Sample records for sparse graph counters

  1. On Edge Exchangeable Random Graphs

    NASA Astrophysics Data System (ADS)

    Janson, Svante

    2017-06-01

    We study a recent model for edge exchangeable random graphs introduced by Crane and Dempsey; in particular we study asymptotic properties of the random simple graph obtained by merging multiple edges. We study a number of examples, and show that the model can produce dense, sparse and extremely sparse random graphs. One example yields a power-law degree distribution. We give some examples where the random graph is dense and converges a.s. in the sense of graph limit theory, but also an example where a.s. every graph limit is the limit of some subsequence. Another example is sparse and yields convergence to a non-integrable generalized graphon defined on (0,∞).

  2. A critical analysis of computational protein design with sparse residue interaction graphs

    PubMed Central

    Georgiev, Ivelin S.

    2017-01-01

    Protein design algorithms enumerate a combinatorial number of candidate structures to compute the Global Minimum Energy Conformation (GMEC). To efficiently find the GMEC, protein design algorithms must methodically reduce the conformational search space. By applying distance and energy cutoffs, the protein system to be designed can thus be represented using a sparse residue interaction graph, where the number of interacting residue pairs is less than all pairs of mutable residues, and the corresponding GMEC is called the sparse GMEC. However, ignoring some pairwise residue interactions can lead to a change in the energy, conformation, or sequence of the sparse GMEC vs. the original or the full GMEC. Despite the widespread use of sparse residue interaction graphs in protein design, the above mentioned effects of their use have not been previously analyzed. To analyze the costs and benefits of designing with sparse residue interaction graphs, we computed the GMECs for 136 different protein design problems both with and without distance and energy cutoffs, and compared their energies, conformations, and sequences. Our analysis shows that the differences between the GMECs depend critically on whether or not the design includes core, boundary, or surface residues. Moreover, neglecting long-range interactions can alter local interactions and introduce large sequence differences, both of which can result in significant structural and functional changes. Designs on proteins with experimentally measured thermostability show it is beneficial to compute both the full and the sparse GMEC accurately and efficiently. To this end, we show that a provable, ensemble-based algorithm can efficiently compute both GMECs by enumerating a small number of conformations, usually fewer than 1000. This provides a novel way to combine sparse residue interaction graphs with provable, ensemble-based algorithms to reap the benefits of sparse residue interaction graphs while avoiding their potential inaccuracies. PMID:28358804

  3. Overview of Sparse Graph for Multiple Access in Future Mobile Networks

    NASA Astrophysics Data System (ADS)

    Lei, Jing; Li, Baoguo; Li, Erbao; Gong, Zhenghui

    2017-10-01

    Multiple access via sparse graph, such as low density signature (LDS) and sparse code multiple access (SCMA), is a promising technique for future wireless communications. This survey presents an overview of the developments in this burgeoning field, including transmitter structures, extrinsic information transform (EXIT) chart analysis and comparisons with existing multiple access techniques. Such technique enables multiple access under overloaded conditions to achieve a satisfactory performance. Message passing algorithm is utilized for multi-user detection in the receiver, and structures of the sparse graph are illustrated in detail. Outlooks and challenges of this technique are also presented.

  4. Disentangling giant component and finite cluster contributions in sparse random matrix spectra.

    PubMed

    Kühn, Reimer

    2016-04-01

    We describe a method for disentangling giant component and finite cluster contributions to sparse random matrix spectra, using sparse symmetric random matrices defined on Erdős-Rényi graphs as an example and test bed. Our methods apply to sparse matrices defined in terms of arbitrary graphs in the configuration model class, as long as they have finite mean degree.

  5. Return probabilities and hitting times of random walks on sparse Erdös-Rényi graphs.

    PubMed

    Martin, O C; Sulc, P

    2010-03-01

    We consider random walks on random graphs, focusing on return probabilities and hitting times for sparse Erdös-Rényi graphs. Using the tree approach, which is expected to be exact in the large graph limit, we show how to solve for the distribution of these quantities and we find that these distributions exhibit a form of self-similarity.

  6. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    PubMed

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  7. Many-core graph analytics using accelerated sparse linear algebra routines

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric

    2016-05-01

    Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.

  8. Fast generation of sparse random kernel graphs

    DOE PAGES

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less

  9. Incorporating biological information in sparse principal component analysis with application to genomic data.

    PubMed

    Li, Ziyi; Safo, Sandra E; Long, Qi

    2017-07-11

    Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks that are often represented by graphs. Recent work has shown that incorporating such biological information improves feature selection and prediction performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article, we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior biological information in variable selection. Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are suggested in the literature to be related with glioblastoma. The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior biological information in variable selection, leading to improved feature selection and more interpretable principal component loadings and potentially providing insights on molecular underpinnings of complex diseases.

  10. Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning.

    PubMed

    Li, Bing; Yuan, Chunfeng; Xiong, Weihua; Hu, Weiming; Peng, Houwen; Ding, Xinmiao; Maybank, Steve

    2017-12-01

    In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL.

  11. Group-sparse representation with dictionary learning for medical image denoising and fusion.

    PubMed

    Li, Shutao; Yin, Haitao; Fang, Leyuan

    2012-12-01

    Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.

  12. Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random fields by graph cuts

    NASA Astrophysics Data System (ADS)

    Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui

    2018-01-01

    Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.

  13. Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection.

    PubMed

    Zhu, Xiaofeng; Li, Xuelong; Zhang, Shichao; Ju, Chunhua; Wu, Xindong

    2017-06-01

    In this paper, we propose a new unsupervised spectral feature selection model by embedding a graph regularizer into the framework of joint sparse regression for preserving the local structures of data. To do this, we first extract the bases of training data by previous dictionary learning methods and, then, map original data into the basis space to generate their new representations, by proposing a novel joint graph sparse coding (JGSC) model. In JGSC, we first formulate its objective function by simultaneously taking subspace learning and joint sparse regression into account, then, design a new optimization solution to solve the resulting objective function, and further prove the convergence of the proposed solution. Furthermore, we extend JGSC to a robust JGSC (RJGSC) via replacing the least square loss function with a robust loss function, for achieving the same goals and also avoiding the impact of outliers. Finally, experimental results on real data sets showed that both JGSC and RJGSC outperformed the state-of-the-art algorithms in terms of k -nearest neighbor classification performance.

  14. Color normalization of histology slides using graph regularized sparse NMF

    NASA Astrophysics Data System (ADS)

    Sha, Lingdao; Schonfeld, Dan; Sethi, Amit

    2017-03-01

    Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.

  15. Face recognition based on two-dimensional discriminant sparse preserving projection

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Zhu, Shanan

    2018-04-01

    In this paper, a supervised dimensionality reduction algorithm named two-dimensional discriminant sparse preserving projection (2DDSPP) is proposed for face recognition. In order to accurately model manifold structure of data, 2DDSPP constructs within-class affinity graph and between-class affinity graph by the constrained least squares (LS) and l1 norm minimization problem, respectively. Based on directly operating on image matrix, 2DDSPP integrates graph embedding (GE) with Fisher criterion. The obtained projection subspace preserves within-class neighborhood geometry structure of samples, while keeping away samples from different classes. The experimental results on the PIE and AR face databases show that 2DDSPP can achieve better recognition performance.

  16. Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ming

    In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.

  17. Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Hu, Y.; Chen, J.

    2018-04-01

    Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.

  18. Partitioning sparse matrices with eigenvectors of graphs

    NASA Technical Reports Server (NTRS)

    Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu

    1990-01-01

    The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.

  19. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.

    2017-12-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  20. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari

    2017-07-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  1. Sparse dictionary learning for resting-state fMRI analysis

    NASA Astrophysics Data System (ADS)

    Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul

    2011-09-01

    Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.

  2. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  3. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE PAGES

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin; ...

    2017-07-10

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  4. Structured sparse linear graph embedding.

    PubMed

    Wang, Haixian

    2012-03-01

    Subspace learning is a core issue in pattern recognition and machine learning. Linear graph embedding (LGE) is a general framework for subspace learning. In this paper, we propose a structured sparse extension to LGE (SSLGE) by introducing a structured sparsity-inducing norm into LGE. Specifically, SSLGE casts the projection bases learning into a regression-type optimization problem, and then the structured sparsity regularization is applied to the regression coefficients. The regularization selects a subset of features and meanwhile encodes high-order information reflecting a priori structure information of the data. The SSLGE technique provides a unified framework for discovering structured sparse subspace. Computationally, by using a variational equality and the Procrustes transformation, SSLGE is efficiently solved with closed-form updates. Experimental results on face image show the effectiveness of the proposed method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.

    PubMed

    Peng, Yong; Lu, Bao-Liang; Wang, Suhang

    2015-05-01

    Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering.

    PubMed

    Peng, Xi; Yu, Zhiding; Yi, Zhang; Tang, Huajin

    2017-04-01

    Under the framework of graph-based learning, the key to robust subspace clustering and subspace learning is to obtain a good similarity graph that eliminates the effects of errors and retains only connections between the data points from the same subspace (i.e., intrasubspace data points). Recent works achieve good performance by modeling errors into their objective functions to remove the errors from the inputs. However, these approaches face the limitations that the structure of errors should be known prior and a complex convex problem must be solved. In this paper, we present a novel method to eliminate the effects of the errors from the projection space (representation) rather than from the input space. We first prove that l 1 -, l 2 -, l ∞ -, and nuclear-norm-based linear projection spaces share the property of intrasubspace projection dominance, i.e., the coefficients over intrasubspace data points are larger than those over intersubspace data points. Based on this property, we introduce a method to construct a sparse similarity graph, called L2-graph. The subspace clustering and subspace learning algorithms are developed upon L2-graph. We conduct comprehensive experiment on subspace learning, image clustering, and motion segmentation and consider several quantitative benchmarks classification/clustering accuracy, normalized mutual information, and running time. Results show that L2-graph outperforms many state-of-the-art methods in our experiments, including L1-graph, low rank representation (LRR), and latent LRR, least square regression, sparse subspace clustering, and locally linear representation.

  7. A global/local affinity graph for image segmentation.

    PubMed

    Xiaofang Wang; Yuxing Tang; Masnou, Simon; Liming Chen

    2015-04-01

    Construction of a reliable graph capturing perceptual grouping cues of an image is fundamental for graph-cut based image segmentation methods. In this paper, we propose a novel sparse global/local affinity graph over superpixels of an input image to capture both short- and long-range grouping cues, and thereby enabling perceptual grouping laws, including proximity, similarity, continuity, and to enter in action through a suitable graph-cut algorithm. Moreover, we also evaluate three major visual features, namely, color, texture, and shape, for their effectiveness in perceptual segmentation and propose a simple graph fusion scheme to implement some recent findings from psychophysics, which suggest combining these visual features with different emphases for perceptual grouping. In particular, an input image is first oversegmented into superpixels at different scales. We postulate a gravitation law based on empirical observations and divide superpixels adaptively into small-, medium-, and large-sized sets. Global grouping is achieved using medium-sized superpixels through a sparse representation of superpixels' features by solving a ℓ0-minimization problem, and thereby enabling continuity or propagation of local smoothness over long-range connections. Small- and large-sized superpixels are then used to achieve local smoothness through an adjacent graph in a given feature space, and thus implementing perceptual laws, for example, similarity and proximity. Finally, a bipartite graph is also introduced to enable propagation of grouping cues between superpixels of different scales. Extensive experiments are carried out on the Berkeley segmentation database in comparison with several state-of-the-art graph constructions. The results show the effectiveness of the proposed approach, which outperforms state-of-the-art graphs using four different objective criteria, namely, the probabilistic rand index, the variation of information, the global consistency error, and the boundary displacement error.

  8. Graph cuts via l1 norm minimization.

    PubMed

    Bhusnurmath, Arvind; Taylor, Camillo J

    2008-10-01

    Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.

  9. Communication: Analysing kinetic transition networks for rare events.

    PubMed

    Stevenson, Jacob D; Wales, David J

    2014-07-28

    The graph transformation approach is a recently proposed method for computing mean first passage times, rates, and committor probabilities for kinetic transition networks. Here we compare the performance to existing linear algebra methods, focusing on large, sparse networks. We show that graph transformation provides a much more robust framework, succeeding when numerical precision issues cause the other methods to fail completely. These are precisely the situations that correspond to rare event dynamics for which the graph transformation was introduced.

  10. Sparse graph regularization for robust crop mapping using hyperspectral remotely sensed imagery with very few in situ data

    NASA Astrophysics Data System (ADS)

    Xue, Zhaohui; Du, Peijun; Li, Jun; Su, Hongjun

    2017-02-01

    The generally limited availability of training data relative to the usually high data dimension pose a great challenge to accurate classification of hyperspectral imagery, especially for identifying crops characterized with highly correlated spectra. However, traditional parametric classification models are problematic due to the need of non-singular class-specific covariance matrices. In this research, a novel sparse graph regularization (SGR) method is presented, aiming at robust crop mapping using hyperspectral imagery with very few in situ data. The core of SGR lies in propagating labels from known data to unknown, which is triggered by: (1) the fraction matrix generated for the large unknown data by using an effective sparse representation algorithm with respect to the few training data serving as the dictionary; (2) the prediction function estimated for the few training data by formulating a regularization model based on sparse graph. Then, the labels of large unknown data can be obtained by maximizing the posterior probability distribution based on the two ingredients. SGR is more discriminative, data-adaptive, robust to noise, and efficient, which is unique with regard to previously proposed approaches and has high potentials in discriminating crops, especially when facing insufficient training data and high-dimensional spectral space. The study area is located at Zhangye basin in the middle reaches of Heihe watershed, Gansu, China, where eight crop types were mapped with Compact Airborne Spectrographic Imager (CASI) and Shortwave Infrared Airborne Spectrogrpahic Imager (SASI) hyperspectral data. Experimental results demonstrate that the proposed method significantly outperforms other traditional and state-of-the-art methods.

  11. Information-optimal genome assembly via sparse read-overlap graphs.

    PubMed

    Shomorony, Ilan; Kim, Samuel H; Courtade, Thomas A; Tse, David N C

    2016-09-01

    In the context of third-generation long-read sequencing technologies, read-overlap-based approaches are expected to play a central role in the assembly step. A fundamental challenge in assembling from a read-overlap graph is that the true sequence corresponds to a Hamiltonian path on the graph, and, under most formulations, the assembly problem becomes NP-hard, restricting practical approaches to heuristics. In this work, we avoid this seemingly fundamental barrier by first setting the computational complexity issue aside, and seeking an algorithm that targets information limits In particular, we consider a basic feasibility question: when does the set of reads contain enough information to allow unambiguous reconstruction of the true sequence? Based on insights from this information feasibility question, we present an algorithm-the Not-So-Greedy algorithm-to construct a sparse read-overlap graph. Unlike most other assembly algorithms, Not-So-Greedy comes with a performance guarantee: whenever information feasibility conditions are satisfied, the algorithm reduces the assembly problem to an Eulerian path problem on the resulting graph, and can thus be solved in linear time. In practice, this theoretical guarantee translates into assemblies of higher quality. Evaluations on both simulated reads from real genomes and a PacBio Escherichia coli K12 dataset demonstrate that Not-So-Greedy compares favorably with standard string graph approaches in terms of accuracy of the resulting read-overlap graph and contig N50. Available at github.com/samhykim/nsg courtade@eecs.berkeley.edu or dntse@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Concurrent Tumor Segmentation and Registration with Uncertainty-based Sparse non-Uniform Graphs

    PubMed Central

    Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos

    2014-01-01

    In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. PMID:24717540

  13. Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation

    PubMed Central

    Lee, Jae H.; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho

    2014-01-01

    The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting. PMID:27081299

  14. Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation.

    PubMed

    Lee, Jae H; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho

    2014-11-01

    The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.

  15. Communication requirements of sparse Cholesky factorization with nested dissection ordering

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Patrick, Merrell L.

    1989-01-01

    Load distribution schemes for minimizing the communication requirements of the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems are presented. The total data traffic in factoring an n x n sparse symmetric positive definite matrix representing an n-vertex regular two-dimensional grid graph using n exp alpha, alpha not greater than 1, processors are shown to be O(n exp 1 + alpha/2). It is O(n), when n exp alpha, alpha not smaller than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal.

  16. Counting the number of Feynman graphs in QCD

    NASA Astrophysics Data System (ADS)

    Kaneko, T.

    2018-05-01

    Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.

  17. Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Hendrickson; T.G. Kolda

    1998-09-01

    A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.

  18. An exact formulation of the time-ordered exponential using path-sums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giscard, P.-L., E-mail: p.giscard1@physics.ox.ac.uk; Lui, K.; Thwaite, S. J.

    2015-05-15

    We present the path-sum formulation for the time-ordered exponential of a time-dependent matrix. The path-sum formulation gives the time-ordered exponential as a branched continued fraction of finite depth and breadth. The terms of the path-sum have an elementary interpretation as self-avoiding walks and self-avoiding polygons on a graph. Our result is based on a representation of the time-ordered exponential as the inverse of an operator, the mapping of this inverse to sums of walks on a graphs, and the algebraic structure of sets of walks. We give examples demonstrating our approach. We establish a super-exponential decay bound for the magnitudemore » of the entries of the time-ordered exponential of sparse matrices. We give explicit results for matrices with commonly encountered sparse structures.« less

  19. Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.

    PubMed

    Lee, Young-Beom; Lee, Jeonghyeon; Tak, Sungho; Lee, Kangjoo; Na, Duk L; Seo, Sang Won; Jeong, Yong; Ye, Jong Chul

    2016-01-15

    Recent studies of functional connectivity MR imaging have revealed that the default-mode network activity is disrupted in diseases such as Alzheimer's disease (AD). However, there is not yet a consensus on the preferred method for resting-state analysis. Because the brain is reported to have complex interconnected networks according to graph theoretical analysis, the independency assumption, as in the popular independent component analysis (ICA) approach, often does not hold. Here, rather than using the independency assumption, we present a new statistical parameter mapping (SPM)-type analysis method based on a sparse graph model where temporal dynamics at each voxel position are described as a sparse combination of global brain dynamics. In particular, a new concept of a spatially adaptive design matrix has been proposed to represent local connectivity that shares the same temporal dynamics. If we further assume that local network structures within a group are similar, the estimation problem of global and local dynamics can be solved using sparse dictionary learning for the concatenated temporal data across subjects. Moreover, under the homoscedasticity variance assumption across subjects and groups that is often used in SPM analysis, the aforementioned individual and group analyses using sparse dictionary learning can be accurately modeled by a mixed-effect model, which also facilitates a standard SPM-type group-level inference using summary statistics. Using an extensive resting fMRI data set obtained from normal, mild cognitive impairment (MCI), and Alzheimer's disease patient groups, we demonstrated that the changes in the default mode network extracted by the proposed method are more closely correlated with the progression of Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Eigenvector synchronization, graph rigidity and the molecule problemR

    PubMed Central

    Cucuringu, Mihai; Singer, Amit; Cowburn, David

    2013-01-01

    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend the previous work and propose the 3D-As-Synchronized-As-Possible (3D-ASAP) algorithm, for the graph realization problem in ℝ3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch, there corresponds an element of the Euclidean group, Euc(3), of rigid transformations in ℝ3, and the goal was to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-spectral-partitioning (SP)-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a pre-processing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably with similar state-of-the-art localization algorithms. PMID:24432187

  1. Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Trott, Christian Robert; Rajamanickam, Sivasankaran

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  2. Efficient Extraction of High Centrality Vertices in Distributed Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumbhare, Alok; Frincu, Marc; Raghavendra, Cauligi S.

    2014-09-09

    Betweenness centrality (BC) is an important measure for identifying high value or critical vertices in graphs, in variety of domains such as communication networks, road networks, and social graphs. However, calculating betweenness values is prohibitively expensive and, more often, domain experts are interested only in the vertices with the highest centrality values. In this paper, we first propose a partition-centric algorithm (MS-BC) to calculate BC for a large distributed graph that optimizes resource utilization and improves overall performance. Further, we extend the notion of approximate BC by pruning the graph and removing a subset of edges and vertices that contributemore » the least to the betweenness values of other vertices (MSL-BC), which further improves the runtime performance. We evaluate the proposed algorithms using a mix of real-world and synthetic graphs on an HPC cluster and analyze its strengths and weaknesses. The experimental results show an improvement in performance of upto 12x for large sparse graphs as compared to the state-of-the-art, and at the same time highlights the need for better partitioning methods to enable a balanced workload across partitions for unbalanced graphs such as small-world or power-law graphs.« less

  3. Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.

    PubMed

    Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos

    2014-05-01

    In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  5. Communication Optimal Parallel Multiplication of Sparse Random Matrices

    DTIC Science & Technology

    2013-02-21

    Definition 2.1), and (2) the algorithm is sparsity- independent, where the computation is statically partitioned to processors independent of the sparsity...struc- ture of the input matrices (see Definition 2.5). The second assumption applies to nearly all existing al- gorithms for general sparse matrix-matrix...where A and B are n× n ER(d) matrices: Definition 2.1 An ER(d) matrix is an adjacency matrix of an Erdős-Rényi graph with parameters n and d/n. That

  6. Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time

    DTIC Science & Technology

    2011-01-01

    523 10 Arabisopsis thaliana 1745 3098 71 12 Drosophila melanogaster 7282 24894 176 12 Homo Sapiens 9527 31182 308 12 Schizosaccharomyces pombe 2031...clusters of actors [6,14,28,40] and may be used as features in exponential random graph models for statistical analysis of social networks [17,19,20,44,49...29. R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Patt. An. Mach. Int. 11(11):1168–1180

  7. Subspace Clustering via Learning an Adaptive Low-Rank Graph.

    PubMed

    Yin, Ming; Xie, Shengli; Wu, Zongze; Zhang, Yun; Gao, Junbin

    2018-08-01

    By using a sparse representation or low-rank representation of data, the graph-based subspace clustering has recently attracted considerable attention in computer vision, given its capability and efficiency in clustering data. However, the graph weights built using the representation coefficients are not the exact ones as the traditional definition is in a deterministic way. The two steps of representation and clustering are conducted in an independent manner, thus an overall optimal result cannot be guaranteed. Furthermore, it is unclear how the clustering performance will be affected by using this graph. For example, the graph parameters, i.e., the weights on edges, have to be artificially pre-specified while it is very difficult to choose the optimum. To this end, in this paper, a novel subspace clustering via learning an adaptive low-rank graph affinity matrix is proposed, where the affinity matrix and the representation coefficients are learned in a unified framework. As such, the pre-computed graph regularizer is effectively obviated and better performance can be achieved. Experimental results on several famous databases demonstrate that the proposed method performs better against the state-of-the-art approaches, in clustering.

  8. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2016-04-12

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  9. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2015-01-27

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  10. Co-clustering directed graphs to discover asymmetries and directional communities

    PubMed Central

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-01-01

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim. To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction. PMID:27791058

  11. Co-clustering directed graphs to discover asymmetries and directional communities.

    PubMed

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-10-21

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction.

  12. Coherent structure coloring: identification of coherent structures from sparse flow trajectories using graph theory

    NASA Astrophysics Data System (ADS)

    Schlueter, Kristy; Dabiri, John

    2016-11-01

    Coherent structure identification is important in many fluid dynamics applications, including transport phenomena in ocean flows and mixing and diffusion in turbulence. However, many of the techniques currently available for measuring such flows, including ocean drifter datasets and particle tracking velocimetry, only result in sparse velocity data. This is often insufficient for the use of current coherent structure detection algorithms based on analysis of the deformation gradient. Here, we present a frame-invariant method for detecting coherent structures from Lagrangian flow trajectories that can be sparse in number. The method, based on principles used in graph coloring algorithms, examines a measure of the kinematic dissimilarity of all pairs of flow trajectories, either measured experimentally, e.g. using particle tracking velocimetry; or numerically, by advecting fluid particles in the Eulerian velocity field. Coherence is assigned to groups of particles whose kinematics remain similar throughout the time interval for which trajectory data is available, regardless of their physical proximity to one another. Through the use of several analytical and experimental validation cases, this algorithm is shown to robustly detect coherent structures using significantly less flow data than is required by existing methods. This research was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  13. A new scheduling algorithm for parallel sparse LU factorization with static pivoting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigori, Laura; Li, Xiaoye S.

    2002-08-20

    In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.

  14. Phase-locked patterns of the Kuramoto model on 3-regular graphs

    NASA Astrophysics Data System (ADS)

    DeVille, Lee; Ermentrout, Bard

    2016-09-01

    We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.

  15. Phase-locked patterns of the Kuramoto model on 3-regular graphs.

    PubMed

    DeVille, Lee; Ermentrout, Bard

    2016-09-01

    We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.

  16. High-order graph matching based feature selection for Alzheimer's disease identification.

    PubMed

    Liu, Feng; Suk, Heung-Il; Wee, Chong-Yaw; Chen, Huafu; Shen, Dinggang

    2013-01-01

    One of the main limitations of l1-norm feature selection is that it focuses on estimating the target vector for each sample individually without considering relations with other samples. However, it's believed that the geometrical relation among target vectors in the training set may provide useful information, and it would be natural to expect that the predicted vectors have similar geometric relations as the target vectors. To overcome these limitations, we formulate this as a graph-matching feature selection problem between a predicted graph and a target graph. In the predicted graph a node is represented by predicted vector that may describe regional gray matter volume or cortical thickness features, and in the target graph a node is represented by target vector that include class label and clinical scores. In particular, we devise new regularization terms in sparse representation to impose high-order graph matching between the target vectors and the predicted ones. Finally, the selected regional gray matter volume and cortical thickness features are fused in kernel space for classification. Using the ADNI dataset, we evaluate the effectiveness of the proposed method and obtain the accuracies of 92.17% and 81.57% in AD and MCI classification, respectively.

  17. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks

    PubMed Central

    Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts. PMID:29051730

  18. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    PubMed

    Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.

  19. A new approach for solving seismic tomography problems and assessing the uncertainty through the use of graph theory and direct methods

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.; Davis, T. A.

    2016-12-01

    Seismic tomography inverse problems are among the largest high-dimensional parameter estimation tasks in Earth science. We show how combinatorics and graph theory can be used to analyze the structure of such problems, and to effectively decompose them into smaller ones that can be solved efficiently by means of the least squares method. In combination with recent high performance direct sparse algorithms, this reduction in dimensionality allows for an efficient computation of the model resolution and covariance matrices using limited resources. Furthermore, we show that a new sparse singular value decomposition method can be used to obtain the complete spectrum of the singular values. This procedure provides the means for more objective regularization and further dimensionality reduction of the problem. We apply this methodology to a moderate size, non-linear seismic tomography problem to image the structure of the crust and the upper mantle beneath Japan using local deep earthquakes recorded by the High Sensitivity Seismograph Network stations.

  20. Massively parallel sparse matrix function calculations with NTPoly

    NASA Astrophysics Data System (ADS)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  1. Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Rajamanickam, Sivasankaran; Trott, Christian Robert

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  2. Large-scale DCMs for resting-state fMRI.

    PubMed

    Razi, Adeel; Seghier, Mohamed L; Zhou, Yuan; McColgan, Peter; Zeidman, Peter; Park, Hae-Jeong; Sporns, Olaf; Rees, Geraint; Friston, Karl J

    2017-01-01

    This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity . This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeling (DCM) to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of to discover the most likely sparse graph (or model) from a parent (e.g., fully connected) graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity) graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM-with functional connectivity priors-is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.

  3. Information jet: Handling noisy big data from weakly disconnected network

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    Sudden aggregation (information jet) of large amount of data is ubiquitous around connected social networks, driven by sudden interacting and non-interacting events, network security threat attacks, online sales channel etc. Clustering of information jet based on time series analysis and graph theory is not new but little work is done to connect them with particle jet statistics. We show pre-clustering based on context can element soft network or network of information which is critical to minimize time to calculate results from noisy big data. We show difference between, stochastic gradient boosting and time series-graph clustering. For disconnected higher dimensional information jet, we use Kallenberg representation theorem (Kallenberg, 2005, arXiv:1401.1137) to identify and eliminate jet similarities from dense or sparse graph.

  4. Computing sparse derivatives and consecutive zeros problem

    NASA Astrophysics Data System (ADS)

    Chandra, B. V. Ravi; Hossain, Shahadat

    2013-02-01

    We describe a substitution based sparse Jacobian matrix determination method using algorithmic differentiation. Utilizing the a priori known sparsity pattern, a compression scheme is determined using graph coloring. The "compressed pattern" of the Jacobian matrix is then reordered into a form suitable for computation by substitution. We show that the column reordering of the compressed pattern matrix (so as to align the zero entries into consecutive locations in each row) can be viewed as a variant of traveling salesman problem. Preliminary computational results show that on the test problems the performance of nearest-neighbor type heuristic algorithms is highly encouraging.

  5. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-05-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  6. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-06-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  7. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.

    PubMed

    Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio

    2018-06-19

    Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.

  8. Non-convex Statistical Optimization for Sparse Tensor Graphical Model

    PubMed Central

    Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang

    2016-01-01

    We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies. PMID:28316459

  9. Approximate Locality for Quantum Systems on Graphs

    NASA Astrophysics Data System (ADS)

    Osborne, Tobias J.

    2008-10-01

    In this Letter we make progress on a long-standing open problem of Aaronson and Ambainis [Theory Comput. 1, 47 (2005)1557-2862]: we show that if U is a sparse unitary operator with a gap Δ in its spectrum, then there exists an approximate logarithm H of U which is also sparse. The sparsity pattern of H gets more dense as 1/Δ increases. This result can be interpreted as a way to convert between local continuous-time and local discrete-time quantum processes. As an example we show that the discrete-time coined quantum walk can be realized stroboscopically from an approximately local continuous-time quantum walk.

  10. Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines

    PubMed Central

    Zhang, Kai; Lan, Liang; Kwok, James T.; Vucetic, Slobodan; Parvin, Bahram

    2014-01-01

    When the amount of labeled data are limited, semi-supervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via ℓ1-regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning. PMID:25720002

  11. High-Performance Data Analytics Beyond the Relational and Graph Data Models with GEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellana, Vito G.; Minutoli, Marco; Bhatt, Shreyansh

    Graphs represent an increasingly popular data model for data-analytics, since they can naturally represent relationships and interactions between entities. Relational databases and their pure table-based data model are not well suitable to store and process sparse data. Consequently, graph databases have gained interest in the last few years and the Resource Description Framework (RDF) became the standard data model for graph data. Nevertheless, while RDF is well suited to analyze the relationships between the entities, it is not efficient in representing their attributes and properties. In this work we propose the adoption of a new hybrid data model, based onmore » attributed graphs, that aims at overcoming the limitations of the pure relational and graph data models. We present how we have re-designed the GEMS data-analytics framework to fully take advantage of the proposed hybrid data model. To improve analysts productivity, in addition to a C++ API for applications development, we adopt GraQL as input query language. We validate our approach implementing a set of queries on net-flow data and we compare our framework performance against Neo4j. Experimental results show significant performance improvement over Neo4j, up to several orders of magnitude when increasing the size of the input data.« less

  12. Combat Identification Modeling Using Neural Networks Techniques

    DTIC Science & Technology

    2009-03-01

    Ybarvector SSpe ANOVA Xhatp; clear Yhatp U Z xi xerror yerror Tcrit BoxCoxusedlamda BoxCoxusedlog; clear leveragepoints Cooks DFFITS Cooksinfluence...counter lofFo e; clear lofFpvalue SSlof SSpe StdErr To Tstat Tpvalue Bhat Rstud I VIF; clear invR Tcrit X LofFit ALLREG BOXCOX GRAPHS globalp Warnng

  13. Coloring geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyzemore » the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.« less

  14. A high-capacity model for one shot association learning in the brain

    PubMed Central

    Einarsson, Hafsteinn; Lengler, Johannes; Steger, Angelika

    2014-01-01

    We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs. PMID:25426060

  15. A high-capacity model for one shot association learning in the brain.

    PubMed

    Einarsson, Hafsteinn; Lengler, Johannes; Steger, Angelika

    2014-01-01

    We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs.

  16. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    PubMed Central

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  17. Action Recognition Using Nonnegative Action Component Representation and Sparse Basis Selection.

    PubMed

    Wang, Haoran; Yuan, Chunfeng; Hu, Weiming; Ling, Haibin; Yang, Wankou; Sun, Changyin

    2014-02-01

    In this paper, we propose using high-level action units to represent human actions in videos and, based on such units, a novel sparse model is developed for human action recognition. There are three interconnected components in our approach. First, we propose a new context-aware spatial-temporal descriptor, named locally weighted word context, to improve the discriminability of the traditionally used local spatial-temporal descriptors. Second, from the statistics of the context-aware descriptors, we learn action units using the graph regularized nonnegative matrix factorization, which leads to a part-based representation and encodes the geometrical information. These units effectively bridge the semantic gap in action recognition. Third, we propose a sparse model based on a joint l2,1-norm to preserve the representative items and suppress noise in the action units. Intuitively, when learning the dictionary for action representation, the sparse model captures the fact that actions from the same class share similar units. The proposed approach is evaluated on several publicly available data sets. The experimental results and analysis clearly demonstrate the effectiveness of the proposed approach.

  18. Scalable Static and Dynamic Community Detection Using Grappolo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halappanavar, Mahantesh; Lu, Hao; Kalyanaraman, Anantharaman

    Graph clustering, popularly known as community detection, is a fundamental kernel for several applications of relevance to the Defense Advanced Research Projects Agency’s (DARPA) Hierarchical Identify Verify Exploit (HIVE) Pro- gram. Clusters or communities represent natural divisions within a network that are densely connected within a cluster and sparsely connected to the rest of the network. The need to compute clustering on large scale data necessitates the development of efficient algorithms that can exploit modern architectures that are fundamentally parallel in nature. How- ever, due to their irregular and inherently sequential nature, many of the current algorithms for community detectionmore » are challenging to parallelize. In response to the HIVE Graph Challenge, we present several parallelization heuristics for fast community detection using the Louvain method as the serial template. We implement all the heuristics in a software library called Grappolo. Using the inputs from the HIVE Challenge, we demonstrate superior performance and high quality solutions based on four parallelization heuristics. We use Grappolo on static graphs as the first step towards community detection on streaming graphs.« less

  19. Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.

    PubMed

    Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo

    2017-07-01

    Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.

  20. An Efficient Scheme for Updating Sparse Cholesky Factors

    NASA Technical Reports Server (NTRS)

    Raghavan, Padma

    2002-01-01

    Raghavan had earlier developed the software package DCSPACK which can be used for solving sparse linear systems where the coefficient matrix is symmetric and positive definite (this project was not funded by NASA but by agencies such as NSF). DSCPACK-S is the serial code and DSCPACK-P is a parallel implementation suitable for multiprocessors or networks-of-workstations with message passing using MCI. The main algorithm used is the Cholesky factorization of a sparse symmetric positive positive definite matrix A = LL(T). The code can also compute the factorization A = LDL(T). The complexity of the software arises from several factors relating to the sparsity of the matrix A. A sparse N x N matrix A has typically less that cN nonzeroes where c is a small constant. If the matrix were dense, it would have O(N2) nonzeroes. The most complicated part of such sparse Cholesky factorization relates to fill-in, i.e., zeroes in the original matrix that become nonzeroes in the factor L. An efficient implementation depends to a large extent on complex data structures and on techniques from graph theory to reduce, identify, and manage fill. DSCPACK is based on an efficient multifrontal implementation with fill-managing algorithms and implementation arising from earlier research by Raghavan and others. Sparse Cholesky factorization is typically a four step process: (1) ordering to compute a fill-reducing numbering, (2) symbolic factorization to determine the nonzero structure of L, (3) numeric factorization to compute L, and, (4) triangular solution to solve L(T)x = y and Ly = b. The first two steps are symbolic and are performed using the graph of the matrix. The numeric factorization step is of dominant cost and there are several schemes for improving performance by exploiting the nested and dense structure of groups of columns in the factor. The latter are aimed at better utilization of the cache-memory hierarchy on modem processors to prevent cache-misses and provide execution rates (operations/second) that are close to the peak rates for dense matrix computations. Currently, EPISCOPACY is being used in an application at NASA directed by J. Newman and M. James. We propose the implementation of efficient schemes for updating the LL(T) or LDL(T) factors computed in DSCPACK-S to meet the computational requirements of their project. A brief description is provided in the next section.

  1. Local Table Condensation in Rough Set Approach for Jumping Emerging Pattern Induction

    NASA Astrophysics Data System (ADS)

    Terlecki, Pawel; Walczak, Krzysztof

    This paper extends the rough set approach for JEP induction based on the notion of a condensed decision table. The original transaction database is transformed to a relational form and patterns are induced by means of local reducts. The transformation employs an item aggregation obtained by coloring a graph that re0ects con0icts among items. For e±ciency reasons we propose to perform this preprocessing locally, i.e. at the transaction level, to achieve a higher dimensionality gain. Special maintenance strategy is also used to avoid graph rebuilds. Both global and local approach have been tested and discussed for dense and synthetically generated sparse datasets.

