Sample records for sparse linear discriminant

  1. Orthogonal sparse linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Liu, Zhonghua; Liu, Gang; Pu, Jiexin; Wang, Xiaohong; Wang, Haijun

    2018-03-01

    Linear discriminant analysis (LDA) is a linear feature extraction approach, and it has received much attention. On the basis of LDA, researchers have done a lot of research work on it, and many variant versions of LDA were proposed. However, the inherent problem of LDA cannot be solved very well by the variant methods. The major disadvantages of the classical LDA are as follows. First, it is sensitive to outliers and noises. Second, only the global discriminant structure is preserved, while the local discriminant information is ignored. In this paper, we present a new orthogonal sparse linear discriminant analysis (OSLDA) algorithm. The k nearest neighbour graph is first constructed to preserve the locality discriminant information of sample points. Then, L2,1-norm constraint on the projection matrix is used to act as loss function, which can make the proposed method robust to outliers in data points. Extensive experiments have been performed on several standard public image databases, and the experiment results demonstrate the performance of the proposed OSLDA algorithm.

  2. Label consistent K-SVD: learning a discriminative dictionary for recognition.

    PubMed

    Jiang, Zhuolin; Lin, Zhe; Davis, Larry S

    2013-11-01

    A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.

  3. Discriminative Bayesian Dictionary Learning for Classification.

    PubMed

    Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal

    2016-12-01

    We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.

  4. Multiple Kernel Sparse Representation based Orthogonal Discriminative Projection and Its Cost-Sensitive Extension.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen

    2016-07-07

    Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.

  5. Sparse Modeling of Human Actions from Motion Imagery

    DTIC Science & Technology

    2011-09-02

    is here developed. Spatio-temporal features that char- acterize local changes in the image are rst extracted. This is followed by the learning of a...video comes from the optimal sparse linear com- bination of the learned basis vectors (action primitives) representing the actions. A low...computational cost deep-layer model learning the inter- class correlations of the data is added for increasing discriminative power. In spite of its simplicity

  6. Abnormality detection of mammograms by discriminative dictionary learning on DSIFT descriptors.

    PubMed

    Tavakoli, Nasrin; Karimi, Maryam; Nejati, Mansour; Karimi, Nader; Reza Soroushmehr, S M; Samavi, Shadrokh; Najarian, Kayvan

    2017-07-01

    Detection and classification of breast lesions using mammographic images are one of the most difficult studies in medical image processing. A number of learning and non-learning methods have been proposed for detecting and classifying these lesions. However, the accuracy of the detection/classification still needs improvement. In this paper we propose a powerful classification method based on sparse learning to diagnose breast cancer in mammograms. For this purpose, a supervised discriminative dictionary learning approach is applied on dense scale invariant feature transform (DSIFT) features. A linear classifier is also simultaneously learned with the dictionary which can effectively classify the sparse representations. Our experimental results show the superior performance of our method compared to existing approaches.

  7. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    PubMed Central

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  8. Deep and Structured Robust Information Theoretic Learning for Image Analysis.

    PubMed

    Deng, Yue; Bao, Feng; Deng, Xuesong; Wang, Ruiping; Kong, Youyong; Dai, Qionghai

    2016-07-07

    This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e. missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we respectively discuss three types of the RIT implementations with linear subspace embedding, deep transformation and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark datasets. The structured sparse RIT is further applied to a medical image analysis task for brain MRI segmentation that allows group-level feature selections on the brain tissues.

  9. Sparse network-based models for patient classification using fMRI

    PubMed Central

    Rosa, Maria J.; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J.; Garrido, Marta I.; Shawe-Taylor, John; Mourao-Miranda, Janaina

    2015-01-01

    Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to interpret in terms of the underlying neurobiology. Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connectivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and potentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regularized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern interpretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie discriminative changes in brain function between the groups. We illustrate our technique by classifying patients with major depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets acquired while participants performed a gender discrimination and emotional task, respectively, during the visualization of emotional valent faces. PMID:25463459

  10. Multimodal Task-Driven Dictionary Learning for Image Classification

    DTIC Science & Technology

    2015-12-18

    1 Multimodal Task-Driven Dictionary Learning for Image Classification Soheil Bahrampour, Student Member, IEEE, Nasser M. Nasrabadi, Fellow, IEEE...Asok Ray, Fellow, IEEE, and W. Kenneth Jenkins, Life Fellow, IEEE Abstract— Dictionary learning algorithms have been suc- cessfully used for both...reconstructive and discriminative tasks, where an input signal is represented with a sparse linear combination of dictionary atoms. While these methods are

  11. Language Recognition via Sparse Coding

    DTIC Science & Technology

    2016-09-08

    a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector

  12. Discriminative object tracking via sparse representation and online dictionary learning.

    PubMed

    Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua

    2014-04-01

    We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.

  13. Subject-based discriminative sparse representation model for detection of concealed information.

    PubMed

    Akhavan, Amir; Moradi, Mohammad Hassan; Vand, Safa Rafiei

    2017-05-01

    The use of machine learning approaches in concealed information test (CIT) plays a key role in the progress of this neurophysiological field. In this paper, we presented a new machine learning method for CIT in which each subject is considered independent of the others. The main goal of this study is to adapt the discriminative sparse models to be applicable for subject-based concealed information test. In order to provide sufficient discriminability between guilty and innocent subjects, we introduced a novel discriminative sparse representation model and its appropriate learning methods. For evaluation of the method forty-four subjects participated in a mock crime scenario and their EEG data were recorded. As the model input, in this study the recurrence plot features were extracted from single trial data of different stimuli. Then the extracted feature vectors were reduced using statistical dependency method. The reduced feature vector went through the proposed subject-based sparse model in which the discrimination power of sparse code and reconstruction error were applied simultaneously. Experimental results showed that the proposed approach achieved better performance than other competing discriminative sparse models. The classification accuracy, sensitivity and specificity of the presented sparsity-based method were about 93%, 91% and 95% respectively. Using the EEG data of a single subject in response to different stimuli types and with the aid of the proposed discriminative sparse representation model, one can distinguish guilty subjects from innocent ones. Indeed, this property eliminates the necessity of several subject EEG data in model learning and decision making for a specific subject. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sparse Logistic Regression for Diagnosis of Liver Fibrosis in Rat by Using SCAD-Penalized Likelihood

    PubMed Central

    Yan, Fang-Rong; Lin, Jin-Guan; Liu, Yu

    2011-01-01

    The objective of the present study is to find out the quantitative relationship between progression of liver fibrosis and the levels of certain serum markers using mathematic model. We provide the sparse logistic regression by using smoothly clipped absolute deviation (SCAD) penalized function to diagnose the liver fibrosis in rats. Not only does it give a sparse solution with high accuracy, it also provides the users with the precise probabilities of classification with the class information. In the simulative case and the experiment case, the proposed method is comparable to the stepwise linear discriminant analysis (SLDA) and the sparse logistic regression with least absolute shrinkage and selection operator (LASSO) penalty, by using receiver operating characteristic (ROC) with bayesian bootstrap estimating area under the curve (AUC) diagnostic sensitivity for selected variable. Results show that the new approach provides a good correlation between the serum marker levels and the liver fibrosis induced by thioacetamide (TAA) in rats. Meanwhile, this approach might also be used in predicting the development of liver cirrhosis. PMID:21716672

  15. Dimension Reduction With Extreme Learning Machine.

    PubMed

    Kasun, Liyanaarachchi Lekamalage Chamara; Yang, Yan; Huang, Guang-Bin; Zhang, Zhengyou

    2016-08-01

    Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of PCA (eigenvectors) and linear AE are not able to represent data as parts (e.g. nose in a face image). On the other hand, NMF and non-linear AE are maimed by slow learning speed and RP only represents a subspace of original data. This paper introduces a dimension reduction framework which to some extend represents data as parts, has fast learning speed, and learns the between-class scatter subspace. To this end, this paper investigates a linear and non-linear dimension reduction framework referred to as extreme learning machine AE (ELM-AE) and sparse ELM-AE (SELM-AE). In contrast to tied weight AE, the hidden neurons in ELM-AE and SELM-AE need not be tuned, and their parameters (e.g, input weights in additive neurons) are initialized using orthogonal and sparse random weights, respectively. Experimental results on USPS handwritten digit recognition data set, CIFAR-10 object recognition, and NORB object recognition data set show the efficacy of linear and non-linear ELM-AE and SELM-AE in terms of discriminative capability, sparsity, training time, and normalized mean square error.

  16. Sparse Representation for Infrared Dim Target Detection via a Discriminative Over-Complete Dictionary Learned Online

    PubMed Central

    Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju

    2014-01-01

    It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively. PMID:24871988

  17. Sparse representation for infrared Dim target detection via a discriminative over-complete dictionary learned online.

    PubMed

    Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju

    2014-05-27

    It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.

  18. Response of selected binomial coefficients to varying degrees of matrix sparseness and to matrices with known data interrelationships

    USGS Publications Warehouse

    Archer, A.W.; Maples, C.G.

    1989-01-01

    Numerous departures from ideal relationships are revealed by Monte Carlo simulations of widely accepted binomial coefficients. For example, simulations incorporating varying levels of matrix sparseness (presence of zeros indicating lack of data) and computation of expected values reveal that not only are all common coefficients influenced by zero data, but also that some coefficients do not discriminate between sparse or dense matrices (few zero data). Such coefficients computationally merge mutually shared and mutually absent information and do not exploit all the information incorporated within the standard 2 ?? 2 contingency table; therefore, the commonly used formulae for such coefficients are more complicated than the actual range of values produced. Other coefficients do differentiate between mutual presences and absences; however, a number of these coefficients do not demonstrate a linear relationship to matrix sparseness. Finally, simulations using nonrandom matrices with known degrees of row-by-row similarities signify that several coefficients either do not display a reasonable range of values or are nonlinear with respect to known relationships within the data. Analyses with nonrandom matrices yield clues as to the utility of certain coefficients for specific applications. For example, coefficients such as Jaccard, Dice, and Baroni-Urbani and Buser are useful if correction of sparseness is desired, whereas the Russell-Rao coefficient is useful when sparseness correction is not desired. ?? 1989 International Association for Mathematical Geology.

  19. On the sparseness of 1-norm support vector machines.

    PubMed

    Zhang, Li; Zhou, Weida

    2010-04-01

    There is some empirical evidence available showing that 1-norm Support Vector Machines (1-norm SVMs) have good sparseness; however, both how good sparseness 1-norm SVMs can reach and whether they have a sparser representation than that of standard SVMs are not clear. In this paper we take into account the sparseness of 1-norm SVMs. Two upper bounds on the number of nonzero coefficients in the decision function of 1-norm SVMs are presented. First, the number of nonzero coefficients in 1-norm SVMs is at most equal to the number of only the exact support vectors lying on the +1 and -1 discriminating surfaces, while that in standard SVMs is equal to the number of support vectors, which implies that 1-norm SVMs have better sparseness than that of standard SVMs. Second, the number of nonzero coefficients is at most equal to the rank of the sample matrix. A brief review of the geometry of linear programming and the primal steepest edge pricing simplex method are given, which allows us to provide the proof of the two upper bounds and evaluate their tightness by experiments. Experimental results on toy data sets and the UCI data sets illustrate our analysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints

    PubMed

    Mohammadi Majd, Tahereh; Kalantari, Shiva; Raeisi Shahraki, Hadi; Nafar, Mohsen; Almasi, Afshin; Samavat, Shiva; Parvin, Mahmoud; Hashemian, Amirhossein

    2018-03-10

    IgA nephropathy (IgAN) is the most common primary glomerulonephritis diagnosed based on renal biopsy. Mesangial IgA deposits along with the proliferation of mesangial cells are the histologic hallmark of IgAN. Non-invasive diagnostic tools may help to prompt diagnosis and therapy. The discovery of potential and reliable urinary biomarkers for diagnosis of IgAN depends on applying robust and suitable models. Applying two multivariate modeling methods on a urine proteomic dataset obtained from IgAN patients, and comparison of the results of these methods were the purpose of this study. Two models were constructed for urinary protein profiles of 13 patients and 8 healthy individuals, based on sparse linear discriminant analysis (SLDA) and elastic net regression methods. A panel of selected biomarkers with the best coefficients were proposed and further analyzed for biological relevance using functional annotation and pathway analysis. Transferrin, α1-antitrypsin, and albumin fragments were the most important up-regulated biomarkers, while fibulin-5, YIP1 family member 3, prasoposin, and osteopontin were the most important down-regulated biomarkers. Pathway analysis revealed that complement and coagulation cascades and extracellular matrix-receptor interaction pathways impaired in the pathogenesis of IgAN. SLDA and elastic net had an equal importance for diagnosis of IgAN and were useful methods for exploring and processing proteomic data. In addition, the suggested biomarkers are reliable candidates for further validation to non-invasive diagnose of IgAN based on urine examination.

  1. Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.

    PubMed

    Lin, Andrew C; Bygrave, Alexei M; de Calignon, Alix; Lee, Tzumin; Miesenböck, Gero

    2014-04-01

    Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories.

  2. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    NASA Astrophysics Data System (ADS)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  3. Fast Solution in Sparse LDA for Binary Classification

    NASA Technical Reports Server (NTRS)

    Moghaddam, Baback

    2010-01-01

    An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic form along with the inherent sequential nature of greedy search itself. Together this enables the use of highly-efficient partitioned-matrix-inverse techniques that result in large speedups of computation in both the forward-selection and backward-elimination stages of greedy algorithms in general.

  4. Multiscale Region-Level VHR Image Change Detection via Sparse Change Descriptor and Robust Discriminative Dictionary Learning

    PubMed Central

    Xu, Yuan; Ding, Kun; Huo, Chunlei; Zhong, Zisha; Li, Haichang; Pan, Chunhong

    2015-01-01

    Very high resolution (VHR) image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened), while they ignore the change pattern description (i.e., how the changes changed), which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique. PMID:25918748

  5. Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems

    DOE PAGES

    Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; ...

    2012-01-01

    Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less

  6. Numerosity but not texture-density discrimination correlates with math ability in children.

    PubMed

    Anobile, Giovanni; Castaldi, Elisa; Turi, Marco; Tinelli, Francesca; Burr, David C

    2016-08-01

    Considerable recent work suggests that mathematical abilities in children correlate with the ability to estimate numerosity. Does math correlate only with numerosity estimation, or also with other similar tasks? We measured discrimination thresholds of school-age (6- to 12.5-years-old) children in 3 tasks: numerosity of patterns of relatively sparse, segregatable items (24 dots); numerosity of very dense textured patterns (250 dots); and discrimination of direction of motion. Thresholds in all tasks improved with age, but at different rates, implying the action of different mechanisms: In particular, in young children, thresholds were lower for sparse than textured patterns (the opposite of adults), suggesting earlier maturation of numerosity mechanisms. Importantly, numerosity thresholds for sparse stimuli correlated strongly with math skills, even after controlling for the influence of age, gender and nonverbal IQ. However, neither motion-direction discrimination nor numerosity discrimination of texture patterns showed a significant correlation with math abilities. These results provide further evidence that numerosity and texture-density are perceived by independent neural mechanisms, which develop at different rates; and importantly, only numerosity mechanisms are related to math. As developmental dyscalculia is characterized by a profound deficit in discriminating numerosity, it is fundamental to understand the mechanism behind the discrimination. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining.

    PubMed

    Cheng, Wenlong; Zhao, Mingbo; Xiong, Naixue; Chui, Kwok Tai

    2017-07-15

    Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l ₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating l p -norm and Schatten p -norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms.

  8. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sparse 4D TomoSAR imaging in the presence of non-linear deformation

    NASA Astrophysics Data System (ADS)

    Khwaja, Ahmed Shaharyar; ćetin, Müjdat

    2018-04-01

    In this paper, we present a sparse four-dimensional tomographic synthetic aperture radar (4D TomoSAR) imaging scheme that can estimate elevation and linear as well as non-linear seasonal deformation rates of scatterers using the interferometric phase. Unlike existing sparse processing techniques that use fixed dictionaries based on a linear deformation model, we use a variable dictionary for the non-linear deformation in the form of seasonal sinusoidal deformation, in addition to the fixed dictionary for the linear deformation. We estimate the amplitude of the sinusoidal deformation using an optimization method and create the variable dictionary using the estimated amplitude. We show preliminary results using simulated data that demonstrate the soundness of our proposed technique for sparse 4D TomoSAR imaging in the presence of non-linear deformation.

  10. Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen

    2017-08-29

    In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.

  11. Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems

    DOE PAGES

    Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...

    2017-03-05

    Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.

  12. Discriminative Dictionary Learning With Two-Level Low Rank and Group Sparse Decomposition for Image Classification.

    PubMed

    Wen, Zaidao; Hou, Zaidao; Jiao, Licheng

    2017-11-01

    Discriminative dictionary learning (DDL) framework has been widely used in image classification which aims to learn some class-specific feature vectors as well as a representative dictionary according to a set of labeled training samples. However, interclass similarities and intraclass variances among input samples and learned features will generally weaken the representability of dictionary and the discrimination of feature vectors so as to degrade the classification performance. Therefore, how to explicitly represent them becomes an important issue. In this paper, we present a novel DDL framework with two-level low rank and group sparse decomposition model. In the first level, we learn a class-shared and several class-specific dictionaries, where a low rank and a group sparse regularization are, respectively, imposed on the corresponding feature matrices. In the second level, the class-specific feature matrix will be further decomposed into a low rank and a sparse matrix so that intraclass variances can be separated to concentrate the corresponding feature vectors. Extensive experimental results demonstrate the effectiveness of our model. Compared with the other state-of-the-arts on several popular image databases, our model can achieve a competitive or better performance in terms of the classification accuracy.

  13. Visual saliency detection based on in-depth analysis of sparse representation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Shen, Siqiu; Ning, Chen

    2018-03-01

    Visual saliency detection has been receiving great attention in recent years since it can facilitate a wide range of applications in computer vision. A variety of saliency models have been proposed based on different assumptions within which saliency detection via sparse representation is one of the newly arisen approaches. However, most existing sparse representation-based saliency detection methods utilize partial characteristics of sparse representation, lacking of in-depth analysis. Thus, they may have limited detection performance. Motivated by this, this paper proposes an algorithm for detecting visual saliency based on in-depth analysis of sparse representation. A number of discriminative dictionaries are first learned with randomly sampled image patches by means of inner product-based dictionary atom classification. Then, the input image is partitioned into many image patches, and these patches are classified into salient and nonsalient ones based on the in-depth analysis of sparse coding coefficients. Afterward, sparse reconstruction errors are calculated for the salient and nonsalient patch sets. By investigating the sparse reconstruction errors, the most salient atoms, which tend to be from the most salient region, are screened out and taken away from the discriminative dictionaries. Finally, an effective method is exploited for saliency map generation with the reduced dictionaries. Comprehensive evaluations on publicly available datasets and comparisons with some state-of-the-art approaches demonstrate the effectiveness of the proposed algorithm.

  14. Hierarchical Feature Extraction With Local Neural Response for Image Recognition.

    PubMed

    Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P

    2013-04-01

    In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.

  15. Discriminant WSRC for Large-Scale Plant Species Recognition.

    PubMed

    Zhang, Shanwen; Zhang, Chuanlei; Zhu, Yihai; You, Zhuhong

    2017-01-01

    In sparse representation based classification (SRC) and weighted SRC (WSRC), it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC) is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

  16. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.

    PubMed

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-06-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.

  17. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION

    PubMed Central

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-01-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression. PMID:25598560

  18. A Non-destructive Terahertz Spectroscopy-Based Method for Transgenic Rice Seed Discrimination via Sparse Representation

    NASA Astrophysics Data System (ADS)

    Hu, Xiaohua; Lang, Wenhui; Liu, Wei; Xu, Xue; Yang, Jianbo; Zheng, Lei

    2017-08-01

    Terahertz (THz) spectroscopy technique has been researched and developed for rapid and non-destructive detection of food safety and quality due to its low-energy and non-ionizing characteristics. The objective of this study was to develop a flexible identification model to discriminate transgenic and non-transgenic rice seeds based on terahertz (THz) spectroscopy. To extract THz spectral features and reduce the feature dimension, sparse representation (SR) is employed in this work. A sufficient sparsity level is selected to train the sparse coding of the THz data, and the random forest (RF) method is then applied to obtain a discrimination model. The results show that there exist differences between transgenic and non-transgenic rice seeds in THz spectral band and, comparing with Least squares support vector machines (LS-SVM) method, SR-RF is a better model for discrimination (accuracy is 95% in prediction set, 100% in calibration set, respectively). The conclusion is that SR may be more useful in the application of THz spectroscopy to reduce dimension and the SR-RF provides a new, effective, and flexible method for detection and identification of transgenic and non-transgenic rice seeds with THz spectral system.

  19. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    PubMed Central

    Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-01-01

    Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images. PMID:24989402

  20. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning.

    PubMed

    Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-01

    Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.

  1. MR PROSTATE SEGMENTATION VIA DISTRIBUTED DISCRIMINATIVE DICTIONARY (DDD) LEARNING.

    PubMed

    Guo, Yanrong; Zhan, Yiqiang; Gao, Yaozong; Jiang, Jianguo; Shen, Dinggang

    2013-01-01

    Segmenting prostate from MR images is important yet challenging. Due to non-Gaussian distribution of prostate appearances in MR images, the popular active appearance model (AAM) has its limited performance. Although the newly developed sparse dictionary learning method[1, 2] can model the image appearance in a non-parametric fashion, the learned dictionaries still lack the discriminative power between prostate and non-prostate tissues, which is critical for accurate prostate segmentation. In this paper, we propose to integrate deformable model with a novel learning scheme, namely the Distributed Discriminative Dictionary ( DDD ) learning, which can capture image appearance in a non-parametric and discriminative fashion. In particular, three strategies are designed to boost the tissue discriminative power of DDD. First , minimum Redundancy Maximum Relevance (mRMR) feature selection is performed to constrain the dictionary learning in a discriminative feature space. Second , linear discriminant analysis (LDA) is employed to assemble residuals from different dictionaries for optimal separation between prostate and non-prostate tissues. Third , instead of learning the global dictionaries, we learn a set of local dictionaries for the local regions (each with small appearance variations) along prostate boundary, thus achieving better tissue differentiation locally. In the application stage, DDDs will provide the appearance cues to robustly drive the deformable model onto the prostate boundary. Experiments on 50 MR prostate images show that our method can yield a Dice Ratio of 88% compared to the manual segmentations, and have 7% improvement over the conventional AAM.

  2. Medical image classification based on multi-scale non-negative sparse coding.

    PubMed

    Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar

    2017-11-01

    With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sparse matrix multiplications for linear scaling electronic structure calculations in an atom-centered basis set using multiatom blocks.

    PubMed

    Saravanan, Chandra; Shao, Yihan; Baer, Roi; Ross, Philip N; Head-Gordon, Martin

    2003-04-15

    A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 618-622, 2003

  4. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong

    Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integratemore » the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.« less

  5. Clutter and target discrimination in forward-looking ground penetrating radar using sparse structured basis pursuits

    NASA Astrophysics Data System (ADS)

    Camilo, Joseph A.; Malof, Jordan M.; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.

    2015-05-01

    Forward-looking ground penetrating radar (FLGPR) is a remote sensing modality that has recently been investigated for buried threat detection. FLGPR offers greater standoff than other downward-looking modalities such as electromagnetic induction and downward-looking GPR, but it suffers from high false alarm rates due to surface and ground clutter. A stepped frequency FLGPR system consists of multiple radars with varying polarizations and bands, each of which interacts differently with subsurface materials and therefore might potentially be able to discriminate clutter from true buried targets. However, it is unclear which combinations of bands and polarizations would be most useful for discrimination or how to fuse them. This work applies sparse structured basis pursuit, a supervised statistical model which searches for sets of bands that are collectively effective for discriminating clutter from targets. The algorithm works by trying to minimize the number of selected items in a dictionary of signals; in this case the separate bands and polarizations make up the dictionary elements. A structured basis pursuit algorithm is employed to gather groups of modes together in collections to eliminate whole polarizations or sensors. The approach is applied to a large collection of FLGPR data for data around emplaced target and non-target clutter. The results show that a sparse structure basis pursuits outperforms a conventional CFAR anomaly detector while also pruning out unnecessary bands of the FLGPR sensor.

  6. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    NASA Astrophysics Data System (ADS)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  7. Discriminative Transfer Subspace Learning via Low-Rank and Sparse Representation.

    PubMed

    Xu, Yong; Fang, Xiaozhao; Wu, Jian; Li, Xuelong; Zhang, David

    2016-02-01

    In this paper, we address the problem of unsupervised domain transfer learning in which no labels are available in the target domain. We use a transformation matrix to transfer both the source and target data to a common subspace, where each target sample can be represented by a combination of source samples such that the samples from different domains can be well interlaced. In this way, the discrepancy of the source and target domains is reduced. By imposing joint low-rank and sparse constraints on the reconstruction coefficient matrix, the global and local structures of data can be preserved. To enlarge the margins between different classes as much as possible and provide more freedom to diminish the discrepancy, a flexible linear classifier (projection) is obtained by learning a non-negative label relaxation matrix that allows the strict binary label matrix to relax into a slack variable matrix. Our method can avoid a potentially negative transfer by using a sparse matrix to model the noise and, thus, is more robust to different types of noise. We formulate our problem as a constrained low-rankness and sparsity minimization problem and solve it by the inexact augmented Lagrange multiplier method. Extensive experiments on various visual domain adaptation tasks show the superiority of the proposed method over the state-of-the art methods. The MATLAB code of our method will be publicly available at http://www.yongxu.org/lunwen.html.

  8. Multi-frame linear regressive filter for the measurement of infrared pixel spatial response and MTF from sparse data.

    PubMed

    Huard, Edouard; Derelle, Sophie; Jaeck, Julien; Nghiem, Jean; Haïdar, Riad; Primot, Jérôme

    2018-03-05

    A challenging point in the prediction of the image quality of infrared imaging systems is the evaluation of the detector modulation transfer function (MTF). In this paper, we present a linear method to get a 2D continuous MTF from sparse spectral data. Within the method, an object with a predictable sparse spatial spectrum is imaged by the focal plane array. The sparse data is then treated to return the 2D continuous MTF with the hypothesis that all the pixels have an identical spatial response. The linearity of the treatment is a key point to estimate directly the error bars of the resulting detector MTF. The test bench will be presented along with measurement tests on a 25 μm pitch InGaAs detector.

  9. A General Sparse Tensor Framework for Electronic Structure Theory

    DOE PAGES

    Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I.; ...

    2017-01-24

    Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. But, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We then avoid cumbersome machine-generatedmore » code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.« less

  10. Rapid and accurate peripheral nerve detection using multipoint Raman imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kumamoto, Yasuaki; Minamikawa, Takeo; Kawamura, Akinori; Matsumura, Junichi; Tsuda, Yuichiro; Ukon, Juichiro; Harada, Yoshinori; Tanaka, Hideo; Takamatsu, Tetsuro

    2017-02-01

    Nerve-sparing surgery is essential to avoid functional deficits of the limbs and organs. Raman scattering, a label-free, minimally invasive, and accurate modality, is one of the best candidate technologies to detect nerves for nerve-sparing surgery. However, Raman scattering imaging is too time-consuming to be employed in surgery. Here we present a rapid and accurate nerve visualization method using a multipoint Raman imaging technique that has enabled simultaneous spectra measurement from different locations (n=32) of a sample. Five sec is sufficient for measuring n=32 spectra with good S/N from a given tissue. Principal component regression discriminant analysis discriminated spectra obtained from peripheral nerves (n=863 from n=161 myelinated nerves) and connective tissue (n=828 from n=121 tendons) with sensitivity and specificity of 88.3% and 94.8%, respectively. To compensate the spatial information of a multipoint-Raman-derived tissue discrimination image that is too sparse to visualize nerve arrangement, we used morphological information obtained from a bright-field image. When merged with the sparse tissue discrimination image, a morphological image of a sample shows what portion of Raman measurement points in arbitrary structure is determined as nerve. Setting a nerve detection criterion on the portion of "nerve" points in the structure as 40% or more, myelinated nerves (n=161) and tendons (n=121) were discriminated with sensitivity and specificity of 97.5%. The presented technique utilizing a sparse multipoint Raman image and a bright-field image has enabled rapid, safe, and accurate detection of peripheral nerves.

  11. AZTEC. Parallel Iterative method Software for Solving Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.; Shadid, J.; Tuminaro, R.

    1995-07-01

    AZTEC is an interactive library that greatly simplifies the parrallelization process when solving the linear systems of equations Ax=b where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. AZTEC is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matricesmore » for parallel solutions.« less

  12. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinski, Peter; Riplinger, Christoph; Neese, Frank, E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implementsmore » sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.« less

  13. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals.

    PubMed

    Pinski, Peter; Riplinger, Christoph; Valeev, Edward F; Neese, Frank

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.

  14. Face recognition based on two-dimensional discriminant sparse preserving projection

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Zhu, Shanan

    2018-04-01

    In this paper, a supervised dimensionality reduction algorithm named two-dimensional discriminant sparse preserving projection (2DDSPP) is proposed for face recognition. In order to accurately model manifold structure of data, 2DDSPP constructs within-class affinity graph and between-class affinity graph by the constrained least squares (LS) and l1 norm minimization problem, respectively. Based on directly operating on image matrix, 2DDSPP integrates graph embedding (GE) with Fisher criterion. The obtained projection subspace preserves within-class neighborhood geometry structure of samples, while keeping away samples from different classes. The experimental results on the PIE and AR face databases show that 2DDSPP can achieve better recognition performance.

  15. Sparse matrix methods based on orthogonality and conjugacy

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1973-01-01

    A matrix having a high percentage of zero elements is called spares. In the solution of systems of linear equations or linear least squares problems involving large sparse matrices, significant saving of computer cost can be achieved by taking advantage of the sparsity. The conjugate gradient algorithm and a set of related algorithms are described.

  16. Exhaustive Search for Sparse Variable Selection in Linear Regression

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhiko; Takenaka, Hikaru; Nakanishi-Ohno, Yoshinori; Uemura, Makoto; Ikeda, Shiro; Okada, Masato

    2018-04-01

    We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.

  17. Appearance-based representative samples refining method for palmprint recognition

    NASA Astrophysics Data System (ADS)

    Wen, Jiajun; Chen, Yan

    2012-07-01

    The sparse representation can deal with the lack of sample problem due to utilizing of all the training samples. However, the discrimination ability will degrade when more training samples are used for representation. We propose a novel appearance-based palmprint recognition method. We aim to find a compromise between the discrimination ability and the lack of sample problem so as to obtain a proper representation scheme. Under the assumption that the test sample can be well represented by a linear combination of a certain number of training samples, we first select the representative training samples according to the contributions of the samples. Then we further refine the training samples by an iteration procedure, excluding the training sample with the least contribution to the test sample for each time. Experiments on PolyU multispectral palmprint database and two-dimensional and three-dimensional palmprint database show that the proposed method outperforms the conventional appearance-based palmprint recognition methods. Moreover, we also explore and find out the principle of the usage for the key parameters in the proposed algorithm, which facilitates to obtain high-recognition accuracy.

  18. High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxin; Yue, Jiang; Han, Jing; Li, Long; Jin, Yong; Gao, Yuan; Li, Baoming

    2017-12-01

    The denoising capabilities of the H-matrix and cyclic S-matrix based on the sparse reconstruction, employed in the Pixel of Focal Plane Coded Visible Spectrometer for spectrum measurement are investigated, where the spectrum is sparse in a known basis. In the measurement process, the digital micromirror device plays an important role, which implements the Hadamard coding. In contrast with Hadamard transform spectrometry, based on the shift invariability, this spectrometer may have the advantage of a high efficiency. Simulations and experiments show that the nonlinear solution with a sparse reconstruction has a better signal-to-noise ratio than the linear solution and the H-matrix outperforms the cyclic S-matrix whether the reconstruction method is nonlinear or linear.

  19. JDINAC: joint density-based non-parametric differential interaction network analysis and classification using high-dimensional sparse omics data.

    PubMed

    Ji, Jiadong; He, Di; Feng, Yang; He, Yong; Xue, Fuzhong; Xie, Lei

    2017-10-01

    A complex disease is usually driven by a number of genes interwoven into networks, rather than a single gene product. Network comparison or differential network analysis has become an important means of revealing the underlying mechanism of pathogenesis and identifying clinical biomarkers for disease classification. Most studies, however, are limited to network correlations that mainly capture the linear relationship among genes, or rely on the assumption of a parametric probability distribution of gene measurements. They are restrictive in real application. We propose a new Joint density based non-parametric Differential Interaction Network Analysis and Classification (JDINAC) method to identify differential interaction patterns of network activation between two groups. At the same time, JDINAC uses the network biomarkers to build a classification model. The novelty of JDINAC lies in its potential to capture non-linear relations between molecular interactions using high-dimensional sparse data as well as to adjust confounding factors, without the need of the assumption of a parametric probability distribution of gene measurements. Simulation studies demonstrate that JDINAC provides more accurate differential network estimation and lower classification error than that achieved by other state-of-the-art methods. We apply JDINAC to a Breast Invasive Carcinoma dataset, which includes 114 patients who have both tumor and matched normal samples. The hub genes and differential interaction patterns identified were consistent with existing experimental studies. Furthermore, JDINAC discriminated the tumor and normal sample with high accuracy by virtue of the identified biomarkers. JDINAC provides a general framework for feature selection and classification using high-dimensional sparse omics data. R scripts available at https://github.com/jijiadong/JDINAC. lxie@iscb.org. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. Iterative algorithms for large sparse linear systems on parallel computers

    NASA Technical Reports Server (NTRS)

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  1. Skin-Color Prejudice and Within-Group Racial Discrimination: Historical and Current Impact on Latino/a Populations

    ERIC Educational Resources Information Center

    Chavez-Dueñas, Nayeli Y.; Adames, Hector Y.; Organista, Kurt C.

    2014-01-01

    The psychological literature on colorism, a form of within-group racial discrimination, is sparse. In an effort to contribute to this understudied area and highlight its significance, a concise and selective review of the history of colorism in Latin America is provided. Specifically, three historical eras (i.e., conquest, colonization, and…

  2. Multi-level discriminative dictionary learning with application to large scale image classification.

    PubMed

    Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua

    2015-10-01

    The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.

  3. Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners

    DOE PAGES

    Li, Ruipeng; Saad, Yousef

    2017-08-01

    This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less

  4. Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.

    PubMed

    Anzt, H; Quintana-Ortí, E S

    2014-06-28

    While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ruipeng; Saad, Yousef

    This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less

  6. Unambiguous discrimination between linearly dependent equidistant states with multiple copies

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hai; Ren, Gang

    2018-07-01

    Linearly independent quantum states can be unambiguously discriminated, but linearly dependent ones cannot. For linearly dependent quantum states, however, if C copies of the single states are available, then they may form linearly independent states, and can be unambiguously discriminated. We consider unambiguous discrimination among N = D + 1 linearly dependent states given that C copies are available and that the single copies span a D-dimensional space with equal inner products. The maximum unambiguous discrimination probability is derived for all C with equal a priori probabilities. For this classification of the linearly dependent equidistant states, our result shows that if C is even then adding a further copy fails to increase the maximum discrimination probability.

  7. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation.

    PubMed

    Sun, Rui; Zhang, Guanghai; Yan, Xiaoxing; Gao, Jun

    2016-08-16

    Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.

  8. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

    PubMed Central

    Sun, Rui; Zhang, Guanghai; Yan, Xiaoxing; Gao, Jun

    2016-01-01

    Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods. PMID:27537888

  9. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.

    PubMed

    Tang, Xin; Feng, Guo-Can; Li, Xiao-Xin; Cai, Jia-Xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the state-of-the-art results on AR, FERET, FRGC and LFW databases.

  10. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition

    PubMed Central

    Tang, Xin; Feng, Guo-can; Li, Xiao-xin; Cai, Jia-xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the state-of-the-art results on AR, FERET, FRGC and LFW databases. PMID:26571112

  11. Prostate segmentation by sparse representation based classification

    PubMed Central

    Gao, Yaozong; Liao, Shu; Shen, Dinggang

    2012-01-01

    Purpose: The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. Methods: To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. Results: The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. Conclusions: The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation. PMID:23039673

  12. Prostate segmentation by sparse representation based classification.

    PubMed

    Gao, Yaozong; Liao, Shu; Shen, Dinggang

    2012-10-01

    The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation.

  13. Efficient convolutional sparse coding

    DOEpatents

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  14. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    PubMed

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  15. Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, James Brian; Parks, Michael L.

    Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less

  16. Sparse signals recovered by non-convex penalty in quasi-linear systems.

    PubMed

    Cui, Angang; Li, Haiyang; Wen, Meng; Peng, Jigen

    2018-01-01

    The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the [Formula: see text]-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function [Formula: see text] in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem [Formula: see text] for all [Formula: see text]. With the change of parameter [Formula: see text], our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.

  17. Adapting iterative algorithms for solving large sparse linear systems for efficient use on the CDC CYBER 205

    NASA Technical Reports Server (NTRS)

    Kincaid, D. R.; Young, D. M.

    1984-01-01

    Adapting and designing mathematical software to achieve optimum performance on the CYBER 205 is discussed. Comments and observations are made in light of recent work done on modifying the ITPACK software package and on writing new software for vector supercomputers. The goal was to develop very efficient vector algorithms and software for solving large sparse linear systems using iterative methods.

  18. Point-source inversion techniques

    NASA Astrophysics Data System (ADS)

    Langston, Charles A.; Barker, Jeffrey S.; Pavlin, Gregory B.

    1982-11-01

    A variety of approaches for obtaining source parameters from waveform data using moment-tensor or dislocation point source models have been investigated and applied to long-period body and surface waves from several earthquakes. Generalized inversion techniques have been applied to data for long-period teleseismic body waves to obtain the orientation, time function and depth of the 1978 Thessaloniki, Greece, event, of the 1971 San Fernando event, and of several events associated with the 1963 induced seismicity sequence at Kariba, Africa. The generalized inversion technique and a systematic grid testing technique have also been used to place meaningful constraints on mechanisms determined from very sparse data sets; a single station with high-quality three-component waveform data is often sufficient to discriminate faulting type (e.g., strike-slip, etc.). Sparse data sets for several recent California earthquakes, for a small regional event associated with the Koyna, India, reservoir, and for several events at the Kariba reservoir have been investigated in this way. Although linearized inversion techniques using the moment-tensor model are often robust, even for sparse data sets, there are instances where the simplifying assumption of a single point source is inadequate to model the data successfully. Numerical experiments utilizing synthetic data and actual data for the 1971 San Fernando earthquake graphically demonstrate that severe problems may be encountered if source finiteness effects are ignored. These techniques are generally applicable to on-line processing of high-quality digital data, but source complexity and inadequacy of the assumed Green's functions are major problems which are yet to be fully addressed.

  19. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  20. Recurrent Coupling Improves Discrimination of Temporal Spike Patterns

    PubMed Central

    Yuan, Chun-Wei; Leibold, Christian

    2012-01-01

    Despite the ubiquitous presence of recurrent synaptic connections in sensory neuronal systems, their general functional purpose is not well understood. A recent conceptual advance has been achieved by theories of reservoir computing in which recurrent networks have been proposed to generate short-term memory as well as to improve neuronal representation of the sensory input for subsequent computations. Here, we present a numerical study on the distinct effects of inhibitory and excitatory recurrence in a canonical linear classification task. It is found that both types of coupling improve the ability to discriminate temporal spike patterns as compared to a purely feed-forward system, although in different ways. For a large class of inhibitory networks, the network’s performance is optimal as long as a fraction of roughly 50% of neurons per stimulus is active in the resulting population code. Thereby the contribution of inactive neurons to the neural code is found to be even more informative than that of the active neurons, generating an inherent robustness of classification performance against temporal jitter of the input spikes. Excitatory couplings are found to not only produce a short-term memory buffer but also to improve linear separability of the population patterns by evoking more irregular firing as compared to the purely inhibitory case. As the excitatory connectivity becomes more sparse, firing becomes more variable, and pattern separability improves. We argue that the proposed paradigm is particularly well-suited as a conceptual framework for processing of sensory information in the auditory pathway. PMID:22586392

  1. Classification of vegetation types in military region

    NASA Astrophysics Data System (ADS)

    Gonçalves, Miguel; Silva, Jose Silvestre; Bioucas-Dias, Jose

    2015-10-01

    In decision-making process regarding planning and execution of military operations, the terrain is a determining factor. Aerial photographs are a source of vital information for the success of an operation in hostile region, namely when the cartographic information behind enemy lines is scarce or non-existent. The objective of present work is the development of a tool capable of processing aerial photos. The methodology implemented starts with feature extraction, followed by the application of an automatic selector of features. The next step, using the k-fold cross validation technique, estimates the input parameters for the following classifiers: Sparse Multinomial Logist Regression (SMLR), K Nearest Neighbor (KNN), Linear Classifier using Principal Component Expansion on the Joint Data (PCLDC) and Multi-Class Support Vector Machine (MSVM). These classifiers were used in two different studies with distinct objectives: discrimination of vegetation's density and identification of vegetation's main components. It was found that the best classifier on the first approach is the Sparse Logistic Multinomial Regression (SMLR). On the second approach, the implemented methodology applied to high resolution images showed that the better performance was achieved by KNN classifier and PCLDC. Comparing the two approaches there is a multiscale issue, in which for different resolutions, the best solution to the problem requires different classifiers and the extraction of different features.

