark development in an air gap.

    PubMed

    Lindner, F W; Rudolph, W; Brumme, G; Fischer, H

    1975-09-01

    Spark development is studied by 20-nsec image converter photography. A diffuse and transparent prechannel bridges the gap from the top of the metal vapor jet, which has counterelectrode potential. The prechannel cuts off the development of the cone shaped jet with increasing gap voltage. The final breakdown is initiated by a z-axis, laser induced filament, which expands into the prechannel volume within less, similar10 nsec. This interval represents the final high current thermalization phase of the breakdown. Thermal expansion of the initial spark channel (Braginskii) follows.

  19. Surface Studies Of Dielectric Materials Used In Spark Gaps

    DTIC Science & Technology

    1983-06-01

    on the virgin sample shows 78.1% carbon, 11.5’% oxygen, 5.2% nitrogen and 5.2% silicon . The usual composition of nylon is C6H110N which would give...copper composite ) electrodes. The spark gap selfbreaks at 40-45kV and switches approximately 1 kJ of energy in 2 ~s at a maximum rep-rate of 2... composite , two different tungsten- copper composites (K-33 and Elkonite), or stainless steel. The spark gap normally operates at a voltage of less than

  20. Palm top plasma focus device as a portable pulsed neutron source.

    PubMed

    Rout, R K; Niranjan, Ram; Mishra, P; Srivastava, R; Rawool, A M; Kaushik, T C; Gupta, Satish C

    2013-06-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10(4) neutrons∕pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of (3)He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  1. Palm top plasma focus device as a portable pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Rout, R. K.; Niranjan, Ram; Mishra, P.; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.

    2013-06-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 104 neutrons/pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of 3He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  2. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  3. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkarev, A. I., E-mail: aipush@mail.ru; Isakova, Y. I.; Khaylov, I. P.

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1–1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250–300 kV) and bipolar-pulse mode with the first negative (300–600 ns, 100–150 kV) followed by a second positive (120 ns, 250–300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode themore » shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3–4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9–0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.« less

  4. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes constructed device very mobile. The project is still developing.

  5. Formation of a spark discharge in an inhomogeneous electric field with current limitation by a large ballast Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldanov, B. B., E-mail: baibat@mail.ru

    2016-01-15

    Results of studies of a spark discharge initiated in argon in a point–plane electrode gap with limitation of the discharge current by a large ballast resistance are presented. It is shown that the current flowing through the plasma channel of such a low-current spark has the form of periodic pulses. It is experimentally demonstrated that, when a low-current spark transforms into a constricted glow discharge, current pulses disappear, the spatial structure of the cathode glow changes abruptly, and a brightly glowing positive plasma column forms in the gap.

  6. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  7. High-voltage pulse generator developed for wide-gap spark chambers

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Walschon, E. G.

    1968-01-01

    Low-inductance, high-capacitance Marx pulse generator provides for minimization of internal inductance and suppression of external electromagnetic radiation. The spark gaps of the generator are enclosed in a pressurized nitrogen atmosphere which allows the charging voltage to be varied by changing the nitrogen pressure.

  8. Palm top plasma focus device as a portable pulsed neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, R. K.; Niranjan, Ram; Srivastava, R.

    2013-06-15

    Development of a palm top plasma focus device generating (5.2 {+-} 0.8) Multiplication-Sign 10{sup 4} neutrons/pulse into 4{pi} steradians with a pulse width of 15 {+-} 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is ofmore » 2 {mu}F capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 {mu}F, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of {sup 3}He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.« less

  9. 5.8kV SiC PiN Diode for Switching of High-Efficiency Inductive Pulsed Plasma Thruster Circuits

    NASA Technical Reports Server (NTRS)

    Toftul, Alexandra; Polzin, Kurt A.; Hudgins, Jerry L.

    2014-01-01

    Inductive Pulsed Plasma Thruster (IPPT) pulse circuits, such as those needed to operate the Pulsed Inductive Thruster (PIT), are required to quickly switch capacitor banks operating at a period of µs while conducting current at levels on the order of at least 10 kA. [1,2] For all iterations of the PIT to date, spark gaps have been used to discharge the capacitor bank through an inductive coil. Recent availability of fast, high-power solid state switching devices makes it possible to consider the use of semiconductor switches in modern IPPTs. In addition, novel pre-ionization schemes have led to a reduction in discharge energy per pulse for electric thrusters of this type, relaxing the switching requirements for these thrusters. [3,4] Solid state switches offer the advantage of greater controllability and reliability, as well as decreased drive circuit dimensions and mass relative to spark gap switches. The use of solid state devices such as Integrated Gate Bipolar Transistors (IGBTs), Gate Turn-off Thyristors (GTOs) and Silicon-Controlled Rectifiers (SCRs) often involves the use of power diodes. These semiconductor devices may be connected antiparallel to the switch for protection from reverse current, or used to reduce power loss in a circuit by clamping off current ringing. In each case, higher circuit efficiency may be achieved by using a diode that is able to transition, or 'switch,' from the forward conducting state ('on' state) to the reverse blocking state ('off' state) in the shortest amount of time, thereby minimizing current ringing and switching losses. Silicon Carbide (SiC) PiN diodes offer significant advantages to conventional fast-switching Silicon (Si) diodes for high power and fast switching applications. A wider band gap results in a breakdown voltage 10 times that of Si, so that a SiC device may have a thinner drift region for a given blocking voltage. [5] This leads to smaller, lighter devices for high voltage applications, as well as reduced forward conduction losses, faster reverse recovery time (faster turn-off), and lower-magnitude reverse recovery current. In addition, SiC devices have lower leakage current as compared to their Si counterparts, and a high thermal conductivity, potentially allowing the former to operate at higher temperatures with a smaller, lighter heatsink (or no heatsink at all).

  10. Spark channel propagation in a microbubble liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  11. Coordinated Research Program in Pulsed Power Physics.

    DTIC Science & Technology

    1984-02-27

    storage element and the spark gap sectional area at the injected beam) which helps reduce elec- are both contained within the high pressure vessel of a...ns At the present time the continued research is aimed at duration of the first region corresponds closely to the FWHM answering various unresolved...10-ns e-beam has been used to trigger a spark gap pressurized to 3 atm of N2 . The gap voltage is close to self-breakdown voltage (Le., 0.95 Vb

  12. DECISION-MAKING SPARK CHAMBERS,

    DTIC Science & Technology

    of scattering of a particle and coplanarity of two particles. Decision - making spark chambers are used to trigger an optical spark chamber of two...the position of a spark and the separation of two sparks. Many other kinds of spatial decisions can be made with these devices such as the recognition

  13. The μ-RWELL: A compact, spark protected, single amplification-stage MPGD

    NASA Astrophysics Data System (ADS)

    Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.

    2016-07-01

    In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, 50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.

  14. Spark gap switch system with condensable dielectric gas

    DOEpatents

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  15. A 10(9) neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit.

    PubMed

    Niranjan, Ram; Rout, R K; Srivastava, R; Kaushik, T C; Gupta, Satish C

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 10(8) neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.

  16. THE NATURE OF ENERGY TRANSFER TO ELECTRODES IN A PULSE DISCHARGE WITH SMALL GAPS,

    DTIC Science & Technology

    SPARK MACHINING, ELECTRIC DISCHARGES), (*ELECTROMAGNETIC PULSES, SPARK MACHINING), ELECTROEROSIVE MACHINING, ENERGY, ELECTRON IRRADIATION, ION BOMBARDMENT, THERMAL CONDUCTIVITY, FILMS, KINETIC ENERGY, ZONE MELTING, USSR

  17. Development of longitudinally excited CO2 laser

    NASA Astrophysics Data System (ADS)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  18. Spark gap switch with spiral gas flow

    DOEpatents

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  19. Developing a pulse trigger generator for a three-electrode spark-gap switch in a transversely excited atmospheric CO2 laser.

    PubMed

    Wang, Jingyuan; Guo, Lihong; Zhang, Xingliang

    2016-04-01

    To improve the probability and stability of breakdown discharge in a three-electrode spark-gap switch for a high-power transversely excited atmospheric CO2 laser and to improve the efficiency of its trigger system, we developed a high-voltage pulse trigger generator based on a two-transistor forward converter topology and a multiple-narrow-pulse trigger method. Our design uses a narrow high-voltage pulse (10 μs) to break down the hyperbaric gas between electrodes of the spark-gap switch; a dry high-voltage transformer is used as a booster; and a sampling and feedback control circuit (mainly consisting of a SG3525 and a CD4098) is designed to monitor the spark-gap switch and control the frequency and the number of output pulses. Our experimental results show that this pulse trigger generator could output high-voltage pulses (number is adjusted) with an amplitude of >38 kV and a width of 10 μs. Compared to a conventional trigger system, our design had a breakdown probability increased by 2.7%, an input power reduced by 1.5 kW, an efficiency increased by 0.12, and a loss reduced by 1.512 kW.

  20. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Workshop on Repetitive Spark Gap Operation Held at Tamarron, Colorado on January 17-19, 1983.

    DTIC Science & Technology

    1983-05-20

    microstructure . In addition, it is possible that because of temperature gradients, diffusion, and other related processes , recrystallization and grain growth are...characterized for explosive and laser shock events in many metals and alloys , (11,12). CHEMICAL AND PHYSICAL PROCESSES IN SPARK GAPS The chemical and... deposition and other reaction product formation). There are several examples of process characterization which support some of the reaction features

  2. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  3. A 10{sup 9} neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niranjan, Ram, E-mail: niranjan@barc.gov.in; Rout, R. K.; Srivastava, R.

    2016-03-15

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silvermore » activation detector in the radial direction is (7.1 ± 1.4) × 10{sup 8} neutrons/shot over 4π sr at 5 mbar optimum D{sub 2} pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.« less

  4. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  5. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  6. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  7. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  8. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  9. Low power laser trigger switching of a solid insulated spark gap.

    PubMed

    Guenther, A H; Copeland, R P; Bettis, J R

    1979-11-01

    The feasibility of reliably triggering solid dielectric insulated spark gaps by low power ( approximately 6 MW) lasers has been demonstrated. Breakdown of 10-mil Lexan dielectric sheets stressed to 70 kV was initiated by a focused 6 MW, Nd in YAG laser emitting 40 mJ in a pulse 6 ns wide at the half-peak intensity height. Delays achieved were in the tens of ns. Slight increases in laser power or electrical stress should produce shorter delays (<10 ns) and subnanosecond jitter.

  10. A 490 W transversely excited atmospheric CO2 spark gap laser with added H2

    NASA Astrophysics Data System (ADS)

    Zand, M.; Koushki, A. M.; Neshati, R.; Kia, B.; Khorasani, K.

    2018-02-01

    In this paper we present a new design for a high pulse repetition rate transversely excited atmospheric CO2 laser with ultraviolet pre-ionization. A new method of fast thyristor capacitor charging and discharging by a spark gap is used. The effect of H2 gas addition on the output and stability of a transversely excited atmospheric laser operating with a basic mixture of CO2, N2 and He is investigated. The output power was increased by adding H2 to the gas mixture ratio of CO2:N2:He:H2  =  1:1:8:0.5 at total pressure of 850 mbar. An average power of 490 W at 110 Hz with 4.5 J per pulse was obtained. The laser efficiency was 11.2% and oxygen gas was used in the spark gap for electron capture to reduce the recovery time and increase the repetition rate.

  11. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide

    PubMed Central

    Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.

    2016-01-01

    A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidation of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique. PMID:27624641

  12. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide

    DOE PAGES

    Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.

    2016-09-14

    A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidationmore » of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique.« less

  13. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  14. Investigation of the Energy Balance in the Spark Discharge Generator for Nanoparticles Synthesis

    NASA Astrophysics Data System (ADS)

    Mylnikov, D. A.; Efimov, A. A.; Ivanov, V. V.

    2017-07-01

    In this paper we investigate the balance of energy in the discharge circuit of a spark discharge generator (SDG) for nanoparticles synthesis. The released energy consists of several parts: the energy in a discharge gap and the energy dissipated in the other elements of the circuit. In turn, in the gap a one part of the energy releases in preanode and precathode regions and the other part in an arc between electrodes. We measured these parts and proposed ways to optimize energy efficiency of the nanoparticles production.

  15. Neutron bursts from long laboratory sparks

    NASA Astrophysics Data System (ADS)

    Kochkin, P.; Lehtinen, N. G.; Montanya, J.; Van Deursen, A.; Ostgaard, N.

    2016-12-01

    Neutron emission in association with thunderstorms and lightning discharges was reported by different investigators from ground-based observation platforms. In both cases such emission is explained by photonuclear reaction, since high-energy gamma-rays in sufficient fluxes are routinely detected from both, lightning and thunderclouds. The required gamma-rays are presumably generated by high-energy electrons in Bremsstrahlung process after their acceleration via cold and/or relativistic runaway mechanisms. This phenomenon attracted moderate scientific attention until fast neutron bursts (up to 10 MeV) from long 1 MV laboratory sparks have been reported. Clearly, with such relatively low applied voltage the electrons are unable to accelerate to the energies required for photo/electro disintegration. Moreover, all known elementary neutron generation processes are not capable to explain this emission right away. We performed an independent laboratory experiment on long sparks with the aim to confirm or disprove the neutron emission from them. The experimental setup was assembled at High-Voltage Laboratory in Barcelona and contained a Marx generator in a cone-cone spark gap configuration. The applied voltage was as low as 800 kV and the gap distance was only 60 cm. Two ns-fast cameras were located near the gap capturing short-exposure images of the pre-breakdown phenomenon at the expected neutron generation time. A plastic scintillation detector sensitive to neutrons was covered in 11 cm of lead and placed near the spark gap. The detector was calibrated and showed good performance in neutron detection. Apart of it, voltage, currents through both electrodes, and three X-ray detectors were also monitored in sophisticated measuring system. We will give an overview of the previous experimental and theoretical work in this topic, and present the results of our new experimental campaign. The conclusions are based on good signal-to-noise ratio measurements and are substantiated by high-contrast images.

  16. High reliability low jitter pulse generator

    DOEpatents

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  17. Report on the lunar ranging at McDonald Observatory. [spark gap configuration and photomultiplier system

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1977-01-01

    Range measurements to an accuracy of 5 cm were achieved following improvements in the laser oscillator configuration and the photomultiplier system. Modifications to the laser include a redesigned pockel cell mount to eliminate stressing of the cell crystal; an improved electrically triggered spark gap for sharpening the electrical pulse; the use of a brewster plate in the cavity to eliminate pre-pulsing; improved alignment for the oscillator system; and increased cavity lifetime through thin film polarizer technology. Laser calibration data are presented along with the lunar laser operations log for June to October 1977.

  18. Propositions for the Analysis of Commutation Phenomena and Modeling of Universal Motors Using the State Function Method

    NASA Astrophysics Data System (ADS)

    Niwa, Yuta; Akiyama, Yuji; Naruta, Tomokazu

    We carried out FEM simulations for modeling ultra-high-speed universal motors by using the state function method and analyzed the phenomenon of commutator sparking, the characteristics of the air gap surface, and the contact condition or contact resistance of the brushes and commutator bars. Thus, we could quantitatively analyze commutator sparking and investigate the configuration of the iron core. The results of FEM analysis were used to develop a model for predicting the configuration of the iron core and for estimating the electromotive force generated by the transformer, armature reaction field, spark voltage, contact resistance between the rotating brushes, and changes in the gap permeance. The results of our simulation were experimental results. This confirmed the validity of our analysis method. Thus, an ultra-high-speed, high-capacity of 1.5kw motor rotating at 30,000rpm can be designed for use in vacuum cleaners.

  19. Use of the electrosurgical unit in a carbon dioxide atmosphere.

    PubMed

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J; Eidson, Jack L; Paolino, David V

    2016-01-01

    The electrosurgical unit (ESU) utilizes an electrical discharge to cut and coagulate tissue and is often held above the surgical site, causing a spark to form. The voltage at which the spark is created, termed the breakdown voltage, is governed by the surrounding gaseous environment. Surgeons are now utilizing the ESU laparoscopically with carbon dioxide insufflation, potentially altering ESU operating characteristics. This study examines the clinical implications of altering gas composition by measuring the spark gap distance as a marker of breakdown voltage and use of the ESU on a biologic model, both in room air and carbon dioxide. Paschen's Law predicted a 35% decrease in gap distance in carbon dioxide, while testing revealed an average drop of 37-47% as compared to air. However, surgical model testing revealed no perceivable clinical difference. Electrosurgery can be performed in carbon dioxide environments, although surgeons should be aware of potentially altered ESU performance.

  20. A liquid hydrocarbon deuteron source for neutron generators

    NASA Astrophysics Data System (ADS)

    Schwoebel, P. R.

    2017-06-01

    Experimental studies of a deuteron spark source for neutron generators using hydrogen isotope fusion reactions are reported. The ion source uses a spark discharge between electrodes coated with a deuterated hydrocarbon liquid, here Santovac 5, to inhibit permanent electrode erosion and extend the lifetime of high-output neutron generator spark ion sources. Thompson parabola mass spectra show that principally hydrogen and deuterium ions are extracted from the ion source. Hydrogen is the chief residual gas phase species produced due to source operation in a stainless-steel vacuum chamber. The prominent features of the optical emission spectra of the discharge are C+ lines, the hydrogen Balmer Hα-line, and the C2 Swan bands. Operation of the ion source was studied in a conventional laboratory neutron generator. The source delivered an average deuteron current of ˜0.5 A nominal to the target in a 5 μs duration pulse at 1 Hz with target voltages of -80 to -100 kV. The thickness of the hydrocarbon liquid in the spark gap and the consistency thereof from spark to spark influences the deuteron yield and plays a role in determining the beam-focusing characteristics through the applied voltage necessary to break down the spark gap. Higher breakdown voltages result in larger ion beam spots on the target and vice-versa. Because the liquid self-heals and thereby inhibits permanent electrode erosion, the liquid-based source provides long life, with 104 pulses to date, and without clear evidence that, in principle, the lifetime could not be much longer. Initial experiments suggest that an alternative cylindrical target-type generator design can extract approximately 10 times the deuteron current from the source. Preliminary data using the deuterated source liquid as a neutron-producing target are also presented.

  1. Dynamics of the spatial structure of pulsed discharges in dense gases in point cathode−plane anode gaps and their erosion effect on the plane electrode surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baksht, E. Kh.; Blinova, O. M.; Erofeev, M. V., E-mail: mve@loi.hcei.tsc.ru

    2016-09-15

    The dynamics of the spatial structure of the plasma of pulsed discharges in air and nitrogen in a nonuniform electric field and their erosion effect on the plane anode surface were studied experimentally. It is established that, at a nanosecond front of the voltage pulse, a diffuse discharge forms in the point cathode–plane anode gap due to the ionization wave propagating from the cathode. As the gap length decreases, the diffuse discharge transforms into a spark. A bright spot on the anode appears during the diffuse discharge, while the spark channel forms in the later discharge stage. The microstructure ofmore » autographs of anode spots and spark channels in discharges with durations of several nanoseconds is revealed. The autographs consist of up to 100 and more microcraters 5–100 μm in diameter. It is shown that, due to the short duration of the voltage pulse, a diffuse discharge can be implemented, several pulses of which do not produce appreciable erosion on the plane anode or the soot coating deposited on it.« less

  2. Spark ignition of flowing gases I : energies to ignite propane-air mixtures in pressure range of 2 to 4 inches mercury absolute

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1949-01-01

    Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.

    The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less

  4. Apparatus for atmospheric pressure pin-to-hole spark discharge and uses thereof

    DOEpatents

    Dobrynin, Danil V.; Fridman, Alexander; Cho, Young I.; Fridman, Gregory; Friedman, Gennady

    2016-12-06

    Disclosed herein are atmospheric pressure pin-to-hole pulsed spark discharge devices and methods for creating plasma. The devices include a conduit for fluidically communicating a gas, a plasma, or both, therethrough, portion of the conduit capable of being connected to a gas supply, and a second portion of the conduit capable of emitting a plasma; a positive electrode comprising a sharp tip; and a ground plate electrode. Disclosed are methods for treating a skin ulcer using non-thermal plasma include flowing a gas through a cold spark discharge zone simultaneously with the creation of a pulsed spark discharge to give rise to a non-thermal plasma emitted from a conduit, the non-thermal plasma comprising NO; and contacting a skin ulcer with said non-thermal plasma for sufficient time and intensity to give rise to treatment of the skin ulcer.

  5. X-Ray Radiography Measurements of the Thermal Energy in Spark Ignition Plasma at Variable Ambient Conditions

    DOE PAGES

    Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.; ...

    2017-04-09

    The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less

  6. Reliability Improvement of Ground Fault Protection System Using an S-Type Horn Attachment Gap in AC Feeding System

    NASA Astrophysics Data System (ADS)

    Ajiki, Kohji; Morimoto, Hiroaki; Shimokawa, Fumiyuki; Sakai, Shinya; Sasaki, Kazuomi; Sato, Ryogo

    Contact wires used in feeding system for electric railroad are insulated by insulators. However, insulation of an insulator sometimes breaks down by surface dirt of an insulator and contact with a bird. The insulator breakdown derives a ground fault in feeding system. Ground fault will cause a human electric shock and a destruction of low voltage electric equipment. In order to prevent the damage by ground fault, an S-type horn has been applicable as equipped on insulators of negative feeder and protective wire until present. However, a concrete pole breaks down at the time of the ground fault because a spark-over voltage of the S-type horn is higher than a breakdown voltage of a concrete pole. Farther, the S-type horn installed in the steel tube pole does not discharge a case, because the earth resistance of a steel tube pole is very small. We assumed that we could solve these troubles by changing the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. Accordingly, we developed an attachment gap that should be used to change the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. The attachment gap consists of a gas gap arrester and a zinc oxide element. By the dynamic current test and the artificial ground fault test, we confirmed that the attachment gap in the S-type horn could prevent a trouble at the time of the ground fault.

  7. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  8. Design and Operation of a Two-Color Interferometer to Measure Plasma and Neutral Gas Densities in a Laser-Triggered Spark Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.; Schmitt-Sody, A.; Lucero, A.

    2014-10-01

    A Mach-Zehnder imaging interferometer, operating with 1064-nm and 532-nm wavelength beams from a short-pulse laser and a frequency-doubled branch, respectively, has been designed and built to simultaneously measure plasma free electron and neutral gas densities profiles within a laser-triggered spark gap switch with a 5-mm gap. The switch will be triggered by focusing a separate 532-nm or 1064-nm laser pulse along the gap's axis to trigger low-jitter breakdown. Illuminating the gap transverse to this axis, the diagnostic will generate interferograms for each wavelength, which will then be numerically converted to phase-shift maps. These will be used to calculate independent line-integrated free electron and neutral density profiles by exploiting their different frequency dispersion curves. The density profiles themselves, then, will be calculated by Abel inversion. Details of the interferometer's design will be presented along with density data obtained using a variety of fill gasses at various pressures. Other switch parameters will be varied as well in order to characterize more fully the performance of the switch.

  9. Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges

    NASA Astrophysics Data System (ADS)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.

    2018-03-01

    This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.

  10. Low pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, Daniel S.

    1985-01-01

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  11. Low-pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, D.S.

    1982-08-31

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  12. Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials

    USGS Publications Warehouse

    Grimes, D.J.; Marranzino, A.P.

    1968-01-01

    Two spectrographic methods are used in mobile field laboratories of the U. S. Geological Survey. In the direct-current arc method, the ground sample is mixed with graphite powder, packed into an electrode crater, and burned to completion. Thirty elements are determined. In the spark method, the sample, ground to pass a 150-mesh screen, is digested in hydrofluoric acid followed by evaporation to dryness and dissolution in aqua regia. The solution is fed into the spark gap by means of a rotating-disk electrode arrangement and is excited with an alternating-current spark discharge. Fourteen elements are determined. In both techniques, light is recorded on Spectrum Analysis No. 1, 35-millimeter film, and the spectra are compared visually with those of standard films.

  13. Ignition of Combustible Dust Clouds by Strong Capacitive Electric Sparks of Short Discharge Times

    NASA Astrophysics Data System (ADS)

    Eckhoff, Rolf K.

    2017-10-01

    It has been known for more than half a century that the discharge times of capacitive electric sparks can influence the minimum ignition energies of dust clouds substantially. Experiments by various workers have shown that net electric-spark energies for igniting explosive dust clouds in air were reduced by a factor of the order of 100 when spark discharge times were increased from a few μs to 0.1-1 ms. Experiments have also shown that the disturbance of the dust cloud by the shock/blast wave emitted by "short" spark discharges is a likely reason for this. The disturbance increases with increasing spark energy. In this paper a hitherto unpublished comprehensive study of this problem is presented. The work was performed about 50 years ago, using sparks of comparatively high energies (strong sparks). Lycopodium was used as test dust. The experiments were conducted in a brass vessel of 1 L volume. A transient dust cloud was generated in the vessel by a blast of compressed air. Synchronization of appearance of dust cloud and spark discharge was obtained by breaking the spark gap down by the dust cloud itself. This may in fact also be one possible synchronization mechanism in accidental industrial dust explosions initiated by electrostatic sparks. The experimental results for various spark energies were expressed as the probability of ignition, based on 100 replicate experiments, as a function of the nominal dust concentration. All probabilities obtained were 0%

  14. Research of an electromagnetically actuated spark gap switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tianyang; Chen, Dongqun, E-mail: csycdq@163.com; Liu, Jinliang

    2013-11-15

    As an important part of pulsed power systems, high-voltage and high-current triggered spark gap switch and its trigger system are expected to achieve a compact structure. In this paper, a high-voltage, high-current, and compact electromagnetically actuated spark gap switch is put forward, and it can be applied as a part of an intense electron-beam accelerator (IEBA). A 24 V DC power supply is used to trigger the switch. The characteristics of the switch were measured for N{sub 2} when the gas pressure is 0.10–0.30 MPa. The experimental results showed that the voltage/pressure (V/p) curve of the switch was linear relationship.more » The operating ranges of the switch were 21%–96%, 21%–95%, 21%–95%, 19%–95%, 17%–95%, and 16%–96% of the switch's self-breakdown voltage when the gas pressures were 0.10, 0.14, 0.18, 0.22, 0.26, and 0.30 MPa, respectively. The switch and its trigger system worked steadily and reliably with a peak voltage of 30 kV, a peak current of 60 kA in the IEBA when the pressure of N{sub 2} in the switch was 0.30 MPa.« less

  15. Note: A portable pulsed neutron source based on the smallest sealed-type plasma focus device.

    PubMed

    Niranjan, Ram; Rout, R K; Mishra, Prabhat; Srivastava, Rohit; Rawool, A M; Kaushik, T C; Gupta, Satish C

    2011-02-01

    Development and operation of a portable and compact pulsed neutron source based on sealed-type plasma focus (PF) device are reported. The unit is the smallest sealed-type neutron producing PF device. The effective volume of the PF unit is 33 cm(3) only. A compact size single capacitor (4 μF) is used as the energy driver. A battery based power supply unit is used for charging the capacitor and triggering the spark gap. The PF unit is operated at 10 kV (200 J) and at a deuterium gas filling pressure of 8 mb. The device is operated over a time span of 200 days and the neutron emissions have been observed for 200 shots without changing the gas in between the shots. The maximum yield of this device is 7.8 × 10(4) neutrons/pulse. Beyond 200 shots the yield is below the threshold (1050 neutrons/pulse) of our (3)He detector. The neutron energy is evaluated using time of flight technique and the value is (2.49 ± 0.27) MeV. The measured neutron pulse width is (24 ± 5) ns. Multishot and long duration operations envisage the potentiality of such portable device for repetitive mode of operation.

  16. Ignition system monitoring assembly

    DOEpatents

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  17. Applications of a new mass-driver concept

    NASA Technical Reports Server (NTRS)

    Oneill, G. K.

    1981-01-01

    A description of the operating principles and requirements of a novel mass-driver concept is presented. The design obtains acceleration of payload bucket coils by means of transverse focussing from strong, off-axis restoring forces that are produced by drive coils operating in a 'pull-only' mode. The concept offers the unprecedented possibility of operating high-performance mass-drivers entirely within the limitations of existing commercial switching devices, such as silicon-controlled rectifiers, spark gaps, vacuum-triggered arcs or vacuum mechanical switches. Representative applications of the concept described are: (1) a large-diameter magnetic lunar launcher for payloads having autonomous maneuvering; (2) an intermediate-diameter launcher with long operational life; and (3) a reaction engine for orbit transfer of large, massive objects.

  18. Statistical data of X-ray emission from laboratory sparks

    NASA Astrophysics Data System (ADS)

    Kochkin, P.; Deursen, D. V.

    2011-12-01

    In this study we present a summary of the data of 1331 long laboratory sparks in atmospheric pressure intended for a statistical analysis. A 2 MV, 17kJ Marx generator were used to generate 1.2/52μs shape pulses positive and negative polarity. The generator was connected to a spark gap with cone-shaped electrodes. The distance between high-voltage and grounded electrodes was 1.08 meters. Breakdown voltage between electrodes was about 1MV. X-rays have been detected during the development of the discharge channel. The currents through the grounded electrode and through the high-voltage electrode were recorded separately and simultaneously with the voltage and the X-ray signal. X-rays were registered by two LaBr3(Ce+) scintillation detectors in different positions with respect to the forming discharge channel. Detector D1 was placed immediately under the grounded electrode at 15cm distance. Detector D2 was placed at horizontal distances of 143cm and 210cm, at mid-gap height. We also used lead shields of 1.5, 3, and 4 mm thickness for radiation attenuation measurements. For detector collimation we used shields up to 2 cm thickness. Also no metallic objects with pointed surfaces were present within 2 m from the spark gap. Typical plot of positive discharge presented in Figure 1a. Table 1 shows the summary of the X-ray registrations. Signal detection occurred significantly more for positive polarity discharges than for negative. This dependence was observed for both detectors. For detector D2 the probability of X-ray registration decreased proportional to 1/d2 with increasing the distance d to the breakdown gap from 1m43 to 2m10. Detailed energy spectra and time distribution of X-ray emission were obtained; see for example Fig. 1b. For both polarities of the high voltage, the X-rays only occurred when there was a current at the cathode.