  2. Enforced Sparse Non-Negative Matrix Factorization

    DTIC Science & Technology

    2016-01-23

    documents to find interesting pieces of information. With limited resources, analysts often employ automated text - mining tools that highlight common...represented as an undirected bipartite graph. It has become a common method for generating topic models of text data because it is known to produce good results...model and the convergence rate of the underlying algorithm. I. Introduction A common analyst challenge is searching through large quantities of text

  3. Data traffic reduction schemes for sparse Cholesky factorizations

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Patrick, Merrell L.

    1988-01-01

    Load distribution schemes are presented which minimize the total data traffic in the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems with local and shared memory. The total data traffic in factoring an n x n sparse, symmetric, positive definite matrix representing an n-vertex regular 2-D grid graph using n (sup alpha), alpha is equal to or less than 1, processors are shown to be O(n(sup 1 + alpha/2)). It is O(n(sup 3/2)), when n (sup alpha), alpha is equal to or greater than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal. The schemes allow efficient use of up to O(n) processors before the total data traffic reaches the maximum value of O(n(sup 3/2)). The partitioning employed within the scheme, allows a better utilization of the data accessed from shared memory than those of previously published methods.

  4. A Partitioning Algorithm for Block-Diagonal Matrices With Overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy Antoine Atenekeng Kahou; Laura Grigori; Masha Sosonkina

    2008-02-02

    We present a graph partitioning algorithm that aims at partitioning a sparse matrix into a block-diagonal form, such that any two consecutive blocks overlap. We denote this form of the matrix as the overlapped block-diagonal matrix. The partitioned matrix is suitable for applying the explicit formulation of Multiplicative Schwarz preconditioner (EFMS) described in [3]. The graph partitioning algorithm partitions the graph of the input matrix into K partitions, such that every partition {Omega}{sub i} has at most two neighbors {Omega}{sub i-1} and {Omega}{sub i+1}. First, an ordering algorithm, such as the reverse Cuthill-McKee algorithm, that reduces the matrix profile ismore » performed. An initial overlapped block-diagonal partition is obtained from the profile of the matrix. An iterative strategy is then used to further refine the partitioning by allowing nodes to be transferred between neighboring partitions. Experiments are performed on matrices arising from real-world applications to show the feasibility and usefulness of this approach.« less

  5. Task Parallel Incomplete Cholesky Factorization using 2D Partitioned-Block Layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyungjoo; Rajamanickam, Sivasankaran; Stelle, George Widgery

    We introduce a task-parallel algorithm for sparse incomplete Cholesky factorization that utilizes a 2D sparse partitioned-block layout of a matrix. Our factorization algorithm follows the idea of algorithms-by-blocks by using the block layout. The algorithm-byblocks approach induces a task graph for the factorization. These tasks are inter-related to each other through their data dependences in the factorization algorithm. To process the tasks on various manycore architectures in a portable manner, we also present a portable tasking API that incorporates different tasking backends and device-specific features using an open-source framework for manycore platforms i.e., Kokkos. A performance evaluation is presented onmore » both Intel Sandybridge and Xeon Phi platforms for matrices from the University of Florida sparse matrix collection to illustrate merits of the proposed task-based factorization. Experimental results demonstrate that our task-parallel implementation delivers about 26.6x speedup (geometric mean) over single-threaded incomplete Choleskyby- blocks and 19.2x speedup over serial Cholesky performance which does not carry tasking overhead using 56 threads on the Intel Xeon Phi processor for sparse matrices arising from various application problems.« less

  6. Multilabel user classification using the community structure of online networks

    PubMed Central

    Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user’s graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score. PMID:28278242

  7. Multilabel user classification using the community structure of online networks.

    PubMed

    Rizos, Georgios; Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  8. Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia

    NASA Astrophysics Data System (ADS)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.

  9. Sparsely-synchronized brain rhythm in a small-world neural network

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2013-07-01

    Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling ( i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and wiring cost.

  10. Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.

    PubMed

    Li, Shuang; Liu, Bing; Zhang, Chen

    2016-01-01

    Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.

  11. A Grassmann graph embedding framework for gait analysis

    NASA Astrophysics Data System (ADS)

    Connie, Tee; Goh, Michael Kah Ong; Teoh, Andrew Beng Jin

    2014-12-01

    Gait recognition is important in a wide range of monitoring and surveillance applications. Gait information has often been used as evidence when other biometrics is indiscernible in the surveillance footage. Building on recent advances of the subspace-based approaches, we consider the problem of gait recognition on the Grassmann manifold. We show that by embedding the manifold into reproducing kernel Hilbert space and applying the mechanics of graph embedding on such manifold, significant performance improvement can be obtained. In this work, the gait recognition problem is studied in a unified way applicable for both supervised and unsupervised configurations. Sparse representation is further incorporated in the learning mechanism to adaptively harness the local structure of the data. Experiments demonstrate that the proposed method can tolerate variations in appearance for gait identification effectively.

  12. Building dynamic population graph for accurate correspondence detection.

    PubMed

    Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang

    2015-12-01

    In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Predicting and Detecting Emerging Cyberattack Patterns Using StreamWorks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Choudhury, Sutanay; Feo, John T.

    2014-06-30

    The number and sophistication of cyberattacks on industries and governments have dramatically grown in recent years. To counter this movement, new advanced tools and techniques are needed to detect cyberattacks in their early stages such that defensive actions may be taken to avert or mitigate potential damage. From a cybersecurity analysis perspective, detecting cyberattacks may be cast as a problem of identifying patterns in computer network traffic. Logically and intuitively, these patterns may take on the form of a directed graph that conveys how an attack or intrusion propagates through the computers of a network. Such cyberattack graphs could providemore » cybersecurity analysts with powerful conceptual representations that are natural to express and analyze. We have been researching and developing graph-centric approaches and algorithms for dynamic cyberattack detection. The advanced dynamic graph algorithms we are developing will be packaged into a streaming network analysis framework known as StreamWorks. With StreamWorks, a scientist or analyst may detect and identify precursor events and patterns as they emerge in complex networks. This analysis framework is intended to be used in a dynamic environment where network data is streamed in and is appended to a large-scale dynamic graph. Specific graphical query patterns are decomposed and collected into a graph query library. The individual decomposed subpatterns in the library are continuously and efficiently matched against the dynamic graph as it evolves to identify and detect early, partial subgraph patterns. The scalable emerging subgraph pattern algorithms will match on both structural and semantic network properties.« less

  14. Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency.

    PubMed

    Zhang, Ying-Ying; Yang, Cai; Zhang, Ping

    2017-05-01

    In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Model validation of simple-graph representations of metabolism

    PubMed Central

    Holme, Petter

    2009-01-01

    The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012

  16. SD-SEM: sparse-dense correspondence for 3D reconstruction of microscopic samples.

    PubMed

    Baghaie, Ahmadreza; Tafti, Ahmad P; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-06-01

    Scanning electron microscopy (SEM) imaging has been a principal component of many studies in biomedical, mechanical, and materials sciences since its emergence. Despite the high resolution of captured images, they remain two-dimensional (2D). In this work, a novel framework using sparse-dense correspondence is introduced and investigated for 3D reconstruction of stereo SEM images. SEM micrographs from microscopic samples are captured by tilting the specimen stage by a known angle. The pair of SEM micrographs is then rectified using sparse scale invariant feature transform (SIFT) features/descriptors and a contrario RANSAC for matching outlier removal to ensure a gross horizontal displacement between corresponding points. This is followed by dense correspondence estimation using dense SIFT descriptors and employing a factor graph representation of the energy minimization functional and loopy belief propagation (LBP) as means of optimization. Given the pixel-by-pixel correspondence and the tilt angle of the specimen stage during the acquisition of micrographs, depth can be recovered. Extensive tests reveal the strength of the proposed method for high-quality reconstruction of microscopic samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Peculiar spectral statistics of ensembles of trees and star-like graphs

    NASA Astrophysics Data System (ADS)

    Kovaleva, V.; Maximov, Yu; Nechaev, S.; Valba, O.

    2017-07-01

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the ‘Lifshitz singularity’ emerging in the one-dimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However, the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, reflecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of an ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.

  18. On Parallel Push-Relabel based Algorithms for Bipartite Maximum Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langguth, Johannes; Azad, Md Ariful; Halappanavar, Mahantesh

    2014-07-01

    We study multithreaded push-relabel based algorithms for computing maximum cardinality matching in bipartite graphs. Matching is a fundamental combinatorial (graph) problem with applications in a wide variety of problems in science and engineering. We are motivated by its use in the context of sparse linear solvers for computing maximum transversal of a matrix. We implement and test our algorithms on several multi-socket multicore systems and compare their performance to state-of-the-art augmenting path-based serial and parallel algorithms using a testset comprised of a wide range of real-world instances. Building on several heuristics for enhancing performance, we demonstrate good scaling for themore » parallel push-relabel algorithm. We show that it is comparable to the best augmenting path-based algorithms for bipartite matching. To the best of our knowledge, this is the first extensive study of multithreaded push-relabel based algorithms. In addition to a direct impact on the applications using matching, the proposed algorithmic techniques can be extended to preflow-push based algorithms for computing maximum flow in graphs.« less

  19. Sparse cliques trump scale-free networks in coordination and competition

    PubMed Central

    Gianetto, David A.; Heydari, Babak

    2016-01-01

    Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game. PMID:26899456

  20. Peculiar spectral statistics of ensembles of trees and star-like graphs

    DOE PAGES

    Kovaleva, V.; Maximov, Yu; Nechaev, S.; ...

    2017-07-11

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less

  1. Sparse cliques trump scale-free networks in coordination and competition

    NASA Astrophysics Data System (ADS)

    Gianetto, David A.; Heydari, Babak

    2016-02-01

    Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game.

  2. Peculiar spectral statistics of ensembles of trees and star-like graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovaleva, V.; Maximov, Yu; Nechaev, S.

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less

  3. Searching social networks for subgraph patterns

    NASA Astrophysics Data System (ADS)

    Ogaard, Kirk; Kase, Sue; Roy, Heather; Nagi, Rakesh; Sambhoos, Kedar; Sudit, Moises

    2013-06-01

    Software tools for Social Network Analysis (SNA) are being developed which support various types of analysis of social networks extracted from social media websites (e.g., Twitter). Once extracted and stored in a database such social networks are amenable to analysis by SNA software. This data analysis often involves searching for occurrences of various subgraph patterns (i.e., graphical representations of entities and relationships). The authors have developed the Graph Matching Toolkit (GMT) which provides an intuitive Graphical User Interface (GUI) for a heuristic graph matching algorithm called the Truncated Search Tree (TruST) algorithm. GMT is a visual interface for graph matching algorithms processing large social networks. GMT enables an analyst to draw a subgraph pattern by using a mouse to select categories and labels for nodes and links from drop-down menus. GMT then executes the TruST algorithm to find the top five occurrences of the subgraph pattern within the social network stored in the database. GMT was tested using a simulated counter-insurgency dataset consisting of cellular phone communications within a populated area of operations in Iraq. The results indicated GMT (when executing the TruST graph matching algorithm) is a time-efficient approach to searching large social networks. GMT's visual interface to a graph matching algorithm enables intelligence analysts to quickly analyze and summarize the large amounts of data necessary to produce actionable intelligence.

  4. Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xuanhua; Luo, Xuan; Liang, Junling

    GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weightmore » asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and datasets, Frog is able to significantly outperform existing GPU-based graph processing systems except Gunrock and MapGraph. MapGraph gets better performance than Frog when running BFS on RoadNet-CA. The comparison between Gunrock and Frog is inconclusive. Frog can outperform Gunrock more than 1.04X when running PageRank and SSSP, while the advantage of Frog is not obvious when running BFS and CC on some datasets especially for RoadNet-CA.« less

  5. Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging.

    PubMed

    Schouten, Tijn M; Koini, Marisa; Vos, Frank de; Seiler, Stephan; Rooij, Mark de; Lechner, Anita; Schmidt, Reinhold; Heuvel, Martijn van den; Grond, Jeroen van der; Rombouts, Serge A R B

    2017-05-15

    Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity, and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to contribute towards reliable diagnosis of AD. We used diffusion MRI to classify AD patients (N=77), and controls (N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with probabilistic tractography, as well as graph measures based on these structural connectivity graphs. Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy clustered into ICA components was the best performing measure. These findings may be useful for future incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of AD using diffusion MRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mandala Networks: ultra-small-world and highly sparse graphs

    PubMed Central

    Sampaio Filho, Cesar I. N.; Moreira, André A.; Andrade, Roberto F. S.; Herrmann, Hans J.; Andrade, José S.

    2015-01-01

    The increasing demands in security and reliability of infrastructures call for the optimal design of their embedded complex networks topologies. The following question then arises: what is the optimal layout to fulfill best all the demands? Here we present a general solution for this problem with scale-free networks, like the Internet and airline networks. Precisely, we disclose a way to systematically construct networks which are robust against random failures. Furthermore, as the size of the network increases, its shortest path becomes asymptotically invariant and the density of links goes to zero, making it ultra-small world and highly sparse, respectively. The first property is ideal for communication and navigation purposes, while the second is interesting economically. Finally, we show that some simple changes on the original network formulation can lead to an improved topology against malicious attacks. PMID:25765450

  7. Fast sparsely synchronized brain rhythms in a scale-free neural network

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2015-08-01

    We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D . For small D , full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp> ( : ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D

  8. Statistical Mechanics of Combinatorial Auctions

    NASA Astrophysics Data System (ADS)

    Galla, Tobias; Leone, Michele; Marsili, Matteo; Sellitto, Mauro; Weigt, Martin; Zecchina, Riccardo

    2006-09-01

    Combinatorial auctions are formulated as frustrated lattice gases on sparse random graphs, allowing the determination of the optimal revenue by methods of statistical physics. Transitions between computationally easy and hard regimes are found and interpreted in terms of the geometric structure of the space of solutions. We introduce an iterative algorithm to solve intermediate and large instances, and discuss competing states of optimal revenue and maximal number of satisfied bidders. The algorithm can be generalized to the hard phase and to more sophisticated auction protocols.

  9. Fluvial reservoir characterization using topological descriptors based on spectral analysis of graphs

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal

    2015-04-01

    Fluvial systems generate highly heterogeneous reservoir. These heterogeneities have major impact on fluid flow behaviors. However, the modelling of such reservoirs is mainly performed in under-constrained contexts as they include complex features, though only sparse and indirect data are available. Stochastic modeling is the common strategy to solve such problems. Multiple 3D models are generated from the available subsurface dataset. The generated models represent a sampling of plausible subsurface structure representations. From this model sampling, statistical analysis on targeted parameters (e.g.: reserve estimations, flow behaviors, etc.) and a posteriori uncertainties are performed to assess risks. However, on one hand, uncertainties may be huge, which requires many models to be generated for scanning the space of possibilities. On the other hand, some computations performed on the generated models are time consuming and cannot, in practice, be applied on all of them. This issue is particularly critical in: 1) geological modeling from outcrop data only, as these data types are generally sparse and mainly distributed in 2D at large scale but they may locally include high-resolution descriptions (e.g.: facies, strata local variability, etc.); 2) CO2 storage studies as many scales of investigations are required, from meter to regional ones, to estimate storage capacities and associated risks. Recent approaches propose to define distances between models to allow sophisticated multivariate statistics to be applied on the space of uncertainties so that only sub-samples, representative of initial set, are investigated for dynamic time-consuming studies. This work focuses on defining distances between models that characterize the topology of the reservoir rock network, i.e. its compactness or connectivity degree. The proposed strategy relies on the study of the reservoir rock skeleton. The skeleton of an object corresponds to its median feature. A skeleton is computed for each reservoir rock geobody and studied through a graph spectral analysis. To achieve this, the skeleton is converted into a graph structure. The spectral analysis applied on this graph structure allows a distance to be defined between pairs of graphs. Therefore, this distance is used as support for clustering analysis to gather models that share the same reservoir rock topology. To show the ability of the defined distances to discriminate different types of reservoir connectivity, a synthetic data set of fluvial models with different geological settings was generated and studied using the proposed approach. The results of the clustering analysis are shown and discussed.

  10. Reprint of "Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency".

    PubMed

    Zhang, Ying-Ying; Yang, Cai; Zhang, Ping

    2017-08-01

    In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improved Estimation and Interpretation of Correlations in Neural Circuits

    PubMed Central

    Yatsenko, Dimitri; Josić, Krešimir; Ecker, Alexander S.; Froudarakis, Emmanouil; Cotton, R. James; Tolias, Andreas S.

    2015-01-01

    Ambitious projects aim to record the activity of ever larger and denser neuronal populations in vivo. Correlations in neural activity measured in such recordings can reveal important aspects of neural circuit organization. However, estimating and interpreting large correlation matrices is statistically challenging. Estimation can be improved by regularization, i.e. by imposing a structure on the estimate. The amount of improvement depends on how closely the assumed structure represents dependencies in the data. Therefore, the selection of the most efficient correlation matrix estimator for a given neural circuit must be determined empirically. Importantly, the identity and structure of the most efficient estimator informs about the types of dominant dependencies governing the system. We sought statistically efficient estimators of neural correlation matrices in recordings from large, dense groups of cortical neurons. Using fast 3D random-access laser scanning microscopy of calcium signals, we recorded the activity of nearly every neuron in volumes 200 μm wide and 100 μm deep (150–350 cells) in mouse visual cortex. We hypothesized that in these densely sampled recordings, the correlation matrix should be best modeled as the combination of a sparse graph of pairwise partial correlations representing local interactions and a low-rank component representing common fluctuations and external inputs. Indeed, in cross-validation tests, the covariance matrix estimator with this structure consistently outperformed other regularized estimators. The sparse component of the estimate defined a graph of interactions. These interactions reflected the physical distances and orientation tuning properties of cells: The density of positive ‘excitatory’ interactions decreased rapidly with geometric distances and with differences in orientation preference whereas negative ‘inhibitory’ interactions were less selective. Because of its superior performance, this ‘sparse+latent’ estimator likely provides a more physiologically relevant representation of the functional connectivity in densely sampled recordings than the sample correlation matrix. PMID:25826696

  12. A Statistical Analysis of IrisCode and Its Security Implications.

    PubMed

    Kong, Adams Wai-Kin

    2015-03-01

    IrisCode has been used to gather iris data for 430 million people. Because of the huge impact of IrisCode, it is vital that it is completely understood. This paper first studies the relationship between bit probabilities and a mean of iris images (The mean of iris images is defined as the average of independent iris images.) and then uses the Chi-square statistic, the correlation coefficient and a resampling algorithm to detect statistical dependence between bits. The results show that the statistical dependence forms a graph with a sparse and structural adjacency matrix. A comparison of this graph with a graph whose edges are defined by the inner product of the Gabor filters that produce IrisCodes shows that partial statistical dependence is induced by the filters and propagates through the graph. Using this statistical information, the security risk associated with two patented template protection schemes that have been deployed in commercial systems for producing application-specific IrisCodes is analyzed. To retain high identification speed, they use the same key to lock all IrisCodes in a database. The belief has been that if the key is not compromised, the IrisCodes are secure. This study shows that even without the key, application-specific IrisCodes can be unlocked and that the key can be obtained through the statistical dependence detected.

  13. Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining.

    PubMed

    Cheng, Wenlong; Zhao, Mingbo; Xiong, Naixue; Chui, Kwok Tai

    2017-07-15

    Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l ₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating l p -norm and Schatten p -norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms.

  14. Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication

    DOE PAGES

    Azad, Ariful; Ballard, Grey; Buluc, Aydin; ...

    2016-11-08

    Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat MPI model on Erdös-Rényi matrices, those algorithms had not been implemented in practice and their complexities had not been analyzed for the general case. In this work, we present the first implementation of the 3D SpGEMM formulation that exploits multiple (intranode and internode) levels of parallelism, achievingmore » significant speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks that should be subject to further research.« less

  15. Solving very large, sparse linear systems on mesh-connected parallel computers

    NASA Technical Reports Server (NTRS)

    Opsahl, Torstein; Reif, John

    1987-01-01

    The implementation of Pan and Reif's Parallel Nested Dissection (PND) algorithm on mesh connected parallel computers is described. This is the first known algorithm that allows very large, sparse linear systems of equations to be solved efficiently in polylog time using a small number of processors. How the processor bound of PND can be matched to the number of processors available on a given parallel computer by slowing down the algorithm by constant factors is described. Also, for the important class of problems where G(A) is a grid graph, a unique memory mapping that reduces the inter-processor communication requirements of PND to those that can be executed on mesh connected parallel machines is detailed. A description of an implementation on the Goodyear Massively Parallel Processor (MPP), located at Goddard is given. Also, a detailed discussion of data mappings and performance issues is given.

  16. Manipulating Google's Knowledge Graph Box to Counter Biased Information Processing During an Online Search on Vaccination: Application of a Technological Debiasing Strategy.

    PubMed

    Ludolph, Ramona; Allam, Ahmed; Schulz, Peter J

    2016-06-02

    One of people's major motives for going online is the search for health-related information. Most consumers start their search with a general search engine but are unaware of the fact that its sorting and ranking criteria do not mirror information quality. This misconception can lead to distorted search outcomes, especially when the information processing is characterized by heuristic principles and resulting cognitive biases instead of a systematic elaboration. As vaccination opponents are vocal on the Web, the chance of encountering their non‒evidence-based views on immunization is high. Therefore, biased information processing in this context can cause subsequent impaired judgment and decision making. A technological debiasing strategy could counter this by changing people's search environment. This study aims at testing a technological debiasing strategy to reduce the negative effects of biased information processing when using a general search engine on people's vaccination-related knowledge and attitudes. This strategy is to manipulate the content of Google's knowledge graph box, which is integrated in the search interface and provides basic information about the search topic. A full 3x2 factorial, posttest-only design was employed with availability of basic factual information (comprehensible vs hardly comprehensible vs not present) as the first factor and a warning message as the second factor of experimental manipulation. Outcome variables were the evaluation of the knowledge graph box, vaccination-related knowledge, as well as beliefs and attitudes toward vaccination, as represented by three latent variables emerged from an exploratory factor analysis. Two-way analysis of variance revealed a significant main effect of availability of basic information in the knowledge graph box on participants' vaccination knowledge scores (F2,273=4.86, P=.01), skepticism/fear of vaccination side effects (F2,273=3.5, P=.03), and perceived information quality (F2,273=3.73, P=.02). More specifically, respondents receiving comprehensible information appeared to be more knowledgeable, less skeptical of vaccination, and more critical of information quality compared to participants exposed to hardly comprehensible information. Although, there was no significant interaction effect between the availability of information and the presence of the warning, there was a dominant pattern in which the presence of the warning appeared to have a positive influence on the group receiving comprehensible information while the opposite was true for the groups exposed to hardly comprehensible information and no information at all. Participants evaluated the knowledge graph box as moderately to highly useful, with no significant differences among the experimental groups. Overall, the results suggest that comprehensible information in the knowledge graph box positively affects participants' vaccination-related knowledge and attitudes. A small change in the content retrieval procedure currently used by Google could already make a valuable difference in the pursuit of an unbiased online information search. Further research is needed to gain insights into the knowledge graph box's entire potential.

  17. Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering

    PubMed Central

    Wright, Margaret J.; Thompson, Paul M.; Vidal, René

    2015-01-01

    We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748

  18. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.

    PubMed

    Han, Changcai; Yang, Jinsheng

    2017-10-30

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.

  19. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network

    PubMed Central

    Han, Changcai; Yang, Jinsheng

    2017-01-01

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes. PMID:29084155

  20. Burst-by-burst laser frequency monitor

    NASA Technical Reports Server (NTRS)

    Esproles, Carlos (Inventor)

    1994-01-01

    The invention is a system for real-time frequency monitoring and display of an RF burst where the burst frequency is analyzed and displayed on a burst-by-burst basis in order to allow for frequency control. Although the invention was made for monitoring the laser frequency of a LIDAR system, it has other applications where realtime monitoring is required. The novelty of the invention resides in the use of a counter that is reset at the beginning of each unit time of monitoring and then gated for a unit of time. The invention also has an LED bar graph for displaying the measure of frequency at the end of each unit time in either a bar length mode or a moving dot mode. In the latter mode, the operator makes necessary adjustments to maintain the dot at the center of the bar graph.

  1. Fast sparsely synchronized brain rhythms in a scale-free neural network.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2015-08-01

    We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D. For small D, full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4〈fi〉 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D

  2. Laser anemometry for hot flows

    NASA Astrophysics Data System (ADS)

    Kugler, P.; Langer, G.

    1987-07-01

    The fundamental principles, instrumentation, and practical operation of LDA and laser-transit-anemometry systems for measuring velocity profiles and the degree of turbulence in high-temperature flows are reviewed and illustrated with diagrams, drawings and graphs of typical data. Consideration is given to counter, tracker, spectrum-analyzer and correlation methods of LDA signal processing; multichannel analyzer and cross correlation methods for LTA data; LTA results for a small liquid fuel rocket motor; and experiments demonstrating the feasibility of an optoacoustic demodulation scheme for LDA signals from unsteady flows.

  3. Cultural macroevolution on neighbor graphs : vertical and horizontal transmission among Western North American Indian societies.

    PubMed

    Towner, Mary C; Grote, Mark N; Venti, Jay; Borgerhoff Mulder, Monique

    2012-09-01

    What are the driving forces of cultural macroevolution, the evolution of cultural traits that characterize societies or populations? This question has engaged anthropologists for more than a century, with little consensus regarding the answer. We develop and fit autologistic models, built upon both spatial and linguistic neighbor graphs, for 44 cultural traits of 172 societies in the Western North American Indian (WNAI) database. For each trait, we compare models including or excluding one or both neighbor graphs, and for the majority of traits we find strong evidence in favor of a model which uses both spatial and linguistic neighbors to predict a trait's distribution. Our results run counter to the assertion that cultural trait distributions can be explained largely by the transmission of traits from parent to daughter populations and are thus best analyzed with phylogenies. In contrast, we show that vertical and horizontal transmission pathways can be incorporated in a single model, that both transmission modes may indeed operate on the same trait, and that for most traits in the WNAI database, accounting for only one mode of transmission would result in a loss of information.

  4. Manipulating Google’s Knowledge Graph Box to Counter Biased Information Processing During an Online Search on Vaccination: Application of a Technological Debiasing Strategy

    PubMed Central

    Allam, Ahmed; Schulz, Peter J

    2016-01-01

    Background One of people’s major motives for going online is the search for health-related information. Most consumers start their search with a general search engine but are unaware of the fact that its sorting and ranking criteria do not mirror information quality. This misconception can lead to distorted search outcomes, especially when the information processing is characterized by heuristic principles and resulting cognitive biases instead of a systematic elaboration. As vaccination opponents are vocal on the Web, the chance of encountering their non‒evidence-based views on immunization is high. Therefore, biased information processing in this context can cause subsequent impaired judgment and decision making. A technological debiasing strategy could counter this by changing people’s search environment. Objective This study aims at testing a technological debiasing strategy to reduce the negative effects of biased information processing when using a general search engine on people’s vaccination-related knowledge and attitudes. This strategy is to manipulate the content of Google’s knowledge graph box, which is integrated in the search interface and provides basic information about the search topic. Methods A full 3x2 factorial, posttest-only design was employed with availability of basic factual information (comprehensible vs hardly comprehensible vs not present) as the first factor and a warning message as the second factor of experimental manipulation. Outcome variables were the evaluation of the knowledge graph box, vaccination-related knowledge, as well as beliefs and attitudes toward vaccination, as represented by three latent variables emerged from an exploratory factor analysis. Results Two-way analysis of variance revealed a significant main effect of availability of basic information in the knowledge graph box on participants’ vaccination knowledge scores (F2,273=4.86, P=.01), skepticism/fear of vaccination side effects (F2,273=3.5, P=.03), and perceived information quality (F2,273=3.73, P=.02). More specifically, respondents receiving comprehensible information appeared to be more knowledgeable, less skeptical of vaccination, and more critical of information quality compared to participants exposed to hardly comprehensible information. Although, there was no significant interaction effect between the availability of information and the presence of the warning, there was a dominant pattern in which the presence of the warning appeared to have a positive influence on the group receiving comprehensible information while the opposite was true for the groups exposed to hardly comprehensible information and no information at all. Participants evaluated the knowledge graph box as moderately to highly useful, with no significant differences among the experimental groups. Conclusion Overall, the results suggest that comprehensible information in the knowledge graph box positively affects participants’ vaccination-related knowledge and attitudes. A small change in the content retrieval procedure currently used by Google could already make a valuable difference in the pursuit of an unbiased online information search. Further research is needed to gain insights into the knowledge graph box’s entire potential. PMID:27255736

  5. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs.

    PubMed

    Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya

    2011-12-01

    We study the statistical behavior under random sequential renormalization (RSR) of several network models including Erdös-Rényi (ER) graphs, scale-free networks, and an annealed model related to ER graphs. In RSR the network is locally coarse grained by choosing at each renormalization step a node at random and joining it to all its neighbors. Compared to previous (quasi-)parallel renormalization methods [Song et al., Nature (London) 433, 392 (2005)], RSR allows a more fine-grained analysis of the renormalization group (RG) flow and unravels new features that were not discussed in the previous analyses. In particular, we find that all networks exhibit a second-order transition in their RG flow. This phase transition is associated with the emergence of a giant hub and can be viewed as a new variant of percolation, called agglomerative percolation. We claim that this transition exists also in previous graph renormalization schemes and explains some of the scaling behavior seen there. For critical trees it happens as N/N(0) → 0 in the limit of large systems (where N(0) is the initial size of the graph and N its size at a given RSR step). In contrast, it happens at finite N/N(0) in sparse ER graphs and in the annealed model, while it happens for N/N(0) → 1 on scale-free networks. Critical exponents seem to depend on the type of the graph but not on the average degree and obey usual scaling relations for percolation phenomena. For the annealed model they agree with the exponents obtained from a mean-field theory. At late times, the networks exhibit a starlike structure in agreement with the results of Radicchi et al. [Phys. Rev. Lett. 101, 148701 (2008)]. While degree distributions are of main interest when regarding the scheme as network renormalization, mass distributions (which are more relevant when considering "supernodes" as clusters) are much easier to study using the fast Newman-Ziff algorithm for percolation, allowing us to obtain very high statistics.

  6. Inference of the sparse kinetic Ising model using the decimation method

    NASA Astrophysics Data System (ADS)

    Decelle, Aurélien; Zhang, Pan

    2015-05-01

    In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method. The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603 (2014), 10.1103/PhysRevLett.112.070603] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the remaining couplings. Unlike the ℓ1-optimization-based methods, the decimation method does not use the Laplace distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical inference problems. Our results illustrate that, on various topologies and with different distribution of couplings, the decimation method outperforms the widely used ℓ1-optimization-based methods.

  7. Leveraging Pattern Semantics for Extracting Entities in Enterprises

    PubMed Central

    Tao, Fangbo; Zhao, Bo; Fuxman, Ariel; Li, Yang; Han, Jiawei

    2015-01-01

    Entity Extraction is a process of identifying meaningful entities from text documents. In enterprises, extracting entities improves enterprise efficiency by facilitating numerous applications, including search, recommendation, etc. However, the problem is particularly challenging on enterprise domains due to several reasons. First, the lack of redundancy of enterprise entities makes previous web-based systems like NELL and OpenIE not effective, since using only high-precision/low-recall patterns like those systems would miss the majority of sparse enterprise entities, while using more low-precision patterns in sparse setting also introduces noise drastically. Second, semantic drift is common in enterprises (“Blue” refers to “Windows Blue”), such that public signals from the web cannot be directly applied on entities. Moreover, many internal entities never appear on the web. Sparse internal signals are the only source for discovering them. To address these challenges, we propose an end-to-end framework for extracting entities in enterprises, taking the input of enterprise corpus and limited seeds to generate a high-quality entity collection as output. We introduce the novel concept of Semantic Pattern Graph to leverage public signals to understand the underlying semantics of lexical patterns, reinforce pattern evaluation using mined semantics, and yield more accurate and complete entities. Experiments on Microsoft enterprise data show the effectiveness of our approach. PMID:26705540

  8. Leveraging Pattern Semantics for Extracting Entities in Enterprises.

    PubMed

    Tao, Fangbo; Zhao, Bo; Fuxman, Ariel; Li, Yang; Han, Jiawei

    2015-05-01

    Entity Extraction is a process of identifying meaningful entities from text documents. In enterprises, extracting entities improves enterprise efficiency by facilitating numerous applications, including search, recommendation, etc. However, the problem is particularly challenging on enterprise domains due to several reasons. First, the lack of redundancy of enterprise entities makes previous web-based systems like NELL and OpenIE not effective, since using only high-precision/low-recall patterns like those systems would miss the majority of sparse enterprise entities, while using more low-precision patterns in sparse setting also introduces noise drastically. Second, semantic drift is common in enterprises ("Blue" refers to "Windows Blue"), such that public signals from the web cannot be directly applied on entities. Moreover, many internal entities never appear on the web. Sparse internal signals are the only source for discovering them. To address these challenges, we propose an end-to-end framework for extracting entities in enterprises, taking the input of enterprise corpus and limited seeds to generate a high-quality entity collection as output. We introduce the novel concept of Semantic Pattern Graph to leverage public signals to understand the underlying semantics of lexical patterns, reinforce pattern evaluation using mined semantics, and yield more accurate and complete entities. Experiments on Microsoft enterprise data show the effectiveness of our approach.

  9. Efficient large-scale graph data optimization for intelligent video surveillance

    NASA Astrophysics Data System (ADS)

    Shang, Quanhong; Zhang, Shujun; Wang, Yanbo; Sun, Chen; Wang, Zepeng; Zhang, Luming

    2017-08-01

    Society is rapidly accepting the use of a wide variety of cameras Location and applications: site traffic monitoring, parking Lot surveillance, car and smart space. These ones here the camera provides data every day in an analysis Effective way. Recent advances in sensor technology Manufacturing, communications and computing are stimulating.The development of new applications that can change the traditional Vision system incorporating universal smart camera network. This Analysis of visual cues in multi camera networks makes wide Applications ranging from smart home and office automation to large area surveillance and traffic surveillance. In addition, dense Camera networks, most of which have large overlapping areas of cameras. In the view of good research, we focus on sparse camera networks. One Sparse camera network using large area surveillance. As few cameras as possible, most cameras do not overlap Each other’s field of vision. This task is challenging Lack of knowledge of topology Network, the specific changes in appearance and movement Track different opinions of the target, as well as difficulties Understanding complex events in a network. In this review in this paper, we present a comprehensive survey of recent studies Results to solve the problem of topology learning, Object appearance modeling and global activity understanding sparse camera network. In addition, some of the current open Research issues are discussed.

  10. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.

    PubMed

    Minati, Ludovico; Cercignani, Mara; Chan, Dennis

    2013-10-01

    Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Porosity estimation by semi-supervised learning with sparsely available labeled samples

    NASA Astrophysics Data System (ADS)

    Lima, Luiz Alberto; Görnitz, Nico; Varella, Luiz Eduardo; Vellasco, Marley; Müller, Klaus-Robert; Nakajima, Shinichi

    2017-09-01

    This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Görnitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.

  12. Orthogonal sparse linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Liu, Zhonghua; Liu, Gang; Pu, Jiexin; Wang, Xiaohong; Wang, Haijun

    2018-03-01

    Linear discriminant analysis (LDA) is a linear feature extraction approach, and it has received much attention. On the basis of LDA, researchers have done a lot of research work on it, and many variant versions of LDA were proposed. However, the inherent problem of LDA cannot be solved very well by the variant methods. The major disadvantages of the classical LDA are as follows. First, it is sensitive to outliers and noises. Second, only the global discriminant structure is preserved, while the local discriminant information is ignored. In this paper, we present a new orthogonal sparse linear discriminant analysis (OSLDA) algorithm. The k nearest neighbour graph is first constructed to preserve the locality discriminant information of sample points. Then, L2,1-norm constraint on the projection matrix is used to act as loss function, which can make the proposed method robust to outliers in data points. Extensive experiments have been performed on several standard public image databases, and the experiment results demonstrate the performance of the proposed OSLDA algorithm.

  13. A sparse structure learning algorithm for Gaussian Bayesian Network identification from high-dimensional data.

    PubMed

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2013-06-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph--a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer's disease (AD) and reveal findings that could lead to advancements in AD research.

  14. A Sparse Structure Learning Algorithm for Gaussian Bayesian Network Identification from High-Dimensional Data

    PubMed Central

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2014-01-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph (DAG)—a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer’s disease (AD) and reveal findings that could lead to advancements in AD research. PMID:22665720

  15. Deconvolution of mixing time series on a graph

    PubMed Central

    Blocker, Alexander W.; Airoldi, Edoardo M.