  2. Tensor Dictionary Learning for Positive Definite Matrices.

    PubMed

    Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2015-11-01

    Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.

  3. Sampling schemes and parameter estimation for nonlinear Bernoulli-Gaussian sparse models

    NASA Astrophysics Data System (ADS)

    Boudineau, Mégane; Carfantan, Hervé; Bourguignon, Sébastien; Bazot, Michael

    2016-06-01

    We address the sparse approximation problem in the case where the data are approximated by the linear combination of a small number of elementary signals, each of these signals depending non-linearly on additional parameters. Sparsity is explicitly expressed through a Bernoulli-Gaussian hierarchical model in a Bayesian framework. Posterior mean estimates are computed using Markov Chain Monte-Carlo algorithms. We generalize the partially marginalized Gibbs sampler proposed in the linear case in [1], and build an hybrid Hastings-within-Gibbs algorithm in order to account for the nonlinear parameters. All model parameters are then estimated in an unsupervised procedure. The resulting method is evaluated on a sparse spectral analysis problem. It is shown to converge more efficiently than the classical joint estimation procedure, with only a slight increase of the computational cost per iteration, consequently reducing the global cost of the estimation procedure.

  4. Sparse brain network using penalized linear regression

    NASA Astrophysics Data System (ADS)

    Lee, Hyekyoung; Lee, Dong Soo; Kang, Hyejin; Kim, Boong-Nyun; Chung, Moo K.

    2011-03-01

    Sparse partial correlation is a useful connectivity measure for brain networks when it is difficult to compute the exact partial correlation in the small-n large-p setting. In this paper, we formulate the problem of estimating partial correlation as a sparse linear regression with a l1-norm penalty. The method is applied to brain network consisting of parcellated regions of interest (ROIs), which are obtained from FDG-PET images of the autism spectrum disorder (ASD) children and the pediatric control (PedCon) subjects. To validate the results, we check their reproducibilities of the obtained brain networks by the leave-one-out cross validation and compare the clustered structures derived from the brain networks of ASD and PedCon.

  5. Large-scale two-photon imaging revealed super-sparse population codes in the V1 superficial layer of awake monkeys.

    PubMed

    Tang, Shiming; Zhang, Yimeng; Li, Zhihao; Li, Ming; Liu, Fang; Jiang, Hongfei; Lee, Tai Sing

    2018-04-26

    One general principle of sensory information processing is that the brain must optimize efficiency by reducing the number of neurons that process the same information. The sparseness of the sensory representations in a population of neurons reflects the efficiency of the neural code. Here, we employ large-scale two-photon calcium imaging to examine the responses of a large population of neurons within the superficial layers of area V1 with single-cell resolution, while simultaneously presenting a large set of natural visual stimuli, to provide the first direct measure of the population sparseness in awake primates. The results show that only 0.5% of neurons respond strongly to any given natural image - indicating a ten-fold increase in the inferred sparseness over previous measurements. These population activities are nevertheless necessary and sufficient to discriminate visual stimuli with high accuracy, suggesting that the neural code in the primary visual cortex is both super-sparse and highly efficient. © 2018, Tang et al.

  6. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics.

    PubMed

    Abdolali, Fatemeh; Zoroofi, Reza Aghaeizadeh; Otake, Yoshito; Sato, Yoshinobu

    2017-02-01

    Accurate detection of maxillofacial cysts is an essential step for diagnosis, monitoring and planning therapeutic intervention. Cysts can be of various sizes and shapes and existing detection methods lead to poor results. Customizing automatic detection systems to gain sufficient accuracy in clinical practice is highly challenging. For this purpose, integrating the engineering knowledge in efficient feature extraction is essential. This paper presents a novel framework for maxillofacial cysts detection. A hybrid methodology based on surface and texture information is introduced. The proposed approach consists of three main steps as follows: At first, each cystic lesion is segmented with high accuracy. Then, in the second and third steps, feature extraction and classification are performed. Contourlet and SPHARM coefficients are utilized as texture and shape features which are fed into the classifier. Two different classifiers are used in this study, i.e. support vector machine and sparse discriminant analysis. Generally SPHARM coefficients are estimated by the iterative residual fitting (IRF) algorithm which is based on stepwise regression method. In order to improve the accuracy of IRF estimation, a method based on extra orthogonalization is employed to reduce linear dependency. We have utilized a ground-truth dataset consisting of cone beam CT images of 96 patients, belonging to three maxillofacial cyst categories: radicular cyst, dentigerous cyst and keratocystic odontogenic tumor. Using orthogonalized SPHARM, residual sum of squares is decreased which leads to a more accurate estimation. Analysis of the results based on statistical measures such as specificity, sensitivity, positive predictive value and negative predictive value is reported. The classification rate of 96.48% is achieved using sparse discriminant analysis and orthogonalized SPHARM features. Classification accuracy at least improved by 8.94% with respect to conventional features. This study demonstrated that our proposed methodology can improve the computer assisted diagnosis (CAD) performance by incorporating more discriminative features. Using orthogonalized SPHARM is promising in computerized cyst detection and may have a significant impact in future CAD systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems.

    PubMed

    Lê Cao, Kim-Anh; Boitard, Simon; Besse, Philippe

    2011-06-22

    Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell biology, biological pathways or complex traits. A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework. sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.

  8. LiDAR point classification based on sparse representation

    NASA Astrophysics Data System (ADS)

    Li, Nan; Pfeifer, Norbert; Liu, Chun

    2017-04-01

    In order to combine the initial spatial structure and features of LiDAR data for accurate classification. The LiDAR data is represented as a 4-order tensor. Sparse representation for classification(SRC) method is used for LiDAR tensor classification. It turns out SRC need only a few of training samples from each class, meanwhile can achieve good classification result. Multiple features are extracted from raw LiDAR points to generate a high-dimensional vector at each point. Then the LiDAR tensor is built by the spatial distribution and feature vectors of the point neighborhood. The entries of LiDAR tensor are accessed via four indexes. Each index is called mode: three spatial modes in direction X ,Y ,Z and one feature mode. Sparse representation for classification(SRC) method is proposed in this paper. The sparsity algorithm is to find the best represent the test sample by sparse linear combination of training samples from a dictionary. To explore the sparsity of LiDAR tensor, the tucker decomposition is used. It decomposes a tensor into a core tensor multiplied by a matrix along each mode. Those matrices could be considered as the principal components in each mode. The entries of core tensor show the level of interaction between the different components. Therefore, the LiDAR tensor can be approximately represented by a sparse tensor multiplied by a matrix selected from a dictionary along each mode. The matrices decomposed from training samples are arranged as initial elements in the dictionary. By dictionary learning, a reconstructive and discriminative structure dictionary along each mode is built. The overall structure dictionary composes of class-specified sub-dictionaries. Then the sparse core tensor is calculated by tensor OMP(Orthogonal Matching Pursuit) method based on dictionaries along each mode. It is expected that original tensor should be well recovered by sub-dictionary associated with relevant class, while entries in the sparse tensor associated with other classed should be nearly zero. Therefore, SRC use the reconstruction error associated with each class to do data classification. A section of airborne LiDAR points of Vienna city is used and classified into 6classes: ground, roofs, vegetation, covered ground, walls and other points. Only 6 training samples from each class are taken. For the final classification result, ground and covered ground are merged into one same class(ground). The classification accuracy for ground is 94.60%, roof is 95.47%, vegetation is 85.55%, wall is 76.17%, other object is 20.39%.

  9. Visual Tracking via Sparse and Local Linear Coding.

    PubMed

    Wang, Guofeng; Qin, Xueying; Zhong, Fan; Liu, Yue; Li, Hongbo; Peng, Qunsheng; Yang, Ming-Hsuan

    2015-11-01

    The state search is an important component of any object tracking algorithm. Numerous algorithms have been proposed, but stochastic sampling methods (e.g., particle filters) are arguably one of the most effective approaches. However, the discretization of the state space complicates the search for the precise object location. In this paper, we propose a novel tracking algorithm that extends the state space of particle observations from discrete to continuous. The solution is determined accurately via iterative linear coding between two convex hulls. The algorithm is modeled by an optimal function, which can be efficiently solved by either convex sparse coding or locality constrained linear coding. The algorithm is also very flexible and can be combined with many generic object representations. Thus, we first use sparse representation to achieve an efficient searching mechanism of the algorithm and demonstrate its accuracy. Next, two other object representation models, i.e., least soft-threshold squares and adaptive structural local sparse appearance, are implemented with improved accuracy to demonstrate the flexibility of our algorithm. Qualitative and quantitative experimental results demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods in dynamic scenes.

  10. SPARSKIT: A basic tool kit for sparse matrix computations

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1990-01-01

    Presented here are the main features of a tool package for manipulating and working with sparse matrices. One of the goals of the package is to provide basic tools to facilitate the exchange of software and data between researchers in sparse matrix computations. The starting point is the Harwell/Boeing collection of matrices for which the authors provide a number of tools. Among other things, the package provides programs for converting data structures, printing simple statistics on a matrix, plotting a matrix profile, and performing linear algebra operations with sparse matrices.

  11. Estimating the size of an open population using sparse capture-recapture data.

    PubMed

    Huggins, Richard; Stoklosa, Jakub; Roach, Cameron; Yip, Paul

    2018-03-01

    Sparse capture-recapture data from open populations are difficult to analyze using currently available frequentist statistical methods. However, in closed capture-recapture experiments, the Chao sparse estimator (Chao, 1989, Biometrics 45, 427-438) may be used to estimate population sizes when there are few recaptures. Here, we extend the Chao (1989) closed population size estimator to the open population setting by using linear regression and extrapolation techniques. We conduct a small simulation study and apply the models to several sparse capture-recapture data sets. © 2017, The International Biometric Society.

  12. Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks: A Simple Model for the Collective Activity of Striatal Projection Neurons.

    PubMed

    Angulo-Garcia, David; Berke, Joshua D; Torcini, Alessandro

    2016-02-01

    Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We find that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson's and Huntington's diseases.

  13. Prediction of siRNA potency using sparse logistic regression.

    PubMed

    Hu, Wei; Hu, John

    2014-06-01

    RNA interference (RNAi) can modulate gene expression at post-transcriptional as well as transcriptional levels. Short interfering RNA (siRNA) serves as a trigger for the RNAi gene inhibition mechanism, and therefore is a crucial intermediate step in RNAi. There have been extensive studies to identify the sequence characteristics of potent siRNAs. One such study built a linear model using LASSO (Least Absolute Shrinkage and Selection Operator) to measure the contribution of each siRNA sequence feature. This model is simple and interpretable, but it requires a large number of nonzero weights. We have introduced a novel technique, sparse logistic regression, to build a linear model using single-position specific nucleotide compositions which has the same prediction accuracy of the linear model based on LASSO. The weights in our new model share the same general trend as those in the previous model, but have only 25 nonzero weights out of a total 84 weights, a 54% reduction compared to the previous model. Contrary to the linear model based on LASSO, our model suggests that only a few positions are influential on the efficacy of the siRNA, which are the 5' and 3' ends and the seed region of siRNA sequences. We also employed sparse logistic regression to build a linear model using dual-position specific nucleotide compositions, a task LASSO is not able to accomplish well due to its high dimensional nature. Our results demonstrate the superiority of sparse logistic regression as a technique for both feature selection and regression over LASSO in the context of siRNA design.

  14. Mixture of Segmenters with Discriminative Spatial Regularization and Sparse Weight Selection*

    PubMed Central

    Chen, Ting; Rangarajan, Anand; Eisenschenk, Stephan J.

    2011-01-01

    This paper presents a novel segmentation algorithm which automatically learns the combination of weak segmenters and builds a strong one based on the assumption that the locally weighted combination varies w.r.t. both the weak segmenters and the training images. We learn the weighted combination during the training stage using a discriminative spatial regularization which depends on training set labels. A closed form solution to the cost function is derived for this approach. In the testing stage, a sparse regularization scheme is imposed to avoid overfitting. To the best of our knowledge, such a segmentation technique has never been reported in literature and we empirically show that it significantly improves on the performances of the weak segmenters. After showcasing the performance of the algorithm in the context of atlas-based segmentation, we present comparisons to the existing weak segmenter combination strategies on a hippocampal data set. PMID:22003748

  15. Parallel iterative methods for sparse linear and nonlinear equations

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    As three-dimensional models are gaining importance, iterative methods will become almost mandatory. Among these, preconditioned Krylov subspace methods have been viewed as the most efficient and reliable, when solving linear as well as nonlinear systems of equations. There has been several different approaches taken to adapt iterative methods for supercomputers. Some of these approaches are discussed and the methods that deal more specifically with general unstructured sparse matrices, such as those arising from finite element methods, are emphasized.

  16. Sparse Substring Pattern Set Discovery Using Linear Programming Boosting

    NASA Astrophysics Data System (ADS)

    Kashihara, Kazuaki; Hatano, Kohei; Bannai, Hideo; Takeda, Masayuki

    In this paper, we consider finding a small set of substring patterns which classifies the given documents well. We formulate the problem as 1 norm soft margin optimization problem where each dimension corresponds to a substring pattern. Then we solve this problem by using LPBoost and an optimal substring discovery algorithm. Since the problem is a linear program, the resulting solution is likely to be sparse, which is useful for feature selection. We evaluate the proposed method for real data such as movie reviews.

  17. Nonlinear spike-and-slab sparse coding for interpretable image encoding.

    PubMed

    Shelton, Jacquelyn A; Sheikh, Abdul-Saboor; Bornschein, Jörg; Sterne, Philip; Lücke, Jörg

    2015-01-01

    Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (non)linear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process.

  18. Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding

    PubMed Central

    Shelton, Jacquelyn A.; Sheikh, Abdul-Saboor; Bornschein, Jörg; Sterne, Philip; Lücke, Jörg

    2015-01-01

    Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (non)linear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process. PMID:25954947

  19. Polarimetric SAR image classification based on discriminative dictionary learning model

    NASA Astrophysics Data System (ADS)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  20. 1-norm support vector novelty detection and its sparseness.

    PubMed

    Zhang, Li; Zhou, WeiDa

    2013-12-01

    This paper proposes a 1-norm support vector novelty detection (SVND) method and discusses its sparseness. 1-norm SVND is formulated as a linear programming problem and uses two techniques for inducing sparseness, or the 1-norm regularization and the hinge loss function. We also find two upper bounds on the sparseness of 1-norm SVND, or exact support vector (ESV) and kernel Gram matrix rank bounds. The ESV bound indicates that 1-norm SVND has a sparser representation model than SVND. The kernel Gram matrix rank bound can loosely estimate the sparseness of 1-norm SVND. Experimental results show that 1-norm SVND is feasible and effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sparse array angle estimation using reduced-dimension ESPRIT-MUSIC in MIMO radar.

    PubMed

    Zhang, Chaozhu; Pang, Yucai

    2013-01-01

    Sparse linear arrays provide better performance than the filled linear arrays in terms of angle estimation and resolution with reduced size and low cost. However, they are subject to manifold ambiguity. In this paper, both the transmit array and receive array are sparse linear arrays in the bistatic MIMO radar. Firstly, we present an ESPRIT-MUSIC method in which ESPRIT algorithm is used to obtain ambiguous angle estimates. The disambiguation algorithm uses MUSIC-based procedure to identify the true direction cosine estimate from a set of ambiguous candidate estimates. The paired transmit angle and receive angle can be estimated and the manifold ambiguity can be solved. However, the proposed algorithm has high computational complexity due to the requirement of two-dimension search. Further, the Reduced-Dimension ESPRIT-MUSIC (RD-ESPRIT-MUSIC) is proposed to reduce the complexity of the algorithm. And the RD-ESPRIT-MUSIC only demands one-dimension search. Simulation results demonstrate the effectiveness of the method.

  2. Improved mb-Ms Discrimination Using mb(P-coda) and MsU with Application to the Six North Korean Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Napoli, V.; Yoo, S. H.; Russell, D. R.

    2017-12-01

    To improve discrimination of small explosions and earthquakes, we developed a new magnitude scale based on the standard Ms:mb discrimination method. In place of 20 second Ms measurements we developed a unified Rayleigh and Love wave magnitude scale (MsU) that is designed to maximize available information from single stations and then combine magnitude estimates into network averages. Additionally, in place of mb(P) measurements we developed an mb(P-Coda) magnitude scale as the properties of the coda make sparse network mb(P-Coda) more robust and less variable than network mb(P) estimates. A previous mb:MsU study conducted in 2013 in the Korean Peninsula shows that the use of MsU in place of standard 20 second Ms, leads to increased population separation and reduced scattering. The goals of a combined mb(P-coda):MsU scale are reducing scatter, ensuring applicability at small magnitudes with sparse networks, and improving the overall distribution for mb:Ms earthquake and explosion populations. To test this method we are calculating mb(P-coda)and MsU for a catalog earthquakes located in and near the Korean Peninsula, for the six North Korean nuclear tests (4.1 < mb < 6.3) and for the 3 aftershocks to date that occurred after the sixth test (2.6 < ML < 4.0). Compared to the previous 2013 study, we expect to see greater separation in the populations and less scattering with the inclusion of mb(P-coda) and with the implementation of additional filters for MsU to improve signal-to-noise levels; this includes S-transform filtering for polarization and off-azimuth signal reduction at regional distances. As we are expanding our database of mb(P-coda):MsU measurements in the Korean Peninsula to determine the earthquake and explosion distribution, this research will address the limitations and potential for discriminating small magnitude events using sparse networks.

  3. Joint L2,1 Norm and Fisher Discrimination Constrained Feature Selection for Rational Synthesis of Microporous Aluminophosphates.

    PubMed

    Qi, Miao; Wang, Ting; Yi, Yugen; Gao, Na; Kong, Jun; Wang, Jianzhong

    2017-04-01

    Feature selection has been regarded as an effective tool to help researchers understand the generating process of data. For mining the synthesis mechanism of microporous AlPOs, this paper proposes a novel feature selection method by joint l 2,1 norm and Fisher discrimination constraints (JNFDC). In order to obtain more effective feature subset, the proposed method can be achieved in two steps. The first step is to rank the features according to sparse and discriminative constraints. The second step is to establish predictive model with the ranked features, and select the most significant features in the light of the contribution of improving the predictive accuracy. To the best of our knowledge, JNFDC is the first work which employs the sparse representation theory to explore the synthesis mechanism of six kinds of pore rings. Numerical simulations demonstrate that our proposed method can select significant features affecting the specified structural property and improve the predictive accuracy. Moreover, comparison results show that JNFDC can obtain better predictive performances than some other state-of-the-art feature selection methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effective real-time vehicle tracking using discriminative sparse coding on local patches

    NASA Astrophysics Data System (ADS)

    Chen, XiangJun; Ye, Feiyue; Ruan, Yaduan; Chen, Qimei

    2016-01-01

    A visual tracking framework that provides an object detector and tracker, which focuses on effective and efficient visual tracking in surveillance of real-world intelligent transport system applications, is proposed. The framework casts the tracking task as problems of object detection, feature representation, and classification, which is different from appearance model-matching approaches. Through a feature representation of discriminative sparse coding on local patches called DSCLP, which trains a dictionary on local clustered patches sampled from both positive and negative datasets, the discriminative power and robustness has been improved remarkably, which makes our method more robust to a complex realistic setting with all kinds of degraded image quality. Moreover, by catching objects through one-time background subtraction, along with offline dictionary training, computation time is dramatically reduced, which enables our framework to achieve real-time tracking performance even in a high-definition sequence with heavy traffic. Experiment results show that our work outperforms some state-of-the-art methods in terms of speed, accuracy, and robustness and exhibits increased robustness in a complex real-world scenario with degraded image quality caused by vehicle occlusion, image blur of rain or fog, and change in viewpoint or scale.

  5. Bilevel Model-Based Discriminative Dictionary Learning for Recognition.

    PubMed

    Zhou, Pan; Zhang, Chao; Lin, Zhouchen

    2017-03-01

    Most supervised dictionary learning methods optimize the combinations of reconstruction error, sparsity prior, and discriminative terms. Thus, the learnt dictionaries may not be optimal for recognition tasks. Also, the sparse codes learning models in the training and the testing phases are inconsistent. Besides, without utilizing the intrinsic data structure, many dictionary learning methods only employ the l 0 or l 1 norm to encode each datum independently, limiting the performance of the learnt dictionaries. We present a novel bilevel model-based discriminative dictionary learning method for recognition tasks. The upper level directly minimizes the classification error, while the lower level uses the sparsity term and the Laplacian term to characterize the intrinsic data structure. The lower level is subordinate to the upper level. Therefore, our model achieves an overall optimality for recognition in that the learnt dictionary is directly tailored for recognition. Moreover, the sparse codes learning models in the training and the testing phases can be the same. We further propose a novel method to solve our bilevel optimization problem. It first replaces the lower level with its Karush-Kuhn-Tucker conditions and then applies the alternating direction method of multipliers to solve the equivalent problem. Extensive experiments demonstrate the effectiveness and robustness of our method.

  6. Exploiting Attribute Correlations: A Novel Trace Lasso-Based Weakly Supervised Dictionary Learning Method.

    PubMed

    Wu, Lin; Wang, Yang; Pan, Shirui

    2017-12-01

    It is now well established that sparse representation models are working effectively for many visual recognition tasks, and have pushed forward the success of dictionary learning therein. Recent studies over dictionary learning focus on learning discriminative atoms instead of purely reconstructive ones. However, the existence of intraclass diversities (i.e., data objects within the same category but exhibit large visual dissimilarities), and interclass similarities (i.e., data objects from distinct classes but share much visual similarities), makes it challenging to learn effective recognition models. To this end, a large number of labeled data objects are required to learn models which can effectively characterize these subtle differences. However, labeled data objects are always limited to access, committing it difficult to learn a monolithic dictionary that can be discriminative enough. To address the above limitations, in this paper, we propose a weakly-supervised dictionary learning method to automatically learn a discriminative dictionary by fully exploiting visual attribute correlations rather than label priors. In particular, the intrinsic attribute correlations are deployed as a critical cue to guide the process of object categorization, and then a set of subdictionaries are jointly learned with respect to each category. The resulting dictionary is highly discriminative and leads to intraclass diversity aware sparse representations. Extensive experiments on image classification and object recognition are conducted to show the effectiveness of our approach.

  7. Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.

    PubMed

    Sajda, Paul

    2010-01-01

    In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.

  8. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    PubMed

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  9. Sparse graph regularization for robust crop mapping using hyperspectral remotely sensed imagery with very few in situ data

    NASA Astrophysics Data System (ADS)

    Xue, Zhaohui; Du, Peijun; Li, Jun; Su, Hongjun

    2017-02-01

    The generally limited availability of training data relative to the usually high data dimension pose a great challenge to accurate classification of hyperspectral imagery, especially for identifying crops characterized with highly correlated spectra. However, traditional parametric classification models are problematic due to the need of non-singular class-specific covariance matrices. In this research, a novel sparse graph regularization (SGR) method is presented, aiming at robust crop mapping using hyperspectral imagery with very few in situ data. The core of SGR lies in propagating labels from known data to unknown, which is triggered by: (1) the fraction matrix generated for the large unknown data by using an effective sparse representation algorithm with respect to the few training data serving as the dictionary; (2) the prediction function estimated for the few training data by formulating a regularization model based on sparse graph. Then, the labels of large unknown data can be obtained by maximizing the posterior probability distribution based on the two ingredients. SGR is more discriminative, data-adaptive, robust to noise, and efficient, which is unique with regard to previously proposed approaches and has high potentials in discriminating crops, especially when facing insufficient training data and high-dimensional spectral space. The study area is located at Zhangye basin in the middle reaches of Heihe watershed, Gansu, China, where eight crop types were mapped with Compact Airborne Spectrographic Imager (CASI) and Shortwave Infrared Airborne Spectrogrpahic Imager (SASI) hyperspectral data. Experimental results demonstrate that the proposed method significantly outperforms other traditional and state-of-the-art methods.

  10. Structured sparse linear graph embedding.

    PubMed

    Wang, Haixian

    2012-03-01

    Subspace learning is a core issue in pattern recognition and machine learning. Linear graph embedding (LGE) is a general framework for subspace learning. In this paper, we propose a structured sparse extension to LGE (SSLGE) by introducing a structured sparsity-inducing norm into LGE. Specifically, SSLGE casts the projection bases learning into a regression-type optimization problem, and then the structured sparsity regularization is applied to the regression coefficients. The regularization selects a subset of features and meanwhile encodes high-order information reflecting a priori structure information of the data. The SSLGE technique provides a unified framework for discovering structured sparse subspace. Computationally, by using a variational equality and the Procrustes transformation, SSLGE is efficiently solved with closed-form updates. Experimental results on face image show the effectiveness of the proposed method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    PubMed

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.

  12. Sparse principal component analysis in medical shape modeling

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus

    2006-03-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.

  13. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    NASA Astrophysics Data System (ADS)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  14. Linear data mining the Wichita clinical matrix suggests sleep and allostatic load involvement in chronic fatigue syndrome.

    PubMed

    Gurbaxani, Brian M; Jones, James F; Goertzel, Benjamin N; Maloney, Elizabeth M

    2006-04-01

    To provide a mathematical introduction to the Wichita (KS, USA) clinical dataset, which is all of the nongenetic data (no microarray or single nucleotide polymorphism data) from the 2-day clinical evaluation, and show the preliminary findings and limitations, of popular, matrix algebra-based data mining techniques. An initial matrix of 440 variables by 227 human subjects was reduced to 183 variables by 164 subjects. Variables were excluded that strongly correlated with chronic fatigue syndrome (CFS) case classification by design (for example, the multidimensional fatigue inventory [MFI] data), that were otherwise self reporting in nature and also tended to correlate strongly with CFS classification, or were sparse or nonvarying between case and control. Subjects were excluded if they did not clearly fall into well-defined CFS classifications, had comorbid depression with melancholic features, or other medical or psychiatric exclusions. The popular data mining techniques, principle components analysis (PCA) and linear discriminant analysis (LDA), were used to determine how well the data separated into groups. Two different feature selection methods helped identify the most discriminating parameters. Although purely biological features (variables) were found to separate CFS cases from controls, including many allostatic load and sleep-related variables, most parameters were not statistically significant individually. However, biological correlates of CFS, such as heart rate and heart rate variability, require further investigation. Feature selection of a limited number of variables from the purely biological dataset produced better separation between groups than a PCA of the entire dataset. Feature selection highlighted the importance of many of the allostatic load variables studied in more detail by Maloney and colleagues in this issue [1] , as well as some sleep-related variables. Nonetheless, matrix linear algebra-based data mining approaches appeared to be of limited utility when compared with more sophisticated nonlinear analyses on richer data types, such as those found in Maloney and colleagues [1] and Goertzel and colleagues [2] in this issue.

  15. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  16. Locality-preserving sparse representation-based classification in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Gao, Lianru; Yu, Haoyang; Zhang, Bing; Li, Qingting

    2016-10-01

    This paper proposes to combine locality-preserving projections (LPP) and sparse representation (SR) for hyperspectral image classification. The LPP is first used to reduce the dimensionality of all the training and testing data by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold, where the high-dimensional data lies. Then, SR codes the projected testing pixels as sparse linear combinations of all the training samples to classify the testing pixels by evaluating which class leads to the minimum approximation error. The integration of LPP and SR represents an innovative contribution to the literature. The proposed approach, called locality-preserving SR-based classification, addresses the imbalance between high dimensionality of hyperspectral data and the limited number of training samples. Experimental results on three real hyperspectral data sets demonstrate that the proposed approach outperforms the original counterpart, i.e., SR-based classification.

  17. Color Sparse Representations for Image Processing: Review, Models, and Prospects.

    PubMed

    Barthélemy, Quentin; Larue, Anthony; Mars, Jérôme I

    2015-11-01

    Sparse representations have been extended to deal with color images composed of three channels. A review of dictionary-learning-based sparse representations for color images is made here, detailing the differences between the models, and comparing their results on the real and simulated data. These models are considered in a unifying framework that is based on the degrees of freedom of the linear filtering/transformation of the color channels. Moreover, this allows it to be shown that the scalar quaternionic linear model is equivalent to constrained matrix-based color filtering, which highlights the filtering implicitly applied through this model. Based on this reformulation, the new color filtering model is introduced, using unconstrained filters. In this model, spatial morphologies of color images are encoded by atoms, and colors are encoded by color filters. Color variability is no longer captured in increasing the dictionary size, but with color filters, this gives an efficient color representation.

  18. Weakly Supervised Dictionary Learning

    NASA Astrophysics Data System (ADS)

    You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub

    2018-05-01

    We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.

  19. Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning.

    PubMed

    Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Lenglet, Christophe

    2018-02-15

    We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing for Sparse Inference-based Estimation of Fiber Crossings (X), for estimation of white matter fiber parameters from compressed (under-sampled) diffusion MRI (dMRI) data. BusineX combines compressive sensing with linear unmixing and introduces sparsity to the previously proposed multiresolution data fusion algorithm RubiX, resulting in a method for improved reconstruction, especially from data with lower number of diffusion gradients. We formulate the estimation of fiber parameters as a sparse signal recovery problem and propose a linear unmixing framework with sparse Bayesian learning for the recovery of sparse signals, the fiber orientations and volume fractions. The data is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible diffusion directions. Volume fractions of fibers along these directions define the dictionary weights. The proposed sparse inference, which is based on the dictionary representation, considers the sparsity of fiber populations and exploits the spatial redundancy in data representation, thereby facilitating inference from under-sampled q-space. The algorithm improves parameter estimation from dMRI through data-dependent local learning of hyperparameters, at each voxel and for each possible fiber orientation, that moderate the strength of priors governing the parameter variances. Experimental results on synthetic and in-vivo data show improved accuracy with a lower uncertainty in fiber parameter estimates. BusineX resolves a higher number of second and third fiber crossings. For under-sampled data, the algorithm is also shown to produce more reliable estimates. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Nonparametric, Coupled ,Bayesian ,Dictionary ,and Classifier Learning for Hyperspectral Classification.

    PubMed

    Akhtar, Naveed; Mian, Ajmal

    2017-10-03

    We present a principled approach to learn a discriminative dictionary along a linear classifier for hyperspectral classification. Our approach places Gaussian Process priors over the dictionary to account for the relative smoothness of the natural spectra, whereas the classifier parameters are sampled from multivariate Gaussians. We employ two Beta-Bernoulli processes to jointly infer the dictionary and the classifier. These processes are coupled under the same sets of Bernoulli distributions. In our approach, these distributions signify the frequency of the dictionary atom usage in representing class-specific training spectra, which also makes the dictionary discriminative. Due to the coupling between the dictionary and the classifier, the popularity of the atoms for representing different classes gets encoded into the classifier. This helps in predicting the class labels of test spectra that are first represented over the dictionary by solving a simultaneous sparse optimization problem. The labels of the spectra are predicted by feeding the resulting representations to the classifier. Our approach exploits the nonparametric Bayesian framework to automatically infer the dictionary size--the key parameter in discriminative dictionary learning. Moreover, it also has the desirable property of adaptively learning the association between the dictionary atoms and the class labels by itself. We use Gibbs sampling to infer the posterior probability distributions over the dictionary and the classifier under the proposed model, for which, we derive analytical expressions. To establish the effectiveness of our approach, we test it on benchmark hyperspectral images. The classification performance is compared with the state-of-the-art dictionary learning-based classification methods.

  1. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  2. Alternatively Constrained Dictionary Learning For Image Superresolution.

    PubMed

    Lu, Xiaoqiang; Yuan, Yuan; Yan, Pingkun

    2014-03-01

    Dictionaries are crucial in sparse coding-based algorithm for image superresolution. Sparse coding is a typical unsupervised learning method to study the relationship between the patches of high-and low-resolution images. However, most of the sparse coding methods for image superresolution fail to simultaneously consider the geometrical structure of the dictionary and the corresponding coefficients, which may result in noticeable superresolution reconstruction artifacts. In other words, when a low-resolution image and its corresponding high-resolution image are represented in their feature spaces, the two sets of dictionaries and the obtained coefficients have intrinsic links, which has not yet been well studied. Motivated by the development on nonlocal self-similarity and manifold learning, a novel sparse coding method is reported to preserve the geometrical structure of the dictionary and the sparse coefficients of the data. Moreover, the proposed method can preserve the incoherence of dictionary entries and provide the sparse coefficients and learned dictionary from a new perspective, which have both reconstruction and discrimination properties to enhance the learning performance. Furthermore, to utilize the model of the proposed method more effectively for single-image superresolution, this paper also proposes a novel dictionary-pair learning method, which is named as two-stage dictionary training. Extensive experiments are carried out on a large set of images comparing with other popular algorithms for the same purpose, and the results clearly demonstrate the effectiveness of the proposed sparse representation model and the corresponding dictionary learning algorithm.

  3. Land use and land cover classification for rural residential areas in China using soft-probability cascading of multifeatures

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liu, Yueyan; Zhang, Zuyu; Shen, Yonglin

    2017-10-01

    A multifeature soft-probability cascading scheme to solve the problem of land use and land cover (LULC) classification using high-spatial-resolution images to map rural residential areas in China is proposed. The proposed method is used to build midlevel LULC features. Local features are frequently considered as low-level feature descriptors in a midlevel feature learning method. However, spectral and textural features, which are very effective low-level features, are neglected. The acquisition of the dictionary of sparse coding is unsupervised, and this phenomenon reduces the discriminative power of the midlevel feature. Thus, we propose to learn supervised features based on sparse coding, a support vector machine (SVM) classifier, and a conditional random field (CRF) model to utilize the different effective low-level features and improve the discriminability of midlevel feature descriptors. First, three kinds of typical low-level features, namely, dense scale-invariant feature transform, gray-level co-occurrence matrix, and spectral features, are extracted separately. Second, combined with sparse coding and the SVM classifier, the probabilities of the different LULC classes are inferred to build supervised feature descriptors. Finally, the CRF model, which consists of two parts: unary potential and pairwise potential, is employed to construct an LULC classification map. Experimental results show that the proposed classification scheme can achieve impressive performance when the total accuracy reached about 87%.

  4. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage.

    PubMed

    Yan, Miling; Pamp, Sünje J; Fukuyama, Julia; Hwang, Peter H; Cho, Do-Yeon; Holmes, Susan; Relman, David A

    2013-12-11

    The indigenous microbiota of the nasal cavity plays important roles in human health and disease. Patterns of spatial variation in microbiota composition may help explain Staphylococcus aureus colonization and reveal interspecies and species-host interactions. To assess the biogeography of the nasal microbiota, we sampled healthy subjects, representing both S. aureus carriers and noncarriers at three nasal sites (anterior naris, middle meatus, and sphenoethmoidal recess). Phylogenetic compositional and sparse linear discriminant analyses revealed communities that differed according to site epithelium type and S. aureus culture-based carriage status. Corynebacterium accolens and C. pseudodiphtheriticum were identified as the most important microbial community determinants of S. aureus carriage, and competitive interactions were only evident at sites with ciliated pseudostratified columnar epithelium. In vitro cocultivation experiments provided supporting evidence of interactions among these species. These results highlight spatial variation in nasal microbial communities and differences in community composition between S. aureus carriers and noncarriers. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage

    PubMed Central

    Yan, Miling; Pamp, Sünje J.; Fukuyama, Julia; Hwang, Peter H.; Cho, Do-Yeon; Holmes, Susan; Relman, David A.

    2013-01-01

    Summary The indigenous microbiota of the nasal cavity plays important roles in human health and disease. Patterns of spatial variation in microbiota composition may help explain Staphylococcus aureus colonization, and reveal interspecies and species-host interactions. To assess the biogeography of the nasal microbiota, we sampled healthy subjects, representing both S. aureus carriers and non-carriers, at 3 nasal sites (anterior naris, middle meatus, and sphenoethmoidal recess). Phylogenetic compositional and sparse linear discriminant analyses revealed communities that differed according to site epithelium type and S. aureus culture-based carriage status. Corynebacterium accolens and C. pseudodiphtheriticum were identified as the most important microbial community determinants of S. aureus carriage, with competitive interactions evident only at sites with ciliated pseudostratified columnar epithelium. In vitro co-cultivation experiments provided supporting evidence of interactions among these species. These results highlight spatial variation in nasal microbial communities and differences in community composition between S. aureus carriers and non-carriers. PMID:24331461

  6. Many-core graph analytics using accelerated sparse linear algebra routines

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric

    2016-05-01

    Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.

  7. Two conditions for equivalence of 0-norm solution and 1-norm solution in sparse representation.

    PubMed

    Li, Yuanqing; Amari, Shun-Ichi

    2010-07-01

    In sparse representation, two important sparse solutions, the 0-norm and 1-norm solutions, have been receiving much of attention. The 0-norm solution is the sparsest, however it is not easy to obtain. Although the 1-norm solution may not be the sparsest, it can be easily obtained by the linear programming method. In many cases, the 0-norm solution can be obtained through finding the 1-norm solution. Many discussions exist on the equivalence of the two sparse solutions. This paper analyzes two conditions for the equivalence of the two sparse solutions. The first condition is necessary and sufficient, however, difficult to verify. Although the second is necessary but is not sufficient, it is easy to verify. In this paper, we analyze the second condition within the stochastic framework and propose a variant. We then prove that the equivalence of the two sparse solutions holds with high probability under the variant of the second condition. Furthermore, in the limit case where the 0-norm solution is extremely sparse, the second condition is also a sufficient condition with probability 1.

  8. Action Recognition Using Nonnegative Action Component Representation and Sparse Basis Selection.

    PubMed

    Wang, Haoran; Yuan, Chunfeng; Hu, Weiming; Ling, Haibin; Yang, Wankou; Sun, Changyin

    2014-02-01

    In this paper, we propose using high-level action units to represent human actions in videos and, based on such units, a novel sparse model is developed for human action recognition. There are three interconnected components in our approach. First, we propose a new context-aware spatial-temporal descriptor, named locally weighted word context, to improve the discriminability of the traditionally used local spatial-temporal descriptors. Second, from the statistics of the context-aware descriptors, we learn action units using the graph regularized nonnegative matrix factorization, which leads to a part-based representation and encodes the geometrical information. These units effectively bridge the semantic gap in action recognition. Third, we propose a sparse model based on a joint l2,1-norm to preserve the representative items and suppress noise in the action units. Intuitively, when learning the dictionary for action representation, the sparse model captures the fact that actions from the same class share similar units. The proposed approach is evaluated on several publicly available data sets. The experimental results and analysis clearly demonstrate the effectiveness of the proposed approach.

  9. Sparse Covariance Matrix Estimation by DCA-Based Algorithms.

    PubMed

    Phan, Duy Nhat; Le Thi, Hoai An; Dinh, Tao Pham

    2017-11-01

    This letter proposes a novel approach using the [Formula: see text]-norm regularization for the sparse covariance matrix estimation (SCME) problem. The objective function of SCME problem is composed of a nonconvex part and the [Formula: see text] term, which is discontinuous and difficult to tackle. Appropriate DC (difference of convex functions) approximations of [Formula: see text]-norm are used that result in approximation SCME problems that are still nonconvex. DC programming and DCA (DC algorithm), powerful tools in nonconvex programming framework, are investigated. Two DC formulations are proposed and corresponding DCA schemes developed. Two applications of the SCME problem that are considered are classification via sparse quadratic discriminant analysis and portfolio optimization. A careful empirical experiment is performed through simulated and real data sets to study the performance of the proposed algorithms. Numerical results showed their efficiency and their superiority compared with seven state-of-the-art methods.

  10. Computational efficiency improvements for image colorization

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Sharma, Gaurav; Aly, Hussein

    2013-03-01

    We propose an efficient algorithm for colorization of greyscale images. As in prior work, colorization is posed as an optimization problem: a user specifies the color for a few scribbles drawn on the greyscale image and the color image is obtained by propagating color information from the scribbles to surrounding regions, while maximizing the local smoothness of colors. In this formulation, colorization is obtained by solving a large sparse linear system, which normally requires substantial computation and memory resources. Our algorithm improves the computational performance through three innovations over prior colorization implementations. First, the linear system is solved iteratively without explicitly constructing the sparse matrix, which significantly reduces the required memory. Second, we formulate each iteration in terms of integral images obtained by dynamic programming, reducing repetitive computation. Third, we use a coarseto- fine framework, where a lower resolution subsampled image is first colorized and this low resolution color image is upsampled to initialize the colorization process for the fine level. The improvements we develop provide significant speedup and memory savings compared to the conventional approach of solving the linear system directly using off-the-shelf sparse solvers, and allow us to colorize images with typical sizes encountered in realistic applications on typical commodity computing platforms.

  11. Incomplete Sparse Approximate Inverses for Parallel Preconditioning

    DOE PAGES

    Anzt, Hartwig; Huckle, Thomas K.; Bräckle, Jürgen; ...