  19. Piezoelectrically Initiated Pyrotechnic Igniter

    NASA Technical Reports Server (NTRS)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first activation fails to ignite, the device is capable of multiple attempts. Another unique aspect is in the design of the pyrotechnic device. There is an electrode that aids the generation of a directed spark and the use of a conductive matrix to support the first-fire material so that the spark will penetrate to the second electrode.

  20. Influence of repetition frequency on streamer-to-spark breakdown mechanism in transient spark discharge

    NASA Astrophysics Data System (ADS)

    Janda, M.; Martišovitš, V.; Buček, A.; Hensel, K.; Molnár, M.; Machala, Z.

    2017-10-01

    Streamer-to-spark transition in a self-pulsing positive transient spark (TS) discharge was investigated at different repetition frequencies. The temporal evolution of the TS was recorded, showing the primary streamer and the secondary streamer phases. A streak camera-like images were obtained using spatio-temporal reconstruction of the discharge emission detected by a photomultiplier tube with light collection system placed on a micrometric translation stage. With increasing TS repetition frequency f (from ~1 to 6 kHz), the increase of the propagation velocity of both the primary and the secondary streamer was observed. Acceleration of the primary and secondary streamers, and shortening of streamer-to-spark transition time τ with increasing f was attributed to the memory effect composed of pre-heating and gas composition changes induced by the previous TS pulses. Fast propagation of the secondary streamer through the entire gap and fast gas heating could explain the short τ (~100 ns) at f above ~3 kHz.

  1. Plasma jet ignition device

    DOEpatents

    McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  2. 40 CFR 1054.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... schedule cleaning or changing air filters or changing spark plugs at the least frequent interval described... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... aftertreatment devices, pulse-air valves, fuel injectors, oxygen sensors, electronic control units, superchargers...

  3. 40 CFR 1054.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... schedule cleaning or changing air filters or changing spark plugs at the least frequent interval described... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... aftertreatment devices, pulse-air valves, fuel injectors, oxygen sensors, electronic control units, superchargers...

  4. 29 CFR 1926.352 - Fire prevention.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... penetration of sparks or heat transfer may introduce a fire hazard to an adjacent area, the same precautions... confine the heat, sparks, and slag, and to protect the immovable fire hazards from them. (c) No welding...-consuming device. (h) Except when the contents are being removed or transferred, drums, pails, and other...

  5. SparkMed: a framework for dynamic integration of multimedia medical data into distributed m-Health systems.

    PubMed

    Constantinescu, Liviu; Kim, Jinman; Feng, David Dagan

    2012-01-01

    With the advent of 4G and other long-term evolution (LTE) wireless networks, the traditional boundaries of patient record propagation are diminishing as networking technologies extend the reach of hospital infrastructure and provide on-demand mobile access to medical multimedia data. However, due to legacy and proprietary software, storage and decommissioning costs, and the price of centralization and redevelopment, it remains complex, expensive, and often unfeasible for hospitals to deploy their infrastructure for online and mobile use. This paper proposes the SparkMed data integration framework for mobile healthcare (m-Health), which significantly benefits from the enhanced network capabilities of LTE wireless technologies, by enabling a wide range of heterogeneous medical software and database systems (such as the picture archiving and communication systems, hospital information system, and reporting systems) to be dynamically integrated into a cloud-like peer-to-peer multimedia data store. Our framework allows medical data applications to share data with mobile hosts over a wireless network (such as WiFi and 3G), by binding to existing software systems and deploying them as m-Health applications. SparkMed integrates techniques from multimedia streaming, rich Internet applications (RIA), and remote procedure call (RPC) frameworks to construct a Self-managing, Pervasive Automated netwoRK for Medical Enterprise Data (SparkMed). Further, it is resilient to failure, and able to use mobile and handheld devices to maintain its network, even in the absence of dedicated server devices. We have developed a prototype of the SparkMed framework for evaluation on a radiological workflow simulation, which uses SparkMed to deploy a radiological image viewer as an m-Health application for telemedical use by radiologists and stakeholders. We have evaluated our prototype using ten devices over WiFi and 3G, verifying that our framework meets its two main objectives: 1) interactive delivery of medical multimedia data to mobile devices; and 2) attaching to non-networked medical software processes without significantly impacting their performance. Consistent response times of under 500 ms and graphical frame rates of over 5 frames per second were observed under intended usage conditions. Further, overhead measurements displayed linear scalability and low resource requirements.

  6. Imaging strategies for the study of gas turbine spark ignition

    NASA Astrophysics Data System (ADS)

    Gord, James R.; Tyler, Charles; Grinstead, Keith D., Jr.; Fiechtner, Gregory J.; Cochran, Michael J.; Frus, John R.

    1999-10-01

    Spark-ignition systems play a critical role in the performance of essentially all gas turbine engines. These devices are responsible for initiating the combustion process that sustains engine operation. Demanding applications such as cold start and high-altitude relight require continued enhancement of ignition systems. To characterize advanced ignition systems, we have developed a number of laser-based diagnostic techniques configured for ultrafast imaging of spark parameters including emission, density, temperature, and species concentration. These diagnostics have been designed to exploit an ultrafast- framing charge-coupled-device (CCD) camera and high- repetition-rate laser sources including mode-locked Ti:sapphire oscillators and regenerative amplifiers. Spontaneous-emission and laser-shlieren measurements have been accomplished with this instrumentation and the result applied to the study of a novel Unison Industries spark igniter that shows great promise for improved cold-start and high-altitude-relight capability as compared to that of igniters currently in use throughout military and commercial fleets. Phase-locked and ultrafast real-time imaging strategies are explored, and details of the imaging instrumentation, particularly the CCD camera and laser sources, are discussed.

  7. Note: Erosion of W-Ni-Fe and W-Cu alloy electrodes in repetitive spark gaps.

    PubMed

    Wu, Jiawei; Han, Ruoyu; Ding, Weidong; Qiu, Aici; Tang, Junping

    2018-02-01

    A pair of W-Ni-Fe and W-Cu electrodes were tested under 100 kA level pulsed currents for 10 000 shots, respectively. Surface roughness and morphology characteristics of the two pairs of electrodes were obtained and compared. Experimental results indicated cracks divided the W-Cu electrode surface to polygons while the W-Ni-Fe electrode surface remained as a whole with pits and protrusions. Accordingly, the surface roughness of W-Ni-Fe electrodes increased to ∼3 μm while that of W-Cu electrodes reached ∼7 μm at the end of the test. The results reveal that the W-Ni-Fe alloy has a better erosion resistance and potential to be further applied in spark gaps.

  8. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  9. Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator.

    PubMed

    Barnett, D H; Parson, J M; Lynn, C F; Kelly, P M; Taylor, M; Calico, S; Scott, M C; Dickens, J C; Neuber, A A; Mankowski, J J

    2015-03-01

    This paper presents the design and operation characteristics of a solid-state high voltage pulse generator. Its primary utilization is aimed at triggering a gaseous spark gap with high repeatability. Specifically, the trigger generator is designed to achieve a risetime on the order of 0.1 kV/ns to trigger the first stage, trigatron spark gap of a 10-stage, 500 kV Marx generator. The major design components are comprised of a 60 W constant current DC-DC converter for high voltage charging, a single 4 kV thyristor, a step-up pulse transformer, and magnetic switch for pulse steepening. A risetime of <30 ns and pulse magnitude of 4 kV is achieved matching the simulated performance of the design.

  10. Microstructure of the regions on a plane copper electrode surface affected by a spark discharge in air in the point-plane gap

    NASA Astrophysics Data System (ADS)

    Tren'kin, A. A.; Karelin, V. I.; Shibitov, Yu. M.; Blinova, O. M.; Yasnikov, I. S.

    2017-09-01

    The microstructure of the regions affected by spark discharge on the surface of a plane copper electrode in atmospheric air in the point-plane gap has been studied using a scanning electron microscope for both the positive and negative polarity of the point electrode. It has been found that the affected regions have the shape of round spots or groups of spots with diameters of individual spots varying in the range of 20-200 μm. It has been revealed that the spots have an internal spatial structure in the form of an aggregate of concentric rings. These rings are aggregates of a large number of microscopic craters with diameters of 0.1-1.0 μm.

  11. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    DOEpatents

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  12. Resistor holder

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    A resistor device for use with electrostatic particle accelerators includes a resistor element positioned within a tubular housing having a fixed end cap at one end thereof and a movable end cap at the other end thereof. The tubular housing, fixed end cap, and movable end cap serve as an electromagnetic field for the resistor element. Conductive disks engage opposite ends of the resistor element and concentrically position the resistor element within the tubular housing. Helical springs engage the conductive disks and the end caps to yieldably support the movable end caps and resistor element for yieldable axial movement relative to the tubular housing. An annular conducting ring is secured to the tubular housing and is spaced radially from the movable end cap and cooperates with the latter to define an annular spark gap.

  13. Urinary extracorporeal shock wave lithotripsy: equipment, techniques, and overview.

    PubMed

    Pfister, R C; Papanicolaou, N; Yoder, I C

    1988-01-01

    Second generation urinary lithotriptors are characterized by extensive technical alterations and significant equipment improvement in the functional, logistical, and medical aspects of shock wave lithotripsy (SWL). These newer devices feature a water bath-free environment, a reduced anesthesia requirement, improved imaging, functional uses in addition to lithotripsy, or combinations thereof. Shock wave generation by spark gap, electromagnetic, piezoelectric and microexplosive techniques are related to their peak energy, frequency, and total energy capabilities which impacts on both anesthesia needs and the length and number of treatment sessions required to pulverize calculi. A master table summarizes the types of SW energy, coupling, imaging systems, patient transport, functional features, cost, and treatment effectiveness of 12 worldwide lithotriptors in various stages of investigative and clinical trials as monitored by the Food and Drug Administration (FDA) of America.

  14. Multi-megavolt low jitter multistage switch

    DOEpatents

    Humphreys, D.R.; Penn, K.J. Jr.

    1985-06-19

    It is one object of the present invention to provide a multistage switch capable of holding off numerous megavolts, until triggered, from a particle beam accelerator of the type used for inertial confinement fusion. The invention provides a multistage switch having low timing jitter and capable of producing multiple spark channels for spreading current over a wider area to reduce electrode damage and increase switch lifetime. The switch has fairly uniform electric fields and a short spark gap for laser triggering and is engineered to prevent insulator breakdowns.

  15. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  16. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    NASA Astrophysics Data System (ADS)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  17. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... water; (iv) Contain Grade E liquid and are closed and secured; or (v) Are spaces in which flammable... § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are involved... oil tanks, cargo pumprooms, or enclosed spaces immediately above or adjacent to bulk cargo tanks...

  18. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... water; (iv) Contain Grade E liquid and are closed and secured; or (v) Are spaces in which flammable... § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are involved... oil tanks, cargo pumprooms, or enclosed spaces immediately above or adjacent to bulk cargo tanks...

  19. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... water; (iv) Contain Grade E liquid and are closed and secured; or (v) Are spaces in which flammable... § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are involved... oil tanks, cargo pumprooms, or enclosed spaces immediately above or adjacent to bulk cargo tanks...

  20. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... water; (iv) Contain Grade E liquid and are closed and secured; or (v) Are spaces in which flammable... § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are involved... oil tanks, cargo pumprooms, or enclosed spaces immediately above or adjacent to bulk cargo tanks...

  1. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... water; (iv) Contain Grade E liquid and are closed and secured; or (v) Are spaces in which flammable... § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are involved... oil tanks, cargo pumprooms, or enclosed spaces immediately above or adjacent to bulk cargo tanks...

  2. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

  3. Experimental Results from a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.

    2017-10-01

    We are performing experiments on a laser-triggered spark-gap switch with the goal of studying the transition from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The switch test bed is designed to support a variety of working gases (e.g., Ar, N2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. A Mach-Zehnder imaging interferometer system operating at 532 nm is being used to obtain interferograms of the discharge plasma in the switch. We are also developing a 1064-nm interferometry diagnostic in an attempt to measure plasma free electron and neutral gas density profiles simultaneously within the switch gap. Results from our most recent experiments will be presented.

  4. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOEpatents

    Lawson, R.N.; O'Malley, M.W.; Rohwein, G.J.

    A high voltage spark gap switch is disclosed including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  5. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOEpatents

    Lawson, Robert N.; O'Malley, Martin W.; Rohwein, Gerald J.

    1986-01-01

    A high voltage spark gap switch including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  6. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1986-01-01

    A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.

  7. Underwater spark discharge with long transmission line for cleaning horizontal wells

    NASA Astrophysics Data System (ADS)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, C. Y.

    2017-06-01

    A transmission line is discussed for application in an underwater spark-discharge technique in the cleaning of a horizontal well by incorporating a power-transmission model into the simulation. The pulsed-spark-discharge technique has been proposed for clogged-well rehabilitation, because it removes incrustations that are attached to well screens by using strong pressure waves that are generated by the rapid expansion of a spark channel. To apply the pulsed-spark-discharge technique to the cleaning of horizontal wells, the coaxial cable between the pulsed power supply and the spark gap as a load needs to be extended to a few hundred meters. Prior to field application, pulsed-spark-discharge experiments were conducted and the role of the transmission line was examined using an improved simulation model. In the model, a non-linear interaction of the spark channel and the capacitor bank is described by the pulse-forming action of the coaxial cable. Based on the accurate physical properties of the water plasma, such as the equation of state and electrical conductivity within the region of interest, the amount of energy contributed to the development of a shock wave was evaluated. The simulation shows that if the initial conditions of the spark channel are the same, no further reduction in strength of the pressure wave occurs, even if the cable length is increased above 50 m. Hence, the degraded peak pressure that was observed in the experiments using the longer cable is attributed to a change in the initial condition of the spark channel. The parametric study suggests that the low initial charging voltage, the high ambient water pressure, and the long cable length yield the low initial spark-channel density, which results in a reduced peak pressure. The simulation of line charging is presented to discuss the principle of disturbing the pre-breakdown process by an extended cable.

  8. Parametric investigation on the effect of nitrogen to reduce SF6 content in spark gap

    NASA Astrophysics Data System (ADS)

    Raj, Avinash; Khaidir, Nur; Ishak, Sanuri; Ghani, Basri Abdul; Chakrabarty, Chandan; Permal, Navitharshaani; Ahmad, Harizan

    2017-03-01

    Almost all the MV and HV switchgears used by power utilities for interrupting faults are Sulphur Hexaflouride SF6 gas circuit breakers as this gas has the best dielectric properties to quench the onset of an arc in the event of fault. However due to strong dissociating properties of this gas when in contact with air that can release fluorine into the atmosphere, the Kyoto protocol has mandated to reduce the usage of SF6 in the future. SF6 is a greenhouse gas and it's about 3000 more severe than CO2. And that's the reason for replacing this gas. A close match in the quenching properties to SF6 that is now being intensively researched is nitrogen N2. This gas is considered to be an inert gas, and its release into the atmosphere has no harmful effects (except for asphyxiation - which can be easily handled with awareness). As the need for a replacement of SF6 becomes critical in the near future, the urgency to find the right gas is immediate. Hence the proposed work in this paper is to make a comprehensive parametric investigation of N2 gas in vacuum spark-gap. The spark-gap is chosen due to flexibility in changing the gap distance and easily be housed in vacuum. The parameters to be investigated are pure N2 and N2/ SF6 mix. The settling-time of the electrical break-down voltage and current are measured using voltage probe and Pearson probe. This time is paramount as it determines the speed of breaking the circuit. A faster breaking time ensures the safety of other HV equipment in the circuit. A comparative study between the various parameters will be conducted to obtain the best recipe (gas mix and gap distance) that gives the shortest settling time the breakdown using N2/ SF6/Mixture gas was successfully conducted and a Paschen curve has been established.

  9. Specific features of a single-pulse sliding discharge in neon near the threshold for spark breakdown

    NASA Astrophysics Data System (ADS)

    Trusov, K. K.

    2017-08-01

    Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.

  10. A small size 1-3 atm pulsed CO2 laser with series-connected spark gaps ultraviolet preionization.

    PubMed

    Silakhori, K; Jelvani, S; Ghanavati, F; Sajad, B; Talebi, M; Sadr, M R

    2014-01-01

    A small size pulsed CO2 laser with rounded edge flat profiled electrodes and variable gas pressure in 1-3 atm range has been constructed and characterized. The perionization system consists of a pair of 16 series-connected spark gaps located along either side of the main electrodes by which, the number of required preionization capacitors is reduced to 4. Sharpening of the main discharge has been performed using a 300 pF peaking capacitor. A maximum energy of 160 mJ/pulse was obtained for CO2:N2:He≡1:1:8 gas mixture and 33 kV discharge voltage. By increasing the laser gas pressure in 1-3 atm range, the duration of spike and tail parts of the laser pulses have been reduced from 110 ns and 4 μs to 37 ns and 1 μs, respectively.

  11. Impulse noise generator--design and operation.

    PubMed

    Brinkmann, H

    1991-01-01

    In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far.

  12. Gas spark switches with increased operating life for Marx generator of lightning test complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru

    A new design of gas spark switches with an increased operating life and stable dynamic characteristics for the Marx generator of the lightning test complex has been developed. The switches are characterized by the following parameters in the mode of operation: voltage up to 80 kV, discharge current up to 50 kA, flowing charge up to 3.5 C/pulse. An increased operating life is achieved by using torus-shaped electrodes with increased working surface area and a trigger electrode in the form of a thick disk with a hole located between them. Low breakdown delay time and high stability of breakdown voltagemore » under dynamic conditions are provided by gas preionization in the spark gap using UV radiation of an additional corona discharge in the axial region.« less

  13. The Implementation and Demonstration of Flame Detection and Wireless Communications in a Consumer Appliance to Improve Fire Detection Capabilities

    DTIC Science & Technology

    2007-06-08

    Temperature Detectors (RTDs), thermistors , bimetallic devices, liquid expansion devices, and change-of-state devices. Liquid expansion, change-of...sterilization lamps, halogen lamps, direct or reflected sunlight on the sensor, electrical or welding sparks, radiation sources and high 7 Figure 1, Standard

  14. 30 CFR 18.50 - Protection against external arcs and sparks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... volts. (c) A device(s) such as a diode(s) of adequate peak inverse voltage rating and current-carrying capacity to conduct possible fault current through the grounded power conductor. Diode installations shall include: (1) An overcurrent device in series with the diode, the contacts of which are in the machine's...

  15. 30 CFR 18.50 - Protection against external arcs and sparks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volts. (c) A device(s) such as a diode(s) of adequate peak inverse voltage rating and current-carrying capacity to conduct possible fault current through the grounded power conductor. Diode installations shall include: (1) An overcurrent device in series with the diode, the contacts of which are in the machine's...

  16. 30 CFR 18.50 - Protection against external arcs and sparks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... volts. (c) A device(s) such as a diode(s) of adequate peak inverse voltage rating and current-carrying capacity to conduct possible fault current through the grounded power conductor. Diode installations shall include: (1) An overcurrent device in series with the diode, the contacts of which are in the machine's...

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVIII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART II), II--UNDERSTANDING MORE ABOUT STARTING DEVICES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF DIESEL ENGINE STARTING ENGINES. TOPICS ARE (1) STARTING ENGINE MAGNETO (WICO), (2) MAGNETO MAINTENANCE, (3) SPARK PLUGS, (4) GENERAL DESCRIPTION (STARTING DEVICES), (5) OPERATING (STARTING DEVICES), (6) LUBRICATION (STARTING DEVICES), (7)…

  18. Atmospheric electricity. [lightning protection criteria in spacecraft design

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  19. Lightning protection of full authority digital electronic systems

    NASA Astrophysics Data System (ADS)

    Crofts, David

    1991-08-01

    Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.

  20. Lightning protection of full authority digital electronic systems

    NASA Technical Reports Server (NTRS)

    Crofts, David

    1991-01-01

    Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.

  1. Bladder perforation owing to a unipolar coagulating device.

    PubMed

    Pakter, J; Budnick, L D

    1981-09-15

    A report on a patient who sustained a burn and perforation of the urinary bladder from visible sparks emanating from a unipolar coagulating device during the couse of laparoscopic sterilization is presented. It is the first report of urinary bladder burns using a unipolar coagulating device. A 24-year-old woman, gravida 10, para 3, abortus 7, underwent a laparoscopic sterilization with a unipolar coagulating device. As the physician was finishing the coagulation, a spark from the device caused a 1-2 cm burn with a central area of perforation into the urinary bladder. Conservative treatment was recommended, and consisted of Foley catheterization and drainage for 5 days. Initial urine culture revealed Klebsiella species, and oral ampicillin was prescribed. Hematuria was noted throughout the patient's hospitalization, and blood clots were present in the urine on Day 2 postoperation. The patient had no abdominal or flank pain, was afebrile, and had a stable hemoglobin level during the hospital stay. Cystography was performed on Day 5 postoperatively and demonstrated no perforation. Foley catheter was removed. Patient was discharged 2 days later and remains in good health 3 months postoperatively.

  2. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  3. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  4. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  5. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  6. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  7. Sparking Interest

    ERIC Educational Resources Information Center

    Guth, Douglas J.

    2018-01-01

    Community colleges are attempting to bridge America's widening blue-collar skills gap through workforce development programs promising living-wage jobs that don't require four years of college. While trade, construction and manufacturing companies are starving for talented workers, these fields also suffer from an image problem, one fueled by…

  8. Investigation of a compact coaxially fed switched oscillator.

    PubMed

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-09-01

    To generate a relative high frequency mesoband microwave, a compact coaxially fed transmission line switched oscillator with high voltage capability is investigated. The characteristic impedance and voltage capability of the low impedance transmission line (LITL) have been analyzed. It is shown that the working voltage of the oscillator can reach up to 200 kV when it is filled by pressurized nitrogen and charged by a nanosecond driving source. By utilizing a commercial electromagnetic simulation code, the transient performance of the switched oscillator with a lumped resistance load is simulated. It is illustrated that the center frequency of the output signal reaches up to ~0.6 GHz when the spark gap practically closes with a single channel. Besides, the influence of the closing mode and rapidity of the spark gap, the permittivity of the insulator at the output end of the LITL, and the load impedance on the transient performance of the designed oscillator has been analyzed in quantification. Finally, the good transient performance of the switched oscillator has been preliminarily proved by the experiment.

  9. Adjustable long duration high-intensity point light source

    NASA Astrophysics Data System (ADS)

    Krehl, P.; Hagelweide, J. B.

    1981-06-01

    A new long duration high-intensity point light source with adjustable light duration and a small light spot locally stable in time has been developed. The principle involved is a stationary high-temperature plasma flow inside a partly constrained capillary of a coaxial spark gap which is viewed end on through a terminating Plexiglas window. The point light spark gap is operated via a resistor by an artificial transmission line. Using two exchangeable inductance sets in the line, two ranges of photoduration 10-130 μs and 100-600 μs can be covered. For a light spot size of 1.5 mm diameter the corresponding peak light output amounts to 5×106 and 1.6×106 candelas, respectively. Within these ranges the duration is controlled by an ignitron crowbar to extinguish the plasma. The adjustable photoduration is very useful for the application of continuous writing rotating mirror cameras, thus preventing multiple exposures. The essentially uniform exposure within the visible spectral range makes the new light source suitable for color cinematography.

  10. Fast optical and electrical diagnostics of pulsed spark discharges in different gap geometries

    NASA Astrophysics Data System (ADS)

    Höft, Hans; Huiskamp, Tom; Kettlitz, Manfred

    2016-09-01

    Spark discharges in different electrode configurations and with various electrode materials were ignited in air at atmospheric pressure using a custom build pulse charger with 1 μs voltage rise time (up to 28 kV) in single shot operation. Fast voltage and current measurements were combined with iCCD imaging with high spatial resolution (better than 10 μm) on pin-to-pin, pin-to-half-sphere and symmetrical half-sphere tungsten electrodes and symmetrical half-sphere brass electrodes for electrode gaps of 0.1 to 0.7 mm. Breakdown voltages, consumed electrical energies and the discharge emission structures as well as the discharge diameters were obtained. Because of the synchronization of the electrical measurements and the iCCD imaging (i.e. one complete data set for every shot), it was possible to estimate the current density and the change of the discharge pattern, such as single or multiple channels, for all cases. EU funding under Grant No 316216 (PlasmaShape).

  11. Chemistry of Aviation Fuels

    NASA Technical Reports Server (NTRS)

    Knepper, Bryan; Hwang, Soon Muk; DeWitt, Kenneth J.

    2004-01-01

    Minimum ignition energies of various methanol/air mixtures were measured in a temperature controlled constant volume combustion vessel using a spark ignition method with a spark gap distance of 2 mm. The minimum ignition energies decrease rapidly as the mixture composition (equivalence ratio, Phi) changes from lean to stoichiometric, reach a minimum value, and then increase rather slowly with Phi. The minimum of the minimum ignition energy (MIE) and the corresponding mixture composition were determined to be 0.137 mJ and Phi = 1.16, a slightly rich mixture. The variation of minimum ignition energy with respect to the mixture composition is explained in terms of changes in reaction chemistry.

  12. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis.

    PubMed

    Liang, S M; Chang, M H; Yang, Z Y

    2014-01-01

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, S. M., E-mail: liangsm@cc.feu.edu.tw; Yang, Z. Y.; Chang, M. H.

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated withmore » the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm{sup 2} (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.« less

  14. Plasma-puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Venable, Demetrius D.; Lee, Ja H.; Choi, Eun H.; Kim, Y. K.; Kim, J. H.; Nguyen, D. X.

    1993-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(sub opt) less than 450 Torr for He and N2. For Argon 20 mTorr is less than P(sub opt) is less than 5 Torr. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon line emission exists due to vaporization of the plastic insulator used. In order to reduce the vaporization of the insulator, the plexiglass insulating material of INPIStron was replaced with Z-9 material. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron, with a low impedance of Z = 9 ohms, can transfer a high voltage pulse with a superior pulse-shape fidelity over that of a spark gap with Z = 100 ohms.

  15. Plasma-puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Han, K. S.

    1993-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(opt) less than 450 Torr for He and N2. For Argon 120 mTorr less than P(opt) less than 5 Torr for argon. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon line emission exists due to vaporization of the plastic insulator used. In order to reduce the vaporization of the insulator, the plexiglass insulating material of INPIStron was replaced with Z-9 material. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron, with a low impedance of Z equals 9 ohms, can transfer a high voltage pulse with a superior pulse-shape fidelity over that of a spark gap with Z equals 100 ohms.

  16. Observation of X-rays from long laboratory negative discharge in STP air

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; van Deursen, A. P. J.; Ebert, Ute

    2014-05-01

    Pulses of x-rays emitted by lightning are one of the most intriguing among unsolved problem in physics of lightning. They have been detected from both - natural and rocket-triggered lightning. In natural lightning x-rays were detected during stepped leader process and later were associated with a single step. In triggered lighting x-rays were found to be originated from a tip of a dart leader that also possesses stepping propagation mechanism. Therefore, stepping mechanism is the key to understanding the x-ray pulses generated by lightning. Unfortunately, leader stepping mechanism itself is far from well understood. Negative long laboratory discharges also develop through a formation of a space stem/leader and they also generate bursts of x-ray radiation. In this study we investigate the development of a long negative laboratory spark in particular focusing on its x-ray emission. A 2 MV Marx generator delivers high-voltage standard lightning pulse with 1.2/50 microsec rise/fall time to a spark gap with conical electrodes. The distance between cone tips was varied between 1 m and 1.75 m. An upper voltage limit is set to about 1 MV level. The voltage is measured by capacitive high-voltage divider. Two Pearson 7427 current probes determine the currents through high-voltage and grounded electrodes. Two LaBr3 scintillator detectors were mounted in EMC-cabinets and recorded the x-rays. Picos4 Stanford Optics camera with intensified CCD is placed in 4 m distance from the spark gap and directed perpendicular to the spark plane. The camera allows us to make ns-fast images of pre-breakdown phenomena in controllable time. We discovered new details of space stem/leader formation and development in long laboratory sparks. The connection moment of positive part of the space stem/leader to negative high-voltage is accompanied by intense x-ray emission. Taking into account our previous study on positive discharge, we conclude that encounter between positive and negative streamers is the most likely mechanism responsible for the x-rays.

  17. ONR (Office of Naval Research) Far East Scientific Bulletin. Volume 9, Number 2, April - June 1984,

    DTIC Science & Technology

    1984-06-01

    minutes. The DH unit is also used for aluminum killing, removal of nonmetallic inclusions (mainly oxides ), calcium treatment for sulfide inclusion...life sciences. His scientific interests include environmental physiology and a more recent interest in membrane phenomena. Dr. lampietro is a member...and 35 kV and is applied to a 5 mm vacuum spark gap but the gap does not break down -. - until a laser pulse is focused on the sharp anode . Enough of

  18. Megavolt, Multigigawatt Pulsed Plasma Switch

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Choi, Sang H.; Song, Kyo D.

    1996-01-01

    Plasma switch proposed for use in high-voltage, high-current pulse power system. Designed not only to out-perform conventional spark-gap switch but also relatively compact and lightweight. Features inverse-pinch configuration to prevent constriction of current sheets into filaments, plus multiple-ring-electrode structure to resist high-voltage breakdown.

  19. 40 CFR 91.412 - Data logging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Data logging. 91.412 Section 91.412... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.412 Data logging. (a) A computer or any other automatic data collection (ADC) device(s) may be used as long as the system meets the...

  20. 40 CFR 91.412 - Data logging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Data logging. 91.412 Section 91.412... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.412 Data logging. (a) A computer or any other automatic data collection (ADC) device(s) may be used as long as the system meets the...