    2013-01-01

    In many applications we are interested in making inference on latent time series from indirect measurements, which are often low-dimensional projections resulting from mixing or aggregation. Positron emission tomography, super-resolution, and network traffic monitoring are some examples. Inference in such settings requires solving a sequence of ill-posed inverse problems, yt = Axt, where the projection mechanism provides information on A. We consider problems in which A specifies mixing on a graph of times series that are bursty and sparse. We develop a multilevel state-space model for mixing times series and an efficient approach to inference. A simple model is used to calibrate regularization parameters that lead to efficient inference in the multilevel state-space model. We apply this method to the problem of estimating point-to-point traffic flows on a network from aggregate measurements. Our solution outperforms existing methods for this problem, and our two-stage approach suggests an efficient inference strategy for multilevel models of multivariate time series. PMID:25309135

  16. Charting the Replica Symmetric Phase

    NASA Astrophysics Data System (ADS)

    Coja-Oghlan, Amin; Efthymiou, Charilaos; Jaafari, Nor; Kang, Mihyun; Kapetanopoulos, Tobias

    2018-02-01

    Diluted mean-field models are spin systems whose geometry of interactions is induced by a sparse random graph or hypergraph. Such models play an eminent role in the statistical mechanics of disordered systems as well as in combinatorics and computer science. In a path-breaking paper based on the non-rigorous `cavity method', physicists predicted not only the existence of a replica symmetry breaking phase transition in such models but also sketched a detailed picture of the evolution of the Gibbs measure within the replica symmetric phase and its impact on important problems in combinatorics, computer science and physics (Krzakala et al. in Proc Natl Acad Sci 104:10318-10323, 2007). In this paper we rigorise this picture completely for a broad class of models, encompassing the Potts antiferromagnet on the random graph, the k-XORSAT model and the diluted k-spin model for even k. We also prove a conjecture about the detection problem in the stochastic block model that has received considerable attention (Decelle et al. in Phys Rev E 84:066106, 2011).

  17. Analysis of pedestrian dynamics in counter flow via an extended lattice gas model.

    PubMed

    Kuang, Hua; Li, Xingli; Song, Tao; Dai, Shiqiang

    2008-12-01

    The modeling of human behavior is an important approach to reproduce realistic phenomena for pedestrian flow. In this paper, an extended lattice gas model is proposed to simulate pedestrian counter flow under the open boundary conditions by considering the human subconscious behavior and different maximum velocities. The simulation results show that the presented model can capture some essential features of pedestrian counter flows, such as lane formation, segregation effect, and phase separation at higher densities. In particular, an interesting feature that the faster walkers overtake the slower ones and then form a narrow-sparse walkway near the central partition line is discovered. The phase diagram comparison and analysis show that the subconscious behavior plays a key role in reducing the occurrence of jam cluster. The effects of the symmetrical and asymmetrical injection rate, different partition lines, and different combinations of maximum velocities on pedestrian flow are investigated. An important conclusion is that it is needless to separate faster and slower pedestrians in the same direction by a partition line. Furthermore, the increase of the number of faster walkers does not always benefit the counter flow in all situations. It depends on the magnitude and asymmetry of injection rate. And at larger maximum velocity, the obtained critical transition point corresponding to the maximum flow rate of the fundamental diagram is in good agreement with the empirical results.

  18. Modeling of contact tracing in social networks

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev S.; Huerta, Ramón

    2003-07-01

    Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.

  19. Thermodynamic characterization of synchronization-optimized oscillator networks

    NASA Astrophysics Data System (ADS)

    Yanagita, Tatsuo; Ichinomiya, Takashi

    2014-12-01

    We consider a canonical ensemble of synchronization-optimized networks of identical oscillators under external noise. By performing a Markov chain Monte Carlo simulation using the Kirchhoff index, i.e., the sum of the inverse eigenvalues of the Laplacian matrix (as a graph Hamiltonian of the network), we construct more than 1 000 different synchronization-optimized networks. We then show that the transition from star to core-periphery structure depends on the connectivity of the network, and is characterized by the node degree variance of the synchronization-optimized ensemble. We find that thermodynamic properties such as heat capacity show anomalies for sparse networks.

  20. FINAL REPORT (MILESTONE DATE 9/30/11) FOR SUBCONTRACT NO. B594099 NUMERICAL METHODS FOR LARGE-SCALE DATA FACTORIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Sterck, H

    2011-10-18

    The following work has been performed by PI Hans De Sterck and graduate student Manda Winlaw for the required tasks 1-5 (as listed in the Statement of Work). Graduate student Manda Winlaw has visited LLNL January 31-March 11, 2011 and May 23-August 19, 2010, working with Van Henson and Mike O'Hara on non-negative matrix factorizations (NMF). She has investigated the dense subgraph clustering algorithm from 'Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs' by Chen and Saad, testing this method on several term-document matrices and adapting it to cluster based on the rank of the subgraphs instead ofmore » the density. Manda Winlaw was awarded a first prize in the annual LLNL summer student poster competition for a poster on her NMF research. PI Hans De Sterck has developed a new adaptive algebraic multigrid algorithm for computing a few dominant or minimal singular triplets of sparse rectangular matrices. This work builds on adaptive algebraic multigrid methods that were further developed by the PI and collaborators (including Sanders and Henson) for Markov chains. The method also combines and extends existing multigrid algorithms for the symmetric eigenproblem. The PI has visited LLNL February 22-25, 2011, and has given a CASC seminar 'Algebraic Multigrid for the Singular Value Problem' on this work on February 23, 2011. During his visit, he has discussed this work and related topics with Van Henson, Geoffrey Sanders, Panayot Vassilevski, and others. He has tested the algorithm on PDE matrices and on a term-document matrix, with promising initial results. Manda Winlaw has also started to work, with O'Hara, on estimating probability distributions over undirected graph edges. The goal is to estimate probabilistic models from sets of undirected graph edges for the purpose of prediction, anomaly detection and support to supervised learning. Graduate student Manda Winlaw is writing a paper on the results obtained with O'Hara which will be submitted some time later in 2011 to a data mining conference. PI Hans De Sterck has developed a new optimization algorithm for canonical tensor approximation, formulating an extension of the nonlinear GMRES method to optimization problems. Numerical results for tensors with up to 8 modes show that this new method is efficient for sparse and dense tensors. He has written a paper on this which has been submitted to the SIAM Journal on Scientific Computing. PI Hans De Sterck has further developed his new optimization algorithm for canonical tensor approximation, formulating an extension in terms of steepest-descent preconditioning, which makes the approach generally applicable for nonlinear optimization. He has written a paper on this extension which has been submitted to Numerical Linear Algebra with Applications.« less

  1. Securing Provenance of Distributed Processes in an Untrusted Environment

    NASA Astrophysics Data System (ADS)

    Syalim, Amril; Nishide, Takashi; Sakurai, Kouichi

    Recently, there is much concern about the provenance of distributed processes, that is about the documentation of the origin and the processes to produce an object in a distributed system. The provenance has many applications in the forms of medical records, documentation of processes in the computer systems, recording the origin of data in the cloud, and also documentation of human-executed processes. The provenance of distributed processes can be modeled by a directed acyclic graph (DAG) where each node represents an entity, and an edge represents the origin and causal relationship between entities. Without sufficient security mechanisms, the provenance graph suffers from integrity and confidentiality problems, for example changes or deletions of the correct nodes, additions of fake nodes and edges, and unauthorized accesses to the sensitive nodes and edges. In this paper, we propose an integrity mechanism for provenance graph using the digital signature involving three parties: the process executors who are responsible in the nodes' creation, a provenance owner that records the nodes to the provenance store, and a trusted party that we call the Trusted Counter Server (TCS) that records the number of nodes stored by the provenance owner. We show that the mechanism can detect the integrity problem in the provenance graph, namely unauthorized and malicious “authorized” updates even if all the parties, except the TCS, collude to update the provenance. In this scheme, the TCS only needs a very minimal storage (linear with the number of the provenance owners). To protect the confidentiality and for an efficient access control administration, we propose a method to encrypt the provenance graph that allows access by paths and compartments in the provenance graph. We argue that encryption is important as a mechanism to protect the provenance data stored in an untrusted environment. We analyze the security of the integrity mechanism, and perform experiments to measure the performance of both mechanisms.

  2. Analysing Local Sparseness in the Macaque Brain Network

    PubMed Central

    Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A.

    2015-01-01

    Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways. PMID:26437077

  3. Dictionary Pair Learning on Grassmann Manifolds for Image Denoising.

    PubMed

    Zeng, Xianhua; Bian, Wei; Liu, Wei; Shen, Jialie; Tao, Dacheng

    2015-11-01

    Image denoising is a fundamental problem in computer vision and image processing that holds considerable practical importance for real-world applications. The traditional patch-based and sparse coding-driven image denoising methods convert 2D image patches into 1D vectors for further processing. Thus, these methods inevitably break down the inherent 2D geometric structure of natural images. To overcome this limitation pertaining to the previous image denoising methods, we propose a 2D image denoising model, namely, the dictionary pair learning (DPL) model, and we design a corresponding algorithm called the DPL on the Grassmann-manifold (DPLG) algorithm. The DPLG algorithm first learns an initial dictionary pair (i.e., the left and right dictionaries) by employing a subspace partition technique on the Grassmann manifold, wherein the refined dictionary pair is obtained through a sub-dictionary pair merging. The DPLG obtains a sparse representation by encoding each image patch only with the selected sub-dictionary pair. The non-zero elements of the sparse representation are further smoothed by the graph Laplacian operator to remove the noise. Consequently, the DPLG algorithm not only preserves the inherent 2D geometric structure of natural images but also performs manifold smoothing in the 2D sparse coding space. We demonstrate that the DPLG algorithm also improves the structural SIMilarity values of the perceptual visual quality for denoised images using the experimental evaluations on the benchmark images and Berkeley segmentation data sets. Moreover, the DPLG also produces the competitive peak signal-to-noise ratio values from popular image denoising algorithms.

  4. Groupwise Image Registration Guided by a Dynamic Digraph of Images.

    PubMed

    Tang, Zhenyu; Fan, Yong

    2016-04-01

    For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.

  5. Evolution of opinions on social networks in the presence of competing committed groups.

    PubMed

    Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy

    2012-01-01

    Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions A and B, and constituting fractions pA and pB of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.

  6. Evolution of Opinions on Social Networks in the Presence of Competing Committed Groups

    PubMed Central

    Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K.; Korniss, Gyorgy

    2012-01-01

    Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions and , and constituting fractions and of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point. PMID:22448238

  7. Securing image information using double random phase encoding and parallel compressive sensing with updated sampling processes

    NASA Astrophysics Data System (ADS)

    Hu, Guiqiang; Xiao, Di; Wang, Yong; Xiang, Tao; Zhou, Qing

    2017-11-01

    Recently, a new kind of image encryption approach using compressive sensing (CS) and double random phase encoding has received much attention due to the advantages such as compressibility and robustness. However, this approach is found to be vulnerable to chosen plaintext attack (CPA) if the CS measurement matrix is re-used. Therefore, designing an efficient measurement matrix updating mechanism that ensures resistance to CPA is of practical significance. In this paper, we provide a novel solution to update the CS measurement matrix by altering the secret sparse basis with the help of counter mode operation. Particularly, the secret sparse basis is implemented by a reality-preserving fractional cosine transform matrix. Compared with the conventional CS-based cryptosystem that totally generates all the random entries of measurement matrix, our scheme owns efficiency superiority while guaranteeing resistance to CPA. Experimental and analysis results show that the proposed scheme has a good security performance and has robustness against noise and occlusion.

  8. Inferring network structure in non-normal and mixed discrete-continuous genomic data.

    PubMed

    Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran

    2018-03-01

    Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.

  9. Inferring network structure in non-normal and mixed discrete-continuous genomic data

    PubMed Central

    Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran

    2017-01-01

    Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. PMID:28437848

  10. Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images.

    PubMed

    Liu, Xianming; Cheung, Gene; Lin, Chia-Wen; Zhao, Debin; Gao, Wen

    2018-07-01

    Millions of user-generated images are uploaded to social media sites like Facebook daily, which translate to a large storage cost. However, there exists an asymmetry in upload and download data: only a fraction of the uploaded images are subsequently retrieved for viewing. In this paper, we propose a cloud storage system that reduces the storage cost of all uploaded JPEG photos, at the expense of a controlled increase in computation mainly during download of requested image subset. Specifically, the system first selectively re-encodes code blocks of uploaded JPEG images using coarser quantization parameters for smaller storage sizes. Then during download, the system exploits known signal priors-sparsity prior and graph-signal smoothness prior-for reverse mapping to recover original fine quantization bin indices, with either deterministic guarantee (lossless mode) or statistical guarantee (near-lossless mode). For fast reverse mapping, we use small dictionaries and sparse graphs that are tailored for specific clusters of similar blocks, which are classified via tree-structured vector quantizer. During image upload, cluster indices identifying the appropriate dictionaries and graphs for the re-quantized blocks are encoded as side information using a differential distributed source coding scheme to facilitate reverse mapping during image download. Experimental results show that our system can reap significant storage savings (up to 12.05%) at roughly the same image PSNR (within 0.18 dB).

  11. Genten: Software for Generalized Tensor Decompositions v. 1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel

    Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.

  12. A new augmentation based algorithm for extracting maximal chordal subgraphs

    DOE PAGES

    Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh

    2014-10-18

    If every cycle of a graph is chordal length greater than three then it contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms’more » parallelizability. In our paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. Finally, we experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.« less

  13. A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.

    PubMed

    Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh

    2015-02-01

    A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.

  14. A Novel Centrality Measure for Network-wide Cyber Vulnerability Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathanur, Arun V.; Haglin, David J.

    In this work we propose a novel formulation that models the attack and compromise on a cyber network as a combination of two parts - direct compromise of a host and the compromise occurring through the spread of the attack on the network from a compromised host. The model parameters for the nodes are a concise representation of the host profiles that can include the risky behaviors of the associated human users while the model parameters for the edges are based on the existence of vulnerabilities between each pair of connected hosts. The edge models relate to the summary representationsmore » of the corresponding attack-graphs. This results in a formulation based on Random Walk with Restart (RWR) and the resulting centrality metric can be solved for in an efficient manner through the use of sparse linear solvers. Thus the formulation goes beyond mere topological considerations in centrality computations by summarizing the host profiles and the attack graphs into the model parameters. The computational efficiency of the method also allows us to also quantify the uncertainty in the centrality measure through Monte Carlo analysis.« less

  15. Estimation of High-Dimensional Graphical Models Using Regularized Score Matching

    PubMed Central

    Lin, Lina; Drton, Mathias; Shojaie, Ali

    2017-01-01

    Graphical models are widely used to model stochastic dependences among large collections of variables. We introduce a new method of estimating undirected conditional independence graphs based on the score matching loss, introduced by Hyvärinen (2005), and subsequently extended in Hyvärinen (2007). The regularized score matching method we propose applies to settings with continuous observations and allows for computationally efficient treatment of possibly non-Gaussian exponential family models. In the well-explored Gaussian setting, regularized score matching avoids issues of asymmetry that arise when applying the technique of neighborhood selection, and compared to existing methods that directly yield symmetric estimates, the score matching approach has the advantage that the considered loss is quadratic and gives piecewise linear solution paths under ℓ1 regularization. Under suitable irrepresentability conditions, we show that ℓ1-regularized score matching is consistent for graph estimation in sparse high-dimensional settings. Through numerical experiments and an application to RNAseq data, we confirm that regularized score matching achieves state-of-the-art performance in the Gaussian case and provides a valuable tool for computationally efficient estimation in non-Gaussian graphical models. PMID:28638498

  16. Data traffic reduction schemes for Cholesky factorization on asynchronous multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Patrick, Merrell L.

    1989-01-01

    Communication requirements of Cholesky factorization of dense and sparse symmetric, positive definite matrices are analyzed. The communication requirement is characterized by the data traffic generated on multiprocessor systems with local and shared memory. Lower bound proofs are given to show that when the load is uniformly distributed the data traffic associated with factoring an n x n dense matrix using n to the alpha power (alpha less than or equal 2) processors is omega(n to the 2 + alpha/2 power). For n x n sparse matrices representing a square root of n x square root of n regular grid graph the data traffic is shown to be omega(n to the 1 + alpha/2 power), alpha less than or equal 1. Partitioning schemes that are variations of block assignment scheme are described and it is shown that the data traffic generated by these schemes are asymptotically optimal. The schemes allow efficient use of up to O(n to the 2nd power) processors in the dense case and up to O(n) processors in the sparse case before the total data traffic reaches the maximum value of O(n to the 3rd power) and O(n to the 3/2 power), respectively. It is shown that the block based partitioning schemes allow a better utilization of the data accessed from shared memory and thus reduce the data traffic than those based on column-wise wrap around assignment schemes.

  17. Measurement of organochlorines in commercial over-the-counter fish oil preparations: implications for dietary and therapeutic recommendations for omega-3 fatty acids and a review of the literature.

    PubMed

    Melanson, Stacy Foran; Lewandrowski, Elizabeth Lee; Flood, James G; Lewandrowski, Kent B

    2005-01-01

    The consumption of fish high in omega-3 fatty acids is advocated by the American Heart Association to decrease the risk of coronary artery disease. However, fish contain environmental toxins such as mercury, polychlorinated biphenyls, and organochlorine pesticides, which may negate the beneficial cardiovascular effects of fish meals. Toxin levels vary depending on both the fish source and the specific toxin, and neither farm-raised nor wild fish are toxin free. Fish oil supplements also prevent the progression of coronary artery disease and reduce cardiovascular mortality. However, only sparse data exist on the level of toxins in fish oil. In a previous study we showed that the amount of mercury in 5 over-the-counter brands of fish oil was negligible. To determine the concentrations of polychlorinated biphenyls and other organochlorines in 5 over-the-counter preparations of fish oil. The contents of 5 commercial fish oil brands were sent for organochlorine analysis. The levels of polychlorinated biphenyls and organochlorines were all below the detectable limit. Fish oil supplements are more healthful than the consumption of fish high in organochlorines. Fish oils provide the benefits of omega-3 fatty acids without the risk of toxicity. In addition, fish oil supplements have been helpful in a variety of diseases, including bipolar disorder and depression.

  18. An approximation method for improving dynamic network model fitting.

    PubMed

    Carnegie, Nicole Bohme; Krivitsky, Pavel N; Hunter, David R; Goodreau, Steven M

    There has been a great deal of interest recently in the modeling and simulation of dynamic networks, i.e., networks that change over time. One promising model is the separable temporal exponential-family random graph model (ERGM) of Krivitsky and Handcock, which treats the formation and dissolution of ties in parallel at each time step as independent ERGMs. However, the computational cost of fitting these models can be substantial, particularly for large, sparse networks. Fitting cross-sectional models for observations of a network at a single point in time, while still a non-negligible computational burden, is much easier. This paper examines model fitting when the available data consist of independent measures of cross-sectional network structure and the duration of relationships under the assumption of stationarity. We introduce a simple approximation to the dynamic parameters for sparse networks with relationships of moderate or long duration and show that the approximation method works best in precisely those cases where parameter estimation is most likely to fail-networks with very little change at each time step. We consider a variety of cases: Bernoulli formation and dissolution of ties, independent-tie formation and Bernoulli dissolution, independent-tie formation and dissolution, and dependent-tie formation models.

  19. A Probabilistic Atlas of Diffuse WHO Grade II Glioma Locations in the Brain

    PubMed Central

    Baumann, Cédric; Zouaoui, Sonia; Yordanova, Yordanka; Blonski, Marie; Rigau, Valérie; Chemouny, Stéphane; Taillandier, Luc; Bauchet, Luc; Duffau, Hugues; Paragios, Nikos

    2016-01-01

    Diffuse WHO grade II gliomas are diffusively infiltrative brain tumors characterized by an unavoidable anaplastic transformation. Their management is strongly dependent on their location in the brain due to interactions with functional regions and potential differences in molecular biology. In this paper, we present the construction of a probabilistic atlas mapping the preferential locations of diffuse WHO grade II gliomas in the brain. This is carried out through a sparse graph whose nodes correspond to clusters of tumors clustered together based on their spatial proximity. The interest of such an atlas is illustrated via two applications. The first one correlates tumor location with the patient’s age via a statistical analysis, highlighting the interest of the atlas for studying the origins and behavior of the tumors. The second exploits the fact that the tumors have preferential locations for automatic segmentation. Through a coupled decomposed Markov Random Field model, the atlas guides the segmentation process, and characterizes which preferential location the tumor belongs to and consequently which behavior it could be associated to. Leave-one-out cross validation experiments on a large database highlight the robustness of the graph, and yield promising segmentation results. PMID:26751577

  20. Multi-Atlas Segmentation using Partially Annotated Data: Methods and Annotation Strategies.

    PubMed

    Koch, Lisa M; Rajchl, Martin; Bai, Wenjia; Baumgartner, Christian F; Tong, Tong; Passerat-Palmbach, Jonathan; Aljabar, Paul; Rueckert, Daniel

    2017-08-22

    Multi-atlas segmentation is a widely used tool in medical image analysis, providing robust and accurate results by learning from annotated atlas datasets. However, the availability of fully annotated atlas images for training is limited due to the time required for the labelling task. Segmentation methods requiring only a proportion of each atlas image to be labelled could therefore reduce the workload on expert raters tasked with annotating atlas images. To address this issue, we first re-examine the labelling problem common in many existing approaches and formulate its solution in terms of a Markov Random Field energy minimisation problem on a graph connecting atlases and the target image. This provides a unifying framework for multi-atlas segmentation. We then show how modifications in the graph configuration of the proposed framework enable the use of partially annotated atlas images and investigate different partial annotation strategies. The proposed method was evaluated on two Magnetic Resonance Imaging (MRI) datasets for hippocampal and cardiac segmentation. Experiments were performed aimed at (1) recreating existing segmentation techniques with the proposed framework and (2) demonstrating the potential of employing sparsely annotated atlas data for multi-atlas segmentation.

  1. Streaming data analytics via message passing with application to graph algorithms

    DOE PAGES

    Plimpton, Steven J.; Shead, Tim

    2014-05-06

    The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less

  2. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.

    PubMed

    Li, Yuhong; Jia, Fucang; Qin, Jing

    2016-10-01

    Accurately segmenting and quantifying brain gliomas from magnetic resonance (MR) images remains a challenging task because of the large spatial and structural variability among brain tumors. To develop a fully automatic and accurate brain tumor segmentation algorithm, we present a probabilistic model of multimodal MR brain tumor segmentation. This model combines sparse representation and the Markov random field (MRF) to solve the spatial and structural variability problem. We formulate the tumor segmentation problem as a multi-classification task by labeling each voxel as the maximum posterior probability. We estimate the maximum a posteriori (MAP) probability by introducing the sparse representation into a likelihood probability and a MRF into the prior probability. Considering the MAP as an NP-hard problem, we convert the maximum posterior probability estimation into a minimum energy optimization problem and employ graph cuts to find the solution to the MAP estimation. Our method is evaluated using the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013) and obtained Dice coefficient metric values of 0.85, 0.75, and 0.69 on the high-grade Challenge data set, 0.73, 0.56, and 0.54 on the high-grade Challenge LeaderBoard data set, and 0.84, 0.54, and 0.57 on the low-grade Challenge data set for the complete, core, and enhancing regions. The experimental results show that the proposed algorithm is valid and ranks 2nd compared with the state-of-the-art tumor segmentation algorithms in the MICCAI BRATS 2013 challenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. GC[Formula: see text]NMF: A Novel Matrix Factorization Framework for Gene-Phenotype Association Prediction.

    PubMed

    Zhang, Yaogong; Liu, Jiahui; Liu, Xiaohu; Hong, Yuxiang; Fan, Xin; Huang, Yalou; Wang, Yuan; Xie, Maoqiang

    2018-04-24

    Gene-phenotype association prediction can be applied to reveal the inherited basis of human diseases and facilitate drug development. Gene-phenotype associations are related to complex biological processes and influenced by various factors, such as relationship between phenotypes and that among genes. While due to sparseness of curated gene-phenotype associations and lack of integrated analysis of the joint effect of multiple factors, existing applications are limited to prediction accuracy and potential gene-phenotype association detection. In this paper, we propose a novel method by exploiting weighted graph constraint learned from hierarchical structures of phenotype data and group prior information among genes by inheriting advantages of Non-negative Matrix Factorization (NMF), called Weighted Graph Constraint and Group Centric Non-negative Matrix Factorization (GC[Formula: see text]NMF). Specifically, first we introduce the depth of parent-child relationships between two adjacent phenotypes in hierarchical phenotypic data as weighted graph constraint for a better phenotype understanding. Second, we utilize intra-group correlation among genes in a gene group as group constraint for gene understanding. Such information provides us with the intuition that genes in a group probably result in similar phenotypes. The model not only allows us to achieve a high-grade prediction performance, but also helps us to learn interpretable representation of genes and phenotypes simultaneously to facilitate future biological analysis. Experimental results on biological gene-phenotype association datasets of mouse and human demonstrate that GC[Formula: see text]NMF can obtain superior prediction accuracy and good understandability for biological explanation over other state-of-the-arts methods.

  4. Molecular clock on a neutral network.

    PubMed

    Raval, Alpan

    2007-09-28

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  5. Molecular Clock on a Neutral Network

    NASA Astrophysics Data System (ADS)

    Raval, Alpan

    2007-09-01

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  6. A novel sub-shot segmentation method for user-generated video

    NASA Astrophysics Data System (ADS)

    Lei, Zhuo; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    With the proliferation of the user-generated videos, temporal segmentation is becoming a challengeable problem. Traditional video temporal segmentation methods like shot detection are not able to work on unedited user-generated videos, since they often only contain one single long shot. We propose a novel temporal segmentation framework for user-generated video. It finds similar frames with a tree partitioning min-Hash technique, constructs sparse temporal constrained affinity sub-graphs, and finally divides the video into sub-shot-level segments with a dense-neighbor-based clustering method. Experimental results show that our approach outperforms all the other related works. Furthermore, it is indicated that the proposed approach is able to segment user-generated videos at an average human level.

  7. Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong

    2018-02-01

    The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.

  8. Automatic theory generation from analyst text files using coherence networks

    NASA Astrophysics Data System (ADS)

    Shaffer, Steven C.

    2014-05-01

    This paper describes a three-phase process of extracting knowledge from analyst textual reports. Phase 1 involves performing natural language processing on the source text to extract subject-predicate-object triples. In phase 2, these triples are then fed into a coherence network analysis process, using a genetic algorithm optimization. Finally, the highest-value sub networks are processed into a semantic network graph for display. Initial work on a well- known data set (a Wikipedia article on Abraham Lincoln) has shown excellent results without any specific tuning. Next, we ran the process on the SYNthetic Counter-INsurgency (SYNCOIN) data set, developed at Penn State, yielding interesting and potentially useful results.

  9. Estimating Highway Volumes Using Vehicle Probe Data - Proof of Concept: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yi; Young, Stanley E; Sadabadi, Kaveh

    This paper examines the feasibility of using sampled commercial probe data in combination with validated continuous counter data to accurately estimate vehicle volume across the entire roadway network, for any hour during the year. Currently either real time or archived volume data for roadways at specific times are extremely sparse. Most volume data are average annual daily traffic (AADT) measures derived from the Highway Performance Monitoring System (HPMS). Although methods to factor the AADT to hourly averages for typical day of week exist, actual volume data is limited to a sparse collection of locations in which volumes are continuously recorded.more » This paper explores the use of commercial probe data to generate accurate volume measures that span the highway network providing ubiquitous coverage in space, and specific point-in-time measures for a specific date and time. The paper examines the need for the data, fundamental accuracy limitations based on a basic statistical model that take into account the sampling nature of probe data, and early results from a proof of concept exercise revealing the potential of probe type data calibrated with public continuous count data to meet end user expectations in terms of accuracy of volume estimates.« less

  10. Weakly Supervised Dictionary Learning

    NASA Astrophysics Data System (ADS)

    You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub

    2018-05-01

    We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.

  11. Unsupervised Approaches for Post-Processing in Computationally Efficient Waveform-Similarity-Based Earthquake Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Yoon, C. E.; OReilly, O. J.; Beroza, G. C.

    2015-12-01

    Recent improvements in computational efficiency for waveform correlation-based detections achieved by new methods such as Fingerprint and Similarity Thresholding (FAST) promise to allow large-scale blind search for similar waveforms in long-duration continuous seismic data. Waveform similarity search applied to datasets of months to years of continuous seismic data will identify significantly more events than traditional detection methods. With the anticipated increase in number of detections and associated increase in false positives, manual inspection of the detection results will become infeasible. This motivates the need for new approaches to process the output of similarity-based detection. We explore data mining techniques for improved detection post-processing. We approach this by considering similarity-detector output as a sparse similarity graph with candidate events as vertices and similarities as weighted edges. Image processing techniques are leveraged to define candidate events and combine results individually processed at multiple stations. Clustering and graph analysis methods are used to identify groups of similar waveforms and assign a confidence score to candidate detections. Anomaly detection and classification are applied to waveform data for additional false detection removal. A comparison of methods will be presented and their performance will be demonstrated on a suspected induced and non-induced earthquake sequence.

  12. Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks.

    PubMed

    Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney J

    2018-05-01

    Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSP's planar four-color graph coloring, maximum independent set, and sudoku on this substrate and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of nonsaturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by nonlinear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation and offer insight into the computational role of dual inhibitory mechanisms in neural circuits.

  13. Identifying group discriminative and age regressive sub-networks from DTI-based connectivity via a unified framework of non-negative matrix factorization and graph embedding

    PubMed Central

    Ghanbari, Yasser; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini

    2014-01-01

    Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter (WM) fiber tracts and their development in the brain, facilitating a network representation of brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel means of investigating brain changes arising from pathology, development or aging. The high dimensionality of these connectivity networks necessitates the development of methods that identify the connectivity building blocks or sub-network components that characterize the underlying variation in the population. In addition, the projection of the subject networks into the basis set provides a low dimensional representation of it, that teases apart different sources of variation in the sample, facilitating variation-specific statistical analysis. We propose a unified framework of non-negative matrix factorization and graph embedding for learning sub-network patterns of connectivity by their projective non-negative decomposition into a reconstructive basis set, as well as, additional basis sets representing variational sources in the population like age and pathology. The proposed framework is applied to a study of diffusion-based connectivity in subjects with autism that shows localized sparse sub-networks which mostly capture the changes related to pathology and developmental variations. PMID:25037933

  14. Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's Disease diagnosis.

    PubMed

    Ortiz, Andrés; Munilla, Jorge; Álvarez-Illán, Ignacio; Górriz, Juan M; Ramírez, Javier

    2015-01-01

    Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people. Its development has been shown to be closely related to changes in the brain connectivity network and in the brain activation patterns along with structural changes caused by the neurodegenerative process. Methods to infer dependence between brain regions are usually derived from the analysis of covariance between activation levels in the different areas. However, these covariance-based methods are not able to estimate conditional independence between variables to factor out the influence of other regions. Conversely, models based on the inverse covariance, or precision matrix, such as Sparse Gaussian Graphical Models allow revealing conditional independence between regions by estimating the covariance between two variables given the rest as constant. This paper uses Sparse Inverse Covariance Estimation (SICE) methods to learn undirected graphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose (18F-FDG) Position Emission Tomography (PET) data and segmented Magnetic Resonance images (MRI), drawn from the ADNI database, for Control, MCI (Mild Cognitive Impairment Subjects), and AD subjects. Sparse computation fits perfectly here as brain regions usually only interact with a few other areas. The models clearly show different metabolic covariation patters between subject groups, revealing the loss of strong connections in AD and MCI subjects when compared to Controls. Similarly, the variance between GM (Gray Matter) densities of different regions reveals different structural covariation patterns between the different groups. Thus, the different connectivity patterns for controls and AD are used in this paper to select regions of interest in PET and GM images with discriminative power for early AD diagnosis. Finally, functional an structural models are combined to leverage the classification accuracy. The results obtained in this work show the usefulness of the Sparse Gaussian Graphical models to reveal functional and structural connectivity patterns. This information provided by the sparse inverse covariance matrices is not only used in an exploratory way but we also propose a method to use it in a discriminative way. Regression coefficients are used to compute reconstruction errors for the different classes that are then introduced in a SVM for classification. Classification experiments performed using 68 Controls, 70 AD, and 111 MCI images and assessed by cross-validation show the effectiveness of the proposed method.

  15. A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations.

    PubMed

    Xiao, Qiu; Luo, Jiawei; Liang, Cheng; Cai, Jie; Ding, Pingjian

    2017-09-01

    MicroRNAs (miRNAs) play crucial roles in post-transcriptional regulations and various cellular processes. The identification of disease-related miRNAs provides great insights into the underlying pathogenesis of diseases at a system level. However, most existing computational approaches are biased towards known miRNA-disease associations, which is inappropriate for those new diseases or miRNAs without any known association information. In this study, we propose a new method with graph regularized non-negative matrix factorization in heterogeneous omics data, called GRNMF, to discover potential associations between miRNAs and diseases, especially for new diseases and miRNAs or those diseases and miRNAs with sparse known associations. First, we integrate the disease semantic information and miRNA functional information to estimate disease similarity and miRNA similarity, respectively. Considering that there is no available interaction observed for new diseases or miRNAs, a preprocessing step is developed to construct the interaction score profiles that will assist in prediction. Next, a graph regularized non-negative matrix factorization framework is utilized to simultaneously identify potential associations for all diseases. The results indicated that our proposed method can effectively prioritize disease-associated miRNAs with higher accuracy compared with other recent approaches. Moreover, case studies also demonstrated the effectiveness of GRNMF to infer unknown miRNA-disease associations for those novel diseases and miRNAs. The code of GRNMF is freely available at https://github.com/XIAO-HN/GRNMF/. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data.

    PubMed

    Schulz, Tizian; Stoye, Jens; Doerr, Daniel

    2018-05-08

    Hi-C sequencing offers novel, cost-effective means to study the spatial conformation of chromosomes. We use data obtained from Hi-C experiments to provide new evidence for the existence of spatial gene clusters. These are sets of genes with associated functionality that exhibit close proximity to each other in the spatial conformation of chromosomes across several related species. We present the first gene cluster model capable of handling spatial data. Our model generalizes a popular computational model for gene cluster prediction, called δ-teams, from sequences to graphs. Following previous lines of research, we subsequently extend our model to allow for several vertices being associated with the same label. The model, called δ-teams with families, is particular suitable for our application as it enables handling of gene duplicates. We develop algorithmic solutions for both models. We implemented the algorithm for discovering δ-teams with families and integrated it into a fully automated workflow for discovering gene clusters in Hi-C data, called GraphTeams. We applied it to human and mouse data to find intra- and interchromosomal gene cluster candidates. The results include intrachromosomal clusters that seem to exhibit a closer proximity in space than on their chromosomal DNA sequence. We further discovered interchromosomal gene clusters that contain genes from different chromosomes within the human genome, but are located on a single chromosome in mouse. By identifying δ-teams with families, we provide a flexible model to discover gene cluster candidates in Hi-C data. Our analysis of Hi-C data from human and mouse reveals several known gene clusters (thus validating our approach), but also few sparsely studied or possibly unknown gene cluster candidates that could be the source of further experimental investigations.

  17. Disease Prediction based on Functional Connectomes using a Scalable and Spatially-Informed Support Vector Machine

    PubMed Central

    Watanabe, Takanori; Kessler, Daniel; Scott, Clayton; Angstadt, Michael; Sripada, Chandra

    2014-01-01

    Substantial evidence indicates that major psychiatric disorders are associated with distributed neural dysconnectivity, leading to strong interest in using neuroimaging methods to accurately predict disorder status. In this work, we are specifically interested in a multivariate approach that uses features derived from whole-brain resting state functional connectomes. However, functional connectomes reside in a high dimensional space, which complicates model interpretation and introduces numerous statistical and computational challenges. Traditional feature selection techniques are used to reduce data dimensionality, but are blind to the spatial structure of the connectomes. We propose a regularization framework where the 6-D structure of the functional connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and margin-based, allowing non-differentiable loss functions such as the hinge-loss to be used. Using the fused Lasso or GraphNet regularizer with the hinge-loss leads to a structured sparse support vector machine (SVM) with embedded feature selection. We introduce a novel efficient optimization algorithm based on the augmented Lagrangian and the classical alternating direction method, which can solve both fused Lasso and GraphNet regularized SVM with very little modification. We also demonstrate that the inner subproblems of the algorithm can be solved efficiently in analytic form by coupling the variable splitting strategy with a data augmentation scheme. Experiments on simulated data and resting state scans from a large schizophrenia dataset show that our proposed approach can identify predictive regions that are spatially contiguous in the 6-D “connectome space,” offering an additional layer of interpretability that could provide new insights about various disease processes. PMID:24704268

  18. On the photonic implementation of universal quantum gates, bell states preparation circuit and quantum LDPC encoders and decoders based on directional couplers and HNLF.

    PubMed

    Djordjevic, Ivan B

    2010-04-12

    The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.