    2017-10-28

    In this study, we propose a new preconditioning method that can be seen as a generalization of block-Jacobi methods, or as a simplification of the sparse approximate inverse (SAI) preconditioners. The “Incomplete Sparse Approximate Inverses” (ISAI) is in particular efficient in the solution of sparse triangular linear systems of equations. Those arise, for example, in the context of incomplete factorization preconditioning. ISAI preconditioners can be generated via an algorithm providing fine-grained parallelism, which makes them attractive for hardware with a high concurrency level. Finally, in a study covering a large number of matrices, we identify the ISAI preconditioner as anmore » attractive alternative to exact triangular solves in the context of incomplete factorization preconditioning.« less

  12. Polarimetric LIDAR with FRI sampling for target characterization

    NASA Astrophysics Data System (ADS)

    Wijerathna, Erandi; Creusere, Charles D.; Voelz, David; Castorena, Juan

    2017-09-01

    Polarimetric LIDAR is a significant tool for current remote sensing applications. In addition, measurement of the full waveform of the LIDAR echo provides improved ranging and target discrimination, although, data storage volume in this approach can be problematic. In the work presented here, we investigated the practical issues related to the implementation of a full waveform LIDAR system to identify polarization characteristics of multiple targets within the footprint of the illumination beam. This work was carried out on a laboratory LIDAR testbed that features a flexible arrangement of targets and the ability to change the target polarization characteristics. Targets with different retardance characteristics were illuminated with a linearly polarized laser beam and the return pulse intensities were analyzed by rotating a linear analyzer polarizer in front of a high-speed detector. Additionally, we explored the applicability and the limitations of applying a sparse sampling approach based on Finite Rate of Innovations (FRI) to compress and recover the characteristic parameters of the pulses reflected from the targets. The pulse parameter values extracted by the FRI analysis were accurate and we successfully distinguished the polarimetric characteristics and the range of multiple targets at different depths within the same beam footprint. We also demonstrated the recovery of an unknown target retardance value from the echoes by applying a Mueller matrix system model.

  13. Vowel Imagery Decoding toward Silent Speech BCI Using Extreme Learning Machine with Electroencephalogram

    PubMed Central

    Kim, Jongin; Park, Hyeong-jun

    2016-01-01

    The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128

  14. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning.

    PubMed

    Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-02-22

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.

  15. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning

    PubMed Central

    Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-01-01

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406

  16. Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling.

    PubMed

    Tong, Tong; Wolz, Robin; Coupé, Pierrick; Hajnal, Joseph V; Rueckert, Daniel

    2013-08-01

    We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations

    DOE PAGES

    Fierce, Laura; McGraw, Robert L.

    2017-07-26

    Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less

  18. Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fierce, Laura; McGraw, Robert L.

    Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less

  19. A linear recurrent kernel online learning algorithm with sparse updates.

    PubMed

    Fan, Haijin; Song, Qing

    2014-02-01

    In this paper, we propose a recurrent kernel algorithm with selectively sparse updates for online learning. The algorithm introduces a linear recurrent term in the estimation of the current output. This makes the past information reusable for updating of the algorithm in the form of a recurrent gradient term. To ensure that the reuse of this recurrent gradient indeed accelerates the convergence speed, a novel hybrid recurrent training is proposed to switch on or off learning the recurrent information according to the magnitude of the current training error. Furthermore, the algorithm includes a data-dependent adaptive learning rate which can provide guaranteed system weight convergence at each training iteration. The learning rate is set as zero when the training violates the derived convergence conditions, which makes the algorithm updating process sparse. Theoretical analyses of the weight convergence are presented and experimental results show the good performance of the proposed algorithm in terms of convergence speed and estimation accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A general parallel sparse-blocked matrix multiply for linear scaling SCF theory

    NASA Astrophysics Data System (ADS)

    Challacombe, Matt

    2000-06-01

    A general approach to the parallel sparse-blocked matrix-matrix multiply is developed in the context of linear scaling self-consistent-field (SCF) theory. The data-parallel message passing method uses non-blocking communication to overlap computation and communication. The space filling curve heuristic is used to achieve data locality for sparse matrix elements that decay with “separation”. Load balance is achieved by solving the bin packing problem for blocks with variable size.With this new method as the kernel, parallel performance of the simplified density matrix minimization (SDMM) for solution of the SCF equations is investigated for RHF/6-31G ∗∗ water clusters and RHF/3-21G estane globules. Sustained rates above 5.7 GFLOPS for the SDMM have been achieved for (H 2 O) 200 with 95 Origin 2000 processors. Scalability is found to be limited by load imbalance, which increases with decreasing granularity, due primarily to the inhomogeneous distribution of variable block sizes.

  1. Adaptive low-rank subspace learning with online optimization for robust visual tracking.

    PubMed

    Liu, Risheng; Wang, Di; Han, Yuzhuo; Fan, Xin; Luo, Zhongxuan

    2017-04-01

    In recent years, sparse and low-rank models have been widely used to formulate appearance subspace for visual tracking. However, most existing methods only consider the sparsity or low-rankness of the coefficients, which is not sufficient enough for appearance subspace learning on complex video sequences. Moreover, as both the low-rank and the column sparse measures are tightly related to all the samples in the sequences, it is challenging to incrementally solve optimization problems with both nuclear norm and column sparse norm on sequentially obtained video data. To address above limitations, this paper develops a novel low-rank subspace learning with adaptive penalization (LSAP) framework for subspace based robust visual tracking. Different from previous work, which often simply decomposes observations as low-rank features and sparse errors, LSAP simultaneously learns the subspace basis, low-rank coefficients and column sparse errors to formulate appearance subspace. Within LSAP framework, we introduce a Hadamard production based regularization to incorporate rich generative/discriminative structure constraints to adaptively penalize the coefficients for subspace learning. It is shown that such adaptive penalization can significantly improve the robustness of LSAP on severely corrupted dataset. To utilize LSAP for online visual tracking, we also develop an efficient incremental optimization scheme for nuclear norm and column sparse norm minimizations. Experiments on 50 challenging video sequences demonstrate that our tracker outperforms other state-of-the-art methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery

    NASA Astrophysics Data System (ADS)

    Vishnukumar, S.; Wilscy, M.

    2017-12-01

    In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.

  3. Sparse Regression as a Sparse Eigenvalue Problem

    NASA Technical Reports Server (NTRS)

    Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai

    2008-01-01

    We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization

  4. Algorithms for solving large sparse systems of simultaneous linear equations on vector processors

    NASA Technical Reports Server (NTRS)

    David, R. E.

    1984-01-01

    Very efficient algorithms for solving large sparse systems of simultaneous linear equations have been developed for serial processing computers. These involve a reordering of matrix rows and columns in order to obtain a near triangular pattern of nonzero elements. Then an LU factorization is developed to represent the matrix inverse in terms of a sequence of elementary Gaussian eliminations, or pivots. In this paper it is shown how these algorithms are adapted for efficient implementation on vector processors. Results obtained on the CYBER 200 Model 205 are presented for a series of large test problems which show the comparative advantages of the triangularization and vector processing algorithms.

  5. Feature extraction with deep neural networks by a generalized discriminant analysis.

    PubMed

    Stuhlsatz, André; Lippel, Jens; Zielke, Thomas

    2012-04-01

    We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.

  6. Analysis of Optimal Sequential State Discrimination for Linearly Independent Pure Quantum States.

    PubMed

    Namkung, Min; Kwon, Younghun

    2018-04-25

    Recently, J. A. Bergou et al. proposed sequential state discrimination as a new quantum state discrimination scheme. In the scheme, by the successful sequential discrimination of a qubit state, receivers Bob and Charlie can share the information of the qubit prepared by a sender Alice. A merit of the scheme is that a quantum channel is established between Bob and Charlie, but a classical communication is not allowed. In this report, we present a method for extending the original sequential state discrimination of two qubit states to a scheme of N linearly independent pure quantum states. Specifically, we obtain the conditions for the sequential state discrimination of N = 3 pure quantum states. We can analytically provide conditions when there is a special symmetry among N = 3 linearly independent pure quantum states. Additionally, we show that the scenario proposed in this study can be applied to quantum key distribution. Furthermore, we show that the sequential state discrimination of three qutrit states performs better than the strategy of probabilistic quantum cloning.

  7. Enhancement of snow cover change detection with sparse representation and dictionary learning

    NASA Astrophysics Data System (ADS)

    Varade, D.; Dikshit, O.

    2014-11-01

    Sparse representation and decoding is often used for denoising images and compression of images with respect to inherent features. In this paper, we adopt a methodology incorporating sparse representation of a snow cover change map using the K-SVD trained dictionary and sparse decoding to enhance the change map. The pixels often falsely characterized as "changes" are eliminated using this approach. The preliminary change map was generated using differenced NDSI or S3 maps in case of Resourcesat-2 and Landsat 8 OLI imagery respectively. These maps are extracted into patches for compressed sensing using Discrete Cosine Transform (DCT) to generate an initial dictionary which is trained by the K-SVD approach. The trained dictionary is used for sparse coding of the change map using the Orthogonal Matching Pursuit (OMP) algorithm. The reconstructed change map incorporates a greater degree of smoothing and represents the features (snow cover changes) with better accuracy. The enhanced change map is segmented using kmeans to discriminate between the changed and non-changed pixels. The segmented enhanced change map is compared, firstly with the difference of Support Vector Machine (SVM) classified NDSI maps and secondly with a reference data generated as a mask by visual interpretation of the two input images. The methodology is evaluated using multi-spectral datasets from Resourcesat-2 and Landsat-8. The k-hat statistic is computed to determine the accuracy of the proposed approach.

  8. Sparse partial least squares regression for simultaneous dimension reduction and variable selection

    PubMed Central

    Chun, Hyonho; Keleş, Sündüz

    2010-01-01

    Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency of the partial least squares estimator for a univariate response does not hold with the very large p and small n paradigm. We derive a similar result for a multivariate response regression with partial least squares. We then propose a sparse partial least squares formulation which aims simultaneously to achieve good predictive performance and variable selection by producing sparse linear combinations of the original predictors. We provide an efficient implementation of sparse partial least squares regression and compare it with well-known variable selection and dimension reduction approaches via simulation experiments. We illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene expression and genomewide binding data. PMID:20107611

  9. A face and palmprint recognition approach based on discriminant DCT feature extraction.

    PubMed

    Jing, Xiao-Yuan; Zhang, David

    2004-12-01

    In the field of image processing and recognition, discrete cosine transform (DCT) and linear discrimination are two widely used techniques. Based on them, we present a new face and palmprint recognition approach in this paper. It first uses a two-dimensional separability judgment to select the DCT frequency bands with favorable linear separability. Then from the selected bands, it extracts the linear discriminative features by an improved Fisherface method and performs the classification by the nearest neighbor classifier. We detailedly analyze theoretical advantages of our approach in feature extraction. The experiments on face databases and palmprint database demonstrate that compared to the state-of-the-art linear discrimination methods, our approach obtains better classification performance. It can significantly improve the recognition rates for face and palmprint data and effectively reduce the dimension of feature space.

  10. Joint sparse representation for robust multimodal biometrics recognition.

    PubMed

    Shekhar, Sumit; Patel, Vishal M; Nasrabadi, Nasser M; Chellappa, Rama

    2014-01-01

    Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.

  11. Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning.

    PubMed

    Li, Bing; Yuan, Chunfeng; Xiong, Weihua; Hu, Weiming; Peng, Houwen; Ding, Xinmiao; Maybank, Steve

    2017-12-01

    In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL.

  12. Robust representation and recognition of facial emotions using extreme sparse learning.

    PubMed

    Shojaeilangari, Seyedehsamaneh; Yau, Wei-Yun; Nandakumar, Karthik; Li, Jun; Teoh, Eam Khwang

    2015-07-01

    Recognition of natural emotions from human faces is an interesting topic with a wide range of potential applications, such as human-computer interaction, automated tutoring systems, image and video retrieval, smart environments, and driver warning systems. Traditionally, facial emotion recognition systems have been evaluated on laboratory controlled data, which is not representative of the environment faced in real-world applications. To robustly recognize the facial emotions in real-world natural situations, this paper proposes an approach called extreme sparse learning, which has the ability to jointly learn a dictionary (set of basis) and a nonlinear classification model. The proposed approach combines the discriminative power of extreme learning machine with the reconstruction property of sparse representation to enable accurate classification when presented with noisy signals and imperfect data recorded in natural settings. In addition, this paper presents a new local spatio-temporal descriptor that is distinctive and pose-invariant. The proposed framework is able to achieve the state-of-the-art recognition accuracy on both acted and spontaneous facial emotion databases.

  13. Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method

    NASA Technical Reports Server (NTRS)

    Whitaker, David L.

    1993-01-01

    A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.

  14. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  15. Exploring nonlinear feature space dimension reduction and data representation in breast Cadx with Laplacian eigenmaps and t-SNE.

    PubMed

    Jamieson, Andrew R; Giger, Maryellen L; Drukker, Karen; Li, Hui; Yuan, Yading; Bhooshan, Neha

    2010-01-01

    In this preliminary study, recently developed unsupervised nonlinear dimension reduction (DR) and data representation techniques were applied to computer-extracted breast lesion feature spaces across three separate imaging modalities: Ultrasound (U.S.) with 1126 cases, dynamic contrast enhanced magnetic resonance imaging with 356 cases, and full-field digital mammography with 245 cases. Two methods for nonlinear DR were explored: Laplacian eigenmaps [M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput. 15, 1373-1396 (2003)] and t-distributed stochastic neighbor embedding (t-SNE) [L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res. 9, 2579-2605 (2008)]. These methods attempt to map originally high dimensional feature spaces to more human interpretable lower dimensional spaces while preserving both local and global information. The properties of these methods as applied to breast computer-aided diagnosis (CADx) were evaluated in the context of malignancy classification performance as well as in the visual inspection of the sparseness within the two-dimensional and three-dimensional mappings. Classification performance was estimated by using the reduced dimension mapped feature output as input into both linear and nonlinear classifiers: Markov chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) and linear discriminant analysis. The new techniques were compared to previously developed breast CADx methodologies, including automatic relevance determination and linear stepwise (LSW) feature selection, as well as a linear DR method based on principal component analysis. Using ROC analysis and 0.632+bootstrap validation, 95% empirical confidence intervals were computed for the each classifier's AUC performance. In the large U.S. data set, sample high performance results include, AUC0.632+ = 0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features and AUC0.632+ = 0.87 with interval [0.817;0.906] for four LSW selected features compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+ = 0.90 with interval [0.847;0.919], all using the MCMC-BANN. Preliminary results appear to indicate capability for the new methods to match or exceed classification performance of current advanced breast lesion CADx algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, DR techniques offer a complementary approach, which can aid elucidation of additional properties associated with the data. Specifically, the new techniques were shown to possess the added benefit of delivering sparse lower dimensional representations for visual interpretation, revealing intricate data structure of the feature space.

  16. Computing Gröbner Bases within Linear Algebra

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira

    In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.

  17. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.

    PubMed

    Peng, Yong; Lu, Bao-Liang; Wang, Suhang

    2015-05-01

    Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Continuous movement decoding using a target-dependent model with EMG inputs.

    PubMed

    Sachs, Nicholas A; Corbett, Elaine A; Miller, Lee E; Perreault, Eric J

    2011-01-01

    Trajectory-based models that incorporate target position information have been shown to accurately decode reaching movements from bio-control signals, such as muscle (EMG) and cortical activity (neural spikes). One major hurdle in implementing such models for neuroprosthetic control is that they are inherently designed to decode single reaches from a position of origin to a specific target. Gaze direction can be used to identify appropriate targets, however information regarding movement intent is needed to determine when a reach is meant to begin and when it has been completed. We used linear discriminant analysis to classify limb states into movement classes based on recorded EMG from a sparse set of shoulder muscles. We then used the detected state transitions to update target information in a mixture of Kalman filters that incorporated target position explicitly in the state, and used EMG activity to decode arm movements. Updating the target position initiated movement along new trajectories, allowing a sequence of appropriately timed single reaches to be decoded in series and enabling highly accurate continuous control.

  19. Design principles of the sparse coding network and the role of “sister cells” in the olfactory system of Drosophila

    PubMed Central

    Zhang, Danke; Li, Yuanqing; Wu, Si; Rasch, Malte J.

    2013-01-01

    Sensory systems face the challenge to represent sensory inputs in a way to allow easy readout of sensory information by higher brain areas. In the olfactory system of the fly drosopohila melanogaster, projection neurons (PNs) of the antennal lobe (AL) convert a dense activation of glomeruli into a sparse, high-dimensional firing pattern of Kenyon cells (KCs) in the mushroom body (MB). Here we investigate the design principles of the olfactory system of drosophila in regard to the capabilities to discriminate odor quality from the MB representation and its robustness to different types of noise. We focus on understanding the role of highly correlated homotypic projection neurons (“sister cells”) found in the glomeruli of flies. These cells are coupled by gap-junctions and receive almost identical sensory inputs, but target randomly different KCs in MB. We show that sister cells might play a crucial role in increasing the robustness of the MB odor representation to noise. Computationally, sister cells thus might help the system to improve the generalization capabilities in face of noise without impairing the discriminability of odor quality at the same time. PMID:24167488

  20. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    PubMed

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  1. Convergence Speed of a Dynamical System for Sparse Recovery

    NASA Astrophysics Data System (ADS)

    Balavoine, Aurele; Rozell, Christopher J.; Romberg, Justin

    2013-09-01

    This paper studies the convergence rate of a continuous-time dynamical system for L1-minimization, known as the Locally Competitive Algorithm (LCA). Solving L1-minimization} problems efficiently and rapidly is of great interest to the signal processing community, as these programs have been shown to recover sparse solutions to underdetermined systems of linear equations and come with strong performance guarantees. The LCA under study differs from the typical L1 solver in that it operates in continuous time: instead of being specified by discrete iterations, it evolves according to a system of nonlinear ordinary differential equations. The LCA is constructed from simple components, giving it the potential to be implemented as a large-scale analog circuit. The goal of this paper is to give guarantees on the convergence time of the LCA system. To do so, we analyze how the LCA evolves as it is recovering a sparse signal from underdetermined measurements. We show that under appropriate conditions on the measurement matrix and the problem parameters, the path the LCA follows can be described as a sequence of linear differential equations, each with a small number of active variables. This allows us to relate the convergence time of the system to the restricted isometry constant of the matrix. Interesting parallels to sparse-recovery digital solvers emerge from this study. Our analysis covers both the noisy and noiseless settings and is supported by simulation results.

  2. Massively parallel sparse matrix function calculations with NTPoly

    NASA Astrophysics Data System (ADS)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  3. Global and local processing in adult humans (Homo sapiens), 5-year-old children (Homo sapiens), and adult cotton-top tamarins (Saguinus oedipus).

    PubMed

    Neiworth, Julie J; Gleichman, Amy J; Olinick, Anne S; Lamp, Kristen E

    2006-11-01

    This study compared adults (Homo sapiens), young children (Homo sapiens), and adult tamarins (Saguinus oedipus) while they discriminated global and local properties of stimuli. Subjects were trained to discriminate a circle made of circle elements from a square made of square elements and were tested with circles made of squares and squares made of circles. Adult humans showed a global bias in testing that was unaffected by the density of the elements in the stimuli. Children showed a global bias with dense displays but discriminated by both local and global properties with sparse displays. Adult tamarins' biases matched those of the children. The striking similarity between the perceptual processing of adult monkeys and humans diagnosed with autism and the difference between this and normatively developing human perception is discussed.

  4. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Valeev, Edward F.; Neese, Frank

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate previous implementation.

  5. Discriminant forest classification method and system

    DOEpatents

    Chen, Barry Y.; Hanley, William G.; Lemmond, Tracy D.; Hiller, Lawrence J.; Knapp, David A.; Mugge, Marshall J.

    2012-11-06

    A hybrid machine learning methodology and system for classification that combines classical random forest (RF) methodology with discriminant analysis (DA) techniques to provide enhanced classification capability. A DA technique which uses feature measurements of an object to predict its class membership, such as linear discriminant analysis (LDA) or Andersen-Bahadur linear discriminant technique (AB), is used to split the data at each node in each of its classification trees to train and grow the trees and the forest. When training is finished, a set of n DA-based decision trees of a discriminant forest is produced for use in predicting the classification of new samples of unknown class.

  6. Linear Discriminant Analysis on a Spreadsheet.

    ERIC Educational Resources Information Center

    Busbey, Arthur Bresnahan III

    1989-01-01

    Described is a software package, "Trapeze," within which a routine called LinDis can be used. Discussed are teaching methods, the linear discriminant model and equations, the LinDis worksheet, and an example. The set up for this routine is included. (CW)

  7. Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's Disease diagnosis.

    PubMed

    Ortiz, Andrés; Munilla, Jorge; Álvarez-Illán, Ignacio; Górriz, Juan M; Ramírez, Javier

    2015-01-01

    Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people. Its development has been shown to be closely related to changes in the brain connectivity network and in the brain activation patterns along with structural changes caused by the neurodegenerative process. Methods to infer dependence between brain regions are usually derived from the analysis of covariance between activation levels in the different areas. However, these covariance-based methods are not able to estimate conditional independence between variables to factor out the influence of other regions. Conversely, models based on the inverse covariance, or precision matrix, such as Sparse Gaussian Graphical Models allow revealing conditional independence between regions by estimating the covariance between two variables given the rest as constant. This paper uses Sparse Inverse Covariance Estimation (SICE) methods to learn undirected graphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose (18F-FDG) Position Emission Tomography (PET) data and segmented Magnetic Resonance images (MRI), drawn from the ADNI database, for Control, MCI (Mild Cognitive Impairment Subjects), and AD subjects. Sparse computation fits perfectly here as brain regions usually only interact with a few other areas. The models clearly show different metabolic covariation patters between subject groups, revealing the loss of strong connections in AD and MCI subjects when compared to Controls. Similarly, the variance between GM (Gray Matter) densities of different regions reveals different structural covariation patterns between the different groups. Thus, the different connectivity patterns for controls and AD are used in this paper to select regions of interest in PET and GM images with discriminative power for early AD diagnosis. Finally, functional an structural models are combined to leverage the classification accuracy. The results obtained in this work show the usefulness of the Sparse Gaussian Graphical models to reveal functional and structural connectivity patterns. This information provided by the sparse inverse covariance matrices is not only used in an exploratory way but we also propose a method to use it in a discriminative way. Regression coefficients are used to compute reconstruction errors for the different classes that are then introduced in a SVM for classification. Classification experiments performed using 68 Controls, 70 AD, and 111 MCI images and assessed by cross-validation show the effectiveness of the proposed method.

  8. From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild.

    PubMed

    Asthana, Akshay; Zafeiriou, Stefanos; Tzimiropoulos, Georgios; Cheng, Shiyang; Pantic, Maja

    2015-06-01

    We propose a face alignment framework that relies on the texture model generated by the responses of discriminatively trained part-based filters. Unlike standard texture models built from pixel intensities or responses generated by generic filters (e.g. Gabor), our framework has two important advantages. First, by virtue of discriminative training, invariance to external variations (like identity, pose, illumination and expression) is achieved. Second, we show that the responses generated by discriminatively trained filters (or patch-experts) are sparse and can be modeled using a very small number of parameters. As a result, the optimization methods based on the proposed texture model can better cope with unseen variations. We illustrate this point by formulating both part-based and holistic approaches for generic face alignment and show that our framework outperforms the state-of-the-art on multiple "wild" databases. The code and dataset annotations are available for research purposes from http://ibug.doc.ic.ac.uk/resources.

  9. Statistical classification techniques for engineering and climatic data samples

    NASA Technical Reports Server (NTRS)

    Temple, E. C.; Shipman, J. R.

    1981-01-01

    Fisher's sample linear discriminant function is modified through an appropriate alteration of the common sample variance-covariance matrix. The alteration consists of adding nonnegative values to the eigenvalues of the sample variance covariance matrix. The desired results of this modification is to increase the number of correct classifications by the new linear discriminant function over Fisher's function. This study is limited to the two-group discriminant problem.

  10. Sparsity-Cognizant Algorithms with Applications to Communications, Signal Processing, and the Smart Grid

    NASA Astrophysics Data System (ADS)

    Zhu, Hao

    Sparsity plays an instrumental role in a plethora of scientific fields, including statistical inference for variable selection, parsimonious signal representations, and solving under-determined systems of linear equations - what has led to the ground-breaking result of compressive sampling (CS). This Thesis leverages exciting ideas of sparse signal reconstruction to develop sparsity-cognizant algorithms, and analyze their performance. The vision is to devise tools exploiting the 'right' form of sparsity for the 'right' application domain of multiuser communication systems, array signal processing systems, and the emerging challenges in the smart power grid. Two important power system monitoring tasks are addressed first by capitalizing on the hidden sparsity. To robustify power system state estimation, a sparse outlier model is leveraged to capture the possible corruption in every datum, while the problem nonconvexity due to nonlinear measurements is handled using the semidefinite relaxation technique. Different from existing iterative methods, the proposed algorithm approximates well the global optimum regardless of the initialization. In addition, for enhanced situational awareness, a novel sparse overcomplete representation is introduced to capture (possibly multiple) line outages, and develop real-time algorithms for solving the combinatorially complex identification problem. The proposed algorithms exhibit near-optimal performance while incurring only linear complexity in the number of lines, which makes it possible to quickly bring contingencies to attention. This Thesis also accounts for two basic issues in CS, namely fully-perturbed models and the finite alphabet property. The sparse total least-squares (S-TLS) approach is proposed to furnish CS algorithms for fully-perturbed linear models, leading to statistically optimal and computationally efficient solvers. The S-TLS framework is well motivated for grid-based sensing applications and exhibits higher accuracy than existing sparse algorithms. On the other hand, exploiting the finite alphabet of unknown signals emerges naturally in communication systems, along with sparsity coming from the low activity of each user. Compared to approaches only accounting for either one of the two, joint exploitation of both leads to statistically optimal detectors with improved error performance.

  11. Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

    PubMed

    Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua

    2014-04-02

    The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.

  12. Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise

    NASA Astrophysics Data System (ADS)

    Orović, Irena; Stanković, Srdjan; Amin, Moeness

    2013-05-01

    A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.

  13. Hierarchical Bayesian sparse image reconstruction with application to MRFM.

    PubMed

    Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves

    2009-09-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

  14. Simultaneous analysis of large INTEGRAL/SPI1 datasets: Optimizing the computation of the solution and its variance using sparse matrix algorithms

    NASA Astrophysics Data System (ADS)

    Bouchet, L.; Amestoy, P.; Buttari, A.; Rouet, F.-H.; Chauvin, M.

    2013-02-01

    Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage.

  15. Solving large tomographic linear systems: size reduction and error estimation

    NASA Astrophysics Data System (ADS)

    Voronin, Sergey; Mikesell, Dylan; Slezak, Inna; Nolet, Guust

    2014-10-01

    We present a new approach to reduce a sparse, linear system of equations associated with tomographic inverse problems. We begin by making a modification to the commonly used compressed sparse-row format, whereby our format is tailored to the sparse structure of finite-frequency (volume) sensitivity kernels in seismic tomography. Next, we cluster the sparse matrix rows to divide a large matrix into smaller subsets representing ray paths that are geographically close. Singular value decomposition of each subset allows us to project the data onto a subspace associated with the largest eigenvalues of the subset. After projection we reject those data that have a signal-to-noise ratio (SNR) below a chosen threshold. Clustering in this way assures that the sparse nature of the system is minimally affected by the projection. Moreover, our approach allows for a precise estimation of the noise affecting the data while also giving us the ability to identify outliers. We illustrate the method by reducing large matrices computed for global tomographic systems with cross-correlation body wave delays, as well as with surface wave phase velocity anomalies. For a massive matrix computed for 3.7 million Rayleigh wave phase velocity measurements, imposing a threshold of 1 for the SNR, we condensed the matrix size from 1103 to 63 Gbyte. For a global data set of multiple-frequency P wave delays from 60 well-distributed deep earthquakes we obtain a reduction to 5.9 per cent. This type of reduction allows one to avoid loss of information due to underparametrizing models. Alternatively, if data have to be rejected to fit the system into computer memory, it assures that the most important data are preserved.

  16. Performance bounds for modal analysis using sparse linear arrays

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Pezeshki, Ali; Scharf, Louis L.; Chi, Yuejie

    2017-05-01

    We study the performance of modal analysis using sparse linear arrays (SLAs) such as nested and co-prime arrays, in both first-order and second-order measurement models. We treat SLAs as constructed from a subset of sensors in a dense uniform linear array (ULA), and characterize the performance loss of SLAs with respect to the ULA due to using much fewer sensors. In particular, we claim that, provided the same aperture, in order to achieve comparable performance in terms of Cramér-Rao bound (CRB) for modal analysis, SLAs require more snapshots, of which the number is about the number of snapshots used by ULA times the compression ratio in the number of sensors. This is shown analytically for the case with one undamped mode, as well as empirically via extensive numerical experiments for more complex scenarios. Moreover, the misspecified CRB proposed by Richmond and Horowitz is also studied, where SLAs suffer more performance loss than their ULA counterpart.

  17. Augmented l1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm. Revision 1

    DTIC Science & Technology

    2012-10-17

    nonzero and sampled from the standard Gaussian distribution (for Figure 2) or the Bernoulli distribution (for Figure 3). Both tests had the same sensing...dual variable y(k) Figure 3: Convergence of primal and dual variables of three algorithms on Bernoulli sparse x0 was the slowest. Besides the obvious...slower convergence than the final stage. Comparing the results of two tests, the convergence was faster on the Bernoulli sparse signal than the

  18. Linear discriminant analysis with misallocation in training samples

    NASA Technical Reports Server (NTRS)

    Chhikara, R. (Principal Investigator); Mckeon, J.

    1982-01-01

    Linear discriminant analysis for a two-class case is studied in the presence of misallocation in training samples. A general appraoch to modeling of mislocation is formulated, and the mean vectors and covariance matrices of the mixture distributions are derived. The asymptotic distribution of the discriminant boundary is obtained and the asymptotic first two moments of the two types of error rate given. Certain numerical results for the error rates are presented by considering the random and two non-random misallocation models. It is shown that when the allocation procedure for training samples is objectively formulated, the effect of misallocation on the error rates of the Bayes linear discriminant rule can almost be eliminated. If, however, this is not possible, the use of Fisher rule may be preferred over the Bayes rule.

  19. Learning Discriminative Sparse Models for Source Separation and Mapping of Hyperspectral Imagery

    DTIC Science & Technology

    2010-10-01

    allowing spectroscopic analysis. The data acquired by these spectrometers play significant roles in biomedical, environmental, land-survey, and...noisy in nature , so there are differences between the true and the observed signals. In addition, there are distortions associated with atmosphere... handwriting classification, showing advantages of using both terms instead of only using the reconstruction term as in previous approaches. C. Dictionary

  20. An All-Fragments Grammar for Simple and Accurate Parsing

    DTIC Science & Technology

    2012-03-21

    Tsujii. Probabilistic CFG with latent annotations. In Proceedings of ACL, 2005. Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In...Proceedings of NAACL-HLT, 2007. Slav Petrov and Dan Klein. Sparse Multi-Scale Grammars for Discriminative Latent Variable Parsing. In Proceedings of...EMNLP, 2008. Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning Accurate, Compact, and Interpretable Tree Annotation. In Proceedings

  1. Spatio-temporal features for tracking and quadruped/biped discrimination

    NASA Astrophysics Data System (ADS)

    Rickman, Rick; Copsey, Keith; Bamber, David C.; Page, Scott F.

    2012-05-01

    Techniques such as SIFT and SURF facilitate efficient and robust image processing operations through the use of sparse and compact spatial feature descriptors and show much potential for defence and security applications. This paper considers the extension of such techniques to include information from the temporal domain, to improve utility in applications involving moving imagery within video data. In particular, the paper demonstrates how spatio-temporal descriptors can be used very effectively as the basis of a target tracking system and as target discriminators which can distinguish between bipeds and quadrupeds. Results using sequences of video imagery of walking humans and dogs are presented, and the relative merits of the approach are discussed.

  2. Scintillation decay time and pulse shape discrimination in oxygenated and deoxygenated solutions of linear alkylbenzene for the SNO+ experiment

    NASA Astrophysics Data System (ADS)

    O'Keeffe, H. M.; O'Sullivan, E.; Chen, M. C.

    2011-06-01

    The SNO+ liquid scintillator experiment is under construction in the SNOLAB facility in Canada. The success of this experiment relies upon accurate characterization of the liquid scintillator, linear alkylbenzene (LAB). In this paper, scintillation decay times for alpha and electron excitations in LAB with 2 g/L PPO are presented for both oxygenated and deoxygenated solutions. While deoxygenation is expected to improve pulse shape discrimination in liquid scintillators, it is not commonly demonstrated in the literature. This paper shows that for linear alkylbenzene, deoxygenation improves discrimination between electron and alpha excitations in the scintillator.

  3. Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures

    NASA Astrophysics Data System (ADS)

    Li, Quanbao; Wei, Fajie; Zhou, Shenghan

    2017-05-01

    The linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.

  4. Parameter Estimation and Model Selection for Indoor Environments Based on Sparse Observations

    NASA Astrophysics Data System (ADS)

    Dehbi, Y.; Loch-Dehbi, S.; Plümer, L.

    2017-09-01

    This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  5. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  6. The mean-square error optimal linear discriminant function and its application to incomplete data vectors

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1979-01-01

    In many pattern recognition problems, data vectors are classified although one or more of the data vector elements are missing. This problem occurs in remote sensing when the ground is obscured by clouds. Optimal linear discrimination procedures for classifying imcomplete data vectors are discussed.

  7. Sparse distributed memory: understanding the speed and robustness of expert memory

    PubMed Central

    Brogliato, Marcelo S.; Chada, Daniel M.; Linhares, Alexandre

    2014-01-01

    How can experts, sometimes in exacting detail, almost immediately and very precisely recall memory items from a vast repertoire? The problem in which we will be interested concerns models of theoretical neuroscience that could explain the speed and robustness of an expert's recollection. The approach is based on Sparse Distributed Memory, which has been shown to be plausible, both in a neuroscientific and in a psychological manner, in a number of ways. A crucial characteristic concerns the limits of human recollection, the “tip-of-tongue” memory event—which is found at a non-linearity in the model. We expand the theoretical framework, deriving an optimization formula to solve this non-linearity. Numerical results demonstrate how the higher frequency of rehearsal, through work or study, immediately increases the robustness and speed associated with expert memory. PMID:24808842

  8. Image super-resolution via sparse representation.

    PubMed

    Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi

    2010-11-01

    This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.

  9. Joint Sparse Representation for Robust Multimodal Biometrics Recognition

    DTIC Science & Technology

    2014-01-01

    comprehensive multimodal dataset and a face database are described in section V. Finally, in section VI, we discuss the computational complexity of...fingerprint, iris, palmprint , hand geometry and voice from subjects of different age, gender and ethnicity as described in Table I. It is a...Taylor, “Constructing nonlinear discriminants from multiple data views,” Machine Learning and Knowl- edge Discovery in Databases , pp. 328–343, 2010

  10. Exploring Deep Learning and Sparse Matrix Format Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y.; Liao, C.; Shen, X.

    We proposed to explore the use of Deep Neural Networks (DNN) for addressing the longstanding barriers. The recent rapid progress of DNN technology has created a large impact in many fields, which has significantly improved the prediction accuracy over traditional machine learning techniques in image classifications, speech recognitions, machine translations, and so on. To some degree, these tasks resemble the decision makings in many HPC tasks, including the aforementioned format selection for SpMV and linear solver selection. For instance, sparse matrix format selection is akin to image classification—such as, to tell whether an image contains a dog or a cat;more » in both problems, the right decisions are primarily determined by the spatial patterns of the elements in an input. For image classification, the patterns are of pixels, and for sparse matrix format selection, they are of non-zero elements. DNN could be naturally applied if we regard a sparse matrix as an image and the format selection or solver selection as classification problems.« less

  11. Systematic sparse matrix error control for linear scaling electronic structure calculations.

    PubMed

    Rubensson, Emanuel H; Sałek, Paweł

    2005-11-30

    Efficient truncation criteria used in multiatom blocked sparse matrix operations for ab initio calculations are proposed. As system size increases, so does the need to stay on top of errors and still achieve high performance. A variant of a blocked sparse matrix algebra to achieve strict error control with good performance is proposed. The presented idea is that the condition to drop a certain submatrix should depend not only on the magnitude of that particular submatrix, but also on which other submatrices that are dropped. The decision to remove a certain submatrix is based on the contribution the removal would cause to the error in the chosen norm. We study the effect of an accumulated truncation error in iterative algorithms like trace correcting density matrix purification. One way to reduce the initial exponential growth of this error is presented. The presented error control for a sparse blocked matrix toolbox allows for achieving optimal performance by performing only necessary operations needed to maintain the requested level of accuracy. Copyright 2005 Wiley Periodicals, Inc.

  12. Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.

    PubMed

    Coviello, Christian M; Kozick, Richard J; Hurrell, Andrew; Smith, Penny Probert; Coussios, Constantin-C

    2012-10-01

    A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

  13. Insights from Classifying Visual Concepts with Multiple Kernel Learning

    PubMed Central

    Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki

    2012-01-01

    Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970

  14. Computing row and column counts for sparse QR and LU factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, John R.; Li, Xiaoye S.; Ng, Esmond G.

    2001-01-01

    We present algorithms to determine the number of nonzeros in each row and column of the factors of a sparse matrix, for both the QR factorization and the LU factorization with partial pivoting. The algorithms use only the nonzero structure of the input matrix, and run in time nearly linear in the number of nonzeros in that matrix. They may be used to set up data structures or schedule parallel operations in advance of the numerical factorization. The row and column counts we compute are upper bounds on the actual counts. If the input matrix is strong Hall and theremore » is no coincidental numerical cancellation, the counts are exact for QR factorization and are the tightest bounds possible for LU factorization. These algorithms are based on our earlier work on computing row and column counts for sparse Cholesky factorization, plus an efficient method to compute the column elimination tree of a sparse matrix without explicitly forming the product of the matrix and its transpose.« less

  15. Third-Degree Price Discrimination Revisited

    ERIC Educational Resources Information Center

    Kwon, Youngsun

    2006-01-01

    The author derives the probability that price discrimination improves social welfare, using a simple model of third-degree price discrimination assuming two independent linear demands. The probability that price discrimination raises social welfare increases as the preferences or incomes of consumer groups become more heterogeneous. He derives the…

  16. Learning Efficient Sparse and Low Rank Models.

    PubMed

    Sprechmann, P; Bronstein, A M; Sapiro, G

    2015-09-01

    Parsimony, including sparsity and low rank, has been shown to successfully model data in numerous machine learning and signal processing tasks. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with parsimony-promoting terms. The inherently sequential structure and data-dependent complexity and latency of iterative optimization constitute a major limitation in many applications requiring real-time performance or involving large-scale data. Another limitation encountered by these modeling techniques is the difficulty of their inclusion in discriminative learning scenarios. In this work, we propose to move the emphasis from the model to the pursuit algorithm, and develop a process-centric view of parsimonious modeling, in which a learned deterministic fixed-complexity pursuit process is used in lieu of iterative optimization. We show a principled way to construct learnable pursuit process architectures for structured sparse and robust low rank models, derived from the iteration of proximal descent algorithms. These architectures learn to approximate the exact parsimonious representation at a fraction of the complexity of the standard optimization methods. We also show that appropriate training regimes allow to naturally extend parsimonious models to discriminative settings. State-of-the-art results are demonstrated on several challenging problems in image and audio processing with several orders of magnitude speed-up compared to the exact optimization algorithms.

  17. Broadband seismology and the detection and verification of underground nuclear explosions

    NASA Astrophysics Data System (ADS)

    Tinker, Mark Andrew

    1997-10-01

    On September 24, 1996, President Clinton signed the Comprehensive Test Ban Treaty (CTBT), which bans the testing of all nuclear weapons thereby limiting their future development. Seismology is the primary tool used for the detection and identification of underground explosions and thus, will play a key role in monitoring a CTBT. The detection and identification of low yield explosions requires seismic stations at regional distances (<1500 km). However, because the regional wavefield propagates within the extremely heterogeneous crustal waveguide, the seismic waveforms are also very complicated. Therefore, it is necessary to have a solid understanding of how the phases used in regional discriminants develop within different tectonic regimes. Thus, the development of the seismic phases Pn and Lg, which compose the seismic discriminant Pn/Lg, within the western U.S. from the Non-Proliferation Experiment are evaluated. The most fundamental discriminant is event location as 90% of all seismic sources occur too deep within the earth to be unnatural. France resumed its nuclear testing program after a four year moratorium and conducted six tests during a five month period starting in September of 1995. Using teleseismic data, a joint hypocenter determination algorithm was used to determine the hypocenters of these six explosions. One of the most important problems in monitoring a CTBT is the detection and location of small seismic events. Although seismic arrays have become the central tool for event detection, in the context of a global monitoring treaty, there will be some dependence on sparse regional networks of three-component broadband seismic stations to detect low yield explosions. However, the full power of the data has not been utilized, namely using phases other than P and S. Therefore, the information in the surface wavetrain is used to improve the locations of small seismic events recorded on a sparse network in Bolivia. Finally, as a discrimination example in a complex region, P to S ratios are used to determine source parameters of the Msb{w} 8.3 deep Bolivia earthquake.

  18. Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching

    PubMed Central

    Guo, Yanrong; Gao, Yaozong

    2016-01-01

    Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods. PMID:26685226

  19. A Sparse Bayesian Learning Algorithm for White Matter Parameter Estimation from Compressed Multi-shell Diffusion MRI.