  1. 40 CFR 91.412 - Data logging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Data logging. 91.412 Section 91.412... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.412 Data logging. (a) A computer or any other automatic data collection (ADC) device(s) may be used as long as the system meets the...

  2. 40 CFR 91.412 - Data logging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Data logging. 91.412 Section 91.412... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.412 Data logging. (a) A computer or any other automatic data collection (ADC) device(s) may be used as long as the system meets the...

  3. 40 CFR 91.412 - Data logging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Data logging. 91.412 Section 91.412... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.412 Data logging. (a) A computer or any other automatic data collection (ADC) device(s) may be used as long as the system meets the...

  4. Improved lifetime high voltage switch electrode

    NASA Astrophysics Data System (ADS)

    Halverson, W.

    1985-06-01

    In this Phase 1 Small Business Innovation Research (SBIR) program, preliminary tests of ion implantation to increase the lifetime of spark switch electrodes have indicated that a 185 keV carbon ion implant into a tungsten-copper composite has reduced electrode erosion by a factor of two to four. Apparently, the thin layer of tungsten carbide (WC) has better thermal properties than pure tungsten; the WC may have penetrated into the unimplanted body of the electrode by liquid and/or solid phase diffusion during erosion testing. These encouraging results should provide the basis for a Phase 2 SBIR program to investigate further the physical and chemical effects of ion implantation on spark gap electrodes and to optimize the technique for applications.

  5. Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Yang, Lanjun; Guo, Haishan; Zhang, Zhiyuan; Jiang, Hongqiu; Xu, Haipeng

    2017-07-01

    In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.

  6. A novel low-jitter plasma-jet triggered gas switch operated at a low working coefficient.

    PubMed

    Tie, Weihao; Liu, Shanhong; Liu, Xuandong; Zhang, Qiaogen; Pang, Lei; Liu, Longchen

    2014-02-01

    In this paper, we described the fabrication and testing of a novel plasma-jet triggered gas switch (PJTGS) operated at extremely low working coefficients with excellent triggered jitters. While the structure of the PJTGS is similar to that of a traditional three-electrode field-distortion gas switch, to improve its triggered performance we used a conical micro-plasma-gun with a needle-to-plate spark gap embedded in the trigger electrode. Applying a nanosecond pulse to the trigger electrode caused a spark discharge in the micro-plasma-gun. The electric field drove the discharge plasma to spray into the spark gap of the gas switch, causing fast breakdown. We tested the PJTGS with charging voltages of ±25 kV and a trigger voltage of +80 kV (5 ns rise time and 80 ns full width at half maximum) in two working modes. The PJTGS operated in Mode II had a lower triggered jitter and could be operated over a wider range of working coefficients than in Mode I under the same conditions. At working coefficients higher than 70%, we obtained sub-ns triggered jitters (<0.89 ns) from the PJTGS, at working coefficients lower than 50%, we obtained triggered jitters of 1.6-3.5 ns without no-fires or pre-fires. Even at a working coefficient of 27.4%, the PJTGS could still be triggered reliably with a delay time of 96.1 ns and a triggered jitter of 3.5 ns, respectively.

  7. Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte

    NASA Astrophysics Data System (ADS)

    Han, Min-Seop; Min, Byung-Kwon; Lee, Sang Jo

    2009-06-01

    Electrochemical discharge machining (ECDM) is a spark-based micromachining method especially suitable for the fabrication of various microstructures on nonconductive materials, such as glass and some engineering ceramics. However, since the spark discharge frequency is drastically reduced as the machining depth increases ECDM microhole drilling has confronted difficulty in achieving uniform geometry for machined holes. One of the primary reasons for this is the difficulty of sustaining an adequate electrolyte flow in the narrow gap between the tool and the workpiece, which results in a widened taper at the hole entrance, as well as a significant reduction of the machining depth. In this paper, ultrasonic electrolyte vibration was used to enhance the machining depth of the ECDM drilling process by assuring an adequate electrolyte flow, thus helping to maintain consistent spark generation. Moreover, the stability of the gas film formation, as well as the surface quality of the hole entrance, was improved with the aid of a side-insulated electrode and a pulse-power generator. The side-insulated electrode prevented stray electrolysis and concentrated the spark discharge at the tool tip, while the pulse voltage reduced thermal damage to the workpiece surface by introducing a periodic pulse-off time. Microholes were fabricated in order to investigate the effects of ultrasonic assistance on the overcut and machining depth of the holes. The experimental results demonstrated that the possibility of consistent spark generation and the machinability of microholes were simultaneously enhanced.

  8. Ethics in Field-Based Research: Contractual and Relational Responsibilities.

    ERIC Educational Resources Information Center

    Brickhouse, Nancy W.

    The desire to abolish the gap between research theory and classroom practice has sparked an increasing interest in field-based research among science educators. Although most researchers are aware of the standard meanings of informed consent and confidentiality, and there are some codes of ethical principles published by such groups as the…

  9. California DREAMers: Activism, Identity, and Empowerment among Undocumented College Students

    ERIC Educational Resources Information Center

    DeAngelo, Linda; Schuster, Maximilian T.; Stebleton, Michael J.

    2016-01-01

    There is a large gap in college access and success for undocumented students. This emergent population remains uniquely and precariously situated within campus environments, despite the passage of Development, Relief, and Education for Alien Minors (DREAM) Acts in some states. These inequities have sparked activism for DREAMers associated with the…

  10. Investigation of a compact coaxially fed switched oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-09-01

    To generate a relative high frequency mesoband microwave, a compact coaxially fed transmission line switched oscillator with high voltage capability is investigated. The characteristic impedance and voltage capability of the low impedance transmission line (LITL) have been analyzed. It is shown that the working voltage of the oscillator can reach up to 200 kV when it is filled by pressurized nitrogen and charged by a nanosecond driving source. By utilizing a commercial electromagnetic simulation code, the transient performance of the switched oscillator with a lumped resistance load is simulated. It is illustrated that the center frequency of the output signal reaches up to ˜0.6 GHz when the spark gap practically closes with a single channel. Besides, the influence of the closing mode and rapidity of the spark gap, the permittivity of the insulator at the output end of the LITL, and the load impedance on the transient performance of the designed oscillator has been analyzed in quantification. Finally, the good transient performance of the switched oscillator has been preliminarily proved by the experiment.

  11. A high-current rail-type gas switch with preionization by an additional corona discharge

    NASA Astrophysics Data System (ADS)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G.

    2016-12-01

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10-45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  12. The Roles of Pharmacy Schools in Bridging the Gap Between Law and Practice.

    PubMed

    Adams, Alex J; Dering-Anderson, Allison; Klepser, Michael E; Klepser, Donald

    2018-05-01

    Progressive pharmacy laws do not always lead to progressive pharmacy practice. Progressive laws are necessary, but not sufficient for pharmacy services to take off in practice. Pharmacy schools can play critical roles by working collaboratively with community pharmacies to close the gap between law and practice. Our experiences launching pharmacy-based point-of-care testing services in community pharmacy settings illustrate some of the roles schools can play, including: developing and providing standardized training, developing template protocols, providing workflow support, sparking collaboration across pharmacies, providing policy support, and conducting research.

  13. New Technology Sparks Smoother Engines and Cleaner Air

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.

  14. Plasma X-Ray Sources for Lithography

    DTIC Science & Technology

    1980-05-12

    in evaluating various plasma sources. In addition, a brief analysis is given of three devices, or systems, used to produce such plasmas: the electron beam- sliding spark, the dense plasma focus and the laser produced plasma.

  15. Simultaneous emissions of X-rays and microwaves from long laboratory sparks and downward lightning leaders

    NASA Astrophysics Data System (ADS)

    Montanya, J.; Oscar, V. D. V.; Tapia, F. F.

    2017-12-01

    Since the discovery of the Terrestrial Gamma-ray Flashes more than 20 years ago, investigations on high energy emissions from natural lightning and high voltage laboratory sparks gained significant interest. X-ray emissions from lightning as well from high voltage laboratory sparks have in common the role played by negative leaders/streamers. On the other hand, negative leaders are well known to produce much more VHF and microwave radiation than positive leaders. Moreover, in previous works, microwave emissions from lightning leaders have been attributed to Bremsstrahlung process. The object of this work is to investigate if X-rays and RF microwave emissions share the same origin. We present simultaneous measurements of X-rays and microwaves in high voltage sparks and natural lightning. The instrumentation consists on a NaI(Tl) and LaBr3 scintillation detectors and two different receivers. One is fix tuned at 2.4 GHz with a bandwidth of 5.5 MHz. The second can be tuned at any frequency up to 18 GHz with different selectable bandwidths of 10 MHz, 40 MHz and 100 MHz. In the laboratory, results have shown that all the sparks presented microwave radiation before the breakdown of the gap, either X-rays were detected or not. In the cases where X-rays were identified, microwave emissions peaked at the same time (in the microsecond scale). We found that the power amplitudes of the microwave emissions are related to the applied voltage to the gap. In the same configuration, those cases where X-rays were detected microwave emissions presented higher power levels. The results suggest that in some part of the discharge electrons are very fast accelerated allowing, in some cases, to reach enought energy to produce X-rays. In the field, we have found similar results. On 13th of June of 2015 a bipolar cloud-to-ground flash struck 200 m close to the Eagle Nest instrumented tower (Spanish Pyrenees, 2536 m ASL). The flash presented four strokes and, in all of them, microwave radiation was detected before the return stroke. The microwave emissions in the first positive leader had lower amplitude but presented longer duration whereas the emissions in the three negative downward dart leaders were more impulsive. X-rays were detected in two of the three negative downward dart leaders.

  16. Tierless Programming for the Internet of Things

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, Brett

    The Internet of Things (IoT) is about Internet-addressability and connectivity for everyday devices. The goal of this project was to create a framework to allow developers to more easily control IoT devices and turn their interactions into meaningful applications. We leveraged a tierless approach for Software Defined Networking (SDN) to build this framework. We expanded Flowlog, a tierless programming language for SDN controllers, to support IoT devices developed by Spark IO to build this framework.

  17. Electromagnetic Waves Broadcast by a VCR.

    ERIC Educational Resources Information Center

    Brown, Michael H.

    1996-01-01

    Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)

  18. N.Y.C. System School-Match Gaps Tracked

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2013-01-01

    The first round of this year's high-school-match notifications in New York City's massive, district-wide school choice process went out to students this month, sparking celebration, consternation, and a renewal of concerns about unequal access to the city's best schools. The Big Apple's school-matching system is certainly on a New York scale, with…

  19. Surface breakdown igniter for mercury arc devices

    DOEpatents

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  20. THE FAULT DIVERTER-A PROTECTIVE DEVICE FOR HIGH-POWER ELECTRON TUBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, B.H.

    1957-08-01

    Fault diverters, or crowbars, have proven to be very effective protection against transient-induced power arcs within accelerator oscillator tubes. This device short circuits the oscillator-plate power supply in the event of an over-current, thus removing the power flow from the fault within a few microseconds. Ignitrons, thyratrons, and triggered spark gaps are used for this purpose. The power supply is protected from the short circuit either by a current-limiting device or a high-speed contactor which removes the system from the power lines within a few milliseconds. The fault diverters, and associated circuitry, used on several of the accelerators in Berkeleymore » and Livermore are described. (auth) l73O Studies of pi -meson and K-meson interactions were continued with counters, emulsions, and the 10-inch liquid hydrogen bubble chanmber. Six emulsion exposures were made for external groups to a pi -meson beam, three to Kmeson beams, two to a neutral-particle beanm, and three to the internal proton beam. An H-D reaction, catalyzed by mu mesons, was observed in the 10-inch liquid hydrogen bubble chamber. Absorption cross-section measurements for antiprotons were continued, using counters. Nineteen target bombardments were made for the chemistry group. A technique of producing two or more secondary-particle beam pulses per acceleration cycle, using different targets, has been successfully tried and used. (For preceding period see UCRL- 36l4.1 (auth)« less

  1. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng; Shao, Tao, E-mail: st@mail.iee.ac.cn; Wang, Ruixue

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulsesmore » such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.« less

  2. Low and High-Power Inductive Pulsed Plasma Thruster Development Testing at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Martin, Adam K.; Greve, Christine M.; Riley, Daniel P.

    2017-01-01

    The inductive pulsed plasma thruster (IPPT) is an electromagnetic plasma accelerator that has been identified in NASA roadmaps as an enabling propulsion technology for some niche low-power missions and for high-power in-space propulsion needs. The IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. Thrusters of this type possess many demonstrated and potential benefits that make them worthy of continued investigation. The electrodeless nature of these thrusters eliminates the lifetime and contamination issues associated with electrode erosion in conventional electric thrusters. Also, a wider variety of propellants are accessible when compatibility with metallic electrodes in no longer an issue. IPPTs have been successfully operated using propellants like ammonia, hydrazine, and CO2, and there is no fundamental reason why they would not operate on other in situ propellants like H2O. It is well-known that pulsed accelerators can maintain constant specific impulse (I(sub sp)) and thrust efficiency (eta(sub t)) over a wide range of input power levels by adjusting the pulse rate to hold the discharge energy per pulse constant. It has also been demonstrated that an inductive pulsed plasma thruster can operate in a regime where eta(sub t) is relatively constant over a wide range of I(sub sp) values (3000-8000 s). Finally, thrusters in this class have operated in single-pulse mode at high energy per pulse, and by increasing the pulse rate they offer the potential to process very high levels of power using a single thruster. There has been significant previous research on IPPTs designed around a planar-coil (flat-plate) geometry. The most notable of these was the Pulsed Inductive Thruster (PIT), with the PIT MkV presently representing the state-of- the-art in pulsed high-power IPPT technological development. In this paper, we focus on two planar-geometry devices that operate at significantly different power levels. Most work performed at NASA-Marshall Space Flight Center (MSFC) has, to date, focused on lower power thruster operation (approx. = 10s to 100s of J/pulse, up to 2-2.5 kW average power throughput) and previously described. The most recent work aimed to assemble a device that could be tested in cyclic mode on a thrust-stand, and which could augment the existing data set for IPPTs. In addition, the thruster was designed to serve as a test-bed for solid state switching circuitry and pulsed gas valves, with the modular design of the device allowing for variation in or upgrades to test configuration. Recently, MSFC obtained on loan from the Georgia Institute of Technology (Atlanta, GA) the PIT MkVI, successor to the PIT MkV. The MkV and MkVI are similar in design with much of the hardware from the former, specifically the capacitors and spark-gap switches, being reused in the latter. The coil is similar in geometry but has bent copper rods used in the latest iteration in place of the Litz wire windings found in the MkV. The MkVI master switch for the spark gaps is located in the vacuum chamber contained within a sealed, pressurized vessel fastened to the back of the thruster. This is different from the MkV where many capacitor charging lines and spark gap-triggering delay lines ran to the thruster from a master trigger located outside the vacuum chamber. The MkVI was damaged during testing soon after its fabrication was completed. The thruster arrived at MSFC still-damaged and mostly disassembled into many individual pieces. The device has been repaired, with a few additional design changes implemented after discussions with the late Prof. Lovberg regarding the initial testing results and issues encountered. In the present work, we present results from testing of both the small IPPT and the larger MkVI thruster. The smaller device (Fig. 1) is tested on a thrust stand on multiple gases to demonstrate its capability to operate in a repetition-rate mode and serve as a IPPT technology-development testbed. The larger MkVI (Fig. 2) is operated for the first time in its newly reconstituted state, demonstrating full-power pulsed operation and, for the first time, repetition-rate operation of a high-power IPPT. The additional upgrades required for synchronous operation of all the pulsed systems in single-pulse and repetition-rate mode are described in detail.

  3. About Losses in Pumping Generators of High-Power Electrodischarge Excimer Lasers

    NASA Astrophysics Data System (ADS)

    Ivanov, N. G.; Losev, V. F.

    2015-04-01

    Energy losses in pumping systems of discharge high-power lasers are investigated. To estimate the losses, the discharge circuit operation was modeled, and its calculation was performed using the program PSpice. Results of measurements and calculations demonstrate that the resistance of a rail gap with electric field distortion exceeds several times the resistance of a single-channel gap without field distortion. A difference in the resistances is explained by different mechanisms of discharge burning: in the first case diffusion mechanism and in the second case the spark mechanism. The low efficiency of the high-power excimer lasers (~1%) is explained by high energy losses in the rail gap that reach more than 50% of the initially stored energy.

  4. Bridging the Gap Between Formal and Informal Learning: Evaluating the Seatrek Distance Learning Project

    ERIC Educational Resources Information Center

    Ba, Harouna; Keisch, Deborah

    2004-01-01

    This study focuses on the SeaTrek Distance Learning Project, housed at Mote Marine Laboratory in Sarasota, Florida. The educational goal of the SeaTrek project is to spark student interest in science and communicate information about real-world research and conservation work at Mote to students and teachers in Florida. To accomplish this goal, the…

  5. A high-current rail-type gas switch with preionization by an additional corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, andmore » the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.« less

  6. Experimental Investigation and Optimization of Response Variables in WEDM of Inconel - 718

    NASA Astrophysics Data System (ADS)

    Karidkar, S. S.; Dabade, U. A.

    2016-02-01

    Effective utilisation of Wire Electrical Discharge Machining (WEDM) technology is challenge for modern manufacturing industries. Day by day new materials with high strengths and capabilities are being developed to fulfil the customers need. Inconel - 718 is similar kind of material which is extensively used in aerospace applications, such as gas turbine, rocket motors, and spacecraft as well as in nuclear reactors and pumps etc. This paper deals with the experimental investigation of optimal machining parameters in WEDM for Surface Roughness, Kerf Width and Dimensional Deviation using DoE such as Taguchi methodology, L9 orthogonal array. By keeping peak current constant at 70 A, the effect of other process parameters on above response variables were analysed. Obtained experimental results were statistically analysed using Minitab-16 software. Analysis of Variance (ANOVA) shows pulse on time as the most influential parameter followed by wire tension whereas spark gap set voltage is observed to be non-influencing parameter. Multi-objective optimization technique, Grey Relational Analysis (GRA), shows optimal machining parameters such as pulse on time 108 Machine unit, spark gap set voltage 50 V and wire tension 12 gm for optimal response variables considered for the experimental analysis.

  7. Experimental study on surface properties of the PMMA used in high power spark gaps

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang

    2017-10-01

    This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.

  8. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications

    NASA Astrophysics Data System (ADS)

    Tian, Liqiang; Shi, Wei; Feng, Qingqing

    2011-11-01

    A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.

  9. Propellant-Flow-Actuated Rocket Engine Igniter

    NASA Technical Reports Server (NTRS)

    Wollen, Mark

    2013-01-01

    A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0.001 lb/s) and pressure drops on the order of 30 to 50 kilopascal (a few psi). An analytical model has been created and tested in conjunction with a precisely calibrated reference model. The analytical model accurately captures the overall behavior of this innovation. The model is a simple "volume-orifice" concept, with each chamber considered a single temperature and pressure "node" connected to adjacent nodes, or to vent paths through flow control orifices. Mass and energy balances are applied to each node, with gas flow predicted using simple compressible flow equations.

  10. Experimental investigation on the effect of plasma jet in the triggered discharge process of a gas switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tie, W., E-mail: twh.110.666@163.com, E-mail: 84470220@qq.com; Xi'an Jiaotong University, Xi'an 710049; Liu, S.

    The temporal and spatial evolution of a plasma jet generated by a spark discharge was observed. The electron temperature and density were obtained under different time and gas pressures by optical emission spectroscopy. Moreover, the discharge process of the plasma-jet triggered gas switch was recorded and analyzed at the lowest working coefficient. The results showed that the plasma jet moved forward in a bullet mode, and the advancing velocity increased with the decrease of pressure, and decreased with time growing. At initial time, the maximum velocity of a plasma jet could reach 3.68 × 10{sup 6 }cm/s. The electron temperature decreased from 2.0 eVmore » to 1.3 eV, and the electron density increased from 3.1 × 10{sup 15}/cm{sup 3} to 6.3 × 10{sup 15}/cm{sup 3} at the initial moment as the gas pressure increases from 0.1 MPa to 0.32 MPa. For a two-gap gas switch, the discharge performances were more depended on the second discharge spark gap (gap 2). Because plasma jet promoted the discharge in Gap 2, the gas switch operating in mode II had better triggered discharge characteristics. In the discharge process, the plasma-jet triggering had the effect of non-penetrating inducing, which not only provided initial electrons for reducing statistical lag but also enhanced the local electric field. The discharge was initiated and accelerated from electron avalanche to streamer. Therefore, a fast discharge was occurred in the gas switch.« less

  11. Existence of steady gap solutions in rotating black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Levinson, Amir; Segev, Noam

    2017-12-01

    Under conditions prevailing in certain classes of compact astrophysical systems, the active magnetosphere of a rotating black hole becomes charge starved, giving rise to the formation of a spark gap in which plasma is continuously produced. The plasma production process is accompanied by curvature and inverse Compton emission of gamma rays in the GeV-TeV band, which may be detectable by current and future experiments. The properties of the gap emission have been studied recently using a fully general-relativistic model of a local steady gap. However, this model requires artificial adjustment of the electric current which is determined, in reality, by the global properties of the magnetosphere. In this paper we map the parameter regime in which steady gap solutions exist, using a steady-state gap model in Kerr geometry, and show that such solutions are allowed only under restrictive conditions that may not apply to most astrophysical systems. We further argue that even the allowed solutions are inconsistent with the global magnetospheric structure. We conclude that magnetospheric gaps are inherently intermittent, and point out that this may drastically change their emission properties.

  12. Safe arming system for two-explosive munitions

    DOEpatents

    Jaroska, Miles F.; Niven, William A.; Morrison, Jasper J.

    1978-01-01

    A system for safely and positively detonating high-explosive munitions, including a source of electrical signals, a split-phase square-loop transformer responsive solely to a unique series of signals from the source for charging an energy storage circuit through a voltage doubling circuit, and a spark-gap trigger for initiating discharge of the energy in the storage circuit to actuate a detonator and thereby fire the munitions.

  13. Resistive-strips micromegas detectors with two-dimensional readout

    NASA Astrophysics Data System (ADS)

    Byszewski, M.; Wotschack, J.

    2012-02-01

    Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.

  14. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    NASA Technical Reports Server (NTRS)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further complications due to the creation of defects and short life of the device or to introduce high content of indium, which again is found problematic due to the difficulties in diluting nitrogen in the presence of high indium [9]. An availability of material of proper band gap and lattice matching on InP are important issues for the development of TPV devices to perform better. To address those issues, recently we have shown that by adjusting the thickness of individual sublayers and the nitrogen composition, strain balanced GaAs(1-x)N(x)/InAs(1-y)N(y) superlattice can be designed to be both lattice matched to InP and have an effective bandgap in the desirable 0.4- 0.7eV range [10,11]. Theoretically the already reduced band gap of GaAs(1-x)N(x), due to the nitrogen effects, can be further reduced by subjecting it to a biaxial tensile strain, for example, by fabricating pseudomorphically strained layers on commonly available InP substrates. While such an approach in principle could allow access to smaller band gap (longer wavelength), only a few atomic monolayers of the material can be grown due to the large lattice mismatch between GaAs(1-x)N(x) and InP (approx.3.8-4.8 % for x<0.05, 300K). This limitation can be avoided using the principle of strain balancing [12], by introducing the alternating layers of InAs(1-y)N(y) with opposite strain (approx.2.4-3.1% for x<0.05, 300K) in combination with GaAs(1-x)N(x). Therefore, even an infinite pseudomorphically strained superlattice thickness can be realized from a sequence of GaAs(1-x)N(x) and InAs(1-y)N(y) layers if the thickness of each layer is kept below the threshold for its lattice relaxation

  15. A modified resistance equation for modeling underwater spark discharge with salinity and high pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Pengfei; Roy, Subrata, E-mail: roy@ufl.edu

    2014-05-07

    This work investigates the performance of underwater spark discharge relating to bubble growth and decay under high pressure and with salinity conditions by introducing a modified form of the resistance equation. Here, we study salinity influence on circuit parameters by fitting the experimental data for which gap resistance is much larger in conductive water than in dielectric water. Accordingly, the resistance equation is modified by considering the influence of both plasma and its surrounding liquid. Thermal radiation effect of the bubble is also studied by comparing two different radiation models. Numerical results predict a larger bubble pressure for saline watermore » but a reduced size and a smaller bubble cycle at a greater water depth. Such study may be useful in many saltwater applications, including that for deep sea conditions.« less

  16. An experimental study of perforated muzzle brakes

    NASA Astrophysics Data System (ADS)

    Dillon, R. E., Jr.; Nagamatsu, H. T.

    1984-06-01

    A firing test was conducted to examine the recoil efficiency and blast characteristics of perforated muzzle brakes fitted to a 20 mm cannon. Recoil impulse blast overpressures, muzzle velocity, sequential spark shadowgraphs, and photographs of the muzzle flash structure were obtained. Three different nuzzle devices were used with one device equipped with pressure transducers to measure the static pressure in the brake. Experimental results are compared with the earlier predictions of Dillon and Nagamatsu.

  17. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  18. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  19. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  20. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  1. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    NASA Astrophysics Data System (ADS)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  2. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    NASA Technical Reports Server (NTRS)

    Wollen, Mark A. (Inventor)

    2015-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  3. Passenger Transmitters as A Possible Cause of Aircraft Fuel Ignition

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Dudley, Kenneth L.; Scearce, Stephen A.; Hatfield, Michael O.; Richardson, Robert E.

    2006-01-01

    An investigation was performed to study the potential for radio frequency (RF) power radiated from transmitting Portable Electronic Devices (PEDs) to create an arcing/sparking event within the fuel tank of a large transport aircraft. A survey of RF emissions from typical intentional transmitting PEDs was first performed. Aircraft measurements of RF coupling to the fuel tank and its wiring were also performed to determine the PEDs induced power on the wiring, and the re-radiated power within the fuel tank. Laboratory simulations were conducted to determine the required RF power level for an arcing/sparking event. Data analysis shows large positive safety margins, even with simulated faults on the wiring.

  4. Inherently safe passive gas monitoring system

    DOEpatents

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  5. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  6. Testing methods and techniques: Environmental testing: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Various devices and techniques are described for testing hardware and components in four special environments: low temperature, high temperature, high pressure, and vibration. Items ranging from an automatic calibrator for pressure transducers to a fixture for testing the susceptibility of materials to ignition by electric spark are included.

  7. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  8. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  9. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  10. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  11. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  12. 40 CFR 91.1107 - Warranty provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ultimate purchaser and each subsequent purchaser that the engine is designed, built, and equipped so as to... spark plugs, points, condensers, and any other part, item, or device related to emission control (but not designed for emission control) under the terms of the last sentence of section 207(a)(3) of the...

  13. 40 CFR 90.1103 - Emission warranty, warranty period.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... purchaser and each subsequent purchaser that the engine is designed, built and equipped so as to conform at... the owner's choosing, such items as spark plugs, points, condensers, and any other part, item, or device related to emission control (but not designed for emission control) under the terms of the last...

  14. Low Pressure Spark Gap

    DTIC Science & Technology

    1981-06-01

    voltage electrode and forms the interface between the water and vacuum. Figure 1 Low Pressure Switch Apparatus 380 The water Blumlein, the...buildup of current and can predict the rate constant within 30%, it appears that we understand the basic mechanism of the low pressure switch . 0.22...E. J. Lauer, "Status of Low Pressure Switch Research and Development," UCID 17998, Dec. 12, 1978. 4. E. J. Lauer, S. S. Yu and D. M. Cox, "Onset

  15. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  16. Temporally Shaped Current Pulses on a Two-Cavity Linear Transformer Driver System

    DTIC Science & Technology

    2011-06-01

    essentially at a fraction of the total switch voltage. Non-uniform corona current characteristics of the different corona needles could cause imperfect...withstand twice the capacitor voltage. A pulse applied to the switch trigger electrodes initiate closure of each switch. We have arranged triggering in...internal cavity potential to ground, allows the trigger electrode of the spark gaps to be at ground potential during charging, and eliminates a

  17. Technology of Fast Spark Gaps

    DTIC Science & Technology

    1989-09-01

    material, reticulated vitreous carbon , that consists of an open-cell, rigid carbon "foam." This material was developed in the mid- 1970’s as a filter...These halides are excellent emitters of photoelectrons. 33 About 90 percent of the volume of reticulated vitreous carbon is void. Thus an electrical...for fluids and as a scaffold for work at high temperatures or with corrosive agents. A relatively fine mesh of vitreous carbon , perhaps about four

  18. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    NASA Technical Reports Server (NTRS)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  19. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    NASA Technical Reports Server (NTRS)

    Wollen, Mark A. (Inventor)

    2018-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved in one or more charging chambers to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  20. Computer-Mediated Communication and the Gallaudet University Community: A Preliminary Report

    ERIC Educational Resources Information Center

    Hogg, Nanette M.; Lomicky, Carol S.; Weiner, Stephen F.

    2008-01-01

    The study examined the use of computer-mediated communication (CMC) among individuals involved in a conflict sparked by the appointment of an administrator as president-designate of Gallaudet University in 2006. CMC was defined to comprise forms of communication used for transmitting (sharing) information through networks with digital devices.…

  1. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  2. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  3. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  4. 40 CFR 91.1203 - Emission warranty, warranty period.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subsequent purchaser, that the engine is designed, built, and equipped so as to conform at the time of sale... owner's choosing, such items as spark plugs, points, condensers, and any other part, item, or device related to emission control (but not designed for emission control) under the terms of the last sentence...

  5. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  6. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  7. Investigating Learner Preparedness for and Usage Patterns of Mobile Learning

    ERIC Educational Resources Information Center

    Stockwell, Glenn

    2008-01-01

    While the use of mobile devices for language learning has sparked the interest of an increasing number of researchers in recent years (e.g., Aizawa & Kiernan, 2003; Thornton & Houser, 2005), our knowledge of learners' preferences for the mobile platform and their usage patterns remains limited. Are learners prepared to use mobile phones…

  8. The New Student-Teacher Channel

    ERIC Educational Resources Information Center

    Harper, Vernon B., Jr.