  19. Batteryless magneto-driven portable radiac

    DOEpatents

    Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Wolf, M.A.; Umbarger, C.J.

    1984-10-19

    A hand-powerd alternator for generating an alternating voltage provides same through a rectifier to a high capacity capacitor which stores the resultant dc voltage and drives a voltage regulator to provide a constant low voltage output for a portable radiation detection instrument. The instrument includes a Geiger-Mueller detector tube whose output is fed to a pulse detector and then through an event counter and LCD driver circuit to an LCD bar graph for visual display. An audio driver and an audio output is also provided. All circuitry used is low power so that the capacitor can be readily charged to a sufficient level to provide power for at least 30 minutes. A low voltage indicator is provided on the LCD display to indicate the need for manual recharging.

  20. Batteryless magneto-driven portable radiac

    DOEpatents

    Waechter, David A.; Bjarke, George O.; Trujillo, Faustin; Wolf, Michael A.; Umbarger, C. John

    1986-01-01

    A hand-powered alternator for generating an alternating voltage provides same through a rectifier to a high capacity capacitor which stores the resultant dc voltage and drives a voltage regulator to provide a constant low voltage output for a portable radiation detection instrument. The instrument includes a Geiger-Muller detector tube whose output is fed to a pulse detector and then through an event counter and LCD driver circuit to an LCD bar graph for visual display. An audio driver and an audio output is also provided. All circuitry used is low power so that the capacitor can be readily charged to a sufficient level to provide power for at least 30 minutes. A low voltage indicator is provided on the LCD display to indicate the need for manual recharging.

  1. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters).

    PubMed

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-07

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8  ×  higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging.

  2. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Fredenberg, E.; Lundqvist, Mats; Siewerdsen, J. H.

    2016-01-01

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8  ×  higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging.

  3. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)

    PubMed Central

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-01

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8 × higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging. PMID:26611740

  4. Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach

    PubMed Central

    Almeida, Jorge R. C.; Stiffler, Richelle; Lockovich, Jeanette C.; Aslam, Haris A.; Phillips, Mary L.

    2016-01-01

    Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction (‘top-down’ versus ‘bottom-up’) were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that loss anticipation was characterized by denser top-down fronto-striatal and fronto-parietal connectivity in healthy control subjects, by bottom-up striatal-frontal connectivity in MDD, and by sparse connectivity lacking fronto-striatal connections in BDD. Win anticipation was characterized by dense connectivity of medial frontal with striatal and lateral frontal cortical regions in BDD, by sparser bottom-up striatum-medial frontal cortex connectivity in MDD, and by sparse connectivity in healthy control subjects. In summary, this is the first study to demonstrate that BDD and MDD with comparable levels of current depression differed from each other and healthy control subjects in density of connections, connectivity path length, and connectivity direction as a function of win or loss anticipation. These findings suggest that different neurobiological mechanisms may underlie aberrant anticipation processes in BDD and MDD, and that distinct therapeutic strategies may be required for these individuals to improve coping strategies during expectation of positive and negative outcomes. PMID:27368345

  5. Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach.

    PubMed

    Manelis, Anna; Almeida, Jorge R C; Stiffler, Richelle; Lockovich, Jeanette C; Aslam, Haris A; Phillips, Mary L

    2016-09-01

    Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction ('top-down' versus 'bottom-up') were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that loss anticipation was characterized by denser top-down fronto-striatal and fronto-parietal connectivity in healthy control subjects, by bottom-up striatal-frontal connectivity in MDD, and by sparse connectivity lacking fronto-striatal connections in BDD. Win anticipation was characterized by dense connectivity of medial frontal with striatal and lateral frontal cortical regions in BDD, by sparser bottom-up striatum-medial frontal cortex connectivity in MDD, and by sparse connectivity in healthy control subjects. In summary, this is the first study to demonstrate that BDD and MDD with comparable levels of current depression differed from each other and healthy control subjects in density of connections, connectivity path length, and connectivity direction as a function of win or loss anticipation. These findings suggest that different neurobiological mechanisms may underlie aberrant anticipation processes in BDD and MDD, and that distinct therapeutic strategies may be required for these individuals to improve coping strategies during expectation of positive and negative outcomes. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Countering imbalanced datasets to improve adverse drug event predictive models in labor and delivery.

    PubMed

    Taft, L M; Evans, R S; Shyu, C R; Egger, M J; Chawla, N; Mitchell, J A; Thornton, S N; Bray, B; Varner, M

    2009-04-01

    The IOM report, Preventing Medication Errors, emphasizes the overall lack of knowledge of the incidence of adverse drug events (ADE). Operating rooms, emergency departments and intensive care units are known to have a higher incidence of ADE. Labor and delivery (L&D) is an emergency care unit that could have an increased risk of ADE, where reported rates remain low and under-reporting is suspected. Risk factor identification with electronic pattern recognition techniques could improve ADE detection rates. The objective of the present study is to apply Synthetic Minority Over Sampling Technique (SMOTE) as an enhanced sampling method in a sparse dataset to generate prediction models to identify ADE in women admitted for labor and delivery based on patient risk factors and comorbidities. By creating synthetic cases with the SMOTE algorithm and using a 10-fold cross-validation technique, we demonstrated improved performance of the Naïve Bayes and the decision tree algorithms. The true positive rate (TPR) of 0.32 in the raw dataset increased to 0.67 in the 800% over-sampled dataset. Enhanced performance from classification algorithms can be attained with the use of synthetic minority class oversampling techniques in sparse clinical datasets. Predictive models created in this manner can be used to develop evidence based ADE monitoring systems.

  7. Ellipsoidal fuzzy learning for smart car platoons

    NASA Astrophysics Data System (ADS)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  8. Percolation in real multiplex networks

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  9. Smart Grid Integrity Attacks: Characterizations and Countermeasures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annarita Giani; Eilyan Bitar; Miles McQueen

    2011-10-01

    Real power injections at loads and generators, and real power flows on selected lines in a transmission network are monitored, transmitted over a SCADA network to the system operator, and used in state estimation algorithms to make dispatch, re-balance and other energy management system [EMS] decisions. Coordinated cyber attacks of power meter readings can be arranged to be undetectable by any bad data detection algorithm. These unobservable attacks present a serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unobservable attacksmore » [under standard DC load flow approximations] involving the compromise of exactly two power injection meters and an arbitrary number of power meters on lines is presented. This requires O(n2m) flops for a power system with n buses and m line meters. If all lines are metered, there exist canonical forms that characterize all 3, 4, and 5-sparse unobservable attacks. These can be quickly detected in power systems using standard graph algorithms. Known secure phase measurement units [PMUs] can be used as countermeasures against an arbitrary collection of cyber attacks. Finding the minimum number of necessary PMUs is NP-hard. It is shown that p + 1 PMUs at carefully chosen buses are sufficient to neutralize a collection of p cyber attacks.« less

  10. Groupwise registration of MR brain images with tumors.

    PubMed

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-08-04

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of 'image registration paths' to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10 -9 ).

  11. Drawing road networks with focus regions.

    PubMed

    Haunert, Jan-Henrik; Sering, Leon

    2011-12-01

    Mobile users of maps typically need detailed information about their surroundings plus some context information about remote places. In order to avoid that the map partly gets too dense, cartographers have designed mapping functions that enlarge a user-defined focus region--such functions are sometimes called fish-eye projections. The extra map space occupied by the enlarged focus region is compensated by distorting other parts of the map. We argue that, in a map showing a network of roads relevant to the user, distortion should preferably take place in those areas where the network is sparse. Therefore, we do not apply a predefined mapping function. Instead, we consider the road network as a graph whose edges are the road segments. We compute a new spatial mapping with a graph-based optimization approach, minimizing the square sum of distortions at edges. Our optimization method is based on a convex quadratic program (CQP); CQPs can be solved in polynomial time. Important requirements on the output map are expressed as linear inequalities. In particular, we show how to forbid edge crossings. We have implemented our method in a prototype tool. For instances of different sizes, our method generated output maps that were far less distorted than those generated with a predefined fish-eye projection. Future work is needed to automate the selection of roads relevant to the user. Furthermore, we aim at fast heuristics for application in real-time systems. © 2011 IEEE

  12. Robust Gaussian Graphical Modeling via l1 Penalization

    PubMed Central

    Sun, Hokeun; Li, Hongzhe

    2012-01-01

    Summary Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l1 penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso. PMID:23020775

  13. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve the robustness and efficiency of the graph based DAC algorithm by incorporating the Multilevel Graph Partitioning (MGP) method into the graph model, and develop a MGP based sectorization algorithm for DAC in the en route airspace. In a comprehensive benefit analysis, the performance of the proposed algorithms are tested in numerical simulations with Enhanced Traffic Management System (ETMS) data. Simulation results demonstrate that the algorithmically generated sectorizations outperform the current sectorizations in different sectors for different time periods. Secondly, based on our experience with DAC in the en route airspace, we further study the sectorization problem for DAC in the terminal airspace. The differences between the en route and terminal airspace are identified, and their influence on the terminal sectorization is analyzed. After adjusting the graph model to better capture the unique characteristics of the terminal airspace and the requirements of terminal sectorization, we develop a graph based geometric sectorization algorithm for DAC in the terminal airspace. Moreover, the graph based model is combined with the region based sector design method to better handle the complicated geometric and operational constraints in the terminal sectorization problem. In the benefit analysis, we identify the contributing factors to terminal controller workload, define evaluation metrics, and develop a bebefit analysis framework for terminal sectorization evaluation. With the evaluation framework developed, we demonstrate the improvements on the current sectorizations with real traffic data collected from several major international airports in the U.S., and conduct a detailed analysis on the potential benefits of dynamic reconfiguration in the terminal airspace. Finally, in addition to the research on the macroscopic behavior of a large number of aircraft, we also study the dynamical behavior of individual aircraft from the perspective of traffic flow management. We formulate the mode-confusion problem as hybrid estimation problem, and develop a state estimation algorithm for the linear hybrid system with continuous-state-dependent transitions based on sparse observations. We also develop an estimated time of arrival prediction algorithm based on the state-dependent transition hybrid estimation algorithm, whose performance is demonstrated with simulations on the landing procedure following the Continuous Descend Approach (CDA) profile.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, J.A.

    This report is a sequel to ORNL/CSD-106 in the ongoing supplements to Professor A.S. Householder's KWIC Index for Numerical Algebra. Beginning with the previous supplement, the subject has been restricted to Numerical Linear Algebra, roughly characterized by the American Mathematical Society's classification sections 15 and 65F but with little coverage of infinite matrices, matrices over fields of characteristics other than zero, operator theory, optimization and those parts of matrix theory primarily combinatorial in nature. Some consideration is given to the uses of graph theory in Numerical Linear Algebra, particularly with respect to algorithms for sparse matrix computations. The period coveredmore » by this report is roughly the calendar year 1982 as measured by the appearance of the articles in the American Mathematical Society's Contents of Mathematical Publications lagging actual appearance dates by up to nearly half a year. The review citations are limited to the Mathematical Reviews (MR).« less

  15. Locality preserving non-negative basis learning with graph embedding.

    PubMed

    Ghanbari, Yasser; Herrington, John; Gur, Ruben C; Schultz, Robert T; Verma, Ragini

    2013-01-01

    The high dimensionality of connectivity networks necessitates the development of methods identifying the connectivity building blocks that not only characterize the patterns of brain pathology but also reveal representative population patterns. In this paper, we present a non-negative component analysis framework for learning localized and sparse sub-network patterns of connectivity matrices by decomposing them into two sets of discriminative and reconstructive bases. In order to obtain components that are designed towards extracting population differences, we exploit the geometry of the population by using a graphtheoretical scheme that imposes locality-preserving properties as well as maintaining the underlying distance between distant nodes in the original and the projected space. The effectiveness of the proposed framework is demonstrated by applying it to two clinical studies using connectivity matrices derived from DTI to study a population of subjects with ASD, as well as a developmental study of structural brain connectivity that extracts gender differences.

  16. Structural Transitions in Densifying Networks

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Krapivsky, P. L.; Bhat, U.; Redner, S.

    2016-11-01

    We introduce a minimal generative model for densifying networks in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability p . The networks that emerge from this copying mechanism are sparse for p <1/2 and dense (average degree increasing with number of nodes N ) for p ≥1/2 . The behavior in the dense regime is especially rich; for example, individual network realizations that are built by copying are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at p =2/3 , 3/4 , 4/5 , etc., where the N dependences of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete—all nodes are connected—is nonzero as N →∞ .

  17. An Interactive Image Segmentation Method in Hand Gesture Recognition

    PubMed Central

    Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai

    2017-01-01

    In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy. PMID:28134818

  18. q-Space Upsampling Using x-q Space Regularization.

    PubMed

    Chen, Geng; Dong, Bin; Zhang, Yong; Shen, Dinggang; Yap, Pew-Thian

    2017-09-01

    Acquisition time in diffusion MRI increases with the number of diffusion-weighted images that need to be acquired. Particularly in clinical settings, scan time is limited and only a sparse coverage of the vast q -space is possible. In this paper, we show how non-local self-similar information in the x - q space of diffusion MRI data can be harnessed for q -space upsampling. More specifically, we establish the relationships between signal measurements in x - q space using a patch matching mechanism that caters to unstructured data. We then encode these relationships in a graph and use it to regularize an inverse problem associated with recovering a high q -space resolution dataset from its low-resolution counterpart. Experimental results indicate that the high-resolution datasets reconstructed using the proposed method exhibit greater quality, both quantitatively and qualitatively, than those obtained using conventional methods, such as interpolation using spherical radial basis functions (SRBFs).

  19. Approximate equiangular tight frames for compressed sensing and CDMA applications

    NASA Astrophysics Data System (ADS)

    Tsiligianni, Evaggelia; Kondi, Lisimachos P.; Katsaggelos, Aggelos K.

    2017-12-01

    Performance guarantees for recovery algorithms employed in sparse representations, and compressed sensing highlights the importance of incoherence. Optimal bounds of incoherence are attained by equiangular unit norm tight frames (ETFs). Although ETFs are important in many applications, they do not exist for all dimensions, while their construction has been proven extremely difficult. In this paper, we construct frames that are close to ETFs. According to results from frame and graph theory, the existence of an ETF depends on the existence of its signature matrix, that is, a symmetric matrix with certain structure and spectrum consisting of two distinct eigenvalues. We view the construction of a signature matrix as an inverse eigenvalue problem and propose a method that produces frames of any dimensions that are close to ETFs. Due to the achieved equiangularity property, the so obtained frames can be employed as spreading sequences in synchronous code-division multiple access (s-CDMA) systems, besides compressed sensing.

  20. The evolution of generalized reciprocity in social interaction networks.

    PubMed

    Voelkl, Bernhard

    2015-09-01

    Generalized reciprocity has been proposed as a mechanism for enabling continued cooperation between unrelated individuals. It can be described by the simple rule "help somebody if you received help from someone", and as it does not require individual recognition, complex cognition or extended memory capacities, it has the potential to explain cooperation in a large number of organisms. In a panmictic population this mechanism is vulnerable to defection by individuals who readily accept help but do not help themselves. Here, I investigate to what extent the limitation of social interactions to a social neighborhood can lead to conditions that favor generalized reciprocity in the absence of population structuring. It can be shown that cooperation is likely to evolve if one assumes certain sparse interaction graphs, if strategies are discrete, and if spontaneous helping and reciprocating are independently inherited. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Data mining for materials design: A computational study of single molecule magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, Hieu Chi; Faculty of Physics, Vietnam National University, 334 Nguyen Trai, Hanoi; Pham, Tien Lam

    2014-01-28

    We develop a method that combines data mining and first principles calculation to guide the designing of distorted cubane Mn{sup 4+} Mn {sub 3}{sup 3+} single molecule magnets. The essential idea of the method is a process consisting of sparse regressions and cross-validation for analyzing calculated data of the materials. The method allows us to demonstrate that the exchange coupling between Mn{sup 4+} and Mn{sup 3+} ions can be predicted from the electronegativities of constituent ligands and the structural features of the molecule by a linear regression model with high accuracy. The relations between the structural features and magnetic propertiesmore » of the materials are quantitatively and consistently evaluated and presented by a graph. We also discuss the properties of the materials and guide the material design basing on the obtained results.« less

  2. Classification of mislabelled microarrays using robust sparse logistic regression.

    PubMed

    Bootkrajang, Jakramate; Kabán, Ata

    2013-04-01

    Previous studies reported that labelling errors are not uncommon in microarray datasets. In such cases, the training set may become misleading, and the ability of classifiers to make reliable inferences from the data is compromised. Yet, few methods are currently available in the bioinformatics literature to deal with this problem. The few existing methods focus on data cleansing alone, without reference to classification, and their performance crucially depends on some tuning parameters. In this article, we develop a new method to detect mislabelled arrays simultaneously with learning a sparse logistic regression classifier. Our method may be seen as a label-noise robust extension of the well-known and successful Bayesian logistic regression classifier. To account for possible mislabelling, we formulate a label-flipping process as part of the classifier. The regularization parameter is automatically set using Bayesian regularization, which not only saves the computation time that cross-validation would take, but also eliminates any unwanted effects of label noise when setting the regularization parameter. Extensive experiments with both synthetic data and real microarray datasets demonstrate that our approach is able to counter the bad effects of labelling errors in terms of predictive performance, it is effective at identifying marker genes and simultaneously it detects mislabelled arrays to high accuracy. The code is available from http://cs.bham.ac.uk/∼jxb008. Supplementary data are available at Bioinformatics online.

  3. A symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming.

    PubMed

    Liu, Jing; Duan, Yongrui; Sun, Min

    2017-01-01

    This paper introduces a symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming with linear equality constraints, which inherits the superiorities of the classical alternating direction method of multipliers (ADMM), and which extends the feasible set of the relaxation factor α of the generalized ADMM to the infinite interval [Formula: see text]. Under the conditions that the objective function is convex and the solution set is nonempty, we establish the convergence results of the proposed method, including the global convergence, the worst-case [Formula: see text] convergence rate in both the ergodic and the non-ergodic senses, where k denotes the iteration counter. Numerical experiments to decode a sparse signal arising in compressed sensing are included to illustrate the efficiency of the new method.

  4. Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada

    PubMed Central

    Agunos, Agnes; Léger, Dave; Carson, Carolee

    2012-01-01

    This paper reviews common therapeutic applications of antimicrobials in broiler chicken production in relation to Canadian guidelines, surveillance data, and emerging public health concerns about antimicrobial use (AMU). Escherichia coli, Clostridium perfringens, and Staphylococcus spp., were reviewed because of their animal health and economic significance. Enterococcus cecorum and Salmonella were included because of their importance in antimicrobial resistance (AMR) surveillance. This review identified that i) antimicrobials are available in Canada to treat infections by these agents, but may be through over the counter or extra-label use, ii) prevalence rates for these diseases are unknown, iii) antimicrobial use estimates in broilers are lacking, and iv) AMR has emerged in clinical isolates, though data are very sparse. This review highlights the need for surveillance of AMU and AMR in broiler chickens in Canada. PMID:23729827

  5. A Novel Coarsening Method for Scalable and Efficient Mesh Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, A; Hysom, D; Gunney, B

    2010-12-02

    In this paper, we propose a novel mesh coarsening method called brick coarsening method. The proposed method can be used in conjunction with any graph partitioners and scales to very large meshes. This method reduces problem space by decomposing the original mesh into fixed-size blocks of nodes called bricks, layered in a similar way to conventional brick laying, and then assigning each node of the original mesh to appropriate brick. Our experiments indicate that the proposed method scales to very large meshes while allowing simple RCB partitioner to produce higher-quality partitions with significantly less edge cuts. Our results further indicatemore » that the proposed brick-coarsening method allows more complicated partitioners like PT-Scotch to scale to very large problem size while still maintaining good partitioning performance with relatively good edge-cut metric. Graph partitioning is an important problem that has many scientific and engineering applications in such areas as VLSI design, scientific computing, and resource management. Given a graph G = (V,E), where V is the set of vertices and E is the set of edges, (k-way) graph partitioning problem is to partition the vertices of the graph (V) into k disjoint groups such that each group contains roughly equal number of vertices and the number of edges connecting vertices in different groups is minimized. Graph partitioning plays a key role in large scientific computing, especially in mesh-based computations, as it is used as a tool to minimize the volume of communication and to ensure well-balanced load across computing nodes. The impact of graph partitioning on the reduction of communication can be easily seen, for example, in different iterative methods to solve a sparse system of linear equation. Here, a graph partitioning technique is applied to the matrix, which is basically a graph in which each edge is a non-zero entry in the matrix, to allocate groups of vertices to processors in such a way that many of matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size blocks called bricks. These brick are then laid in a way similar to conventional brick laying technique, which reduces the number of neighboring blocks each block needs to communicate. Contributions of this research are as follows: (1) We have developed a novel method that scales to a really large problem size while producing high quality mesh partitions; (2) We measured the performance and scalability of the proposed method on a machine of massive size using a set of actual large complex data sets, where we have scaled to a mesh with 110 million zones using our method. To the best of our knowledge, this is the largest complex mesh that a partitioning method is successfully applied to; and (3) We have shown that proposed method can reduce the number of edge cuts by as much as 65%.« less

  6. Loose fusion based on SLAM and IMU for indoor environment

    NASA Astrophysics Data System (ADS)

    Zhu, Haijiang; Wang, Zhicheng; Zhou, Jinglin; Wang, Xuejing

    2018-04-01

    The simultaneous localization and mapping (SLAM) method based on the RGB-D sensor is widely researched in recent years. However, the accuracy of the RGB-D SLAM relies heavily on correspondence feature points, and the position would be lost in case of scenes with sparse textures. Therefore, plenty of fusion methods using the RGB-D information and inertial measurement unit (IMU) data have investigated to improve the accuracy of SLAM system. However, these fusion methods usually do not take into account the size of matched feature points. The pose estimation calculated by RGB-D information may not be accurate while the number of correct matches is too few. Thus, considering the impact of matches in SLAM system and the problem of missing position in scenes with few textures, a loose fusion method combining RGB-D with IMU is proposed in this paper. In the proposed method, we design a loose fusion strategy based on the RGB-D camera information and IMU data, which is to utilize the IMU data for position estimation when the corresponding point matches are quite few. While there are a lot of matches, the RGB-D information is still used to estimate position. The final pose would be optimized by General Graph Optimization (g2o) framework to reduce error. The experimental results show that the proposed method is better than the RGB-D camera's method. And this method can continue working stably for indoor environment with sparse textures in the SLAM system.

  7. High-performance sparse matrix-matrix products on Intel KNL and multicore architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaka, Y; Matsuoka, S; Azad, A

    Sparse matrix-matrix multiplication (SpGEMM) is a computational primitive that is widely used in areas ranging from traditional numerical applications to recent big data analysis and machine learning. Although many SpGEMM algorithms have been proposed, hardware specific optimizations for multi- and many-core processors are lacking and a detailed analysis of their performance under various use cases and matrices is not available. We firstly identify and mitigate multiple bottlenecks with memory management and thread scheduling on Intel Xeon Phi (Knights Landing or KNL). Specifically targeting multi- and many-core processors, we develop a hash-table-based algorithm and optimize a heap-based shared-memory SpGEMM algorithm. Wemore » examine their performance together with other publicly available codes. Different from the literature, our evaluation also includes use cases that are representative of real graph algorithms, such as multi-source breadth-first search or triangle counting. Our hash-table and heap-based algorithms are showing significant speedups from libraries in the majority of the cases while different algorithms dominate the other scenarios with different matrix size, sparsity, compression factor and operation type. We wrap up in-depth evaluation results and make a recipe to give the best SpGEMM algorithm for target scenario. A critical finding is that hash-table-based SpGEMM gets a significant performance boost if the nonzeros are not required to be sorted within each row of the output matrix.« less

  8. Heterogeneous information-based artificial stock market

    NASA Astrophysics Data System (ADS)

    Pastore, S.; Ponta, L.; Cincotti, S.

    2010-05-01

    In this paper, an information-based artificial stock market is considered. The market is populated by heterogeneous agents that are seen as nodes of a sparsely connected graph. Agents trade a risky asset in exchange for cash. Besides the amount of cash and assets owned, each agent is characterized by a sentiment. Moreover, agents share their sentiments by means of interactions that are identified by the graph. Interactions are unidirectional and are supplied with heterogeneous weights. The agent's trading decision is based on sentiment and, consequently, the stock price process depends on the propagation of information among the interacting agents, on budget constraints and on market feedback. A central market maker (clearing house mechanism) determines the price process at the intersection of the demand and supply curves. Both closed- and open-market conditions are considered. The results point out the validity of the proposed model of information exchange among agents and are helpful for understanding the role of information in real markets. Under closed market conditions, the interaction among agents' sentiments yields a price process that reproduces the main stylized facts of real markets, e.g. the fat tails of the returns distributions and the clustering of volatility. Within open-market conditions, i.e. with an external cash inflow that results in asset price inflation, also the unitary root stylized fact is reproduced by the artificial stock market. Finally, the effects of model parameters on the properties of the artificial stock market are also addressed.

  9. Network-based study of Lagrangian transport and mixing

    NASA Astrophysics Data System (ADS)

    Padberg-Gehle, Kathrin; Schneide, Christiane

    2017-10-01

    Transport and mixing processes in fluid flows are crucially influenced by coherent structures and the characterization of these Lagrangian objects is a topic of intense current research. While established mathematical approaches such as variational methods or transfer-operator-based schemes require full knowledge of the flow field or at least high-resolution trajectory data, this information may not be available in applications. Recently, different computational methods have been proposed to identify coherent behavior in flows directly from Lagrangian trajectory data, that is, numerical or measured time series of particle positions in a fluid flow. In this context, spatio-temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we consider an unweighted, undirected network, where Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph concepts are then employed to analyze the resulting network. In particular, local network measures such as the node degree, the average degree of neighboring nodes, and the clustering coefficient serve as indicators of highly mixing regions, whereas spectral graph partitioning schemes allow us to extract coherent sets. The proposed methodology is very fast to run and we demonstrate its applicability in two geophysical flows - the Bickley jet as well as the Antarctic stratospheric polar vortex.

  10. Understanding transportation-caused rangeland damage in Mongolia.

    PubMed

    Keshkamat, S S; Tsendbazar, N E; Zuidgeest, M H P; Shiirev-Adiya, S; van der Veen, A; van Maarseveen, M F A M

    2013-01-15

    Mongolia, a vast and sparsely populated semi-arid country, has very little formal road infrastructure. Since the 1990s, private ownership and usage of vehicles has been increasing, which has created a web of dirt track corridors due to the communal land tenure and unobstructed terrain, with some of these corridors reaching over 4 km in width. This practice aids wind- and water-aided erosion and desertification, causing enormous negative environmental effects. Little is being done to counter the phenomenon, mainly because the logic of the driving behaviour that causes this dirt road widening is not fully understood. The research in this article postulates that this driving behaviour has rational foundations and is linked to various geographical factors (natural and man-made geographical features). We analysed 11,000 km of arterial routes in the country using spatial statistics and determined that geographically weighted regression (GWR) analysis offers a good explanation for whether, and by how much, the selected geographical factors affect the creation of corridor widths and how their effect varies across the landscape. We determined that corridor widths are correlated to factors such as proximity to river crossings, traffic intensity, and vegetation abundance. Knowing these factors can help local planners and engineers design counter-measures that could help to control and reduce the widths of these corridors, until paved roads can replace the dirt track corridors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Rule-Based Flight Software Cost Estimation

    NASA Technical Reports Server (NTRS)

    Stukes, Sherry A.; Spagnuolo, John N. Jr.

    2015-01-01

    This paper discusses the fundamental process for the computation of Flight Software (FSW) cost estimates. This process has been incorporated in a rule-based expert system [1] that can be used for Independent Cost Estimates (ICEs), Proposals, and for the validation of Cost Analysis Data Requirements (CADRe) submissions. A high-level directed graph (referred to here as a decision graph) illustrates the steps taken in the production of these estimated costs and serves as a basis of design for the expert system described in this paper. Detailed discussions are subsequently given elaborating upon the methodology, tools, charts, and caveats related to the various nodes of the graph. We present general principles for the estimation of FSW using SEER-SEM as an illustration of these principles when appropriate. Since Source Lines of Code (SLOC) is a major cost driver, a discussion of various SLOC data sources for the preparation of the estimates is given together with an explanation of how contractor SLOC estimates compare with the SLOC estimates used by JPL. Obtaining consistency in code counting will be presented as well as factors used in reconciling SLOC estimates from different code counters. When sufficient data is obtained, a mapping into the JPL Work Breakdown Structure (WBS) from the SEER-SEM output is illustrated. For across the board FSW estimates, as was done for the NASA Discovery Mission proposal estimates performed at JPL, a comparative high-level summary sheet for all missions with the SLOC, data description, brief mission description and the most relevant SEER-SEM parameter values is given to illustrate an encapsulation of the used and calculated data involved in the estimates. The rule-based expert system described provides the user with inputs useful or sufficient to run generic cost estimation programs. This system's incarnation is achieved via the C Language Integrated Production System (CLIPS) and will be addressed at the end of this paper.

  12. Multicasting for all-optical multifiber networks

    NASA Astrophysics Data System (ADS)

    Kã¶Ksal, Fatih; Ersoy, Cem

    2007-02-01

    All-optical wavelength-routed WDM WANs can support the high bandwidth and the long session duration requirements of the application scenarios such as interactive distance learning or on-line diagnosis of patients simultaneously in different hospitals. However, multifiber and limited sparse light splitting and wavelength conversion capabilities of switches result in a difficult optimization problem. We attack this problem using a layered graph model. The problem is defined as a k-edge-disjoint degree-constrained Steiner tree problem for routing and fiber and wavelength assignment of k multicasts. A mixed integer linear programming formulation for the problem is given, and a solution using CPLEX is provided. However, the complexity of the problem grows quickly with respect to the number of edges in the layered graph, which depends on the number of nodes, fibers, wavelengths, and multicast sessions. Hence, we propose two heuristics layered all-optical multicast algorithm [(LAMA) and conservative fiber and wavelength assignment (C-FWA)] to compare with CPLEX, existing work, and unicasting. Extensive computational experiments show that LAMA's performance is very close to CPLEX, and it is significantly better than existing work and C-FWA for nearly all metrics, since LAMA jointly optimizes routing and fiber-wavelength assignment phases compared with the other candidates, which attack the problem by decomposing two phases. Experiments also show that important metrics (e.g., session and group blocking probability, transmitter wavelength, and fiber conversion resources) are adversely affected by the separation of two phases. Finally, the fiber-wavelength assignment strategy of C-FWA (Ex-Fit) uses wavelength and fiber conversion resources more effectively than the First Fit.

  13. Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.

    PubMed

    Song, Jie; Nair, Veena A; Gaggl, Wolfgang; Prabhakaran, Vivek

    2015-06-01

    The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.

  14. Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints

    PubMed Central

    Diament, Alon; Tuller, Tamir

    2015-01-01

    The study of the 3D architecture of chromosomes has been advancing rapidly in recent years. While a number of methods for 3D reconstruction of genomic models based on Hi-C data were proposed, most of the analyses in the field have been performed on different 3D representation forms (such as graphs). Here, we reproduce most of the previous results on the 3D genomic organization of the eukaryote Saccharomyces cerevisiae using analysis of 3D reconstructions. We show that many of these results can be reproduced in sparse reconstructions, generated from a small fraction of the experimental data (5% of the data), and study the properties of such models. Finally, we propose for the first time a novel approach for improving the accuracy of 3D reconstructions by introducing additional predicted physical interactions to the model, based on orthologous interactions in an evolutionary-related organism and based on predicted functional interactions between genes. We demonstrate that this approach indeed leads to the reconstruction of improved models. PMID:26000633

  15. Detection and localization of change points in temporal networks with the aid of stochastic block models

    NASA Astrophysics Data System (ADS)

    De Ridder, Simon; Vandermarliere, Benjamin; Ryckebusch, Jan

    2016-11-01

    A framework based on generalized hierarchical random graphs (GHRGs) for the detection of change points in the structure of temporal networks has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. on Artificial Intelligence). We build on this methodology and extend it to also include the versatile stochastic block models (SBMs) as a parametric family for reconstructing the empirical networks. We use five different techniques for change point detection on prototypical temporal networks, including empirical and synthetic ones. We find that none of the considered methods can consistently outperform the others when it comes to detecting and locating the expected change points in empirical temporal networks. With respect to the precision and the recall of the results of the change points, we find that the method based on a degree-corrected SBM has better recall properties than other dedicated methods, especially for sparse networks and smaller sliding time window widths.

  16. Influence of topology in the mobility enhancement of pulse-coupled oscillator synchronization

    NASA Astrophysics Data System (ADS)

    Beardo, A.; Prignano, L.; Sagarra, O.; Díaz-Guilera, A.

    2017-12-01

    In this work we revisit the nonmonotonic behavior (NMB) of synchronization time with velocity reported for systems of mobile pulse-coupled oscillators (PCOs). We devise a control parameter that allows us to predict in which range of velocities NMB may occur, also uncovering the conditions allowing us to establish the emergence of NMB based on specific features of the connectivity rule. Specifically, our results show that if the connectivity rule is such that the interaction patterns are sparse and, more importantly, include a large fraction of nonreciprocal interactions, then the system will display NMB. We furthermore provide a microscopic explanation relating the presence of such features of the connectivity patterns to the existence of local clusters unable to synchronize, termed frustrated clusters, for which we also give a precise definition in terms of simple graph concepts. We conclude that, if the probability of finding a frustrated cluster in a system of moving PCOs is high enough, NMB occurs in a predictable range of velocities.

  17. Automated problem scheduling and reduction of synchronization delay effects

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.

    1987-01-01

    It is anticipated that in order to make effective use of many future high performance architectures, programs will have to exhibit at least a medium grained parallelism. A framework is presented for partitioning very sparse triangular systems of linear equations that is designed to produce favorable preformance results in a wide variety of parallel architectures. Efficient methods for solving these systems are of interest because: (1) they provide a useful model problem for use in exploring heuristics for the aggregation, mapping and scheduling of relatively fine grained computations whose data dependencies are specified by directed acrylic graphs, and (2) because such efficient methods can find direct application in the development of parallel algorithms for scientific computation. Simple expressions are derived that describe how to schedule computational work with varying degrees of granularity. The Encore Multimax was used as a hardware simulator to investigate the performance effects of using the partitioning techniques presented in shared memory architectures with varying relative synchronization costs.

  18. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    NASA Astrophysics Data System (ADS)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  19. Semantic-gap-oriented active learning for multilabel image annotation.

    PubMed

    Tang, Jinhui; Zha, Zheng-Jun; Tao, Dacheng; Chua, Tat-Seng

    2012-04-01

    User interaction is an effective way to handle the semantic gap problem in image annotation. To minimize user effort in the interactions, many active learning methods were proposed. These methods treat the semantic concepts individually or correlatively. However, they still neglect the key motivation of user feedback: to tackle the semantic gap. The size of the semantic gap of each concept is an important factor that affects the performance of user feedback. User should pay more efforts to the concepts with large semantic gaps, and vice versa. In this paper, we propose a semantic-gap-oriented active learning method, which incorporates the semantic gap measure into the information-minimization-based sample selection strategy. The basic learning model used in the active learning framework is an extended multilabel version of the sparse-graph-based semisupervised learning method that incorporates the semantic correlation. Extensive experiments conducted on two benchmark image data sets demonstrated the importance of bringing the semantic gap measure into the active learning process.

  20. Elimination sequence optimization for SPAR

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.

    1986-01-01

    SPAR is a large-scale computer program for finite element structural analysis. The program allows user specification of the order in which the joints of a structure are to be eliminated since this order can have significant influence over solution performance, in terms of both storage requirements and computer time. An efficient elimination sequence can improve performance by over 50% for some problems. Obtaining such sequences, however, requires the expertise of an experienced user and can take hours of tedious effort to affect. Thus, an automatic elimination sequence optimizer would enhance productivity by reducing the analysts' problem definition time and by lowering computer costs. Two possible methods for automating the elimination sequence specifications were examined. Several algorithms based on the graph theory representations of sparse matrices were studied with mixed results. Significant improvement in the program performance was achieved, but sequencing by an experienced user still yields substantially better results. The initial results provide encouraging evidence that the potential benefits of such an automatic sequencer would be well worth the effort.