    PubMed

    Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2017-09-01

    We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-shell data is represented in a dictionary form using a non-monoexponential decay model of diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with predefined orientations, which are the unknown parameters, form the dictionary weights. These unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian learning algorithm. A localized learning of hyperparameters at each voxel and for each possible fiber orientations improves the parameter estimation. Our experiments using synthetic data from the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome Project demonstrate the improvements.

  20. Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Lin, Chuang; Wang, Binghui; Jiang, Ning; Farina, Dario

    2018-04-01

    Objective. This paper proposes a novel simultaneous and proportional multiple degree of freedom (DOF) myoelectric control method for active prostheses. Approach. The approach is based on non-negative matrix factorization (NMF) of surface EMG signals with the inclusion of sparseness constraints. By applying a sparseness constraint to the control signal matrix, it is possible to extract the basis information from arbitrary movements (quasi-unsupervised approach) for multiple DOFs concurrently. Main Results. In online testing based on target hitting, able-bodied subjects reached a greater throughput (TP) when using sparse NMF (SNMF) than with classic NMF or with linear regression (LR). Accordingly, the completion time (CT) was shorter for SNMF than NMF or LR. The same observations were made in two patients with unilateral limb deficiencies. Significance. The addition of sparseness constraints to NMF allows for a quasi-unsupervised approach to myoelectric control with superior results with respect to previous methods for the simultaneous and proportional control of multi-DOF. The proposed factorization algorithm allows robust simultaneous and proportional control, is superior to previous supervised algorithms, and, because of minimal supervision, paves the way to online adaptation in myoelectric control.

  1. One-shot 3D scanning by combining sparse landmarks with dense gradient information

    NASA Astrophysics Data System (ADS)

    Di Martino, Matías; Flores, Jorge; Ferrari, José A.

    2018-06-01

    Scene understanding is one of the most challenging and popular problems in the field of robotics and computer vision and the estimation of 3D information is at the core of most of these applications. In order to retrieve the 3D structure of a test surface we propose a single shot approach that combines dense gradient information with sparse absolute measurements. To that end, we designed a colored pattern that codes fine horizontal and vertical fringes, with sparse corners landmarks. By measuring the deformation (bending) of horizontal and vertical fringes, we are able to estimate surface local variations (i.e. its gradient field). Then corner sparse landmarks are detected and matched to infer spare absolute information about the test surface height. Local gradient information is combined with the sparse absolute values which work as anchors to guide the integration process. We show that this can be mathematically done in a very compact and intuitive way by properly defining a Poisson-like partial differential equation. Then we address in detail how the problem can be formulated in a discrete domain and how it can be practically solved by straight forward linear numerical solvers. Finally, validation experiment are presented.

  2. Comparing success levels of different neural network structures in extracting discriminative information from the response patterns of a temperature-modulated resistive gas sensor

    NASA Astrophysics Data System (ADS)

    Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.

    2015-06-01

    Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.

  3. Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.

    PubMed

    Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao

    2017-06-21

    In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.

  4. The Fisher-Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data.

    PubMed

    Cheng, Qiang; Zhou, Hongbo; Cheng, Jie

    2011-06-01

    Selecting features for multiclass classification is a critically important task for pattern recognition and machine learning applications. Especially challenging is selecting an optimal subset of features from high-dimensional data, which typically have many more variables than observations and contain significant noise, missing components, or outliers. Existing methods either cannot handle high-dimensional data efficiently or scalably, or can only obtain local optimum instead of global optimum. Toward the selection of the globally optimal subset of features efficiently, we introduce a new selector--which we call the Fisher-Markov selector--to identify those features that are the most useful in describing essential differences among the possible groups. In particular, in this paper we present a way to represent essential discriminating characteristics together with the sparsity as an optimization objective. With properly identified measures for the sparseness and discriminativeness in possibly high-dimensional settings, we take a systematic approach for optimizing the measures to choose the best feature subset. We use Markov random field optimization techniques to solve the formulated objective functions for simultaneous feature selection. Our results are noncombinatorial, and they can achieve the exact global optimum of the objective function for some special kernels. The method is fast; in particular, it can be linear in the number of features and quadratic in the number of observations. We apply our procedure to a variety of real-world data, including mid--dimensional optical handwritten digit data set and high-dimensional microarray gene expression data sets. The effectiveness of our method is confirmed by experimental results. In pattern recognition and from a model selection viewpoint, our procedure says that it is possible to select the most discriminating subset of variables by solving a very simple unconstrained objective function which in fact can be obtained with an explicit expression.

  5. Spectrum recovery method based on sparse representation for segmented multi-Gaussian model

    NASA Astrophysics Data System (ADS)

    Teng, Yidan; Zhang, Ye; Ti, Chunli; Su, Nan

    2016-09-01

    Hyperspectral images can realize crackajack features discriminability for supplying diagnostic characteristics with high spectral resolution. However, various degradations may generate negative influence on the spectral information, including water absorption, bands-continuous noise. On the other hand, the huge data volume and strong redundancy among spectrums produced intense demand on compressing HSIs in spectral dimension, which also leads to the loss of spectral information. The reconstruction of spectral diagnostic characteristics has irreplaceable significance for the subsequent application of HSIs. This paper introduces a spectrum restoration method for HSIs making use of segmented multi-Gaussian model (SMGM) and sparse representation. A SMGM is established to indicating the unsymmetrical spectral absorption and reflection characteristics, meanwhile, its rationality and sparse property are discussed. With the application of compressed sensing (CS) theory, we implement sparse representation to the SMGM. Then, the degraded and compressed HSIs can be reconstructed utilizing the uninjured or key bands. Finally, we take low rank matrix recovery (LRMR) algorithm for post processing to restore the spatial details. The proposed method was tested on the spectral data captured on the ground with artificial water absorption condition and an AVIRIS-HSI data set. The experimental results in terms of qualitative and quantitative assessments demonstrate that the effectiveness on recovering the spectral information from both degradations and loss compression. The spectral diagnostic characteristics and the spatial geometry feature are well preserved.

  6. Learning Robust and Discriminative Subspace With Low-Rank Constraints.

    PubMed

    Li, Sheng; Fu, Yun

    2016-11-01

    In this paper, we aim at learning robust and discriminative subspaces from noisy data. Subspace learning is widely used in extracting discriminative features for classification. However, when data are contaminated with severe noise, the performance of most existing subspace learning methods would be limited. Recent advances in low-rank modeling provide effective solutions for removing noise or outliers contained in sample sets, which motivates us to take advantage of low-rank constraints in order to exploit robust and discriminative subspace for classification. In particular, we present a discriminative subspace learning method called the supervised regularization-based robust subspace (SRRS) approach, by incorporating the low-rank constraint. SRRS seeks low-rank representations from the noisy data, and learns a discriminative subspace from the recovered clean data jointly. A supervised regularization function is designed to make use of the class label information, and therefore to enhance the discriminability of subspace. Our approach is formulated as a constrained rank-minimization problem. We design an inexact augmented Lagrange multiplier optimization algorithm to solve it. Unlike the existing sparse representation and low-rank learning methods, our approach learns a low-dimensional subspace from recovered data, and explicitly incorporates the supervised information. Our approach and some baselines are evaluated on the COIL-100, ALOI, Extended YaleB, FERET, AR, and KinFace databases. The experimental results demonstrate the effectiveness of our approach, especially when the data contain considerable noise or variations.

  7. Large-scale urban point cloud labeling and reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Li, Zhuqiang; Li, Anjian; Liu, Fangyu

    2018-04-01

    The large number of object categories and many overlapping or closely neighboring objects in large-scale urban scenes pose great challenges in point cloud classification. In this paper, a novel framework is proposed for classification and reconstruction of airborne laser scanning point cloud data. To label point clouds, we present a rectified linear units neural network named ReLu-NN where the rectified linear units (ReLu) instead of the traditional sigmoid are taken as the activation function in order to speed up the convergence. Since the features of the point cloud are sparse, we reduce the number of neurons by the dropout to avoid over-fitting of the training process. The set of feature descriptors for each 3D point is encoded through self-taught learning, and forms a discriminative feature representation which is taken as the input of the ReLu-NN. The segmented building points are consolidated through an edge-aware point set resampling algorithm, and then they are reconstructed into 3D lightweight models using the 2.5D contouring method (Zhou and Neumann, 2010). Compared with deep learning approaches, the ReLu-NN introduced can easily classify unorganized point clouds without rasterizing the data, and it does not need a large number of training samples. Most of the parameters in the network are learned, and thus the intensive parameter tuning cost is significantly reduced. Experimental results on various datasets demonstrate that the proposed framework achieves better performance than other related algorithms in terms of classification accuracy and reconstruction quality.

  8. Identification of wheat varieties with a parallel-plate capacitance sensor using fisher linear discriminant analysis

    USDA-ARS?s Scientific Manuscript database

    Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle ('), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD mod...

  9. Robust linear discriminant analysis with distance based estimators

    NASA Astrophysics Data System (ADS)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina

    2017-11-01

    Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.

  10. Exploring nonlinear feature space dimension reduction and data representation in breast CADx with Laplacian eigenmaps and t-SNE

    PubMed Central

    Jamieson, Andrew R.; Giger, Maryellen L.; Drukker, Karen; Li, Hui; Yuan, Yading; Bhooshan, Neha

    2010-01-01

    Purpose: In this preliminary study, recently developed unsupervised nonlinear dimension reduction (DR) and data representation techniques were applied to computer-extracted breast lesion feature spaces across three separate imaging modalities: Ultrasound (U.S.) with 1126 cases, dynamic contrast enhanced magnetic resonance imaging with 356 cases, and full-field digital mammography with 245 cases. Two methods for nonlinear DR were explored: Laplacian eigenmaps [M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput. 15, 1373–1396 (2003)] and t-distributed stochastic neighbor embedding (t-SNE) [L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res. 9, 2579–2605 (2008)]. Methods: These methods attempt to map originally high dimensional feature spaces to more human interpretable lower dimensional spaces while preserving both local and global information. The properties of these methods as applied to breast computer-aided diagnosis (CADx) were evaluated in the context of malignancy classification performance as well as in the visual inspection of the sparseness within the two-dimensional and three-dimensional mappings. Classification performance was estimated by using the reduced dimension mapped feature output as input into both linear and nonlinear classifiers: Markov chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) and linear discriminant analysis. The new techniques were compared to previously developed breast CADx methodologies, including automatic relevance determination and linear stepwise (LSW) feature selection, as well as a linear DR method based on principal component analysis. Using ROC analysis and 0.632+bootstrap validation, 95% empirical confidence intervals were computed for the each classifier’s AUC performance. Results: In the large U.S. data set, sample high performance results include, AUC0.632+=0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features and AUC0.632+=0.87 with interval [0.817;0.906] for four LSW selected features compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+=0.90 with interval [0.847;0.919], all using the MCMC-BANN. Conclusions: Preliminary results appear to indicate capability for the new methods to match or exceed classification performance of current advanced breast lesion CADx algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, DR techniques offer a complementary approach, which can aid elucidation of additional properties associated with the data. Specifically, the new techniques were shown to possess the added benefit of delivering sparse lower dimensional representations for visual interpretation, revealing intricate data structure of the feature space. PMID:20175497

  11. A survey of packages for large linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Milne, Brent

    2000-02-11

    This paper evaluates portable software packages for the iterative solution of very large sparse linear systems on parallel architectures. While we cannot hope to tell individual users which package will best suit their needs, we do hope that our systematic evaluation provides essential unbiased information about the packages and the evaluation process may serve as an example on how to evaluate these packages. The information contained here include feature comparisons, usability evaluations and performance characterizations. This review is primarily focused on self-contained packages that can be easily integrated into an existing program and are capable of computing solutions to verymore » large sparse linear systems of equations. More specifically, it concentrates on portable parallel linear system solution packages that provide iterative solution schemes and related preconditioning schemes because iterative methods are more frequently used than competing schemes such as direct methods. The eight packages evaluated are: Aztec, BlockSolve,ISIS++, LINSOL, P-SPARSLIB, PARASOL, PETSc, and PINEAPL. Among the eight portable parallel iterative linear system solvers reviewed, we recommend PETSc and Aztec for most application programmers because they have well designed user interface, extensive documentation and very responsive user support. Both PETSc and Aztec are written in the C language and are callable from Fortran. For those users interested in using Fortran 90, PARASOL is a good alternative. ISIS++is a good alternative for those who prefer the C++ language. Both PARASOL and ISIS++ are relatively new and are continuously evolving. Thus their user interface may change. In general, those packages written in Fortran 77 are more cumbersome to use because the user may need to directly deal with a number of arrays of varying sizes. Languages like C++ and Fortran 90 offer more convenient data encapsulation mechanisms which make it easier to implement a clean and intuitive user interface. In addition to reviewing these portable parallel iterative solver packages, we also provide a more cursory assessment of a range of related packages, from specialized parallel preconditioners to direct methods for sparse linear systems.« less

  12. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data

    PubMed Central

    Zhang, Wanhong; Zhou, Tong

    2015-01-01

    Motivation Identifying gene regulatory networks (GRNs) which consist of a large number of interacting units has become a problem of paramount importance in systems biology. Situations exist extensively in which causal interacting relationships among these units are required to be reconstructed from measured expression data and other a priori information. Though numerous classical methods have been developed to unravel the interactions of GRNs, these methods either have higher computing complexities or have lower estimation accuracies. Note that great similarities exist between identification of genes that directly regulate a specific gene and a sparse vector reconstruction, which often relates to the determination of the number, location and magnitude of nonzero entries of an unknown vector by solving an underdetermined system of linear equations y = Φx. Based on these similarities, we propose a novel framework of sparse reconstruction to identify the structure of a GRN, so as to increase accuracy of causal regulation estimations, as well as to reduce their computational complexity. Results In this paper, a sparse reconstruction framework is proposed on basis of steady-state experiment data to identify GRN structure. Different from traditional methods, this approach is adopted which is well suitable for a large-scale underdetermined problem in inferring a sparse vector. We investigate how to combine the noisy steady-state experiment data and a sparse reconstruction algorithm to identify causal relationships. Efficiency of this method is tested by an artificial linear network, a mitogen-activated protein kinase (MAPK) pathway network and the in silico networks of the DREAM challenges. The performance of the suggested approach is compared with two state-of-the-art algorithms, the widely adopted total least-squares (TLS) method and those available results on the DREAM project. Actual results show that, with a lower computational cost, the proposed method can significantly enhance estimation accuracy and greatly reduce false positive and negative errors. Furthermore, numerical calculations demonstrate that the proposed algorithm may have faster convergence speed and smaller fluctuation than other methods when either estimate error or estimate bias is considered. PMID:26207991

  13. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE PAGES

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-01

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  14. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  15. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  16. Improved pulse shape discriminator for fast neutron-gamma ray detection system

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; St. Onge, R.

    1969-01-01

    Discriminator in nuclear particle detection system distinguishes nuclear particle type and energy among many different nuclear particles. Discriminator incorporates passive, linear circuit elements so that it will operate over a wide dynamic range.

  17. Semi-implicit integration factor methods on sparse grids for high-dimensional systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-07-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.

  18. Sparse representation of whole-brain fMRI signals for identification of functional networks.

    PubMed

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming

    2015-02-01

    There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Solving very large, sparse linear systems on mesh-connected parallel computers

    NASA Technical Reports Server (NTRS)

    Opsahl, Torstein; Reif, John

    1987-01-01

    The implementation of Pan and Reif's Parallel Nested Dissection (PND) algorithm on mesh connected parallel computers is described. This is the first known algorithm that allows very large, sparse linear systems of equations to be solved efficiently in polylog time using a small number of processors. How the processor bound of PND can be matched to the number of processors available on a given parallel computer by slowing down the algorithm by constant factors is described. Also, for the important class of problems where G(A) is a grid graph, a unique memory mapping that reduces the inter-processor communication requirements of PND to those that can be executed on mesh connected parallel machines is detailed. A description of an implementation on the Goodyear Massively Parallel Processor (MPP), located at Goddard is given. Also, a detailed discussion of data mappings and performance issues is given.

  20. Sparse Coding and Counting for Robust Visual Tracking

    PubMed Central

    Liu, Risheng; Wang, Jing; Shang, Xiaoke; Wang, Yiyang; Su, Zhixun; Cai, Yu

    2016-01-01

    In this paper, we propose a novel sparse coding and counting method under Bayesian framework for visual tracking. In contrast to existing methods, the proposed method employs the combination of L0 and L1 norm to regularize the linear coefficients of incrementally updated linear basis. The sparsity constraint enables the tracker to effectively handle difficult challenges, such as occlusion or image corruption. To achieve real-time processing, we propose a fast and efficient numerical algorithm for solving the proposed model. Although it is an NP-hard problem, the proposed accelerated proximal gradient (APG) approach is guaranteed to converge to a solution quickly. Besides, we provide a closed solution of combining L0 and L1 regularized representation to obtain better sparsity. Experimental results on challenging video sequences demonstrate that the proposed method achieves state-of-the-art results both in accuracy and speed. PMID:27992474

  1. The Joker: A Custom Monte Carlo Sampler for Binary-star and Exoplanet Radial Velocity Data

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Hogg, David W.; Foreman-Mackey, Daniel; Rix, Hans-Walter

    2017-03-01

    Given sparse or low-quality radial velocity measurements of a star, there are often many qualitatively different stellar or exoplanet companion orbit models that are consistent with the data. The consequent multimodality of the likelihood function leads to extremely challenging search, optimization, and Markov chain Monte Carlo (MCMC) posterior sampling over the orbital parameters. Here we create a custom Monte Carlo sampler for sparse or noisy radial velocity measurements of two-body systems that can produce posterior samples for orbital parameters even when the likelihood function is poorly behaved. The six standard orbital parameters for a binary system can be split into four nonlinear parameters (period, eccentricity, argument of pericenter, phase) and two linear parameters (velocity amplitude, barycenter velocity). We capitalize on this by building a sampling method in which we densely sample the prior probability density function (pdf) in the nonlinear parameters and perform rejection sampling using a likelihood function marginalized over the linear parameters. With sparse or uninformative data, the sampling obtained by this rejection sampling is generally multimodal and dense. With informative data, the sampling becomes effectively unimodal but too sparse: in these cases we follow the rejection sampling with standard MCMC. The method produces correct samplings in orbital parameters for data that include as few as three epochs. The Joker can therefore be used to produce proper samplings of multimodal pdfs, which are still informative and can be used in hierarchical (population) modeling. We give some examples that show how the posterior pdf depends sensitively on the number and time coverage of the observations and their uncertainties.

  2. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  3. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    PubMed

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  4. Discrimination of nuclear explosions and earthquakes from teleseismic distances with a local network of short period seismic stations using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Tiira, Timo

    1996-10-01

    Seismic discrimination capability of artificial neural networks (ANNs) was studied using earthquakes and nuclear explosions from teleseismic distances. The events were selected from two areas, which were analyzed separately. First, 23 nuclear explosions from Semipalatinsk and Lop Nor test sites were compared with 46 earthquakes from adjacent areas. Second, 39 explosions from Nevada test site were compared with 27 earthquakes from close-by areas. The basic discriminants were complexity, spectral ratio and third moment of frequency. The spectral discriminants were computed in five different ways to obtain all the information embedded in the signals, some of which were relatively weak. The discriminants were computed using data from six short period stations in Central and southern Finland. The spectral contents of the signals of both classes varied considerably between the stations. The 66 discriminants were formed into 65 optimum subsets of different sizes by using stepwise linear regression. A type of ANN called multilayer perceptron (MLP) was applied to each of the subsets. As a comparison the classification was repeated using linear discrimination analysis (LDA). Since the number of events was small the testing was made with the leave-one-out method. The ANN gave significantly better results than LDA. As a final tool for discrimination a combination of the ten neural nets with the best performance were used. All events from Central Asia were clearly discriminated and over 90% of the events from Nevada region were confidently discriminated. The better performance of ANNs was attributed to its ability to form complex decision regions between the groups and to its highly non-linear nature.

  5. Gene selection for the reconstruction of stem cell differentiation trees: a linear programming approach.

    PubMed

    Ghadie, Mohamed A; Japkowicz, Nathalie; Perkins, Theodore J

    2015-08-15

    Stem cell differentiation is largely guided by master transcriptional regulators, but it also depends on the expression of other types of genes, such as cell cycle genes, signaling genes, metabolic genes, trafficking genes, etc. Traditional approaches to understanding gene expression patterns across multiple conditions, such as principal components analysis or K-means clustering, can group cell types based on gene expression, but they do so without knowledge of the differentiation hierarchy. Hierarchical clustering can organize cell types into a tree, but in general this tree is different from the differentiation hierarchy itself. Given the differentiation hierarchy and gene expression data at each node, we construct a weighted Euclidean distance metric such that the minimum spanning tree with respect to that metric is precisely the given differentiation hierarchy. We provide a set of linear constraints that are provably sufficient for the desired construction and a linear programming approach to identify sparse sets of weights, effectively identifying genes that are most relevant for discriminating different parts of the tree. We apply our method to microarray gene expression data describing 38 cell types in the hematopoiesis hierarchy, constructing a weighted Euclidean metric that uses just 175 genes. However, we find that there are many alternative sets of weights that satisfy the linear constraints. Thus, in the style of random-forest training, we also construct metrics based on random subsets of the genes and compare them to the metric of 175 genes. We then report on the selected genes and their biological functions. Our approach offers a new way to identify genes that may have important roles in stem cell differentiation. tperkins@ohri.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Kernel PLS-SVC for Linear and Nonlinear Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan

    2003-01-01

    A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.

  7. Folded concave penalized sparse linear regression: sparsity, statistical performance, and algorithmic theory for local solutions.

    PubMed

    Liu, Hongcheng; Yao, Tao; Li, Runze; Ye, Yinyu

    2017-11-01

    This paper concerns the folded concave penalized sparse linear regression (FCPSLR), a class of popular sparse recovery methods. Although FCPSLR yields desirable recovery performance when solved globally, computing a global solution is NP-complete. Despite some existing statistical performance analyses on local minimizers or on specific FCPSLR-based learning algorithms, it still remains open questions whether local solutions that are known to admit fully polynomial-time approximation schemes (FPTAS) may already be sufficient to ensure the statistical performance, and whether that statistical performance can be non-contingent on the specific designs of computing procedures. To address the questions, this paper presents the following threefold results: (i) Any local solution (stationary point) is a sparse estimator, under some conditions on the parameters of the folded concave penalties. (ii) Perhaps more importantly, any local solution satisfying a significant subspace second-order necessary condition (S 3 ONC), which is weaker than the second-order KKT condition, yields a bounded error in approximating the true parameter with high probability. In addition, if the minimal signal strength is sufficient, the S 3 ONC solution likely recovers the oracle solution. This result also explicates that the goal of improving the statistical performance is consistent with the optimization criteria of minimizing the suboptimality gap in solving the non-convex programming formulation of FCPSLR. (iii) We apply (ii) to the special case of FCPSLR with minimax concave penalty (MCP) and show that under the restricted eigenvalue condition, any S 3 ONC solution with a better objective value than the Lasso solution entails the strong oracle property. In addition, such a solution generates a model error (ME) comparable to the optimal but exponential-time sparse estimator given a sufficient sample size, while the worst-case ME is comparable to the Lasso in general. Furthermore, to guarantee the S 3 ONC admits FPTAS.

  8. Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huan, Xun; Safta, Cosmin; Sargsyan, Khachik

    Compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quanti cation analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several com- pressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers of l1 ls, SpaRSA, CGIST, FPC AS, and ADMM, we develop techniques to mitigate over tting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendationsmore » on parameter settings for these tech- niques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-cross flow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy and computational tradeoffs between polynomial bases of different degrees, and practi- cability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.« less

  9. Using Perturbed QR Factorizations To Solve Linear Least-Squares Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avron, Haim; Ng, Esmond G.; Toledo, Sivan

    2008-03-21

    We propose and analyze a new tool to help solve sparse linear least-squares problems min{sub x} {parallel}Ax-b{parallel}{sub 2}. Our method is based on a sparse QR factorization of a low-rank perturbation {cflx A} of A. More precisely, we show that the R factor of {cflx A} is an effective preconditioner for the least-squares problem min{sub x} {parallel}Ax-b{parallel}{sub 2}, when solved using LSQR. We propose applications for the new technique. When A is rank deficient we can add rows to ensure that the preconditioner is well-conditioned without column pivoting. When A is sparse except for a few dense rows we canmore » drop these dense rows from A to obtain {cflx A}. Another application is solving an updated or downdated problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for the updated/downdated problem {cflx A}. We can also solve what-if scenarios, where we want to find the solution if a column of the original matrix is changed/removed. We present a spectral theory that analyzes the generalized spectrum of the pencil (A*A,R*R) and analyze the applications.« less

  10. Temporally-Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer’s Disease

    PubMed Central

    Jie, Biao; Liu, Mingxia; Liu, Jun

    2016-01-01

    Sparse learning has been widely investigated for analysis of brain images to assist the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, most existing sparse learning-based studies only adopt cross-sectional analysis methods, where the sparse model is learned using data from a single time-point. Actually, multiple time-points of data are often available in brain imaging applications, which can be used in some longitudinal analysis methods to better uncover the disease progression patterns. Accordingly, in this paper we propose a novel temporally-constrained group sparse learning method aiming for longitudinal analysis with multiple time-points of data. Specifically, we learn a sparse linear regression model by using the imaging data from multiple time-points, where a group regularization term is first employed to group the weights for the same brain region across different time-points together. Furthermore, to reflect the smooth changes between data derived from adjacent time-points, we incorporate two smoothness regularization terms into the objective function, i.e., one fused smoothness term which requires that the differences between two successive weight vectors from adjacent time-points should be small, and another output smoothness term which requires the differences between outputs of two successive models from adjacent time-points should also be small. We develop an efficient optimization algorithm to solve the proposed objective function. Experimental results on ADNI database demonstrate that, compared with conventional sparse learning-based methods, our proposed method can achieve improved regression performance and also help in discovering disease-related biomarkers. PMID:27093313

  11. Bypassing the Limits of Ll Regularization: Convex Sparse Signal Processing Using Non-Convex Regularization

    NASA Astrophysics Data System (ADS)

    Parekh, Ankit

    Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal decomposition technique for an important biomedical signal processing problem: the detection of sleep spindles and K-complexes in human sleep electroencephalography (EEG). We propose a non-linear model for the EEG consisting of three components: (1) a transient (sparse piecewise constant) component, (2) a low-frequency component, and (3) an oscillatory component. The oscillatory component admits a sparse time-frequency representation. Using a convex objective function, we propose a fast non-linear optimization algorithm to estimate the three components in the proposed signal model. The low-frequency and oscillatory components are then used to estimate the K-complexes and sleep spindles respectively. The proposed detection method is shown to outperform several state-of-the-art automated sleep spindles detection methods.

  12. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    PubMed

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  13. Reweighted mass center based object-oriented sparse subspace clustering for hyperspectral images

    NASA Astrophysics Data System (ADS)

    Zhai, Han; Zhang, Hongyan; Zhang, Liangpei; Li, Pingxiang

    2016-10-01

    Considering the inevitable obstacles faced by the pixel-based clustering methods, such as salt-and-pepper noise, high computational complexity, and the lack of spatial information, a reweighted mass center based object-oriented sparse subspace clustering (RMC-OOSSC) algorithm for hyperspectral images (HSIs) is proposed. First, the mean-shift segmentation method is utilized to oversegment the HSI to obtain meaningful objects. Second, a distance reweighted mass center learning model is presented to extract the representative and discriminative features for each object. Third, assuming that all the objects are sampled from a union of subspaces, it is natural to apply the SSC algorithm to the HSI. Faced with the high correlation among the hyperspectral objects, a weighting scheme is adopted to ensure that the highly correlated objects are preferred in the procedure of sparse representation, to reduce the representation errors. Two widely used hyperspectral datasets were utilized to test the performance of the proposed RMC-OOSSC algorithm, obtaining high clustering accuracies (overall accuracy) of 71.98% and 89.57%, respectively. The experimental results show that the proposed method clearly improves the clustering performance with respect to the other state-of-the-art clustering methods, and it significantly reduces the computational time.

  14. Numerical methods in Markov chain modeling

    NASA Technical Reports Server (NTRS)

    Philippe, Bernard; Saad, Youcef; Stewart, William J.

    1989-01-01

    Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.

  15. ML 3.0 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-05-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Az = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the AZTEC 2.1 and AZTECOO iterative package [15]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and non-symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  16. ML 3.1 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-10-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the Aztec 2.1 and AztecOO iterative package [16]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and nonsymmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  17. Off-Grid Direction of Arrival Estimation Based on Joint Spatial Sparsity for Distributed Sparse Linear Arrays

    PubMed Central

    Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin

    2014-01-01

    In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150

  18. Bit error rate tester using fast parallel generation of linear recurring sequences

    DOEpatents

    Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.

    2003-05-06

    A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.

  19. Cardiovascular risk indicators and perceived race/ethnic discrimination in the Dallas Heart Study.

    PubMed

    Albert, Michelle A; Ravenell, Joseph; Glynn, Robert J; Khera, Amit; Halevy, Nitsan; de Lemos, James A

    2008-12-01

    The objective of the study was to evaluate the association between race/ethnic (r/e) discrimination and subclinical cardiovascular disease (CVD). Although r/e discrimination is a chronic stressor that might have negative health effects, cardiovascular data related to experiences with discrimination among different r/e groups in the United States remain sparse. Using data from the Dallas Heart Study, we assessed the association between perceived r/e discrimination and traditional CVD risk factors, C-reactive protein (CRP), aortic plaque area and wall thickness, and coronary calcium (CAC) score among black, white, and Hispanic participants. Prevalent CAC was defined as a CAC score > or =10 Agatston units; CRP elevation was defined as > or =3 mg/L. Participants were asked, "Have you ever been discriminated against due to your race/ethnicity? (responses: yes, no, or don't know)". Blacks reported r/e discrimination more frequently than whites or Hispanics (P < .0001). Blacks who reported r/e discrimination were more likely to be college graduates, to have a family history of myocardial infarction, and to be more physically active than blacks who did not report r/e discrimination (each P < .05). Hispanics who reported r/e discrimination had a higher prevalence of smoking (P < .01) and were more likely to be born in the United States. In models that adjusted for traditional CVD risk factors and medication use, we generally found no association between reports of r/e discrimination and aortic wall thickness, aortic plaque area, prevalent CAC, or elevated CRP in any of the r/e groups. Among blacks, stratification by gender and education did not change the observed relationship between perceived r/e discrimination and CAC or CRP. Although perceived r/e discrimination is associated with certain health characteristics that may result in negative health outcomes, in general, we found no association of r/e discrimination with either subclinical atherosclerosis as determined by CAC score, aortic wall thickness and aortic plaque area, or inflammation as assessed by elevated CRP levels.

  20. A Sparse Matrix Approach for Simultaneous Quantification of Nystagmus and Saccade

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Stone, Lee; Boyle, Richard D.

    2012-01-01

    The vestibulo-ocular reflex (VOR) consists of two intermingled non-linear subsystems; namely, nystagmus and saccade. Typically, nystagmus is analysed using a single sufficiently long signal or a concatenation of them. Saccade information is not analysed and discarded due to insufficient data length to provide consistent and minimum variance estimates. This paper presents a novel sparse matrix approach to system identification of the VOR. It allows for the simultaneous estimation of both nystagmus and saccade signals. We show via simulation of the VOR that our technique provides consistent and unbiased estimates in the presence of output additive noise.

  1. Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage.

    PubMed

    Aggarwal, Priya; Shrivastava, Parth; Kabra, Tanay; Gupta, Anubha

    2017-03-01

    This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l 1 minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results.

  2. On A Nonlinear Generalization of Sparse Coding and Dictionary Learning.

    PubMed

    Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba

    2013-01-01

    Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝ d , and the dictionary is learned from the training data using the vector space structure of ℝ d and its Euclidean L 2 -metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis.

  3. On A Nonlinear Generalization of Sparse Coding and Dictionary Learning

    PubMed Central

    Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba

    2013-01-01

    Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝd, and the dictionary is learned from the training data using the vector space structure of ℝd and its Euclidean L2-metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis. PMID:24129583

  4. Exact recovery of sparse multiple measurement vectors by [Formula: see text]-minimization.

    PubMed

    Wang, Changlong; Peng, Jigen

    2018-01-01

    The joint sparse recovery problem is a generalization of the single measurement vector problem widely studied in compressed sensing. It aims to recover a set of jointly sparse vectors, i.e., those that have nonzero entries concentrated at a common location. Meanwhile [Formula: see text]-minimization subject to matrixes is widely used in a large number of algorithms designed for this problem, i.e., [Formula: see text]-minimization [Formula: see text] Therefore the main contribution in this paper is two theoretical results about this technique. The first one is proving that in every multiple system of linear equations there exists a constant [Formula: see text] such that the original unique sparse solution also can be recovered from a minimization in [Formula: see text] quasi-norm subject to matrixes whenever [Formula: see text]. The other one is showing an analytic expression of such [Formula: see text]. Finally, we display the results of one example to confirm the validity of our conclusions, and we use some numerical experiments to show that we increase the efficiency of these algorithms designed for [Formula: see text]-minimization by using our results.

  5. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *

    PubMed Central

    Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.

    2014-01-01

    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844

  6. Sparseness- and continuity-constrained seismic imaging

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  7. Non-uniform sampling: post-Fourier era of NMR data collection and processing.

    PubMed

    Kazimierczuk, Krzysztof; Orekhov, Vladislav

    2015-11-01

    The invention of multidimensional techniques in the 1970s revolutionized NMR, making it the general tool of structural analysis of molecules and materials. In the most straightforward approach, the signal sampling in the indirect dimensions of a multidimensional experiment is performed in the same manner as in the direct dimension, i.e. with a grid of equally spaced points. This results in lengthy experiments with a resolution often far from optimum. To circumvent this problem, numerous sparse-sampling techniques have been developed in the last three decades, including two traditionally distinct approaches: the radial sampling and non-uniform sampling. This mini review discusses the sparse signal sampling and reconstruction techniques from the point of view of an underdetermined linear algebra problem that arises when a full, equally spaced set of sampled points is replaced with sparse sampling. Additional assumptions that are introduced to solve the problem, as well as the shape of the undersampled Fourier transform operator (visualized as so-called point spread function), are shown to be the main differences between various sparse-sampling methods. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Multi-objective based spectral unmixing for hyperspectral images

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Shi, Zhenwei

    2017-02-01

    Sparse hyperspectral unmixing assumes that each observed pixel can be expressed by a linear combination of several pure spectra in a priori library. Sparse unmixing is challenging, since it is usually transformed to a NP-hard l0 norm based optimization problem. Existing methods usually utilize a relaxation to the original l0 norm. However, the relaxation may bring in sensitive weighted parameters and additional calculation error. In this paper, we propose a novel multi-objective based algorithm to solve the sparse unmixing problem without any relaxation. We transform sparse unmixing to a multi-objective optimization problem, which contains two correlative objectives: minimizing the reconstruction error and controlling the endmember sparsity. To improve the efficiency of multi-objective optimization, a population-based randomly flipping strategy is designed. Moreover, we theoretically prove that the proposed method is able to recover a guaranteed approximate solution from the spectral library within limited iterations. The proposed method can directly deal with l0 norm via binary coding for the spectral signatures in the library. Experiments on both synthetic and real hyperspectral datasets demonstrate the effectiveness of the proposed method.

  9. Robust visual tracking via multiscale deep sparse networks

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo

    2017-04-01

    In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.

  10. Optical fringe-reflection deflectometry with sparse representation

    NASA Astrophysics Data System (ADS)

    Xiao, Yong-Liang; Li, Sikun; Zhang, Qican; Zhong, Jianxin; Su, Xianyu; You, Zhisheng

    2018-05-01

    Optical fringe-reflection deflectometry is a surprisingly attractive scratch detection technique for specular surfaces owing to its unparalleled local sensibility. Full-field surface topography is obtained from a measured normal field using gradient integration. However, there may not be an ideal measured gradient field for deflectometry reconstruction in practice. Both the non-integrability condition and various kinds of image noise distributions, which are present in the indirect measured gradient field, may lead to ambiguity about the scratches on specular surfaces. In order to reduce misjudgment of scratches, sparse representation is introduced into the Southwell curl equation for deflectometry. The curl can be represented as a linear combination of the given redundant dictionary for curl and the sparsest solution for gradient refinement. The non-integrability condition and noise permutation can be overcome with sparse representation for gradient refinement. Numerical simulations demonstrate that the accuracy rate of judgment of scratches can be enhanced with sparse representation compared to the standard least-squares integration. Preliminary experiments are performed with the application of practical measured deflectometric data to verify the validity of the algorithm.

  11. Joint sparse coding based spatial pyramid matching for classification of color medical image.

    PubMed

    Shi, Jun; Li, Yi; Zhu, Jie; Sun, Haojie; Cai, Yin

    2015-04-01

    Although color medical images are important in clinical practice, they are usually converted to grayscale for further processing in pattern recognition, resulting in loss of rich color information. The sparse coding based linear spatial pyramid matching (ScSPM) and its variants are popular for grayscale image classification, but cannot extract color information. In this paper, we propose a joint sparse coding based SPM (JScSPM) method for the classification of color medical images. A joint dictionary can represent both the color information in each color channel and the correlation between channels. Consequently, the joint sparse codes calculated from a joint dictionary can carry color information, and therefore this method can easily transform a feature descriptor originally designed for grayscale images to a color descriptor. A color hepatocellular carcinoma histological image dataset was used to evaluate the performance of the proposed JScSPM algorithm. Experimental results show that JScSPM provides significant improvements as compared with the majority voting based ScSPM and the original ScSPM for color medical image classification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A geobotanical investigation based on linear discriminant and profile analyses of airborne Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.

    1987-01-01

    This paper discusses the application of linear discriminant and profile analyses to detailed investigation of an airborne Thematic Mapper Simulator (TMS) image collected over a geobotanical test site. The test site was located on the Keweenaw Peninsula of Michigan's Upper Peninsula, and remote sensing data collection coincided with the onset of leaf senescence in the regional deciduous flora. Linear discriminant analysis revealed that sites overlying soil geochemical anomalies were distinguishable from background sites by the reflectance and thermal emittance of the tree canopy imaged in the airborne TMS data. The correlation of individual bands with the linear discriminant function suggested that the TMS thermal Channel 7 (10.32-12.33 microns) contributed most, while TMS Bands 2 (0.53-0.60 microns), 3 (0.63-0.69 microns), and 5 (1.53-1.73 microns) contributed somewhat more modestly to the separation of anomalous and background sites imaged by the TMS. The observed changes in canopy reflectance and thermal emittance of the deciduous flora overlying geochemically anomalous areas are consistent with the biophysical changes which are known or presumed to occur as a result of injury induced in metal-stressed vegetation.

  13. Application of a sparse representation method using K-SVD to data compression of experimental ambient vibration data for SHM

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Kiremidjian, Anne S.

    2011-04-01

    This paper introduces a data compression method using the K-SVD algorithm and its application to experimental ambient vibration data for structural health monitoring purposes. Because many damage diagnosis algorithms that use system identification require vibration measurements of multiple locations, it is necessary to transmit long threads of data. In wireless sensor networks for structural health monitoring, however, data transmission is often a major source of battery consumption. Therefore, reducing the amount of data to transmit can significantly lengthen the battery life and reduce maintenance cost. The K-SVD algorithm was originally developed in information theory for sparse signal representation. This algorithm creates an optimal over-complete set of bases, referred to as a dictionary, using singular value decomposition (SVD) and represents the data as sparse linear combinations of these bases using the orthogonal matching pursuit (OMP) algorithm. Since ambient vibration data are stationary, we can segment them and represent each segment sparsely. Then only the dictionary and the sparse vectors of the coefficients need to be transmitted wirelessly for restoration of the original data. We applied this method to ambient vibration data measured from a four-story steel moment resisting frame. The results show that the method can compress the data efficiently and restore the data with very little error.

  14. HYPOTHESIS TESTING FOR HIGH-DIMENSIONAL SPARSE BINARY REGRESSION

    PubMed Central

    Mukherjee, Rajarshi; Pillai, Natesh S.; Lin, Xihong

    2015-01-01

    In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which does not occur in the case of Gaussian linear regression. We derive the detection boundary as a function of two components: a design matrix sparsity index and signal strength, each of which is a function of the sparsity of the alternative. For any alternative, if the design matrix sparsity index is too high, any test is asymptotically powerless irrespective of the magnitude of signal strength. For binary design matrices with the sparsity index that is not too high, our results are parallel to those in the Gaussian case. In this context, we derive detection boundaries for both dense and sparse regimes. For the dense regime, we show that the generalized likelihood ratio is rate optimal; for the sparse regime, we propose an extended Higher Criticism Test and show it is rate optimal and sharp. We illustrate the finite sample properties of the theoretical results using simulation studies. PMID:26246645

  15. The application of low-rank and sparse decomposition method in the field of climatology

    NASA Astrophysics Data System (ADS)

    Gupta, Nitika; Bhaskaran, Prasad K.