    2005-01-01

    The Web is no longer a novel ingredient in the learning experience, it is intrinsic and constant. In fact, a host of new technologies has sparked an age of inexpensive, effortless, and universal Web access in the classroom, while wireless devices and protocols have steadily moved downstream and down the socioeconomic ladder. With this incredible…

  9. A device for automatic photoelectric control of the analytical gap for emission spectrographs

    USGS Publications Warehouse

    Dietrich, John A.; Cooley, Elmo F.; Curry, Kenneth J.

    1977-01-01

    A photoelectric device has been built that automatically controls the analytical gap between electrodes during excitation period. The control device allows for precise control of the analytical gap during the arcing process of samples, resulting in better precision of analysis.

  10. Sealing device

    DOEpatents

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  11. Analysis of magnesium and copper in aluminum alloys with high repetition rate laser-ablation spark-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Xiaoyong; Dong, Bo; Chen, Yuqi; Li, Runhua; Wang, Fujuan; Li, Jiaoyang; Cai, Zhigang

    2018-03-01

    In order to improve the analytical speed and performance of laser-ablation based atomic emission spectroscopy, high repetition rate laser-ablation spark-induced breakdown spectroscopy (HRR LA-SIBS) was first developed. Magnesium and copper in aluminum alloys were analyzed with this technique. In the experiments, the fundamental output of an acousto-optically Q-switched Nd:YAG laser operated at 1 kHz repetition rate with low pulse energy and 120 ns pulse width was used to ablate the samples and the plasma emission was enhanced by spark discharge. The spectra were recorded with a compact fiber spectrometer with non-intensified charge-coupled device in non-gating mode. Different parameters relative with analytical performance, such as capacitance, voltage, laser pulse energy were optimized. Under current experimental conditions, calibration curves of magnesium and copper in aluminum alloys were built and limits of detection of them were determined to be 14.0 and 9.9 ppm by HRR LA-SIBS, respectively, which were 8-12 folds better than that achieved by HRR LA under similar experimental condition without spark discharge. The analytical sensitivities are close to those obtained with conventional LIBS but with improved analytical speed as well as possibility of using compact fiber spectrometer. Under high repetition rate operation, the noise level can be decreased and the analytical reproducibility can be improved obviously by averaging multiple measurements within short time. High repetition rate operation of laser-ablation spark-induced breakdown spectroscopy is very helpful for improving analytical speed. It is possible to find applications in fast elements analysis, especially fast two-dimension elemental mapping of solid samples.

  12. Low-Impedance Compact Modulators Capable of Generating Intense Ultra-fast Rising Nanosecond Waveforms

    DTIC Science & Technology

    2006-10-31

    spark gap is shown in Fig. 1. The Blumleins were constructed from copper plates separated by laminated layered Kapton (polyimide) dielectrics. Scaling... convolution factor. The diamond/GaAs heterojunction response is limited to a very thin layer across the cross section between amorphic diamond and GaAs...were fastened to electrode mounts and passed through the cast material of the base before it hardened. A thick kapton laminate 1.2 cm wide separated

  13. Low jitter, low inductance solid dielectric switches.

    PubMed

    Guenther, A H; Strickland, D M; Bettis, J R

    1979-11-01

    It has been shown that the use of graded solid dielectric sandwiches in laser-triggered spark gaps (LTS) can lead to highly desirable multichannel operations while maintaining the low delay and jitter performance characteristics of LTS. As many as ten separate breakdown channels were observed when small circular or hexagonal aluminum inserts were inserted between two Mylar dielectric sheets stressed at 4.1 kV/mil. A reduction in rise time was noted for these multichannel switching events.

  14. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 6, 1976

    DTIC Science & Technology

    1976-06-01

    6 Laser- Powered Rocket Model 1 High- Power CO2 Laser Radiation Effect in SF6 1 Tests With 9-Beam Laser Fusion Systems 1 Focusing Optics For...Boundary Layer 6 Deformation Theory of Artif.cial Muscles . 6 Dolphin Swimming Stereophotogrammetry 7 Stable Spark Gap for High- Power Pulsers 7...8 Resume of Soviet Tokamak Program .............. 9 First Measurements of Tokamak-10 Plasma , . . 10 Electrochemical Power Generation 11

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artem’ev, K. V.; Berezhetskaya, N. K.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru

    Results are presented from experiments on the inflammation of a stoichiometric methane-oxygen mixture by a high-current multielectrode spark-gap in a closed cylindrical chamber. It is shown that, in both the preflame and well-developed flame stages, the gas medium is characterized by a high degree of ionization (n{sub e} ≈ 10{sup 12} cm{sup −3}) due to chemoionization processes and a high electron-neutral collision frequency (ν{sub e0} ≈ 10{sup 12} s{sup −1})

  16. A Grazing Incidence Spectrograph as Applied to Vacuum Ultraviolet, Soft X-Ray, Pulsed Plasma Sources.

    DTIC Science & Technology

    A 2.2-meter variable angle of incidence grazing incidence spectrograph is described for photographic recording of spectra down to 10A. Also a method for determining the absolute total fluence from a pulsed plasma source, knowing the absolute sensitivity of the instrument, is described. Spectra are presented from a low-inductance sliding spark gap and a 20-kj dense plasma focus . A program for spectram analysis is included. (Modified author abstract)

  17. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  18. Statistical innovations in the medical device world sparked by the FDA.

    PubMed

    Campbell, Gregory; Yue, Lilly Q

    2016-01-01

    The world of medical devices while highly diverse is extremely innovative, and this facilitates the adoption of innovative statistical techniques. Statisticians in the Center for Devices and Radiological Health (CDRH) at the Food and Drug Administration (FDA) have provided leadership in implementing statistical innovations. The innovations discussed include: the incorporation of Bayesian methods in clinical trials, adaptive designs, the use and development of propensity score methodology in the design and analysis of non-randomized observational studies, the use of tipping-point analysis for missing data, techniques for diagnostic test evaluation, bridging studies for companion diagnostic tests, quantitative benefit-risk decisions, and patient preference studies.

  19. LOW VOLTAGE 14 Mev NEUTRON SOURCE

    DOEpatents

    Little, R.N. Jr.; Graves, E.R.

    1959-09-29

    An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.

  20. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Efficient long-pulse XeCl laser with a prepulse formed by an inductive energy storage device

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    2000-06-01

    An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.

  1. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  2. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE PAGES

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.; ...

    2016-06-01

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  3. Assessing Effects of Oxidizer Characteristics on Composite Reaction Kinetics

    DTIC Science & Technology

    2013-12-01

    in its spark gap is ionized and creates conductive plasma allowing current flow to the EBW. The EBW is a type of detonator which utilizes shockwaves...flow rate of 70 mL min-1 for the remainder of the cycle. Sintering can occur during heating and melting, ultimately affecting heat transfer in the...argon at a flow rate of 70 mL min-1 for the remainder of the cycle. Sintering can occur during heating and melting, ultimately affecting heat transfer

  4. The Production and Evolution of Atomic Oxygen in the Afterglow of Streamer Discharge in Atmospheric Pressure Fuel/Air Mixtures

    DTIC Science & Technology

    2013-07-02

    in streamer discharge afterglow in a variety of fueVair mixtures in order to account for the 0 reaction pathways in transient plasma ignition. It is... plasma ignition (TPI), the use of streamers for ignition in combustion engines, holds great promise for improving performance. TPI has been tested...standard spark gap or arc ignition methods [1-4]. These improvements to combustion allow increasing power and efficiency in existing engines such as

  5. Interferometric Techniques and Data Evaluation Methods for the UTIAS 10 cm x 18 cm Hypervelocity Shock Tube

    DTIC Science & Technology

    1979-03-01

    AFOsk- -33 3 and the National Research Council of Canada. k I Abstract The UTIAS 10 cm x 18 cm Hypervelocity Shock.-Tube has) been used in recent...Ref. 2) reported on further modifications and improvements. Since then, further modifications and changes were made by various researchers who have used...discharged through a triggered gas-type spark gap and the wire to ground. Poor ignition is minimized by adequately insulating the high voltage connection

  6. Setting the Delay of the LTD Switch Firing Using Trigger Inductors

    NASA Astrophysics Data System (ADS)

    Alexeenko, V. M.; Sinebryukhov, V. A.; Kondratiev, S. S.; Volkov, S. N.; Kim, A. A.; Yakovlev, V. Yu.

    2018-01-01

    Simulation results are compared with experimental data to define the integral breakdown criterion for the spark gaps of the switches of the LTDs with oil insulation and to determine the influence of the inductance of the trigger inductor on the delay of the switch firing. The results confirm that the shape of the output square pulse produced by the oil-insulated LTDs can be corrected as required if the trigger inductors are used to trigger the cavity switches.

  7. Point Source X-Ray Lithography System for Sub-0.15 Micron Design Rules

    DTIC Science & Technology

    1998-05-22

    consist of a SAL developed stepper, an SRL developed Dense Plasma Focus , (DPF), X-Ray source, and a CXrL developed beam line. The system will be...existing machine that used spark gap switching, SRL has developed an all solid state driver and improved head electrode assembly for their dense plasma ... focus X-Ray source. Likewise, SAL has used their existing Model 4 stepper installed at CXrL as a design starting point, and has developed an advanced

  8. The formation of ozone and UV radiation from high-power pulsed electric discharges

    NASA Astrophysics Data System (ADS)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  9. Search for 1/3e and 2/3e charged quarks in the cosmic radiation at 2750-m altitude.

    NASA Technical Reports Server (NTRS)

    Cox, A. J.; Beauchamp, W. T.; Bowen, T.; Kalbach, R. M.

    1972-01-01

    A scintillation counter telescope consisting of eight liquid scintillation counters and four wide-gap spark chambers was used to search for particles with electric charge 1/3e and 2/3e in cosmic rays at 2750 m above sea level. No such particles were detected during the 1500-hr experimental run. Upper limits on the vertical fluxes are established, and estimates of the corresponding sea-level fluxes are made for comparison with previous results.

  10. Characteristics of Capacity Coupled Discharge in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Sasaki, Tadahiro; Omukai, Reina; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya; Mase, Hiroshi; Sato, Noriyoshi

    This paper describes characteristics of capacity coupled discharge in atmospheric pressure air with focusing influence of gap length of point-to-plane electrode configuration on input power into the discharge. The discharge can be quenched in short time duration by inserting a small capacitance capacitor between the electrode and the ground. We employed a needle electrode and a coaxial cable as the quenching capacitor. The discharge was successfully quenched within 25 ns in duration according to 9.4 pF in a capacitance of the quenching capacitor. The discharge was classified as two modes; a spark mode and a corona mode. At the spark mode, the power consumed in the discharge plasma was almost 10 times as large as that of a conventional dielectric barrier discharge. At the corona mode, the consumed energy was almost same value with that of the dielectric barrier discharge. A velocity of the discharge development was obtained to be 3×105 m/s by an optical measurement.

  11. Rail-type gas switch with preionization by an additional corona discharge

    NASA Astrophysics Data System (ADS)

    Belozerov, O. S.; Krastelev, E. G.

    2017-05-01

    Results of an experimental research of a rail-type gas switch with preionization by an additional negative corona discharge are presented. The most of measurements were performed for an air insulated two-electrode switch assembled of cylindrical electrodes of 22 mm diameter and 100 mm length, arranged parallel to each other, with a spark gap between them varying from 6 to 15 mm. A set of 1 to 5 needles connected to a negative cylindrical electrode and located aside of them were used for corona discharges. The needle positions, allowing an effecient stabilization of the pulsed breakdown voltage and preventing the a transition of the corona discharge in a spark form, were found. It was shown that the gas preionization by the UV-radiation of the parallel corona discharge provides a stable operation of the switch with low variations of the pulsed breakdown voltage, not exceeding 1% for a given voltage rise-time tested within the range from 40 ns to 5 µs.

  12. Enter the iPad (or Not?)

    ERIC Educational Resources Information Center

    Waters, John K.

    2010-01-01

    Few computing devices have sparked the burning gizmo lust ignited by the iPad. Apple's latest entry into the tablet PC market didn't generate much heat when it was first unveiled in January, but by April 3, the day of the official release, feverish customers were mobbing Apple stores. The company claims to have sold 300,000 iPads by midnight on…

  13. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  14. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  15. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  16. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight.

    PubMed

    Lynch, Michael; Mandadzhiev, Boris; Wissa, Aimy

    2018-03-20

    Birds are highly capable and maneuverable fliers, traits not currently shared with current small unmanned aerial vehicles. They are able to achieve these flight capabilities by adapting the shape of their wings during flight in a variety of complex manners. One feature of bird wings, the primary feathers, separate to form wingtip gaps at the distal end of the wing. This paper presents bio-inspired wingtip devices with varying wingtip gap sizes, defined as the chordwise distance between wingtip devices, for operation in low Reynolds number conditions of Re  =  100 000, where many bird species operate. Lift and drag data was measured for planar and nonplanar wingtip devices with the total wingtip gap size ranging from 0% to 40% of the wing's mean chord. For a planar wing with a gap size of 20%, the mean coefficient of lift in the pre-stall region is increased by 7.25%, and the maximum coefficient of lift is increased by 5.6% compared to a configuration with no gaps. The nonplanar wingtip device was shown to reduce the induced drag. The effect of wingtip gap sizes is shown to be independent of the planarity/nonplanarity of the wingtip device, thereby allowing designers to decouple the wingtip parameters to tune the desired lift and drag produced.

  17. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1989-01-01

    A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

  18. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.

  19. Droplet combustion at reduced gravity

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Williams, F. A.

    1988-01-01

    The current work involves theoretical analyses of the effects identified, experiments in the NASA Lewis drop towers performed in the middeck areas of the Space Shuttle. In addition, there is laboratory work associated with the design of the flight apparatus. Calculations have shown that some of the test-matrix data can be obtained in drop towers, and some are achievable only in the space experiments. The apparatus consists of a droplet dispensing device (syringes), a droplet positioning device (opposing, retractable, hollow needles), a droplet ignition device (two matched pairs of retractable spark electrodes), gas and liquid handling systems, a data acquisition system (mainly giving motion-picture records of the combustion in two orthogonal views, one with backlighting for droplet resolution), and associated electronics.

  20. Diffuse dispersive delay and the time convolution/attenuation of transients

    NASA Technical Reports Server (NTRS)

    Bittner, Burt J.

    1991-01-01

    Test data and analytic evaluations are presented to show that relatively poor 100 KHz shielding of 12 Db can effectively provide an electromagnetic pulse transient reduction of 100 Db. More importantly, several techniques are shown for lightning surge attenuation as an alternative to crowbar, spark gap, or power zener type clipping which simply reflects the surge. A time delay test method is shown which allows CW testing, along with a convolution program to define transient shielding effectivity where the Fourier phase characteristics of the transient are known or can be broadly estimated.

  1. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  2. A Study of Parameters of the Counterpropagating Leader and its Influence on the Lightning Protection of Objects Using Large-Scale Laboratory Modeling

    NASA Astrophysics Data System (ADS)

    Syssoev, V. S.; Kostinskiy, A. Yu.; Makalskiy, L. M.; Rakov, A. V.; Andreev, M. G.; Bulatov, M. U.; Sukharevsky, D. I.; Naumova, M. U.

    2014-04-01

    In this work, the results of experiments on initiating the upward and descending leaders during the development of a long spark when studying lightning protection of objects with the help of large-scale models are shown. The influence of the counterpropagating leaders on the process of the lightning strike of ground-based and insulated objects is discussed. In the first case, the upward negative leader is initiated by the positive downward leader, which propagates from the high-voltage electrode of the "rod-rod"-type Marx generator (the rod is located on the plane and is 3-m high) in the gap with a length of 9-12 m. The positive-voltage pulse with a duration of 7500 μs had an amplitude of up to 3 MV. In the second case, initiation of the positive upward leader was performed in the electric field created by a cloud of negatively charged aerosol, which simulates the charged thunderstorm cell. In this case, all the phases characteristic of the ascending lightnings initiated by the tall ground-based objects and the triggered lightnings during the experiments with an actual thunderstorm cloud were observed in the forming spark discharge with a length of 1.5-2.0 m. The main parameters of the counterpropagating leader, which is initiated by the objects during the large-scale model experiments with a long spark, are shown.

  3. Development and simulation study of a new inverse-pinch high Coulomb transfer switch

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    1989-01-01

    The inverse-pinch plasma switch was studied using a computer simulation code. The code was based on a 2-D, 2-temperature magnetohydrodynamic (MHD) model. The application of this code was limited to the disk-type inverse-pinch plasma switch. The results of the computer analysis appear to be in agreement with the experimental results when the same parameters are used. An inverse-pinch plasma switch for closing has been designed and tested for high-power switching requirements. An azimuthally uniform initiation of breakdown is a key factor in achieving an inverse-pinch current path in the switch. Thus, various types of triggers, such as trigger pins, wire-brush, ring trigger, and hypocycloidal-pinch (HCP) devices have been tested for uniform breakdown. Recently, triggering was achieved by injection of a plasma-ring (plasma puff) that is produced separately with hypocycloidal-pinch electrodes placed under the cathode of the main gap. The current paths at switch closing, initiated by the injection of a plasma-ring from the HCP trigger are azimuthally uniform, and the local current density is significantly reduced, so that damage to the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes is four orders of magnitude less than that of a spark-gap switch for the same switching power. Indeed, a few thousand shots with peak current exceeding a mega-ampere and with hold-off voltage up to 20 kV have been conducted without showing measurable damage to the electrodes and insulators.

  4. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  5. 40 CFR 63.964 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Defects include, but are not limited to, visible cracks, holes, or gaps in the closure devices; broken..., visible cracks, holes, or gaps in the closure devices; broken, cracked, or otherwise damaged seals or..., visible cracks, holes, gaps, or other open spaces in the sewer line joints, seals, or other emission...

  6. 40 CFR 63.964 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Defects include, but are not limited to, visible cracks, holes, or gaps in the closure devices; broken..., visible cracks, holes, or gaps in the closure devices; broken, cracked, or otherwise damaged seals or..., visible cracks, holes, gaps, or other open spaces in the sewer line joints, seals, or other emission...

  7. The current skills gaps in analytical sciences are failing industry: debate at the 21st International Reid Bioanalytical Forum.

    PubMed

    Spooner, Neil; Sangster, Timothy

    2016-07-01

    21st International Reid Bioanalytical Forum, University of Surrey, Guildford, UK, 7-10 September 2015 The 21st International Reid Bioanalytical Forum held between 7 and 10 September 2015, brought together over 100 scientists from around the world, representing industry, academia and vendors, for 4 days of engaging science at the University of Surrey in Guildford, UK. The scientific program consisted of 43 podium and 23 poster presentations from key opinion leaders and those just setting out on their scientific career. The latter being the focus of the meeting. One of the highlights of the forum was the debate. An expert panel helped spark off an active discussion among a passionate audience on the topic of 'The Current Skills Gaps in Analytical Sciences are Failing Industry.'

  8. Prospects of lean ignition with the quarter wave coaxial cavity igniter

    NASA Astrophysics Data System (ADS)

    Pertl, Franz Andreas Johannes

    New ignition sources are needed to operate the next generation of lean high efficiency internal combustion engines. A significant environmental and economic benefit could be obtained from these lean engines. Toward this goal, the quarter wave coaxial cavity resonator, QWCCR, igniter was examined. A detailed theoretical analysis of the resonator was performed relating geometric and material parameters to performance characteristics, such as resonator quality factor and developed tip electric field. The analysis provided for the construction and evaluation of a resonator for ignition testing. The evaluation consisted of ignition tests with liquefied-petroleum-gas (LPG) air mixtures of varying composition. The combustion of these mixtures was contained in a closed steel vessel with a precombustion pressure near one atmosphere. The resonator igniter was fired in this vessel with a nominal 150 W microwave pulse of varying duration, to determine ignition energy limits for various mixtures. The mixture compositions were determined by partial pressure measurement and the ideal gas law. Successful ignition was determined through observation of the combustion through a view port. The pulse and reflected microwave power were captured in real time with a high-speed digital storage oscilloscope. Ignition energies and power levels were calculated from these measurements. As a comparison, these ignition experiments were also carried out with a standard non-resistive spark plug, where gap voltage and current were captured for energy calculations. The results show that easily ignitable mixtures around stoichiometric and slightly rich compositions are ignitable with the QWCCR using the similar kinds of energies as the conventional spark plug in the low milli-Joule range. Energies for very lean mixtures could not be determined reliably for the QWCCR for this prototype test, but could be lower than that for a conventional spark. Given the capability of high power, high energy delivery, and opportunity for optimization, the QWCCR has the potential to deliver more energy per unit time than a conventional spark plug and thus should be considered be as a lean ignition source.

  9. Development of an Eco-Friendly Electrical Discharge Machine (E-EDM) Using TRIZ Approach

    NASA Astrophysics Data System (ADS)

    Sreebalaji, V. S.; Saravanan, R.

    Electrical Discharge Machine (EDM) is one of the non-traditional machining processes. EDM process is based on thermoelectric energy between the work and an electrode. A pulse discharge occurs in a small gap between the work piece and the electrode and removes the unwanted material from the parent metal through melting and vaporization. The electrode and the work piece must have an electrical conductivity in order to generate the spark. Dielectric fluid acts as a spark conductor, concentrating the energy to a very narrow region. There are various types of products can be produced and finished using EDM such as Moulds, Dies, Parts of Aerodynamics, Automotives and Surgical components. This research work reveals how an Eco friendly EDM (E-EDM) can be modeled to replace die electric fluid and introducing ozonised oxygen in to EDM to eliminate harmful effects generated while machining by using dielectric, to make pollution free machining environment through a new design of EEDM using TRIZ (a Russian acronym for Theory of Inventive Problem Solving) approach, since Eco friendly design is the need of the hour.

  10. Numerical simulation of electric field enhancement at the contact of positive and negative streamers in relation to the problem of runaway electron generation in lightning and in long laboratory sparks

    NASA Astrophysics Data System (ADS)

    Babich, Leonid; Bochkov, Evgenii

    2017-11-01

    The hypothetical mechanism of electric field amplification at contact of positive and negative streamers in a streamer corona up to magnitudes required for the generation of runaway electrons and secondary Bremsstrahlung in the x-ray range, observed in long spark discharges in the open atmosphere, is analyzed. The development of two streamers, moving towards each other in interelectrode gaps of the centimetre range, is numerically simulated at applied voltages from 73 to 250 kV. It is shown that the size of the domain with strong electric field, with intensity sufficient for the thermal electron runaway, is of 1-2 mm. The mean field intensity in this domain increases up to magnitudes of  ≈250-280 kV cm-1. The maximum energy, to which electrons are capable of energizing in such field, is in the range of 20-70 keV. However, the electron energy is limited by an extremely small life-time of the strong field domain (less than 20 ps).

  11. Toward the Limits of Uniformity of Mixed Metallicity SWCNT TFT Arrays with Spark-Synthesized and Surface-Density-Controlled Nanotube Networks.

    PubMed

    Kaskela, Antti; Mustonen, Kimmo; Laiho, Patrik; Ohno, Yutaka; Kauppinen, Esko I

    2015-12-30

    We report the fabrication of thin film transistors (TFTs) from networks of nonbundled single-walled carbon nanotubes with controlled surface densities. Individual nanotubes were synthesized by using a spark generator-based floating catalyst CVD process. High uniformity and the control of SWCNT surface density were realized by mixing of the SWCNT aerosol in a turbulent flow mixer and monitoring the online number concentration with a condensation particle counter at the reactor outlet in real time. The networks consist of predominantly nonbundled SWCNTs with diameters of 1.0-1.3 nm, mean length of 3.97 μm, and metallic to semiconducting tube ratio of 1:2. The ON/OFF ratio and charge carrier mobility of SWCNT TFTs were simultaneously optimized through fabrication of devices with SWCNT surface densities ranging from 0.36 to 1.8 μm(-2) and channel lengths and widths from 5 to 100 μm and from 100 to 500 μm, respectively. The density optimized TFTs exhibited excellent performance figures with charge carrier mobilities up to 100 cm(2) V(-1) s(-1) and ON/OFF current ratios exceeding 1 × 10(6), combined with high uniformity and more than 99% of devices working as theoretically expected.

  12. Laser ignition - Spark plug development and application in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.

  13. The alleged contributions of Pedro E. Paulet to liquid-propellant rocketry

    NASA Technical Reports Server (NTRS)

    Ordway, F. I., III

    1977-01-01

    The first practical working liquid propellant rocket motor was claimed by Pedro E. Paulet, a South American engineer from Peru (1895). He operated a conical motor, 10 centimeters in diameter, using nitrogen peroxide and gasoline as propellants and measuring thrust up to 90 kilograms, and apparently used spark ignition and intermittent propellant injection. The test device which he used contained elements of later test stands, such as a spring thrust-measuring device. However, he did not publish his work until twenty-five years later. Evidence is examined concerning this only known claim to liquid propellant rocket engine experiments in the nineteenth century.

  14. Hydrophilic MoSe2 Nanosheets as Effective Photothermal Therapy Agents and Their Application in Smart Devices.

    PubMed

    Lei, Zhouyue; Zhu, Wencheng; Xu, Shengjie; Ding, Jian; Wan, Jiaxun; Wu, Peiyi

    2016-08-17

    A facile poly(vinylpyrrolidone) (PVP)-assisted exfoliation method is utilized to simultaneously exfoliate and noncovalently modify MoSe2 nanosheets. The resultant hydrophilic nanosheets are shown to be promising candidates for biocompatible photothermal therapy (PTT) agents, and they could also be encapsulated into a hydrogel matrix for some intelligent devices. This work not only provides novel insights into exfoliation and modification of transition metal dichalcogenide (TMD) nanosheets but also might spark more research into engineering multifunctional TMD-related nanocomposites, which is in favor of further exploiting the attractive properties of these emerging layered two-dimensional (2D) nanomaterials.

  15. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOEpatents

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  16. Fabrication and Characterization of Surrogate Fuel Particles Using the Spark Erosion Method

    NASA Astrophysics Data System (ADS)

    Metzger, Kathryn E.

    In light of the disaster at the Fukushima Daiichi Nuclear Plant, the Department of Energy's Advanced Fuels Program has shifted its interest from enhanced performance fuels to enhanced accident tolerance fuels. Dispersion fuels possess higher thermal conductivities than traditional light water reactor fuel and as a result, offer improved safety margins. The benefits of a dispersion fuel are due to the presence of the secondary non-fissile phase (matrix), which serves as a barrier to fission products and improves the overall thermal performance of the fuel. However, the presence of a matrix material reduces the fuel volume, which lowers the fissile content of dispersion. This issue can be remedied through the development of higher density fuel phases or through an optimization of fuel particle size and volume loading. The latter requirement necessitates the development of fabrication methods to produce small, micron-order fuel particles. This research examines the capabilities of the spark erosion process to fabricate particles on the order of 10 μm. A custom-built spark erosion device by CT Electromechanica was used to produce stainless steel surrogate fuel particles in a deionized water dielectric. Three arc intensities were evaluated to determine the effect on particle size. Particles were filtered from the dielectric using a polycarbonate membrane filter and vacuum filtration system. Fabricated particles were characterized via field emission scanning electron microscopy (FESEM), laser light particle size analysis, energy-dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and gas pycnometry. FESEM images reveal that the spark erosion process produces highly spherical particles on the order of 10 microns. These findings are substantiated by the results of particle size analysis. Additionally, EDS and XRD results indicate the presence of oxide phases, which suggests the dielectric reacted with the molten debris during particle formation.

  17. Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan; Liao, Tianjun; Zhang, Yanchao

    2016-01-28

    A new model of the photon-enhanced thermionic emission (PETE) device with a nanoscale vacuum gap is established by introducing the quantum tunneling effect and the image force correction. Analytic expressions for both the thermionic emission and tunneling currents are derived. The electron concentration and the temperature of the cathode are determined by the particle conservation and energy balance equations. The effects of the operating voltage on the maximum potential barrier, cathode temperature, electron concentration and equilibrium electron concentration of the conduction band, and efficiency of the PETE device are discussed in detail for different given values of the vacuum gapmore » length. The influence of the band gap of the cathode and flux concentration on the efficiency is further analyzed. The maximum efficiency of the PETE and the corresponding optimum values of the band gap and the operating voltage are determined. The results obtained here show that the efficiency of the PETE device can be significantly improved by employing a nanoscale vacuum gap.« less

  18. Design, Manufacturing and Characterization of Functionally Graded Flextensional Piezoelectric Actuators

    NASA Astrophysics Data System (ADS)

    Amigo, R. C. R.; Vatanabe, S. L.; Silva, E. C. N.

    2013-03-01

    Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.

  19. Light-matter Interactions in Semiconductors and Metals: From Nitride Optoelectronics to Quantum Plasmonics

    NASA Astrophysics Data System (ADS)

    Narang, Prineha

    This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals. The first part of the thesis presents the discovery and development of Zn-IV nitride materials. The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1--xN2 series as a replacement for III-nitrides is discussed here. The second half of the thesis shows ab-initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown. Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.

  20. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    NASA Technical Reports Server (NTRS)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  1. A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.

    NASA Astrophysics Data System (ADS)

    Ho, Chi Ming

    1995-01-01

    Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth rates of the appropriate mixtures, the positive and negative effects of preferential diffusion and flame stretch on the developing flame are clearly demonstrated.

  2. A parametric study of perforated muzzle brakes

    NASA Astrophysics Data System (ADS)

    Dillon, Robert E., Jr.; Nagamatsu, H. T.