  1. Structured Sparse Principal Components Analysis With the TV-Elastic Net Penalty.

    PubMed

    de Pierrefeu, Amicie; Lofstedt, Tommy; Hadj-Selem, Fouad; Dubois, Mathieu; Jardri, Renaud; Fovet, Thomas; Ciuciu, Philippe; Frouin, Vincent; Duchesnay, Edouard

    2018-02-01

    Principal component analysis (PCA) is an exploratory tool widely used in data analysis to uncover the dominant patterns of variability within a population. Despite its ability to represent a data set in a low-dimensional space, PCA's interpretability remains limited. Indeed, the components produced by PCA are often noisy or exhibit no visually meaningful patterns. Furthermore, the fact that the components are usually non-sparse may also impede interpretation, unless arbitrary thresholding is applied. However, in neuroimaging, it is essential to uncover clinically interpretable phenotypic markers that would account for the main variability in the brain images of a population. Recently, some alternatives to the standard PCA approach, such as sparse PCA (SPCA), have been proposed, their aim being to limit the density of the components. Nonetheless, sparsity alone does not entirely solve the interpretability problem in neuroimaging, since it may yield scattered and unstable components. We hypothesized that the incorporation of prior information regarding the structure of the data may lead to improved relevance and interpretability of brain patterns. We therefore present a simple extension of the popular PCA framework that adds structured sparsity penalties on the loading vectors in order to identify the few stable regions in the brain images that capture most of the variability. Such structured sparsity can be obtained by combining, e.g., and total variation (TV) penalties, where the TV regularization encodes information on the underlying structure of the data. This paper presents the structured SPCA (denoted SPCA-TV) optimization framework and its resolution. We demonstrate SPCA-TV's effectiveness and versatility on three different data sets. It can be applied to any kind of structured data, such as, e.g., -dimensional array images or meshes of cortical surfaces. The gains of SPCA-TV over unstructured approaches (such as SPCA and ElasticNet PCA) or structured approach (such as GraphNet PCA) are significant, since SPCA-TV reveals the variability within a data set in the form of intelligible brain patterns that are easier to interpret and more stable across different samples.

  2. Coherent periodic activity in excitatory Erdös-Renyi neural networks: the role of network connectivity.

    PubMed

    Tattini, Lorenzo; Olmi, Simona; Torcini, Alessandro

    2012-06-01

    In this article, we investigate the role of connectivity in promoting coherent activity in excitatory neural networks. In particular, we would like to understand if the onset of collective oscillations can be related to a minimal average connectivity and how this critical connectivity depends on the number of neurons in the networks. For these purposes, we consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erdös-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level, we observe two distinct dynamical phases: an asynchronous state corresponding to a desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous state, while PS emerges above a certain critical average connectivity (c). For sufficiently large networks, (c) saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous fully connected network for any γ-value. Apart for the peculiar exception of sparse networks, which remain intrinsically inhomogeneous at any system size.

  3. LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction

    PubMed Central

    Huang, Li

    2017-01-01

    Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs’ potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computationally infer new disease-related miRNAs. Yet researchers face the challenge of how to effectively integrate diverse datasets and make reliable predictions. In this study, we presented a computational model named Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction (LRSSLMDA), which projected miRNAs/diseases’ statistical feature profile and graph theoretical feature profile to a common subspace. It used Laplacian regularization to preserve the local structures of the training data and a L1-norm constraint to select important miRNA/disease features for prediction. The strength of dimensionality reduction enabled the model to be easily extended to much higher dimensional datasets than those exploited in this study. Experimental results showed that LRSSLMDA outperformed ten previous models: the AUC of 0.9178 in global leave-one-out cross validation (LOOCV) and the AUC of 0.8418 in local LOOCV indicated the model’s superior prediction accuracy; and the average AUC of 0.9181+/-0.0004 in 5-fold cross validation justified its accuracy and stability. In addition, three types of case studies further demonstrated its predictive power. Potential miRNAs related to Colon Neoplasms, Lymphoma, Kidney Neoplasms, Esophageal Neoplasms and Breast Neoplasms were predicted by LRSSLMDA. Respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predictions were validated by experimental evidences. Therefore, we conclude that LRSSLMDA would be a valuable computational tool for miRNA-disease association prediction. PMID:29253885

  4. A Systematic Approach for Obtaining Performance on Matrix-Like Operations

    NASA Astrophysics Data System (ADS)

    Veras, Richard Michael

    Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.

  5. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.

    PubMed

    Gorban, A N; Mirkes, E M; Zinovyev, A

    2016-12-01

    Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0

  6. Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation

    PubMed Central

    Li, Wenyuan; Liu, Chun-Chi; Zhang, Tong; Li, Haifeng; Waterman, Michael S.; Zhou, Xianghong Jasmine

    2011-01-01

    The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks. PMID:21698123

  7. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witman, Matthew; Ling, Sanliang; Boyd, Peter

    Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. Here, we hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area canmore » yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.« less

  8. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites.

    PubMed

    Witman, Matthew; Ling, Sanliang; Boyd, Peter; Barthel, Senja; Haranczyk, Maciej; Slater, Ben; Smit, Berend

    2018-02-28

    Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.

  9. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites

    PubMed Central

    2018-01-01

    Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal–organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc. PMID:29532024

  10. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites

    DOE PAGES

    Witman, Matthew; Ling, Sanliang; Boyd, Peter; ...

    2018-02-06

    Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. Here, we hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area canmore » yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.« less

  11. Fixation probabilities on superstars, revisited and revised.

    PubMed

    Jamieson-Lane, Alastair; Hauert, Christoph

    2015-10-07

    Population structures can be crucial determinants of evolutionary processes. For the Moran process on graphs certain structures suppress selective pressure, while others amplify it (Lieberman et al., 2005). Evolutionary amplifiers suppress random drift and enhance selection. Recently, some results for the most powerful known evolutionary amplifier, the superstar, have been invalidated by a counter example (Díaz et al., 2013). Here we correct the original proof and derive improved upper and lower bounds, which indicate that the fixation probability remains close to 1-1/(r(4)H) for population size N→∞ and structural parameter H⪢1. This correction resolves the differences between the two aforementioned papers. We also confirm that in the limit N,H→∞ superstars remain capable of eliminating random drift and hence of providing arbitrarily strong selective advantages to any beneficial mutation. In addition, we investigate the robustness of amplification in superstars and find that it appears to be a fragile phenomenon with respect to changes in the selection or mutation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  13. Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred

    Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less

  14. Graphs, matrices, and the GraphBLAS: Seven good reasons

    DOE PAGES

    Kepner, Jeremy; Bader, David; Buluç, Aydın; ...

    2015-01-01

    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less

  15. Adjusting protein graphs based on graph entropy.

    PubMed

    Peng, Sheng-Lung; Tsay, Yu-Wei

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.

  16. Adjusting protein graphs based on graph entropy

    PubMed Central

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347

  17. Predictors of recall of over-the-counter and prescription non-steroidal anti-inflammatory drug exposure.

    PubMed

    Lewis, James D; Strom, Brian L; Kimmel, Stephen E; Farrar, John; Metz, David C; Brensinger, Colleen; Nessel, Lisa; Localio, A Russell

    2006-01-01

    Because of the difficulty in establishing a gold standard, data on accuracy of recall of over-the-counter (OTC) medication use are sparse. We studied a cohort of 1889 persons living in the Philadelphia area to assess recall of non-aspirin non-steroidal anti-inflammatory drug (NANSAID) use during the preceding 8 weeks. Our analyses were based on the assumption that among the group of subjects, on average, the reported usage of NANSAIDs should not vary over the previous 8 weeks. To model the effect of time on reported usage while allowing for the inherent correlation of responses within subjects over time, we employed alternating logistic regression. We documented a significant decline in reported use of OTC NANSAIDs but not prescription NANSAIDs during the 8-week study period (p = 0.3 for frequent prescription NANSAIDs, p = 0.2 for infrequent prescription NANSAIDs, p < 0.001 for frequent OTC NANSAIDs, and p < 0.001 for infrequent OTC NANSAIDs). Reported rates of frequent and infrequent OTC NANSAID consumption declined from 6.3 to 4.6% and from 17.1 to 12.8% between the most recent week and eight weeks prior, respectively. Interviews focusing on medications used on an as needed basis should be performed as close as possible to the index date. Likewise, data on frequent use of OTC NANSAIDs may be more reliable than that on infrequent use, particularly when subjects are asked to recall more than a few weeks back in time. (c) 2005 John Wiley & Sons, Ltd.

  18. Characterizing Containment and Related Classes of Graphs,

    DTIC Science & Technology

    1985-01-01

    Math . to appear. [G2] Golumbic,. Martin C., D. Rotem and J. Urrutia. "Comparability graphs and intersection graphs" Discrete Math . 43 (1983) 37-40. [G3...intersection classes of graphs" Discrete Math . to appear. [S2] Scheinerman, Edward R. Intersection Classes and Multiple Intersection Parameters of Graphs...graphs and of interval graphs" Canad. Jour. of blath. 16 (1964) 539-548. [G1] Golumbic, Martin C. "Containment graphs: and. intersection graphs" Discrete

  19. A Collection of Features for Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliassi-Rad, T; Fodor, I K; Gallagher, B

    2007-05-02

    Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains brieflymore » features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.« less

  20. Graphing the order of the sexes: constructing, recalling, interpreting, and putting the self in gender difference graphs.

    PubMed

    Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant

    2010-03-01

    Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.

  1. Graphing with "LogoWriter."

    ERIC Educational Resources Information Center

    Yoder, Sharon K.

    This book discusses four kinds of graphs that are taught in mathematics at the middle school level: pictographs, bar graphs, line graphs, and circle graphs. The chapters on each of these types of graphs contain information such as starting, scaling, drawing, labeling, and finishing the graphs using "LogoWriter." The final chapter of the…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fangyan; Zhang, Song; Chung Wong, Pak

    Effectively visualizing large graphs and capturing the statistical properties are two challenging tasks. To aid in these two tasks, many sampling approaches for graph simplification have been proposed, falling into three categories: node sampling, edge sampling, and traversal-based sampling. It is still unknown which approach is the best. We evaluate commonly used graph sampling methods through a combined visual and statistical comparison of graphs sampled at various rates. We conduct our evaluation on three graph models: random graphs, small-world graphs, and scale-free graphs. Initial results indicate that the effectiveness of a sampling method is dependent on the graph model, themore » size of the graph, and the desired statistical property. This benchmark study can be used as a guideline in choosing the appropriate method for a particular graph sampling task, and the results presented can be incorporated into graph visualization and analysis tools.« less

  3. A distributed geo-routing algorithm for wireless sensor networks.

    PubMed

    Joshi, Gyanendra Prasad; Kim, Sung Won

    2009-01-01

    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads.

  4. Artificial neural networks as quantum associative memory

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis

    We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n < 1000 qubits. This work was supported by the United States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.

  5. Mapping eQTL Networks with Mixed Graphical Markov Models

    PubMed Central

    Tur, Inma; Roverato, Alberto; Castelo, Robert

    2014-01-01

    Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303

  6. Discriminative dictionary learning for abdominal multi-organ segmentation.

    PubMed

    Tong, Tong; Wolz, Robin; Wang, Zehan; Gao, Qinquan; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku; Hajnal, Joseph V; Rueckert, Daniel

    2015-07-01

    An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. A generalised significance test for individual communities in networks.

    PubMed

    Kojaku, Sadamori; Masuda, Naoki

    2018-05-09

    Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.

  8. Unifying model for random matrix theory in arbitrary space dimensions

    NASA Astrophysics Data System (ADS)

    Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio

    2018-03-01

    A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.

  9. VISIONET: intuitive visualisation of overlapping transcription factor networks, with applications in cardiogenic gene discovery.

    PubMed

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Rosenthal, Nadia A; Kitano, Hiroaki; Boyd, Sarah E

    2015-05-01

    Existing de novo software platforms have largely overlooked a valuable resource, the expertise of the intended biologist users. Typical data representations such as long gene lists, or highly dense and overlapping transcription factor networks often hinder biologists from relating these results to their expertise. VISIONET, a streamlined visualisation tool built from experimental needs, enables biologists to transform large and dense overlapping transcription factor networks into sparse human-readable graphs via numerically filtering. The VISIONET interface allows users without a computing background to interactively explore and filter their data, and empowers them to apply their specialist knowledge on far more complex and substantial data sets than is currently possible. Applying VISIONET to the Tbx20-Gata4 transcription factor network led to the discovery and validation of Aldh1a2, an essential developmental gene associated with various important cardiac disorders, as a healthy adult cardiac fibroblast gene co-regulated by cardiogenic transcription factors Gata4 and Tbx20. We demonstrate with experimental validations the utility of VISIONET for expertise-driven gene discovery that opens new experimental directions that would not otherwise have been identified.

  10. Functional atlas of the awake rat brain: A neuroimaging study of rat brain specialization and integration.

    PubMed

    Ma, Zhiwei; Perez, Pablo; Ma, Zilu; Liu, Yikang; Hamilton, Christina; Liang, Zhifeng; Zhang, Nanyin

    2018-04-15

    Connectivity-based parcellation approaches present an innovative method to segregate the brain into functionally specialized regions. These approaches have significantly advanced our understanding of the human brain organization. However, parallel progress in animal research is sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have obtained robust functional parcellations of the rat brain. These functional parcellations reveal the regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high reproducibility across animals. Graph analysis of the whole-brain network constructed based on these functional parcels indicates that the rat brain has a topological organization similar to humans, characterized by both segregation and integration. Our study also provides compelling evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. Together, this study has characterized the rat brain specialization and integration, and has significantly advanced our understanding of the rat brain organization. In addition, it is valuable for studies of comparative functional neuroanatomy in mammalian brains. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. An algorithm for finding a similar subgraph of all Hamiltonian cycles

    NASA Astrophysics Data System (ADS)

    Wafdan, R.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.

  12. Mathematical foundations of the GraphBLAS

    DOE PAGES

    Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...

    2016-12-01

    The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less

  13. Supercomputer Environments

    DTIC Science & Technology

    1990-01-09

    data structures can easily be presented to the user interface. An emphasis of the Graph Browser was the realization of graph views and graph animation ... animation of the graph. Anima- tion of the graph includes changing node shapes, changing node and arc colors, changing node and arc text, and making...many graphs tend to be tree-like. Animtion of a graph is a useful feature. One of the primary goals of GMB was to support animated graphs. For animation

  14. Probing Factors Influencing Students' Graph Comprehension Regarding Four Operations in Kinematics Graphs

    ERIC Educational Resources Information Center

    Phage, Itumeleng B.; Lemmer, Miriam; Hitge, Mariette

    2017-01-01

    Students' graph comprehension may be affected by the background of the students who are the readers or interpreters of the graph, their knowledge of the context in which the graph is set, and the inferential processes required by the graph operation. This research study investigated these aspects of graph comprehension for 152 first year…

  15. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  16. Comparison and Enumeration of Chemical Graphs

    PubMed Central

    Akutsu, Tatsuya; Nagamochi, Hiroshi

    2013-01-01

    Chemical compounds are usually represented as graph structured data in computers. In this review article, we overview several graph classes relevant to chemical compounds and the computational complexities of several fundamental problems for these graph classes. In particular, we consider the following problems: determining whether two chemical graphs are identical, determining whether one input chemical graph is a part of the other input chemical graph, finding a maximum common part of two input graphs, finding a reaction atom mapping, enumerating possible chemical graphs, and enumerating stereoisomers. We also discuss the relationship between the fifth problem and kernel functions for chemical compounds. PMID:24688697

  17. Mean square cordial labelling related to some acyclic graphs and its rough approximations

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, S.; Parvathi, N.

    2018-04-01

    In this paper we investigate that the path Pn, comb graph Pn⊙K1, n-centipede graph,centipede graph (n,2) and star Sn admits mean square cordial labeling. Also we proved that the induced sub graph obtained by the upper approximation of any sub graph H of the above acyclic graphs admits mean square cordial labeling.

  18. Relating zeta functions of discrete and quantum graphs

    NASA Astrophysics Data System (ADS)

    Harrison, Jonathan; Weyand, Tracy

    2018-02-01

    We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.

  19. Topic Model for Graph Mining.

    PubMed

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  20. Evaluation of quality of commercial pedometers.

    PubMed

    Tudor-Locke, Catrine; Sisson, Susan B; Lee, Sarah M; Craig, Cora L; Plotnikoff, Ronald C; Bauman, Adrian

    2006-01-01

    The purpose of this study was to: 1) evaluate the quality of promotional pedometers widely distributed through cereal boxes at the time of the 2004 Canada on the Move campaign; and 2) establish a battery of testing protocols to provide direction for future consensus on industry standards for pedometer quality. Fifteen Kellogg's* Special K* Step Counters (K pedometers or K; manufactured for Kellogg Canada by Sasco, Inc.) and 9 Yamax pedometers (Yamax; Yamax Corporation, Tokyo, Japan) were tested with 9 participants accordingly: 1) 20 Step Test; 2) treadmill at 80m x min(-1) (3 miles x hr(-1)) and motor vehicle controlled conditions; and 3) 24-hour free-living conditions against an accelerometer criterion. Fifty-three percent of the K pedometers passed the 20 Step Test compared to 100% of the Yamax. Mean absolute percent error for the K during treadmill walking was 24.2+/-33.9 vs. 3.9+/-6.6% for the Yamax. The K detected 5.7-fold more non-steps compared to the Yamax during the motor vehicle condition. In the free-living condition, mean absolute percent error relative to the ActiGraph was 44.9+/-34.5% for the K vs. 19.5+/-21.2% for the Yamax. K pedometers are unacceptably inaccurate. We suggest that research grade pedometers: 1) be manufactured to a sensitivity threshold of 0.35 Gs; 2) detect +/-1 step error on the 20 Step Test (i.e., within 5%); 3) detect +/-1% error most of the time during treadmill walking at 80m x min(-1) (3 miles x hr(-1)); as well as, 4) detect steps/day within 10% of the ActiGraph at least 60% of the time, or be within 10% of the Yamax under free-living conditions.

  1. ARG-based genome-wide analysis of cacao cultivars.

    PubMed

    Utro, Filippo; Cornejo, Omar Eduardo; Livingstone, Donald; Motamayor, Juan Carlos; Parida, Laxmi

    2012-01-01

    Ancestral recombinations graph (ARG) is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relatively dense, bi-allelic SNP data. While the ARG is a natural model for capturing the inter-relationship between a single chromosome of the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across chromosomes) diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph visualization techniques. In this paper we examine the ARG reconstruction for (1) genome-wide or multiple chromosomes, (2) multi-allelic and (3) extremely sparse data. To aid in the visualization of the results of the reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the ARG.As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao. The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a principled approach to understanding the inter-relationships between the different populations must take the shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats (STR) and are multi-allelic (sometimes as high as 30 distinct possible values at a locus). Each is at a genomic location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only 96 loci from a genome of approximately 400 megabases. The results are visualized both as MDS plots and as classification trees. To evaluate the accuracy of the ARG approach, we compare the results with those available in literature. We have extended the ARG model to incorporate genome-wide (ensemble of multiple chromosomes) data in a natural way. We present a simple scheme to implement this in practice. Finally, this is the first time that a plant population data set is being studied by estimating its underlying ARG. We demonstrate an overall precision of 0.92 and an overall recall of 0.93 of the ARG-based classification, with respect to the gold standard. While we have corroborated the classification of the samples with that in literature, this opens the door to other potential studies that can be made on the ARG.

  2. ARG-based genome-wide analysis of cacao cultivars

    PubMed Central

    2012-01-01

    Background Ancestral recombinations graph (ARG) is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relatively dense, bi-allelic SNP data. Results While the ARG is a natural model for capturing the inter-relationship between a single chromosome of the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across chromosomes) diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph visualization techniques. In this paper we examine the ARG reconstruction for (1) genome-wide or multiple chromosomes, (2) multi-allelic and (3) extremely sparse data. To aid in the visualization of the results of the reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the ARG. As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao. The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a principled approach to understanding the inter-relationships between the different populations must take the shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats (STR) and are multi-allelic (sometimes as high as 30 distinct possible values at a locus). Each is at a genomic location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only 96 loci from a genome of approximately 400 megabases. The results are visualized both as MDS plots and as classification trees. To evaluate the accuracy of the ARG approach, we compare the results with those available in literature. Conclusions We have extended the ARG model to incorporate genome-wide (ensemble of multiple chromosomes) data in a natural way. We present a simple scheme to implement this in practice. Finally, this is the first time that a plant population data set is being studied by estimating its underlying ARG. We demonstrate an overall precision of 0.92 and an overall recall of 0.93 of the ARG-based classification, with respect to the gold standard. While we have corroborated the classification of the samples with that in literature, this opens the door to other potential studies that can be made on the ARG. PMID:23281769

  3. Preserving Differential Privacy in Degree-Correlation based Graph Generation

    PubMed Central

    Wang, Yue; Wu, Xintao

    2014-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987

  4. A general method for computing Tutte polynomials of self-similar graphs

    NASA Astrophysics Data System (ADS)

    Gong, Helin; Jin, Xian'an

    2017-10-01

    Self-similar graphs were widely studied in both combinatorics and statistical physics. Motivated by the construction of the well-known 3-dimensional Sierpiński gasket graphs, in this paper we introduce a family of recursively constructed self-similar graphs whose inner duals are of the self-similar property. By combining the dual property of the Tutte polynomial and the subgraph-decomposition trick, we show that the Tutte polynomial of this family of graphs can be computed in an iterative way and in particular the exact expression of the formula of the number of their spanning trees is derived. Furthermore, we show our method is a general one that is easily extended to compute Tutte polynomials for other families of self-similar graphs such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian graphs, pseudofractal scale-free web, fractal scale-free network, etc.

  5. Bipartite separability and nonlocal quantum operations on graphs

    NASA Astrophysics Data System (ADS)

    Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.

    2016-07-01

    In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.

  6. On the local edge antimagicness of m-splitting graphs

    NASA Astrophysics Data System (ADS)

    Albirri, E. R.; Dafik; Slamin; Agustin, I. H.; Alfarisi, R.

    2018-04-01

    Let G be a connected and simple graph. A split graph is a graph derived by adding new vertex v‧ in every vertex v‧ such that v‧ adjacent to v in graph G. An m-splitting graph is a graph which has m v‧-vertices, denoted by mSpl(G). A local edge antimagic coloring in G = (V, E) graph is a bijection f:V (G)\\to \\{1,2,3,\\ldots,|V(G)|\\} in which for any two adjacent edges e 1 and e 2 satisfies w({e}1)\

  7. Survey of Approaches to Generate Realistic Synthetic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Lee, Sangkeun; Powers, Sarah S

    A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broadmore » set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.« less

  8. Self-organizing maps for learning the edit costs in graph matching.

    PubMed

    Neuhaus, Michel; Bunke, Horst

    2005-06-01

    Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.

  9. Apparatuses and Methods for Producing Runtime Architectures of Computer Program Modules

    NASA Technical Reports Server (NTRS)

    Abi-Antoun, Marwan Elia (Inventor); Aldrich, Jonathan Erik (Inventor)

    2013-01-01

    Apparatuses and methods for producing run-time architectures of computer program modules. One embodiment includes creating an abstract graph from the computer program module and from containment information corresponding to the computer program module, wherein the abstract graph has nodes including types and objects, and wherein the abstract graph relates an object to a type, and wherein for a specific object the abstract graph relates the specific object to a type containing the specific object; and creating a runtime graph from the abstract graph, wherein the runtime graph is a representation of the true runtime object graph, wherein the runtime graph represents containment information such that, for a specific object, the runtime graph relates the specific object to another object that contains the specific object.

  10. G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.

    PubMed

    Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H

    2009-01-01

    Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.

  11. GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil

    2015-11-15

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less

  12. Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs

    DTIC Science & Technology

    2014-06-01

    comparable Internet topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical...topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical measurements as well...We compare these by modeling union of traceroute outputs as graphs, and study the graphs by using vertex and edge count, average vertex degree

  13. GraphBench

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas R.; Hong, Seokyong; Lee, Sangkeun

    2016-06-01

    GraphBench is a benchmark suite for graph pattern mining and graph analysis systems. The benchmark suite is a significant addition to conducting apples-apples comparison of graph analysis software (databases, in-memory tools, triple stores, etc.)

  14. Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?

    ERIC Educational Resources Information Center

    Öçal, Mehmet Fatih

    2017-01-01

    Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students' learning during graphing functions. However, the display of graphs of functions that students sketched by hand may…

  15. Generalized graph states based on Hadamard matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X.; Yu, Nengkun; Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1

    2015-07-15

    Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study themore » entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.« less

  16. Graph processing platforms at scale: practices and experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Lee, Sangkeun; Brown, Tyler C

    2015-01-01

    Graph analysis unveils hidden associations of data in many phenomena and artifacts, such as road network, social networks, genomic information, and scientific collaboration. Unfortunately, a wide diversity in the characteristics of graphs and graph operations make it challenging to find a right combination of tools and implementation of algorithms to discover desired knowledge from the target data set. This study presents an extensive empirical study of three representative graph processing platforms: Pegasus, GraphX, and Urika. Each system represents a combination of options in data model, processing paradigm, and infrastructure. We benchmarked each platform using three popular graph operations, degree distribution,more » connected components, and PageRank over a variety of real-world graphs. Our experiments show that each graph processing platform shows different strength, depending the type of graph operations. While Urika performs the best in non-iterative operations like degree distribution, GraphX outputforms iterative operations like connected components and PageRank. In addition, we discuss challenges to optimize the performance of each platform over large scale real world graphs.« less

  17. A fast algorithm for vertex-frequency representations of signals on graphs

    PubMed Central

    Jestrović, Iva; Coyle, James L.; Sejdić, Ervin

    2016-01-01

    The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645

  18. Graph 500 on OpenSHMEM: Using a Practical Survey of Past Work to Motivate Novel Algorithmic Developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, Max; Pritchard Jr., Howard Porter; Budimlic, Zoran

    2016-12-22

    Graph500 [14] is an effort to offer a standardized benchmark across large-scale distributed platforms which captures the behavior of common communicationbound graph algorithms. Graph500 differs from other large-scale benchmarking efforts (such as HPL [6] or HPGMG [7]) primarily in the irregularity of its computation and data access patterns. The core computational kernel of Graph500 is a breadth-first search (BFS) implemented on an undirected graph. The output of Graph500 is a spanning tree of the input graph, usually represented by a predecessor mapping for every node in the graph. The Graph500 benchmark defines several pre-defined input sizes for implementers to testmore » against. This report summarizes investigation into implementing the Graph500 benchmark on OpenSHMEM, and focuses on first building a strong and practical understanding of the strengths and limitations of past work before proposing and developing novel extensions.« less

  19. Graphing trillions of triangles.

    PubMed

    Burkhardt, Paul

    2017-07-01

    The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.

  20. Multiple graph regularized protein domain ranking.

    PubMed

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  1. Evolutionary graph theory: breaking the symmetry between interaction and replacement

    PubMed Central

    Ohtsuki, Hisashi; Pacheco, Jorge M.; Nowak, Martin A.

    2008-01-01

    We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/c > hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-birth updating, weak selection and large population size. Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement graph (g = h = l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs induce a transformation of the payoff matrix. PMID:17350049

  2. Multiple graph regularized protein domain ranking

    PubMed Central

    2012-01-01

    Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. PMID:23157331

  3. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    fleet type from 1992-2014 Last update August 2016 View Graph Graph Download Data Generated_thumb20160830 Trend of S&FP AFV acquisitions by fuel type from 1992-2015 Last update August 2016 View Graph Graph transactions from 1997-2014 Last update August 2016 View Graph Graph Download Data Biofuelsatlas BioFuels Atlas

  4. GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen

    2015-09-30

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less

  5. SING: Subgraph search In Non-homogeneous Graphs

    PubMed Central

    2010-01-01

    Background Finding the subgraphs of a graph database that are isomorphic to a given query graph has practical applications in several fields, from cheminformatics to image understanding. Since subgraph isomorphism is a computationally hard problem, indexing techniques have been intensively exploited to speed up the process. Such systems filter out those graphs which cannot contain the query, and apply a subgraph isomorphism algorithm to each residual candidate graph. The applicability of such systems is limited to databases of small graphs, because their filtering power degrades on large graphs. Results In this paper, SING (Subgraph search In Non-homogeneous Graphs), a novel indexing system able to cope with large graphs, is presented. The method uses the notion of feature, which can be a small subgraph, subtree or path. Each graph in the database is annotated with the set of all its features. The key point is to make use of feature locality information. This idea is used to both improve the filtering performance and speed up the subgraph isomorphism task. Conclusions Extensive tests on chemical compounds, biological networks and synthetic graphs show that the proposed system outperforms the most popular systems in query time over databases of medium and large graphs. Other specific tests show that the proposed system is effective for single large graphs. PMID:20170516

  6. GrouseFlocks: steerable exploration of graph hierarchy space.

    PubMed

    Archambault, Daniel; Munzner, Tamara; Auber, David

    2008-01-01

    Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges, which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.

  7. Spectral partitioning in equitable graphs.

    PubMed

    Barucca, Paolo

    2017-06-01

    Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.

  8. Spectral partitioning in equitable graphs

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo

    2017-06-01

    Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.

  9. Well-Covered Graphs: A Survey

    DTIC Science & Technology

    1991-01-01

    critical G’s/# G’s -) 0 as IV(G)I -- oo? References [B1] C. Berge, Regularizable graphs, Ann. Discrete Math ., 3, 1978, 11-19. [B2] _ _, Some common...Springer-Verlag, Berlin, 1980, 108-123. [B3] _ _, Some common properties for regularizable graphs, edge-critical graphs, and B-graphs, Ann. Discrete Math ., 12...graphs - an extension of the K6nig-Egervgiry theorem, Discrete Math ., 27, 1979, 23-33. [ER] M.N Ellingham and G.F. Royle, Well-covered cubic graphs

  10. Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph

    NASA Astrophysics Data System (ADS)

    Nagarathinam, R.; Parvathi, N.

    2018-04-01

    Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat

  11. GBS 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-09-30

    The Umbra gbs (Graph-Based Search) library provides implementations of graph-based search/planning algorithms that can be applied to legacy graph data structures. Unlike some other graph algorithm libraries, this one does not require your graph class to inherit from a specific base class. Implementations of Dijkstra's Algorithm and A-Star search are included and can be used with graphs that are lazily-constructed.

  12. Information visualisation based on graph models

    NASA Astrophysics Data System (ADS)

    Kasyanov, V. N.; Kasyanova, E. V.

    2013-05-01

    Information visualisation is a key component of support tools for many applications in science and engineering. A graph is an abstract structure that is widely used to model information for its visualisation. In this paper, we consider practical and general graph formalism called hierarchical graphs and present the Higres and Visual Graph systems aimed at supporting information visualisation on the base of hierarchical graph models.

  13. Polysemy in the Domain-Specific Pedagogical Use of Graphs in Science Textbooks: The Case of an Electrocardiogram

    ERIC Educational Resources Information Center

    van Eijck, Michiel; Goedhart, Martin J.; Ellermeijer, Ton

    2011-01-01

    Polysemy in graph-related practices is the phenomenon that a single graph can sustain different meanings assigned to it. Considerable research has been done on polysemy in graph-related practices in school science in which graphs are rather used as scientific tools. However, graphs in science textbooks are also used rather pedagogically to…

  14. Lamplighter groups, de Brujin graphs, spider-web graphs and their spectra

    NASA Astrophysics Data System (ADS)

    Grigorchuk, R.; Leemann, P.-H.; Nagnibeda, T.

    2016-05-01

    We study the infinite family of spider-web graphs \\{{{ S }}k,N,M\\}, k≥slant 2, N≥slant 0 and M≥slant 1, initiated in the 50s in the context of network theory. It was later shown in physical literature that these graphs have remarkable percolation and spectral properties. We provide a mathematical explanation of these properties by putting the spider-web graphs in the context of group theory and algebraic graph theory. Namely, we realize them as tensor products of the well-known de Bruijn graphs \\{{{ B }}k,N\\} with cyclic graphs \\{{C}M\\} and show that these graphs are described by the action of the lamplighter group {{ L }}k={Z}/k{Z}\\wr {Z} on the infinite binary tree. Our main result is the identification of the infinite limit of \\{{{ S }}k,N,M\\}, as N,M\\to ∞ , with the Cayley graph of the lamplighter group {{ L }}k which, in turn, is one of the famous Diestel-Leader graphs {{DL}}k,k. As an application we compute the spectra of all spider-web graphs and show their convergence to the discrete spectral distribution associated with the Laplacian on the lamplighter group.

  15. New methods for analyzing semantic graph based assessments in science education

    NASA Astrophysics Data System (ADS)

    Vikaros, Lance Steven

    This research investigated how the scoring of semantic graphs (known by many as concept maps) could be improved and automated in order to address issues of inter-rater reliability and scalability. As part of the NSF funded SENSE-IT project to introduce secondary school science students to sensor networks (NSF Grant No. 0833440), semantic graphs illustrating how temperature change affects water ecology were collected from 221 students across 16 schools. The graphing task did not constrain students' use of terms, as is often done with semantic graph based assessment due to coding and scoring concerns. The graphing software used provided real-time feedback to help students learn how to construct graphs, stay on topic and effectively communicate ideas. The collected graphs were scored by human raters using assessment methods expected to boost reliability, which included adaptations of traditional holistic and propositional scoring methods, use of expert raters, topical rubrics, and criterion graphs. High levels of inter-rater reliability were achieved, demonstrating that vocabulary constraints may not be necessary after all. To investigate a new approach to automating the scoring of graphs, thirty-two different graph features characterizing graphs' structure, semantics, configuration and process of construction were then used to predict human raters' scoring of graphs in order to identify feature patterns correlated to raters' evaluations of graphs' topical accuracy and complexity. Results led to the development of a regression model able to predict raters' scoring with 77% accuracy, with 46% accuracy expected when used to score new sets of graphs, as estimated via cross-validation tests. Although such performance is comparable to other graph and essay based scoring systems, cross-context testing of the model and methods used to develop it would be needed before it could be recommended for widespread use. Still, the findings suggest techniques for improving the reliability and scalability of semantic graph based assessments without requiring constraint of how ideas are expressed.

  16. Biometric Subject Verification Based on Electrocardiographic Signals

    NASA Technical Reports Server (NTRS)

    Dusan, Sorin V. (Inventor); Jorgensen, Charles C. (Inventor)

    2014-01-01

    A method of authenticating or declining to authenticate an asserted identity of a candidate-person. In an enrollment phase, a reference PQRST heart action graph is provided or constructed from information obtained from a plurality of graphs that resemble each other for a known reference person, using a first graph comparison metric. In a verification phase, a candidate-person asserts his/her identity and presents a plurality of his/her heart cycle graphs. If a sufficient number of the candidate-person's measured graphs resemble each other, a representative composite graph is constructed from the candidate-person's graphs and is compared with a composite reference graph, for the person whose identity is asserted, using a second graph comparison metric. When the second metric value lies in a selected range, the candidate-person's assertion of identity is accepted.

  17. EvoGraph: On-The-Fly Efficient Mining of Evolving Graphs on GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Dipanjan; Song, Shuaiwen

    With the prevalence of the World Wide Web and social networks, there has been a growing interest in high performance analytics for constantly-evolving dynamic graphs. Modern GPUs provide massive AQ1 amount of parallelism for efficient graph processing, but the challenges remain due to their lack of support for the near real-time streaming nature of dynamic graphs. Specifically, due to the current high volume and velocity of graph data combined with the complexity of user queries, traditional processing methods by first storing the updates and then repeatedly running static graph analytics on a sequence of versions or snapshots are deemed undesirablemore » and computational infeasible on GPU. We present EvoGraph, a highly efficient and scalable GPU- based dynamic graph analytics framework.« less

  18. Genome alignment with graph data structures: a comparison

    PubMed Central

    2014-01-01

    Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884

  19. Efficient dynamic graph construction for inductive semi-supervised learning.

    PubMed

    Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y

    2017-10-01

    Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  1. Chemical Applications of Graph Theory: Part II. Isomer Enumeration.

    ERIC Educational Resources Information Center

    Hansen, Peter J.; Jurs, Peter C.

    1988-01-01

    Discusses the use of graph theory to aid in the depiction of organic molecular structures. Gives a historical perspective of graph theory and explains graph theory terminology with organic examples. Lists applications of graph theory to current research projects. (ML)

  2. Graphing trillions of triangles

    PubMed Central

    Burkhardt, Paul

    2016-01-01

    The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed. PMID:28690426

  3. Exploring Text and Icon Graph Interpretation in Students with Dyslexia: An Eye-tracking Study.

    PubMed

    Kim, Sunjung; Wiseheart, Rebecca

    2017-02-01

    A growing body of research suggests that individuals with dyslexia struggle to use graphs efficiently. Given the persistence of orthographic processing deficits in dyslexia, this study tested whether graph interpretation deficits in dyslexia are directly related to difficulties processing the orthographic components of graphs (i.e. axes and legend labels). Participants were 80 college students with and without dyslexia. Response times and eye movements were recorded as students answered comprehension questions about simple data displayed in bar graphs. Axes and legends were labelled either with words (mixed-modality graphs) or icons (orthography-free graphs). Students also answered informationally equivalent questions presented in sentences (orthography-only condition). Response times were slower in the dyslexic group only for processing sentences. However, eye tracking data revealed group differences for processing mixed-modality graphs, whereas no group differences were found for the orthography-free graphs. When processing bar graphs, students with dyslexia differ from their able reading peers only when graphs contain orthographic features. Implications for processing informational text are discussed. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Learning about Science Graphs and Word Games. Superific Science Book V. A Good Apple Science Activity Book for Grades 5-8+.