    2018-04-01

    The present study reports a low-rank and sparse decomposition method that separates the mean and the variability of a climate data field. Until now, the application of this technique was limited only in areas such as image processing, web data ranking, and bioinformatics data analysis. In climate science, this method exactly separates the original data into a set of low-rank and sparse components, wherein the low-rank components depict the linearly correlated dataset (expected or mean behavior), and the sparse component represents the variation or perturbation in the dataset from its mean behavior. The study attempts to verify the efficacy of this proposed technique in the field of climatology with two examples of real world. The first example attempts this technique on the maximum wind-speed (MWS) data for the Indian Ocean (IO) region. The study brings to light a decadal reversal pattern in the MWS for the North Indian Ocean (NIO) during the months of June, July, and August (JJA). The second example deals with the sea surface temperature (SST) data for the Bay of Bengal region that exhibits a distinct pattern in the sparse component. The study highlights the importance of the proposed technique used for interpretation and visualization of climate data.

  16. Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation.

    PubMed

    Grossi, Giuliano; Lanzarotti, Raffaella; Lin, Jianyi

    2017-01-01

    In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD's robustness and wide applicability.

  17. Enhancing Pediatric Palliative Care for Latino Children and Their Families: A Review of the Literature and Recommendations for Research and Practice in the United States

    PubMed Central

    Raisanen, Jessica C.; Donohue, Pamela K.; Boss, Renee D.

    2017-01-01

    As the demand for pediatric palliative care (PC) increases, data suggest that Latino children are less likely to receive services than non-Latino children. Evidence on how to best provide PC to Latino children is sparse. We conducted a narrative review of literature related to PC for Latino children and their families in the United States. In the United States, Latinos face multiple barriers that affect their receipt of PC, including poverty, lack of access to health insurance, language barriers, discrimination, and cultural differences. Pediatric PC research and clinical initiatives that target the needs of Latino families are sparse, underfunded, but essential. Education of providers on Latino cultural values is necessary. Additionally, advocacy efforts with a focus on equitable care and policy reform are essential to improving the health of this vulnerable population. PMID:29271924

  18. Image statistics underlying natural texture selectivity of neurons in macaque V4

    PubMed Central

    Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko

    2015-01-01

    Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362

  19. Discriminative least squares regression for multiclass classification and feature selection.

    PubMed

    Xiang, Shiming; Nie, Feiping; Meng, Gaofeng; Pan, Chunhong; Zhang, Changshui

    2012-11-01

    This paper presents a framework of discriminative least squares regression (LSR) for multiclass classification and feature selection. The core idea is to enlarge the distance between different classes under the conceptual framework of LSR. First, a technique called ε-dragging is introduced to force the regression targets of different classes moving along opposite directions such that the distances between classes can be enlarged. Then, the ε-draggings are integrated into the LSR model for multiclass classification. Our learning framework, referred to as discriminative LSR, has a compact model form, where there is no need to train two-class machines that are independent of each other. With its compact form, this model can be naturally extended for feature selection. This goal is achieved in terms of L2,1 norm of matrix, generating a sparse learning model for feature selection. The model for multiclass classification and its extension for feature selection are finally solved elegantly and efficiently. Experimental evaluation over a range of benchmark datasets indicates the validity of our method.

  20. Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination

    PubMed Central

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158

  1. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.

  2. Robust L1-norm two-dimensional linear discriminant analysis.

    PubMed

    Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang

    2015-05-01

    In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners.

    PubMed

    Niu, Weifen; Kong, Hao; Wang, He; Zhang, Yantu; Zhang, Sichun; Zhang, Xinrong

    2012-01-01

    In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns ("fingerprints") can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05-100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.

  4. Large-scale linear rankSVM.

    PubMed

    Lee, Ching-Pei; Lin, Chih-Jen

    2014-04-01

    Linear rankSVM is one of the widely used methods for learning to rank. Although its performance may be inferior to nonlinear methods such as kernel rankSVM and gradient boosting decision trees, linear rankSVM is useful to quickly produce a baseline model. Furthermore, following its recent development for classification, linear rankSVM may give competitive performance for large and sparse data. A great deal of works have studied linear rankSVM. The focus is on the computational efficiency when the number of preference pairs is large. In this letter, we systematically study existing works, discuss their advantages and disadvantages, and propose an efficient algorithm. We discuss different implementation issues and extensions with detailed experiments. Finally, we develop a robust linear rankSVM tool for public use.

  5. FPGA implementation of sparse matrix algorithm for information retrieval

    NASA Astrophysics Data System (ADS)

    Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio

    2005-06-01

    Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.

  6. Relative sensitivity of depth discrimination for ankle inversion and plantar flexion movements.

    PubMed

    Black, Georgia; Waddington, Gordon; Adams, Roger

    2014-02-01

    25 participants (20 women, 5 men) were tested for sensitivity in discrimination between sets of six movements centered on 8 degrees, 11 degrees, and 14 degrees, and separated by 0.3 degrees. Both inversion and plantar flexion movements were tested. Discrimination of the extent of inversion movement was observed to decline linearly with increasing depth; however, for plantar flexion, the discrimination function for movement extent was found to be non-linear. The relatively better discrimination of plantar flexion movements than inversion movements at around 11 degrees from horizontal is interpreted as an effect arising from differential amounts of practice through use, because this position is associated with the plantar flexion movement made in normal walking. The fact that plantar flexion movements are discriminated better than inversion at one region but not others argues against accounts of superior proprioceptive sensitivity for plantar flexion compared to inversion that are based on general properties of plantar flexion such as the number of muscle fibres on stretch.

  7. Comparison of discriminant analysis methods: Application to occupational exposure to particulate matter

    NASA Astrophysics Data System (ADS)

    Ramos, M. Rosário; Carolino, E.; Viegas, Carla; Viegas, Sandra

    2016-06-01

    Health effects associated with occupational exposure to particulate matter have been studied by several authors. In this study were selected six industries of five different areas: Cork company 1, Cork company 2, poultry, slaughterhouse for cattle, riding arena and production of animal feed. The measurements tool was a portable device for direct reading. This tool provides information on the particle number concentration for six different diameters, namely 0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm. The focus on these features is because they might be more closely related with adverse health effects. The aim is to identify the particles that better discriminate the industries, with the ultimate goal of classifying industries regarding potential negative effects on workers' health. Several methods of discriminant analysis were applied to data of occupational exposure to particulate matter and compared with respect to classification accuracy. The selected methods were linear discriminant analyses (LDA); linear quadratic discriminant analysis (QDA), robust linear discriminant analysis with selected estimators (MLE (Maximum Likelihood Estimators), MVE (Minimum Volume Elipsoid), "t", MCD (Minimum Covariance Determinant), MCD-A, MCD-B), multinomial logistic regression and artificial neural networks (ANN). The predictive accuracy of the methods was accessed through a simulation study. ANN yielded the highest rate of classification accuracy in the data set under study. Results indicate that the particle number concentration of diameter size 0.5 µm is the parameter that better discriminates industries.

  8. Discriminative analysis of non-linear brain connectivity for leukoaraiosis with resting-state fMRI

    NASA Astrophysics Data System (ADS)

    Lai, Youzhi; Xu, Lele; Yao, Li; Wu, Xia

    2015-03-01

    Leukoaraiosis (LA) describes diffuse white matter abnormalities on CT or MR brain scans, often seen in the normal elderly and in association with vascular risk factors such as hypertension, or in the context of cognitive impairment. The mechanism of cognitive dysfunction is still unclear. The recent clinical studies have revealed that the severity of LA was not corresponding to the cognitive level, and functional connectivity analysis is an appropriate method to detect the relation between LA and cognitive decline. However, existing functional connectivity analyses of LA have been mostly limited to linear associations. In this investigation, a novel measure utilizing the extended maximal information coefficient (eMIC) was applied to construct non-linear functional connectivity in 44 LA subjects (9 dementia, 25 mild cognitive impairment (MCI) and 10 cognitively normal (CN)). The strength of non-linear functional connections for the first 1% of discriminative power increased in MCI compared with CN and dementia, which was opposed to its linear counterpart. Further functional network analysis revealed that the changes of the non-linear and linear connectivity have similar but not completely the same spatial distribution in human brain. In the multivariate pattern analysis with multiple classifiers, the non-linear functional connectivity mostly identified dementia, MCI and CN from LA with a relatively higher accuracy rate than the linear measure. Our findings revealed the non-linear functional connectivity provided useful discriminative power in classification of LA, and the spatial distributed changes between the non-linear and linear measure may indicate the underlying mechanism of cognitive dysfunction in LA.

  9. Sparse matrix-vector multiplication on network-on-chip

    NASA Astrophysics Data System (ADS)

    Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.

    2010-12-01

    In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.

  10. A Shifted Block Lanczos Algorithm 1: The Block Recurrence

    NASA Technical Reports Server (NTRS)

    Grimes, Roger G.; Lewis, John G.; Simon, Horst D.

    1990-01-01

    In this paper we describe a block Lanczos algorithm that is used as the key building block of a software package for the extraction of eigenvalues and eigenvectors of large sparse symmetric generalized eigenproblems. The software package comprises: a version of the block Lanczos algorithm specialized for spectrally transformed eigenproblems; an adaptive strategy for choosing shifts, and efficient codes for factoring large sparse symmetric indefinite matrices. This paper describes the algorithmic details of our block Lanczos recurrence. This uses a novel combination of block generalizations of several features that have only been investigated independently in the past. In particular new forms of partial reorthogonalization, selective reorthogonalization and local reorthogonalization are used, as is a new algorithm for obtaining the M-orthogonal factorization of a matrix. The heuristic shifting strategy, the integration with sparse linear equation solvers and numerical experience with the code are described in a companion paper.

  11. A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary

    NASA Astrophysics Data System (ADS)

    Gillis, Nicolas; Luce, Robert

    2018-01-01

    A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust methods to identify these conic basis columns are based on nonnegative sparse regression and self dictionaries, and require the solution of large-scale convex optimization problems. In this paper we study a particular nonnegative sparse regression model with self dictionary. As opposed to previously proposed models, this model yields a smooth optimization problem where the sparsity is enforced through linear constraints. We show that the Euclidean projection on the polyhedron defined by these constraints can be computed efficiently, and propose a fast gradient method to solve our model. We compare our algorithm with several state-of-the-art methods on synthetic data sets and real-world hyperspectral images.

  12. DOLPHIn—Dictionary Learning for Phase Retrieval

    NASA Astrophysics Data System (ADS)

    Tillmann, Andreas M.; Eldar, Yonina C.; Mairal, Julien

    2016-12-01

    We propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image from squared-magnitude measurements of a complex-valued linear transformation of the original image. Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval, when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown signal - possibly corrupted by noise - and learns a dictionary such that each patch of the estimated image can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly better reconstructions for phase retrieval problems with noise than methods that cannot exploit such "hidden" sparsity. Moreover, on the theoretical side, we provide a convergence result for our method.

  13. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    PubMed Central

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  14. LSRN: A PARALLEL ITERATIVE SOLVER FOR STRONGLY OVER- OR UNDERDETERMINED SYSTEMS*

    PubMed Central

    Meng, Xiangrui; Saunders, Michael A.; Mahoney, Michael W.

    2014-01-01

    We describe a parallel iterative least squares solver named LSRN that is based on random normal projection. LSRN computes the min-length solution to minx∈ℝn ‖Ax − b‖2, where A ∈ ℝm × n with m ≫ n or m ≪ n, and where A may be rank-deficient. Tikhonov regularization may also be included. Since A is involved only in matrix-matrix and matrix-vector multiplications, it can be a dense or sparse matrix or a linear operator, and LSRN automatically speeds up when A is sparse or a fast linear operator. The preconditioning phase consists of a random normal projection, which is embarrassingly parallel, and a singular value decomposition of size ⌈γ min(m, n)⌉ × min(m, n), where γ is moderately larger than 1, e.g., γ = 2. We prove that the preconditioned system is well-conditioned, with a strong concentration result on the extreme singular values, and hence that the number of iterations is fully predictable when we apply LSQR or the Chebyshev semi-iterative method. As we demonstrate, the Chebyshev method is particularly efficient for solving large problems on clusters with high communication cost. Numerical results show that on a shared-memory machine, LSRN is very competitive with LAPACK’s DGELSD and a fast randomized least squares solver called Blendenpik on large dense problems, and it outperforms the least squares solver from SuiteSparseQR on sparse problems without sparsity patterns that can be exploited to reduce fill-in. Further experiments show that LSRN scales well on an Amazon Elastic Compute Cloud cluster. PMID:25419094

  15. voomDDA: discovery of diagnostic biomarkers and classification of RNA-seq data.

    PubMed

    Zararsiz, Gokmen; Goksuluk, Dincer; Klaus, Bernd; Korkmaz, Selcuk; Eldem, Vahap; Karabulut, Erdem; Ozturk, Ahmet

    2017-01-01

    RNA-Seq is a recent and efficient technique that uses the capabilities of next-generation sequencing technology for characterizing and quantifying transcriptomes. One important task using gene-expression data is to identify a small subset of genes that can be used to build diagnostic classifiers particularly for cancer diseases. Microarray based classifiers are not directly applicable to RNA-Seq data due to its discrete nature. Overdispersion is another problem that requires careful modeling of mean and variance relationship of the RNA-Seq data. In this study, we present voomDDA classifiers: variance modeling at the observational level (voom) extensions of the nearest shrunken centroids (NSC) and the diagonal discriminant classifiers. VoomNSC is one of these classifiers and brings voom and NSC approaches together for the purpose of gene-expression based classification. For this purpose, we propose weighted statistics and put these weighted statistics into the NSC algorithm. The VoomNSC is a sparse classifier that models the mean-variance relationship using the voom method and incorporates voom's precision weights into the NSC classifier via weighted statistics. A comprehensive simulation study was designed and four real datasets are used for performance assessment. The overall results indicate that voomNSC performs as the sparsest classifier. It also provides the most accurate results together with power-transformed Poisson linear discriminant analysis, rlog transformed support vector machines and random forests algorithms. In addition to prediction purposes, the voomNSC classifier can be used to identify the potential diagnostic biomarkers for a condition of interest. Through this work, statistical learning methods proposed for microarrays can be reused for RNA-Seq data. An interactive web application is freely available at http://www.biosoft.hacettepe.edu.tr/voomDDA/.

  16. Multiple Sparse Representations Classification

    PubMed Central

    Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik

    2015-01-01

    Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106

  17. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE PAGES

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...

    2017-09-21

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  18. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  19. Broadband implementation of coprime linear microphone arrays for direction of arrival estimation.

    PubMed

    Bush, Dane; Xiang, Ning

    2015-07-01

    Coprime arrays represent a form of sparse sensing which can achieve narrow beams using relatively few elements, exceeding the spatial Nyquist sampling limit. The purpose of this paper is to expand on and experimentally validate coprime array theory in an acoustic implementation. Two nested sparse uniform linear subarrays with coprime number of elements ( M and N) each produce grating lobes that overlap with one another completely in just one direction. When the subarray outputs are combined it is possible to retain the shared beam while mostly canceling the other superfluous grating lobes. In this way a small number of microphones ( N+M-1) creates a narrow beam at higher frequencies, comparable to a densely populated uniform linear array of MN microphones. In this work beampatterns are simulated for a range of single frequencies, as well as bands of frequencies. Narrowband experimental beampatterns are shown to correspond with simulated results even at frequencies other than the arrays design frequency. Narrowband side lobe locations are shown to correspond to the theoretical values. Side lobes in the directional pattern are mitigated by increasing bandwidth of analyzed signals. Direction of arrival estimation is also implemented for two simultaneous noise sources in a free field condition.

  20. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    PubMed

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  1. Latent log-linear models for handwritten digit classification.

    PubMed

    Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann

    2012-06-01

    We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.

  2. Assessment of computer techniques for processing digital LANDSAT MSS data for lithological discrimination of Serra do Ramalho, State of Bahia

    NASA Technical Reports Server (NTRS)

    Paradella, W. R. (Principal Investigator); Vitorello, I.; Monteiro, M. D.

    1984-01-01

    Enhancement techniques and thematic classifications were applied to the metasediments of Bambui Super Group (Upper Proterozoic) in the Region of Serra do Ramalho, SW of the state of Bahia. Linear contrast stretch, band-ratios with contrast stretch, and color-composites allow lithological discriminations. The effects of human activities and of vegetation cover mask and limit, in several ways, the lithological discrimination with digital MSS data. Principal component images and color composite of linear contrast stretch of these products, show lithological discrimination through tonal gradations. This set of products allows the delineations of several metasedimentary sequences to a level superior to reconnaissance mapping. Supervised (maximum likelihood classifier) and nonsupervised (K-Means classifier) classification of the limestone sequence, host to fluorite mineralization show satisfactory results.

  3. Experimental optimal maximum-confidence discrimination and optimal unambiguous discrimination of two mixed single-photon states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steudle, Gesine A.; Knauer, Sebastian; Herzog, Ulrike

    2011-05-15

    We present an experimental implementation of optimum measurements for quantum state discrimination. Optimum maximum-confidence discrimination and optimum unambiguous discrimination of two mixed single-photon polarization states were performed. For the latter the states of rank 2 in a four-dimensional Hilbert space are prepared using both path and polarization encoding. Linear optics and single photons from a true single-photon source based on a semiconductor quantum dot are utilized.

  4. Impact of view reduction in CT on radiation dose for patients

    NASA Astrophysics Data System (ADS)

    Parcero, E.; Flores, L.; Sánchez, M. G.; Vidal, V.; Verdú, G.

    2017-08-01

    Iterative methods have become a hot topic of research in computed tomography (CT) imaging because of their capacity to resolve the reconstruction problem from a limited number of projections. This allows the reduction of radiation exposure on patients during the data acquisition. The reconstruction time and the high radiation dose imposed on patients are the two major drawbacks in CT. To solve them effectively we adapted the method for sparse linear equations and sparse least squares (LSQR) with soft threshold filtering (STF) and the fast iterative shrinkage-thresholding algorithm (FISTA) to computed tomography reconstruction. The feasibility of the proposed methods is demonstrated numerically.

  5. An algebraic equation solution process formulated in anticipation of banded linear equations.

    DOT National Transportation Integrated Search

    1971-01-01

    A general method for the solution of large, sparsely banded, positive-definite, coefficient matrices is presented. The goal in developing the method was to produce an efficient and reliable solution process and to provide the user-programmer with a p...

  6. A comparison of SuperLU solvers on the intel MIC architecture

    NASA Astrophysics Data System (ADS)

    Tuncel, Mehmet; Duran, Ahmet; Celebi, M. Serdar; Akaydin, Bora; Topkaya, Figen O.

    2016-10-01

    In many science and engineering applications, problems may result in solving a sparse linear system AX=B. For example, SuperLU_MCDT, a linear solver, was used for the large penta-diagonal matrices for 2D problems and hepta-diagonal matrices for 3D problems, coming from the incompressible blood flow simulation (see [1]). It is important to test the status and potential improvements of state-of-the-art solvers on new technologies. In this work, sequential, multithreaded and distributed versions of SuperLU solvers (see [2]) are examined on the Intel Xeon Phi coprocessors using offload programming model at the EURORA cluster of CINECA in Italy. We consider a portfolio of test matrices containing patterned matrices from UFMM ([3]) and randomly located matrices. This architecture can benefit from high parallelism and large vectors. We find that the sequential SuperLU benefited up to 45 % performance improvement from the offload programming depending on the sparse matrix type and the size of transferred and processed data.

  7. Multistatic Array Sampling Scheme for Fast Near-Field Image Reconstruction

    DTIC Science & Technology

    2016-01-01

    reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of Boundary Arrays (BAs). Following a simple correction...hardware. Fig. 1 depicts the multistatic array topology. As seen, the topology is a tiled arrangement of Boundary Arrays (BAs). The BA is a well-known...sparse array layout comprised of two linear transmit arrays, and two linear receive arrays [6]. A slightly different tiled arrangement of BAs was used

  8. Detection of non-milk fat in milk fat by gas chromatography and linear discriminant analysis.

    PubMed

    Gutiérrez, R; Vega, S; Díaz, G; Sánchez, J; Coronado, M; Ramírez, A; Pérez, J; González, M; Schettino, B

    2009-05-01

    Gas chromatography was utilized to determine triacylglycerol profiles in milk and non-milk fat. The values of triacylglycerol were subjected to linear discriminant analysis to detect and quantify non-milk fat in milk fat. Two groups of milk fat were analyzed: A) raw milk fat from the central region of Mexico (n = 216) and B) ultrapasteurized milk fat from 3 industries (n = 36), as well as pork lard (n = 2), bovine tallow (n = 2), fish oil (n = 2), peanut (n = 2), corn (n = 2), olive (n = 2), and soy (n = 2). The samples of raw milk fat were adulterated with non-milk fats in proportions of 0, 5, 10, 15, and 20% to form 5 groups. The first function obtained from the linear discriminant analysis allowed the correct classification of 94.4% of the samples with levels <10% of adulteration. The triacylglycerol values of the ultrapasteurized milk fats were evaluated with the discriminant function, demonstrating that one industry added non-milk fat to its product in 80% of the samples analyzed.

  9. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  10. Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation

    PubMed Central

    Grossi, Giuliano; Lin, Jianyi

    2017-01-01

    In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD’s robustness and wide applicability. PMID:28103283

  11. An Improved Sparse Representation over Learned Dictionary Method for Seizure Detection.

    PubMed

    Li, Junhui; Zhou, Weidong; Yuan, Shasha; Zhang, Yanli; Li, Chengcheng; Wu, Qi

    2016-02-01

    Automatic seizure detection has played an important role in the monitoring, diagnosis and treatment of epilepsy. In this paper, a patient specific method is proposed for seizure detection in the long-term intracranial electroencephalogram (EEG) recordings. This seizure detection method is based on sparse representation with online dictionary learning and elastic net constraint. The online learned dictionary could sparsely represent the testing samples more accurately, and the elastic net constraint which combines the 11-norm and 12-norm not only makes the coefficients sparse but also avoids over-fitting problem. First, the EEG signals are preprocessed using wavelet filtering and differential filtering, and the kernel function is applied to make the samples closer to linearly separable. Then the dictionaries of seizure and nonseizure are respectively learned from original ictal and interictal training samples with online dictionary optimization algorithm to compose the training dictionary. After that, the test samples are sparsely coded over the learned dictionary and the residuals associated with ictal and interictal sub-dictionary are calculated, respectively. Eventually, the test samples are classified as two distinct categories, seizure or nonseizure, by comparing the reconstructed residuals. The average segment-based sensitivity of 95.45%, specificity of 99.08%, and event-based sensitivity of 94.44% with false detection rate of 0.23/h and average latency of -5.14 s have been achieved with our proposed method.

  12. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields

    PubMed Central

    Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian

    2017-01-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469

  13. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields.

    PubMed

    Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen

    2017-06-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.

  14. Sparse orthogonal population representation of spatial context in the retrosplenial cortex.

    PubMed

    Mao, Dun; Kandler, Steffen; McNaughton, Bruce L; Bonin, Vincent

    2017-08-15

    Sparse orthogonal coding is a key feature of hippocampal neural activity, which is believed to increase episodic memory capacity and to assist in navigation. Some retrosplenial cortex (RSC) neurons convey distributed spatial and navigational signals, but place-field representations such as observed in the hippocampus have not been reported. Combining cellular Ca 2+ imaging in RSC of mice with a head-fixed locomotion assay, we identified a population of RSC neurons, located predominantly in superficial layers, whose ensemble activity closely resembles that of hippocampal CA1 place cells during the same task. Like CA1 place cells, these RSC neurons fire in sequences during movement, and show narrowly tuned firing fields that form a sparse, orthogonal code correlated with location. RSC 'place' cell activity is robust to environmental manipulations, showing partial remapping similar to that observed in CA1. This population code for spatial context may assist the RSC in its role in memory and/or navigation.Neurons in the retrosplenial cortex (RSC) encode spatial and navigational signals. Here the authors use calcium imaging to show that, similar to the hippocampus, RSC neurons also encode place cell-like activity in a sparse orthogonal representation, partially anchored to the allocentric cues on the linear track.

  15. A coarse-to-fine approach for medical hyperspectral image classification with sparse representation

    NASA Astrophysics Data System (ADS)

    Chang, Lan; Zhang, Mengmeng; Li, Wei

    2017-10-01

    A coarse-to-fine approach with sparse representation is proposed for medical hyperspectral image classification in this work. Segmentation technique with different scales is employed to exploit edges of the input image, where coarse super-pixel patches provide global classification information while fine ones further provide detail information. Different from common RGB image, hyperspectral image has multi bands to adjust the cluster center with more high precision. After segmentation, each super pixel is classified by recently-developed sparse representation-based classification (SRC), which assigns label for testing samples in one local patch by means of sparse linear combination of all the training samples. Furthermore, segmentation with multiple scales is employed because single scale is not suitable for complicate distribution of medical hyperspectral imagery. Finally, classification results for different sizes of super pixel are fused by some fusion strategy, offering at least two benefits: (1) the final result is obviously superior to that of segmentation with single scale, and (2) the fusion process significantly simplifies the choice of scales. Experimental results using real medical hyperspectral images demonstrate that the proposed method outperforms the state-of-the-art SRC.

  16. Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Kaporin, I. E.

    2012-02-01

    In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.

  17. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    PubMed Central

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  18. Reconstruction of finite-valued sparse signals

    NASA Astrophysics Data System (ADS)

    Keiper, Sandra; Kutyniok, Gitta; Lee, Dae Gwan; Pfander, Götz

    2017-08-01

    The need of reconstructing discrete-valued sparse signals from few measurements, that is solving an undetermined system of linear equations, appears frequently in science and engineering. Those signals appear, for example, in error correcting codes as well as massive Multiple-Input Multiple-Output (MIMO) channel and wideband spectrum sensing. A particular example is given by wireless communications, where the transmitted signals are sequences of bits, i.e., with entries in f0; 1g. Whereas classical compressed sensing algorithms do not incorporate the additional knowledge of the discrete nature of the signal, classical lattice decoding approaches do not utilize sparsity constraints. In this talk, we present an approach that incorporates a discrete values prior into basis pursuit. In particular, we address finite-valued sparse signals, i.e., sparse signals with entries in a finite alphabet. We will introduce an equivalent null space characterization and show that phase transition takes place earlier than when using the classical basis pursuit approach. We will further discuss robustness of the algorithm and show that the nonnegative case is very different from the bipolar one. One of our findings is that the positioning of the zero in the alphabet - i.e., whether it is a boundary element or not - is crucial.

  19. Demographic and clinical features related to perceived discrimination in schizophrenia.

    PubMed

    Fresán, Ana; Robles-García, Rebeca; Madrigal, Eduardo; Tovilla-Zarate, Carlos-Alfonso; Martínez-López, Nicolás; Arango de Montis, Iván

    2018-04-01

    Perceived discrimination contributes to the development of internalized stigma among those with schizophrenia. Evidence on demographic and clinical factors related to the perception of discrimination among this population is both contradictory and scarce in low- and middle-income countries. Accordingly, the main purpose of this study is to determine the demographic and clinical factors predicting the perception of discrimination among Mexican patients with schizophrenia. Two hundred and seventeen adults with paranoid schizophrenia completed an interview on their demographic status and clinical characteristics. Symptom severity was assessed using the Positive and Negative Syndrome Scale; and perceived discrimination using 13 items from the King's Internalized Stigma Scale. Bivariate linear associations were determined to identify the variables of interest to be included in a linear regression analysis. Years of education, age of illness onset and length of hospitalization were associated with discrimination. However, only age of illness onset and length of hospitalization emerged as predictors of perceived discrimination in the final regression analysis, with longer length of hospitalization being the independent variable with the greatest contribution. Fortunately, this is a modifiable factor regarding the perception of discrimination and self-stigma. Strategies for achieving this as part of community-based mental health care are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Computational Methods for Sparse Solution of Linear Inverse Problems

    DTIC Science & Technology

    2009-03-01

    this approach is that the algorithms take advantage of fast matrix–vector multiplications. An implementation is available as pdco and SolveBP in the...M. A. Saunders, “ PDCO : primal-dual interior-point method for con- vex objectives,” Systems Optimization Laboratory, Stanford University, Tech. Rep

  1. Ultrahigh-Dimensional Multiclass Linear Discriminant Analysis by Pairwise Sure Independence Screening

    PubMed Central

    Pan, Rui; Wang, Hansheng; Li, Runze

    2016-01-01

    This paper is concerned with the problem of feature screening for multi-class linear discriminant analysis under ultrahigh dimensional setting. We allow the number of classes to be relatively large. As a result, the total number of relevant features is larger than usual. This makes the related classification problem much more challenging than the conventional one, where the number of classes is small (very often two). To solve the problem, we propose a novel pairwise sure independence screening method for linear discriminant analysis with an ultrahigh dimensional predictor. The proposed procedure is directly applicable to the situation with many classes. We further prove that the proposed method is screening consistent. Simulation studies are conducted to assess the finite sample performance of the new procedure. We also demonstrate the proposed methodology via an empirical analysis of a real life example on handwritten Chinese character recognition. PMID:28127109

  2. TH-AB-202-08: A Robust Real-Time Surface Reconstruction Method On Point Clouds Captured From a 3D Surface Photogrammetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Sawant, A; Ruan, D

    2016-06-15

    Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity inmore » local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real-time and robust surface reconstruction method on point clouds acquired by photogrammetry systems. It serves an important enabling step for real-time motion tracking in radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less

  3. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.

  4. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    PubMed Central

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications. PMID:27147347

  5. Image classification at low light levels

    NASA Astrophysics Data System (ADS)

    Wernick, Miles N.; Morris, G. Michael

    1986-12-01

    An imaging photon-counting detector is used to achieve automatic sorting of two image classes. The classification decision is formed on the basis of the cross correlation between a photon-limited input image and a reference function stored in computer memory. Expressions for the statistical parameters of the low-light-level correlation signal are given and are verified experimentally. To obtain a correlation-based system for two-class sorting, it is necessary to construct a reference function that produces useful information for class discrimination. An expression for such a reference function is derived using maximum-likelihood decision theory. Theoretically predicted results are used to compare on the basis of performance the maximum-likelihood reference function with Fukunaga-Koontz basis vectors and average filters. For each method, good class discrimination is found to result in milliseconds from a sparse sampling of the input image.

  6. Classification of melanoma lesions using sparse coded features and random forests

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mojdeh; Lemaître, Guillaume; Morel, Olivier; Massich, Joan; Garcia, Rafael; Meriaudeau, Fabrice; Marzani, Franck; Sidibé, Désiré

    2016-03-01

    Malignant melanoma is the most dangerous type of skin cancer, yet it is the most treatable kind of cancer, conditioned by its early diagnosis which is a challenging task for clinicians and dermatologists. In this regard, CAD systems based on machine learning and image processing techniques are developed to differentiate melanoma lesions from benign and dysplastic nevi using dermoscopic images. Generally, these frameworks are composed of sequential processes: pre-processing, segmentation, and classification. This architecture faces mainly two challenges: (i) each process is complex with the need to tune a set of parameters, and is specific to a given dataset; (ii) the performance of each process depends on the previous one, and the errors are accumulated throughout the framework. In this paper, we propose a framework for melanoma classification based on sparse coding which does not rely on any pre-processing or lesion segmentation. Our framework uses Random Forests classifier and sparse representation of three features: SIFT, Hue and Opponent angle histograms, and RGB intensities. The experiments are carried out on the public PH2 dataset using a 10-fold cross-validation. The results show that SIFT sparse-coded feature achieves the highest performance with sensitivity and specificity of 100% and 90.3% respectively, with a dictionary size of 800 atoms and a sparsity level of 2. Furthermore, the descriptor based on RGB intensities achieves similar results with sensitivity and specificity of 100% and 71.3%, respectively for a smaller dictionary size of 100 atoms. In conclusion, dictionary learning techniques encode strong structures of dermoscopic images and provide discriminant descriptors.

  7. Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.

    2007-01-01

    Scattered data interpolation is a problem of interest in numerous areas such as electronic imaging, smooth surface modeling, and computational geometry. Our motivation arises from applications in geology and mining, which often involve large scattered data sets and a demand for high accuracy. The method of choice is ordinary kriging. This is because it is a best unbiased estimator. Unfortunately, this interpolant is computationally very expensive to compute exactly. For n scattered data points, computing the value of a single interpolant involves solving a dense linear system of size roughly n x n. This is infeasible for large n. In practice, kriging is solved approximately by local approaches that are based on considering only a relatively small'number of points that lie close to the query point. There are many problems with this local approach, however. The first is that determining the proper neighborhood size is tricky, and is usually solved by ad hoc methods such as selecting a fixed number of nearest neighbors or all the points lying within a fixed radius. Such fixed neighborhood sizes may not work well for all query points, depending on local density of the point distribution. Local methods also suffer from the problem that the resulting interpolant is not continuous. Meyer showed that while kriging produces smooth continues surfaces, it has zero order continuity along its borders. Thus, at interface boundaries where the neighborhood changes, the interpolant behaves discontinuously. Therefore, it is important to consider and solve the global system for each interpolant. However, solving such large dense systems for each query point is impractical. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. The problems arise from the fact that the covariance functions that are used in kriging have global support. Our implementations combine, utilize, and enhance a number of different approaches that have been introduced in literature for solving large linear systems for interpolation of scattered data points. For very large systems, exact methods such as Gaussian elimination are impractical since they require 0(n(exp 3)) time and 0(n(exp 2)) storage. As Billings et al. suggested, we use an iterative approach. In particular, we use the SYMMLQ method, for solving the large but sparse ordinary kriging systems that result from tapering. The main technical issue that need to be overcome in our algorithmic solution is that the points' covariance matrix for kriging should be symmetric positive definite. The goal of tapering is to obtain a sparse approximate representation of the covariance matrix while maintaining its positive definiteness. Furrer et al. used tapering to obtain a sparse linear system of the form Ax = b, where A is the tapered symmetric positive definite covariance matrix. Thus, Cholesky factorization could be used to solve their linear systems. They implemented an efficient sparse Cholesky decomposition method. They also showed if these tapers are used for a limited class of covariance models, the solution of the system converges to the solution of the original system. Matrix A in the ordinary kriging system, while symmetric, is not positive definite. Thus, their approach is not applicable to the ordinary kriging system. Therefore, we use tapering only to obtain a sparse linear system. Then, we use SYMMLQ to solve the ordinary kriging system. We show that solving large kriging systems becomes practical via tapering and iterative methods, and results in lower estimation errors compared to traditional local approaches, and significant memory savings compared to the original global system. We also developed a more efficient variant of the sparse SYMMLQ method for large ordinary kriging systems. This approach adaptively finds the correct local neighborhood for each query point in the interpolation process.

  8. Vision-based method for detecting driver drowsiness and distraction in driver monitoring system

    NASA Astrophysics Data System (ADS)

    Jo, Jaeik; Lee, Sung Joo; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie

    2011-12-01

    Most driver-monitoring systems have attempted to detect either driver drowsiness or distraction, although both factors should be considered for accident prevention. Therefore, we propose a new driver-monitoring method considering both factors. We make the following contributions. First, if the driver is looking ahead, drowsiness detection is performed; otherwise, distraction detection is performed. Thus, the computational cost and eye-detection error can be reduced. Second, we propose a new eye-detection algorithm that combines adaptive boosting, adaptive template matching, and blob detection with eye validation, thereby reducing the eye-detection error and processing time significantly, which is hardly achievable using a single method. Third, to enhance eye-detection accuracy, eye validation is applied after initial eye detection, using a support vector machine based on appearance features obtained by principal component analysis (PCA) and linear discriminant analysis (LDA). Fourth, we propose a novel eye state-detection algorithm that combines appearance features obtained using PCA and LDA, with statistical features such as the sparseness and kurtosis of the histogram from the horizontal edge image of the eye. Experimental results showed that the detection accuracies of the eye region and eye states were 99 and 97%, respectively. Both driver drowsiness and distraction were detected with a success rate of 98%.

  9. Comparison of different methods for gender estimation from face image of various poses

    NASA Astrophysics Data System (ADS)

    Ishii, Yohei; Hongo, Hitoshi; Niwa, Yoshinori; Yamamoto, Kazuhiko

    2003-04-01

    Recently, gender estimation from face images has been studied for frontal facial images. However, it is difficult to obtain such facial images constantly in the case of application systems for security, surveillance and marketing research. In order to build such systems, a method is required to estimate gender from the image of various facial poses. In this paper, three different classifiers are compared in appearance-based gender estimation, which use four directional features (FDF). The classifiers are linear discriminant analysis (LDA), Support Vector Machines (SVMs) and Sparse Network of Winnows (SNoW). Face images used for experiments were obtained from 35 viewpoints. The direction of viewpoints varied +/-45 degrees horizontally, +/-30 degrees vertically at 15 degree intervals respectively. Although LDA showed the best performance for frontal facial images, SVM with Gaussian kernel was found the best performance (86.0%) for the facial images of 35 viewpoints. It is considered that SVM with Gaussian kernel is robust to changes in viewpoint when estimating gender from these results. Furthermore, the estimation rate was quite close to the average estimation rate at 35 viewpoints respectively. It is supposed that the methods are reasonable to estimate gender within the range of experimented viewpoints by learning face images from multiple directions by one class.

  10. Source Characterization of Underground Explosions from Combined Regional Moment Tensor and First-Motion Analysis

    DOE PAGES

    Chiang, Andrea; Dreger, Douglas S.; Ford, Sean R.; ...

    2014-07-08

    Here in this study, we investigate the 14 September 1988 U.S.–Soviet Joint Verification Experiment nuclear test at the Semipalatinsk test site in eastern Kazakhstan and two nuclear explosions conducted less than 10 years later at the Chinese Lop Nor test site. These events were very sparsely recorded by stations located within 1600 km, and in each case only three or four stations were available in the regional distance range. We have utilized a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long-period waveforms and first-motionmore » observations provides a unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We demonstrate through a series of jackknife tests and sensitivity analyses that the source type of the explosions is well constrained. One event, a 1996 Lop Nor shaft explosion, displays large Love waves and possibly reversed Rayleigh waves at one station, indicative of a large F-factor. We show the combination of long-period waveforms and P-wave first motions are able to discriminate this event as explosion-like and distinct from earthquakes and collapses. We further demonstrate the behavior of network sensitivity solutions for models of tectonic release and spall-based tensile damage over a range of F-factors and K-factors.« less

  11. Source Characterization of Underground Explosions from Combined Regional Moment Tensor and First-Motion Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Andrea; Dreger, Douglas S.; Ford, Sean R.

    Here in this study, we investigate the 14 September 1988 U.S.–Soviet Joint Verification Experiment nuclear test at the Semipalatinsk test site in eastern Kazakhstan and two nuclear explosions conducted less than 10 years later at the Chinese Lop Nor test site. These events were very sparsely recorded by stations located within 1600 km, and in each case only three or four stations were available in the regional distance range. We have utilized a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long-period waveforms and first-motionmore » observations provides a unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We demonstrate through a series of jackknife tests and sensitivity analyses that the source type of the explosions is well constrained. One event, a 1996 Lop Nor shaft explosion, displays large Love waves and possibly reversed Rayleigh waves at one station, indicative of a large F-factor. We show the combination of long-period waveforms and P-wave first motions are able to discriminate this event as explosion-like and distinct from earthquakes and collapses. We further demonstrate the behavior of network sensitivity solutions for models of tectonic release and spall-based tensile damage over a range of F-factors and K-factors.« less

  12. Regularization strategies for hyperplane classifiers: application to cancer classification with gene expression data.

    PubMed

    Andries, Erik; Hagstrom, Thomas; Atlas, Susan R; Willman, Cheryl

    2007-02-01

    Linear discrimination, from the point of view of numerical linear algebra, can be treated as solving an ill-posed system of linear equations. In order to generate a solution that is robust in the presence of noise, these problems require regularization. Here, we examine the ill-posedness involved in the linear discrimination of cancer gene expression data with respect to outcome and tumor subclasses. We show that a filter factor representation, based upon Singular Value Decomposition, yields insight into the numerical ill-posedness of the hyperplane-based separation when applied to gene expression data. We also show that this representation yields useful diagnostic tools for guiding the selection of classifier parameters, thus leading to improved performance.

  13. Structural performance analysis and redesign

    NASA Technical Reports Server (NTRS)

    Whetstone, W. D.

    1978-01-01

    Program performs stress buckling and vibrational analysis of large, linear, finite-element systems in excess of 50,000 degrees of freedom. Cost, execution time, and storage requirements are kept reasonable through use of sparse matrix solution techniques, and other computational and data management procedures designed for problems of very large size.

  14. Feature Modeling in Underwater Environments Using Sparse Linear Combinations

    DTIC Science & Technology

    2010-01-01

    nose of the tor- pedo obviously has a different optical depth than the tail and points in between. Our chosen PSF does not consider this, but it...IEEE Transactions on Information Theory, 52(4), 2006. 4 [6] R. Hess and A. Fern. Improved video registration using non-distinctive local image

  15. Monitoring NEON terrestrial sites phenology with daily MODIS BRDF/albedo product and landsat data

    USDA-ARS?s Scientific Manuscript database

    The MODerate resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and albedo products (MCD43) have already been in production for more than a decade. The standard product makes use of a linear “kernel-driven” RossThick-LiSparse Reciprocal (RTLSR) BRDF m...

  16. Semi-Supervised Sparse Representation Based Classification for Face Recognition With Insufficient Labeled Samples

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Ma, Jiayi; Yuille, Alan L.