    1993-07-01

    A firing test was conducted to study the parameters influencing the recoil efficiency and the blast characteristics of perforated muzzle brakes. Several scaled (20 mm) devices were tested as candidates for the 105 mm Armored Gun System (AGS). Recoil impulse, blast overpressures, muzzle velocity, sequential spark shadowgraphs, and photographs of the muzzle flash were obtained. A total of nine different perforated brakes were tested as well as a scaled M 198 double muzzle brake.

  3. Status Report for the Hypervelocity Free-Flight Aerodynamic Facility

    NASA Technical Reports Server (NTRS)

    Cornelison, Charles J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The Hypervelocity Free-Flight Aerodynamic Facility, located at Ames Research Center, is NASA's only aeroballistic facility. During 1997, its model imaging and time history recording systems were the focus of a major refurbishment effort. Specifically the model detection, spark gap (light source); Kerr cell (high speed shuttering); and interval timer sub-systems were inspected, repaired, modified or replaced as required. These refurbishment efforts have fully restored the HFFAF's capabilities to a much better condition, comparable to what it was 15 years ago. Details of this refurbishment effort along with a brief discussion of future upgrade plans are presented.

  4. Research on plasma-puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Venable, Demetrius D.; Han, Kwang S.

    1993-01-01

    The plasma-puff triggering mechanism based on hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. Research is presented and resulting conference papers are attached. These papers include 'Characteristics of Plasma-Puff Trigger for an Inverse-Pinch Plasma Switch'; 'Ultra-High-Power Plasma Switch INPUTS for Pulse Power Systems'; 'Characteristics of Switching Plasma in an Inverse-Pinch Switch'; 'Comparative Study of INPIStron and Spark Gap'; and 'INPIStron Switched Pulsed Power for Dense Plasma Pinches.'

  5. Studies of the Plasma Triggering Mechanism of Inverse Pinch Switch

    DTIC Science & Technology

    1993-11-10

    plasma - focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma - focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron with a low impedance Z = 9 ohms can transfer a high voltage pulse with a superior pulse-shape fidelity over that with

  6. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  7. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  8. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets.

    PubMed

    Guzman, Rodrigo; Fernandez-García, Elisa; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Lopez-Lacomba, Jose Luis; Lopez-Esteban, Sonia

    2016-01-01

    Alumina-titanium materials (cermets) of enhanced mechanical properties have been lately developed. In this work, physical properties such as electrical conductivity and the crystalline phases in the bulk material are evaluated. As these new cermets manufactured by spark plasma sintering may have potential application for hard tissue replacements, their biocompatibility needs to be evaluated. Thus, this research aims to study the cytocompatibility of a novel alumina-titanium (25 vol. % Ti) cermet compared to its pure counterpart, the spark plasma sintered alumina. The influence of the particular surface properties (chemical composition, roughness and wettability) on the pre-osteoblastic cell response is also analyzed. The material electrical resistance revealed that this cermet may be machined to any shape by electroerosion. The investigated specimens had a slightly undulated topography, with a roughness pattern that had similar morphology in all orientations (isotropic roughness) and a sub-micrometric average roughness. Differences in skewness that implied valley-like structures in the cermet and predominance of peaks in alumina were found. The cermet presented a higher surface hydrophilicity than alumina. Any cytotoxicity risk associated with the new materials or with the innovative manufacturing methodology was rejected. Proliferation and early-differentiation stages of osteoblasts were statistically improved on the composite. Thus, our results suggest that this new multifunctional cermet could improve current alumina-based biomedical devices for applications such as hip joint replacements. © The Author(s) 2015.

  9. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  10. Dipole-allowed direct band gap silicon superlattices

    PubMed Central

    Oh, Young Jun; Lee, In-Ho; Kim, Sunghyun; Lee, Jooyoung; Chang, Kee Joo

    2015-01-01

    Silicon is the most popular material used in electronic devices. However, its poor optical properties owing to its indirect band gap nature limit its usage in optoelectronic devices. Here we present the discovery of super-stable pure-silicon superlattice structures that can serve as promising materials for solar cell applications and can lead to the realization of pure Si-based optoelectronic devices. The structures are almost identical to that of bulk Si except that defective layers are intercalated in the diamond lattice. The superlattices exhibit dipole-allowed direct band gaps as well as indirect band gaps, providing ideal conditions for the investigation of a direct-to-indirect band gap transition. The fact that almost all structural portions of the superlattices originate from bulk Si warrants their stability and good lattice matching with bulk Si. Through first-principles molecular dynamics simulations, we confirmed their thermal stability and propose a possible method to synthesize the defective layer through wafer bonding. PMID:26656482

  11. Switch device having a non-linear transmission line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo-Decanini, Juan M.

    Switching devices are provided. The switching devices include an input electrode, having a main electrode and a trigger electrode, and an output electrode. The main electrode and the trigger electrode are separated from the output electrode by a main gap and a trigger gap, respectively. During operation, the trigger electrode compresses and amplifies a trigger voltage signal causing the trigger electrode to emit a pulse of energy. This pulse of energy form plasma near the trigger electrode, either by arcing across the trigger gap, or by arcing from the trigger electrode to the main electrode. This plasma decreases the breakdownmore » voltage of the main gap. Simultaneously, or near simultaneously, a main voltage signal propagates through the main electrode. The main voltage signal emits a main pulse of energy that arcs across the main gap while the plasma formed by the trigger pulse is still present.« less

  12. Autogenerator of beams of charged particles

    DOEpatents

    Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  13. Autogenerator of beams of charged particles

    DOEpatents

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  14. Computer-mediated communication and the Gallaudet University community: a preliminary report.

    PubMed

    Hogg, Nanette M; Lomicky, Carol S; Weiner, Stephen F

    2008-01-01

    The study examined the use of computer-mediated communication (CMC) among individuals involved in a conflict sparked by the appointment of an administrator as president-designate of Gallaudet University in 2006. CMC was defined as forms of communication used for transmitting (sharing) information through networks with digital devices. There were 662 survey respondents. Respondents reported overwhelmingly (98%) that they used CMC to communicate. Students and alumni reported CMC use in larger proportions than any other group. The favorite devices among all respondents were Sidekicks, stationary computers, and laptops. Half of all respondents also reported using some form of video device. Nearly all reported using e-mail; respondents also identified Web surfing, text messaging, and blogging as popular CMC activities. The authors plan another article reporting on computer and electronic technology use as a mechanism connecting collective identity to social movements.

  15. Thermal Diagrams of Thermo-Electrical Devices (Selected Chapters)

    DTIC Science & Technology

    1974-10-09

    for example silicides ) the electric-spark treatment is a long process; thus, this method is unsuitable for obtaining a large number of holes...converters for marine use were developed with useful electric power of 500- 2000 W. Sodium -potassium eutectic was used both for supplying the heat from...oxidizing mdiu•r. In view of this fact it is advisable at present to examine onlýy the silicides of certain metals that are stable under the ettnr, con

  16. Metalorganic Vapor Phase Epitaxial Growth of (211)B CdTe on Nanopatterned (211)Si

    DTIC Science & Technology

    2012-05-15

    Palosz4, , Sudhir Trivedi4, , Fred Semendy5, , Priyalal Wijewarnasuriya5, , Ishwara Bhat2., 1 Department of Engineering Brimrose Corporation of America 19...12180 Troy, USA 3 Transfer Devices Inc., 95054 Santa Clara, USA 4 Brimrose Corporation of America, 21152 Sparks, USA 5 U.S. Army Research...work was partially supported by US army STTR contract W911NF-08-C-0071 through Brimrose Corporation of America. References [1] J. M. Peterson

  17. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  18. The results of the study of compact gas-puff and vacuum spark plasma sources of SXR with Glass-Capillary Converters (GCC)

    NASA Astrophysics Data System (ADS)

    Shlyaptseva, Alla; Kantsyrev, Victor; Inozemtsev, Andrei; Petrukhin, Oleg

    1994-06-01

    The results are presented dealing with the working out and study of the SXR compact plasma source. The experimental set up included a compact new 'gas-puff' source with parameters being better than the traditional ones and a new type of SXR source - low-inductance vacuum spark (LIVS) with glass-capillary converters (GCC) of SXR. The compact plasma 'gas-puff' source had the high value of the z approx. (1-2) 10(exp -2) (conversion coefficient of initial energy supply into SXR); a small effective size of emission region and greater resource. The characteristics of LIVS with GCC were studied. GCC consisting of about several hundreds of glass capillaries allowed us to focus SXR, to change the cross section of SXR beams to plasma sources, and to change SXR spectrum. The possibility was shown of using of GCC in plasma diagnostics of powerful plasma devices: for X-ray microscopy and to study the influence of SXR on the solid state surface.

  19. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. Themore » facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.« less

  20. Mechanical properties of thermoelectric n-type magnesium silicide synthesized employing in situ spark plasma reaction sintering

    NASA Astrophysics Data System (ADS)

    Muthiah, Saravanan; Singh, R. C.; Pathak, B. D.; Dhar, Ajay

    2017-07-01

    Thermoelectric devices employing magnesium silicide (Mg2Si) offer an inexpensive and non-toxic solution for green energy generation compared to other existing conventional thermoelectric materials in the mid-temperature range. However, apart from the thermoelectric performance, their mechanical properties are equally important in order to avoid the catastrophic failure of their modules during actual operation. In the present study, we report the synthesis of Mg2Si co-doped with Bi and Sb employing in situ spark plasma reaction sintering and investigate its broad range of mechanical properties. The mechanical properties of the sintered co-doped Mg2Si suggest a significantly enhanced value of hardness ~5.4  ±  0.2 GPa and an elastic modulus ~142.5  ±  6 GPa with a fracture toughness of ~1.71  ±  0.1 MPa  √m. The thermal shock resistance, which is one of the most vital parameter for designing thermoelectric devices, was found to be ~300 W m-1, which is higher than most of the other existing state-of-the-art mid-temperature thermoelectric materials. The friction and wear characteristics of sintered co-doped Mg2Si have been reported for the first time, in order to realize the sustainability of their thermoelectric modules under actual hostile environmental conditions.

  1. Gender gap in parents' financing strategy for hospitalization of their children: evidence from India.

    PubMed

    Asfaw, Abay; Lamanna, Francesca; Klasen, Stephan

    2010-03-01

    The 'missing women' dilemma in India has sparked great interest in investigating gender discrimination in the provision of health care in the country. No studies, however, have directly examined discrimination in health-care financing strategies in the case of severe illness of sons versus daughters. In this paper, we hypothesize that households who face tight budget constraints are more likely to spend their meager resources on hospitalization of boys rather than girls. We use the 60th round of the Indian National Sample Survey (2004) and a multinomial logit model to test this hypothesis and to throw some light on this important but overlooked issue. The results reveal that boys are much more likely to be hospitalized than girls. When it comes to financing, the gap in the usage of household income and savings is relatively small, while the gender gap in the probability of hospitalization and usage of more onerous financing strategies is very high. Ceteris paribus, the probability of boys to be hospitalized by financing from borrowing, sale of assets, help from friends, etc. is much higher than that of girls. Moreover, in line with our theoretical framework, the results indicate that the gender gap intensifies as we move from the richest to poorest households. (c) 2009 John Wiley & Sons, Ltd.

  2. Spark-Timing Control Based on Correlation of Maximum-Economy Spark Timing, Flame-front Travel, and Cylinder-Pressure Rise

    NASA Technical Reports Server (NTRS)

    Cook, Harvey A; Heinicke, Orville H; Haynie, William H

    1947-01-01

    An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.

  3. Lifecycle of laser-produced air sparks

    DOE PAGES

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    2015-06-03

    Here, we investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlifemore » images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N 2 +. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less

  4. Lifecycle of laser-produced air sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S., E-mail: hari@pnnl.gov; Brumfield, B. E.; Phillips, M. C.

    2015-06-15

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images.more » Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less

  5. Pseudo-spark switch (PSS) characteristics under different operation conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamad, B. H., E-mail: dr.bassmahussain@gmail.com; Ahmad, A. K., E-mail: ahmad.kamal@sc.nahrainuniv.edu.iq; Lateef, K. H., E-mail: kamalhlatif@yahoo.com

    2016-08-15

    The present paper concentrates on the characteristics of the pseudospark switch (PSS) designed in a previous work. The special characteristics of PSS make it a replacement for other high voltage switches such as thyratrons and ordinary high-pressure spark gaps. PSS is characterized by short rise time and small jitter time. The pseudo park chamber consists of two hollow cylindrical electrodes made of a stainless steel material (type 306L) separated by an insulator. The insulator used in our design is a glazed ceramic 70 mm in diameter and 3.5 mm in thickness. A PSS with an anode voltage of 29.2 kV, and a currentmore » of 3.6 kA and 11 ns rise time was achieved and used successfully at a repetition rate of about 2.2 kHz. A simple trigger circuit designed, built, and used effectively reaching more than 1.56 kV trigger pulse which is sufficient to ignite the argon gas inside the cathode to cause a breakdown. A non-inductive dummy load is designed to be a new technique to find the accurate value of the PSS inductance. A jitter time of ±10 ns pulses is observed to occur in a reliable manner for more than 6 h of continuous operation. In this research, the important parameters of this switch like rise time, peak current, and anode voltage were studied at various values of charging capacitance. The lifetime of this system is depending on the kind of the electrode material and on the type of insulation material in the main gap of the pseudospark switch.« less

  6. Development of a pneumatic tensioning device for gap measurement during total knee arthroplasty.

    PubMed

    Kwak, Dai-Soon; Kong, Chae-Gwan; Han, Seung-Ho; Kim, Dong-Hyun; In, Yong

    2012-09-01

    Despite the importance of soft tissue balancing during total knee arthroplasty (TKA), all estimating techniques are dependent on a surgeon's manual distraction force or subjective feeling based on experience. We developed a new device for dynamic gap balancing, which can offer constant load to the gap between the femur and tibia, using pneumatic pressure during range of motion. To determine the amount of distraction force for the new device, 3 experienced surgeons' manual distraction force was measured using a conventional spreader. A new device called the consistent load pneumatic tensor was developed on the basis of the biomechanical tests. Reliability testing for the new device was performed using 5 cadaveric knees by the same surgeons. Intraclass correlation coefficients (ICCs) were calculated. The distraction force applied to the new pneumatic tensioning device was determined to be 150 N. The interobserver reliability was very good for the newly tested spreader device with ICCs between 0.828 and 0.881. The new pneumatic tensioning device can enable us to properly evaluate the soft tissue balance throughout the range of motion during TKA with acceptable reproducibility.

  7. Feasibility study of a CO2-laser based lightning-protection system realization

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.

    2005-01-01

    The feasibility of producing a continuous laser spark (CLS) with low resistance by focusing radiation from a CO2 laser with a conic mirror is demonstrated. The laser energy input per unit length required for this is experimentally found to be equal to ≈200 J/m. The possibility to efficiently control the trajectory of an electric discharge by means of a CLS is demonstrated. The effect of polarity in the electric breakdown of the air gaps between the CLS plasma channel and a metal rod is discovered and interpreted. The transverse structure of CLS conductivity is investigated. The possibility of producing a long laser spark (LLS) with much higher resistance by focusing radiation from a CO2 laser with a spherical mirror used to protect objects against lightning is studied. The conditions under which the electric discharges from clouds can be guided reproducibly along a LLS are determined. Experiments reveal that the interaction between the LLS and the discharge from an electrode (lightning rod) leads to a decrease in the lifetime of the streamer corona burst, as well as to an increase in the current of the developing leader and its velocity compared to the case without the LLS.

  8. P-type polymer-based Ag2S atomic switch for “tug of war” operation

    NASA Astrophysics Data System (ADS)

    Lutz, Carolin; Hasegawa, Tsuyoshi; Tsuchiya, Takashi; Adelsberger, Christoph; Hayakawa, Ryoma; Chikyow, Toyohiro

    2017-06-01

    The Ag2S gap-type atomic switch based “tug of war” device is a promising element for building a new type of CMOS free neuromorphic computer-hardware. Since Ag+ cations are reduced during operation of the device, it was thought that the gap-material should be a n-type polymer. In this study, we revealed that the polymer bithiophene-oligoethyleneoxide (BTOE) doped poly(ethylene oxide) (PEO), which was used as gap-material in the first demonstration of the “tug of war”, is a p-type polymer. For this we used impedance spectroscopy and transistor measurements. We elaborate on how the electrochemical processes in the “tug of war” devices could be explained in the case of p-type conductive gap-materials.

  9. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  10. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  11. Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes

    PubMed Central

    Bridge, John H B; Ershler, Philip R; Cannell, Mark B

    1999-01-01

    Calcium sparks were examined in enzymatically dissociated mouse cardiac ventricular cells using the calcium indicator fluo-3 and confocal microscopy. The properties of the mouse cardiac calcium spark are generally similar to those reported for other species.Examination of the temporal relationship between the action potential and the time course of calcium spark production showed that calcium sparks are more likely to occur during the initial repolarization phase of the action potential. The latency of their occurrence varied by less than 1·4 ms (s.d.) and this low variability may be explained by the interaction of the gating of L-type calcium channels with the changes in driving force for calcium entry during the action potential.When fixed sites within the cell are examined, calcium sparks have relatively constant amplitude but the amplitude of the sparks was variable among sites. The low variability of the amplitude of the calcium sparks suggests that more than one sarcoplasmic reticulum (SR) release channel must be involved in their genesis. Noise analysis (with the assumption of independent gating) suggests that > 18 SR calcium release channels may be involved in the generation of the calcium spark. At a fixed site, the response is close to ‘all-or-none’ behaviour which suggests that calcium sparks are indeed elementary events underlying cardiac excitation-contraction coupling.A method for selecting spark sites for signal averaging is presented which allows the time course of the spark to be examined with high temporal and spatial resolution. Using this method we show the development of the calcium spark at high signal-to-noise levels. PMID:10381593

  12. Fiber coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  13. Laterally configured resistive switching device based on transition-metal nano-gap electrode on Gd oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakita, Masatoshi; Okabe, Kyota; Kimura, Takashi

    2016-01-11

    We have developed a fabrication process for a laterally configured resistive switching device based on a Gd oxide. A nano-gap electrode connected by a Gd oxide with the ideal interfaces has been created by adapting the electro-migration method in a metal/GdO{sub x} bilayer system. Bipolar set and reset operations have been clearly observed in the Pt/GdO{sub x} system similarly in the vertical device based on GdO{sub x}. Interestingly, we were able to observe a clear bipolar switching also in a ferromagnetic CoFeB nano-gap electrode with better stability compared to the Pt/GdO{sub x} device. The superior performance of the CoFeB/GdO{sub x}more » device implies the importance of the spin on the resistive switching.« less

  14. Overview of magnetic suspension research at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1992-01-01

    An overview of research in small- and large-gap magnetic suspension systems at LaRC is presented. The overview is limited to systems which have been built as laboratory models or engineering models. Small-gap systems applications include the Annular Momentum Control Device (AMCD), which is a momentum storage device for the stabilization and control of spacecraft, and the Annular Suspension and Pointing System (ASPS), which is a general purpose pointing mount designed to provide orientation, mechanical isolation, and fine pointing space experiments. These devices are described and control and linearization approaches for the magnetic suspension systems for these devices are discussed. Large-gap systems applications at LaRC have been almost exclusively wind tunnel magnetic suspension systems. A brief description of these efforts is also presented.

  15. Cardiopulmonary monitoring in Thai ICUs (ICU-rESOURCE I Study).

    PubMed

    Chittawatanarat, Kaweesak; Wattanathum, Anan; Chaiwat, Onuma

    2014-01-01

    Cardiopulmonary monitoring (CPM) is rapidly progressing but data regarding CPM in Thai ICUs was unavailable. The objective of this study was to describe the situation, and gaps of CPM in Thai ICUs. Data were retrieved from the ICU-RESOURCE I study database survey CPM was divided into two aspects of device and measurement methods. These were categorized by device availability grading (AG), device availability per bed (DPB) and numeric frequency grading scale (FGS). Device availability was compared between academic and non-academic ICUs. Gap analysis of DPB and FGS was performed. Statistical significant difference was defined as p-value < 0.05. One hundred and fifty-five ICUs across Thailand participated in this study. Academic ICUs had significantly more devices available in new equipment with p < 0.05 (Vigilio, PiCCO, NICOM, esophageal pressure monitoring, transcutaneous PO2, electrical impedance tomography of lung) as well as measurement methods (stroke volume variation [SVV], pulse pressure variation [PPC], central venous oxygen saturation [ScvO2], lung mechanics). Most of new and higher technological devices had low density and few were available in all of Thai ICUs. However, in gap analysis, although these new devices and measurement techniques were available in ICUs, they were not frequently utilized. New technology devices of CPM had more availability in ACAD than in non-ACAD ICUs. Formal continuous training in new measurement methods should be established for reducing the availability and utilization gap (Thai Clinical Trial Registry: TCTR-201200005).

  16. Use of the mathematical model of the ignition system to analyze the spark discharge, including the destruction of spark plug electrodes

    NASA Astrophysics Data System (ADS)

    Różowicz, Sebastian

    2018-03-01

    The paper presents the results of analytical and experimental studies concerning the influence of different kinds of fuel additives on the quality of the spark discharge for different configurations of the ignition system. The wear of the spark plug electrode and the value of spark discharge were determined for various impurities and configurations of the air-fuel mixture.

  17. Deflagration-to-detonation transition in spiral channels

    NASA Astrophysics Data System (ADS)

    Golovastov, S. V.; Mikushkin, A. Yu.; Golub, V. V.

    2017-10-01

    The deflagration-to-detonation transition in hydrogen-air mixtures that fill spiral channels has been studied. A spiral channel has been produced in a cylindrical detonation tube with a twisted ribbon inside. The gas mixture has been ignited by means of a spark gap switch. The predetonation distance versus the twisted ribbon configuration and molar ratio between the gas mixture components has been determined. A pulling force exerted by the detonation tube after a single event of hydrogen-air mixture burnout has been found for four configurations of the twisted ribbon. Conditions under which the use of a spiral tube can be more effective (increase the pulling force) have been formulated.

  18. Welding Experiments of Aluminum Alloy by Space GHTA Welding at ISS Orbital Pressure

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Takai, Daisuke; Sugiyama, Satoshi; Terajima, Noboru; Tsukuda, Yoshiyuki; Fujisawa, Shoichiro; Imagawa, Kichiro

    As a feasible welding method in space, the authors previously proposed the space GHTA (Gas Hollow Tungsten Arc) welding process. However, space GHTA welding with a high-frequency device for arc start may cause electromagnetic noise problems for the computer equipment placed on the ISS (International Space Station). Therefore, in this report, welding experiments of space GHTA welding using aluminum alloy with a high-voltage DC device for arc start were carried out at the ISS orbital pressure, 10-5 Pa. It is clear from the experiments using a high-voltage DC device in a high-vacuum condition, that there is a shifting phenomenon in which the spark discharge shifts to either a glow discharge or an arc discharge when starting the arc. Welding projects in space need an arc discharge, so we investigated the effects of welding parameters on the arc formation ratio. As a result, space GHTA welding with a high-voltage DC device can be used for arc start when welding at the ISS orbital pressure.

  19. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap

    NASA Astrophysics Data System (ADS)

    Bernardi, Michael P.; Milovich, Daniel; Francoeur, Mathieu

    2016-09-01

    Using Rytov's fluctuational electrodynamics framework, Polder and Van Hove predicted that radiative heat transfer between planar surfaces separated by a vacuum gap smaller than the thermal wavelength exceeds the blackbody limit due to tunnelling of evanescent modes. This finding has led to the conceptualization of systems capitalizing on evanescent modes such as thermophotovoltaic converters and thermal rectifiers. Their development is, however, limited by the lack of devices enabling radiative transfer between macroscale planar surfaces separated by a nanosize vacuum gap. Here we measure radiative heat transfer for large temperature differences (~120 K) using a custom-fabricated device in which the gap separating two 5 × 5 mm2 intrinsic silicon planar surfaces is modulated from 3,500 to 150 nm. A substantial enhancement over the blackbody limit by a factor of 8.4 is reported for a 150-nm-thick gap. Our device paves the way for the establishment of novel evanescent wave-based systems.

  20. Big Data Analytics with Datalog Queries on Spark.

    PubMed

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2016-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.

  1. Big Data Analytics with Datalog Queries on Spark

    PubMed Central

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2017-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics. PMID:28626296

  2. Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass

    PubMed Central

    Hilliard, Fredrick A.; Steele, Derek S.; Laver, Derek; Yang, Zhaokang; Le Marchand, Sylvain J.; Chopra, Nagesh; Piston, David W.; Huke, Sabine; Knollmann, Björn C.

    2009-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is linked to mutations in the cardiac ryanodine receptor (RyR2) or calsequestrin. We recently found that the drug flecainide inhibits RyR2 channels and prevents CPVT in mice and humans. Here we compared the effects of flecainide and tetracaine, a known RyR2 inhibitor ineffective in CPVT myocytes, on arrhythmogenic Ca2+ waves and elementary sarcoplasmic reticulum (SR) Ca2+ release events, Ca2+ sparks. In ventricular myocytes isolated from a CPVT mouse model, flecainide significantly reduced spark amplitude and spark width, resulting in a 40% reduction in spark mass. Surprisingly, flecainide significantly increased spark frequency. As a result, flecainide had no significant effect on spark-mediated SR Ca2+ leak or SR Ca2+ content. In contrast, tetracaine decreased spark frequency and spark-mediated SR Ca2+ leak, resulting in a significantly increased SR Ca2+ content. Measurements in permeabilized rat ventricular myocytes confirmed the different effects of flecainide and tetracaine on spark frequency and Ca2+ waves. In lipid bilayers, flecainide inhibited RyR2 channels by open state block, whereas tetracaine primarily prolonged RyR2 closed times. The differential effects of flecainide and tetracaine on sparks and RyR2 gating can explain why flecainide, unlike tetracaine, does not change the balance of SR Ca2+ fluxes. We suggest that the smaller spark mass contributes to flecainide's antiarrhythmic action by reducing the probability of saltatory wave propagation between adjacent Ca2+ release units. Our results indicate that inhibition of the RyR2 open state provides a new therapeutic strategy to prevent diastolic Ca2+ waves resulting in triggered arrhythmias, such as CPVT. PMID:19835880

  3. Power measurements of spark discharge experiments.

    PubMed

    Navarro-Gonzalez, R; Romero, A; Honda, Y

    1998-04-01

    An accurate and precise knowledge of the amount of energy introduced into prebiotic discharge experiments is important to understand the relative roles of different energy sources in the synthesis of organic compounds in the primitive Earth's atmosphere and other planetary atmospheres. Two methods widely used to determine the power of spark discharges were evaluated, namely calorimetric and oscilloscopic, using a chemically inert gas. The power dissipated by the spark in argon at 500 Torr was determined to be 2.4 (+12%/-17%) J s-1 by calorimetry and 5.3 (+/- 15%) J s-1 by the oscilloscope. The difference between the two methods was attributed to (1) an incomplete conversion of the electric energy into heat, and (2) heat loss from the spark channel to the connecting cables through the electrodes. The latter contribution leads to an unwanted effect in the spark channel by lowering the spark product yields as the spark channel cools by mixing with surrounding air and by losing heat to the electrodes. Once the concentrations of the spark products have frozen at the freeze-out temperature, any additional loss of heat from the spark channel to the electrodes has no consequence in product yields. Therefore, neither methods accurately determines the net energy transferred to the system. With a lack of a quantitative knowledge of the amount of heat loss from the spark channel during the interval from ignition of the spark to when the freeze-out temperature is reached, it is recommended to derive the energy yields of the spark products from the mean value of the two methods with the uncertainty being their standard deviation. For the case of argon at 500 Torr, this would be 3.8 (+/-50%) J s-1.

  4. Eight electrode optical readout gap

    DOEpatents

    Boettcher, G.E.; Crain, R.W.

    1984-01-01

    A protective device for a plurality of electrical circuits includes a plurality of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  5. Spark ignited turbulent flame kernel growth. Annual report, January--December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santavicca, D.A.

    1994-06-01

    An experimental study of the effect of spark power on the growth rate of spark-ignited flame kernels was conducted in a turbulent flow system at 1 atm, 300 K conditions. All measurements were made with premixed, propane-air at a fuel/air equivalence ratio of 0.93, with 0%, 8% or 14% dilution. Two flow conditions were studied: a low turbulence intensity case with a mean velocity of 1.25 m/sec and a turbulence intensity of 0.33 m/sec, and a high turbulence intensity case with a mean velocity of 1.04 m/sec and a turbulence intensity of 0.88 m/sec. The growth of the spark-ignited flamemore » kernel was recorded over a time interval from 83 {mu}sec to 20 msec following the start of ignition using high speed laser shadowgraphy. In order to evaluate the effect of ignition spark power, tests were conducted with a long duration (ca 4 msec) inductive discharge ignition system with an average spark power of ca 14 watts and two short duration (ca 100 nsec) breakdown ignition systems with average spark powers of ca 6 {times} 10{sup 4} and ca 6 {times} 10{sup 5} watts. The results showed that increased spark power resulted in an increased growth rate, where the effect of short duration breakdown sparks was found to persist for times of the order of milliseconds. The effectiveness of increased spark power was found to be less at high turbulence and high dilution conditions. Increased spark power had a greater effect on the 0--5 mm burn time than on the 5--13 mm burn time, in part because of the effect of breakdown energy on the initial size of the flame kernel. And finally, when spark power was increased by shortening the spark duration while keeping the effective energy the same there was a significant increase in the misfire rate, however when the spark power was further increased by increasing the breakdown energy the misfire rate dropped to zero.« less

  6. Alternative Fuels Data Center: Partnerships Spark Biodiesel Success for

    Science.gov Websites

    Essential Baking Company Partnerships Spark Biodiesel Success for Essential Baking Company to Baking Company on Facebook Tweet about Alternative Fuels Data Center: Partnerships Spark Biodiesel Success for Essential Baking Company on Twitter Bookmark Alternative Fuels Data Center: Partnerships Spark

  7. Laboratory Measurements of X-Ray Emissions From Centimeter-Long Streamer Corona Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Millan, R. M.; McGaw, D. G.; Yu, C. T.; Putter, A. S.; LaBelle, J.; Dwyer, J.