    ERIC Educational Resources Information Center

    Conway, Lorraine

    This packet of student materials contains a variety of worksheet activities dealing with science graphs and science word games. These reproducible materials deal with: (1) bar graphs; (2) line graphs; (3) circle graphs; (4) pictographs; (5) histograms; (6) artgraphs; (7) designing your own graphs; (8) medical prefixes; (9) color prefixes; (10)…

  5. TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data.

    PubMed

    Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue

    2016-01-01

    We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.

  6. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  7. On the locating-chromatic number for graphs with two homogenous components

    NASA Astrophysics Data System (ADS)

    Welyyanti, Des; Baskoro, Edy Tri; Simajuntak, Rinovia; Uttunggadewa, Saladin

    2017-10-01

    The locating-chromatic number of a graph was introduced by Chartrand et al. in 2002. The concept of the locating-chromatic number is a marriage between graph coloring and the notion of graph partition dimension. This concept is only for connected graphs. In [8], we extended this concept also for disconnected graphs. In this paper, we determine the locating- chromatic number of a graph with two components. In particular, we determine such values if the components are homogeneous and each component has locating-chromatic number 3.

  8. Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong

    The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less

  9. The impact of home care nurses' numeracy and graph literacy on comprehension of visual display information: implications for dashboard design.

    PubMed

    Dowding, Dawn; Merrill, Jacqueline A; Onorato, Nicole; Barrón, Yolanda; Rosati, Robert J; Russell, David

    2018-02-01

    To explore home care nurses' numeracy and graph literacy and their relationship to comprehension of visualized data. A multifactorial experimental design using online survey software. Nurses were recruited from 2 Medicare-certified home health agencies. Numeracy and graph literacy were measured using validated scales. Nurses were randomized to 1 of 4 experimental conditions. Each condition displayed data for 1 of 4 quality indicators, in 1 of 4 different visualized formats (bar graph, line graph, spider graph, table). A mixed linear model measured the impact of numeracy, graph literacy, and display format on data understanding. In all, 195 nurses took part in the study. They were slightly more numerate and graph literate than the general population. Overall, nurses understood information presented in bar graphs most easily (88% correct), followed by tables (81% correct), line graphs (77% correct), and spider graphs (41% correct). Individuals with low numeracy and low graph literacy had poorer comprehension of information displayed across all formats. High graph literacy appeared to enhance comprehension of data regardless of numeracy capabilities. Clinical dashboards are increasingly used to provide information to clinicians in visualized format, under the assumption that visual display reduces cognitive workload. Results of this study suggest that nurses' comprehension of visualized information is influenced by their numeracy, graph literacy, and the display format of the data. Individual differences in numeracy and graph literacy skills need to be taken into account when designing dashboard technology. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins.

    PubMed

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-17

    A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.

  11. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins

    PubMed Central

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-01

    Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636

  12. Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis

    DOE PAGES

    Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; ...

    2016-01-01

    The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less

  13. Molecular graph convolutions: moving beyond fingerprints.

    PubMed

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  14. The Einstein soft X-ray survey of the Pleiades

    NASA Technical Reports Server (NTRS)

    Caillault, J.-P.; Helfand, D. J.

    1985-01-01

    The results of a 0.1-4.5-keV X-ray survey of a 2 x 2-deg area centered on the Pleiades open cluster, performed using the imaging proportional counter and high-resolution imager of the Einstein Observatory on four days in 1980-1981, are presented in extensive tables, graphs, maps, histograms, and finding charts and characterized. A total of 61 sources are detected, and 44 of these are identified with cluster members of spectral types B-M. Findings discussed include Lx/Lbol of 10 the -7th for early-type stars; F-star mean Lx like that of F stars in the Hyades and in the field (denying time evolution of Lx); mean G-star Lx = 3.7 x 10 to the 29th erg/sec; G-star activity decay more gradual than 1/sq rt t, with sharp fall for t greater than 1 Gyr; and no evidence for X-ray-emissivity/rotational-velocity correlation in a homogeneous sample of K dwarfs or a sample of K and M stars with established V sin i data.

  15. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Ahmed, Imtiaz; Tahir, Muhammad Nawaz

    2016-08-01

    Isoniazid is an important component used in "triple therapy" to combat tuberculosis. It has reduced Tabletting formulations stability. Anti-oxidants are obligatory to counter oxidative stress, pulmonary inflammation, and free radical burst from macrophages caused in tuberculosis and other diseases. In the present study a hydrate cocrystal of Isoniazid with anti-oxidant and anti-inflammatory and anti-bacterial Protocatechuic acid (3,4-dihydroxybenzoic acid) in 1:1 is reported. This Cocrystal may have improved tabletting stability and anti-oxidant properties. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the Cocrystal. Other synthons of different graph sets involving Nsbnd H···O and Osbnd H···N bonds are formed between hydrazide group of isoniazid and coformer. Solubility studies revealed that cocrystal is less soluble as compared to isoniazid in buffer at pH 7.4 at 22 °C while stability studies at 80 °C for 24 h period disclosed the fact that cocrystal has higher stability than that of isoniazid.

  16. Mutual proximity graphs for improved reachability in music recommendation.

    PubMed

    Flexer, Arthur; Stevens, Jeff

    2018-01-01

    This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness.

  17. Mutual proximity graphs for improved reachability in music recommendation

    PubMed Central

    Flexer, Arthur; Stevens, Jeff

    2018-01-01

    This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness. PMID:29348779

  18. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen E.; Humble, Travis S.

    2017-04-01

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. In an effort to reduce the complexity of the minor embedding problem, we introduce the minor set cover (MSC) of a known graph G: a subset of graph minors which contain any remaining minor of the graph as a subgraph. Any graph that can be embedded into G will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, which is a complete bipartite graph. We show that the complete bipartite graph K_{N,N} has a MSC of N minors, from which K_{N+1} is identified as the largest clique minor of K_{N,N}. The case of determining the largest clique minor of hardware with faults is briefly discussed but remains an open question.

  19. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets

    DOE PAGES

    Hamilton, Kathleen E.; Humble, Travis S.

    2017-02-23

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. We introduce the minor set cover (MSC) of a known graph GG : a subset of graph minors which contain any remaining minor of the graph as a subgraph, in an effort to reduce the complexity of the minor embedding problem. Any graph that can be embedded into GG will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, whichmore » is a complete bipartite graph. Furthermore, we show that the complete bipartite graph K N,N has a MSC of N minors, from which K N+1 is identified as the largest clique minor of K N,N. In the case of determining the largest clique minor of hardware with faults we briefly discussed this open question.« less

  20. Constructing compact and effective graphs for recommender systems via node and edge aggregations

    DOE PAGES

    Lee, Sangkeun; Kahng, Minsuk; Lee, Sang-goo

    2014-12-10

    Exploiting graphs for recommender systems has great potential to flexibly incorporate heterogeneous information for producing better recommendation results. As our baseline approach, we first introduce a naive graph-based recommendation method, which operates with a heterogeneous log-metadata graph constructed from user log and content metadata databases. Although the na ve graph-based recommendation method is simple, it allows us to take advantages of heterogeneous information and shows promising flexibility and recommendation accuracy. However, it often leads to extensive processing time due to the sheer size of the graphs constructed from entire user log and content metadata databases. In this paper, we proposemore » node and edge aggregation approaches to constructing compact and e ective graphs called Factor-Item bipartite graphs by aggregating nodes and edges of a log-metadata graph. Furthermore, experimental results using real world datasets indicate that our approach can significantly reduce the size of graphs exploited for recommender systems without sacrificing the recommendation quality.« less

  1. graphkernels: R and Python packages for graph comparison

    PubMed Central

    Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-01-01

    Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902

  2. Detecting labor using graph theory on connectivity matrices of uterine EMG.

    PubMed

    Al-Omar, S; Diab, A; Nader, N; Khalil, M; Karlsson, B; Marque, C

    2015-08-01

    Premature labor is one of the most serious health problems in the developed world. One of the main reasons for this is that no good way exists to distinguish true labor from normal pregnancy contractions. The aim of this paper is to investigate if the application of graph theory techniques to multi-electrode uterine EMG signals can improve the discrimination between pregnancy contractions and labor. To test our methods we first applied them to synthetic graphs where we detected some differences in the parameters results and changes in the graph model from pregnancy-like graphs to labor-like graphs. Then, we applied the same methods to real signals. We obtained the best differentiation between pregnancy and labor through the same parameters. Major improvements in differentiating between pregnancy and labor were obtained using a low pass windowing preprocessing step. Results show that real graphs generally became more organized when moving from pregnancy, where the graph showed random characteristics, to labor where the graph became a more small-world like graph.

  3. Stationary waves on nonlinear quantum graphs. II. Application of canonical perturbation theory in basic graph structures.

    PubMed

    Gnutzmann, Sven; Waltner, Daniel

    2016-12-01

    We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016)2470-004510.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.

  4. A Visual Analytics Paradigm Enabling Trillion-Edge Graph Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Pak C.; Haglin, David J.; Gillen, David S.

    We present a visual analytics paradigm and a system prototype for exploring web-scale graphs. A web-scale graph is described as a graph with ~one trillion edges and ~50 billion vertices. While there is an aggressive R&D effort in processing and exploring web-scale graphs among internet vendors such as Facebook and Google, visualizing a graph of that scale still remains an underexplored R&D area. The paper describes a nontraditional peek-and-filter strategy that facilitates the exploration of a graph database of unprecedented size for visualization and analytics. We demonstrate that our system prototype can 1) preprocess a graph with ~25 billion edgesmore » in less than two hours and 2) support database query and visualization on the processed graph database afterward. Based on our computational performance results, we argue that we most likely will achieve the one trillion edge mark (a computational performance improvement of 40 times) for graph visual analytics in the near future.« less

  5. graphkernels: R and Python packages for graph comparison.

    PubMed

    Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-02-01

    Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.

  6. Multi-View Budgeted Learning under Label and Feature Constraints Using Label-Guided Graph-Based Regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symons, Christopher T; Arel, Itamar

    2011-01-01

    Budgeted learning under constraints on both the amount of labeled information and the availability of features at test time pertains to a large number of real world problems. Ideas from multi-view learning, semi-supervised learning, and even active learning have applicability, but a common framework whose assumptions fit these problem spaces is non-trivial to construct. We leverage ideas from these fields based on graph regularizers to construct a robust framework for learning from labeled and unlabeled samples in multiple views that are non-independent and include features that are inaccessible at the time the model would need to be applied. We describemore » examples of applications that fit this scenario, and we provide experimental results to demonstrate the effectiveness of knowledge carryover from training-only views. As learning algorithms are applied to more complex applications, relevant information can be found in a wider variety of forms, and the relationships between these information sources are often quite complex. The assumptions that underlie most learning algorithms do not readily or realistically permit the incorporation of many of the data sources that are available, despite an implicit understanding that useful information exists in these sources. When multiple information sources are available, they are often partially redundant, highly interdependent, and contain noise as well as other information that is irrelevant to the problem under study. In this paper, we are focused on a framework whose assumptions match this reality, as well as the reality that labeled information is usually sparse. Most significantly, we are interested in a framework that can also leverage information in scenarios where many features that would be useful for learning a model are not available when the resulting model will be applied. As with constraints on labels, there are many practical limitations on the acquisition of potentially useful features. A key difference in the case of feature acquisition is that the same constraints often don't pertain to the training samples. This difference provides an opportunity to allow features that are impractical in an applied setting to nevertheless add value during the model-building process. Unfortunately, there are few machine learning frameworks built on assumptions that allow effective utilization of features that are only available at training time. In this paper we formulate a knowledge carryover framework for the budgeted learning scenario with constraints on features and labels. The approach is based on multi-view and semi-supervised learning methods that use graph-encoded regularization. Our main contributions are the following: (1) we propose and provide justification for a methodology for ensuring that changes in the graph regularizer using alternate views are performed in a manner that is target-concept specific, allowing value to be obtained from noisy views; and (2) we demonstrate how this general set-up can be used to effectively improve models by leveraging features unavailable at test time. The rest of the paper is structured as follows. In Section 2, we outline real-world problems to motivate the approach and describe relevant prior work. Section 3 describes the graph construction process and the learning methodologies that are employed. Section 4 provides preliminary discussion regarding theoretical motivation for the method. In Section 5, effectiveness of the approach is demonstrated in a series of experiments employing modified versions of two well-known semi-supervised learning algorithms. Section 6 concludes the paper.« less

  7. Continuous-time quantum walks on star graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salimi, S.

    2009-06-15

    In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.

  8. Matching Extension in Regular Graphs

    DTIC Science & Technology

    1989-01-01

    Plummer, Matching Theory, Ann. Discrete Math . 29, North- Holland, Amsterdam, 1986. [101 , The matching structure of graphs: some recent re- sults...maximums d’un graphe, These, Dr. troisieme cycle, Univ. Grenoble, 1978. [12 ] D. Naddef and W.R. Pulleyblank, Matching in regular graphs, Discrete Math . 34...1981, 283-291. [13 1 M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. . [ 141 ,Matching extension in planar graphs IV

  9. Convex Graph Invariants

    DTIC Science & Technology

    2010-12-02

    Motzkin, T. and Straus, E. (1965). Maxima for graphs and a new proof of a theorem of Turan . Canad. J. Math. 17 533–540. [33] Rendl, F. and Sotirov, R...Convex Graph Invariants Venkat Chandrasekaran, Pablo A . Parrilo, and Alan S. Willsky ∗ Laboratory for Information and Decision Systems Department of...this paper we study convex graph invariants, which are graph invariants that are convex functions of the adjacency matrix of a graph. Some examples

  10. Application-Specific Graph Sampling for Frequent Subgraph Mining and Community Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, Sumit; Choudhury, Sutanay; Holder, Lawrence B.

    Graph mining is an important data analysis methodology, but struggles as the input graph size increases. The scalability and usability challenges posed by such large graphs make it imperative to sample the input graph and reduce its size. The critical challenge in sampling is to identify the appropriate algorithm to insure the resulting analysis does not suffer heavily from the data reduction. Predicting the expected performance degradation for a given graph and sampling algorithm is also useful. In this paper, we present different sampling approaches for graph mining applications such as Frequent Subgrpah Mining (FSM), and Community Detection (CD). Wemore » explore graph metrics such as PageRank, Triangles, and Diversity to sample a graph and conclude that for heterogeneous graphs Triangles and Diversity perform better than degree based metrics. We also present two new sampling variations for targeted graph mining applications. We present empirical results to show that knowledge of the target application, along with input graph properties can be used to select the best sampling algorithm. We also conclude that performance degradation is an abrupt, rather than gradual phenomena, as the sample size decreases. We present the empirical results to show that the performance degradation follows a logistic function.« less

  11. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  12. What Would a Graph Look Like in this Layout? A Machine Learning Approach to Large Graph Visualization.

    PubMed

    Kwon, Oh-Hyun; Crnovrsanin, Tarik; Ma, Kwan-Liu

    2018-01-01

    Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives different information. Selecting a "good" layout method is thus important for visualizing a graph. The selection can be highly subjective and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection. However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels. For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic metrics. An important contribution of our work is the development of a new framework to design graph kernels. Our experimental study shows that our estimation calculation is considerably faster than computing the actual layouts and their aesthetic metrics. Also, our graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.

  13. Knowledge Representation Issues in Semantic Graphs for Relationship Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, M; Chow, E; Eliassi-Rad, T

    2005-02-02

    An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less

  14. Simple graph models of information spread in finite populations

    PubMed Central

    Voorhees, Burton; Ryder, Bergerud

    2015-01-01

    We consider several classes of simple graphs as potential models for information diffusion in a structured population. These include biases cycles, dual circular flows, partial bipartite graphs and what we call ‘single-link’ graphs. In addition to fixation probabilities, we study structure parameters for these graphs, including eigenvalues of the Laplacian, conductances, communicability and expected hitting times. In several cases, values of these parameters are related, most strongly so for partial bipartite graphs. A measure of directional bias in cycles and circular flows arises from the non-zero eigenvalues of the antisymmetric part of the Laplacian and another measure is found for cycles as the value of the transition probability for which hitting times going in either direction of the cycle are equal. A generalization of circular flow graphs is used to illustrate the possibility of tuning edge weights to match pre-specified values for graph parameters; in particular, we show that generalizations of circular flows can be tuned to have fixation probabilities equal to the Moran probability for a complete graph by tuning vertex temperature profiles. Finally, single-link graphs are introduced as an example of a graph involving a bottleneck in the connection between two components and these are compared to the partial bipartite graphs. PMID:26064661

  15. RNA Graph Partitioning for the Discovery of RNA Modularity: A Novel Application of Graph Partition Algorithm to Biology

    PubMed Central

    Elmetwaly, Shereef; Schlick, Tamar

    2014-01-01

    Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs. PMID:25188578

  16. A Semantic Graph Query Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, I L

    2006-10-16

    Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.

  17. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  18. Dynamic graph of an oxy-fuel combustion system using autocatalytic set model

    NASA Astrophysics Data System (ADS)

    Harish, Noor Ainy; Bakar, Sumarni Abu

    2017-08-01

    Evaporation process is one of the main processes besides combustion process in an oxy-combustion boiler system. An Autocatalytic Set (ASC) Model has successfully applied in developing graphical representation of the chemical reactions that occurs in the evaporation process in the system. Seventeen variables identified in the process are represented as nodes and the catalytic relationships are represented as edges in the graph. In addition, in this paper graph dynamics of ACS is further investigated. By using Dynamic Autocatalytic Set Graph Algorithm (DAGA), the adjacency matrix for each of the graphs and its relations to Perron-Frobenius Theorem is investigated. The dynamic graph obtained is further investigated where the connection of the graph to fuzzy graph Type 1 is established.

  19. A Weight-Adaptive Laplacian Embedding for Graph-Based Clustering.

    PubMed

    Cheng, De; Nie, Feiping; Sun, Jiande; Gong, Yihong

    2017-07-01

    Graph-based clustering methods perform clustering on a fixed input data graph. Thus such clustering results are sensitive to the particular graph construction. If this initial construction is of low quality, the resulting clustering may also be of low quality. We address this drawback by allowing the data graph itself to be adaptively adjusted in the clustering procedure. In particular, our proposed weight adaptive Laplacian (WAL) method learns a new data similarity matrix that can adaptively adjust the initial graph according to the similarity weight in the input data graph. We develop three versions of these methods based on the L2-norm, fuzzy entropy regularizer, and another exponential-based weight strategy, that yield three new graph-based clustering objectives. We derive optimization algorithms to solve these objectives. Experimental results on synthetic data sets and real-world benchmark data sets exhibit the effectiveness of these new graph-based clustering methods.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Kathleen E.; Humble, Travis S.

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. We introduce the minor set cover (MSC) of a known graph GG : a subset of graph minors which contain any remaining minor of the graph as a subgraph, in an effort to reduce the complexity of the minor embedding problem. Any graph that can be embedded into GG will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, whichmore » is a complete bipartite graph. Furthermore, we show that the complete bipartite graph K N,N has a MSC of N minors, from which K N+1 is identified as the largest clique minor of K N,N. In the case of determining the largest clique minor of hardware with faults we briefly discussed this open question.« less

  1. Genus Ranges of 4-Regular Rigid Vertex Graphs

    PubMed Central

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2016-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2n vertices (n > 1), we prove that all intervals [a, b] for all a < b ≤ n, and singletons [h, h] for some h ≤ n, are realized as genus ranges. For graphs with 2n − 1 vertices (n ≥ 1), we prove that all intervals [a, b] for all a < b ≤ n except [0, n], and [h, h] for some h ≤ n, are realized as genus ranges. We also provide constructions of graphs that realize these ranges. PMID:27807395

  2. Ringo: Interactive Graph Analytics on Big-Memory Machines

    PubMed Central

    Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure

    2016-01-01

    We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads. PMID:27081215

  3. Computing Information Value from RDF Graph Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Heileman, Gregory

    2010-11-08

    Information value has been implicitly utilized and mostly non-subjectively computed in information retrieval (IR) systems. We explicitly define and compute the value of an information piece as a function of two parameters, the first is the potential semantic impact the target information can subjectively have on its recipient's world-knowledge, and the second parameter is trust in the information source. We model these two parameters as properties of RDF graphs. Two graphs are constructed, a target graph representing the semantics of the target body of information and a context graph representing the context of the consumer of that information. We computemore » information value subjectively as a function of both potential change to the context graph (impact) and the overlap between the two graphs (trust). Graph change is computed as a graph edit distance measuring the dissimilarity between the context graph before and after the learning of the target graph. A particular application of this subjective information valuation is in the construction of a personalized ranking component in Web search engines. Based on our method, we construct a Web re-ranking system that personalizes the information experience for the information-consumer.« less

  4. Ringo: Interactive Graph Analytics on Big-Memory Machines.

    PubMed

    Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure

    2015-01-01

    We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.

  5. Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology

    PubMed Central

    Angra, Aakanksha; Gardner, Stephanie M.

    2017-01-01

    Undergraduate biology education reform aims to engage students in scientific practices such as experimental design, experimentation, and data analysis and communication. Graphs are ubiquitous in the biological sciences, and creating effective graphical representations involves quantitative and disciplinary concepts and skills. Past studies document student difficulties with graphing within the contexts of classroom or national assessments without evaluating student reasoning. Operating under the metarepresentational competence framework, we conducted think-aloud interviews to reveal differences in reasoning and graph quality between undergraduate biology students, graduate students, and professors in a pen-and-paper graphing task. All professors planned and thought about data before graph construction. When reflecting on their graphs, professors and graduate students focused on the function of graphs and experimental design, while most undergraduate students relied on intuition and data provided in the task. Most undergraduate students meticulously plotted all data with scaled axes, while professors and some graduate students transformed the data, aligned the graph with the research question, and reflected on statistics and sample size. Differences in reasoning and approaches taken in graph choice and construction corroborate and extend previous findings and provide rich targets for undergraduate and graduate instruction. PMID:28821538

  6. Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study.

    PubMed

    Yu, Qingbao; Du, Yuhui; Chen, Jiayu; He, Hao; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D

    2017-11-01

    A key challenge in building a brain graph using fMRI data is how to define the nodes. Spatial brain components estimated by independent components analysis (ICA) and regions of interest (ROIs) determined by brain atlas are two popular methods to define nodes in brain graphs. It is difficult to evaluate which method is better in real fMRI data. Here we perform a simulation study and evaluate the accuracies of a few graph metrics in graphs with nodes of ICA components, ROIs, or modified ROIs in four simulation scenarios. Graph measures with ICA nodes are more accurate than graphs with ROI nodes in all cases. Graph measures with modified ROI nodes are modulated by artifacts. The correlations of graph metrics across subjects between graphs with ICA nodes and ground truth are higher than the correlations between graphs with ROI nodes and ground truth in scenarios with large overlapped spatial sources. Moreover, moving the location of ROIs would largely decrease the correlations in all scenarios. Evaluating graphs with different nodes is promising in simulated data rather than real data because different scenarios can be simulated and measures of different graphs can be compared with a known ground truth. Since ROIs defined using brain atlas may not correspond well to real functional boundaries, overall findings of this work suggest that it is more appropriate to define nodes using data-driven ICA than ROI approaches in real fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A distributed query execution engine of big attributed graphs.

    PubMed

    Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif

    2016-01-01

    A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.

  8. Does Guiding Toward Task-Relevant Information Help Improve Graph Processing and Graph Comprehension of Individuals with Low or High Numeracy? An Eye-Tracker Experiment.

    PubMed

    Keller, Carmen; Junghans, Alex

    2017-11-01

    Individuals with low numeracy have difficulties with understanding complex graphs. Combining the information-processing approach to numeracy with graph comprehension and information-reduction theories, we examined whether high numerates' better comprehension might be explained by their closer attention to task-relevant graphical elements, from which they would expect numerical information to understand the graph. Furthermore, we investigated whether participants could be trained in improving their attention to task-relevant information and graph comprehension. In an eye-tracker experiment ( N = 110) involving a sample from the general population, we presented participants with 2 hypothetical scenarios (stomach cancer, leukemia) showing survival curves for 2 treatments. In the training condition, participants received written instructions on how to read the graph. In the control condition, participants received another text. We tracked participants' eye movements while they answered 9 knowledge questions. The sum constituted graph comprehension. We analyzed visual attention to task-relevant graphical elements by using relative fixation durations and relative fixation counts. The mediation analysis revealed a significant ( P < 0.05) indirect effect of numeracy on graph comprehension through visual attention to task-relevant information, which did not differ between the 2 conditions. Training had a significant main effect on visual attention ( P < 0.05) but not on graph comprehension ( P < 0.07). Individuals with high numeracy have better graph comprehension due to their greater attention to task-relevant graphical elements than individuals with low numeracy. With appropriate instructions, both groups can be trained to improve their graph-processing efficiency. Future research should examine (e.g., motivational) mediators between visual attention and graph comprehension to develop appropriate instructions that also result in higher graph comprehension.

  9. Evaluation of Graph Pattern Matching Workloads in Graph Analysis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seokyong; Lee, Sangkeun; Lim, Seung-Hwan

    2016-01-01

    Graph analysis has emerged as a powerful method for data scientists to represent, integrate, query, and explore heterogeneous data sources. As a result, graph data management and mining became a popular area of research, and led to the development of plethora of systems in recent years. Unfortunately, the number of emerging graph analysis systems and the wide range of applications, coupled with a lack of apples-to-apples comparisons, make it difficult to understand the trade-offs between different systems and the graph operations for which they are designed. A fair comparison of these systems is a challenging task for the following reasons:more » multiple data models, non-standardized serialization formats, various query interfaces to users, and diverse environments they operate in. To address these key challenges, in this paper we present a new benchmark suite by extending the Lehigh University Benchmark (LUBM) to cover the most common capabilities of various graph analysis systems. We provide the design process of the benchmark, which generalizes the workflow for data scientists to conduct the desired graph analysis on different graph analysis systems. Equipped with this extended benchmark suite, we present performance comparison for nine subgraph pattern retrieval operations over six graph analysis systems, namely NetworkX, Neo4j, Jena, Titan, GraphX, and uRiKA. Through the proposed benchmark suite, this study reveals both quantitative and qualitative findings in (1) implications in loading data into each system; (2) challenges in describing graph patterns for each query interface; and (3) different sensitivity of each system to query selectivity. We envision that this study will pave the road for: (i) data scientists to select the suitable graph analysis systems, and (ii) data management system designers to advance graph analysis systems.« less

  10. Differentials on graph complexes II: hairy graphs

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Anton; Willwacher, Thomas; Živković, Marko

    2017-10-01

    We study the cohomology of the hairy graph complexes which compute the rational homotopy of embedding spaces, generalizing the Vassiliev invariants of knot theory. We provide spectral sequences converging to zero whose first pages contain the hairy graph cohomology. Our results yield a way to construct many nonzero hairy graph cohomology classes out of (known) non-hairy classes by studying the cancellations in those sequences. This provide a first glimpse at the tentative global structure of the hairy graph cohomology.

  11. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    Fuel Standard Volumes by Year Generated_thumb20150904-8240-13hgnxh Last update August 2012 View Graph product or destination Last update August 2015 View Graph Graph Download Data Custom_thumb U.S. Ethanol , from 1866-2014 Last update August 2015 View Graph Graph Download Data Generated_thumb20160920-21993

  12. Helping Students Make Sense of Graphs: An Experimental Trial of SmartGraphs Software

    ERIC Educational Resources Information Center

    Zucker, Andrew; Kay, Rachel; Staudt, Carolyn

    2014-01-01

    Graphs are commonly used in science, mathematics, and social sciences to convey important concepts; yet students at all ages demonstrate difficulties interpreting graphs. This paper reports on an experimental study of free, Web-based software called SmartGraphs that is specifically designed to help students overcome their misconceptions regarding…

  13. A Novel Graph Constructor for Semisupervised Discriminant Analysis: Combined Low-Rank and k-Nearest Neighbor Graph

    PubMed Central

    Pan, Yongke; Niu, Wenjia

    2017-01-01

    Semisupervised Discriminant Analysis (SDA) is a semisupervised dimensionality reduction algorithm, which can easily resolve the out-of-sample problem. Relative works usually focus on the geometric relationships of data points, which are not obvious, to enhance the performance of SDA. Different from these relative works, the regularized graph construction is researched here, which is important in the graph-based semisupervised learning methods. In this paper, we propose a novel graph for Semisupervised Discriminant Analysis, which is called combined low-rank and k-nearest neighbor (LRKNN) graph. In our LRKNN graph, we map the data to the LR feature space and then the kNN is adopted to satisfy the algorithmic requirements of SDA. Since the low-rank representation can capture the global structure and the k-nearest neighbor algorithm can maximally preserve the local geometrical structure of the data, the LRKNN graph can significantly improve the performance of SDA. Extensive experiments on several real-world databases show that the proposed LRKNN graph is an efficient graph constructor, which can largely outperform other commonly used baselines. PMID:28316616

  14. Computing Role Assignments of Proper Interval Graphs in Polynomial Time

    NASA Astrophysics Data System (ADS)

    Heggernes, Pinar; van't Hof, Pim; Paulusma, Daniël

    A homomorphism from a graph G to a graph R is locally surjective if its restriction to the neighborhood of each vertex of G is surjective. Such a homomorphism is also called an R-role assignment of G. Role assignments have applications in distributed computing, social network theory, and topological graph theory. The Role Assignment problem has as input a pair of graphs (G,R) and asks whether G has an R-role assignment. This problem is NP-complete already on input pairs (G,R) where R is a path on three vertices. So far, the only known non-trivial tractable case consists of input pairs (G,R) where G is a tree. We present a polynomial time algorithm that solves Role Assignment on all input pairs (G,R) where G is a proper interval graph. Thus we identify the first graph class other than trees on which the problem is tractable. As a complementary result, we show that the problem is Graph Isomorphism-hard on chordal graphs, a superclass of proper interval graphs and trees.

  15. A binary linear programming formulation of the graph edit distance.

    PubMed

    Justice, Derek; Hero, Alfred

    2006-08-01

    A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.

  16. Quantum walk on a chimera graph

    NASA Astrophysics Data System (ADS)

    Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.

    2018-05-01

    We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.

  17. Interval Graph Limits

    PubMed Central

    Diaconis, Persi; Holmes, Susan; Janson, Svante

    2015-01-01

    We work out a graph limit theory for dense interval graphs. The theory developed departs from the usual description of a graph limit as a symmetric function W (x, y) on the unit square, with x and y uniform on the interval (0, 1). Instead, we fix a W and change the underlying distribution of the coordinates x and y. We find choices such that our limits are continuous. Connections to random interval graphs are given, including some examples. We also show a continuity result for the chromatic number and clique number of interval graphs. Some results on uniqueness of the limit description are given for general graph limits. PMID:26405368

  18. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  19. Spectral fluctuations of quantum graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluhař, Z.; Weidenmüller, H. A.

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.

  20. 2-Extendability in Two Classes of Claw-Free Graphs

    DTIC Science & Technology

    1992-01-01

    extendability of planar graphs, Discrete Math ., 96, 1991, 81-99. [Lai M. Las Verguas, A note on matchings in graphs, Colloque sur la Thiorie des Graphes...43, 1987, 187-222. [LP L. Loviss and M.D. Plummet, Matching Theory, Ann. Discrete Math . 29, North-Holland, Amsterdam, 1986. [P11 M.D. Plummer, On n...extendable graphs, Discrete Math . 31, 1960, 201-210. [P21 Extending matchinp in planar graphs IV, Proc. of the Conference in honor of Cert Sabidussi, Ann

  1. A Visual Evaluation Study of Graph Sampling Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fangyan; Zhang, Song; Wong, Pak C.

    2017-01-29

    We evaluate a dozen prevailing graph-sampling techniques with an ultimate goal to better visualize and understand big and complex graphs that exhibit different properties and structures. The evaluation uses eight benchmark datasets with four different graph types collected from Stanford Network Analysis Platform and NetworkX to give a comprehensive comparison of various types of graphs. The study provides a practical guideline for visualizing big graphs of different sizes and structures. The paper discusses results and important observations from the study.

  2. Methods of visualizing graphs

    DOEpatents

    Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, J.A.

    This report is a sequel to ORNL/CSD-96 in the ongoing supplements to Professor A.S. Householder's KWIC Index for Numerical Algebra. With this supplement, the coverage has been restricted to Numerical Linear Algebra and is now roughly characterized by the American Mathematical Society's classification section 15 and 65F but with little coverage of inifinite matrices, matrices over fields of characteristics other than zero, operator theory, optimization and those parts of matrix theory primarily combinatorial in nature. Some recognition is made of the uses of graph theory in Numerical Linear Algebra, particularly as regards their use in algorithms for sparse matrix computations.more » The period covered by this report is roughly the calendar year 1981 as measured by the appearance of the articles in the American Mathematical Society's Contents of Mathematical Publications. The review citations are limited to the Mathematical Reviews (MR) and Das Zentralblatt fur Mathematik und Ihre Grenzgebiete (ZBL). Future reports will be made more timely by closer ovservation of the few journals which supply the bulk of the listings rather than what appears to be too much reliance on secondary sources. Some thought is being given to the physical appearance of these reports and the author welcomes comments concerning both their appearance and contents.« less

  4. A Bayesian network analysis of posttraumatic stress disorder symptoms in adults reporting childhood sexual abuse

    PubMed Central

    McNally, Richard J.; Heeren, Alexandre; Robinaugh, Donald J.

    2017-01-01

    ABSTRACT Background: The network approach to mental disorders offers a novel framework for conceptualizing posttraumatic stress disorder (PTSD) as a causal system of interacting symptoms. Objective: In this study, we extended this work by estimating the structure of relations among PTSD symptoms in adults reporting personal histories of childhood sexual abuse (CSA; N = 179).   Method: We employed two complementary methods. First, using the graphical LASSO, we computed a sparse, regularized partial correlation network revealing associations (edges) between pairs of PTSD symptoms (nodes). Next, using a Bayesian approach, we computed a directed acyclic graph (DAG) to estimate a directed, potentially causal model of the relations among symptoms. Results: For the first network, we found that physiological reactivity to reminders of trauma, dreams about the trauma, and lost of interest in previously enjoyed activities were highly central nodes. However, stability analyses suggest that these findings were unstable across subsets of our sample. The DAG suggests that becoming physiologically reactive and upset in response to reminders of the trauma may be key drivers of other symptoms in adult survivors of CSA. Conclusions: Our study illustrates the strengths and limitations of these network analytic approaches to PTSD. PMID:29038690

  5. Two Improved Algorithms for Envelope and Wavefront Reduction

    NASA Technical Reports Server (NTRS)

    Kumfert, Gary; Pothen, Alex

    1997-01-01

    Two algorithms for reordering sparse, symmetric matrices or undirected graphs to reduce envelope and wavefront are considered. The first is a combinatorial algorithm introduced by Sloan and further developed by Duff, Reid, and Scott; we describe enhancements to the Sloan algorithm that improve its quality and reduce its run time. Our test problems fall into two classes with differing asymptotic behavior of their envelope parameters as a function of the weights in the Sloan algorithm. We describe an efficient 0(nlogn + m) time implementation of the Sloan algorithm, where n is the number of rows (vertices), and m is the number of nonzeros (edges). On a collection of test problems, the improved Sloan algorithm required, on the average, only twice the time required by the simpler Reverse Cuthill-Mckee algorithm while improving the mean square wavefront by a factor of three. The second algorithm is a hybrid that combines a spectral algorithm for envelope and wavefront reduction with a refinement step that uses a modified Sloan algorithm. The hybrid algorithm reduces the envelope size and mean square wavefront obtained from the Sloan algorithm at the cost of greater running times. We illustrate how these reductions translate into tangible benefits for frontal Cholesky factorization and incomplete factorization preconditioning.