    2017-05-01

    This paper addresses the problem of face recognition when there is only few, or even only a single, labeled examples of the face that we wish to recognize. Moreover, these examples are typically corrupted by nuisance variables, both linear (i.e., additive nuisance variables such as bad lighting, wearing of glasses) and non-linear (i.e., non-additive pixel-wise nuisance variables such as expression changes). The small number of labeled examples means that it is hard to remove these nuisance variables between the training and testing faces to obtain good recognition performance. To address the problem we propose a method called Semi-Supervised Sparse Representation based Classification (S$^3$RC). This is based on recent work on sparsity where faces are represented in terms of two dictionaries: a gallery dictionary consisting of one or more examples of each person, and a variation dictionary representing linear nuisance variables (e.g., different lighting conditions, different glasses). The main idea is that (i) we use the variation dictionary to characterize the linear nuisance variables via the sparsity framework, then (ii) prototype face images are estimated as a gallery dictionary via a Gaussian Mixture Model (GMM), with mixed labeled and unlabeled samples in a semi-supervised manner, to deal with the non-linear nuisance variations between labeled and unlabeled samples. We have done experiments with insufficient labeled samples, even when there is only a single labeled sample per person. Our results on the AR, Multi-PIE, CAS-PEAL, and LFW databases demonstrate that the proposed method is able to deliver significantly improved performance over existing methods.

  17. Stable orthogonal local discriminant embedding for linear dimensionality reduction.

    PubMed

    Gao, Quanxue; Ma, Jingjie; Zhang, Hailin; Gao, Xinbo; Liu, Yamin

    2013-07-01

    Manifold learning is widely used in machine learning and pattern recognition. However, manifold learning only considers the similarity of samples belonging to the same class and ignores the within-class variation of data, which will impair the generalization and stableness of the algorithms. For this purpose, we construct an adjacency graph to model the intraclass variation that characterizes the most important properties, such as diversity of patterns, and then incorporate the diversity into the discriminant objective function for linear dimensionality reduction. Finally, we introduce the orthogonal constraint for the basis vectors and propose an orthogonal algorithm called stable orthogonal local discriminate embedding. Experimental results on several standard image databases demonstrate the effectiveness of the proposed dimensionality reduction approach.

  18. Action recognition using mined hierarchical compound features.

    PubMed

    Gilbert, Andrew; Illingworth, John; Bowden, Richard

    2011-05-01

    The field of Action Recognition has seen a large increase in activity in recent years. Much of the progress has been through incorporating ideas from single-frame object recognition and adapting them for temporal-based action recognition. Inspired by the success of interest points in the 2D spatial domain, their 3D (space-time) counterparts typically form the basic components used to describe actions, and in action recognition the features used are often engineered to fire sparsely. This is to ensure that the problem is tractable; however, this can sacrifice recognition accuracy as it cannot be assumed that the optimum features in terms of class discrimination are obtained from this approach. In contrast, we propose to initially use an overcomplete set of simple 2D corners in both space and time. These are grouped spatially and temporally using a hierarchical process, with an increasing search area. At each stage of the hierarchy, the most distinctive and descriptive features are learned efficiently through data mining. This allows large amounts of data to be searched for frequently reoccurring patterns of features. At each level of the hierarchy, the mined compound features become more complex, discriminative, and sparse. This results in fast, accurate recognition with real-time performance on high-resolution video. As the compound features are constructed and selected based upon their ability to discriminate, their speed and accuracy increase at each level of the hierarchy. The approach is tested on four state-of-the-art data sets, the popular KTH data set to provide a comparison with other state-of-the-art approaches, the Multi-KTH data set to illustrate performance at simultaneous multiaction classification, despite no explicit localization information provided during training. Finally, the recent Hollywood and Hollywood2 data sets provide challenging complex actions taken from commercial movie sequences. For all four data sets, the proposed hierarchical approach outperforms all other methods reported thus far in the literature and can achieve real-time operation.

  19. Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction

    PubMed Central

    Shen, Li; Qi, Yuan; Kim, Sungeun; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Saykin, Andrew J.

    2010-01-01

    We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures. PMID:20879451

  20. Modeling Alzheimer's disease cognitive scores using multi-task sparse group lasso.

    PubMed

    Liu, Xiaoli; Goncalves, André R; Cao, Peng; Zhao, Dazhe; Banerjee, Arindam

    2018-06-01

    Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by loss of memory and reduction in cognitive functions due to progressive degeneration of neurons and their connections, eventually leading to death. In this paper, we consider the problem of simultaneously predicting several different cognitive scores associated with categorizing subjects as normal, mild cognitive impairment (MCI), or Alzheimer's disease (AD) in a multi-task learning framework using features extracted from brain images obtained from ADNI (Alzheimer's Disease Neuroimaging Initiative). To solve the problem, we present a multi-task sparse group lasso (MT-SGL) framework, which estimates sparse features coupled across tasks, and can work with loss functions associated with any Generalized Linear Models. Through comparisons with a variety of baseline models using multiple evaluation metrics, we illustrate the promising predictive performance of MT-SGL on ADNI along with its ability to identify brain regions more likely to help the characterization Alzheimer's disease progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mapping High Dimensional Sparse Customer Requirements into Product Configurations

    NASA Astrophysics Data System (ADS)

    Jiao, Yao; Yang, Yu; Zhang, Hongshan

    2017-10-01

    Mapping customer requirements into product configurations is a crucial step for product design, while, customers express their needs ambiguously and locally due to the lack of domain knowledge. Thus the data mining process of customer requirements might result in fragmental information with high dimensional sparsity, leading the mapping procedure risk uncertainty and complexity. The Expert Judgment is widely applied against that background since there is no formal requirements for systematic or structural data. However, there are concerns on the repeatability and bias for Expert Judgment. In this study, an integrated method by adjusted Local Linear Embedding (LLE) and Naïve Bayes (NB) classifier is proposed to map high dimensional sparse customer requirements to product configurations. The integrated method adjusts classical LLE to preprocess high dimensional sparse dataset to satisfy the prerequisite of NB for classifying different customer requirements to corresponding product configurations. Compared with Expert Judgment, the adjusted LLE with NB performs much better in a real-world Tablet PC design case both in accuracy and robustness.

  2. Experiments with conjugate gradient algorithms for homotopy curve tracking

    NASA Technical Reports Server (NTRS)

    Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.

    1991-01-01

    There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.

  3. Deformation-Aware Log-Linear Models

    NASA Astrophysics Data System (ADS)

    Gass, Tobias; Deselaers, Thomas; Ney, Hermann

    In this paper, we present a novel deformation-aware discriminative model for handwritten digit recognition. Unlike previous approaches our model directly considers image deformations and allows discriminative training of all parameters, including those accounting for non-linear transformations of the image. This is achieved by extending a log-linear framework to incorporate a latent deformation variable. The resulting model has an order of magnitude less parameters than competing approaches to handling image deformations. We tune and evaluate our approach on the USPS task and show its generalization capabilities by applying the tuned model to the MNIST task. We gain interesting insights and achieve highly competitive results on both tasks.

  4. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  5. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles.

    PubMed

    He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui

    2015-08-13

    In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.

  6. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Gutknecht, Martin H.; Nachtigal, Noel M.

    1991-01-01

    The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. An implementation is presented of a look-ahead version of the Lanczos algorithm that, except for the very special situation of an incurable breakdown, overcomes these problems by skipping over those steps in which a breakdown or near-breakdown would occur in the standard process. The proposed algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products as the standard Lanczos process without look-ahead.

  7. Group sparse multiview patch alignment framework with view consistency for image classification.

    PubMed

    Gui, Jie; Tao, Dacheng; Sun, Zhenan; Luo, Yong; You, Xinge; Tang, Yuan Yan

    2014-07-01

    No single feature can satisfactorily characterize the semantic concepts of an image. Multiview learning aims to unify different kinds of features to produce a consensual and efficient representation. This paper redefines part optimization in the patch alignment framework (PAF) and develops a group sparse multiview patch alignment framework (GSM-PAF). The new part optimization considers not only the complementary properties of different views, but also view consistency. In particular, view consistency models the correlations between all possible combinations of any two kinds of view. In contrast to conventional dimensionality reduction algorithms that perform feature extraction and feature selection independently, GSM-PAF enjoys joint feature extraction and feature selection by exploiting l(2,1)-norm on the projection matrix to achieve row sparsity, which leads to the simultaneous selection of relevant features and learning transformation, and thus makes the algorithm more discriminative. Experiments on two real-world image data sets demonstrate the effectiveness of GSM-PAF for image classification.

  8. Acceleration of GPU-based Krylov solvers via data transfer reduction

    DOE PAGES

    Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...

    2015-04-08

    Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less

  9. Edge-SIFT: discriminative binary descriptor for scalable partial-duplicate mobile search.

    PubMed

    Zhang, Shiliang; Tian, Qi; Lu, Ke; Huang, Qingming; Gao, Wen

    2013-07-01

    As the basis of large-scale partial duplicate visual search on mobile devices, image local descriptor is expected to be discriminative, efficient, and compact. Our study shows that the popularly used histogram-based descriptors, such as scale invariant feature transform (SIFT) are not optimal for this task. This is mainly because histogram representation is relatively expensive to compute on mobile platforms and loses significant spatial clues, which are important for improving discriminative power and matching near-duplicate image patches. To address these issues, we propose to extract a novel binary local descriptor named Edge-SIFT from the binary edge maps of scale- and orientation-normalized image patches. By preserving both locations and orientations of edges and compressing the sparse binary edge maps with a boosting strategy, the final Edge-SIFT shows strong discriminative power with compact representation. Furthermore, we propose a fast similarity measurement and an indexing framework with flexible online verification. Hence, the Edge-SIFT allows an accurate and efficient image search and is ideal for computation sensitive scenarios such as a mobile image search. Experiments on a large-scale dataset manifest that the Edge-SIFT shows superior retrieval accuracy to Oriented BRIEF (ORB) and is superior to SIFT in the aspects of retrieval precision, efficiency, compactness, and transmission cost.

  10. Combining DCQGMP-Based Sparse Decomposition and MPDR Beamformer for Multi-Type Interferences Mitigation for GNSS Receivers.

    PubMed

    Guo, Qiang; Qi, Liangang

    2017-04-10

    In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal.

  11. Combining DCQGMP-Based Sparse Decomposition and MPDR Beamformer for Multi-Type Interferences Mitigation for GNSS Receivers

    PubMed Central

    Guo, Qiang; Qi, Liangang

    2017-01-01

    In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal. PMID:28394290

  12. Score-moment combined linear discrimination analysis (SMC-LDA) as an improved discrimination method.

    PubMed

    Han, Jintae; Chung, Hoeil; Han, Sung-Hwan; Yoon, Moon-Young

    2007-01-01

    A new discrimination method called the score-moment combined linear discrimination analysis (SMC-LDA) has been developed and its performance has been evaluated using three practical spectroscopic datasets. The key concept of SMC-LDA was to use not only the score from principal component analysis (PCA), but also the moment of the spectrum, as inputs for LDA to improve discrimination. Along with conventional score, moment is used in spectroscopic fields as an effective alternative for spectral feature representation. Three different approaches were considered. Initially, the score generated from PCA was projected onto a two-dimensional feature space by maximizing Fisher's criterion function (conventional PCA-LDA). Next, the same procedure was performed using only moment. Finally, both score and moment were utilized simultaneously for LDA. To evaluate discrimination performances, three different spectroscopic datasets were employed: (1) infrared (IR) spectra of normal and malignant stomach tissue, (2) near-infrared (NIR) spectra of diesel and light gas oil (LGO) and (3) Raman spectra of Chinese and Korean ginseng. For each case, the best discrimination results were achieved when both score and moment were used for LDA (SMC-LDA). Since the spectral representation character of moment was different from that of score, inclusion of both score and moment for LDA provided more diversified and descriptive information.

  13. Does perceived racial discrimination predict changes in psychological distress and substance use over time? An examination among Black emerging adults.

    PubMed

    Hurd, Noelle M; Varner, Fatima A; Caldwell, Cleopatra H; Zimmerman, Marc A

    2014-07-01

    We assessed whether perceived discrimination predicted changes in psychological distress and substance use over time and whether psychological distress and substance use predicted change in perceived discrimination over time. We also assessed whether associations between these constructs varied by gender. Our sample included 607 Black emerging adults (53% female) followed for 4 years. Participants reported the frequency with which they had experienced racial hassles during the past year, symptoms of anxiety and depression during the past week, and cigarette and alcohol use during the past 30 days. We estimated a series of latent growth models to test our study hypotheses. We found that the intercept of perceived discrimination predicted the linear slopes of anxiety symptoms, depressive symptoms, and alcohol use. We did not find any associations between the intercept factors of our mental health or substance use variables and the perceived discrimination linear slope factor. We found limited differences across paths by gender. Our findings suggest a temporal ordering in the associations among perceived racial discrimination, psychological distress, and alcohol use over time among emerging adults. Further, our findings suggest that perceived racial discrimination may be similarly harmful among men and women. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  14. SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo

    2017-03-01

    State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.

  15. Research of Face Recognition with Fisher Linear Discriminant

    NASA Astrophysics Data System (ADS)

    Rahim, R.; Afriliansyah, T.; Winata, H.; Nofriansyah, D.; Ratnadewi; Aryza, S.

    2018-01-01

    Face identification systems are developing rapidly, and these developments drive the advancement of biometric-based identification systems that have high accuracy. However, to develop a good face recognition system and to have high accuracy is something that’s hard to find. Human faces have diverse expressions and attribute changes such as eyeglasses, mustache, beard and others. Fisher Linear Discriminant (FLD) is a class-specific method that distinguishes facial image images into classes and also creates distance between classes and intra classes so as to produce better classification.

  16. L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction.

    PubMed

    Zheng, Wenming; Lin, Zhouchen; Wang, Haixian

    2014-04-01

    A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.

  17. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Cesca, Simone; Priolo, Enrico; Rinaldi, Antonio Pio; Clinton, John F.; Stabile, Tony A.; Dost, Bernard; Fernandez, Mariano Garcia; Wiemer, Stefan; Dahm, Torsten

    2017-06-01

    Due to the deep socioeconomic implications, induced seismicity is a timely and increasingly relevant topic of interest for the general public. Cases of induced seismicity have a global distribution and involve a large number of industrial operations, with many documented cases from as far back to the beginning of the twentieth century. However, the sparse and fragmented documentation available makes it difficult to have a clear picture on our understanding of the physical phenomenon and consequently in our ability to mitigate the risk associated with induced seismicity. This review presents a unified and concise summary of the still open questions related to monitoring, discrimination, and management of induced seismicity in the European context and, when possible, provides potential answers. We further discuss selected critical European cases of induced seismicity, which led to the suspension or reduction of the related industrial activities.

  18. Influence of experiences of racial discrimination and ethnic identity on prenatal smoking among urban black and Hispanic women.

    PubMed

    Nguyen, Kim Hanh; Subramanian, S V; Sorensen, Glorian; Tsang, Kathy; Wright, Rosalind J

    2012-04-01

    Although the prevalence of prenatal smoking among minority women exceeds the projected 2010 national objective, data on the determinants of prenatal smoking among minorities remain sparse. We examined associations between self-reported experiences of racial discrimination on prenatal smoking among urban black and Hispanic women aged 18-44 years (n=677). Our main independent variable was created from the Experiences of Discrimination (EOD) scale. Multivariable logistic regression models were estimated to examine the relationship between EOD (moderate EOD as the referent group) and smoking for the entire sample and then separately by race/ethnicity adjusted for sociodemographic variables. We also examined the role of ethnic identity (EI) as a buffer to racial discrimination (n=405). The prevalence of smoking was 18.1% versus 10% for black and Hispanic women, respectively (p=0.002). There were no significant differences in the level of EOD based on race. In multivariate regressions, compared to those reporting moderate EOD, women reporting high discrimination (OR 2.64, 95% CI 1.25 to 5.60) had higher odds of smoking. In stratified analyses, this relationship remained significant only in black women. Results suggest that foreign-born Hispanic women with higher EI were less likely to smoke compared to their low-EI counterparts (3.5 vs 10.1%; p=0.08). These are the first data in pregnant minority women showing an association between discrimination and increased risk of smoking particularly among black women. Ethnic identity and nativity status were also associated with smoking risk. Smoking cessation programmes should consider such factors among childbearing minority women.

  19. Online learning control using adaptive critic designs with sparse kernel machines.

    PubMed

    Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo

    2013-05-01

    In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.

  20. Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen

    2017-12-01

    Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.

  1. Three Minute Method for Amino Acid Analysis by UHPLC and high resolution quadrupole orbitrap mass spectrometry

    PubMed Central

    Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C.

    2015-01-01

    Amino acid analysis is a powerful bioanalytical technique for many biomedical research endeavors, including cancer, emergency medicine, nutrition and neuroscience research. In the present study, we present a three minute analytical method for underivatized amino acid analysis that employs ultra-high performance liquid chromatography and high resolution quadrupole orbitrap mass spectrometry. This method has demonstrated linearity (mM to nM range), reproducibility (intra-day<5%, inter-day<20%), sensitivity (low fmol) and selectivity. Here, we illustrate the rapidity and accuracy of the method through comparison with conventional liquid chromatography-mass spectrometry methods. We further demonstrate the robustness and sensitivity of this method on a diverse range of biological matrices. Using this method we were able to selectively discriminate murine pancreatic cancer cells with and without knocked down expression of Hypoxia Inducible Factor 1α; plasma, lymph and bronchioalveolar lavage fluid samples from control versus hemorrhaged rats; and muscle tissue samples harvested from rats subjected to both low fat and high fat diets. Furthermore, we were able to exploit the sensitivity of the method to detect and quantify the release of glutamate from sparsely isolated murine taste buds. Spiked in light or heavy standards (13C6-arginine, 13C6-lysine, 13C515N2-glutamine) or xenometabolites were used to determine coefficient of variations, confirm linearity of relative quantitation in four different matrices, and overcome matrix effects for absolute quantitation. The presented method enables high-throughput analysis of low abundance samples requiring only one percent of the material extracted from 100,000 cells, 10 μl of biological fluid, or 2 mg of muscle tissue. PMID:26058356

  2. A General Family of Limited Information Goodness-of-Fit Statistics for Multinomial Data

    ERIC Educational Resources Information Center

    Joe, Harry; Maydeu-Olivares, Alberto

    2010-01-01

    Maydeu-Olivares and Joe (J. Am. Stat. Assoc. 100:1009-1020, "2005"; Psychometrika 71:713-732, "2006") introduced classes of chi-square tests for (sparse) multidimensional multinomial data based on low-order marginal proportions. Our extension provides general conditions under which quadratic forms in linear functions of cell residuals are…

  3. SPAR reference manual

    NASA Technical Reports Server (NTRS)

    Whetstone, W. D.

    1976-01-01

    The functions and operating rules of the SPAR system, which is a group of computer programs used primarily to perform stress, buckling, and vibrational analyses of linear finite element systems, were given. The following subject areas were discussed: basic information, structure definition, format system matrix processors, utility programs, static solutions, stresses, sparse matrix eigensolver, dynamic response, graphics, and substructure processors.

  4. Ex-situ conservation of Quercus oglethorpensis in living collections of arboreta and botanical gardens.

    Treesearch

    Matthew S. Lobdell; Patrick G. Thompson

    2017-01-01

    Quercus oglethorpensis (Oglethorpe oak) is an endangered species native to the southeastern United States. It is threatened by land use changes, competition, and chestnut blight disease caused by Cryphonectria parasitica. The species is distributed sparsely over a linear distance of ca. 950 km. Its range includes several...

  5. Analysis of programming properties and the row-column generation method for 1-norm support vector machines.

    PubMed

    Zhang, Li; Zhou, WeiDa

    2013-12-01

    This paper deals with fast methods for training a 1-norm support vector machine (SVM). First, we define a specific class of linear programming with many sparse constraints, i.e., row-column sparse constraint linear programming (RCSC-LP). In nature, the 1-norm SVM is a sort of RCSC-LP. In order to construct subproblems for RCSC-LP and solve them, a family of row-column generation (RCG) methods is introduced. RCG methods belong to a category of decomposition techniques, and perform row and column generations in a parallel fashion. Specially, for the 1-norm SVM, the maximum size of subproblems of RCG is identical with the number of Support Vectors (SVs). We also introduce a semi-deleting rule for RCG methods and prove the convergence of RCG methods when using the semi-deleting rule. Experimental results on toy data and real-world datasets illustrate that it is efficient to use RCG to train the 1-norm SVM, especially in the case of small SVs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Synthesis and analysis of discriminators under influence of broadband non-Gaussian noise

    NASA Astrophysics Data System (ADS)

    Artyushenko, V. M.; Volovach, V. I.

    2018-01-01

    We considered the problems of the synthesis and analysis of discriminators, when the useful signal is exposed to non-Gaussian additive broadband noise. It is shown that in this case, the discriminator of the tracking meter should contain the nonlinear transformation unit, the characteristics of which are determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian broadband noise and mismatch errors. The parameters of the discriminatory and phase characteristics of the discriminators working under the above conditions are obtained. It is shown that the efficiency of non-linear processing depends on the ratio of power of FM noise to the power of Gaussian noise. The analysis of the information loss of signal transformation caused by the linear section of discriminatory characteristics of the unit of nonlinear transformations of the discriminator is carried out. It is shown that the average slope of the nonlinear transformation characteristic is determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian noise and mismatch errors.

  7. Relationship between acculturation, discrimination, and suicidal ideation and attempts among US Hispanics in the National Epidemiologic Survey of Alcohol and Related Conditions.

    PubMed

    Perez-Rodriguez, M Mercedes; Baca-Garcia, Enrique; Oquendo, Maria A; Wang, Shuai; Wall, Melanie M; Liu, Shang-Min; Blanco, Carlos

    2014-04-01

    Acculturation is the process by which immigrants acquire the culture of the dominant society. Little is known about the relationship between acculturation and suicidal ideation and attempts among US Hispanics. Our aim was to examine the impact of 5 acculturation measures (age at migration, time in the United States, social network composition, language, race/ethnic orientation) on suicidal ideation and attempts in the largest available nationally representative sample of US Hispanics. Study participants were US Hispanics (N = 6,359) from Wave 2 of the 2004-2005 National Epidemiologic Survey of Alcohol and Related Conditions (N = 34,653). We used linear χ(2) tests and logistic regression models to analyze the association between acculturation and risk of suicidal ideation and attempts. Factors associated with a linear increase in lifetime risk for suicidal ideation and attempts were (1) younger age at migration (linear χ(2)(1) = 57.15; P < .0001), (2) longer time in the United States (linear χ(2)(1)= 36.09; P < .0001), (3) higher degree of English-language orientation (linear χ(2)(1) = 74.08; P <.0001), (4) lower Hispanic composition of social network (linear χ(2)(1) = 36.34; P < .0001), and (5) lower Hispanic racial/ethnic identification (linear χ(2)(1) = 47.77; P <.0001). Higher levels of perceived discrimination were associated with higher lifetime risk for suicidal ideation (β = 0.051; P < .001) and attempts (β = 0.020; P = .003). There was a linear association between multiple dimensions of acculturation and lifetime suicidal ideation and attempts. Discrimination was also associated with lifetime risk for suicidal ideation and attempts. Our results highlight protective aspects of the traditional Hispanic culture, such as high social support, coping strategies, and moral objections to suicide, which are modifiable factors and potential targets for public health interventions aimed at decreasing suicide risk. Culturally sensitive mental health resources need to be made more available to decrease discrimination and stigma. © Copyright 2014 Physicians Postgraduate Press, Inc.

  8. Classical Testing in Functional Linear Models.

    PubMed

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.

  9. Classical Testing in Functional Linear Models

    PubMed Central

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155

  10. Robust Small Target Co-Detection from Airborne Infrared Image Sequences.

    PubMed

    Gao, Jingli; Wen, Chenglin; Liu, Meiqin

    2017-09-29

    In this paper, a novel infrared target co-detection model combining the self-correlation features of backgrounds and the commonality features of targets in the spatio-temporal domain is proposed to detect small targets in a sequence of infrared images with complex backgrounds. Firstly, a dense target extraction model based on nonlinear weights is proposed, which can better suppress background of images and enhance small targets than weights of singular values. Secondly, a sparse target extraction model based on entry-wise weighted robust principal component analysis is proposed. The entry-wise weight adaptively incorporates structural prior in terms of local weighted entropy, thus, it can extract real targets accurately and suppress background clutters efficiently. Finally, the commonality of targets in the spatio-temporal domain are used to construct target refinement model for false alarms suppression and target confirmation. Since real targets could appear in both of the dense and sparse reconstruction maps of a single frame, and form trajectories after tracklet association of consecutive frames, the location correlation of the dense and sparse reconstruction maps for a single frame and tracklet association of the location correlation maps for successive frames have strong ability to discriminate between small targets and background clutters. Experimental results demonstrate that the proposed small target co-detection method can not only suppress background clutters effectively, but also detect targets accurately even if with target-like interference.

  11. Brain abnormality segmentation based on l1-norm minimization

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos

    2014-03-01

    We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

  12. ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine

    NASA Astrophysics Data System (ADS)

    Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.

    1989-10-01

    The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.

  13. A Mixed-Integer Linear Programming Problem which is Efficiently Solvable.

    DTIC Science & Technology

    1987-10-01

    INTEGER LINEAR PROGRAMMING PROBLEM WHICH IS EFFICIENTLY SOLVABLE 12. PERSONAL AUTHOR(S) Leiserson, Charles, and Saxe, James B. 13a. TYPE OF REPORT j13b TIME...ger prongramn rg versions or the problem is not ac’hievable in genieral for sparse inistancves of’ P rolem(r Mi. Th le remrai nder or thris paper is...rClazes c:oIh edge (i,I*) by comlpli urg +- rnirr(z 3, ,x + a,j). A sirnI) le analysis (11 vto Nei [131 indicates why whe Iellinan-Ford algorithm works

  14. LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators

    NASA Astrophysics Data System (ADS)

    Gonzalez, Juan; Núñez, Rafael C.

    2009-07-01

    We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.

  15. Elongation cutoff technique armed with quantum fast multipole method for linear scaling.

    PubMed

    Korchowiec, Jacek; Lewandowski, Jakub; Makowski, Marcin; Gu, Feng Long; Aoki, Yuriko

    2009-11-30

    A linear-scaling implementation of the elongation cutoff technique (ELG/C) that speeds up Hartree-Fock (HF) self-consistent field calculations is presented. The cutoff method avoids the known bottleneck of the conventional HF scheme, that is, diagonalization, because it operates within the low dimension subspace of the whole atomic orbital space. The efficiency of ELG/C is illustrated for two model systems. The obtained results indicate that the ELG/C is a very efficient sparse matrix algebra scheme. Copyright 2009 Wiley Periodicals, Inc.

  16. Typed Linear Chain Conditional Random Fields and Their Application to Intrusion Detection

    NASA Astrophysics Data System (ADS)

    Elfers, Carsten; Horstmann, Mirko; Sohr, Karsten; Herzog, Otthein

    Intrusion detection in computer networks faces the problem of a large number of both false alarms and unrecognized attacks. To improve the precision of detection, various machine learning techniques have been proposed. However, one critical issue is that the amount of reference data that contains serious intrusions is very sparse. In this paper we present an inference process with linear chain conditional random fields that aims to solve this problem by using domain knowledge about the alerts of different intrusion sensors represented in an ontology.

  17. Preliminary results in implementing a model of the world economy on the CYBER 205: A case of large sparse nonsymmetric linear equations

    NASA Technical Reports Server (NTRS)

    Szyld, D. B.

    1984-01-01

    A brief description of the Model of the World Economy implemented at the Institute for Economic Analysis is presented, together with our experience in converting the software to vector code. For each time period, the model is reduced to a linear system of over 2000 variables. The matrix of coefficients has a bordered block diagonal structure, and we show how some of the matrix operations can be carried out on all diagonal blocks at once.

  18. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  19. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles

    PubMed Central

    He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui

    2015-01-01

    In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well. PMID:26287194

  20. Low photon count based digital holography for quadratic phase cryptography.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  1. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 1

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Gutknecht, Martin H.; Nachtigal, Noel M.

    1990-01-01

    The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. We present an implementation of a look-ahead version of the Lanczos algorithm which overcomes these problems by skipping over those steps in which a breakdown or near-breakdown would occur in the standard process. The proposed algorithm can handle look-ahead steps of any length and is not restricted to steps of length 2, as earlier implementations are. Also, our implementation has the feature that it requires roughly the same number of inner products as the standard Lanczos process without look-ahead.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chao; Pouransari, Hadi; Rajamanickam, Sivasankaran

    We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by everymore » processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.« less

  3. Supervised linear dimensionality reduction with robust margins for object recognition

    NASA Astrophysics Data System (ADS)

    Dornaika, F.; Assoum, A.

    2013-01-01

    Linear Dimensionality Reduction (LDR) techniques have been increasingly important in computer vision and pattern recognition since they permit a relatively simple mapping of data onto a lower dimensional subspace, leading to simple and computationally efficient classification strategies. Recently, many linear discriminant methods have been developed in order to reduce the dimensionality of visual data and to enhance the discrimination between different groups or classes. Many existing linear embedding techniques relied on the use of local margins in order to get a good discrimination performance. However, dealing with outliers and within-class diversity has not been addressed by margin-based embedding method. In this paper, we explored the use of different margin-based linear embedding methods. More precisely, we propose to use the concepts of Median miss and Median hit for building robust margin-based criteria. Based on such margins, we seek the projection directions (linear embedding) such that the sum of local margins is maximized. Our proposed approach has been applied to the problem of appearance-based face recognition. Experiments performed on four public face databases show that the proposed approach can give better generalization performance than the classic Average Neighborhood Margin Maximization (ANMM). Moreover, thanks to the use of robust margins, the proposed method down-grades gracefully when label outliers contaminate the training data set. In particular, we show that the concept of Median hit was crucial in order to get robust performance in the presence of outliers.

  4. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification

    NASA Astrophysics Data System (ADS)

    Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng

    2013-10-01

    Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.

  5. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.

    PubMed

    Flassig, R J; Sundmacher, K

    2012-12-01

    Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.

  6. A Performance Comparison of the Parallel Preconditioners for Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations on Structured Grids

    NASA Astrophysics Data System (ADS)

    Ma, Sangback

    In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering ahd ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.

  7. Blind compressive sensing dynamic MRI

    PubMed Central

    Lingala, Sajan Goud; Jacob, Mathews

    2013-01-01

    We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic resonance images from undersampled measurements. This scheme models the dynamic signal as a sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the sparse coefficients from the undersampled measurements. Apart from the sparsity of the coefficients, the key difference of the BCS scheme with current low rank methods is the non-orthogonal nature of the dictionary basis functions. Since the number of degrees of freedom of the BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at high acceleration rates. We formulate the reconstruction as a constrained optimization problem; the objective function is the linear combination of a data consistency term and sparsity promoting ℓ1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the original criterion into three simpler sub problems. An alternating minimization strategy is used, where we cycle through the minimization of three simpler problems. This algorithm is seen to be considerably faster than approaches that alternates between sparse coding and dictionary estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the ℓ1 penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis functions compared to the ℓ0 norm and column norm constraint assumed in most dictionary learning algorithms; this is especially important since the number of basis functions that can be reliably estimated is restricted by the available measurements. We also observe that the proposed scheme is more robust to local minima compared to K-SVD method, which relies on greedy sparse coding. Our phase transition experiments demonstrate that the BCS scheme provides much better recovery rates than classical Fourier-based CS schemes, while being only marginally worse than the dictionary aware setting. Since the overhead in additionally estimating the dictionary is low, this method can be very useful in dynamic MRI applications, where the signal is not sparse in known dictionaries. We demonstrate the utility of the BCS scheme in accelerating contrast enhanced dynamic data. We observe superior reconstruction performance with the BCS scheme in comparison to existing low rank and compressed sensing schemes. PMID:23542951

  8. Novel methods of time-resolved fluorescence data analysis for in-vivo tissue characterization: application to atherosclerosis.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Dorafshar, A; Reil, T; Baker, D; Freischlag, J; Marcu, L

    2004-01-01

    This study investigates the ability of new analytical methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data to characterize tissue in-vivo, such as the composition of atherosclerotic vulnerable plaques. A total of 73 TR-LIFS measurements were taken in-vivo from the aorta of 8 rabbits, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as normal aorta, thin or thick lesions, and lesions rich in either collagen or macrophages/foam-cells. Different linear and nonlinear classification algorithms (linear discriminant analysis, stepwise linear discriminant analysis, principal component analysis, and feedforward neural networks) were developed using spectral and TR features (ratios of intensity values and Laguerre expansion coefficients, respectively). Normal intima and thin lesions were discriminated from thick lesions (sensitivity >90%, specificity 100%) using only spectral features. However, both spectral and time-resolved features were necessary to discriminate thick lesions rich in collagen from thick lesions rich in foam cells (sensitivity >85%, specificity >93%), and thin lesions rich in foam cells from normal aorta and thin lesions rich in collagen (sensitivity >85%, specificity >94%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for in-vivo tissue characterization.

  9. Detection and recognition of simple spatial forms

    NASA Technical Reports Server (NTRS)

    Watson, A. B.

    1983-01-01

    A model of human visual sensitivity to spatial patterns is constructed. The model predicts the visibility and discriminability of arbitrary two-dimensional monochrome images. The image is analyzed by a large array of linear feature sensors, which differ in spatial frequency, phase, orientation, and position in the visual field. All sensors have one octave frequency bandwidths, and increase in size linearly with eccentricity. Sensor responses are processed by an ideal Bayesian classifier, subject to uncertainty. The performance of the model is compared to that of the human observer in detecting and discriminating some simple images.

  10. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    PubMed Central

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  11. Infrared and visible image fusion based on robust principal component analysis and compressed sensing

    NASA Astrophysics Data System (ADS)

    Li, Jun; Song, Minghui; Peng, Yuanxi

    2018-03-01

    Current infrared and visible image fusion methods do not achieve adequate information extraction, i.e., they cannot extract the target information from infrared images while retaining the background information from visible images. Moreover, most of them have high complexity and are time-consuming. This paper proposes an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis (RPCA) and compressed sensing (CS). The novel framework consists of three phases. First, RPCA decomposition is applied to the infrared and visible images to obtain their sparse and low-rank components, which represent the salient features and background information of the images, respectively. Second, the sparse and low-rank coefficients are fused by different strategies. On the one hand, the measurements of the sparse coefficients are obtained by the random Gaussian matrix, and they are then fused by the standard deviation (SD) based fusion rule. Next, the fused sparse component is obtained by reconstructing the result of the fused measurement using the fast continuous linearized augmented Lagrangian algorithm (FCLALM). On the other hand, the low-rank coefficients are fused using the max-absolute rule. Subsequently, the fused image is superposed by the fused sparse and low-rank components. For comparison, several popular fusion algorithms are tested experimentally. By comparing the fused results subjectively and objectively, we find that the proposed framework can extract the infrared targets while retaining the background information in the visible images. Thus, it exhibits state-of-the-art performance in terms of both fusion effects and timeliness.

  12. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.

    PubMed

    Faradji, Farhad; Ward, Rabab K; Birch, Gary E

    2009-06-15

    The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.

  13. Discrimination and Acculturative Stress among First-Generation Dominicans

    ERIC Educational Resources Information Center

    Dawson, Beverly Araujo; Panchanadeswaran, Subadra

    2010-01-01

    The present study examined the relationship between discriminatory experiences and acculturative stress levels among a sample of 283 Dominican immigrants. Findings from a linear regression analysis revealed that experiences of daily racial discrimination and major racist events were significant predictors of acculturative stress after controlling…

  14. Functional linear models for zero-inflated count data with application to modeling hospitalizations in patients on dialysis.

    PubMed

    Sentürk, Damla; Dalrymple, Lorien S; Nguyen, Danh V

    2014-11-30

    We propose functional linear models for zero-inflated count data with a focus on the functional hurdle and functional zero-inflated Poisson (ZIP) models. Although the hurdle model assumes the counts come from a mixture of a degenerate distribution at zero and a zero-truncated Poisson distribution, the ZIP model considers a mixture of a degenerate distribution at zero and a standard Poisson distribution. We extend the generalized functional linear model framework with a functional predictor and multiple cross-sectional predictors to model counts generated by a mixture distribution. We propose an estimation procedure for functional hurdle and ZIP models, called penalized reconstruction, geared towards error-prone and sparsely observed longitudinal functional predictors. The approach relies on dimension reduction and pooling of information across subjects involving basis expansions and penalized maximum likelihood techniques. The developed functional hurdle model is applied to modeling hospitalizations within the first 2 years from initiation of dialysis, with a high percentage of zeros, in the Comprehensive Dialysis Study participants. Hospitalization counts are modeled as a function of sparse longitudinal measurements of serum albumin concentrations, patient demographics, and comorbidities. Simulation studies are used to study finite sample properties of the proposed method and include comparisons with an adaptation of standard principal components regression. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces

    PubMed Central

    Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.

    2013-01-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657

  16. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  17. Portable Conduction Velocity Experiments Using Earthworms for the College and High School Neuroscience Teaching Laboratory

    ERIC Educational Resources Information Center

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities…

  18. An M-step preconditioned conjugate gradient method for parallel computation

    NASA Technical Reports Server (NTRS)

    Adams, L.

    1983-01-01

    This paper describes a preconditioned conjugate gradient method that can be effectively implemented on both vector machines and parallel arrays to solve sparse symmetric and positive definite systems of linear equations. The implementation on the CYBER 203/205 and on the Finite Element Machine is discussed and results obtained using the method on these machines are given.

  19. Sparse Representation of Smooth Linear Operators

    DTIC Science & Technology

    1990-08-01

    8217,ns, m = 0,2 ,...,I where Sm is defined by Eq. (2.3). We further define Rk, 2 to be the orthogonal n k,2complement of S, 2 in S,+ 1, smk EDR ,2 Sk,2 1...1987. [9] L. Greengard and J. Strain . The fast Gauss transform. Technical report, Department of Computer Science, Yale University, 1989. [10] A

  20. Evaluating Sparse Linear System Solvers on Scalable Parallel Architectures

    DTIC Science & Technology

    2008-10-01

    42 3.4 Residual history of WSO banded preconditioner for problem 2D 54019 HIGHK . . . . . . . . . . . . . . . . . . . . . . . . . . 43...3.5 Residual history of WSO banded preconditioner for problem Appu 43 3.6 Residual history of WSO banded preconditioner for problem ASIC 680k...44 3.7 Residual history of WSO banded preconditioner for problem BUN- DLE1

  1. Investigation into image quality difference between total variation and nonlinear sparsifying transform based compressed sensing

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Kudo, Hiroyuki

    2017-03-01

    Compressed sensing (CS) is attracting growing concerns in sparse-view computed tomography (CT) image reconstruction. The most standard approach of CS is total variation (TV) minimization. However, images reconstructed by TV usually suffer from distortions, especially in reconstruction of practical CT images, in forms of patchy artifacts, improper serrate edges and loss of image textures. Most existing CS approaches including TV achieve image quality improvement by applying linear transforms to object image, but linear transforms usually fail to take discontinuities into account, such as edges and image textures, which is considered to be the key reason for image distortions. Actually, discussions on nonlinear filter based image processing has a long history, leading us to clarify that the nonlinear filters yield better results compared to linear filters in image processing task such as denoising. Median root prior was first utilized by Alenius as nonlinear transform in CT image reconstruction, with significant gains obtained. Subsequently, Zhang developed the application of nonlocal means-based CS. A fact is gradually becoming clear that the nonlinear transform based CS has superiority in improving image quality compared with the linear transform based CS. However, it has not been clearly concluded in any previous paper within the scope of our knowledge. In this work, we investigated the image quality differences between the conventional TV minimization and nonlinear sparsifying transform based CS, as well as image quality differences among different nonlinear sparisying transform based CSs in sparse-view CT image reconstruction. Additionally, we accelerated the implementation of nonlinear sparsifying transform based CS algorithm.

  2. Parallel Finite Element Domain Decomposition for Structural/Acoustic Analysis

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Tungkahotara, Siroj; Watson, Willie R.; Rajan, Subramaniam D.

    2005-01-01

    A domain decomposition (DD) formulation for solving sparse linear systems of equations resulting from finite element analysis is presented. The formulation incorporates mixed direct and iterative equation solving strategics and other novel algorithmic ideas that are optimized to take advantage of sparsity and exploit modern computer architecture, such as memory and parallel computing. The most time consuming part of the formulation is identified and the critical roles of direct sparse and iterative solvers within the framework of the formulation are discussed. Experiments on several computer platforms using several complex test matrices are conducted using software based on the formulation. Small-scale structural examples are used to validate thc steps in the formulation and large-scale (l,000,000+ unknowns) duct acoustic examples are used to evaluate the ORIGIN 2000 processors, and a duster of 6 PCs (running under the Windows environment). Statistics show that the formulation is efficient in both sequential and parallel computing environmental and that the formulation is significantly faster and consumes less memory than that based on one of the best available commercialized parallel sparse solvers.

  3. Sparse Gaussian elimination with controlled fill-in on a shared memory multiprocessor

    NASA Technical Reports Server (NTRS)

    Alaghband, Gita; Jordan, Harry F.