    2017-11-01

    We provide extensive evidence that runaway electron acceleration and subsequent bremsstrahlung X-ray emission are a common feature in negative electrical discharges with voltages as low as 100 kV, indicating that all negative lightning could potentially produce runaway electrons. Centimeter long streamer corona discharges produce bursts of X-ray radiation, emitted by a source highly compact in space and time, leading to photon pileup. Median photon burst energies vary between 33 and 96 keV in 100 kV discharges. Statistical analysis of 5,000+ discharges shows that X-rays are observed in as many as 60% of the triggers, depending on the configuration. X-ray detection is more frequent when streamers are not followed by a spark, the detector is oriented perpendicular to the gap, and a thicker anode is used. In an 8-cm-long gap, X-rays are produced when runaway electrons hit the anode, and the electron acceleration is not necessarily correlated with streamer collisions.

  8. Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet

    Science.gov Websites

    Electrification New Mexico Utility Sparks Change with Fleet Electrification to someone by E -mail Share Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet Electrification on Facebook Tweet about Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet

  9. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGES

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ , microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  10. SciSpark: In-Memory Map-Reduce for Earth Science Algorithms

    NASA Astrophysics Data System (ADS)

    Ramirez, P.; Wilson, B. D.; Whitehall, K. D.; Palamuttam, R. S.; Mattmann, C. A.; Shah, S.; Goodman, A.; Burke, W.

    2016-12-01

    We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark under a NASA AIST grant (PI Mattmann). Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based Apache Hadoop by 100x in memory and by 10x on disk. SciSpark extends Spark to support Earth Science use in three ways: Efficient ingest of N-dimensional geo-located arrays (physical variables) from netCDF3/4, HDF4/5, and/or OPeNDAP URLS; Array operations for dense arrays in scala and Java using the ND4S/ND4J or Breeze libraries; Operations to "split" datasets across a Spark cluster by time or space or both. For example, a decade-long time-series of geo-variables can be split across time to enable parallel "speedups" of analysis by day, month, or season. Similarly, very high-resolution climate grids can be partitioned into spatial tiles for parallel operations across rows, columns, or blocks. In addition, using Spark's gateway into python, PySpark, one can utilize the entire ecosystem of numpy, scipy, etc. Finally, SciSpark Notebooks provide a modern eNotebook technology in which scala, python, or spark-sql codes are entered into cells in the Notebook and executed on the cluster, with results, plots, or graph visualizations displayed in "live widgets". We have exercised SciSpark by implementing three complex Use Cases: discovery and evolution of Mesoscale Convective Complexes (MCCs) in storms, yielding a graph of connected components; PDF Clustering of atmospheric state using parallel K-Means; and statistical "rollups" of geo-variables or model-to-obs. differences (i.e. mean, stddev, skewness, & kurtosis) by day, month, season, year, and multi-year. Geo-variables are ingested and split across the cluster using methods on the sciSparkContext object including netCDFVariables() for spatial decomposition and wholeNetCDFVariables() for time-series. The presentation will cover the architecture of SciSpark, the design of the scientific RDD (sRDD) data structures for N-dim. arrays, results from the three science Use Cases, example Notebooks, lessons learned from the algorithm implementations, and parallel performance metrics.

  11. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  12. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  13. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window.

    PubMed

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-15

    SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO 2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV-vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 samples fabricated by the containerless process and SPS between 852 °C-857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  14. Performance of lignin derived compounds as octane boosters

    DOE PAGES

    Tian, Miao; McCormick, Robert L.; Ratcliff, Matthew A.; ...

    2016-11-01

    The performance of spark ignition engines is highly dependent on fuel anti-knock quality, which in turn is governed by autoignition chemistry. In this study, we explore this chemistry for various aromatic oxygenates (i.e., anisole, 4-methyl anisole, 4-propyl anisole, guaiacol, 4-methyl guaiacol, 4-ethyl guaiacol) that can be produced from lignin, a low value residual biomass stream that is generated in paper pulping and cellulosic ethanol plants. All compounds share the same benzene ring, but have distinct oxygen functionalities and degrees of alkylation. The objective of this study is to ascertain what the impact is of said side groups on anti-knock qualitymore » and, by proxy, on fuel economy in a modern Volvo T5 spark ignition engine. To better comprehend the variation in behavior amongst the fuels, further experiments have been conducted in a constant volume autoignition device. In conclusion, the results demonstrate that alkylation has a negligible impact on anti-knock quality, while the addition of functional oxygen groups manifests as a deterioration in anti-knock quality.« less

  15. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window

    NASA Astrophysics Data System (ADS)

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-01

    SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  16. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lordi, Vincenzo

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enablingmore » R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.« less

  17. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.

    PubMed

    Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H

    2018-02-09

    Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

  18. Molecules for security measures: from keypad locks to advanced communication protocols.

    PubMed

    Andréasson, J; Pischel, U

    2018-04-03

    The idea of using molecules in the context of information security has sparked the interest of researchers from many scientific disciplines. This is clearly manifested in the diversity of the molecular platforms and the analytical techniques used for this purpose, some of which we highlight in this Tutorial Review. Moreover, those molecular systems can be used to emulate a broad spectrum of security measures. For a long time, molecular keypad locks enjoyed a clear preference and the review starts off with a description of how these devices developed. In the last few years, however, the field has evolved into something larger. Examples include more complex authentication protocols (multi-factor authentication and one-time passwords), the recognition of erroneous procedures in data transmission (parity devices), as well as steganographic and cryptographic protection.

  19. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  20. The Results of a Randomized Control Trial Evaluation of the SPARK Literacy Program

    ERIC Educational Resources Information Center

    Jones, Curtis J.; Christian, Michael; Rice, Andrew

    2016-01-01

    The purpose of this report is to present the results of a two-year randomized control trial evaluation of the SPARK literacy program. SPARK is an early grade literacy program developed by Boys & Girls Clubs of Greater Milwaukee. In 2010, SPARK was awarded an Investing in Innovation (i3) Department of Education grant to further develop the…

  1. The Interest-Driven Pursuits of 15 Year Olds: "Sparks" and Their Association with Caring Relationships and Developmental Outcomes

    ERIC Educational Resources Information Center

    Ben-Eliyahu, Adar; Rhodes, Jean E.; Scales, Peter

    2014-01-01

    In this study, we examined the characteristics of adolescents' deep interests or "sparks," the role of relationships in supporting the development of sparks, and whether having a spark was associated with positive developmental outcomes. Participants included 1,860 15 years olds from across the United States who participated in the…

  2. Effect of the SPARK Program on Physical Activity, Cardiorespiratory Endurance, and Motivation in Middle-School Students.

    PubMed

    Fu, You; Gao, Zan; Hannon, James C; Burns, Ryan D; Brusseau, Timothy A

    2016-05-01

    This study aimed to examine the effect of a 9-week SPARK program on physical activity (PA), cardiorespiratory endurance (Progressive Aerobic Cardiovascular Endurance Run; PACER), and motivation in middle-school students. 174 students attended baseline and posttests and change scores computed for each outcome. A MANOVA was employed to examine change score differences using follow-up ANOVA and Bonferroni post hoc tests. MANOVA yielded a significant interaction for Grade × Gender × Group (Wilks's Λ = 0.89, P < .001). ANOVA for PA revealed significant differences between SPARK grades 6 and 7 (Mean Δ = 8.11, P < .01) and Traditional grades 6 and 8 (Mean Δ = -6.96, P < .01). ANOVA also revealed greater PACER change for Traditional boys in grade 8 (P < .01) and SPARK girls in grade 8 (P < .01). There were significant interactions with perceived competence differences between SPARK grades 6 and 8 (Mean Δ = 0.38, P < .05), Enjoyment differences between SPARK grades 6 and 7 (Mean Δ = 0.67, P < .001), and SPARK grades 6 and 8 (Mean Δ = 0.81, P < .001). Following the intervention, SPARK displayed greater increases on PA and motivation measures in younger students compared with the Traditional program.

  3. In-situ, Gate Bias Dependent Study of Neutron Irradiation Effects on AlGaN/GaN HFETs

    DTIC Science & Technology

    2010-03-01

    band gap and high breakdown field, AlGaN devices can operate at very high temperature and operating frequency. AlGaN/GaN based structures, have been...stable under ambient conditions [3]. GaN has a wide, direct band gap of 3.4 eV. It is therefore suitable for high temperature devices. Its high...also be grown with a wurtzite crystal structure and has a band - gap of 6.1 eV. Aluminum, due to having smaller atoms than gallium, forms a smaller

  4. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  5. Ferromagnetism in doped or undoped spintronics nanomaterials

    NASA Astrophysics Data System (ADS)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  6. Gap-balancing technique combined with patient-specific instrumentation in TKA.

    PubMed

    Hommel, Hagen; Perka, Carsten

    2015-11-01

    Combining patient-specific instrumentation (PSI) with a balancer device in total knee arthroplasty (TKA) to achieve functional femoral rotational alignment is a novel technique. The primary goal of this study was to introduce a new method to combine PSI with a gap-balancing technique and to determine the impact of the technique on rotation of the femoral component. Twenty-five primary TKAs (15 women, 10 men) were prospectively studied. All TKAs involved PSI with an associated gap-balancing device. Front plane alignment was performed intraoperatively with the PSI, followed by rectangular, symmetrical extension and creation of a flexion gap using the balancer device to set the femoral rotation. Femoral component rotation was between 3° internal and 6° external rotation versus the transepicondylar axis. There were no postoperative signs of patellofemoral dysfunction. In no cases was the resulting joint line displacement >3 mm. The mean elevation was 1.2 ± 0.9 mm (range 0-3). The leg axis was straight in all cases (±3°), at a mean of 1.6° ± 1.0° varus (range 0°-3° varus). PSI was with the gap-balancing technique was successfully used without affecting anatomical alignment. With the balancer device, PSI can be used more widely than techniques based solely on landmarks, as the soft-tissue tension can be taken into account, thus virtually eliminating flexion instabilities.

  7. Plasma spark discharge reactor and durable electrode

    DOEpatents

    Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup

    2017-01-10

    A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.

  8. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a...

  9. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a...

  10. Neutron position-sensitive scintillation detector

    DOEpatents

    Strauss, Michael G.; Brenner, Raul

    1984-01-01

    A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.

  11. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These solutions are encompassed in SciSpark, an open-source software framework for distributed computing on scientific data.

  12. Fabry-Pérot Interference in Gapped Bilayer Graphene with Broken Anti-Klein Tunneling

    NASA Astrophysics Data System (ADS)

    Varlet, Anastasia; Liu, Ming-Hao; Krueckl, Viktor; Bischoff, Dominik; Simonet, Pauline; Watanabe, Kenji; Taniguchi, Takashi; Richter, Klaus; Ensslin, Klaus; Ihn, Thomas

    2014-09-01

    We report the experimental observation of Fabry-Pérot interference in the conductance of a gate-defined cavity in a dual-gated bilayer graphene device. The high quality of the bilayer graphene flake, combined with the device's electrical robustness provided by the encapsulation between two hexagonal boron nitride layers, allows us to observe ballistic phase-coherent transport through a 1-μm-long cavity. We confirm the origin of the observed interference pattern by comparing to tight-binding calculations accounting for the gate-tunable band gap. The good agreement between experiment and theory, free of tuning parameters, further verifies that a gap opens in our device. The gap is shown to destroy the perfect reflection for electrons traversing the barrier with normal incidence (anti-Klein tunneling). The broken anti-Klein tunneling implies that the Berry phase, which is found to vary with the gate voltages, is always involved in the Fabry-Pérot oscillations regardless of the magnetic field, in sharp contrast with single-layer graphene.

  13. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    NASA Astrophysics Data System (ADS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-06-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  14. Cavitation Erosion of Electro Spark Deposited Nitinol vs. Stellite Alloy on Stainless Steel Substrate

    DTIC Science & Technology

    2015-07-15

    EROSION OF ELECTRO SPARK DEPOSITED NITINOL VS. STELLITE® ALLOY ON STAINLESS STEEL SUBSTRATE Theresa A. Hoffard Lean-Miguel San Pedro Mikhail...SUBTITLE 5a. CONTRACT NUMBER CAVITATION EROSION TESTING OF ELECTRO SPARK DEPOSITED NITINOL VS STELLITE® ALLOY ON STAINLESS STEEL SUBTRATE 5b. GRANT...of combining Nitinol (NiTi) superelastic metal alloy with ElectroSpark Deposition (ESD) technology to increase the cavitation erosion resistance of

  15. Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)

    DTIC Science & Technology

    2014-08-15

    AFRL-RX-WP-JA-2014-0177 REACTIVE SPARK PLASMA SINTERING (SPS) OF NITRIDE REINFORCED TITANIUM ALLOY COMPOSITES (POSTPRINT) Jaimie S...titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and...lcomReactive spark plasma sintering (SPS) of nitride reinforced titanium alloy compositeshttp://dx.doi.org/10.1016/j.jallcom.2014.08.049 0925-8388

  16. Type 1 Inositol (1,4,5)-Trisphosphate Receptor Activates Ryanodine Receptor 1 to Mediate Calcium Spark Signaling in Adult Mammalian Skeletal Muscle*♦

    PubMed Central

    Tjondrokoesoemo, Andoria; Li, Na; Lin, Pei-Hui; Pan, Zui; Ferrante, Christopher J.; Shirokova, Natalia; Brotto, Marco; Weisleder, Noah; Ma, Jianjie

    2013-01-01

    Functional coupling between inositol (1,4,5)-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) represents a critical component of intracellular Ca2+ signaling in many excitable cells; however, the role of this mechanism in skeletal muscle remains elusive. In skeletal muscle, RyR-mediated Ca2+ sparks are suppressed in resting conditions, whereas application of transient osmotic stress can trigger activation of Ca2+ sparks that are restricted to the periphery of the fiber. Here we show that onset of these spatially confined Ca2+ sparks involves interaction between activation of IP3R and RyR near the sarcolemmal membrane. Pharmacological prevention of IP3 production or inhibition of IP3R channel activity abolishes stress-induced Ca2+ sparks in skeletal muscle. Although genetic ablation of the type 2 IP3R does not appear to affect Ca2+ sparks in skeletal muscle, specific silencing of the type 1 IP3R leads to ablation of stress-induced Ca2+ sparks. Our data indicate that membrane-delimited signaling involving cross-talk between IP3R1 and RyR1 contributes to Ca2+ spark activation in skeletal muscle. PMID:23223241

  17. SparkJet Efficiency

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  18. Device-tissue interactions: a collaborative communications system.

    PubMed

    Chekan, Edward; Whelan, Richard L; Feng, Alexander H

    2013-07-29

    Medical devices, including surgical staplers, energy-based devices, and access enabling devices, are used routinely today in the majority of surgical procedures. Although these technically advanced devices have proved to be of immense benefit to both surgeons and patients, their rapid development and continuous improvement have had the unintended consequence of creating a knowledge gap for surgeons due to a lack of adequate training and educational programs. Thus, there is an unmet need in the surgical community to collect existing data on device-tissue interactions and subsequently develop research and educational programs to fill this gap in surgical training. Gathering data and developing these new programs will require collaboration between doctors, engineers, and scientists, from both clinical practice and industry. This paper presents a communications system to enable this unique collaboration that can potentially result in significantly improved patient care.

  19. Potential of Spark Ignition Engine, 1979 Summary Source Document

    DOT National Transportation Integrated Search

    1980-03-01

    This report provides an assessment of the potential for spark ignition engines passenger cars and light trucks. The assessment includes: tradeoffs between fuel economy and emissions; improvements in spark ignition engine efficiency; improvements in e...

  20. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  1. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  2. Zinc Alloys for the Fabrication of Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and visible transmitters and detectors, high-frequency radar, biomedical imaging, chemical compound identification, molecular identification and structure, gas sensors, imaging systems, and for the fundamental studies of atoms, molecules, gases, vapors, and solids.

  3. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  4. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.

    PubMed

    Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng

    2011-11-09

    The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.

  5. An anomalous subdiffusion model for calcium spark in cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Tan, Wenchang; Fu, Chaoqi; Fu, Ceji; Xie, Wenjun; Cheng, Heping

    2007-10-01

    The elementary events of excitation-contraction coupling in heart muscle are Ca2+ sparks, which arise from ryanodine receptors in the sarcoplasmic reticulum (SR). Here, an anomalous subdiffusion model is developed to explore Ca2+ spark formation in cardiac myocytes. Numerical simulations reproduce the brightness, the time course, and spatial size of a typical cardiac Ca2+ spark. It is suggested that the diffusion of Ca2+ spark in the cytoplasm may no longer obey Fickian second law, but the anomalous space subdiffusion. The physical reason is perhaps due to the effects of the electric field of the calcium ions and the viscoelasticity of the cytoplasm and its complex structures.

  6. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Jingshan, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu; Li, Xiao; Qian, Xiaofeng, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu

    2016-06-20

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z{sub 2} invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route tomore » manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.« less

  7. Combustion and operating characteristics of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  8. 75 FR 19368 - Foreign-Trade Zone 126-Reno, NV; Site Renumbering Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... at 728 Spice Island Drive, Sparks; Site 2 (9 acres)--located at 450-475 Lillard Drive, Sparks; Site 3..., 700 South Rock Boulevard, Reno; Site 14 (0.4 acres)--located at 1095 Spice Island Drive, Sparks; Site...

  9. Plasma processes in water under effect of short duration pulse discharges

    NASA Astrophysics Data System (ADS)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  10. High Power Orbit Transfer Vehicle

    DTIC Science & Technology

    2003-07-01

    multijunction device is a stack of individual single-junction cells in descending order of band gap. The top cell captures the high-energy photons and passes...the rest of the photons on to be absorbed by lower-band-gap cells. Multijunction devices achieve a higher total conversion efficiency because they...minimum temperatures on the thruster modules and main bus. In the MATLAB code for these calculations, maximum and minimum temperatures are plotted

  11. Properties of low power spark ablation in aqueous solution for dissolution of precious metals and alloys

    NASA Astrophysics Data System (ADS)

    Goltz, Douglas; Boileau, Michael; Plews, Ian; Charleton, Kimberly; Hinds, Michael W.

    2006-07-01

    Spark ablation or electric dispersion of metal samples in aqueous solution can be a useful approach for sample preparation. The ablated metal forms a stable suspension that has been described as colloidal, which is easily dissolved with a small amount of concentrated (16 M) HNO 3. In this study, we have examined some of the properties of the spark ablation process for a variety of metals (Rh and Au) and alloys (stainless steel) using a low power spark (100-300 W). Particle size distributions and conductivity measurements were carried out on selected metals to characterize the stable suspensions. A LASER diffraction particle size analyzer was useful for showing that ablated particles varied in size from 1 to 30 μm for both the silver and the nickel alloy, Inconel. In terms of weight percent most of the particles were between 10 and 30 μm. Conductivity of the spark ablation solution was found to increase linearly for approximately 3 min before leveling off at approximately 300 S cm 3. These measurements suggest that a significant portion of the ablated metal is also ionic in nature. Scanning electron microscope measurements revealed that a low power spark is much less damaging to the metal surface than a high power spark. Crater formation of the low power spark was found in a wider area than expected with the highest concentration where the spark was directed. The feasibility of using spark ablation for metal dissolution of a valuable artifact such as gold was also performed. Determinations of Ag (4-12%) and Cu (1-3%) in Bullion Reference Material (BRM) gave results that were in very good agreement with the certified values. The precision was ± 0.27% for Ag at 4.15% (RSD = 6.5%) and ± 0.09% for Cu at 1% (RSD = 9.0%).

  12. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material.

    PubMed

    Todorov, Teodor K; Singh, Saurabh; Bishop, Douglas M; Gunawan, Oki; Lee, Yun Seog; Gershon, Talia S; Brew, Kevin W; Antunez, Priscilla D; Haight, Richard

    2017-09-25

    Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.

  13. Effects of rogue ryanodine receptors on Ca2+ sparks in cardiac myocytes

    PubMed Central

    Chen, Xudong; Feng, Yundi; Tan, Wenchang

    2018-01-01

    Ca2+ sparks and Ca2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca2+ sparks in cardiac myocytes. Ca2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca2+ release units (CRUs) of clustered RyRs are regulated by free Ca2+ concentration in the JSR lumen (i.e. [Ca2+]lumen). The frequency of spontaneous Ca2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca2+]lumen, but not at low [Ca2+]lumen. Hence, the opening of rogue RyRs contributes to the formation of Ca2+ sparks at high [Ca2+]lumen. The interplay of Ca2+ sparks and Ca2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca2+ release mechanisms in cardiac myocytes. PMID:29515864

  14. Effects of rogue ryanodine receptors on Ca2+ sparks in cardiac myocytes.

    PubMed

    Chen, Xudong; Feng, Yundi; Huo, Yunlong; Tan, Wenchang

    2018-02-01

    Ca 2+ sparks and Ca 2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca 2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca 2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca 2+ sparks in cardiac myocytes. Ca 2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca 2+ release units (CRUs) of clustered RyRs are regulated by free Ca 2+ concentration in the JSR lumen (i.e. [Ca 2+ ] lumen ). The frequency of spontaneous Ca 2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca 2+ ] lumen , but not at low [Ca 2+ ] lumen . Hence, the opening of rogue RyRs contributes to the formation of Ca 2+ sparks at high [Ca 2+ ] lumen . The interplay of Ca 2+ sparks and Ca 2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca 2+ release mechanisms in cardiac myocytes.

  15. Giant electron-hole transport asymmetry in ultra-short quantum transistors.

    PubMed

    McRae, A C; Tayari, V; Porter, J M; Champagne, A R

    2017-05-31

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies η e-h . This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, η e-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

  16. Optical properties of electrically connected plasmonic nanoantenna dimer arrays

    NASA Astrophysics Data System (ADS)

    Zimmerman, Darin T.; Borst, Benjamin D.; Carrick, Cassandra J.; Lent, Joseph M.; Wambold, Raymond A.; Weisel, Gary J.; Willis, Brian G.

    2018-02-01

    We fabricate electrically connected gold nanoantenna arrays of homodimers and heterodimers on silica substrates and present a systematic study of their optical properties. Electrically connected arrays of plasmonic nanoantennas make possible the realization of novel photonic devices, including optical sensors and rectifiers. Although the plasmonic response of unconnected arrays has been studied extensively, the present study shows that the inclusion of nanowire connections modifies the device response significantly. After presenting experimental measurements of optical extinction for unconnected dimer arrays, we compare these to measurements of dimers that are interconnected by gold nanowire "busbars." The connected devices show the familiar dipole response associated with the unconnected dimers but also show a second localized surface plasmon resonance (LSPR) that we refer to as the "coupled-busbar mode." Our experimental study also demonstrates that the placement of the nanowire along the antenna modifies the LSPR. Using finite-difference time-domain simulations, we confirm the experimental results and investigate the variation of dimer gap and spacing. Changing the dimer gap in connected devices has a significantly smaller effect on the dipole response than it does in unconnected devices. On the other hand, both LSPR modes respond strongly to changing the spacing between devices in the direction along the interconnecting wires. We also give results for the variation of E-field strength in the dimer gap, which will be important for any working sensor or rectenna device.

  17. Note: a 3-stage stacked Blumlein using ceramic for energy storage.

    PubMed

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2013-02-01

    We have developed a novel stacked Blumlein with high compactness by using ceramic for energy storage. The total volume of this stacked Blumlein is only 320 × 100 × 185 mm(3). By triggering 3 spark gaps simultaneously, the developed stacked Blumlein is capable of producing a rectangular pulse with a voltage multiplication. A 32 ns quasi-rectangular pulse of 11.4 kV is measured across a 10 Ω dummy load when the 3-stage stacked Blumlein is DC charged up to 4 kV. The voltage multiplication is about 2.9, and the energy efficiency is about 96%. Simulation results indicate that vacuum or transformer oil is appropriate to be the insulation medium for the stacked Blumlein.

  18. Field-Distortion Air-Insulated Switches for Next-Generation Pulsed-Power Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisher, Matthew Louis; Johns, Owen M.; Breden, Eric Wayne

    We have developed two advanced designs of a field-distortion air-insulated spark-gap switch that reduce the size of a linear-transformer-driver (LTD) brick. Both designs operate at 200 kV and a peak current of ~50 kA. At these parameters, both achieve a jitter of less than 2 ns and a prefire rate of ~0.1% over 5000 shots. We have reduced the number of switch parts and assembly steps, which has resulted in a more uniform, design-driven assembly process. We will characterize the performance of tungsten-copper and graphite electrodes, and two different electrode geometries. The new switch designs will substantially improve the electricalmore » and operational performance of next-generation pulsed-power accelerators.« less

  19. Note: Simple 100 Hz N2 laser with longitudinal discharge tube and high-voltage power supply using neon sign transformer.

    PubMed

    Uno, K; Jitsuno, T

    2017-12-01

    We developed a longitudinally excited N 2 laser with a simple driver circuit and a simple power supply. The N 2 laser consisted of a 20 cm-long glass tube with an inner diameter of 2.5 mm, a normal stable resonator formed by flat mirrors, a variable transformer, a neon sign transformer, a spark gap, and a 200 pF capacitance. The N 2 laser produced a laser pulse with an energy of 379 nJ and a pulse width of 7.5 ns at a repetition rate of 100 Hz. The laser beam was circular and had a Gaussian profile with a correlation factor of 0.992 93.

  20. Note: A 3-stage stacked Blumlein using ceramic for energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2013-02-01

    We have developed a novel stacked Blumlein with high compactness by using ceramic for energy storage. The total volume of this stacked Blumlein is only 320 × 100 × 185 mm3. By triggering 3 spark gaps simultaneously, the developed stacked Blumlein is capable of producing a rectangular pulse with a voltage multiplication. A 32 ns quasi-rectangular pulse of 11.4 kV is measured across a 10 Ω dummy load when the 3-stage stacked Blumlein is DC charged up to 4 kV. The voltage multiplication is about 2.9, and the energy efficiency is about 96%. Simulation results indicate that vacuum or transformer oil is appropriate to be the insulation medium for the stacked Blumlein.

  1. Tool grinding and spark testing

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1993-01-01

    The objectives were the following: (1) to revive the neglected art of metal-sparking; (2) to promote quality-assurance in the workplace; (3) to avoid spark-ignited explosions of dusts or volatiles; (4) to facilitate the salvage of scrap metals; and (5) to summarize important references.

  2. Miniature cyclotron resonance ion source using small permanent magnet

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Huntress, W. T., Jr. (Inventor)

    1980-01-01

    An ion source using the cyclotron resonance principle is described. A miniaturized ion source device is used in an air gap of a small permanent magnet with a substantially uniform field in the air gap of about 0.5 inch. The device and permanent magnet are placed in an enclosure which is maintained at a high vacuum (typically 10 to the minus 7th power) into which a sample gas can be introduced. The ion beam end of the device is placed very close to an aperture through which an ion beam can exit into the apparatus for an experiment.

  3. Active control of nano dimers response using piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  4. Optimization Of Shear Modes To Produce Enhanced Bandwidth In Ghz GaP Bragg Cells

    NASA Astrophysics Data System (ADS)

    Soos, J., I.; Rosemeier, R. G.; Rosenbaum, J.

    1988-02-01

    Applications of Gallium Phosphide (GaP) acousto-optic devices, at wavelengths from 570nm - 1.06um seem to be ideal for fiber optic modulators, scanners, deflectors, frequency shifters, Q-switches and mode lockers. One of the major applications are for RF spectrometers in early warning radar receivers and auto-correlators. Longitudinal GaP acousto-optic Bragg cells which have respectively operational frequencies in the range of 200 MHz - 3 GHz and diffraction efficiencies in the range of 120%/RF watt to 1%/RF watt have recently been fabricated. Comparatively, shear GaP devices which have operational frequencies in the range of 200 MHz to 2 GHz and diffraction efficiencies from 80%/RF watt to 7%/RF watt have also been constructed.

  5. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    NASA Astrophysics Data System (ADS)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  6. KSC Electrostatic Discharge (ESD) Issues

    NASA Technical Reports Server (NTRS)

    Buhler, Charles

    2008-01-01

    Discussion of key electrostatic issues that have arisen during the past few years at KSC that the Electrostatics Laboratory has studied. The lab has studied in depth the Space Shuttle's Thermal Control System Blankets, the International Space Station Thermal Blanket, the Pan/Tilt Camera Blankets, the Kapton Purge Barrier Curtain, the Aclar Purge Barrier Curtain, the Thrust Vector Controller Blankets, the Tyvek Reaction Control System covers, the AID-PAK and FLU-9 pyro inflatable devices, the Velostat Solid Rocket Booster mats, and the SCAPE suits. In many cases these materials are insulating meaning that they might be a source of unsafe levels of electrostatic discharge (ESD). For each, the lab provided in-depth testing of each material within its current configuration to ensure that it does not cause an ESD concern that may violate the safety of the astronauts, the workers and equipment for NASA. For example the lab provides unique solutions and testing such as Spark Incendivity Testing that checks whether a material is capable of generating a spark strong enough to ignite a flammable gas. The lab makes recommendations to changes in specifications, procedures, and material if necessary. The lab also consults with a variety of non-safety related ESD issues for the agency.

  7. Propagation of current pulses with an amplitude of up to 85 kA in soil over distances of several tens of meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, V. P.; Fortov, V. E.; Bykov, Yu. A.