  6. Online social network data as sociometric markers.

    PubMed

    Binder, Jens F; Buglass, Sarah L; Betts, Lucy R; Underwood, Jean D M

    2017-10-01

    Data from online social networks carry enormous potential for psychological research, yet their use and the ethical implications thereof are currently hotly debated. The present work aims to outline in detail the unique information richness of this data type and, in doing so, to support researchers when deciding on ethically appropriate ways of collecting, storing, publishing, and sharing data from online sources. Focusing on the very nature of social networks, their structural characteristics, and depth of information, we provide a detailed and accessible account of the challenges associated with data management and data storage. In particular, the general nonanonymity of network data sets is discussed, and an approach is developed to quantify the level of uniqueness that a particular online network bestows upon the individual maintaining it. Using graph enumeration techniques, we show that comparatively sparse information on a network is suitable as a sociometric marker that allows for the identification of an individual from the global population of online users. The impossibility of anonymizing specific types of network data carries implications for ethical guidelines and research practice. At the same time, network uniqueness opens up opportunities for novel research in psychology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Harnessing the Bethe free energy†

    PubMed Central

    Bapst, Victor

    2016-01-01

    ABSTRACT A wide class of problems in combinatorics, computer science and physics can be described along the following lines. There are a large number of variables ranging over a finite domain that interact through constraints that each bind a few variables and either encourage or discourage certain value combinations. Examples include the k‐SAT problem or the Ising model. Such models naturally induce a Gibbs measure on the set of assignments, which is characterised by its partition function. The present paper deals with the partition function of problems where the interactions between variables and constraints are induced by a sparse random (hyper)graph. According to physics predictions, a generic recipe called the “replica symmetric cavity method” yields the correct value of the partition function if the underlying model enjoys certain properties [Krzkala et al., PNAS (2007) 10318–10323]. Guided by this conjecture, we prove general sufficient conditions for the success of the cavity method. The proofs are based on a “regularity lemma” for probability measures on sets of the form Ωn for a finite Ω and a large n that may be of independent interest. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 694–741, 2016 PMID:28035178

  8. Active learning of cortical connectivity from two-photon imaging data.

    PubMed

    Bertrán, Martín A; Martínez, Natalia L; Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario

    2018-01-01

    Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this "active learning" method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model.

  9. Traffic Behavior Recognition Using the Pachinko Allocation Model

    PubMed Central

    Huynh-The, Thien; Banos, Oresti; Le, Ba-Vui; Bui, Dinh-Mao; Yoon, Yongik; Lee, Sungyoung

    2015-01-01

    CCTV-based behavior recognition systems have gained considerable attention in recent years in the transportation surveillance domain for identifying unusual patterns, such as traffic jams, accidents, dangerous driving and other abnormal behaviors. In this paper, a novel approach for traffic behavior modeling is presented for video-based road surveillance. The proposed system combines the pachinko allocation model (PAM) and support vector machine (SVM) for a hierarchical representation and identification of traffic behavior. A background subtraction technique using Gaussian mixture models (GMMs) and an object tracking mechanism based on Kalman filters are utilized to firstly construct the object trajectories. Then, the sparse features comprising the locations and directions of the moving objects are modeled by PAM into traffic topics, namely activities and behaviors. As a key innovation, PAM captures not only the correlation among the activities, but also among the behaviors based on the arbitrary directed acyclic graph (DAG). The SVM classifier is then utilized on top to train and recognize the traffic activity and behavior. The proposed model shows more flexibility and greater expressive power than the commonly-used latent Dirichlet allocation (LDA) approach, leading to a higher recognition accuracy in the behavior classification. PMID:26151213

  10. Following the Social Media: Aspect Evolution of Online Discussion

    NASA Astrophysics Data System (ADS)

    Tang, Xuning; Yang, Christopher C.

    Due to the advance of Internet and Web 2.0 technologies, it is easy to extract thousands of threads about a topic of interest from an online forum but it is nontrivial to capture the blueprint of different aspects (i.e., subtopic, or facet) associated with the topic. To better understand and analyze a forum discussion given topic, it is important to uncover the evolution relationships (temporal dependencies) between different topic aspects (i.e. how the discussion topic is evolving). Traditional Topic Detection and Tracking (TDT) techniques usually organize topics as a flat structure but it does not present the evolution relationships between topic aspects. In addition, the properties of short and sparse messages make the content-based TDT techniques difficult to perform well in identifying evolution relationships. The contributions in this paper are two-folded. We formally define a topic aspect evolution graph modeling framework and propose to utilize social network information, content similarity and temporal proximity to model evolution relationships between topic aspects. The experimental results showed that, by incorporating social network information, our technique significantly outperformed content-based technique in the task of extracting evolution relationships between topic aspects.

  11. A distributed-memory approximation algorithm for maximum weight perfect bipartite matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Buluc, Aydin; Li, Xiaoye S.

    We design and implement an efficient parallel approximation algorithm for the problem of maximum weight perfect matching in bipartite graphs, i.e. the problem of finding a set of non-adjacent edges that covers all vertices and has maximum weight. This problem differs from the maximum weight matching problem, for which scalable approximation algorithms are known. It is primarily motivated by finding good pivots in scalable sparse direct solvers before factorization where sequential implementations of maximum weight perfect matching algorithms, such as those available in MC64, are widely used due to the lack of scalable alternatives. To overcome this limitation, we proposemore » a fully parallel distributed memory algorithm that first generates a perfect matching and then searches for weightaugmenting cycles of length four in parallel and iteratively augments the matching with a vertex disjoint set of such cycles. For most practical problems the weights of the perfect matchings generated by our algorithm are very close to the optimum. An efficient implementation of the algorithm scales up to 256 nodes (17,408 cores) on a Cray XC40 supercomputer and can solve instances that are too large to be handled by a single node using the sequential algorithm.« less

  12. Active learning of cortical connectivity from two-photon imaging data

    PubMed Central

    Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario

    2018-01-01

    Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this “active learning” method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model. PMID:29718955

  13. Top-k similar graph matching using TraM in biological networks.

    PubMed

    Amin, Mohammad Shafkat; Finley, Russell L; Jamil, Hasan M

    2012-01-01

    Many emerging database applications entail sophisticated graph-based query manipulation, predominantly evident in large-scale scientific applications. To access the information embedded in graphs, efficient graph matching tools and algorithms have become of prime importance. Although the prohibitively expensive time complexity associated with exact subgraph isomorphism techniques has limited its efficacy in the application domain, approximate yet efficient graph matching techniques have received much attention due to their pragmatic applicability. Since public domain databases are noisy and incomplete in nature, inexact graph matching techniques have proven to be more promising in terms of inferring knowledge from numerous structural data repositories. In this paper, we propose a novel technique called TraM for approximate graph matching that off-loads a significant amount of its processing on to the database making the approach viable for large graphs. Moreover, the vector space embedding of the graphs and efficient filtration of the search space enables computation of approximate graph similarity at a throw-away cost. We annotate nodes of the query graphs by means of their global topological properties and compare them with neighborhood biased segments of the datagraph for proper matches. We have conducted experiments on several real data sets, and have demonstrated the effectiveness and efficiency of the proposed method

  14. On the modification Highly Connected Subgraphs (HCS) algorithm in graph clustering for weighted graph

    NASA Astrophysics Data System (ADS)

    Albirri, E. R.; Sugeng, K. A.; Aldila, D.

    2018-04-01

    Nowadays, in the modern world, since technology and human civilization start to progress, all city in the world is almost connected. The various places in this world are easier to visit. It is an impact of transportation technology and highway construction. The cities which have been connected can be represented by graph. Graph clustering is one of ways which is used to answer some problems represented by graph. There are some methods in graph clustering to solve the problem spesifically. One of them is Highly Connected Subgraphs (HCS) method. HCS is used to identify cluster based on the graph connectivity k for graph G. The connectivity in graph G is denoted by k(G)> \\frac{n}{2} that n is the total of vertices in G, then it is called as HCS or the cluster. This research used literature review and completed with simulation of program in a software. We modified HCS algorithm by using weighted graph. The modification is located in the Process Phase. Process Phase is used to cut the connected graph G into two subgraphs H and \\bar{H}. We also made a program by using software Octave-401. Then we applied the data of Flight Routes Mapping of One of Airlines in Indonesia to our program.

  15. A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.

    PubMed

    Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang

    2016-04-01

    Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.

  16. Small Modifications to Network Topology Can Induce Stochastic Bistable Spiking Dynamics in a Balanced Cortical Model

    PubMed Central

    McDonnell, Mark D.; Ward, Lawrence M.

    2014-01-01

    Abstract Directed random graph models frequently are used successfully in modeling the population dynamics of networks of cortical neurons connected by chemical synapses. Experimental results consistently reveal that neuronal network topology is complex, however, in the sense that it differs statistically from a random network, and differs for classes of neurons that are physiologically different. This suggests that complex network models whose subnetworks have distinct topological structure may be a useful, and more biologically realistic, alternative to random networks. Here we demonstrate that the balanced excitation and inhibition frequently observed in small cortical regions can transiently disappear in otherwise standard neuronal-scale models of fluctuation-driven dynamics, solely because the random network topology was replaced by a complex clustered one, whilst not changing the in-degree of any neurons. In this network, a small subset of cells whose inhibition comes only from outside their local cluster are the cause of bistable population dynamics, where different clusters of these cells irregularly switch back and forth from a sparsely firing state to a highly active state. Transitions to the highly active state occur when a cluster of these cells spikes sufficiently often to cause strong unbalanced positive feedback to each other. Transitions back to the sparsely firing state rely on occasional large fluctuations in the amount of non-local inhibition received. Neurons in the model are homogeneous in their intrinsic dynamics and in-degrees, but differ in the abundance of various directed feedback motifs in which they participate. Our findings suggest that (i) models and simulations should take into account complex structure that varies for neuron and synapse classes; (ii) differences in the dynamics of neurons with similar intrinsic properties may be caused by their membership in distinctive local networks; (iii) it is important to identify neurons that share physiological properties and location, but differ in their connectivity. PMID:24743633

  17. An asynchronous traversal engine for graph-based rich metadata management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Dong; Carns, Philip; Ross, Robert B.

    Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less

  18. An asynchronous traversal engine for graph-based rich metadata management

    DOE PAGES

    Dai, Dong; Carns, Philip; Ross, Robert B.; ...

    2016-06-23

    Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less

  19. Expanding our understanding of students' use of graphs for learning physics

    NASA Astrophysics Data System (ADS)

    Laverty, James T.

    It is generally agreed that the ability to visualize functional dependencies or physical relationships as graphs is an important step in modeling and learning. However, several studies in Physics Education Research (PER) have shown that many students in fact do not master this form of representation and even have misconceptions about the meaning of graphs that impede learning physics concepts. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. A study of pre/post-test data using the Test of Understanding Graphs in Kinematics (TUG-K) over several semesters indicates that students learn significantly more from these graph construction problems than from the usual graph interpretation problems, and that graph interpretation alone may not have any significant effect. The interpretation of graphs, as well as the representation translation between textual, mathematical, and graphical representations of physics scenarios, are frequently listed among the higher order thinking skills we wish to convey in an undergraduate course. But to what degree do we succeed? Do students indeed employ higher order thinking skills when working through graphing exercises? We investigate students working through a variety of graph problems, and, using a think-aloud protocol, aim to reconstruct the cognitive processes that the students go through. We find that to a certain degree, these problems become commoditized and do not trigger the desired higher order thinking processes; simply translating ``textbook-like'' problems into the graphical realm will not achieve any additional educational goals. Whether the students have to interpret or construct a graph makes very little difference in the methods used by the students. We will also look at the results of using graph problems in an online learning environment. We will show evidence that construction problems lead to a higher degree of difficulty and degree of discrimination than other graph problems and discuss the influence the course has on these variables.

  20. Clustering by reordering of similarity and Laplacian matrices: Application to galaxy clusters

    NASA Astrophysics Data System (ADS)

    Mahmoud, E.; Shoukry, A.; Takey, A.

    2018-04-01

    Similarity metrics, kernels and similarity-based algorithms have gained much attention due to their increasing applications in information retrieval, data mining, pattern recognition and machine learning. Similarity Graphs are often adopted as the underlying representation of similarity matrices and are at the origin of known clustering algorithms such as spectral clustering. Similarity matrices offer the advantage of working in object-object (two-dimensional) space where visualization of clusters similarities is available instead of object-features (multi-dimensional) space. In this paper, sparse ɛ-similarity graphs are constructed and decomposed into strong components using appropriate methods such as Dulmage-Mendelsohn permutation (DMperm) and/or Reverse Cuthill-McKee (RCM) algorithms. The obtained strong components correspond to groups (clusters) in the input (feature) space. Parameter ɛi is estimated locally, at each data point i from a corresponding narrow range of the number of nearest neighbors. Although more advanced clustering techniques are available, our method has the advantages of simplicity, better complexity and direct visualization of the clusters similarities in a two-dimensional space. Also, no prior information about the number of clusters is needed. We conducted our experiments on two and three dimensional, low and high-sized synthetic datasets as well as on an astronomical real-dataset. The results are verified graphically and analyzed using gap statistics over a range of neighbors to verify the robustness of the algorithm and the stability of the results. Combining the proposed algorithm with gap statistics provides a promising tool for solving clustering problems. An astronomical application is conducted for confirming the existence of 45 galaxy clusters around the X-ray positions of galaxy clusters in the redshift range [0.1..0.8]. We re-estimate the photometric redshifts of the identified galaxy clusters and obtain acceptable values compared to published spectroscopic redshifts with a 0.029 standard deviation of their differences.

  1. A family of small-world network models built by complete graph and iteration-function

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Yao, Bing

    2018-02-01

    Small-world networks are popular in real-life complex systems. In the past few decades, researchers presented amounts of small-world models, in which some are stochastic and the rest are deterministic. In comparison with random models, it is not only convenient but also interesting to study the topological properties of deterministic models in some fields, such as graph theory, theorem computer sciences and so on. As another concerned darling in current researches, community structure (modular topology) is referred to as an useful statistical parameter to uncover the operating functions of network. So, building and studying such models with community structure and small-world character will be a demanded task. Hence, in this article, we build a family of sparse network space N(t) which is different from those previous deterministic models. Even though, our models are established in the same way as them, iterative generation. By randomly connecting manner in each time step, every resulting member in N(t) has no absolutely self-similar feature widely shared in a large number of previous models. This makes our insight not into discussing a class certain model, but into investigating a group various ones spanning a network space. Somewhat surprisingly, our results prove all members of N(t) to possess some similar characters: (a) sparsity, (b) exponential-scale feature P(k) ∼α-k, and (c) small-world property. Here, we must stress a very screming, but intriguing, phenomenon that the difference of average path length (APL) between any two members in N(t) is quite small, which indicates this random connecting way among members has no great effect on APL. At the end of this article, as a new topological parameter correlated to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees on a representative member NB(t) of N(t) is studied in detail, then an exact analytical solution for its spanning trees entropy is also obtained.

  2. The effects of neuron morphology on graph theoretic measures of network connectivity: the analysis of a two-level statistical model.

    PubMed

    Aćimović, Jugoslava; Mäki-Marttunen, Tuomo; Linne, Marja-Leena

    2015-01-01

    We developed a two-level statistical model that addresses the question of how properties of neurite morphology shape the large-scale network connectivity. We adopted a low-dimensional statistical description of neurites. From the neurite model description we derived the expected number of synapses, node degree, and the effective radius, the maximal distance between two neurons expected to form at least one synapse. We related these quantities to the network connectivity described using standard measures from graph theory, such as motif counts, clustering coefficient, minimal path length, and small-world coefficient. These measures are used in a neuroscience context to study phenomena from synaptic connectivity in the small neuronal networks to large scale functional connectivity in the cortex. For these measures we provide analytical solutions that clearly relate different model properties. Neurites that sparsely cover space lead to a small effective radius. If the effective radius is small compared to the overall neuron size the obtained networks share similarities with the uniform random networks as each neuron connects to a small number of distant neurons. Large neurites with densely packed branches lead to a large effective radius. If this effective radius is large compared to the neuron size, the obtained networks have many local connections. In between these extremes, the networks maximize the variability of connection repertoires. The presented approach connects the properties of neuron morphology with large scale network properties without requiring heavy simulations with many model parameters. The two-steps procedure provides an easier interpretation of the role of each modeled parameter. The model is flexible and each of its components can be further expanded. We identified a range of model parameters that maximizes variability in network connectivity, the property that might affect network capacity to exhibit different dynamical regimes.

  3. Functional Brain Network Modularity Captures Inter- and Intra-Individual Variation in Working Memory Capacity

    PubMed Central

    Stevens, Alexander A.; Tappon, Sarah C.; Garg, Arun; Fair, Damien A.

    2012-01-01

    Background Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity. Methodology/Principal Findings Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability. Conclusions/Significance The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise. PMID:22276205

  4. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    -1paywcu Last update August 2014 View Graph Graph Download Data State & Alt Fuel Providers -kgi9ks Trend of S&FP AFV acquisitions by fleet type from 1992-2014 Last update August 2016 View Graph -2015 Last update August 2016 View Graph Graph Download Data Generated_thumb20160907-12999-119sgvk

  5. Aspects of Performance on Line Graph Description Tasks: Influenced by Graph Familiarity and Different Task Features

    ERIC Educational Resources Information Center

    Xi, Xiaoming

    2010-01-01

    Motivated by cognitive theories of graph comprehension, this study systematically manipulated characteristics of a line graph description task in a speaking test in ways to mitigate the influence of graph familiarity, a potential source of construct-irrelevant variance. It extends Xi (2005), which found that the differences in holistic scores on…

  6. Building Scalable Knowledge Graphs for Earth Science

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian

    2017-01-01

    Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.

  7. Global dynamics for switching systems and their extensions by linear differential equations

    NASA Astrophysics Data System (ADS)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-01

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  8. Global dynamics for switching systems and their extensions by linear differential equations.

    PubMed

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-15

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  9. Text categorization of biomedical data sets using graph kernels and a controlled vocabulary.

    PubMed

    Bleik, Said; Mishra, Meenakshi; Huan, Jun; Song, Min

    2013-01-01

    Recently, graph representations of text have been showing improved performance over conventional bag-of-words representations in text categorization applications. In this paper, we present a graph-based representation for biomedical articles and use graph kernels to classify those articles into high-level categories. In our representation, common biomedical concepts and semantic relationships are identified with the help of an existing ontology and are used to build a rich graph structure that provides a consistent feature set and preserves additional semantic information that could improve a classifier's performance. We attempt to classify the graphs using both a set-based graph kernel that is capable of dealing with the disconnected nature of the graphs and a simple linear kernel. Finally, we report the results comparing the classification performance of the kernel classifiers to common text-based classifiers.

  10. Supermanifolds from Feynman graphs

    NASA Astrophysics Data System (ADS)

    Marcolli, Matilde; Rej, Abhijnan

    2008-08-01

    We generalize the computation of Feynman integrals of log divergent graphs in terms of the Kirchhoff polynomial to the case of graphs with both fermionic and bosonic edges, to which we assign a set of ordinary and Grassmann variables. This procedure gives a computation of the Feynman integrals in terms of a period on a supermanifold, for graphs admitting a basis of the first homology satisfying a condition generalizing the log divergence in this context. The analog in this setting of the graph hypersurfaces is a graph supermanifold given by the divisor of zeros and poles of the Berezinian of a matrix associated with the graph, inside a superprojective space. We introduce a Grothendieck group for supermanifolds and identify the subgroup generated by the graph supermanifolds. This can be seen as a general procedure for constructing interesting classes of supermanifolds with associated periods.

  11. Function plot response: A scalable system for teaching kinematics graphs

    NASA Astrophysics Data System (ADS)

    Laverty, James; Kortemeyer, Gerd

    2012-08-01

    Understanding and interpreting graphs are essential skills in all sciences. While students are mostly proficient in plotting given functions and reading values off graphs, they frequently lack the ability to construct and interpret graphs in a meaningful way. Students can use graphs as representations of value pairs, but often fail to interpret them as the representation of functions, and mostly fail to use them as representations of physical reality. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. Initial experiences using the new problem type in an introductory physics course are reported.

  12. On Effective Graphic Communication of Health Inequality: Considerations for Health Policy Researchers.

    PubMed

    Asada, Yukiko; Abel, Hannah; Skedgel, Chris; Warner, Grace

    2017-12-01

    Policy Points: Effective graphs can be a powerful tool in communicating health inequality. The choice of graphs is often based on preferences and familiarity rather than science. According to the literature on graph perception, effective graphs allow human brains to decode visual cues easily. Dot charts are easier to decode than bar charts, and thus they are more effective. Dot charts are a flexible and versatile way to display information about health inequality. Consistent with the health risk communication literature, the captions accompanying health inequality graphs should provide a numerical, explicitly calculated description of health inequality, expressed in absolute and relative terms, from carefully thought-out perspectives. Graphs are an essential tool for communicating health inequality, a key health policy concern. The choice of graphs is often driven by personal preferences and familiarity. Our article is aimed at health policy researchers developing health inequality graphs for policy and scientific audiences and seeks to (1) raise awareness of the effective use of graphs in communicating health inequality; (2) advocate for a particular type of graph (ie, dot charts) to depict health inequality; and (3) suggest key considerations for the captions accompanying health inequality graphs. Using composite review methods, we selected the prevailing recommendations for improving graphs in scientific reporting. To find the origins of these recommendations, we reviewed the literature on graph perception and then applied what we learned to the context of health inequality. In addition, drawing from the numeracy literature in health risk communication, we examined numeric and verbal formats to explain health inequality graphs. Many disciplines offer commonsense recommendations for visually presenting quantitative data. The literature on graph perception, which defines effective graphs as those allowing the easy decoding of visual cues in human brains, shows that with their more accurate and easier-to-decode visual cues, dot charts are more effective than bar charts. Dot charts can flexibly present a large amount of information in limited space. They also can easily accommodate typical health inequality information to describe a health variable (eg, life expectancy) by an inequality domain (eg, income) with domain groups (eg, poor and rich) in a population (eg, Canada) over time periods (eg, 2010 and 2017). The numeracy literature suggests that a health inequality graph's caption should provide a numerical, explicitly calculated description of health inequality expressed in absolute and relative terms, from carefully thought-out perspectives. Given the ubiquity of graphs, the health inequality field should learn from the vibrant multidisciplinary literature how to construct effective graphic communications, especially by considering to use dot charts. © 2017 Milbank Memorial Fund.

  13. The Quantity and Quality of Scientific Graphs in Pharmaceutical Advertisements

    PubMed Central

    Cooper, Richelle J; Schriger, David L; Wallace, Roger C; Mikulich, Vladislav J; Wilkes, Michael S

    2003-01-01

    We characterized the quantity and quality of graphs in all pharmaceutical advertisements, in the 10 U.S. medical journals. Four hundred eighty-four unique advertisements (of 3,185 total advertisements) contained 836 glossy and 455 small-print pages. Forty-nine percent of glossy page area was nonscientific figures/images, 0.4% tables, and 1.6% scientific graphs (74 graphs in 64 advertisements). All 74 graphs were univariate displays, 4% were distributions, and 4% contained confidence intervals for summary measures. Extraneous decoration (66%) and redundancy (46%) were common. Fifty-eight percent of graphs presented an outcome relevant to the drug's indication. Numeric distortion, specifically prohibited by FDA regulations, occurred in 36% of graphs. PMID:12709097

  14. Molecular graph convolutions: moving beyond fingerprints

    NASA Astrophysics Data System (ADS)

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  15. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    acquisitions by fleet type from 1992-2014 Last update August 2016 View Graph Graph Download Data -m8i0e0 Trend of S&FP AFV acquisitions by fuel type from 1992-2015 Last update August 2016 View Graph transactions from 1997-2014 Last update August 2016 View Graph Graph Download Data Generated_thumb20160907

  16. PuLP/XtraPuLP : Partitioning Tools for Extreme-Scale Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slota, George M; Rajamanickam, Sivasankaran; Madduri, Kamesh

    2017-09-21

    PuLP/XtraPulp is software for partitioning graphs from several real-world problems. Graphs occur in several places in real world from road networks, social networks and scientific simulations. For efficient parallel processing these graphs have to be partitioned (split) with respect to metrics such as computation and communication costs. Our software allows such partitioning for massive graphs.

  17. Dynamics on Networks of Manifolds

    NASA Astrophysics Data System (ADS)

    DeVille, Lee; Lerman, Eugene

    2015-03-01

    We propose a precise definition of a continuous time dynamical system made up of interacting open subsystems. The interconnections of subsystems are coded by directed graphs. We prove that the appropriate maps of graphs called graph fibrations give rise to maps of dynamical systems. Consequently surjective graph fibrations give rise to invariant subsystems and injective graph fibrations give rise to projections of dynamical systems.

  18. Graph edit distance from spectral seriation.

    PubMed

    Robles-Kelly, Antonio; Hancock, Edwin R

    2005-03-01

    This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems.

  19. NEFI: Network Extraction From Images

    PubMed Central

    Dirnberger, M.; Kehl, T.; Neumann, A.

    2015-01-01

    Networks are amongst the central building blocks of many systems. Given a graph of a network, methods from graph theory enable a precise investigation of its properties. Software for the analysis of graphs is widely available and has been applied to study various types of networks. In some applications, graph acquisition is relatively simple. However, for many networks data collection relies on images where graph extraction requires domain-specific solutions. Here we introduce NEFI, a tool that extracts graphs from images of networks originating in various domains. Regarding previous work on graph extraction, theoretical results are fully accessible only to an expert audience and ready-to-use implementations for non-experts are rarely available or insufficiently documented. NEFI provides a novel platform allowing practitioners to easily extract graphs from images by combining basic tools from image processing, computer vision and graph theory. Thus, NEFI constitutes an alternative to tedious manual graph extraction and special purpose tools. We anticipate NEFI to enable time-efficient collection of large datasets. The analysis of these novel datasets may open up the possibility to gain new insights into the structure and function of various networks. NEFI is open source and available at http://nefi.mpi-inf.mpg.de. PMID:26521675

  20. Visual graph query formulation and exploration: a new perspective on information retrieval at the edge

    NASA Astrophysics Data System (ADS)

    Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng

    2016-05-01

    Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.

  1. Metric learning with spectral graph convolutions on brain connectivity networks.

    PubMed

    Ktena, Sofia Ira; Parisot, Sarah; Ferrante, Enzo; Rajchl, Martin; Lee, Matthew; Glocker, Ben; Rueckert, Daniel

    2018-04-01

    Graph representations are often used to model structured data at an individual or population level and have numerous applications in pattern recognition problems. In the field of neuroscience, where such representations are commonly used to model structural or functional connectivity between a set of brain regions, graphs have proven to be of great importance. This is mainly due to the capability of revealing patterns related to brain development and disease, which were previously unknown. Evaluating similarity between these brain connectivity networks in a manner that accounts for the graph structure and is tailored for a particular application is, however, non-trivial. Most existing methods fail to accommodate the graph structure, discarding information that could be beneficial for further classification or regression analyses based on these similarities. We propose to learn a graph similarity metric using a siamese graph convolutional neural network (s-GCN) in a supervised setting. The proposed framework takes into consideration the graph structure for the evaluation of similarity between a pair of graphs, by employing spectral graph convolutions that allow the generalisation of traditional convolutions to irregular graphs and operates in the graph spectral domain. We apply the proposed model on two datasets: the challenging ABIDE database, which comprises functional MRI data of 403 patients with autism spectrum disorder (ASD) and 468 healthy controls aggregated from multiple acquisition sites, and a set of 2500 subjects from UK Biobank. We demonstrate the performance of the method for the tasks of classification between matching and non-matching graphs, as well as individual subject classification and manifold learning, showing that it leads to significantly improved results compared to traditional methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  3. Proving relations between modular graph functions

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-12-01

    We consider modular graph functions that arise in the low energy expansion of the four graviton amplitude in type II string theory. The vertices of these graphs are the positions of insertions of vertex operators on the toroidal worldsheet, while the links are the scalar Green functions connecting the vertices. Graphs with four and five links satisfy several non-trivial relations, which have been proved recently. We prove these relations by using elementary properties of Green functions and the details of the graphs. We also prove a relation between modular graph functions with six links.

  4. Panconnectivity of Locally Connected K(1,3)-Free Graphs

    DTIC Science & Technology

    1989-10-15

    Graph Theory, 3 (1979) p. 351-356. 22 7. Cun-Quan Zhang, Cycles of Given Lengths in KI, 3-Free Graphs, Discrete Math ., (1988) to appear. I. f 2.f 𔃽. AA A V V / (S. ...Locally Connected and Hamiltonian-Connected Graphs, Isreal J. Math., 33 (1979) p. 5-8. 4. V. Chvatal and P. Erd6s, A Note on Hamiltonian Circuits, Discrete ... Math ., 2 (1972) p. 111-113. 5. S. V. Kanetkar and P. R. Rao, Connected and Locally 2- Connected, K1.3-Free Graphs are Panconnected, J. Graph Theory, 8

  5. A Graph Based Interface for Representing Volume Visualization Results

    NASA Technical Reports Server (NTRS)

    Patten, James M.; Ma, Kwan-Liu

    1998-01-01

    This paper discusses a graph based user interface for representing the results of the volume visualization process. As images are rendered, they are connected to other images in a graph based on their rendering parameters. The user can take advantage of the information in this graph to understand how certain rendering parameter changes affect a dataset, making the visualization process more efficient. Because the graph contains more information than is contained in an unstructured history of images, the image graph is also helpful for collaborative visualization and animation.

  6. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  7. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-03-30

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  8. Storage of sparse files using parallel log-structured file system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    A sparse file is stored without holes by storing a data portion of the sparse file using a parallel log-structured file system; and generating an index entry for the data portion, the index entry comprising a logical offset, physical offset and length of the data portion. The holes can be restored to the sparse file upon a reading of the sparse file. The data portion can be stored at a logical end of the sparse file. Additional storage efficiency can optionally be achieved by (i) detecting a write pattern for a plurality of the data portions and generating a singlemore » patterned index entry for the plurality of the patterned data portions; and/or (ii) storing the patterned index entries for a plurality of the sparse files in a single directory, wherein each entry in the single directory comprises an identifier of a corresponding sparse file.« less

  9. What energy functions can be minimized via graph cuts?

    PubMed

    Kolmogorov, Vladimir; Zabih, Ramin

    2004-02-01

    In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.

  10. Connectivity: Performance Portable Algorithms for graph connectivity v. 0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slota, George; Rajamanickam, Sivasankaran; Madduri, Kamesh

    Graphs occur in several places in real world from road networks, social networks and scientific simulations. Connectivity is a graph analysis software to graph connectivity in modern architectures like multicore CPUs, Xeon Phi and GPUs.

  11. Graph wavelet alignment kernels for drug virtual screening.

    PubMed

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2009-06-01

    In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.

  12. Flexibility in data interpretation: effects of representational format.

    PubMed

    Braithwaite, David W; Goldstone, Robert L

    2013-01-01

    Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design.

  13. Mathematical modeling of the malignancy of cancer using graph evolution.

    PubMed

    Gunduz-Demir, Cigdem

    2007-10-01

    We report a novel computational method based on graph evolution process to model the malignancy of brain cancer called glioma. In this work, we analyze the phases that a graph passes through during its evolution and demonstrate strong relation between the malignancy of cancer and the phase of its graph. From the photomicrographs of tissues, which are diagnosed as normal, low-grade cancerous and high-grade cancerous, we construct cell-graphs based on the locations of cells; we probabilistically generate an edge between every pair of cells depending on the Euclidean distance between them. For a cell-graph, we extract connectivity information including the properties of its connected components in order to analyze the phase of the cell-graph. Working with brain tissue samples surgically removed from 12 patients, we demonstrate that cell-graphs generated for different tissue types evolve differently and that they exhibit different phase properties, which distinguish a tissue type from another.

  14. Topological properties of the limited penetrable horizontal visibility graph family

    NASA Astrophysics Data System (ADS)

    Wang, Minggang; Vilela, André L. M.; Du, Ruijin; Zhao, Longfeng; Dong, Gaogao; Tian, Lixin; Stanley, H. Eugene

    2018-05-01

    The limited penetrable horizontal visibility graph algorithm was recently introduced to map time series in complex networks. In this work, we extend this algorithm to create a directed-limited penetrable horizontal visibility graph and an image-limited penetrable horizontal visibility graph. We define two algorithms and provide theoretical results on the topological properties of these graphs associated with different types of real-value series. We perform several numerical simulations to check the accuracy of our theoretical results. Finally, we present an application of the directed-limited penetrable horizontal visibility graph to measure real-value time series irreversibility and an application of the image-limited penetrable horizontal visibility graph that discriminates noise from chaos. We also propose a method to measure the systematic risk using the image-limited penetrable horizontal visibility graph, and the empirical results show the effectiveness of our proposed algorithms.

  15. Learning Sparse Feature Representations using Probabilistic Quadtrees and Deep Belief Nets

    DTIC Science & Technology

    2015-04-24

    Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Learning sparse feature representations is a useful instru- ment for solving an...novel framework for the classifi cation of handwritten digits that learns sparse representations using probabilistic quadtrees and Deep Belief Nets... Learning Sparse Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Report Title Learning sparse feature representations is a useful

  16. X-Graphs: Language and Algorithms for Heterogeneous Graph Streams

    DTIC Science & Technology

    2017-09-01

    INTRODUCTION 1 3 METHODS , ASUMPTIONS, AND PROCEDURES 2 Software Abstractions for Graph Analytic Applications 2 High performance Platforms for Graph Processing...data is stored in a distributed file system. 3 METHODS , ASUMPTIONS, AND PROCEDURES Software Abstractions for Graph Analytic Applications To...implementations of novel methods for networks analysis: several methods for detection of overlapping communities, personalized PageRank, node embeddings into a d

  17. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  18. Polysemy in the Domain-Specific Pedagogical Use of Graphs in Science Textbooks: The Case of an Electrocardiogram

    NASA Astrophysics Data System (ADS)

    van Eijck, Michiel; Goedhart, Martin J.; Ellermeijer, Ton

    2011-01-01

    Polysemy in graph-related practices is the phenomenon that a single graph can sustain different meanings assigned to it. Considerable research has been done on polysemy in graph-related practices in school science in which graphs are rather used as scientific tools. However, graphs in science textbooks are also used rather pedagogically to illustrate domain-specific textbook content and less empirical work has been done in this respect. The aim of this study is therefore to better understand polysemy in the domain-specific pedagogical use of graphs in science textbooks. From socio-cultural and cultural-historical perspectives, we perceive polysemy as irreducible to either the meaning-making (semiotic) resources provided by the graph or its readers who assign meaning to it. Departing from this framework, we simultaneously investigated: (a) the meanings 44 pre-university biology students assigned to the Cartesian plane of a graph that is commonly used as a pedagogical tool in Dutch high school biology textbooks (an electrocardiogram); (b) the semiotic resources provided by this graph; and (c) the educational practices of which it is supposedly a part according to the actions constituted by the textbooks that were to be conducted by students. Drawing on this case, we show polysemy in the pedagogical use of graphs in science textbooks. In turn, we show how this polysemy can be explained dialectically as the result of both the meaning-making resources provided by the textbooks and the graph-related practices in which students supposedly engaged by using their textbooks. The educational implications of these findings are discussed.

  19. LDRD final report :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, Randolph C.; McLendon, William Clarence,

    2013-01-01

    Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report amore » preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.« less

  20. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  1. Graph traversals, genes, and matroids: An efficient case of the travelling salesman problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusfield, D.; Stelling, P.; Wang, Lusheng

    1996-12-31

    In this paper the authors consider graph traversal problems that arise from a particular technology for DNA sequencing - sequencing by hybridization (SBH). They first explain the connection of the graph problems to SBH and then focus on the traversal problems. They describe a practical polynomial time solution to the Travelling Salesman Problem in a rich class of directed graphs (including edge weighted binary de Bruijn graphs), and provide a bounded-error approximation algorithm for the maximum weight TSP in a superset of those directed graphs. The authors also establish the existence of a matroid structure defined on the set ofmore » Euler and Hamilton paths in the restricted class of graphs. 8 refs., 5 figs.« less

  2. Molecular graph convolutions: moving beyond fingerprints

    PubMed Central

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-01-01

    Molecular “fingerprints” encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement. PMID:27558503

  3. Evolutionary dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Lieberman, Erez; Hauert, Christoph; Nowak, Martin A.

    2005-01-01

    Evolutionary dynamics have been traditionally studied in the context of homogeneous or spatially extended populations. Here we generalize population structure by arranging individuals on a graph. Each vertex represents an individual. The weighted edges denote reproductive rates which govern how often individuals place offspring into adjacent vertices. The homogeneous population, described by the Moran process, is the special case of a fully connected graph with evenly weighted edges. Spatial structures are described by graphs where vertices are connected with their nearest neighbours. We also explore evolution on random and scale-free networks. We determine the fixation probability of mutants, and characterize those graphs for which fixation behaviour is identical to that of a homogeneous population. Furthermore, some graphs act as suppressors and others as amplifiers of selection. It is even possible to find graphs that guarantee the fixation of any advantageous mutant. We also study frequency-dependent selection and show that the outcome of evolutionary games can depend entirely on the structure of the underlying graph. Evolutionary graph theory has many fascinating applications ranging from ecology to multi-cellular organization and economics.

  4. DELTACON: A Principled Massive-Graph Similarity Function with Attribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutra, Danai; Shah, Neil; Vogelstein, Joshua T.