    1989-01-01

    It is shown that in sparse matrices arising from electronic circuits, it is possible to do computations on many diagonal elements simultaneously. A technique for obtaining an ordered compatible set directly from the ordered incompatible table is given. The ordering is based on the Markowitz number of the pivot candidates. This technique generates a set of compatible pivots with the property of generating few fills. A novel heuristic algorithm is presented that combines the idea of an order-compatible set with a limited binary tree search to generate several sets of compatible pivots in linear time. An elimination set for reducing the matrix is generated and selected on the basis of a minimum Markowitz sum number. The parallel pivoting technique presented is a stepwise algorithm and can be applied to any submatrix of the original matrix. Thus, it is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds. Parameters are suggested to obtain a balance between parallelism and fill-ins. Results of applying the proposed algorithms on several large application matrices using the HEP multiprocessor (Kowalik, 1985) are presented and analyzed.

  4. Associations Between Discrimination and Cardiovascular Health Among Asian Indians in the United States

    PubMed Central

    Dulin-Keita, A.; Salas, C.; Kanaya, A. M.; Kandula, Namratha R.

    2016-01-01

    Asian Indians (AI) have a high risk of atherosclerotic cardiovascular disease. The study investigated associations between discrimination and (1) cardiovascular risk and (2) self-rated health among AI. Higher discrimination scores were hypothesized to relate to a higher cardiovascular risk score (CRS) and poorer self-rated health. Asian Indians (n = 757) recruited between 2010 and 2013 answered discrimination and self-reported health questions. The CRS (0–8 points) included body-mass index, systolic blood pressure, total cholesterol, and fasting blood glucose levels of AI. Multiple linear regression analyses were conducted to evaluate relationships between discrimination and the CRS and discrimination and self-rated health, adjusting for psychosocial and clinical factors. There were no significant relationships between discrimination and the CRS (p ≥ .05). Discrimination was related to poorer self-reported health, B = −.41 (SE = .17), p = .02. Findings suggest perhaps there are important levels at which discrimination may harm health. PMID:27039100

  5. Spectral-Spatial Shared Linear Regression for Hyperspectral Image Classification.

    PubMed

    Haoliang Yuan; Yuan Yan Tang

    2017-04-01

    Classification of the pixels in hyperspectral image (HSI) is an important task and has been popularly applied in many practical applications. Its major challenge is the high-dimensional small-sized problem. To deal with this problem, lots of subspace learning (SL) methods are developed to reduce the dimension of the pixels while preserving the important discriminant information. Motivated by ridge linear regression (RLR) framework for SL, we propose a spectral-spatial shared linear regression method (SSSLR) for extracting the feature representation. Comparing with RLR, our proposed SSSLR has the following two advantages. First, we utilize a convex set to explore the spatial structure for computing the linear projection matrix. Second, we utilize a shared structure learning model, which is formed by original data space and a hidden feature space, to learn a more discriminant linear projection matrix for classification. To optimize our proposed method, an efficient iterative algorithm is proposed. Experimental results on two popular HSI data sets, i.e., Indian Pines and Salinas demonstrate that our proposed methods outperform many SL methods.

  6. Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer's Disease.

    PubMed

    Fang, Chen; Li, Chunfei; Cabrerizo, Mercedes; Barreto, Armando; Andrian, Jean; Rishe, Naphtali; Loewenstein, David; Duara, Ranjan; Adjouadi, Malek

    2018-04-12

    Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer's disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), Sparse Representation-based classification (SRC), Deep Belief Networks (DBN) and Random Forest (RF). These widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used include 190 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for discriminating the subtle differences between MCI participants and the CN group.

  7. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity

    PubMed Central

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns—both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity. PMID:25566045

  8. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    PubMed

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  9. Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).

    PubMed

    Bevilacqua, Marta; Marini, Federico

    2014-08-01

    The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Large-region acoustic source mapping using a movable array and sparse covariance fitting.

    PubMed

    Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L

    2017-01-01

    Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].

  11. Dynamic Textures Modeling via Joint Video Dictionary Learning.

    PubMed

    Wei, Xian; Li, Yuanxiang; Shen, Hao; Chen, Fang; Kleinsteuber, Martin; Wang, Zhongfeng

    2017-04-06

    Video representation is an important and challenging task in the computer vision community. In this paper, we consider the problem of modeling and classifying video sequences of dynamic scenes which could be modeled in a dynamic textures (DT) framework. At first, we assume that image frames of a moving scene can be modeled as a Markov random process. We propose a sparse coding framework, named joint video dictionary learning (JVDL), to model a video adaptively. By treating the sparse coefficients of image frames over a learned dictionary as the underlying "states", we learn an efficient and robust linear transition matrix between two adjacent frames of sparse events in time series. Hence, a dynamic scene sequence is represented by an appropriate transition matrix associated with a dictionary. In order to ensure the stability of JVDL, we impose several constraints on such transition matrix and dictionary. The developed framework is able to capture the dynamics of a moving scene by exploring both sparse properties and the temporal correlations of consecutive video frames. Moreover, such learned JVDL parameters can be used for various DT applications, such as DT synthesis and recognition. Experimental results demonstrate the strong competitiveness of the proposed JVDL approach in comparison with state-of-the-art video representation methods. Especially, it performs significantly better in dealing with DT synthesis and recognition on heavily corrupted data.

  12. Complexity-reduced implementations of complete and null-space-based linear discriminant analysis.

    PubMed

    Lu, Gui-Fu; Zheng, Wenming

    2013-10-01

    Dimensionality reduction has become an important data preprocessing step in a lot of applications. Linear discriminant analysis (LDA) is one of the most well-known dimensionality reduction methods. However, the classical LDA cannot be used directly in the small sample size (SSS) problem where the within-class scatter matrix is singular. In the past, many generalized LDA methods has been reported to address the SSS problem. Among these methods, complete linear discriminant analysis (CLDA) and null-space-based LDA (NLDA) provide good performances. The existing implementations of CLDA are computationally expensive. In this paper, we propose a new and fast implementation of CLDA. Our proposed implementation of CLDA, which is the most efficient one, is equivalent to the existing implementations of CLDA in theory. Since CLDA is an extension of null-space-based LDA (NLDA), our implementation of CLDA also provides a fast implementation of NLDA. Experiments on some real-world data sets demonstrate the effectiveness of our proposed new CLDA and NLDA algorithms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Discrimination and mental health problems among homeless minority young people.

    PubMed

    Milburn, Norweeta G; Batterham, Philip; Ayala, George; Rice, Eric; Solorio, Rosa; Desmond, Kate; Lord, Lynwood; Iribarren, Javier; Rotheram-Borus, Mary Jane

    2010-01-01

    We examined the associations among perceived discrimination, racial/ethnic identification, and emotional distress in newly homeless adolescents. We assessed a sample of newly homeless adolescents (n=254) in Los Angeles, California, with measures of perceived discrimination and racial/ethnic identification. We assessed emotional distress using the Brief Symptom Inventory and used multivariate linear regression modeling to gauge the impact of discrimination and racial identity on emotional distress. Controlling for race and immigration status, gender, and age, young people with a greater sense of ethnic identification experienced less emotional distress. Young people with a history of racial/ethnic discrimination experienced more emotional distress. Intervention programs that contextualize discrimination and enhance racial/ethnic identification and pride among homeless young people are needed.

  14. Sparse Feature Selection Identifies H2A.Z as a Novel, Pattern-Specific Biomarker for Asymmetrically Self-Renewing Distributed Stem Cells

    PubMed Central

    Huh, Yang Hoon; Noh, Minsoo; Burden, Frank R.; Chen, Jennifer C.; Winkler, David A.; Sherley, James L.

    2015-01-01

    There is a long-standing unmet clinical need for biomarkers with high specificity for distributed stem cells (DSCs) in tissues, or for use in diagnostic and therapeutic cell preparations (e.g., bone marrow). Although DSCs are essential for tissue maintenance and repair, accurate determination of their numbers for medical applications has been problematic. Previous searches for biomarkers expressed specifically in DSCs were hampered by difficulty obtaining pure DSCs and by the challenges in mining complex molecular expression data. To identify DSC such useful and specific biomarkers, we combined a novel sparse feature selection method with combinatorial molecular expression data focused on asymmetric self-renewal, a conspicuous property of DSCs. The analysis identified reduced expression of the histone H2A variant H2A.Z as a superior molecular discriminator for DSC asymmetric self-renewal. Subsequent molecular expression studies showed H2A.Z to be a novel “pattern-specific biomarker” for asymmetrically self-renewing cells with sufficient specificity to count asymmetrically self-renewing DSCs in vitro and potentially in situ. PMID:25636161

  15. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    PubMed Central

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  16. Blind source separation by sparse decomposition

    NASA Astrophysics Data System (ADS)

    Zibulevsky, Michael; Pearlmutter, Barak A.

    2000-04-01

    The blind source separation problem is to extract the underlying source signals from a set of their linear mixtures, where the mixing matrix is unknown. This situation is common, eg in acoustics, radio, and medical signal processing. We exploit the property of the sources to have a sparse representation in a corresponding signal dictionary. Such a dictionary may consist of wavelets, wavelet packets, etc., or be obtained by learning from a given family of signals. Starting from the maximum a posteriori framework, which is applicable to the case of more sources than mixtures, we derive a few other categories of objective functions, which provide faster and more robust computations, when there are an equal number of sources and mixtures. Our experiments with artificial signals and with musical sounds demonstrate significantly better separation than other known techniques.

  17. Comparative decision models for anticipating shortage of food grain production in India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Manojit; Mitra, Subrata Kumar

    2018-01-01

    This paper attempts to predict food shortages in advance from the analysis of rainfall during the monsoon months along with other inputs used for crop production, such as land used for cereal production, percentage of area covered under irrigation and fertiliser use. We used six binary classification data mining models viz., logistic regression, Multilayer Perceptron, kernel lab-Support Vector Machines, linear discriminant analysis, quadratic discriminant analysis and k-Nearest Neighbors Network, and found that linear discriminant analysis and kernel lab-Support Vector Machines are equally suitable for predicting per capita food shortage with 89.69 % accuracy in overall prediction and 92.06 % accuracy in predicting food shortage ( true negative rate). Advance information of food shortage can help policy makers to take remedial measures in order to prevent devastating consequences arising out of food non-availability.

  18. Multiple degree of freedom object recognition using optical relational graph decision nets

    NASA Technical Reports Server (NTRS)

    Casasent, David P.; Lee, Andrew J.

    1988-01-01

    Multiple-degree-of-freedom object recognition concerns objects with no stable rest position with all scale, rotation, and aspect distortions possible. It is assumed that the objects are in a fairly benign background, so that feature extractors are usable. In-plane distortion invariance is provided by use of a polar-log coordinate transform feature space, and out-of-plane distortion invariance is provided by linear discriminant function design. Relational graph decision nets are considered for multiple-degree-of-freedom pattern recognition. The design of Fisher (1936) linear discriminant functions and synthetic discriminant function for use at the nodes of binary and multidecision nets is discussed. Case studies are detailed for two-class and multiclass problems. Simulation results demonstrate the robustness of the processors to quantization of the filter coefficients and to noise.

  19. The Association Between Racial and Gender Discrimination and Body Mass Index Among Residents Living in Lower-income Housing

    PubMed Central

    Shelton, Rachel C.; Puleo, Elaine; Bennett, Gary G.; McNeill, Lorna H.; Sorensen, Glorian; Emmons, Karen M.

    2010-01-01

    Background Research on the association between self-reported racial or gender discrimination and body mass index (BMI) has been limited and inconclusive to date, particularly among lower-income populations. Objectives The aim of the current study was to examine the association between self-reported racial and gender discrimination and BMI among a sample of adult residents living in 12 urban lower-income housing sites in Boston, Masschusetts (USA). Methods Baseline survey data were collected among 1,307 (weighted N=1907) study participants. For analyses, linear regression models with a cluster design were conducted using SUDAAN and SAS statistical software. Results Our sample was predominately Black (weighted n=956) and Hispanic (weighted n=857), and female (weighted n=1420), with a mean age of 49.3 (SE: .40) and mean BMI of 30.2 kg m−2 (SE: .19). Nearly 47% of participants reported ever experiencing racial discrimination, and 24.8% reported ever experiencing gender discrimination. In bivariate and multivariable linear regression models, no main effect association was found between either racial or gender discrimination and BMI. Conclusions While our findings suggest that self-reported discrimination is not a key determinant of BMI among lower-income housing residents, these results should be considered in light of study limitations. Future researchers may want to investigate this association among other relevant samples, and other social contextual and cultural factors should be explored to understand how they contribute to disparities. PMID:19769005

  20. The association between racial and gender discrimination and body mass index among residents living in lower-income housing.

    PubMed

    Shelton, Rachel C; Puleo, Elaine; Bennett, Gary G; McNeill, Lorna H; Sorensen, Glorian; Emmons, Karen M

    2009-01-01

    Research on the association between self-reported racial or gender discrimination and body mass index (BMI) has been limited and inconclusive to date, particularly among lower-income populations. The aim of the current study was to examine the association between self-reported racial and gender discrimination and BMI among a sample of adult residents living in 12 urban lower-income housing sites in Boston, Masschusetts (USA). Baseline survey data were collected among 1,307 (weighted N = 1907) study participants. For analyses, linear regression models with a cluster design were conducted using SUDAAN and SAS statistical software. Our sample was predominately Black (weighted n = 956) and Hispanic (weighted n = 857), and female (weighted n = 1420), with a mean age of 49.3 (SE: .40) and mean BMI of 30.2 kg m(-2) (SE: .19). Nearly 47% of participants reported ever experiencing racial discrimination, and 24.8% reported ever experiencing gender discrimination. In bivariate and multivariable linear regression models, no main effect association was found between either racial or gender discrimination and BMI. While our findings suggest that self-reported discrimination is not a key determinant of BMI among lower-income housing residents, these results should be considered in light of study limitations. Future researchers may want to investigate this association among other relevant samples, and other social contextual and cultural factors should be explored to understand how they contribute to disparities.

  1. Enhancing sparsity of Hermite polynomial expansions by iterative rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Baker, Nathan A.

    2016-02-01

    Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.

  2. Fractionating choice: A study on reward discrimination, preference and relative valuation in the rat (Rattus norvegicus)

    PubMed Central

    Ricker, Joshua M.; Hatch, Justin D.; Powers, Daniel D.; Cromwell, Howard C.

    2016-01-01

    Choice behavior combines discrimination between distinctive outcomes, preference for specific outcomes and relative valuation of comparable outcomes. Previous work has focused on one component (i.e., preference) disregarding other influential processes that might provide a more complete understanding. Animal models of choice have been explored primarily utilizing extensive training, limited freedom for multiple decisions and sparse behavioral measures constrained to a single phase of motivated action. The present study used a paradigm that combines different elements of previous methods with the goal to distinguish among components of choice and explore how well components match predictions based on risk-sensitive foraging strategies. In order to analyze discrimination and relative valuation, it was necessary to have an option that shifted and an option that remained constant. Shifting outcomes among weeks included a change in single-option outcome (0 to 1 to 2 pellets) or a change in mixed-option outcome (0 or 5 to 0 or 3 to 0 or 1 pellets). Constant outcomes among weeks were also mixedoption (0 or 3 pellets) or single-option (1 pellet). Shifting single-option outcomes among weeks led to better discrimination, more robust preference and significant incentive contrast effects for the alternative outcome. Shifting multi-options altered choice components and led to dissociations among discrimination, preference, and reduced contrast effects. During extinction, all components were impacted with the greatest deficits during the shifting mixed-option outcome sessions. Results suggest choice behavior can be optimized for one component but suboptimal for others depending upon the complexity of alterations in outcome value between options. PMID:27078079

  3. Intraoperative optical biopsy for brain tumors using spectro-lifetime properties of intrinsic fluorophores

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; Kittle, David S.; Nie, Zhaojun; Falcone, Christina; Patil, Chirag G.; Chu, Ray M.; Mamelak, Adam N.; Black, Keith L.; Butte, Pramod V.

    2016-04-01

    We have developed and tested a system for real-time intra-operative optical identification and classification of brain tissues using time-resolved fluorescence spectroscopy (TRFS). A supervised learning algorithm using linear discriminant analysis (LDA) employing selected intrinsic fluorescence decay temporal points in 6 spectral bands was employed to maximize statistical significance difference between training groups. The linear discriminant analysis on in vivo human tissues obtained by TRFS measurements (N = 35) were validated by histopathologic analysis and neuronavigation correlation to pre-operative MRI images. These results demonstrate that TRFS can differentiate between normal cortex, white matter and glioma.

  4. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    PubMed

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  5. Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification

    PubMed Central

    Li, Yang; Wee, Chong-Yaw; Jie, Biao; Peng, Ziwen

    2014-01-01

    Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach. PMID:24595922

  6. Regularized two-step brain activity reconstruction from spatiotemporal EEG data

    NASA Astrophysics Data System (ADS)

    Alecu, Teodor I.; Voloshynovskiy, Sviatoslav; Pun, Thierry

    2004-10-01

    We are aiming at using EEG source localization in the framework of a Brain Computer Interface project. We propose here a new reconstruction procedure, targeting source (or equivalently mental task) differentiation. EEG data can be thought of as a collection of time continuous streams from sparse locations. The measured electric potential on one electrode is the result of the superposition of synchronized synaptic activity from sources in all the brain volume. Consequently, the EEG inverse problem is a highly underdetermined (and ill-posed) problem. Moreover, each source contribution is linear with respect to its amplitude but non-linear with respect to its localization and orientation. In order to overcome these drawbacks we propose a novel two-step inversion procedure. The solution is based on a double scale division of the solution space. The first step uses a coarse discretization and has the sole purpose of globally identifying the active regions, via a sparse approximation algorithm. The second step is applied only on the retained regions and makes use of a fine discretization of the space, aiming at detailing the brain activity. The local configuration of sources is recovered using an iterative stochastic estimator with adaptive joint minimum energy and directional consistency constraints.

  7. An Optimized Multicolor Point-Implicit Solver for Unstructured Grid Applications on Graphics Processing Units

    NASA Technical Reports Server (NTRS)

    Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana

    2016-01-01

    In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.

  8. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods

    PubMed Central

    Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2013-01-01

    Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72–88, 2013. PMID:23847452

  9. Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics.

    PubMed

    Mniszewski, S M; Cawkwell, M J; Wall, M E; Mohd-Yusof, J; Bock, N; Germann, T C; Niklasson, A M N

    2015-10-13

    We present an algorithm for the calculation of the density matrix that for insulators scales linearly with system size and parallelizes efficiently on multicore, shared memory platforms with small and controllable numerical errors. The algorithm is based on an implementation of the second-order spectral projection (SP2) algorithm [ Niklasson, A. M. N. Phys. Rev. B 2002 , 66 , 155115 ] in sparse matrix algebra with the ELLPACK-R data format. We illustrate the performance of the algorithm within self-consistent tight binding theory by total energy calculations of gas phase poly(ethylene) molecules and periodic liquid water systems containing up to 15,000 atoms on up to 16 CPU cores. We consider algorithm-specific performance aspects, such as local vs nonlocal memory access and the degree of matrix sparsity. Comparisons to sparse matrix algebra implementations using off-the-shelf libraries on multicore CPUs, graphics processing units (GPUs), and the Intel many integrated core (MIC) architecture are also presented. The accuracy and stability of the algorithm are illustrated with long duration Born-Oppenheimer molecular dynamics simulations of 1000 water molecules and a 303 atom Trp cage protein solvated by 2682 water molecules.

  10. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods.

    PubMed

    Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2013-05-01

    Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L 2 -norm regularization. However, sparse representation methods via L 1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L 1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72-88, 2013.

  11. New algorithms for field-theoretic block copolymer simulations: Progress on using adaptive-mesh refinement and sparse matrix solvers in SCFT calculations

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Jamroz, Ben; Crockett, Robert; Pletzer, Alexander

    2012-02-01

    Self-consistent field theory (SCFT) for dense polymer melts has been highly successful in describing complex morphologies in block copolymers. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. The modified diffusion equations that arise as a consequence of the coarse-graining procedure in the SCF theory can be efficiently solved with a pseudo-spectral (PS) method that uses fast-Fourier transforms on uniform Cartesian grids. However, PS methods can be difficult to apply in many block copolymer SCFT simulations (eg. confinement, interface adsorption) in which small spatial regions might require finer resolution than most of the simulation grid. Progress on using new solver algorithms to address these problems will be presented. The Tech-X Chompst project aims at marrying the best of adaptive mesh refinement with linear matrix solver algorithms. The Tech-X code PolySwift++ is an SCFT simulation platform that leverages ongoing development in coupling Chombo, a package for solving PDEs via block-structured AMR calculations and embedded boundaries, with PETSc, a toolkit that includes a large assortment of sparse linear solvers.

  12. Large-Scale functional network overlap is a general property of brain functional organization: Reconciling inconsistent fMRI findings from general-linear-model-based analyses

    PubMed Central

    Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153

  13. Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing.

    PubMed

    Li, Lixiang; Xu, Dafei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian

    2017-11-08

    It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.

  14. A linear geospatial streamflow modeling system for data sparse environments

    USGS Publications Warehouse

    Asante, Kwabena O.; Arlan, Guleid A.; Pervez, Md Shahriar; Rowland, James

    2008-01-01

    In many river basins around the world, inaccessibility of flow data is a major obstacle to water resource studies and operational monitoring. This paper describes a geospatial streamflow modeling system which is parameterized with global terrain, soils and land cover data and run operationally with satellite‐derived precipitation and evapotranspiration datasets. Simple linear methods transfer water through the subsurface, overland and river flow phases, and the resulting flows are expressed in terms of standard deviations from mean annual flow. In sample applications, the modeling system was used to simulate flow variations in the Congo, Niger, Nile, Zambezi, Orange and Lake Chad basins between 1998 and 2005, and the resulting flows were compared with mean monthly values from the open‐access Global River Discharge Database. While the uncalibrated model cannot predict the absolute magnitude of flow, it can quantify flow anomalies in terms of relative departures from mean flow. Most of the severe flood events identified in the flow anomalies were independently verified by the Dartmouth Flood Observatory (DFO) and the Emergency Disaster Database (EM‐DAT). Despite its limitations, the modeling system is valuable for rapid characterization of the relative magnitude of flood hazards and seasonal flow changes in data sparse settings.

  15. Line-Constrained Camera Location Estimation in Multi-Image Stereomatching.

    PubMed

    Donné, Simon; Goossens, Bart; Philips, Wilfried

    2017-08-23

    Stereomatching is an effective way of acquiring dense depth information from a scene when active measurements are not possible. So-called lightfield methods take a snapshot from many camera locations along a defined trajectory (usually uniformly linear or on a regular grid-we will assume a linear trajectory) and use this information to compute accurate depth estimates. However, they require the locations for each of the snapshots to be known: the disparity of an object between images is related to both the distance of the camera to the object and the distance between the camera positions for both images. Existing solutions use sparse feature matching for camera location estimation. In this paper, we propose a novel method that uses dense correspondences to do the same, leveraging an existing depth estimation framework to also yield the camera locations along the line. We illustrate the effectiveness of the proposed technique for camera location estimation both visually for the rectification of epipolar plane images and quantitatively with its effect on the resulting depth estimation. Our proposed approach yields a valid alternative for sparse techniques, while still being executed in a reasonable time on a graphics card due to its highly parallelizable nature.

  16. Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification

    NASA Astrophysics Data System (ADS)

    Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.

    2012-01-01

    The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.

  17. Using color histograms and SPA-LDA to classify bacteria.

    PubMed

    de Almeida, Valber Elias; da Costa, Gean Bezerra; de Sousa Fernandes, David Douglas; Gonçalves Dias Diniz, Paulo Henrique; Brandão, Deysiane; de Medeiros, Ana Claudia Dantas; Véras, Germano

    2014-09-01

    In this work, a new approach is proposed to verify the differentiating characteristics of five bacteria (Escherichia coli, Enterococcus faecalis, Streptococcus salivarius, Streptococcus oralis, and Staphylococcus aureus) by using digital images obtained with a simple webcam and variable selection by the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). In this sense, color histograms in the red-green-blue (RGB), hue-saturation-value (HSV), and grayscale channels and their combinations were used as input data, and statistically evaluated by using different multivariate classifiers (Soft Independent Modeling by Class Analogy (SIMCA), Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA), Partial Least Squares Discriminant Analysis (PLS-DA) and Successive Projections Algorithm-Linear Discriminant Analysis (SPA-LDA)). The bacteria strains were cultivated in a nutritive blood agar base layer for 24 h by following the Brazilian Pharmacopoeia, maintaining the status of cell growth and the nature of nutrient solutions under the same conditions. The best result in classification was obtained by using RGB and SPA-LDA, which reached 94 and 100 % of classification accuracy in the training and test sets, respectively. This result is extremely positive from the viewpoint of routine clinical analyses, because it avoids bacterial identification based on phenotypic identification of the causative organism using Gram staining, culture, and biochemical proofs. Therefore, the proposed method presents inherent advantages, promoting a simpler, faster, and low-cost alternative for bacterial identification.

  18. Statistics of the stochastically forced Lorenz attractor by the Fokker-Planck equation and cumulant expansions.

    PubMed

    Allawala, Altan; Marston, J B

    2016-11-01

    We investigate the Fokker-Planck description of the equal-time statistics of the three-dimensional Lorenz attractor with additive white noise. The invariant measure is found by computing the zero (or null) mode of the linear Fokker-Planck operator as a problem of sparse linear algebra. Two variants are studied: a self-adjoint construction of the linear operator and the replacement of diffusion with hyperdiffusion. We also access the low-order statistics of the system by a perturbative expansion in equal-time cumulants. A comparison is made to statistics obtained by the standard approach of accumulation via direct numerical simulation. Theoretical and computational aspects of the Fokker-Planck and cumulant expansion methods are discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spotz, William F.

    PyTrilinos is a set of Python interfaces to compiled Trilinos packages. This collection supports serial and parallel dense linear algebra, serial and parallel sparse linear algebra, direct and iterative linear solution techniques, algebraic and multilevel preconditioners, nonlinear solvers and continuation algorithms, eigensolvers and partitioning algorithms. Also included are a variety of related utility functions and classes, including distributed I/O, coloring algorithms and matrix generation. PyTrilinos vector objects are compatible with the popular NumPy Python package. As a Python front end to compiled libraries, PyTrilinos takes advantage of the flexibility and ease of use of Python, and the efficiency of themore » underlying C++, C and Fortran numerical kernels. This paper covers recent, previously unpublished advances in the PyTrilinos package.« less

  20. Compressive sampling by artificial neural networks for video

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Jenkins, Jeffrey; Reinhardt, Kitt

    2011-06-01

    We describe a smart surveillance strategy for handling novelty changes. Current sensors seem to keep all, redundant or not. The Human Visual System's Hubel-Wiesel (wavelet) edge detection mechanism pays attention to changes in movement, which naturally produce organized sparseness because a stagnant edge is not reported to the brain's visual cortex by retinal neurons. Sparseness is defined as an ordered set of ones (movement or not) relative to zeros that could be pseudo-orthogonal among themselves; then suited for fault tolerant storage and retrieval by means of Associative Memory (AM). The firing is sparse at the change locations. Unlike purely random sparse masks adopted in medical Compressive Sensing, these organized ones have an additional benefit of using the image changes to make retrievable graphical indexes. We coined this organized sparseness as Compressive Sampling; sensing but skipping over redundancy without altering the original image. Thus, we turn illustrate with video the survival tactics which animals that roam the Earth use daily. They acquire nothing but the space-time changes that are important to satisfy specific prey-predator relationships. We have noticed a similarity between the mathematical Compressive Sensing and this biological mechanism used for survival. We have designed a hardware implementation of the Human Visual System's Compressive Sampling scheme. To speed up further, our mixedsignal circuit design of frame differencing is built in on-chip processing hardware. A CMOS trans-conductance amplifier is designed here to generate a linear current output using a pair of differential input voltages from 2 photon detectors for change detection---one for the previous value and the other the subsequent value, ("write" synaptic weight by Hebbian outer products; "read" by inner product & pt. NL threshold) to localize and track the threat targets.

  1. Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan

    2017-09-01

    It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus weak feature leakage problem is avoided compared to typical learning methods.

  2. Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression.

    PubMed

    Zhen, Xiantong; Zhang, Heye; Islam, Ali; Bhaduri, Mousumi; Chan, Ian; Li, Shuo

    2017-02-01

    Cardiac four-chamber volume estimation serves as a fundamental and crucial role in clinical quantitative analysis of whole heart functions. It is a challenging task due to the huge complexity of the four chambers including great appearance variations, huge shape deformation and interference between chambers. Direct estimation has recently emerged as an effective and convenient tool for cardiac ventricular volume estimation. However, existing direct estimation methods were specifically developed for one single ventricle, i.e., left ventricle (LV), or bi-ventricles; they can not be directly used for four chamber volume estimation due to the great combinatorial variability and highly complex anatomical interdependency of the four chambers. In this paper, we propose a new, general framework for direct and simultaneous four chamber volume estimation. We have addressed two key issues, i.e., cardiac image representation and simultaneous four chamber volume estimation, which enables accurate and efficient four-chamber volume estimation. We generate compact and discriminative image representations by supervised descriptor learning (SDL) which can remove irrelevant information and extract discriminative features. We propose direct and simultaneous four-chamber volume estimation by the multioutput sparse latent regression (MSLR), which enables jointly modeling nonlinear input-output relationships and capturing four-chamber interdependence. The proposed method is highly generalized, independent of imaging modalities, which provides a general regression framework that can be extensively used for clinical data prediction to achieve automated diagnosis. Experiments on both MR and CT images show that our method achieves high performance with a correlation coefficient of up to 0.921 with ground truth obtained manually by human experts, which is clinically significant and enables more accurate, convenient and comprehensive assessment of cardiac functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Stable Sparse Classifiers Identify qEEG Signatures that Predict Learning Disabilities (NOS) Severity

    PubMed Central

    Bosch-Bayard, Jorge; Galán-García, Lídice; Fernandez, Thalia; Lirio, Rolando B.; Bringas-Vega, Maria L.; Roca-Stappung, Milene; Ricardo-Garcell, Josefina; Harmony, Thalía; Valdes-Sosa, Pedro A.

    2018-01-01

    In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven) regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to) different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS) disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia), Mathematics (Dyscalculia), or Writing (Dysgraphia). By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented. PMID:29379411

  4. Stable Sparse Classifiers Identify qEEG Signatures that Predict Learning Disabilities (NOS) Severity.

    PubMed

    Bosch-Bayard, Jorge; Galán-García, Lídice; Fernandez, Thalia; Lirio, Rolando B; Bringas-Vega, Maria L; Roca-Stappung, Milene; Ricardo-Garcell, Josefina; Harmony, Thalía; Valdes-Sosa, Pedro A

    2017-01-01

    In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven) regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to) different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS) disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia), Mathematics (Dyscalculia), or Writing (Dysgraphia). By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented.

  5. Obtaining sparse distributions in 2D inverse problems.

    PubMed

    Reci, A; Sederman, A J; Gladden, L F

    2017-08-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L 1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L 1 regularization to a class of inverse problems; relaxation-relaxation, T 1 -T 2 , and diffusion-relaxation, D-T 2 , correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L 1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L 1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L 1 regularization algorithm stably recovers a distribution at a signal to noise ratio<20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as 10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental study shows that the approach enables discrimination between different chemical species when direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise. Copyright © 2017. Published by Elsevier Inc.

  6. Obtaining sparse distributions in 2D inverse problems

    NASA Astrophysics Data System (ADS)

    Reci, A.; Sederman, A. J.; Gladden, L. F.

    2017-08-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxation-relaxation, T1-T2, and diffusion-relaxation, D-T2, correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L1 regularization algorithm stably recovers a distribution at a signal to noise ratio < 20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as 10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental study shows that the approach enables discrimination between different chemical species when direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise.

  7. MIDAS: Regionally linear multivariate discriminative statistical mapping.

    PubMed

    Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos

    2018-07-01

    Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.

  8. Sevoflurane-induced down-regulation of hippocampal oxytocin and arginine vasopressin impairs juvenile social behavioral abilities.

    PubMed

    Zhou, Zhi-Bin; Yang, Xiao-Yu; Yuan, Bao-Long; Niu, Li-Jun; Zhou, Xue; Huang, Wen-Qi; Feng, Xia; Zhou, Li-Hua

    2015-05-01

    Cumulative evidence indicates that early childhood anesthesia can alter a child's future behavioral performance. Animal researchers have found that sevoflurane, the most commonly used anesthetic for children, can produce damage in the neonatal brains of rodents. To further investigate this phenomenon, we focused on the influence of sevoflurane anesthesia on the development of juvenile social behavioral abilities and the pro-social proteins oxytocin (OT) and arginine vasopressin (AVP) in the neonatal hippocampus. A single 6-h sevoflurane exposure for postnatal day 5 mice resulted in decreased OT and AVP messenger RNA (mRNA) and protein levels in the hippocampus. OT and AVP proteins became sparsely distributed in the dorsal hippocampus after the exposure to sevoflurane. Compared with the air-treated group, mice in the sevoflurane-treated group showed signs of impairment in social recognition memory formation and social discrimination ability. Sevoflurane anesthesia reduces OT and AVP activities in the neonatal hippocampus and impairs social recognition memory formation and social discrimination ability in juvenile mice.

  9. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    PubMed

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Discriminative Structured Dictionary Learning on Grassmann Manifolds and Its Application on Image Restoration.

    PubMed

    Pan, Han; Jing, Zhongliang; Qiao, Lingfeng; Li, Minzhe

    2017-09-25

    Image restoration is a difficult and challenging problem in various imaging applications. However, despite of the benefits of a single overcomplete dictionary, there are still several challenges for capturing the geometric structure of image of interest. To more accurately represent the local structures of the underlying signals, we propose a new problem formulation for sparse representation with block-orthogonal constraint. There are three contributions. First, a framework for discriminative structured dictionary learning is proposed, which leads to a smooth manifold structure and quotient search spaces. Second, an alternating minimization scheme is proposed after taking both the cost function and the constraints into account. This is achieved by iteratively alternating between updating the block structure of the dictionary defined on Grassmann manifold and sparsifying the dictionary atoms automatically. Third, Riemannian conjugate gradient is considered to track local subspaces efficiently with a convergence guarantee. Extensive experiments on various datasets demonstrate that the proposed method outperforms the state-of-the-art methods on the removal of mixed Gaussian-impulse noise.

  11. Prediction of gene expression with cis-SNPs using mixed models and regularization methods.

    PubMed

    Zeng, Ping; Zhou, Xiang; Huang, Shuiping

    2017-05-11

    It has been shown that gene expression in human tissues is heritable, thus predicting gene expression using only SNPs becomes possible. The prediction of gene expression can offer important implications on the genetic architecture of individual functional associated SNPs and further interpretations of the molecular basis underlying human diseases. We compared three types of methods for predicting gene expression using only cis-SNPs, including the polygenic model, i.e. linear mixed model (LMM), two sparse models, i.e. Lasso and elastic net (ENET), and the hybrid of LMM and sparse model, i.e. Bayesian sparse linear mixed model (BSLMM). The three kinds of prediction methods have very different assumptions of underlying genetic architectures. These methods were evaluated using simulations under various scenarios, and were applied to the Geuvadis gene expression data. The simulations showed that these four prediction methods (i.e. Lasso, ENET, LMM and BSLMM) behaved best when their respective modeling assumptions were satisfied, but BSLMM had a robust performance across a range of scenarios. According to R 2 of these models in the Geuvadis data, the four methods performed quite similarly. We did not observe any clustering or enrichment of predictive genes (defined as genes with R 2  ≥ 0.05) across the chromosomes, and also did not see there was any clear relationship between the proportion of the predictive genes and the proportion of genes in each chromosome. However, an interesting finding in the Geuvadis data was that highly predictive genes (e.g. R 2  ≥ 0.30) may have sparse genetic architectures since Lasso, ENET and BSLMM outperformed LMM for these genes; and this observation was validated in another gene expression data. We further showed that the predictive genes were enriched in approximately independent LD blocks. Gene expression can be predicted with only cis-SNPs using well-developed prediction models and these predictive genes were enriched in some approximately independent LD blocks. The prediction of gene expression can shed some light on the functional interpretation for identified SNPs in GWASs.

  12. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparsemore » regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.« less

  13. Automated fine structure image analysis method for discrimination of diabetic retinopathy stage using conjunctival microvasculature images

    PubMed Central

    Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz

    2016-01-01

    The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692

  14. Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data

    NASA Astrophysics Data System (ADS)

    Humphries, T.; Winn, J.; Faridani, A.

    2017-08-01

    Recent work in CT image reconstruction has seen increasing interest in the use of total variation (TV) and related penalties to regularize problems involving reconstruction from undersampled or incomplete data. Superiorization is a recently proposed heuristic which provides an automatic procedure to ‘superiorize’ an iterative image reconstruction algorithm with respect to a chosen objective function, such as TV. Under certain conditions, the superiorized algorithm is guaranteed to find a solution that is as satisfactory as any found by the original algorithm with respect to satisfying the constraints of the problem; this solution is also expected to be superior with respect to the chosen objective. Most work on superiorization has used reconstruction algorithms which assume a linear measurement model, which in the case of CT corresponds to data generated from a monoenergetic x-ray beam. Many CT systems generate x-rays from a polyenergetic spectrum, however, in which the measured data represent an integral of object attenuation over all energies in the spectrum. This inconsistency with the linear model produces the well-known beam hardening artifacts, which impair analysis of CT images. In this work we superiorize an iterative algorithm for reconstruction from polyenergetic data, using both TV and an anisotropic TV (ATV) penalty. We apply the superiorized algorithm in numerical phantom experiments modeling both sparse-view and limited-angle scenarios. In our experiments, the superiorized algorithm successfully finds solutions which are as constraints-compatible as those found by the original algorithm, with significantly reduced TV and ATV values. The superiorized algorithm thus produces images with greatly reduced sparse-view and limited angle artifacts, which are also largely free of the beam hardening artifacts that would be present if a superiorized version of a monoenergetic algorithm were used.

  15. lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals.

    PubMed

    Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel

    2018-02-27

    Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .

  16. Signal Detection Methods and Discriminant Analysis Applied to Categorization of Newspaper and Government Documents: A Preliminary Study.

    ERIC Educational Resources Information Center

    Ng, Kwong Bor; Rieh, Soo Young; Kantor, Paul

    2000-01-01

    Discussion of natural language processing focuses on experiments using linear discriminant analysis to distinguish "Wall Street Journal" texts from "Federal Register" tests using information about the frequency of occurrence of word boundaries, sentence boundaries, and punctuation marks. Displays and interprets results in terms…

  17. Energy-discrimination x-ray computed tomography system utilizing a scanning cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abduraxit, Ablajan; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-04-01

    An energy-discrimination K-edge x-ray computed tomography (CT) system is useful for controlling the image contrast of a target region by selecting both the photon energy and the energy width. The CT system has an oscillation-type linear cadmium telluride (CdTe) detectror. CT is performed by repeated linear scans and rotations of an object. Penetrating x-ray photons from the object are detected by a CdTe detector, and event signals of x-ray photons are produced using charge-sensitive and shaping amplifiers. Both photon energy and energy width are selected out using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, the tube voltage and tube current were 80 kV and 20 μA, respectively, and the x-ray intensity was 1.92 μGy/s at a distance of 1.0 m from the source and a tube voltage of 80 kV. The energy-discrimination CT was carried out by selecting x-ray photon energies.

  18. Associations Between Discrimination and Cardiovascular Health Among Asian Indians in the United States.

    PubMed

    Nadimpalli, S B; Dulin-Keita, A; Salas, C; Kanaya, A M; Kandula, Namratha R

    2016-12-01

    Asian Indians (AI) have a high risk of atherosclerotic cardiovascular disease. The study investigated associations between discrimination and (1) cardiovascular risk and (2) self-rated health among AI. Higher discrimination scores were hypothesized to relate to a higher cardiovascular risk score (CRS) and poorer self-rated health. Asian Indians (n = 757) recruited between 2010 and 2013 answered discrimination and self-reported health questions. The CRS (0-8 points) included body-mass index, systolic blood pressure, total cholesterol, and fasting blood glucose levels of AI. Multiple linear regression analyses were conducted to evaluate relationships between discrimination and the CRS and discrimination and self-rated health, adjusting for psychosocial and clinical factors. There were no significant relationships between discrimination and the CRS (p ≥ .05). Discrimination was related to poorer self-reported health, B = -.41 (SE = .17), p = .02. Findings suggest perhaps there are important levels at which discrimination may harm health.

  19. Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study

    PubMed Central

    Bornschein, Jörg; Henniges, Marc; Lücke, Jörg

    2013-01-01

    Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. PMID:23754938

  20. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI.

    PubMed

    Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening

    2006-01-01

    In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.