    Conditions for the propagation in soil of current pulses with an amplitude of up to 85 kA and temporal characteristics typical of a lightning stroke are studied with the help of a specially designed mobile test complex on the basis of a 4-MJ capacitive energy storage with an output voltage of up to 2 MV. In contrast to the conventional opinion that the ionization processes in highly conductive soils are weakly pronounced, a dramatic reduction in the grounding resistance at a resistivity of about 100 Ω m and currents above 10 kA was observed. A time interval in which themore » grounding resistance is determined by the skin effect in soil is revealed. It is shown that the grounding resistance continues to decrease behind the front of the current pulse due to the continuous growth of spark channels in soil. Time variations in the grounding resistance cannot be related to the formation of a continuous ionization zone near the grounding electrodes and are explained only by the simultaneous growth of several long spark channels extending from the grounding device.« less

  8. Observation of defect-induced Photoresponse and charge carrier transport in single GeSe2 nanobelt devices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bablu; Tok, Eng Soon; Haur Sow, Chorng

    2013-03-01

    Single crystal GeSe2 nanobelts were grown using chemical vapor deposition techniques. Morphology of the nanostructures was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and Raman spectroscopy. Electronic transport properties, impedance spectroscopy, photoconductive characteristics and temperature-dependent electrical resistivity measurements were carried out on individual GeSe2 nanobelt devices. The photosensitivity of single GeSe2 nanobelt (NB) devices was examined with two different excitation wavelengths of laser beams with photon energies above band gap and at sub-band gap of the NB. A maximum photoconductive gain 106 % was achieved at a wavelength of 808 nm. The magnitude of the photocurrent and response time of the individual GeSe2 NB device indicate that the photoresponse could be attributed to the presence of isolated mid band gap defect levels. Temperature dependent photocurrent measurements indicate the rough estimation of the energy levels for the defect states. Localized photostudy shows that the large photoresponse of the device primarily occurs at the metal-NB contact regions. Department of Physics, 2 Science Drive 3, National University of Singapore (NUS), Singapore 117542

  9. Spark-Ignited Diesel Engine

    DTIC Science & Technology

    1990-11-27

    71 07 Piston" 49 39 Cooling air blower 72 08 Cylinder head 50 40 Cooling air ducting 73 10 Camshaft * 51 41 Exhaust manifold 74,75 11 Valve mechanism...52, 53 42 Cranking device* 76 14 Lube oil pump* 54 44 Generator 77 15 Oil filter 55 44 Starter* 78 15 Oil cooler* 56 45 Power take-off on camshaft ...50 i i i ’- - 0 o . - 0 . 0 . , •5 0 . 1 0 0 . Cv.rI r in~s I e De~ tree • DATA MARKERS -(0 Pmax 31.3757 dPmax= 1.6602 o @-6 -2, Double-trianqie is

  10. Evaluating the Impact of Data Placement to Spark and SciDB with an Earth Science Use Case

    NASA Technical Reports Server (NTRS)

    Doan, Khoa; Oloso, Amidu; Kuo, Kwo-Sen; Clune, Thomas; Yu, Hongfeng; Nelson, Brian; Zhang, Jian

    2016-01-01

    We investigate the impact of data placement for two Big Data technologies, Spark and SciDB, with a use case from Earth Science where data arrays are multidimensional. Simultaneously, this investigation provides an opportunity to evaluate the performance of the technologies involved. Two datastores, HDFS and Cassandra, are used with Spark for our comparison. It is found that Spark with Cassandra performs better than with HDFS, but SciDB performs better yet than Spark with either datastore. The investigation also underscores the value of having data aligned for the most common analysis scenarios in advance on a shared nothing architecture. Otherwise, repartitioning needs to be carried out on the fly, degrading overall performance.

  11. Si-Ge-Sn alloys with 1.0 eV gap for CPV multijunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roucka, Radek, E-mail: radek@translucentinc.com; Clark, Andrew; Landini, Barbara

    2015-09-28

    Si-Ge-Sn ternary group IV alloys offer an alternative to currently used 1.0 eV gap materials utilized in multijunction solar cells. The advantage of Si-Ge-Sn is the ability to vary both the bandgap and lattice parameter independently. We present current development in fabrication of Si-Ge-Sn alloys with gaps in the 1.0 eV range. Produced material exhibits excellent structural properties, which allow for integration with existing III-V photovoltaic cell concepts. Time dependent room temperature photoluminescence data demonstrate that these materials have long carrier lifetimes. Absorption tunable by compositional changes is observed. As a prototype device set utilizing the 1 eV Si-Ge-Sn junction,more » single junction Si-Ge-Sn device and triple junction device with Si-Ge-Sn subcell have been fabricated. The resulting I-V and external quantum efficiency data show that the Si-Ge-Sn junction is fully functional and the performance is comparable to other 1.0 eV gap materials currently used.« less

  12. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.

    PubMed

    Qi, Jing Shan; Huang, Jian Yu; Feng, Ji; Shi, Da Ning; Li, Ju

    2011-05-24

    Graphene is an interesting electronic material. However, flat monolayer graphene does not have significant gap in the electronic density of states, required for a large on-off ratio in logic applications. We propose here a novel device architecture, composed of self-folded carbon nanotube-graphene hybrids, which have been recently observed experimentally in Joule-heated graphene. These experiments demonstrated the feasibility of cutting, folding, and welding few-layer graphene in situ to form all-carbon nanostructures with complex topologies. The electronic gap of self-folded nanotubes can be combined with the semimetallicity of graphene electrodes to form a "metal-semiconductor-metal" junction. By ab initio calculations we demonstrate large energy gaps in the transmission spectra of such junctions, which preserve the intrinsic transport characteristics of the semiconducting nanotubes despite topologically necessary disinclinations at the flat graphene-curved nanotube interface. These all-carbon devices are proposed to be constructed by contact probe cutting and high-temperature annealing and, if produced, would be chemically stable at room temperature under normal gas environments.

  13. An open access microfluidic device for the study of the physical limits of cancer cell deformation during migration in confined environments.

    PubMed

    Malboubi, Majid; Jayo, Asier; Parsons, Maddy; Charras, Guillaume

    2015-08-16

    During metastasis, cancerous cells leave the primary tumour, pass into the circulatory system, and invade into new tissues. To migrate through the wide variety of environments they encounter, the cells must be able to remodel their cell shape efficiently to squeeze through small gaps in the extracellular matrix or extravasate into the blood stream or lymphatic system. Several studies have shown that the nucleus is the main limiting factor to migration through small gaps (Wolf et al., 2013; Harada et al., 2014; Mak et al., 2013). To understand the physical limits of cancer cell translocation in confined environments, we have fabricated a microfluidic device to study their ability to adapt their nuclear and cellular shape when passing through small gaps. The device is open access for ease of use and enables examination of the effect of different levels of spatial confinement on cell behaviour and morphology simultaneously. The results show that increasing cell confinement decreases the ability of cells to translocate into small gaps and that cells cannot penetrate into the microchannels below a threshold cross-section.

  14. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.

    PubMed

    Hu, Xiaohui; Kou, Liangzhi; Sun, Litao

    2016-08-16

    The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.

  15. Spark alloying of VK8 and T15K6 hard alloys

    NASA Astrophysics Data System (ADS)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.; Pleshchev, V. P.

    2015-08-01

    A method is developed to restore the service properties of VK hard alloy plates using preliminary carburizing followed by spark alloying with a VT1-0 alloy. The phase composition is studied as a function of the spark treatment time.

  16. 75 FR 21594 - Foreign-Trade Zone 126-Reno, NV, Application for Reorganization/Expansion Under Alternative Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... 1 (13.9 acres)--728 Spice Island Drive, Sparks; Site 2 (9 acres)--450-475 Lillard Drive, Sparks... 700 South Rock Boulevard, Reno; Site 14 (0.4 acres)--1095 Spice Island Drive, Sparks; Site 15 (0.7...

  17. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  18. The fast algorithm of spark in compressive sensing

    NASA Astrophysics Data System (ADS)

    Xie, Meihua; Yan, Fengxia

    2017-01-01

    Compressed Sensing (CS) is an advanced theory on signal sampling and reconstruction. In CS theory, the reconstruction condition of signal is an important theory problem, and spark is a good index to study this problem. But the computation of spark is NP hard. In this paper, we study the problem of computing spark. For some special matrixes, for example, the Gaussian random matrix and 0-1 random matrix, we obtain some conclusions. Furthermore, for Gaussian random matrix with fewer rows than columns, we prove that its spark equals to the number of its rows plus one with probability 1. For general matrix, two methods are given to compute its spark. One is the method of directly searching and the other is the method of dual-tree searching. By simulating 24 Gaussian random matrixes and 18 0-1 random matrixes, we tested the computation time of these two methods. Numerical results showed that the dual-tree searching method had higher efficiency than directly searching, especially for those matrixes which has as much as rows and columns.

  19. Special purpose modes in photonic band gap fibers

    DOEpatents

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  20. Primary Science Interview: Science Sparks

    ERIC Educational Resources Information Center

    Bianchi, Lynne

    2016-01-01

    In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…

  1. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  2. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelmashuk, V., E-mail: vitalij@ipp.cas.cz

    2014-01-15

    When a high voltage pulse with an amplitude of 30 kV is applied to a pair of disk electrodes at a time when a shock wave is passing between them, an electrical spark is generated. The dynamic changes in the spark morphology are studied here using a high-speed framing camera. The primary result of this work is the provision of experimental evidence of plasma instability that was observed in the channel of the electric spark.

  3. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  4. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  5. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  6. SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.

    PubMed

    Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi

    2010-01-01

    Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.

  7. Regulation of Ca2+ Sparks by Ca2+ and Mg2+ in Mammalian and Amphibian Muscle. An RyR Isoform-specific Role in Excitation–Contraction Coupling?

    PubMed Central

    Zhou, Jingsong; Launikonis, Bradley S.; Ríos, Eduardo; Brum, Gustavo

    2004-01-01

    Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 μM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4–40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10−7 in the frog or 10−8 in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which increased SR load increases spark frequency. PMID:15452201

  8. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    PubMed

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  9. From sniffer dogs to emerging sniffer devices for airport security: an opportunity to rethink privacy implications?

    PubMed

    Bonfanti, Matteo E

    2014-09-01

    Dogs are known for their incredible ability to detect odours, extracting them from a "complex" environment and recognising them. This makes sniffer dogs precious assets in a broad variety of security applications. However, their use is subject to some intrinsic restrictions. Dogs can only be trained to a limited set of applications, get tired after a relatively short period, and thus require a high turnover. This has sparked a drive over the past decade to develop artificial sniffer devices-generally known as "chemical sniffers" or "electronic noses"-able to complement and possibly replace dogs for some security applications. Such devices have been already deployed, or are intended to be deployed, at borders, airports and other critical installation security checkpoints. Similarly to dogs, they are adopted for detecting residual traces that indicate either the presence of, or recent contact with, substances like drugs and explosives. It goes without saying that, as with sniffer dogs, the use of artificial sniffer devices raises many sensitive issues. Adopting an ethical and legal perspective, the present paper discusses the privacy and data protection implications of the possible deployment of a hand-held body scanning sniffer for screening passengers at EU airport security checkpoints.

  10. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, Mark W.

    1995-01-01

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.

  11. High voltage-derived enhancement of electric conduction in nanogap devices for detection of prostate-specific antigen

    NASA Astrophysics Data System (ADS)

    Park, Hyung Ju; Chi, Young Shik; Choi, Insung S.; Yun, Wan Soo

    2010-07-01

    We report a simple method of enhancing electric conductance in nanogap devices without any additional treatments, such as silver-enhancing process. The low electric conductance after selective immobilization of biofunctionalized gold nanoparticles in the gap region was greatly enhanced by repeated I-V scans at relatively high voltage ranges of -5 to 5 V, which was attributed to the formation of a new conduction pathway across the gap. The higher conduction state of the nanogap device showed a very stable I-V curve, which was used as an excellent measure of the existence of prostate-specific antigen.

  12. Molecular-Beam Epitaxial Growth and Device Potential of Polar/Nonpolar Semiconductor Heterostructures.

    DTIC Science & Technology

    1985-06-24

    research , and perhaps the most far-reaching one * A GaP -on-Si transistor was achieved, vastly better than any previous or concurrent effort towards this...the numerous conceptual and technological developments that had accumulated during the research . e) Defects in GaP -on-Si(211) Layers. With the help...Growth and Device Potential of Polar/Nonpolar Semiconductor Heterostructures Final Report by A Herbert Kroemer June 1985 -..2-- U. S. Army Research

  13. Thermal photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Sharps, P. R.; Timmons, M. L.; Venkatasubramanian, R.; Hills, J. S.; O'Quinn, B.; Hutchby, J. A.; Iles, P. A.; Chu, C. L.

    1995-01-01

    Most current emphasis is on GaInAs alloys or GaSb for thermal photovoltaic converters operating in a band gap range between about 0.50 to 0.75 eV. In this paper the growth and fabrication of GaInAs devices with nominal band gaps of 0.6 eV are described. Yield statistics are presented for the growth of a large number of devices, and I-V data are presented. Alternative cell structures are also described, and manufacturing issues are discussed.

  14. X-ray emissions from centimeter-long streamer corona discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Millan, R. M.; McGaw, D. G.; Yu, C. T.; Putter, A. S.; Labelle, J. W.; Dwyer, J. R.

    2017-12-01

    In this work we provide extensive evidence that runaway electron acceleration and subsequent bremsstrahlung X-ray emission are a common feature in electrical discharges of negative polarity. They can be easily detected at voltages as low as 100 kV, indicating that all negative lightning could potentially produce runaway electrons. We show that centimeter-long streamer corona discharges produce bursts of X-ray radiation that are emitted by a source that is highly compact in space and time. Therefore, the emitted X-ray photons arrive together at the detector and pile up. Median burst energies vary between 33-96% of the total 100 keV available electrostatic energy that an electron can acquire in the gap. We present detailed statistical analysis of 5000+ discharges, showing that X-rays are observed in as many as 60% of the triggers, depending on the configuration. X-ray detection is more frequent when: the streamer corona discharge is not followed by a spark, the detector is oriented perpendicular to the gap, and a thicker anode is used. We show that for an 8-cm-long gap, X-rays are produced when runaway electrons hit the anode, and that the runaway electron acceleration is not correlated with streamer collisions, as inferred in meter-long discharges. The described experiment is a promising way for measuring the runaway electron distribution very close to the source and its dependence on the applied voltage.

  15. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  16. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  17. Giant electron-hole transport asymmetry in ultra-short quantum transistors

    PubMed Central

    McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.

    2017-01-01

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV. PMID:28561024

  18. Gallium phosphide energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, P.E.; Dinetta, L.C.; Goetz, M.A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured andmore » the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.« less

  19. Gallium phosphide energy converters

    NASA Astrophysics Data System (ADS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  20. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  1. Military Assistance to Mexico: Use of Special Operations Forces

    DTIC Science & Technology

    2010-03-31

    91 Donald Sparks, " Jackal Stone 2009; Special Opcmti011s Forces Multinational Training in Croatia", Tt/J of the Spear, USSCOM, Tampa FL, 92 Sparks...Data Analysis from 2001-2009" Justice in Mexico Project, Trans Border Institute, University of San Diego, January 2009. Sparks, Donald " Jackal Stone

  2. 30 CFR 18.50 - Protection against external arcs and sparks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection against external arcs and sparks. 18... and Design Requirements § 18.50 Protection against external arcs and sparks. Provision shall be made... of that of one power conductor unless a ground-fault tripping relay is used, in which case the...

  3. 30 CFR 18.50 - Protection against external arcs and sparks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against external arcs and sparks. 18... and Design Requirements § 18.50 Protection against external arcs and sparks. Provision shall be made... of that of one power conductor unless a ground-fault tripping relay is used, in which case the...

  4. Lessons Learned From Google Glass: Telemedical Spark or Unfulfilled Promise?

    PubMed

    Yu, Jonathan; Ferniany, William; Guthrie, Barton; Parekh, Selene G; Ponce, Brent

    2016-04-01

    Wearable devices such as Google Glass could potentially be used in the health care setting to expand access and improve quality of care. This study aims to assess the demographics of Google Glass users in health care and determine the obstacles to using Google Glass by surveying those who are known to use the device. A 48-question survey was designed to assess demographics of users, technological limitations of Google Glass, and obstacles to implementation of the device. The physicians surveyed worked in various fields of health care, with 50% of the respondents being surgeons. Potential participants were found using an Internet search for physicians using Google Glass in their practice. Outcome measures were divided into demographic information of users, technological limitations of the device, and administrative obstacles. A 43.6% response rate was observed. The majority of users were male, assistant professors, in academic hospitals, and in the United States. Numerous technological limitations were observed by the majority, including device ergonomics, display location, video quality, and audio quality. Patient confidentiality and data security were the major concerns among administrative obstacles. Despite the potential of Google Glass, numerous obstacles exist that limit its use in health care. While Google Glass has been discontinued, the results of this study may be used to guide future designs of wearable devices. © The Author(s) 2015.

  5. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  6. LLNL small-scale static spark machine: static spark sensitivity test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less

  7. Spark ignition timing control system for internal combustion engine with feature of suppression of jerking during engine acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomisawa, N.

    1989-07-04

    This patent describes a spark ignition timing control system for an internal combustion engine, it comprises: sensor means monitoring preselected parameters for producing a sensor signal; first means for deriving a spark ignition timing on the basis of data contained in the sensor signal; second means for detecting an engine acceleration demand for producing an accelerating condition indicative signal; and third means, responsive to the accelerating condition indicative signal, for modifying the spark ignition timing derived by the first means after expiration of a first predetermined period of time of occurence of the accelerating condition indicative signal, in such amore » manner that the spark ignition timing is advanced and retarded for suppressing cycle-to-cycle fluctuation of engine speed and for smoothly increasing engine speed.« less

  8. SPARK: Adapting Keyword Query to Semantic Search

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong

    Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.

  9. Titian: Data Provenance Support in Spark

    PubMed Central

    Interlandi, Matteo; Shah, Kshitij; Tetali, Sai Deep; Gulzar, Muhammad Ali; Yoo, Seunghyun; Kim, Miryung; Millstein, Todd; Condie, Tyson

    2015-01-01

    Debugging data processing logic in Data-Intensive Scalable Computing (DISC) systems is a difficult and time consuming effort. Today’s DISC systems offer very little tooling for debugging programs, and as a result programmers spend countless hours collecting evidence (e.g., from log files) and performing trial and error debugging. To aid this effort, we built Titian, a library that enables data provenance—tracking data through transformations—in Apache Spark. Data scientists using the Titian Spark extension will be able to quickly identify the input data at the root cause of a potential bug or outlier result. Titian is built directly into the Spark platform and offers data provenance support at interactive speeds—orders-of-magnitude faster than alternative solutions—while minimally impacting Spark job performance; observed overheads for capturing data lineage rarely exceed 30% above the baseline job execution time. PMID:26726305

  10. Apparatus and method for the spectrochemical analysis of liquids using the laser spark

    DOEpatents

    Cremers, David A.; Radziemski, Leon J.; Loree, Thomas R.

    1990-01-01

    A method and apparatus for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.

  11. Apparatus and method for the spectrochemical analysis of liquids using the laser spark

    DOEpatents

    Cremers, D.A.; Radziemski, L.J.; Loree, T.R.

    1984-05-01

    A method and apparatus are disclosed for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.

  12. Programmable Electrochemical Rectifier Based on a Thin-Layer Cell.

    PubMed

    Park, Seungjin; Park, Jun Hui; Hwang, Seongpil; Kwak, Juhyoun

    2017-06-21

    A programmable electrochemical rectifier based on thin-layer electrochemistry is described here. Both the rectification ratio and the response time of the device are programmable by controlling the gap distance of the thin-layer electrochemical cell, which is easily controlled using commercially available beads. One of the electrodes was modified using a ferrocene-terminated self-assembled monolayer to offer unidirectional charge transfers via soluble redox species. The thin-layer configuration provided enhanced mass transport, which was determined by the gap thickness. The device with the smallest gap thickness (∼4 μm) showed an unprecedented, high rectification ratio (up to 160) with a fast response time in a two-terminal configuration using conventional electronics.

  13. Flux-Feedback Magnetic-Suspension Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1990-01-01

    Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.

  14. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Seth, Brig B.

    2005-08-23

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

  15. Superresolution Modeling of Calcium Release in the Heart

    PubMed Central

    Walker, Mark A.; Williams, George S.B.; Kohl, Tobias; Lehnart, Stephan E.; Jafri, M. Saleet; Greenstein, Joseph L.; Lederer, W.J.; Winslow, Raimond L.

    2014-01-01

    Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions. PMID:25517166

  16. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  17. Sub-Band Gap Turn-On Near-Infrared-to-Visible Up-Conversion Device Enabled by an Organic-Inorganic Hybrid Perovskite Photovoltaic Absorber.

    PubMed

    Yu, By Hyeonggeun; Cheng, Yuanhang; Li, Menglin; Tsang, Sai-Wing; So, Franky

    2018-05-09

    Direct integration of an infrared (IR) photodetector with an organic light-emitting diode (OLED) enables low-cost, pixel-free IR imaging. However, the operation voltage of the resulting IR-to-visible up-conversion is large because of the series device architecture. Here, we report a low-voltage near-IR (NIR)-to-visible up-conversion device using formamidinium lead iodide as a NIR absorber integrated with a phosphorescent OLED. Because of the efficient photocarrier injection from the hybrid perovskite layer to the OLED, we observed a sub-band gap turn-on of the OLED under NIR illumination. The device showed a NIR-to-visible up-conversion efficiency of 3% and a luminance on/off ratio of 10 3 at only 5 V. Finally, we demonstrate pixel-free NIR imaging using the up-conversion device.

  18. Formation of Equiaxed Alpha and Titanium Nitride Precipitates in Spark Plasma Sintered TiB/Ti-6Al-4V Composites (Preprint)

    DTIC Science & Technology

    2012-08-01

    AFRL-RX-WP-TP-2012-0372 FORMATION OF EQUIAXED ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES...ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES (PREPRINT) 5a. CONTRACT NUMBER FA8650-08-C-5226 5b...distribution of TiN precipitates, as revealed by TEM studies. 15. SUBJECT TERMS Ti-6Al-4V; TiB; TiN; Spark Plasma Sintering ; Composite; α/β phase

  19. The sparking voltage of spark plugs

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1925-01-01

    This report has been prepared in order to collect and correlate into convenient and useful form the available data on this subject. The importance of the subject lies in the fact that it forms the common meeting ground for studies of the performance of spark generators and spark plugs on the one hand and of the internal combustion engines on the other hand. While much of the data presented was obtained from various earlier publications, numerous places were found where necessary data were lacking, and these have been provided by experiments in gasoline engines at the Bureau of Standards.

  20. Encapsulation of high temperature thermoelectric modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam

    A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectricmore » elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.« less

  1. Bottom-up realization and electrical characterization of a graphene-based device.

    PubMed

    Maffucci, A; Micciulla, F; Cataldo, A; Miano, G; Bellucci, S

    2016-03-04

    We propose a bottom-up procedure to fabricate an easy-to-engineer graphene-based device, consisting of a microstrip-like circuit where few-layer graphene nanoplatelets are used to contact two copper electrodes. The graphene nanoplatelets are obtained by the microwave irradiation of intercalated graphite, i.e., an environmentally friendly, fast and low-cost procedure. The contact is created by a bottom-up process, driven by the application of a DC electrical field in the gap between the electrodes, yielding the formation of a graphene carpet. The electrical resistance of the device has been measured as a function of the gap length and device temperature. The possible use of this device as a gas sensor is demonstrated by measuring the sensitivity of its electrical resistance to the presence of gas. The measured results demonstrate a good degree of reproducibility in the fabrication process, and the competitive performance of devices, thus making the proposed technique potentially attractive for industrial applications.

  2. High-performance transistors for bioelectronics through tuning of channel thickness

    PubMed Central

    Rivnay, Jonathan; Leleux, Pierre; Ferro, Marc; Sessolo, Michele; Williamson, Adam; Koutsouras, Dimitrios A.; Khodagholy, Dion; Ramuz, Marc; Strakosas, Xenofon; Owens, Roisin M.; Benar, Christian; Badier, Jean-Michel; Bernard, Christophe; Malliaras, George G.

    2015-01-01

    Despite recent interest in organic electrochemical transistors (OECTs), sparked by their straightforward fabrication and high performance, the fundamental mechanism behind their operation remains largely unexplored. OECTs use an electrolyte in direct contact with a polymer channel as part of their device structure. Hence, they offer facile integration with biological milieux and are currently used as amplifying transducers for bioelectronics. Ion exchange between electrolyte and channel is believed to take place in OECTs, although the extent of this process and its impact on device characteristics are still unknown. We show that the uptake of ions from an electrolyte into a film of poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) leads to a purely volumetric capacitance of 39 F/cm3. This results in a dependence of the transconductance on channel thickness, a new degree of freedom that we exploit to demonstrate high-quality recordings of human brain rhythms. Our results bring to the forefront a transistor class in which performance can be tuned independently of device footprint and provide guidelines for the design of materials that will lead to state-of-the-art transistor performance. PMID:26601178

  3. Final Rule for Phase 2 Emission Standards for New Nonroad Spark-Ignition Handheld Engines At or Below 19 Kilowatts and Minor Amendments to Emission Requirements Applicable to Small Spark-Ignition Engines and Marine Spark-Ignition Engines

    EPA Pesticide Factsheets

    Rule summary, rule history, CFR citations and additional resources concerning emissions standards for engines principally used in handheld lawn and garden equipment such as trimmers, leaf blowers, and chainsaws.

  4. Nested Helmholtz coil design for producing homogeneous transient rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Podaru, George; Moore, John; Dani, Raj Kumar; Prakash, Punit; Chikan, Viktor

    2015-03-01

    Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.

  5. Slightly uneven electric field trigatron employed in tens of microseconds charging time.

    PubMed

    Lin, Jiajin; Yang, Jianhua; Zhang, Jiande; Zhang, Huibo; Yang, Xiao

    2014-09-01

    To solve the issue of operation instability for the trigatron switch in the application of tens of microseconds or even less charging time, a novel trigatron spark gap with slightly uneven electric field was presented. Compared with the conventional trigatron, the novel trigatron was constructed with an obvious field enhancement on the edge of the opposite electrode. The selection of the field enhancement was analyzed based on the theory introduced by Martin. A low voltage trigatron model was constructed and tested on the tens of microseconds charging time platform. The results show that the character of relative range was improved while the trigger character still held a high level. This slightly uneven electric field typed trigatron is willing to be employed in the Tesla transformer - pulse forming line system.

  6. Some Notes on Sparks and Ignition of Fuels

    NASA Technical Reports Server (NTRS)

    Fisher, Franklin A.

    2000-01-01

    This report compliments a concurrent analysis of the electromagnetic field threat to the fuel system of a transport aircraft. The accompanying effort assessed currents, voltages and power levels that may be induced upon fuel tank wiring from radio transmitters (inside and outside the aircraft). In addition to this, it was also essential to determine how much voltage, current, or power is required to create a fuel-vapor ignition hazard. The widely accepted minimum guideline for aircraft fuel-vapor ignition is the application of a 0.2 millijoule energy level. However, when considering radio frequency (RF) sources, this guideline is seriously inadequate. This report endeavors to bridge the gap between a traditional understanding of electrical breakdown, heating and combustion; and supplement the knowledge with available information regarding aircraft fuel-vapor ignition by RF sources

  7. MAIZE: a 1 MA LTD-Driven Z-Pinch at The University of Michigan

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W. W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2009-01-01

    Researchers at The University of Michigan have constructed and tested a 1-MA Linear Transformer Driver (LTD), the first of its type to reach the USA. The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute of High Current Electronics in collaboration with Sandia National Labs and UM. This LTD utilizes 80 capacitors and 40 spark gap switches, arranged in 40 "bricks," to deliver a 1 MA, 100 kV pulse with 100 ns risetime into a matched resistive load. Preliminary resistive-load test results are presented for the LTD facility. Planned experimental research programs at UM include: a) Studies of Magneto-Raleigh-Taylor instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma.

  8. Pseudomorphic Narrow Gap Materials for High Performance Devices

    DTIC Science & Technology

    1993-04-14

    research under this program is ito obtain hiigh quality pseudomorphic (strained) narrow gap materials for high performance device applicatjons During...1993 ELECTE """ ’I ~01lG:9395 APR21 W93 Dr. Max N. Yoder Scientific Officer, Code 114SS Office of Naval Research 800 N. Quincy Street Arlington, VA...Mr. V. Morano - w/cy each/ ...- Administrative Grants Officer Office of Naval Research . r. - Resident Representative, N6Z9g7 -- _ z 33 Third Avenue

  9. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Sabol, Stephen M.

    2001-01-01

    A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

  10. From plasma to nanoparticles: optical and particle emission of a spark discharge generator.

    PubMed

    Kohut, A; Ludvigsson, L; Meuller, B O; Deppert, K; Messing, M E; Galbács, G; Geretovszky, Zs

    2017-11-24

    The increased demand for high purity nanoparticles (NPs) of defined geometry necessitates the continuous development of generation routes. One of the most promising physical techniques for producing metal, semiconductor or alloy NPs in the gas phase is spark discharge NP generation. The technique has a great potential for up-scaling without altering the particles. Despite the simplicity of the setup, the formation of NPs in a spark discharge takes place via complex multi-scale processes, which greatly hinders the investigation via conventional NP measurement techniques. In the present work, time-resolved optical emission spectroscopy (OES) was used to provide information on the species present in the spark from as early as approximately 100 ns after the initiation of the discharge. We demonstrate that operando emission spectroscopy can deliver valuable insights into NP formation. The emission spectra of the spark are used to identify, among others, the main stages of material erosion and to calculate the quenching rate of the generated metal vapour. We demonstrate that the alteration of key control parameters, that are typically used to optimize NP generation, clearly affect the emission spectra. We report for Cu and Au NPs that the intensity of spectral lines emitted by metal atoms levels off when spark energy is increased above an energy threshold, suggesting that the maximum concentration of metal vapour produced in the generator is limited. This explains the size variation of the generated NPs. We report a strong correlation between the optical and particle emission of the spark discharge generator, which demonstrate the suitability of OES as a valuable characterization tool that will allow for the more deliberate optimization of spark-based NP generation.