    How much did a network change since yesterday? How different is the wiring between Bob's brain (a left-handed male) and Alice's brain (a right-handed female)? Graph similarity with known node correspondence, i.e. the detection of changes in the connectivity of graphs, arises in numerous settings. In this work, we formally state the axioms and desired properties of the graph similarity functions, and evaluate when state-of-the-art methods fail to detect crucial connectivity changes in graphs. We propose DeltaCon, a principled, intuitive, and scalable algorithm that assesses the similarity between two graphs on the same nodes (e.g. employees of a company, customersmore » of a mobile carrier). In our experiments on various synthetic and real graphs we showcase the advantages of our method over existing similarity measures. We also employ DeltaCon to real applications: (a) we classify people to groups of high and low creativity based on their brain connectivity graphs, and (b) do temporal anomaly detection in the who-emails-whom Enron graph.« less

  5. Graph Drawing Aesthetics-Created by Users, Not Algorithms.

    PubMed

    Purchase, H C; Pilcher, C; Plimmer, B

    2012-01-01

    Prior empirical work on layout aesthetics for graph drawing algorithms has concentrated on the interpretation of existing graph drawings. We report on experiments which focus on the creation and layout of graph drawings: participants were asked to draw graphs based on adjacency lists, and to lay them out "nicely." Two interaction methods were used for creating the drawings: a sketch interface which allows for easy, natural hand movements, and a formal point-and-click interface similar to a typical graph editing system. We find, in common with many other studies, that removing edge crossings is the most significant aesthetic, but also discover that aligning nodes and edges to an underlying grid is important. We observe that the aesthetics favored by participants during creation of a graph drawing are often not evident in the final product and that the participants did not make a clear distinction between the processes of creation and layout. Our results suggest that graph drawing systems should integrate automatic layout with the user's manual editing process, and provide facilities to support grid-based graph creation.

  6. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree.

    PubMed

    Nagoor Gani, A; Latha, S R

    2016-01-01

    A Hamiltonian cycle in a graph is a cycle that visits each node/vertex exactly once. A graph containing a Hamiltonian cycle is called a Hamiltonian graph. There have been several researches to find the number of Hamiltonian cycles of a Hamilton graph. As the number of vertices and edges grow, it becomes very difficult to keep track of all the different ways through which the vertices are connected. Hence, analysis of large graphs can be efficiently done with the assistance of a computer system that interprets graphs as matrices. And, of course, a good and well written algorithm will expedite the analysis even faster. The most convenient way to quickly test whether there is an edge between two vertices is to represent graphs using adjacent matrices. In this paper, a new algorithm is proposed to find fuzzy Hamiltonian cycle using adjacency matrix and the degree of the vertices of a fuzzy graph. A fuzzy graph structure is also modeled to illustrate the proposed algorithms with the selected air network of Indigo airlines.

  7. DELTACON: A Principled Massive-Graph Similarity Function with Attribution

    DOE PAGES

    Koutra, Danai; Shah, Neil; Vogelstein, Joshua T.; ...

    2014-05-22

    How much did a network change since yesterday? How different is the wiring between Bob's brain (a left-handed male) and Alice's brain (a right-handed female)? Graph similarity with known node correspondence, i.e. the detection of changes in the connectivity of graphs, arises in numerous settings. In this work, we formally state the axioms and desired properties of the graph similarity functions, and evaluate when state-of-the-art methods fail to detect crucial connectivity changes in graphs. We propose DeltaCon, a principled, intuitive, and scalable algorithm that assesses the similarity between two graphs on the same nodes (e.g. employees of a company, customersmore » of a mobile carrier). In our experiments on various synthetic and real graphs we showcase the advantages of our method over existing similarity measures. We also employ DeltaCon to real applications: (a) we classify people to groups of high and low creativity based on their brain connectivity graphs, and (b) do temporal anomaly detection in the who-emails-whom Enron graph.« less

  8. Measuring Graph Comprehension, Critique, and Construction in Science

    NASA Astrophysics Data System (ADS)

    Lai, Kevin; Cabrera, Julio; Vitale, Jonathan M.; Madhok, Jacquie; Tinker, Robert; Linn, Marcia C.

    2016-08-01

    Interpreting and creating graphs plays a critical role in scientific practice. The K-12 Next Generation Science Standards call for students to use graphs for scientific modeling, reasoning, and communication. To measure progress on this dimension, we need valid and reliable measures of graph understanding in science. In this research, we designed items to measure graph comprehension, critique, and construction and developed scoring rubrics based on the knowledge integration (KI) framework. We administered the items to over 460 middle school students. We found that the items formed a coherent scale and had good reliability using both item response theory and classical test theory. The KI scoring rubric showed that most students had difficulty linking graphs features to science concepts, especially when asked to critique or construct graphs. In addition, students with limited access to computers as well as those who speak a language other than English at home have less integrated understanding than others. These findings point to the need to increase the integration of graphing into science instruction. The results suggest directions for further research leading to comprehensive assessments of graph understanding.

  9. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  10. Variable is better than invariable: sparse VSS-NLMS algorithms with application to adaptive MIMO channel estimation.

    PubMed

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.

  11. Variable Is Better Than Invariable: Sparse VSS-NLMS Algorithms with Application to Adaptive MIMO Channel Estimation

    PubMed Central

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  12. RATGRAPH: Computer Graphing of Rational Functions.

    ERIC Educational Resources Information Center

    Minch, Bradley A.

    1987-01-01

    Presents an easy-to-use Applesoft BASIC program that graphs rational functions and any asymptotes that the functions might have. Discusses the nature of rational functions, graphing them manually, employing a computer to graph rational functions, and describes how the program works. (TW)

  13. Groupies in multitype random graphs.

    PubMed

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  14. GraQL: A Query Language for High-Performance Attributed Graph Databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Castellana, Vito G.; Morari, Alessandro

    Graph databases have gained increasing interest in the last few years due to the emergence of data sources which are not easily analyzable in traditional relational models or for which a graph data model is the natural representation. In order to understand the design and implementation choices for an attributed graph database backend and query language, we have started to design our infrastructure for attributed graph databases. In this paper, we describe the design considerations of our in-memory attributed graph database system with a particular focus on the data definition and query language components.

  15. Graph-based normalization and whitening for non-linear data analysis.

    PubMed

    Aaron, Catherine

    2006-01-01

    In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for "global normalization"; we then adapt these measures using a weighted graph to build a local normalization called "graph-based" normalization. Then we give details of the graph-based normalization algorithm and illustrate some results. In the second part we present a graph-based whitening algorithm built by analogy between the "global" and the "local" problem.

  16. The investigation of social networks based on multi-component random graphs

    NASA Astrophysics Data System (ADS)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  17. Bipartite graphs as models of population structures in evolutionary multiplayer games.

    PubMed

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, "games on graphs" study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner's dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner's dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures.

  18. Graphing evolutionary pattern and process: a history of techniques in archaeology and paleobiology.

    PubMed

    Lyman, R Lee

    2009-02-01

    Graphs displaying evolutionary patterns are common in paleontology and in United States archaeology. Both disciplines subscribed to a transformational theory of evolution and graphed evolution as a sequence of archetypes in the late nineteenth and early twentieth centuries. U.S. archaeologists in the second decade of the twentieth century, and paleontologists shortly thereafter, developed distinct graphic styles that reflected the Darwinian variational model of evolution. Paleobiologists adopted the view of a species as a set of phenotypically variant individuals and graphed those variations either as central tendencies or as histograms of frequencies of variants. Archaeologists presumed their artifact types reflected cultural norms of prehistoric artisans and the frequency of specimens in each type reflected human choice and type popularity. They graphed cultural evolution as shifts in frequencies of specimens representing each of several artifact types. Confusion of pattern and process is exemplified by a paleobiologist misinterpreting the process illustrated by an archaeological graph, and an archaeologist misinterpreting the process illustrated by a paleobiological graph. Each style of graph displays particular evolutionary patterns and implies particular evolutionary processes. Graphs of a multistratum collection of prehistoric mammal remains and a multistratum collection of artifacts demonstrate that many graph styles can be used for both kinds of collections.

  19. Horizontal visibility graphs generated by type-I intermittency

    NASA Astrophysics Data System (ADS)

    Núñez, Ángel M.; Luque, Bartolo; Lacasa, Lucas; Gómez, Jose Patricio; Robledo, Alberto

    2013-05-01

    The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associated HV graphs. We show how the alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.

  20. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    NASA Astrophysics Data System (ADS)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  1. Exact and approximate graph matching using random walks.

    PubMed

    Gori, Marco; Maggini, Marco; Sarti, Lorenzo

    2005-07-01

    In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.

  2. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia

    PubMed Central

    Yu, Qingbao; Erhardt, Erik B.; Sui, Jing; Du, Yuhui; He, Hao; Hjelm, Devon; Cetin, Mustafa S.; Rachakonda, Srinivas; Miller, Robyn L.; Pearlson, Godfrey; Calhoun, Vince D.

    2014-01-01

    Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia which may underscore the abnormal brain performance in this mental illness. PMID:25514514

  3. Some Applications of Graph Theory to Clustering

    ERIC Educational Resources Information Center

    Hubert, Lawrence J.

    1974-01-01

    The connection between graph theory and clustering is reviewed and extended. Major emphasis is on restating, in a graph-theoretic context, selected past work in clustering, and conversely, developing alternative strategies from several standard concepts used in graph theory per se. (Author/RC)

  4. Weights and topology: a study of the effects of graph construction on 3D image segmentation.

    PubMed

    Grady, Leo; Jolly, Marie-Pierre

    2008-01-01

    Graph-based algorithms have become increasingly popular for medical image segmentation. The fundamental process for each of these algorithms is to use the image content to generate a set of weights for the graph and then set conditions for an optimal partition of the graph with respect to these weights. To date, the heuristics used for generating the weighted graphs from image intensities have largely been ignored, while the primary focus of attention has been on the details of providing the partitioning conditions. In this paper we empirically study the effects of graph connectivity and weighting function on the quality of the segmentation results. To control for algorithm-specific effects, we employ both the Graph Cuts and Random Walker algorithms in our experiments.

  5. Critical Behavior of the Annealed Ising Model on Random Regular Graphs

    NASA Astrophysics Data System (ADS)

    Can, Van Hao

    2017-11-01

    In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.

  6. Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution

    NASA Astrophysics Data System (ADS)

    Staples, G. Stacey

    2017-12-01

    Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.

  7. Enabling Graph Appliance for Genome Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rina; Graves, Jeffrey A; Lee, Sangkeun

    2015-01-01

    In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to storemore » and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.« less

  8. Temporal Representation in Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  9. Sparse Reconstruction Techniques in MRI: Methods, Applications, and Challenges to Clinical Adoption

    PubMed Central

    Yang, Alice Chieh-Yu; Kretzler, Madison; Sudarski, Sonja; Gulani, Vikas; Seiberlich, Nicole

    2016-01-01

    The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance Imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be employed to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR imaging, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold-standards, are discussed. PMID:27003227

  10. Distributed performance counters

    DOEpatents

    Davis, Kristan D; Evans, Kahn C; Gara, Alan; Satterfield, David L

    2013-11-26

    A plurality of first performance counter modules is coupled to a plurality of processing cores. The plurality of first performance counter modules is operable to collect performance data associated with the plurality of processing cores respectively. A plurality of second performance counter modules are coupled to a plurality of L2 cache units, and the plurality of second performance counter modules are operable to collect performance data associated with the plurality of L2 cache units respectively. A central performance counter module may be operable to coordinate counter data from the plurality of first performance counter modules and the plurality of second performance modules, the a central performance counter module, the plurality of first performance counter modules, and the plurality of second performance counter modules connected by a daisy chain connection.

  11. Hierarchical graphs for rule-based modeling of biochemical systems

    PubMed Central

    2011-01-01

    Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models, such as the BioNetGen language (BNGL). Thus, the proposed use of hierarchical graphs should promote clarity and better understanding of rule-based models. PMID:21288338

  12. Process synthesis involving multi-period operations by the P-graph framework

    EPA Science Inventory

    The P-graph (process graph) framework is an effective tool for process-network synthesis (PNS). Here we extended it to multi-period operations. The efficacy of the P-graph methodology has been demonstrated by numerous applications. The unambiguous representation of processes and ...

  13. On a programming language for graph algorithms

    NASA Technical Reports Server (NTRS)

    Rheinboldt, W. C.; Basili, V. R.; Mesztenyi, C. K.

    1971-01-01

    An algorithmic language, GRAAL, is presented for describing and implementing graph algorithms of the type primarily arising in applications. The language is based on a set algebraic model of graph theory which defines the graph structure in terms of morphisms between certain set algebraic structures over the node set and arc set. GRAAL is modular in the sense that the user specifies which of these mappings are available with any graph. This allows flexibility in the selection of the storage representation for different graph structures. In line with its set theoretic foundation, the language introduces sets as a basic data type and provides for the efficient execution of all set and graph operators. At present, GRAAL is defined as an extension of ALGOL 60 (revised) and its formal description is given as a supplement to the syntactic and semantic definition of ALGOL. Several typical graph algorithms are written in GRAAL to illustrate various features of the language and to show its applicability.

  14. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirdt, J.A.; Brown, D.A., E-mail: dbrown@bnl.gov

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of socialmore » networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.« less

  15. Sketch Matching on Topology Product Graph.

    PubMed

    Liang, Shuang; Luo, Jun; Liu, Wenyin; Wei, Yichen

    2015-08-01

    Sketch matching is the fundamental problem in sketch based interfaces. After years of study, it remains challenging when there exists large irregularity and variations in the hand drawn sketch shapes. While most existing works exploit topology relations and graph representations for this problem, they are usually limited by the coarse topology exploration and heuristic (thus suboptimal) similarity metrics between graphs. We present a new sketch matching method with two novel contributions. We introduce a comprehensive definition of topology relations, which results in a rich and informative graph representation of sketches. For graph matching, we propose topology product graph that retains the full correspondence for matching two graphs. Based on it, we derive an intuitive sketch similarity metric whose exact solution is easy to compute. In addition, the graph representation and new metric naturally support partial matching, an important practical problem that received less attention in the literature. Extensive experimental results on a real challenging dataset and the superior performance of our method show that it outperforms the state-of-the-art.

  16. Flexibility in data interpretation: effects of representational format

    PubMed Central

    Braithwaite, David W.; Goldstone, Robert L.

    2013-01-01

    Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design. PMID:24427145

  17. Composing Data Parallel Code for a SPARQL Graph Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellana, Vito G.; Tumeo, Antonino; Villa, Oreste

    Big data analytics process large amount of data to extract knowledge from them. Semantic databases are big data applications that adopt the Resource Description Framework (RDF) to structure metadata through a graph-based representation. The graph based representation provides several benefits, such as the possibility to perform in memory processing with large amounts of parallelism. SPARQL is a language used to perform queries on RDF-structured data through graph matching. In this paper we present a tool that automatically translates SPARQL queries to parallel graph crawling and graph matching operations. The tool also supports complex SPARQL constructs, which requires more than basicmore » graph matching for their implementation. The tool generates parallel code annotated with OpenMP pragmas for x86 Shared-memory Multiprocessors (SMPs). With respect to commercial database systems such as Virtuoso, our approach reduces memory occupation due to join operations and provides higher performance. We show the scaling of the automatically generated graph-matching code on a 48-core SMP.« less

  18. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.

    PubMed

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-15

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  19. Resistance Distances and Kirchhoff Index in Generalised Join Graphs

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan

    2017-03-01

    The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of {G'_i}s and H. Then, we show that computing resistance distances and Kirchhoff index of G can be decomposed into simpler ones. Finally, we obtain explicit formulae for resistance distances and Kirchhoff index of G when {G'_i}s and H take some special graphs, such as the complete graph, the path, and the cycle.

  20. Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupavskii, A B; Raigorodskii, A M

    2013-10-31

    We investigate in detail some properties of distance graphs constructed on the integer lattice. Such graphs find wide applications in problems of combinatorial geometry, in particular, such graphs were employed to answer Borsuk's question in the negative and to obtain exponential estimates for the chromatic number of the space. This work is devoted to the study of the number of cliques and the chromatic number of such graphs under certain conditions. Constructions of sequences of distance graphs are given, in which the graphs have unit length edges and contain a large number of triangles that lie on a sphere of radius 1/√3more » (which is the minimum possible). At the same time, the chromatic numbers of the graphs depend exponentially on their dimension. The results of this work strengthen and generalize some of the results obtained in a series of papers devoted to related issues. Bibliography: 29 titles.« less

  1. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    NASA Astrophysics Data System (ADS)

    Hirdt, J. A.; Brown, D. A.

    2016-01-01

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  2. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-01

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  3. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fully Decomposable Split Graphs

    NASA Astrophysics Data System (ADS)

    Broersma, Hajo; Kratsch, Dieter; Woeginger, Gerhard J.

    We discuss various questions around partitioning a split graph into connected parts. Our main result is a polynomial time algorithm that decides whether a given split graph is fully decomposable, i.e., whether it can be partitioned into connected parts of order α 1,α 2,...,α k for every α 1,α 2,...,α k summing up to the order of the graph. In contrast, we show that the decision problem whether a given split graph can be partitioned into connected parts of order α 1,α 2,...,α k for a given partition α 1,α 2,...,α k of the order of the graph, is NP-hard.

  5. Graph Coarsening for Path Finding in Cybersecurity Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh

    2013-01-01

    n the pass-the-hash attack, hackers repeatedly steal password hashes and move through a computer network with the goal of reaching a computer with high level administrative privileges. In this paper we apply graph coarsening in network graphs for the purpose of detecting hackers using this attack or assessing the risk level of the network's current state. We repeatedly take graph minors, which preserve the existence of paths in the graph, and take powers of the adjacency matrix to count the paths. This allows us to detect the existence of paths as well as find paths that have high risk ofmore » being used by adversaries.« less

  6. The Container Problem in Bubble-Sort Graphs

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuto; Kaneko, Keiichi

    Bubble-sort graphs are variants of Cayley graphs. A bubble-sort graph is suitable as a topology for massively parallel systems because of its simple and regular structure. Therefore, in this study, we focus on n-bubble-sort graphs and propose an algorithm to obtain n-1 disjoint paths between two arbitrary nodes in time bounded by a polynomial in n, the degree of the graph plus one. We estimate the time complexity of the algorithm and the sum of the path lengths after proving the correctness of the algorithm. In addition, we report the results of computer experiments evaluating the average performance of the algorithm.

  7. Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.

    PubMed

    Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri

    2017-08-18

    Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.

  8. Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization.

    PubMed

    Itoh, Takayuki; Klein, Karsten

    2015-01-01

    Many graph-drawing methods apply node-clustering techniques based on the density of edges to find tightly connected subgraphs and then hierarchically visualize the clustered graphs. However, users may want to focus on important nodes and their connections to groups of other nodes for some applications. For this purpose, it is effective to separately visualize the key nodes detected based on adjacency and attributes of the nodes. This article presents a graph visualization technique for attribute-embedded graphs that applies a graph-clustering algorithm that accounts for the combination of connections and attributes. The graph clustering step divides the nodes according to the commonality of connected nodes and similarity of feature value vectors. It then calculates the distances between arbitrary pairs of clusters according to the number of connecting edges and the similarity of feature value vectors and finally places the clusters based on the distances. Consequently, the technique separates important nodes that have connections to multiple large clusters and improves the visibility of such nodes' connections. To test this technique, this article presents examples with human relationship graph datasets, including a coauthorship and Twitter communication network dataset.

  9. Output-Sensitive Construction of Reeb Graphs.

    PubMed

    Doraiswamy, H; Natarajan, V

    2012-01-01

    The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.

  10. Learning graph matching.

    PubMed

    Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J

    2009-06-01

    As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.

  11. Scaling Semantic Graph Databases in Size and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morari, Alessandro; Castellana, Vito G.; Villa, Oreste

    In this paper we present SGEM, a full software system for accelerating large-scale semantic graph databases on commodity clusters. Unlike current approaches, SGEM addresses semantic graph databases by only employing graph methods at all the levels of the stack. On one hand, this allows exploiting the space efficiency of graph data structures and the inherent parallelism of graph algorithms. These features adapt well to the increasing system memory and core counts of modern commodity clusters. On the other hand, however, these systems are optimized for regular computation and batched data transfers, while graph methods usually are irregular and generate fine-grainedmore » data accesses with poor spatial and temporal locality. Our framework comprises a SPARQL to data parallel C compiler, a library of parallel graph methods and a custom, multithreaded runtime system. We introduce our stack, motivate its advantages with respect to other solutions and show how we solved the challenges posed by irregular behaviors. We present the result of our software stack on the Berlin SPARQL benchmarks with datasets up to 10 billion triples (a triple corresponds to a graph edge), demonstrating scaling in dataset size and in performance as more nodes are added to the cluster.« less

  12. K-theory of locally finite graph C∗-algebras

    NASA Astrophysics Data System (ADS)

    Iyudu, Natalia

    2013-09-01

    We calculate the K-theory of the Cuntz-Krieger algebra OE associated with an infinite, locally finite graph, via the Bass-Hashimoto operator. The formulae we get express the Grothendieck group and the Whitehead group in purely graph theoretic terms. We consider the category of finite (black-and-white, bi-directed) subgraphs with certain graph homomorphisms and construct a continuous functor to abelian groups. In this category K0 is an inductive limit of K-groups of finite graphs, which were calculated in Cornelissen et al. (2008) [3]. In the case of an infinite graph with the finite Betti number we obtain the formula for the Grothendieck group K0(OE)=Z, where β(E) is the first Betti number and γ(E) is the valency number of the graph E. We note that in the infinite case the torsion part of K0, which is present in the case of a finite graph, vanishes. The Whitehead group depends only on the first Betti number: K1(OE)=Z. These allow us to provide a counterexample to the fact, which holds for finite graphs, that K1(OE) is the torsion free part of K0(OE).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagberg, Aric; Swart, Pieter; S Chult, Daniel

    NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distributionmore » and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.« less

  14. Exclusivity structures and graph representatives of local complementation orbits

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; Parker, Matthew G.; Scarpa, Giannicola; Severini, Simone

    2013-07-01

    We describe a construction that maps any connected graph G on three or more vertices into a larger graph, H(G), whose independence number is strictly smaller than its Lovász number which is equal to its fractional packing number. The vertices of H(G) represent all possible events consistent with the stabilizer group of the graph state associated with G, and exclusive events are adjacent. Mathematically, the graph H(G) corresponds to the orbit of G under local complementation. Physically, the construction translates into graph-theoretic terms the connection between a graph state and a Bell inequality maximally violated by quantum mechanics. In the context of zero-error information theory, the construction suggests a protocol achieving the maximum rate of entanglement-assisted capacity, a quantum mechanical analogue of the Shannon capacity, for each H(G). The violation of the Bell inequality is expressed by the one-shot version of this capacity being strictly larger than the independence number. Finally, given the correspondence between graphs and exclusivity structures, we are able to compute the independence number for certain infinite families of graphs with the use of quantum non-locality, therefore highlighting an application of quantum theory in the proof of a purely combinatorial statement.

  15. Multi-A Graph Patrolling and Partitioning

    NASA Astrophysics Data System (ADS)

    Elor, Y.; Bruckstein, A. M.

    2012-12-01

    We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.

  16. Comparing Algorithms for Graph Isomorphism Using Discrete- and Continuous-Time Quantum Random Walks

    DOE PAGES

    Rudinger, Kenneth; Gamble, John King; Bach, Eric; ...

    2013-07-01

    Berry and Wang [Phys. Rev. A 83, 042317 (2011)] show numerically that a discrete-time quan- tum random walk of two noninteracting particles is able to distinguish some non-isomorphic strongly regular graphs from the same family. Here we analytically demonstrate how it is possible for these walks to distinguish such graphs, while continuous-time quantum walks of two noninteracting parti- cles cannot. We show analytically and numerically that even single-particle discrete-time quantum random walks can distinguish some strongly regular graphs, though not as many as two-particle noninteracting discrete-time walks. Additionally, we demonstrate how, given the same quantum random walk, subtle di erencesmore » in the graph certi cate construction algorithm can nontrivially im- pact the walk's distinguishing power. We also show that no continuous-time walk of a xed number of particles can distinguish all strongly regular graphs when used in conjunction with any of the graph certi cates we consider. We extend this constraint to discrete-time walks of xed numbers of noninteracting particles for one kind of graph certi cate; it remains an open question as to whether or not this constraint applies to the other graph certi cates we consider.« less

  17. Analyzing locomotion synthesis with feature-based motion graphs.

    PubMed

    Mahmudi, Mentar; Kallmann, Marcelo

    2013-05-01

    We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.

  18. Edge connectivity and the spectral gap of combinatorial and quantum graphs

    NASA Astrophysics Data System (ADS)

    Berkolaiko, Gregory; Kennedy, James B.; Kurasov, Pavel; Mugnolo, Delio

    2017-09-01

    We derive a number of upper and lower bounds for the first nontrivial eigenvalue of Laplacians on combinatorial and quantum graph in terms of the edge connectivity, i.e. the minimal number of edges which need to be removed to make the graph disconnected. On combinatorial graphs, one of the bounds corresponds to a well-known inequality of Fiedler, of which we give a new variational proof. On quantum graphs, the corresponding bound generalizes a recent result of Band and Lévy. All proofs are general enough to yield corresponding estimates for the p-Laplacian and allow us to identify the minimizers. Based on the Betti number of the graph, we also derive upper and lower bounds on all eigenvalues which are ‘asymptotically correct’, i.e. agree with the Weyl asymptotics for the eigenvalues of the quantum graph. In particular, the lower bounds improve the bounds of Friedlander on any given graph for all but finitely many eigenvalues, while the upper bounds improve recent results of Ariturk. Our estimates are also used to derive bounds on the eigenvalues of the normalized Laplacian matrix that improve known bounds of spectral graph theory.

  19. Massive Scale Cyber Traffic Analysis: A Driver for Graph Database Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Choudhury, S.; Haglin, David J.

    2013-06-19

    We describe the significance and prominence of network traffic analysis (TA) as a graph- and network-theoretical domain for advancing research in graph database systems. TA involves observing and analyzing the connections between clients, servers, hosts, and actors within IP networks, both at particular times and as extended over times. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. IPFLOW databases are routinely interrogated statistically and visualized for suspicious patterns. But the ability to cast IPFLOW data as a massive graph and query itmore » interactively, in order to e.g.\\ identify connectivity patterns, is less well advanced, due to a number of factors including scaling, and their hybrid nature combining graph connectivity and quantitative attributes. In this paper, we outline requirements and opportunities for graph-structured IPFLOW analytics based on our experience with real IPFLOW databases. Specifically, we describe real use cases from the security domain, cast them as graph patterns, show how to express them in two graph-oriented query languages SPARQL and Datalog, and use these examples to motivate a new class of "hybrid" graph-relational systems.« less

  20. MISAGA: An Algorithm for Mining Interesting Subgraphs in Attributed Graphs.

    PubMed

    He, Tiantian; Chan, Keith C C

    2018-05-01

    An attributed graph contains vertices that are associated with a set of attribute values. Mining clusters or communities, which are interesting subgraphs in the attributed graph is one of the most important tasks of graph analytics. Many problems can be defined as the mining of interesting subgraphs in attributed graphs. Algorithms that discover subgraphs based on predefined topologies cannot be used to tackle these problems. To discover interesting subgraphs in the attributed graph, we propose an algorithm called mining interesting subgraphs in attributed graph algorithm (MISAGA). MISAGA performs its tasks by first using a probabilistic measure to determine whether the strength of association between a pair of attribute values is strong enough to be interesting. Given the interesting pairs of attribute values, then the degree of association is computed for each pair of vertices using an information theoretic measure. Based on the edge structure and degree of association between each pair of vertices, MISAGA identifies interesting subgraphs by formulating it as a constrained optimization problem and solves it by identifying the optimal affiliation of subgraphs for the vertices in the attributed graph. MISAGA has been tested with several large-sized real graphs and is found to be potentially very useful for various applications.

  1. Using graph approach for managing connectivity in integrative landscape modelling

    NASA Astrophysics Data System (ADS)

    Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger

    2013-04-01

    In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). OpenFLUID-landr library has been developed in order i) to be used with no GIS expert skills needed (common gis formats can be read and simplified spatial management is provided), ii) to easily develop adapted rules of landscape discretization and graph creation to follow spatialized model requirements and iii) to allow model developers to manage dynamic and complex spatial topology. Graph management in OpenFLUID are shown with i) examples of hydrological modelizations on complex farmed landscapes and ii) the new implementation of Geo-MHYDAS tool based on the OpenFLUID-landr library, which allows to discretize a landscape and create graph structure for the MHYDAS model requirements.

  2. Sparse gammatone signal model optimized for English speech does not match the human auditory filters.

    PubMed

    Strahl, Stefan; Mertins, Alfred

    2008-07-18

    Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.

  3. My Bar Graph Tells a Story

    ERIC Educational Resources Information Center

    McMillen, Sue; McMillen, Beth

    2010-01-01

    Connecting stories to qualitative coordinate graphs has been suggested as an effective instructional strategy. Even students who are able to "create" bar graphs may struggle to correctly "interpret" them. Giving children opportunities to work with qualitative graphs can help them develop the skills to interpret, describe, and compare information…

  4. Classification of multispectral or hyperspectral satellite imagery using clustering of sparse approximations on sparse representations in learned dictionaries obtained using efficient convolutional sparse coding

    DOEpatents

    Moody, Daniela; Wohlberg, Brendt

    2018-01-02

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  5. On the 2-Extendability of Planar Graphs

    DTIC Science & Technology

    1989-01-01

    connectivity for n-extend- ability of regular graphs, 1988, submitted. [6] L. Lov~isz and M.D. Plummer, Matching Theory, Ann. Discrete Math . 29, North...Holland, Amsterdam, 1986. [7] M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. [8] M.D. Plummer, A theorem on matchings in the...plane, Graph Theory in Memory of G.A. Dirac, Ann. Discrete Math . 41, North-Holland, Amsterdam, 1989, 347-354. [9] C. Thomassen, Girth in graphs, J

  6. Claw-Free Maximal Planar Graphs

    DTIC Science & Technology

    1989-01-01

    1976, 212-223. 110] M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. 1111 , A theorem on matchings in the plane, Graph Theory...in Memory of G.A. Dirac, Ann. Discrete Math . 41, North-Holland, Amsterdam, 1989, 347-354. 1121 N. Sbihi, Algorithme de recherche d’un stable de...cardinalitA maximum dans un graphe sans 6toile, Discrete Math . 29, 1980, 53-76. 1131 D. Sumner, On Tutte’s factorization theorem, Graphs and Combinatorics

  7. The Kirchhoff Index of Quasi-Tree Graphs

    NASA Astrophysics Data System (ADS)

    Xu, Kexiang; Liu, Hongshuang; Das, Kinkar Ch.

    2015-03-01

    Resistance distance was introduced by Klein and Randić as a generalisation of the classical distance. The Kirchhoff index Kf(G) of a graph G is the sum of resistance distances between all unordered pairs of vertices. In this article we characterise the extremal graphs with the maximal Kirchhoff index among all non-trivial quasi-tree graphs of order n. Moreover, we obtain a lower bound on the Kirchhoff index for all non-trivial quasi-tree graphs of order n.

  8. GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith

    2014-08-25

    Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines themore » scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.« less

  9. Evolutionary Games of Multiplayer Cooperation on Graphs

    PubMed Central

    Arranz, Jordi; Traulsen, Arne

    2016-01-01

    There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering. PMID:27513946

  10. Inferring ontology graph structures using OWL reasoning.

    PubMed

    Rodríguez-García, Miguel Ángel; Hoehndorf, Robert

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  11. Reproducibility of graph metrics of human brain structural networks.

    PubMed

    Duda, Jeffrey T; Cook, Philip A; Gee, James C

    2014-01-01

    Recent interest in human brain connectivity has led to the application of graph theoretical analysis to human brain structural networks, in particular white matter connectivity inferred from diffusion imaging and fiber tractography. While these methods have been used to study a variety of patient populations, there has been less examination of the reproducibility of these methods. A number of tractography algorithms exist and many of these are known to be sensitive to user-selected parameters. The methods used to derive a connectivity matrix from fiber tractography output may also influence the resulting graph metrics. Here we examine how these algorithm and parameter choices influence the reproducibility of proposed graph metrics on a publicly available test-retest dataset consisting of 21 healthy adults. The dice coefficient is used to examine topological similarity of constant density subgraphs both within and between subjects. Seven graph metrics are examined here: mean clustering coefficient, characteristic path length, largest connected component size, assortativity, global efficiency, local efficiency, and rich club coefficient. The reproducibility of these network summary measures is examined using the intraclass correlation coefficient (ICC). Graph curves are created by treating the graph metrics as functions of a parameter such as graph density. Functional data analysis techniques are used to examine differences in graph measures that result from the choice of fiber tracking algorithm. The graph metrics consistently showed good levels of reproducibility as measured with ICC, with the exception of some instability at low graph density levels. The global and local efficiency measures were the most robust to the choice of fiber tracking algorithm.

  12. Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology.

    PubMed

    Angra, Aakanksha; Gardner, Stephanie M

    2017-01-01

    Undergraduate biology education reform aims to engage students in scientific practices such as experimental design, experimentation, and data analysis and communication. Graphs are ubiquitous in the biological sciences, and creating effective graphical representations involves quantitative and disciplinary concepts and skills. Past studies document student difficulties with graphing within the contexts of classroom or national assessments without evaluating student reasoning. Operating under the metarepresentational competence framework, we conducted think-aloud interviews to reveal differences in reasoning and graph quality between undergraduate biology students, graduate students, and professors in a pen-and-paper graphing task. All professors planned and thought about data before graph construction. When reflecting on their graphs, professors and graduate students focused on the function of graphs and experimental design, while most undergraduate students relied on intuition and data provided in the task. Most undergraduate students meticulously plotted all data with scaled axes, while professors and some graduate students transformed the data, aligned the graph with the research question, and reflected on statistics and sample size. Differences in reasoning and approaches taken in graph choice and construction corroborate and extend previous findings and provide rich targets for undergraduate and graduate instruction. © 2017 A. Angra and S. M. Gardner. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. On the strong metric dimension of generalized butterfly graph, starbarbell graph, and {C}_{m}\\odot {P}_{n} graph

    NASA Astrophysics Data System (ADS)

    Yunia Mayasari, Ratih; Atmojo Kusmayadi, Tri

    2018-04-01

    Let G be a connected graph with vertex set V(G) and edge set E(G). For every pair of vertices u,v\\in V(G), the interval I[u, v] between u and v to be the collection of all vertices that belong to some shortest u ‑ v path. A vertex s\\in V(G) strongly resolves two vertices u and v if u belongs to a shortest v ‑ s path or v belongs to a shortest u ‑ s path. A vertex set S of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of S. The strong metric basis of G is a strong resolving set with minimal cardinality. The strong metric dimension sdim(G) of a graph G is defined as the cardinality of strong metric basis. In this paper we determine the strong metric dimension of a generalized butterfly graph, starbarbell graph, and {C}mȯ {P}n graph. We obtain the strong metric dimension of generalized butterfly graph is sdim(BFn ) = 2n ‑ 2. The strong metric dimension of starbarbell graph is sdim(S{B}{m1,{m}2,\\ldots,{m}n})={\\sum }i=1n({m}i-1)-1. The strong metric dimension of {C}mȯ {P}n graph are sdim({C}mȯ {P}n)=2m-1 for m > 3 and n = 2, and sdim({C}mȯ {P}n)=2m-2 for m > 3 and n > 2.

  14. So Many Graphs, So Little Time

    ERIC Educational Resources Information Center

    Wall, Jennifer J.; Benson, Christine C.

    2009-01-01

    Interpreting graphs found in various content areas is an important skill for students, especially in light of high-stakes testing. In addition, reading and understanding graphs is an important part of numeracy, or numeric literacy, a skill necessary for informed citizenry. This article explores the different categories of graphs, provides…

  15. On Haagerup's List of Potential Principal Graphs of Subfactors

    NASA Astrophysics Data System (ADS)

    Asaeda, Marta; Yasuda, Seidai

    2009-03-01

    We show that any graph, in the sequence given by Haagerup in 1991 as that of candidates of principal graphs of subfactors, is not realized as a principal graph except for the smallest two. This settles the remaining case of a previous work of the first author.

  16. Around the Sun in a Graphing Calculator.

    ERIC Educational Resources Information Center

    Demana, Franklin; Waits, Bert K.

    1989-01-01

    Discusses the use of graphing calculators for polar and parametric equations. Presents eight lines of the program for the graph of a parametric equation and 11 lines of the program for a graph of a polar equation. Illustrates the application of the programs for planetary motion and free-fall motion. (YP)

  17. Designing Better Graphs by Including Distributional Information and Integrating Words, Numbers, and Images

    ERIC Educational Resources Information Center

    Lane, David M.; Sandor, Aniko

    2009-01-01

    Statistical graphs are commonly used in scientific publications. Unfortunately, graphs in psychology journals rarely portray distributional information beyond central tendency, and few graphs portray inferential statistics. Moreover, those that do portray inferential information generally do not portray it in a way that is useful for interpreting…

  18. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is...

  19. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is...

  20. A Note on Hamiltonian Graphs

    ERIC Educational Resources Information Center

    Skurnick, Ronald; Davi, Charles; Skurnick, Mia

    2005-01-01

    Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…

Top