  1. Tracing the Geographical Origin of Onions by Strontium Isotope Ratio and Strontium Content.

    PubMed

    Hiraoka, Hisaaki; Morita, Sakie; Izawa, Atsunobu; Aoyama, Keisuke; Shin, Ki-Cheol; Nakano, Takanori

    2016-01-01

    The strontium (Sr) isotope ratio ((87)Sr/(86)Sr) and Sr content were used to trace the geographical origin of onions from Japan and other countries, including China, the United States of America, New Zealand, Australia, and Thailand. The mean (87)Sr/(86)Sr ratio and Sr content (dry weight basis) for onions from Japan were 0.70751 and 4.6 mg kg(-1), respectively, and the values for onions from the other countries were 0.71199 and 12.4 mg kg(-1), respectively. Linear discriminant analysis was performed to classify onions produced in Japan from those produced in the other countries based on the Sr data. The discriminant equation derived from linear discriminant analysis was evaluated by 10-fold cross validation. As a result, the origins of 92% of onions were correctly classified between Japan and the other countries.

  2. M-step preconditioned conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Adams, L.

    1983-01-01

    Preconditioned conjugate gradient methods for solving sparse symmetric and positive finite systems of linear equations are described. Necessary and sufficient conditions are given for when these preconditioners can be used and an analysis of their effectiveness is given. Efficient computer implementations of these methods are discussed and results on the CYBER 203 and the Finite Element Machine under construction at NASA Langley Research Center are included.

  3. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  4. FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry

    NASA Astrophysics Data System (ADS)

    Dai, Jisheng; Liu, An; Lau, Vincent K. N.

    2018-05-01

    This paper addresses the problem of downlink channel estimation in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the cdownlink channel. However, there are at least two shortcomings of these DFT-based methods: 1) they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs, and 2) they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary 2D-array antenna geometry, and propose an efficient sparse Bayesian learning (SBL) approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization (MM) algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.

  5. Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Congedo, Pietro; Abgrall, Remi

    2014-11-01

    Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.

  6. An embedded system for face classification in infrared video using sparse representation

    NASA Astrophysics Data System (ADS)

    Saavedra M., Antonio; Pezoa, Jorge E.; Zarkesh-Ha, Payman; Figueroa, Miguel

    2017-09-01

    We propose a platform for robust face recognition in Infrared (IR) images using Compressive Sensing (CS). In line with CS theory, the classification problem is solved using a sparse representation framework, where test images are modeled by means of a linear combination of the training set. Because the training set constitutes an over-complete dictionary, we identify new images by finding their sparsest representation based on the training set, using standard l1-minimization algorithms. Unlike conventional face-recognition algorithms, we feature extraction is performed using random projections with a precomputed binary matrix, as proposed in the CS literature. This random sampling reduces the effects of noise and occlusions such as facial hair, eyeglasses, and disguises, which are notoriously challenging in IR images. Thus, the performance of our framework is robust to these noise and occlusion factors, achieving an average accuracy of approximately 90% when the UCHThermalFace database is used for training and testing purposes. We implemented our framework on a high-performance embedded digital system, where the computation of the sparse representation of IR images was performed by a dedicated hardware using a deeply pipelined architecture on an Field-Programmable Gate Array (FPGA).

  7. Parallel Conjugate Gradient: Effects of Ordering Strategies, Programming Paradigms, and Architectural Platforms

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Heber, Gerd; Biswas, Rupak

    2000-01-01

    The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. A sparse matrix-vector multiply (SPMV) usually accounts for most of the floating-point operations within a CG iteration. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and SPMV using different programming paradigms and architectures. Results show that for this class of applications, ordering significantly improves overall performance, that cache reuse may be more important than reducing communication, and that it is possible to achieve message passing performance using shared memory constructs through careful data ordering and distribution. However, a multi-threaded implementation of CG on the Tera MTA does not require special ordering or partitioning to obtain high efficiency and scalability.

  8. Improved parallel data partitioning by nested dissection with applications to information retrieval.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Michael M.; Chevalier, Cedric; Boman, Erik Gunnar

    The computational work in many information retrieval and analysis algorithms is based on sparse linear algebra. Sparse matrix-vector multiplication is a common kernel in many of these computations. Thus, an important related combinatorial problem in parallel computing is how to distribute the matrix and the vectors among processors so as to minimize the communication cost. We focus on minimizing the total communication volume while keeping the computation balanced across processes. In [1], the first two authors presented a new 2D partitioning method, the nested dissection partitioning algorithm. In this paper, we improve on that algorithm and show that it ismore » a good option for data partitioning in information retrieval. We also show partitioning time can be substantially reduced by using the SCOTCH software, and quality improves in some cases, too.« less

  9. Evaluation of generalized degrees of freedom for sparse estimation by replica method

    NASA Astrophysics Data System (ADS)

    Sakata, A.

    2016-12-01

    We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.

  10. Global discrimination of land cover types from metrics derived from AVHRR pathfinder data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFries, R.; Hansen, M.; Townshend, J.

    1995-12-01

    Global data sets of land cover are a significant requirement for global biogeochemical and climate models. Remotely sensed satellite data is an increasingly attractive source for deriving these data sets due to the resulting internal consistency, reproducibility, and coverage in locations where ground knowledge is sparse. Seasonal changes in the greenness of vegetation, described in remotely sensed data as changes in the normalized difference vegetation index (NDVI) throughout the year, have been the basis for discriminating between cover types in previous attempts to derive land cover from AVHRR data at global and continental scales. This study examines the use ofmore » metrics derived from the NDVI temporal profile, as well as metrics derived from observations in red, infrared, and thermal bands, to improve discrimination between 12 cover types on a global scale. According to separability measures calculated from Bhattacharya distances, average separabilities improved by using 12 of the 16 metrics tested (1.97) compared to separabilities using 12 monthly NDVI values alone (1.88). Overall, the most robust metrics for discriminating between cover types were: mean NDVI, maximum NDVI, NDVI amplitude, AVHRR Band 2 (near-infrared reflectance) and Band 1 (red reflectance) corresponding to the time of maximum NDVI, and maximum land surface temperature. Deciduous and evergreen vegetation can be distinguished by mean NDVI, maximum NDVI, NDVI amplitude, and maximum land surface temperature. Needleleaf and broadleaf vegetation can be distinguished by either mean NDVI and NDVI amplitude or maximum NDVI and NDVI amplitude.« less

  11. Dorsal hippocampus is necessary for visual categorization in rats.

    PubMed

    Kim, Jangjin; Castro, Leyre; Wasserman, Edward A; Freeman, John H

    2018-02-23

    The hippocampus may play a role in categorization because of the need to differentiate stimulus categories (pattern separation) and to recognize category membership of stimuli from partial information (pattern completion). We hypothesized that the hippocampus would be more crucial for categorization of low-density (few relevant features) stimuli-due to the higher demand on pattern separation and pattern completion-than for categorization of high-density (many relevant features) stimuli. Using a touchscreen apparatus, rats were trained to categorize multiple abstract stimuli into two different categories. Each stimulus was a pentagonal configuration of five visual features; some of the visual features were relevant for defining the category whereas others were irrelevant. Two groups of rats were trained with either a high (dense, n = 8) or low (sparse, n = 8) number of category-relevant features. Upon reaching criterion discrimination (≥75% correct, on 2 consecutive days), bilateral cannulas were implanted in the dorsal hippocampus. The rats were then given either vehicle or muscimol infusions into the hippocampus just prior to various testing sessions. They were tested with: the previously trained stimuli (trained), novel stimuli involving new irrelevant features (novel), stimuli involving relocated features (relocation), and a single relevant feature (singleton). In training, the dense group reached criterion faster than the sparse group, indicating that the sparse task was more difficult than the dense task. In testing, accuracy of both groups was equally high for trained and novel stimuli. However, both groups showed impaired accuracy in the relocation and singleton conditions, with a greater deficit in the sparse group. The testing data indicate that rats encode both the relevant features and the spatial locations of the features. Hippocampal inactivation impaired visual categorization regardless of the density of the category-relevant features for the trained, novel, relocation, and singleton stimuli. Hippocampus-mediated pattern completion and pattern separation mechanisms may be necessary for visual categorization involving overlapping irrelevant features. © 2018 Wiley Periodicals, Inc.

  12. Classification of electroencephalograph signals using time-frequency decomposition and linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Szuflitowska, B.; Orlowski, P.

    2017-08-01

    Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.

  13. Fast Depiction Invariant Visual Similarity for Content Based Image Retrieval Based on Data-driven Visual Similarity using Linear Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Wihardi, Y.; Setiawan, W.; Nugraha, E.

    2018-01-01

    On this research we try to build CBIRS based on Learning Distance/Similarity Function using Linear Discriminant Analysis (LDA) and Histogram of Oriented Gradient (HoG) feature. Our method is invariant to depiction of image, such as similarity of image to image, sketch to image, and painting to image. LDA can decrease execution time compared to state of the art method, but it still needs an improvement in term of accuracy. Inaccuracy in our experiment happen because we did not perform sliding windows search and because of low number of negative samples as natural-world images.

  14. A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems

    NASA Astrophysics Data System (ADS)

    Liu, Zuolin; Xu, Jian

    2018-04-01

    In the paper, a new parameter identification method is proposed for mechanical systems. Based on the idea of Galerkin finite-element method, the displacement over time history is approximated by piecewise linear functions, and the second-order terms in model equation are eliminated by integrating by parts. In this way, the lost function of integration form is derived. Being different with the existing methods, the lost function actually is a quadratic sum of integration over the whole time history. Then for linear or nonlinear systems, the optimisation of the lost function can be applied with traditional least-squares algorithm or the iterative one, respectively. Such method could be used to effectively identify parameters in linear and arbitrary nonlinear mechanical systems. Simulation results show that even under the condition of sparse data or low sampling frequency, this method could still guarantee high accuracy in identifying linear and nonlinear parameters.

  15. Discrimination of Medicine Radix Astragali from Different Geographic Origins Using Multiple Spectroscopies Combined with Data Fusion Methods

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Yan; Song, Chao; Sha, Min; Liu, Jun; Li, Li-Ping; Zhang, Zheng-Yong

    2018-05-01

    Raman spectra and ultraviolet-visible absorption spectra of four different geographic origins of Radix Astragali were collected. These data were analyzed using kernel principal component analysis combined with sparse representation classification. The results showed that the recognition rate reached 70.44% using Raman spectra for data input and 90.34% using ultraviolet-visible absorption spectra for data input. A new fusion method based on Raman combined with ultraviolet-visible data was investigated and the recognition rate was increased to 96.43%. The experimental results suggested that the proposed data fusion method effectively improved the utilization rate of the original data.

  16. Comparing Linear Discriminant Function with Logistic Regression for the Two-Group Classification Problem.

    ERIC Educational Resources Information Center

    Fan, Xitao; Wang, Lin

    The Monte Carlo study compared the performance of predictive discriminant analysis (PDA) and that of logistic regression (LR) for the two-group classification problem. Prior probabilities were used for classification, but the cost of misclassification was assumed to be equal. The study used a fully crossed three-factor experimental design (with…

  17. Joint recognition and discrimination in nonlinear feature space

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1997-09-01

    A new general method for linear and nonlinear feature extraction is presented. It is novel since it provides both representation and discrimination while most other methods are concerned with only one of these issues. We call this approach the maximum representation and discrimination feature (MRDF) method and show that the Bayes classifier and the Karhunen- Loeve transform are special cases of it. We refer to our nonlinear feature extraction technique as nonlinear eigen- feature extraction. It is new since it has a closed-form solution and produces nonlinear decision surfaces with higher rank than do iterative methods. Results on synthetic databases are shown and compared with results from standard Fukunaga- Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem (discrimination) and to the classification and pose estimation of two similar objects (representation and discrimination).

  18. An empirical investigation of methods for nonsymmetric linear systems

    NASA Technical Reports Server (NTRS)

    Sherman, A. H.

    1981-01-01

    The present investigation is concerned with a comparison of methods for solving linear algebraic systems which arise from finite difference discretizations of the elliptic convection-diffusion equation in a planar region Omega with Dirichlet boundary conditions. Such linear systems are typically of the form Ax = b where A is an N x N sparse nonsymmetric matrix. In a discussion of discretizations, it is assumed that a regular rectilinear mesh of width h has been imposed on Omega. The discretizations considered include central differences, upstream differences, and modified upstream differences. Six methods for solving Ax = b are considered. Three variants of Gaussian elimination have been chosen as representatives of state-of-the-art software for direct methods under different assumptions about pivoting. Three iterative methods are also included.

  19. Stability and stabilisation of a class of networked dynamic systems

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Wang, D. Q.

    2018-04-01

    We investigate the stability and stabilisation of a linear time invariant networked heterogeneous system with arbitrarily connected subsystems. A new linear matrix inequality based sufficient and necessary condition for the stability is derived, based on which the stabilisation is provided. The obtained conditions efficiently utilise the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, a sufficient condition only dependent on each individual subsystem is also presented for the stabilisation of the networked systems with a large scale. Numerical simulations show that these conditions are computationally valid in the analysis and synthesis of a large-scale networked system.

  20. Compressed modes for variational problems in mathematics and physics.

    PubMed

    Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley

    2013-11-12

    This article describes a general formalism for obtaining spatially localized ("sparse") solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an regularization term to the variational principle, which is shown to yield solutions with compact support ("compressed modes"). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size.

  1. Everyday Discrimination, Diabetes-Related Distress, and Depressive Symptoms Among African Americans and Latinos with Diabetes

    PubMed Central

    Valerio, Melissa A.; Kieffer, Edith; Sinco, Brandy; Rosland, Ann-Marie; Hawkins, Jaclynn; Espitia, Nicolaus; Palmisano, Gloria; Spencer, Michael

    2013-01-01

    It is not known how discrimination might affect diabetes-related distress (DRD), an important correlate of diabetes outcomes. We examined correlates of discrimination and the influence of discrimination on DRD and depressive symptoms (DS) for African Americans and Latinos with type 2 diabetes. We analyzed survey data (n = 157) collected at enrollment into a diabetes management intervention. Using multiple linear regression, we examined correlates of discrimination and the association between discrimination and DRD and DS. Discrimination was significantly associated with higher DRD for Latinos (b 1.58, 95 % CI 1.08, 2.31, p < 0.05), but not significant for African Americans (b 0.96, 95 % CI 0.59, 1.57). Discrimination was marginally significantly associated with more DS for Latinos (b 1.43, 95 % CI 0.97, 2.12, p < 0.10), but not significant for African Americans (b 1.21, 95 % CI 0.87, 1.70). These findings suggest the need to address stressors unique to racial/ethnic minorities to improve diabetes-related outcomes. PMID:23689972

  2. Pattern recognition and genetic algorithms for discrimination of orange juices and reduction of significant components from headspace solid-phase microextraction.

    PubMed

    Rinaldi, Maurizio; Gindro, Roberto; Barbeni, Massimo; Allegrone, Gianna

    2009-01-01

    Orange (Citrus sinensis L.) juice comprises a complex mixture of volatile components that are difficult to identify and quantify. Classification and discrimination of the varieties on the basis of the volatile composition could help to guarantee the quality of a juice and to detect possible adulteration of the product. To provide information on the amounts of volatile constituents in fresh-squeezed juices from four orange cultivars and to establish suitable discrimination rules to differentiate orange juices using new chemometric approaches. Fresh juices of four orange cultivars were analysed by headspace solid-phase microextraction (HS-SPME) coupled with GC-MS. Principal component analysis, linear discriminant analysis and heuristic methods, such as neural networks, allowed clustering of the data from HS-SPME analysis while genetic algorithms addressed the problem of data reduction. To check the quality of the results the chemometric techniques were also evaluated on a sample. Thirty volatile compounds were identified by HS-SPME and GC-MS analyses and their relative amounts calculated. Differences in composition of orange juice volatile components were observed. The chosen orange cultivars could be discriminated using neural networks, genetic relocation algorithms and linear discriminant analysis. Genetic algorithms applied to the data were also able to detect the most significant compounds. SPME is a useful technique to investigate orange juice volatile composition and a flexible chemometric approach is able to correctly separate the juices.

  3. SIMD Optimization of Linear Expressions for Programmable Graphics Hardware

    PubMed Central

    Bajaj, Chandrajit; Ihm, Insung; Min, Jungki; Oh, Jinsang

    2009-01-01

    The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of ȳ = Ax̄ + b̄, where A is a matrix, and x̄, ȳ and b̄ are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods. PMID:19946569

  4. Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study.

    PubMed

    Oh, Ein; Yoo, Tae Keun; Park, Eun-Cheol

    2013-09-13

    Blindness due to diabetic retinopathy (DR) is the major disability in diabetic patients. Although early management has shown to prevent vision loss, diabetic patients have a low rate of routine ophthalmologic examination. Hence, we developed and validated sparse learning models with the aim of identifying the risk of DR in diabetic patients. Health records from the Korea National Health and Nutrition Examination Surveys (KNHANES) V-1 were used. The prediction models for DR were constructed using data from 327 diabetic patients, and were validated internally on 163 patients in the KNHANES V-1. External validation was performed using 562 diabetic patients in the KNHANES V-2. The learning models, including ridge, elastic net, and LASSO, were compared to the traditional indicators of DR. Considering the Bayesian information criterion, LASSO predicted DR most efficiently. In the internal and external validation, LASSO was significantly superior to the traditional indicators by calculating the area under the curve (AUC) of the receiver operating characteristic. LASSO showed an AUC of 0.81 and an accuracy of 73.6% in the internal validation, and an AUC of 0.82 and an accuracy of 75.2% in the external validation. The sparse learning model using LASSO was effective in analyzing the epidemiological underlying patterns of DR. This is the first study to develop a machine learning model to predict DR risk using health records. LASSO can be an excellent choice when both discriminative power and variable selection are important in the analysis of high-dimensional electronic health records.

  5. SDL: Saliency-Based Dictionary Learning Framework for Image Similarity.

    PubMed

    Sarkar, Rituparna; Acton, Scott T

    2018-02-01

    In image classification, obtaining adequate data to learn a robust classifier has often proven to be difficult in several scenarios. Classification of histological tissue images for health care analysis is a notable application in this context due to the necessity of surgery, biopsy or autopsy. To adequately exploit limited training data in classification, we propose a saliency guided dictionary learning method and subsequently an image similarity technique for histo-pathological image classification. Salient object detection from images aids in the identification of discriminative image features. We leverage the saliency values for the local image regions to learn a dictionary and respective sparse codes for an image, such that the more salient features are reconstructed with smaller error. The dictionary learned from an image gives a compact representation of the image itself and is capable of representing images with similar content, with comparable sparse codes. We employ this idea to design a similarity measure between a pair of images, where local image features of one image, are encoded with the dictionary learned from the other and vice versa. To effectively utilize the learned dictionary, we take into account the contribution of each dictionary atom in the sparse codes to generate a global image representation for image comparison. The efficacy of the proposed method was evaluated using three tissue data sets that consist of mammalian kidney, lung and spleen tissue, breast cancer, and colon cancer tissue images. From the experiments, we observe that our methods outperform the state of the art with an increase of 14.2% in the average classification accuracy over all data sets.

  6. A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Boucher, Thomas F.; Ozanne, Marie V.; Carmosino, Marco L.; Dyar, M. Darby; Mahadevan, Sridhar; Breves, Elly A.; Lepore, Kate H.; Clegg, Samuel M.

    2015-05-01

    The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO2, Fe2O3, CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na2O, K2O, TiO2, and P2O5, the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high dimensionality of the data (6144 channels) relative to the small number of samples studied. The best-performing models were SVR-Lin for SiO2, MgO, Fe2O3, and Na2O, lasso for Al2O3, elastic net for MnO, and PLS-1 for CaO, TiO2, and K2O. Although these differences in model performance between methods were identified, most of the models produce comparable results when p ≤ 0.05 and all techniques except kNN produced statistically-indistinguishable results. It is likely that a combination of models could be used together to yield a lower total error of prediction, depending on the requirements of the user.

  7. Discrimination and Depressive Symptoms Among Latina/o Adolescents of Immigrant Parents.

    PubMed

    Lopez, William D; LeBrón, Alana M W; Graham, Louis F; Grogan-Kaylor, Andrew

    2016-01-01

    Discrimination is associated with negative mental health outcomes for Latina/o adolescents. While Latino/a adolescents experience discrimination from a number of sources and across contexts, little research considers how the source of discrimination and the context in which it occurs affect mental health outcomes among Latina/o children of immigrants. We examined the association between source-specific discrimination, racial or ethnic background of the source, and school ethnic context with depressive symptoms for Latina/o adolescents of immigrant parents. Using multilevel linear regression with time-varying covariates, we regressed depressive symptoms on source-specific discrimination, racial or ethnic background of the source of discrimination, and school percent Latina/o. Discrimination from teachers (β = 0.06, p < .05), students (β = 0.05, p < .05), Cubans (β = 0.19, p < .001), and Latinas/os (β = 0.19, p < .001) were positively associated with depressive symptoms. These associations were not moderated by school percent Latina/o. The findings indicate a need to reduce discrimination to improve Latina/o adolescents' mental health. © The Author(s) 2016.

  8. Pseudotumor Cerebri Resulting in Empty Sella Syndrome and Multiple Pituitary Hormone Deficiencies

    DTIC Science & Technology

    2017-09-16

    of chronic headaches, back pain, decreased energy, and frequent nausea and vomiting. His growth velocity had slowed over the previous 3 years. On...exam, he had a eunuchoid body habitus without gynecomastia. He had sparse axillary hair , Tanner II pubic hair , and a phallus smaller than expected for...notable progression of puberty and linear growth acceleration. Subsequently, physiologic hydrocortisone replacement therapy resulted in resolution of

  9. Pseudotumor Cerebri Resulting in Empty Sella Syndrome and Multiple Pituitary Hormone Deficiencies

    DTIC Science & Technology

    2017-09-14

    of chronic headaches, back pain, decreased energy, and frequent nausea and vomiting. His growth velocity had slowed over the previous 3 years. On...exam, he had a eunuchoid body habltus without gynecomastia. He had sparse axillary hair , Tanner II pubic hair , and a phallus smaller than expected...with notable progression of puberty and linear growth acceleration. Subsequently, physiologic hydrocortisone replacement therapy resulted in resolution

  10. Nonlinear Estimation With Sparse Temporal Measurements

    DTIC Science & Technology

    2016-09-01

    Kalman filter , the extended Kalman filter (EKF) and unscented Kalman filter (UKF) are commonly used in practical application. The Kalman filter is an...optimal estimator for linear systems; the EKF and UKF are sub-optimal approximations of the Kalman filter . The EKF uses a first-order Taylor series...propagated covariance is compared for similarity with a Monte Carlo propagation. The similarity of the covariance matrices is shown to predict filter

  11. spammpack, Version 2013-06-18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-01-17

    This library is an implementation of the Sparse Approximate Matrix Multiplication (SpAMM) algorithm introduced. It provides a matrix data type, and an approximate matrix product, which exhibits linear scaling computational complexity for matrices with decay. The product error and the performance of the multiply can be tuned by choosing an appropriate tolerance. The library can be compiled for serial execution or parallel execution on shared memory systems with an OpenMP capable compiler

  12. Tensor-GMRES method for large sparse systems of nonlinear equations

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  13. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.

    PubMed

    Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N

    2016-07-12

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.

  14. Sparse generalized linear model with L0 approximation for feature selection and prediction with big omics data.

    PubMed

    Liu, Zhenqiu; Sun, Fengzhu; McGovern, Dermot P

    2017-01-01

    Feature selection and prediction are the most important tasks for big data mining. The common strategies for feature selection in big data mining are L 1 , SCAD and MC+. However, none of the existing algorithms optimizes L 0 , which penalizes the number of nonzero features directly. In this paper, we develop a novel sparse generalized linear model (GLM) with L 0 approximation for feature selection and prediction with big omics data. The proposed approach approximate the L 0 optimization directly. Even though the original L 0 problem is non-convex, the problem is approximated by sequential convex optimizations with the proposed algorithm. The proposed method is easy to implement with only several lines of code. Novel adaptive ridge algorithms ( L 0 ADRIDGE) for L 0 penalized GLM with ultra high dimensional big data are developed. The proposed approach outperforms the other cutting edge regularization methods including SCAD and MC+ in simulations. When it is applied to integrated analysis of mRNA, microRNA, and methylation data from TCGA ovarian cancer, multilevel gene signatures associated with suboptimal debulking are identified simultaneously. The biological significance and potential clinical importance of those genes are further explored. The developed Software L 0 ADRIDGE in MATLAB is available at https://github.com/liuzqx/L0adridge.

  15. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    DOE PAGES

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less

  16. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    PubMed

    Zhu, Xiangbin; Qiu, Huiling

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  17. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections

    PubMed Central

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved. PMID:27893761

  18. Convex Banding of the Covariance Matrix

    PubMed Central

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings. PMID:28042189

  19. Convex Banding of the Covariance Matrix.

    PubMed

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.

  20. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures.

    PubMed

    Wang, Gang; Wang, Yalin

    2017-02-15

    In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Dose-shaping using targeted sparse optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, George A.; Ruan, Dan

    2013-07-15

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, themore » authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot}{sup sparse} improves tradeoff between planning goals by 'sacrificing' voxels that have already been violated to improve PTV coverage, PTV homogeneity, and/or OAR-sparing. In doing so, overall plan quality is increased since these large violations only arise if a net reduction in E{sub tot}{sup sparse} occurs as a result. For example, large violations to dose prescription in the PTV in E{sub tot}{sup sparse}-optimized plans will naturally localize to voxels in and around PTV-OAR overlaps where OAR-sparing may be increased without compromising target coverage. The authors compared the results of our method and the corresponding clinical plans using analyses of DVH plots, dose maps, and two quantitative metrics that quantify PTV homogeneity and overdose. These metrics do not penalize underdose since E{sub tot}{sup sparse}-optimized plans were planned such that their target coverage was similar or better than that of the clinical plans. Finally, plan deliverability was assessed with the 2D modulation index.Results: The proposed method was implemented using IBM's CPLEX optimization package (ILOG CPLEX, Sunnyvale, CA) and required 1-4 min to solve with a 12-core Intel i7 processor. In the testing procedure, the authors optimized for several points on the Pareto surface of four 7-field 6MV prostate cases that were optimized for different levels of PTV homogeneity and OAR-sparing. The generated results were compared against each other and the clinical plan by analyzing their DVH plots and dose maps. After developing intuition by planning the four prostate cases, which had relatively few tradeoffs, the authors applied our method to a 7-field 6 MV pancreas case and a 9-field 6MV head-and-neck case to test the potential impact of our method on more challenging cases. The authors found that our formulation: (1) provided excellent flexibility for balancing OAR-sparing with PTV homogeneity; and (2) permitted the dose planner more control over the evolution of the PTV's spatial dose distribution than conventional objective functions. In particular, E{sub tot}{sup sparse}-optimized plans for the pancreas case and head-and-neck case exhibited substantially improved sparing of the spinal cord and parotid glands, respectively, while maintaining or improving sparing for other OARs and markedly improving PTV homogeneity. Plan deliverability for E{sub tot}{sup sparse}-optimized plans was shown to be better than their associated clinical plans, according to the two-dimensional modulation index.Conclusions: These results suggest that our formulation may be used to improve dose-shaping and OAR-sparing for complicated disease sites, such as the pancreas or head and neck. Furthermore, our objective function and constraints are linear and constitute a linear program, which converges to the global minimum quickly, and can be easily implemented in treatment planning software. Thus, the authors expect fast translation of our method to the clinic where it may have a positive impact on plan quality for challenging disease sites.« less

  2. Estimating erosion risk on forest lands using improved methods of discriminant analysis

    Treesearch

    J. Lewis; R. M. Rice

    1990-01-01

    A population of 638 timber harvest areas in northwestern California was sampled for data related to the occurrence of critical amounts of erosion (>153 m3 within 0.81 ha). Separate analyses were done for forest roads and logged areas. Linear discriminant functions were computed in each analysis to contrast site conditions at critical plots with randomly selected...

  3. A network model of successive partitioning-limited solute diffusion through the stratum corneum.

    PubMed

    Schumm, Phillip; Scoglio, Caterina M; van der Merwe, Deon

    2010-02-07

    As the most exposed point of contact with the external environment, the skin is an important barrier to many chemical exposures, including medications, potentially toxic chemicals and cosmetics. Traditional dermal absorption models treat the stratum corneum lipids as a homogenous medium through which solutes diffuse according to Fick's first law of diffusion. This approach does not explain non-linear absorption and irregular distribution patterns within the stratum corneum lipids as observed in experimental data. A network model, based on successive partitioning-limited solute diffusion through the stratum corneum, where the lipid structure is represented by a large, sparse, and regular network where nodes have variable characteristics, offers an alternative, efficient, and flexible approach to dermal absorption modeling that simulates non-linear absorption data patterns. Four model versions are presented: two linear models, which have unlimited node capacities, and two non-linear models, which have limited node capacities. The non-linear model outputs produce absorption to dose relationships that can be best characterized quantitatively by using power equations, similar to the equations used to describe non-linear experimental data.

  4. Evaluation of volatile aldehydes as discriminating parameters in quality vinegars with protected European geographical indication.

    PubMed

    Durán-Guerrero, Enrique; Chinnici, Fabio; Natali, Nadia; Riponi, Claudio

    2015-09-01

    Thirty-six high-quality vinegars with geographical indication belonging to Sherry and Modena areas (vinegars of Jerez, balsamic vinegars of Modena and traditional balsamic vinegars of Modena) with all possible aging periods were analyzed to determine the content of volatile aldehydes. A solid-phase extraction method with in-cartridge derivatization using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine followed by gas chromatography-mass spectrometry was employed. Twenty-two volatile aldehydes were identified and determined in the samples. Analysis of variance provided significant differences among the samples as a function of the type of vinegar, aging time and raw material. Principal component analysis and linear discriminant analysis demonstrated the possibility of discriminating the samples in terms of aging time and raw material. Linear aldehydes and compounds such as furfural, methional, nonenal, hexenal, 2-methylbutanal and i-butyraldehyde were the most significant variables able to discriminate the samples. Aldehyde content of premium quality vinegars is a function of both ageing time and raw material. Their evaluation could be a useful tool with a view to ascertaining vinegar origin and genuineness. © 2014 Society of Chemical Industry.

  5. Community-based comprehensive intervention for people with schizophrenia in Guangzhou, China: Effects on clinical symptoms, social functioning, internalized stigma and discrimination.

    PubMed

    Li, Jie; Huang, Yuan-Guang; Ran, Mao-Sheng; Fan, Yu; Chen, Wen; Evans-Lacko, Sara; Thornicroft, Graham

    2018-04-01

    Comprehensive interventions including components of stigma and discrimination reduction in schizophrenia in low- and middle-income countries (LMICs) are lacking. We developed a community-based comprehensive intervention to evaluate its effects on clinical symptoms, social functioning, internalized stigma and discrimination among patients with schizophrenia. A randomized controlled trial including an intervention group (n = 169) and a control group (n = 158) was performed. The intervention group received comprehensive intervention (strategies against stigma and discrimination, psycho-education, social skills training and cognitive behavioral therapy) and the control group received face to face interview. Both lasted for nine months. Participants were measured at baseline, 6 months and 9 months using the Internalized Stigma of Mental Illness scale (ISMI), Discrimination and Stigma Scale (DISC-12), Global Assessment of Functioning (GAF), Schizophrenia Quality of Life Scale (SQLS), Self-Esteem Scale (SES), Brief Psychiatric Rating Scale (BPRS) and PANSS negative scale (PANSS-N). Insight and medication compliance were evaluated by senior psychiatrists. Data were analyzed by descriptive statistics, t-test, chi-square test or Fisher's exact test. Linear Mixed Models were used to show intervention effectiveness on scales. General Linear Mixed Models with multinomial logistic link function were used to assess the effectiveness on medication compliance and insight. We found a significant reduction on anticipated discrimination, BPRS and PANSS-N total scores, and an elevation on overcoming stigma and GAF in the intervention group after 9 months. These suggested the intervention may be effective in reducing anticipated discrimination, increasing skills overcoming stigma as well as improving clinical symptoms and social functioning in Chinese patients with schizophrenia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. [Discrimination of Red Tide algae by fluorescence spectra and principle component analysis].

    PubMed

    Su, Rong-guo; Hu, Xu-peng; Zhang, Chuan-song; Wang, Xiu-lin

    2007-07-01

    Fluorescence discrimination technology for 11 species of the Red Tide algae at genus level was constructed by principle component analysis and non-negative least squares. Rayleigh and Raman scattering peaks of 3D fluorescence spectra were eliminated by Delaunay triangulation method. According to the results of Fisher linear discrimination, the first principle component score and the second component score of 3D fluorescence spectra were chosen as discriminant feature and the feature base was established. The 11 algae species were tested, and more than 85% samples were accurately determinated, especially for Prorocentrum donghaiense, Skeletonema costatum, Gymnodinium sp., which have frequently brought Red tide in the East China Sea. More than 95% samples were right discriminated. The results showed that the genus discriminant feature of 3D fluorescence spectra of Red Tide algae given by principle component analysis could work well.

  7. Discrimination, acculturation and other predictors of depression among pregnant Hispanic women.

    PubMed

    Walker, Janiece L; Ruiz, R Jeanne; Chinn, Juanita J; Marti, Nathan; Ricks, Tiffany N

    2012-01-01

    The purpose of our study was to examine the effects of socioeconomic status, acculturative stress, discrimination, and marginalization as predictors of depression in pregnant Hispanic women. A prospective observational design was used. Central and Gulf coast areas of Texas in obstetrical offices. A convenience sample of 515 pregnant, low income, low medical risk, and self-identified Hispanic women who were between 22-24 weeks gestation was used to collect data. The predictor variables were socioeconomic status, discrimination, acculturative stress, and marginalization. The outcome variable was depression. Education, frequency of discrimination, age, and Anglo marginality were significant predictors of depressive symptoms in a linear regression model, F (6, 458) = 8.36, P<.0001. Greater frequency of discrimination was the strongest positive predictor of increased depressive symptoms. It is important that health care providers further understand the impact that age and experiences of discrimination throughout the life course have on depressive symptoms during pregnancy.

  8. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    PubMed Central

    Zaltz, Yael; Globerson, Eitan; Amir, Noam

    2017-01-01

    The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF), intensity discrimination, spectrum discrimination (DLS), and time discrimination (DLT). Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels), and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels), were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant discrimination, demonstrating highly specific effects for auditory linguistic experience as well. Overall, results suggest that auditory superiority is associated with the specific auditory exposure. PMID:29238318

  9. Boronlectin/Polyelectrolyte Ensembles as Artificial Tongue: Design, Construction, and Application for Discriminative Sensing of Complex Glycoconjugates from Panax ginseng.

    PubMed

    Zhang, Xiao-Tai; Wang, Shu; Xing, Guo-Wen

    2017-02-01

    Ginsenoside is a large family of triterpenoid saponins from Panax ginseng, which possesses various important biological functions. Due to the very similar structures of these complex glycoconjugates, it is crucial to develop a powerful analytic method to identify ginsenosides qualitatively or quantitatively. We herein report an eight-channel fluorescent sensor array as artificial tongue to achieve the discriminative sensing of ginsenosides. The fluorescent cross-responsive array was constructed by four boronlectins bearing flexible boronic acid moieties (FBAs) with multiple reactive sites and two linear poly(phenylene-ethynylene) (PPEs). An "on-off-on" response pattern was afforded on the basis of superquenching of fluorescent indicator PPEs and an analyte-induced allosteric indicator displacement (AID) process. Most importantly, it was found that the canonical distribution of ginsenoside data points analyzed by linear discriminant analysis (LDA) was highly correlated with the inherent molecular structures of the analytes, and the absence of overlaps among the five point groups reflected the effectiveness of the sensor array in the discrimination process. Almost all of the unknown ginsenoside samples at different concentrations were correctly identified on the basis of the established mathematical model. Our current work provided a general and constructive method to improve the quality assessment and control of ginseng and its extracts, which are useful and helpful for further discriminating other complex glycoconjugate families.

  10. Characterizing entanglement with global and marginal entropic measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adesso, Gerardo; Illuminati, Fabrizio; De Siena, Silvio

    2003-12-01

    We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entanglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such statesmore » cannot be discriminated by the majorization criterion.« less

  11. Life satisfaction and trauma in clinical and non-clinical children living in a war-torn environment: A discriminant analysis.

    PubMed

    Veronese, Guido; Pepe, Alessandro

    2017-07-01

    The aim of this work was to discriminate between healthy children and children at risk of developing mental impairments by evaluating the impact on contextual and individual factors of a context characterized by war. We tested the hypothesis that a linear discriminant function composed of trauma, life satisfaction, and affect balance has the power to classify the children as community or clinical referred. Membership of the clinical-referred group was associated with poorer life satisfaction and higher levels of trauma. Community-referred profiles were associated with lesser trauma. Perceived life satisfaction regarding family and school was the main contributor to the discriminant function.

  12. A sparse representation-based approach for copy-move image forgery detection in smooth regions

    NASA Astrophysics Data System (ADS)

    Abdessamad, Jalila; ElAdel, Asma; Zaied, Mourad

    2017-03-01

    Copy-move image forgery is the act of cloning a restricted region in the image and pasting it once or multiple times within that same image. This procedure intends to cover a certain feature, probably a person or an object, in the processed image or emphasize it through duplication. Consequences of this malicious operation can be unexpectedly harmful. Hence, the present paper proposes a new approach that automatically detects Copy-move Forgery (CMF). In particular, this work broaches a widely common open issue in CMF research literature that is detecting CMF within smooth areas. Indeed, the proposed approach represents the image blocks as a sparse linear combination of pre-learned bases (a mixture of texture and color-wise small patches) which allows a robust description of smooth patches. The reported experimental results demonstrate the effectiveness of the proposed approach in identifying the forged regions in CM attacks.

  13. Archetypal Analysis for Sparse Representation-Based Hyperspectral Sub-Pixel Quantification

    NASA Astrophysics Data System (ADS)

    Drees, L.; Roscher, R.

    2017-05-01

    This paper focuses on the quantification of land cover fractions in an urban area of Berlin, Germany, using simulated hyperspectral EnMAP data with a spatial resolution of 30m×30m. For this, sparse representation is applied, where each pixel with unknown surface characteristics is expressed by a weighted linear combination of elementary spectra with known land cover class. The elementary spectra are determined from image reference data using simplex volume maximization, which is a fast heuristic technique for archetypal analysis. In the experiments, the estimation of class fractions based on the archetypal spectral library is compared to the estimation obtained by a manually designed spectral library by means of reconstruction error, mean absolute error of the fraction estimates, sum of fractions and the number of used elementary spectra. We will show, that a collection of archetypes can be an adequate and efficient alternative to the spectral library with respect to mentioned criteria.

  14. Ensemble of sparse classifiers for high-dimensional biological data.

    PubMed

    Kim, Sunghan; Scalzo, Fabien; Telesca, Donatello; Hu, Xiao

    2015-01-01

    Biological data are often high in dimension while the number of samples is small. In such cases, the performance of classification can be improved by reducing the dimension of data, which is referred to as feature selection. Recently, a novel feature selection method has been proposed utilising the sparsity of high-dimensional biological data where a small subset of features accounts for most variance of the dataset. In this study we propose a new classification method for high-dimensional biological data, which performs both feature selection and classification within a single framework. Our proposed method utilises a sparse linear solution technique and the bootstrap aggregating algorithm. We tested its performance on four public mass spectrometry cancer datasets along with two other conventional classification techniques such as Support Vector Machines and Adaptive Boosting. The results demonstrate that our proposed method performs more accurate classification across various cancer datasets than those conventional classification techniques.

  15. Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication

    DOE PAGES

    Azad, Ariful; Ballard, Grey; Buluc, Aydin; ...

    2016-11-08

    Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat MPI model on Erdös-Rényi matrices, those algorithms had not been implemented in practice and their complexities had not been analyzed for the general case. In this work, we present the first implementation of the 3D SpGEMM formulation that exploits multiple (intranode and internode) levels of parallelism, achievingmore » significant speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks that should be subject to further research.« less

  16. Sequential Designs Based on Bayesian Uncertainty Quantification in Sparse Representation Surrogate Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.

    A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less

  17. Sparse Bayesian learning for DOA estimation with mutual coupling.

    PubMed

    Dai, Jisheng; Hu, Nan; Xu, Weichao; Chang, Chunqi

    2015-10-16

    Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.

  18. Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks.

    PubMed

    Ding, Weifu; Zhang, Jiangshe; Leung, Yee

    2016-10-01

    In this paper, we predict air pollutant concentration using a feedforward artificial neural network inspired by the mechanism of the human brain as a useful alternative to traditional statistical modeling techniques. The neural network is trained based on sparse response back-propagation in which only a small number of neurons respond to the specified stimulus simultaneously and provide a high convergence rate for the trained network, in addition to low energy consumption and greater generalization. Our method is evaluated on Hong Kong air monitoring station data and corresponding meteorological variables for which five air quality parameters were gathered at four monitoring stations in Hong Kong over 4 years (2012-2015). Our results show that our training method has more advantages in terms of the precision of the prediction, effectiveness, and generalization of traditional linear regression algorithms when compared with a feedforward artificial neural network trained using traditional back-propagation.

  19. Sequential Designs Based on Bayesian Uncertainty Quantification in Sparse Representation Surrogate Modeling

    DOE PAGES

    Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.

    2017-04-12

    A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less

  20. Regression analysis of sparse asynchronous longitudinal data.

    PubMed

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

    2015-09-01

    We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

Top