  11. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells

    PubMed Central

    Rueda, Angélica; Song, Ming; Toro, Ligia; Stefani, Enrico; Valdivia, Héctor H

    2006-01-01

    Spontaneous, local Ca2+ release events or Ca2+ sparks by ryanodine receptors (RyRs) are important determinants of vascular tone and arteriolar resistance, but the mechanisms that modulate their properties in smooth muscle are poorly understood. Sorcin, a Ca2+-binding protein that associates with cardiac RyRs and quickly stops Ca2+ release in the heart, provides a potential mechanism to modulate Ca2+ sparks in vascular smooth muscle, but little is known about the functional role of sorcin in this tissue. In this work, we characterized the expression and intracellular location of sorcin in aorta and cerebral artery and gained mechanistic insights into its functional role as a modulator of Ca2+ sparks. Sorcin is present in endothelial and smooth muscle cells, as assessed by immunocytochemical and Western blot analyses. Smooth muscle sorcin translocates from cytosolic to membranous compartments in a Ca2+-dependent manner and associates with RyRs, as shown by coimmunoprecipitation and immunostaining experiments. Ca2+ sparks recorded in saponin-permeabilized vascular myocytes have increased frequency, duration and spatial spread but reduced amplitude with respect to Ca2+ sparks in intact cells, suggesting that permeabilization disrupts the normal organization of RyRs and releases diffusible substances that control Ca2+ spark properties. Perfusion of 2 μm sorcin onto permeabilized myocytes reduced the amplitude, duration and spatial spread of Ca2+ sparks, demonstrating that sorcin effectively regulates Ca2+ signalling in vascular smooth muscle. Together with a dense distribution in the perimeter of the cell along a pool of RyRs, these properties make sorcin a viable candidate to modulate vascular tone in smooth muscle. PMID:16931553

  12. An application of small-gap equations in sealing devices

    NASA Technical Reports Server (NTRS)

    Vionnet, Carlos A.; Heinrich, Juan C.

    1993-01-01

    The study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel, sliding surfaces has been actively pursued in the last decades. This subject includes lubrication applications such as slider bearings or the sealing of non-pressurized fluids with rubber rotary shaft seals. In the present work we analyze numerically the flow of lubricant fluid through a micro-gap of sealing devices. The first stage of this study is carried out assuming that a 'small-gap' parameter delta attains an extreme value in the Navier-Stokes equations. The precise meaning of small-gap is achieved by the particular limit delta = 0 which, within the bounds of the hypotheses, predicts transport of lubricant through the sealed area by centrifugal instabilities. Numerical results obtained with the penalty function approximation in the finite element method are presented. In particular, the influence of inflow and outflow boundary conditions, and their impact in the simulated flow, are discussed.

  13. Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions

    NASA Technical Reports Server (NTRS)

    Stern, J. A.; Leduc, Henry G.; Judas, A. J.

    1992-01-01

    At near-millimeter wavelengths, heterodyne receivers based on SIS tunnel junctions are the most sensitive available. However, in order to scale these results to submillimeter wavelengths, certain device properties should be scaled. The tunnel-junction's current density should be increased to reduce the RC product. The device's area should be reduced to efficiently couple power from the antenna to the mixer. Finally, the superconductor used should have a large energy gap to minimize RF losses. Most SIS mixers use Nb or Pb-alloy tunnel junctions; the gap frequency for these materials is approximately 725 GHz. Above the gap frequency, these materials exhibit losses similar to those in a normal metal. The gap frequency in NbN films is as-large-as 1440 GHz. Therefore, we have developed a process to fabricate small area (down to 0.13 sq microns), high current density, NbN/MgO/NbN tunnel junctions.

  14. High-Pressure Band-Gap Engineering in Lead-Free Cs 2 AgBiBr 6 Double Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Wang, Yonggang; Pan, Weicheng

    Novel inorganic lead-free double perovskites with improved stability are regarded as alternatives to state-of-art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–propertymore » relationship in lead-free double perovskites, but also offers new strategies for further development of advanced perovskite devices.« less

  15. Theoretical study of optical properties of anti phase domains in GaP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tea, E., E-mail: etea.contact@gmail.com; FOTON INSA-Rennes; Vidal, J.

    III-V/Si heterostructures are currently investigated for silicon photonics and solar energy conversion. In particular, dilute nitride alloy GaAsPN grown on a GaP/Si platform exhibits lattice match with Si and an optimal band gap configuration for tandem solar cell devices. However, monolithic “coherent” growth of the GaP thin layer on Si suffers from the nucleation of extended structural defects, which can hamper device operation as well as the GaP/Si interface level and through their propagation inside the overall heterostructure. However, the effect of such structural defects on optical and transport properties is actually not well understood in details. In this letter,more » we investigate the anti phase domains defect (also called inversion domains) by means of ab initio calculations giving insights into the alteration of optical and transport properties of GaP due to the defective GaP/Si interface.« less

  16. An application of small-gap equations in sealing devices

    NASA Astrophysics Data System (ADS)

    Vionnet, Carlos A.; Heinrich, Juan C.

    1993-11-01

    The study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel, sliding surfaces has been actively pursued in the last decades. This subject includes lubrication applications such as slider bearings or the sealing of non-pressurized fluids with rubber rotary shaft seals. In the present work we analyze numerically the flow of lubricant fluid through a micro-gap of sealing devices. The first stage of this study is carried out assuming that a 'small-gap' parameter delta attains an extreme value in the Navier-Stokes equations. The precise meaning of small-gap is achieved by the particular limit delta = 0 which, within the bounds of the hypotheses, predicts transport of lubricant through the sealed area by centrifugal instabilities. Numerical results obtained with the penalty function approximation in the finite element method are presented. In particular, the influence of inflow and outflow boundary conditions, and their impact in the simulated flow, are discussed.

  17. Cardiovascular effects of SPARK conducted electrical weapon in healthy subjects.

    PubMed

    Scherr, Carlos; de Carvalho, Antonio Carlos; Belem, Luciano Juaçaba; Loyola, Luiz Henrique; Guerra, Renata Leborato; Blanco, Fernanda; Mangia, Claudio

    2016-12-15

    The increasing use of conducted electronic weapons (CEW) cause concern regarding its secure application, specially regarding the implications in the cardiovascular system. The objective was to determine Spark CEW safety through cardiovascular parameters analysis of healthy volunteers subjected to its use. Volunteers over 18years without cardiovascular disease or recent use of illegal drugs were submitted, before and after being affected with Spark CEW, to clinical evaluation; blood collection for serum laboratory tests; transthoracic electrocardiography at rest, transthoracic echodopplercardiogram and 24hour Holter. All 71 patients reported being incapable of any voluntary reaction during the shock of the application time. No arrhythmia or myocardial necrosis was related to the use of non-lethal weapon SPARK. Reported adverse events were self-limited, and mostly mild. SPARK brand CEW is effective in incapacitating individuals by the shock of the application time, without causing. Copyright © 2016. Published by Elsevier Ireland Ltd.

  18. Pulse-actuated fuel-injection spark plug

    DOEpatents

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  19. Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation

    PubMed Central

    Lee, Jae H.; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho

    2014-01-01

    The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting. PMID:27081299

  20. Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation.

    PubMed

    Lee, Jae H; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho

    2014-11-01

    The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.

  1. Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.

  2. Electromechanical resistive switching via back-to-back Schottky junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lijie, E-mail: L.Li@swansea.ac.uk

    The physics of the electromechanical resistive switching is uncovered using the theory of back-to-back Schottky junctions combined with the quantum domain space charge transport. A theoretical model of the basic element of resistive switching devices realized by the metal-ZnO nanowires-metal structure has been created and analyzed. Simulation results show that the reverse biased Schottky junction and the air gap impedance dominate the current-voltage relation at higher external voltages; thereby electromechanically varying the air gap thickness causes the device exhibit resistive tuning characteristics. As the device dimension is in nanometre scale, investigation of the model based on quantum mechanics has alsomore » been conducted.« less

  3. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, M.W.

    1995-02-21

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.

  4. 40 CFR 63.6590 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions; (ii) Existing spark ignition 4 stroke lean burn (4SLB... emissions; (4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site...

  5. 40 CFR 63.6590 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions; (ii) Existing spark ignition 4 stroke lean burn (4SLB... emissions; (4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site...

  6. 40 CFR 63.6590 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initial notification requirements: (i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE... spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP... spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500...

  7. Interorganizational Relationships in the Heart and Stroke Foundation's Spark Together for Healthy Kids™: Insights from Using Network Analysis

    ERIC Educational Resources Information Center

    Yessis, Jennifer; Riley, Barbara; Stockton, Lisa; Brodovsky, Sharon; Von Sychowski, Shirley

    2013-01-01

    The Heart and Stroke Foundation's Spark Together for Healthy Kids™ (Spark) is a multiyear initiative in Ontario, Canada, that takes a population approach to obesity prevention. It focuses on creating healthy environments by improving access to healthy foods and physical activity, with an emphasis on strengthening the advocacy capacity of…

  8. [Significance of various implantate localizations of Sparks prostheses, experimental studies in rats].

    PubMed

    Brieler, H S; Parwaresch, R; Thiede, A

    1976-01-01

    Our investigations show that Sparks prostheses after subcutaneous implantation are suitable for vascular grafting. At the end of the organization period the connective tissue becomes strong, and after the third and fourth weeks collagenous and elastic fibers can be seen. Ten weeks after s.c. implantation, collagenous fibers predominate. After this the Sparks prostheses can be used as a vascular graft. Intraperitoneal implantation, however, shows a histologically different picture with characteristic findings: only fat cells can be observed, a strong granulation tissue with elastic and collagenous fibers is not present. After intraperitoneal implantation Sparks prostheses are therefore unsuitable for vascular grafts.

  9. A Spark Chamber With Thin Electrodes and a Study of the Position of the Alignment Point; KAMERA S TONKIMI ELEKTRODAMI IZUCHENIE POLOZHENIYA TOCHKI SPRYAMLENIYA ISKRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legar, F.; Nikanorov, V.I.; Peter, G.

    1964-01-01

    A technique for making the foil electrodes with twosided working surface for spark chambers is described. Some characteristics of spark chambers with thin electrodes are given. The variation of the distance from the negative electrode to the alignment point of a spark with the energy of the detected particles and the angie of their passage through the charaber was studied. It is shown that with the increasing initial density of the gas ionization in the chamber the Townsend coefficient a becomes greater due to the charge interaction of avalanches. (auth)

  10. ClimateSpark: An in-memory distributed computing framework for big climate data analytics

    NASA Astrophysics Data System (ADS)

    Hu, Fei; Yang, Chaowei; Schnase, John L.; Duffy, Daniel Q.; Xu, Mengchao; Bowen, Michael K.; Lee, Tsengdar; Song, Weiwei

    2018-06-01

    The unprecedented growth of climate data creates new opportunities for climate studies, and yet big climate data pose a grand challenge to climatologists to efficiently manage and analyze big data. The complexity of climate data content and analytical algorithms increases the difficulty of implementing algorithms on high performance computing systems. This paper proposes an in-memory, distributed computing framework, ClimateSpark, to facilitate complex big data analytics and time-consuming computational tasks. Chunking data structure improves parallel I/O efficiency, while a spatiotemporal index is built for the chunks to avoid unnecessary data reading and preprocessing. An integrated, multi-dimensional, array-based data model (ClimateRDD) and ETL operations are developed to address big climate data variety by integrating the processing components of the climate data lifecycle. ClimateSpark utilizes Spark SQL and Apache Zeppelin to develop a web portal to facilitate the interaction among climatologists, climate data, analytic operations and computing resources (e.g., using SQL query and Scala/Python notebook). Experimental results show that ClimateSpark conducts different spatiotemporal data queries/analytics with high efficiency and data locality. ClimateSpark is easily adaptable to other big multiple-dimensional, array-based datasets in various geoscience domains.

  11. Cross-correlation spectroscopy study of the transient spark discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Janda, Mário; Hoder, Tomáš; Sarani, Abdollah; Brandenburg, Ronny; Machala, Zdenko

    2017-05-01

    A streamer-to-spark transition in a self-pulsing transient spark (TS) discharge of positive polarity in air was investigated using cross-correlation spectroscopy. The entire temporal evolution of the TS was recorded for several spectral bands and lines: the second positive system of N2 (337.1 nm), the first negative system of {{{{N}}}2}+ (391.4 nm), and atomic oxygen (777.1 nm). The results enable the visualization of the different phases of discharge development including the primary streamer, the secondary streamer, and the transition to the spark. The spatio-temporal distribution of the reduced electric field strength during the primary streamer phase of the TS was determined and discussed. The transition from the streamer to the spark proceeds very fast within about 10 ns for the TS with a current pulse repetition rate in the range 8-10 kHz. This is attributed to memory effects, leading to a low net electron attachment rate and faster propagation of the secondary streamer. Gas heating, accumulation of species such as oxygen atoms from the previous TS pulses, as well as generation of charged particles by stepwise ionization seem to play important roles contributing to this fast streamer-to-spark transition.

  12. Modeling of high speed chemically reacting flow-fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Carpenter, Mark H.; Kamath, H.

    1989-01-01

    The SPARK3D and SPARK3D-PNS computer programs were developed to model 3-D supersonic, chemically reacting flow-fields. The SPARK3D code is a full Navier-Stokes solver, and is suitable for use in scramjet combustors and other regions where recirculation may be present. The SPARK3D-PNS is a parabolized Navier-Stokes solver and provides an efficient means of calculating steady-state combustor far-fields and nozzles. Each code has a generalized chemistry package, making modeling of any chemically reacting flow possible. Research activities by the Langley group range from addressing fundamental theoretical issues to simulating problems of practical importance. Algorithmic development includes work on higher order and upwind spatial difference schemes. Direct numerical simulations employ these algorithms to address the fundamental issues of flow stability and transition, and the chemical reaction of supersonic mixing layers and jets. It is believed that this work will lend greater insight into phenomenological model development for simulating supersonic chemically reacting flows in practical combustors. Currently, the SPARK3D and SPARK3D-PNS codes are used to study problems of engineering interest, including various injector designs and 3-D combustor-nozzle configurations. Examples, which demonstrate the capabilities of each code are presented.

  13. Gap and stripline combined monitor

    DOEpatents

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Riley E.; Mangan, Niall M.; Li, Jian V.

    The development of new thin-film photovoltaic (PV) absorbers is often hindered by the search for an optimal heterojunction contact; an unoptimized contact may be mistaken for poor quality of the underlying absorber, making it difficult to assess the reasons for poor performance. Therefore, quantifying the loss in device efficiency and open-circuit voltage (VOC) as a result of the interface is a critical step in evaluating a new material. In the present work, we fabricate thin-film PV devices using cuprous oxide (Cu2O), with several different n-type heterojunction contacts. Their current-voltage characteristics are measured over a range of temperatures and illumination intensitiesmore » (JVTi). We quantify the loss in VOC due to the interface and determine the effective energy gap at the interface. The effective interface gap measured by JVTi matches the gap measured by X-ray photoelectron spectroscopy, albeit with higher energy resolution and an order of magnitude faster. We discuss potential artifacts in JVTi measurements and areas where analytical models are insufficient. Applying JVTi to complete devices, rather than incomplete material stacks, suggests that it can be a quick, accurate method to assess the loss due to unoptimized interface band offsets in thin-film PV devices.« less

  15. Low-Cost Photolithographic Fabrication of Nanowires and Microfilters for Advanced Bioassay Devices

    PubMed Central

    Doan, Nhi M.; Qiang, Liangliang; Li, Zhe; Vaddiraju, Santhisagar; Bishop, Gregory W.; Rusling, James F.; Papadimitrakopoulos, Fotios

    2015-01-01

    Integrated microfluidic devices with nanosized array electrodes and microfiltration capabilities can greatly increase sensitivity and enhance automation in immunoassay devices. In this contribution, we utilize the edge-patterning method of thin aluminum (Al) films in order to form nano- to micron-sized gaps. Evaporation of high work-function metals (i.e., Au, Ag, etc.) on these gaps, followed by Al lift-off, enables the formation of electrical uniform nanowires from low-cost, plastic-based, photomasks. By replacing Al with chromium (Cr), the formation of high resolution, custom-made photomasks that are ideal for low-cost fabrication of a plurality of array devices were realized. To demonstrate the feasibility of such Cr photomasks, SU-8 micro-pillar masters were formed and replicated into PDMS to produce micron-sized filters with 3–4 µm gaps and an aspect ratio of 3. These microfilters were capable of retaining 6 µm beads within a localized site, while allowing solvent flow. The combination of nanowire arrays and micro-pillar filtration opens new perspectives for rapid R&D screening of various microfluidic-based immunoassay geometries, where analyte pre-concentration and highly sensitive, electrochemical detection can be readily co-localized. PMID:25774709

  16. The development of the experimental setup for measuring the cell membrane electrical potential by Sucrose-Gap Technique

    NASA Astrophysics Data System (ADS)

    Yuzhakov, AD; Nosarev, AV; Aleinik, AN

    2017-11-01

    This article describes the development of the experimental setup for measuring the cell membrane electrical potential by Double -Sucrose-Gap Technique. The double-gap isolation method allows the simultaneous measurement of electrical activity and tension output from contracting segments of muscle fibers. This technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations. This device can be an effective way to provide undergraduate biomedical engineering students with invaluable experiences in neurophysiology. The installation design and its main characteristics are described. The advantages of the described device are the simplicity of the experiment, relatively low cost, the possibility of long-term experiment.

  17. Valley polarization in silicene induced by circularly-polarized resonance light

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Qi, Fenghua

    2017-06-01

    In the presence of circularly-polarized resonance light, silicene develops dynamical band gaps in its quasi-energy band structure. Using numerical calculations, our results show that the gap appearing at ħω/2, where ħω is the photon energy. More importantly, we find that these gaps are non-symmetric for two inequivalent valleys. Therefore we can introduce light-controlled valley polarization in these dynamical band gaps. Different valleytronic devices can be realized using this technique.

  18. Bright Sparks of Our Future!

    NASA Astrophysics Data System (ADS)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  19. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  20. Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application

    PubMed Central

    Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su

    2014-01-01

    Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778

  1. High efficiency thin-film multiple-gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1983-01-01

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  2. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  3. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model

    NASA Astrophysics Data System (ADS)

    Eubank, Philip T.; Patel, Mukund R.; Barrufet, Maria A.; Bozkurt, Bedri

    1993-06-01

    A variable mass, cylindrical plasma model (VMCPM) is developed for sparks created by electrical discharge in a liquid media. The model consist of three differential equations—one each from fluid dynamics, an energy balance, and the radiation equation—combined with a plasma equation of state. A thermophysical property subroutine allows realistic estimation of plasma enthalpy, mass density, and particle fractions by inclusion of the heats of dissociation and ionization for a plasma created from deionized water. Problems with the zero-time boundary conditions are overcome by an electron balance procedure. Numerical solution of the model provides plasma radius, temperature, pressure, and mass as a function of pulse time for fixed current, electrode gap, and power fraction remaining in the plasma. Moderately high temperatures (≳5000 K) and pressures (≳4 bar) persist in the sparks even after long pulse times (to ˜500 μs). Quantitative proof that superheating is the dominant mechanism for electrical discharge machining (EDM) erosion is thus provided for the first time. Some quantitative inconsistencies developed between our (1) cathode, (2) anode, and (3) plasma models (this series) are discussed with indication as to how they will be rectified in a fourth article to follow shortly in this journal. While containing oversimplifications, these three models are believed to contain the respective dominant physics of the EDM process but need be brought into numerical consistency for each time increment of the numerical solution.

  4. New ZrO2/Al2O3 Nanocomposite Fabricated from Hybrid Nanoparticles Prepared by CO2 Laser Co-Vaporization

    PubMed Central

    Bartolomé, José F.; Smirnov, Anton; Kurland, Heinz-Dieter; Grabow, Janet; Müller, Frank A.

    2016-01-01

    Alumina toughened zirconia (ATZ) and zirconia toughened alumina (ZTA) are currently the materials of choice to meet the need for tough, strong, and bioinert ceramics for medical devices. However, the mechanical properties of ZrO2/Al2O3 dispersion ceramics could be considerably increased by reducing the corresponding grain sizes and by improving the homogeneity of the phase dispersion. Here, we prepare nanoparticles with an intraparticular phase distribution of Zr(1−x)AlxO(2−x/2) and (γ-, δ-)Al2O3 by the simultaneous gas phase condensation of laser co-vaporized zirconia and alumina raw powders. During subsequent spark plasma sintering the zirconia defect structures and transition alumina phases transform to a homogeneously distributed dispersion of tetragonal ZrO2 (52.4 vol%) and α-Al2O3 (47.6 vol%). Ceramics sintered by spark plasma sintering are completely dense with average grain sizes in the range around 250 nm. Outstanding mechanical properties (flexural strength σf = 1500 MPa, fracture toughness KIc = 6.8 MPa m1/2) together with a high resistance against low temperature degradation make these materials promising candidates for next generation bioceramics in total hip replacements and for dental implants. PMID:26846310

  5. Calculation of Eddy Currents In the CTH Vacuum Vessel and Coil Frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell

    2012-09-25

    Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less

  6. New ZrO2/Al2O3 Nanocomposite Fabricated from Hybrid Nanoparticles Prepared by CO2 Laser Co-Vaporization

    NASA Astrophysics Data System (ADS)

    Bartolomé, José F.; Smirnov, Anton; Kurland, Heinz-Dieter; Grabow, Janet; Müller, Frank A.

    2016-02-01

    Alumina toughened zirconia (ATZ) and zirconia toughened alumina (ZTA) are currently the materials of choice to meet the need for tough, strong, and bioinert ceramics for medical devices. However, the mechanical properties of ZrO2/Al2O3 dispersion ceramics could be considerably increased by reducing the corresponding grain sizes and by improving the homogeneity of the phase dispersion. Here, we prepare nanoparticles with an intraparticular phase distribution of Zr(1-x)AlxO(2-x/2) and (γ-, δ-)Al2O3 by the simultaneous gas phase condensation of laser co-vaporized zirconia and alumina raw powders. During subsequent spark plasma sintering the zirconia defect structures and transition alumina phases transform to a homogeneously distributed dispersion of tetragonal ZrO2 (52.4 vol%) and α-Al2O3 (47.6 vol%). Ceramics sintered by spark plasma sintering are completely dense with average grain sizes in the range around 250 nm. Outstanding mechanical properties (flexural strength σf = 1500 MPa, fracture toughness KIc = 6.8 MPa m1/2) together with a high resistance against low temperature degradation make these materials promising candidates for next generation bioceramics in total hip replacements and for dental implants.

  7. Gender differences in nurse practitioner salaries.

    PubMed

    Greene, Jessica; El-Banna, Majeda M; Briggs, Linda A; Park, Jeongyoung

    2017-11-01

    While male nurses have been shown to earn considerably more than female nurses, there is less evidence on gender disparities in salary among nurse practitioners (NPs). This study examines whether the gender gap in NP salaries persists after controlling for differences in work setting and demographic factors. We analyzed the relationship between gender and salary (2011 pretax earnings) among 6591 NPs working as NPs at least 35 h per week, using the 2012 National Sample Survey of Nurse Practitioners. We first conducted bivariate regression analyses examining the relationship between gender and earnings, and then developed a multivariate model that controlled for individual differences in demographic and work characteristics. Male NPs earned $12,859 more than female NPs, after adjusting for individual differences in demographics and work characteristics. The gender gap was $7405 for recent NP graduates, and grew over time. Male NPs earned significantly more than female NPs across all clinical specialty areas. The gender disparities in NP salaries documented here regardless of professional seniority or clinical area should spark healthcare organizations to conduct pay equity assessments of their employees' salaries to identify and ameliorate pay inequality. ©2017 American Association of Nurse Practitioners.

  8. "Participatory Cli-Fi": Crowdsourcing Voicemails from the Future to Spark Engagement and Discern Perceptions of Climate Change

    NASA Astrophysics Data System (ADS)

    Stovall, G.; Eklund, K.; Redsecker, K.; Hernandez, T.; Pfirman, S. L.; Orlove, B. S.

    2016-12-01

    Communicating climate science alone is not enough to engage the public with climate change: the gap between the abstract science and its impact on their future lives is often too great. We constructed FutureCoast, a collaborative game, to use participatory storymaking as the art that bridges that gap. The FutureCoast game pretended the voicemail system of the future "had a leak in it" and invited people to call and leave voicemail messages that seem to have leaked from the future. These crowdsourced voicemails are short first-person stories that often create complex, visceral experiences of potential climate impacts in listeners. We transcribed and coded this audio for content and affect, finding both a wide array of anticipated climate futures and trends in public sentiment about climate related impacts. Our analysis found the public engages with climate change in both rational and emotional manners which should be considered when motivating them to action. This presentation highlights our methodology and assessment of innovative gameful engagement, and summarizes how the FutureCoast "participatory cli-fi" approach has been employed in community and classroom settings after the close of the active period of the game.

  9. Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

    DTIC Science & Technology

    2014-01-13

    strength nanocrystalline Mg-alloys via cryomilling and spark - plasma - sintering , 2) demonstrate the unveil evidence of nanotwins in nanocrystalline...Christopher Melnyk, Wei H. Kao, Jenn-Ming Yang. Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy, Journal of Materials...accomplished several important milestones: 1) manufacture of high strength nanocrystalline Mg-alloys via cryomilling and spark plasma sintering (SPS

  10. Ultra-high Strength Nanostructured Mg

    DTIC Science & Technology

    2014-03-31

    27709-2211 Nanostructured Mg and Mg alloys, Mg metallic glass, Cryomilling, Powder consolidation, Spark plasma sintering , Deformation mechanisms REPORT...mechanically milled powder and high pressure on spark plasma sintering of Mg-Cu-Gd metallic glasses; (9) microstructure and mechanical behavior of Mg-10Li-3Al...pressure on spark plasma sintering of Mg– Cu–Gd metallic glasses, Acta Materialia , (07 2013): 4414. doi: Baolong Zheng, Ying Li, Weizong Xu

  11. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... following operating emission limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP...

  12. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a... stationary RICE >500 HP located at a major source of HAP emissions: For each . . . You must meet the...

  13. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... emission limitations for existing, new and reconstructed 4SRB stationary RICE at 100 percent load plus or...

  14. The secular and the supernatural: madness and psychiatry in the short stories of Muriel Spark.

    PubMed

    Beveridge, A W

    2015-01-01

    Edinburgh-born Muriel Spark is one of modern Scotland's greatest writers. Examination of her work reveals that the subjects of madness and psychiatry are recurrent themes in her writing. She herself had a mental breakdown when she was a young woman and she took an interest in the world of psychiatry and psychoanalysis. In her short stories, Spark approaches the subject of madness in a variety of ways: she relates it to the supernatural; to writing fiction; and to religion. She frequently juxtaposes secular and supernatural explanations of mental disturbance. Spark adopts a sceptical and, at times, mocking view of psychiatrists and psychiatric treatment. Both psychoanalysis and pills are seen as problematic.

  15. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2013-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by education groups at NCAR/UCAR in Boulder, primarily Spark and the COMET Program. These materials have been disseminated via Spark's web site (spark.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility. Spark has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  16. A Community-Based Approach to Developing a Mobile Device for Measuring Ambient Air Exposure, Location, and Respiratory Health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohlman, Diana; Syron, Laura; Hobbie, Kevin

    In west Eugene (Oregon), community research indicates residents are disproportionately exposed to industrial air pollution and exhibit increased asthma incidence. In Carroll County (Ohio), recent increases in unconventional natural gas drilling sparked air quality concerns. These community concerns led to the development of a prototype mobile device to measure personal chemical exposure, location, and respiratory function. Working directly with the environmental justice (EJ) communities, the prototype was developed to (1) meet the needs of the community and; (2) evaluate the use in EJ communities. The prototype was evaluated in 3 community focus groups (n=25) to obtain feedback on the prototypemore » and feasibility study design to evaluate the efficacy of the device to address community concerns. Focus groups were recorded and qualitatively analyzed with discrete feedback tabulated for further refinement. The prototype was improved by community feedback resulting in 8 alterations/additions to software and instructional materials. Overall, focus group participants were supportive of the device and believed it would be a useful environmental health tool. The use of focus groups ensured that community members were engaged in the research design and development of a novel environmental health tool. We found that community-based research strategies resulted in a refined device as well as relevant research questions, specific to the EJ community needs and concerns.« less

  17. A Community-Based Approach to Developing a Mobile Device for Measuring Ambient Air Exposure, Location, and Respiratory Health

    DOE PAGES

    Rohlman, Diana; Syron, Laura; Hobbie, Kevin; ...

    2015-08-15

    In west Eugene (Oregon), community research indicates residents are disproportionately exposed to industrial air pollution and exhibit increased asthma incidence. In Carroll County (Ohio), recent increases in unconventional natural gas drilling sparked air quality concerns. These community concerns led to the development of a prototype mobile device to measure personal chemical exposure, location, and respiratory function. Working directly with the environmental justice (EJ) communities, the prototype was developed to (1) meet the needs of the community and; (2) evaluate the use in EJ communities. The prototype was evaluated in 3 community focus groups (n=25) to obtain feedback on the prototypemore » and feasibility study design to evaluate the efficacy of the device to address community concerns. Focus groups were recorded and qualitatively analyzed with discrete feedback tabulated for further refinement. The prototype was improved by community feedback resulting in 8 alterations/additions to software and instructional materials. Overall, focus group participants were supportive of the device and believed it would be a useful environmental health tool. The use of focus groups ensured that community members were engaged in the research design and development of a novel environmental health tool. We found that community-based research strategies resulted in a refined device as well as relevant research questions, specific to the EJ community needs and concerns.« less

  18. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  19. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  20. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each ofmore » which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes« less

Top