Sample records for sparse vegetation coverage

  1. Extracting Vegetation Coverage in Dry-hot Valley Regions Based on Alternating Angle Minimum Algorithm

    NASA Astrophysics Data System (ADS)

    Y Yang, M.; Wang, J.; Zhang, Q.

    2017-07-01

    Vegetation coverage is one of the most important indicators for ecological environment change, and is also an effective index for the assessment of land degradation and desertification. The dry-hot valley regions have sparse surface vegetation, and the spectral information about the vegetation in such regions usually has a weak representation in remote sensing, so there are considerable limitations for applying the commonly-used vegetation index method to calculate the vegetation coverage in the dry-hot valley regions. Therefore, in this paper, Alternating Angle Minimum (AAM) algorithm of deterministic model is adopted for selective endmember for pixel unmixing of MODIS image in order to extract the vegetation coverage, and accuracy test is carried out by the use of the Landsat TM image over the same period. As shown by the results, in the dry-hot valley regions with sparse vegetation, AAM model has a high unmixing accuracy, and the extracted vegetation coverage is close to the actual situation, so it is promising to apply the AAM model to the extraction of vegetation coverage in the dry-hot valley regions.

  2. Estimation for sparse vegetation information in desertification region based on Tiangong-1 hyperspectral image.

    PubMed

    Wu, Jun-Jun; Gao, Zhi-Hai; Li, Zeng-Yuan; Wang, Hong-Yan; Pang, Yong; Sun, Bin; Li, Chang-Long; Li, Xu-Zhi; Zhang, Jiu-Xing

    2014-03-01

    In order to estimate the sparse vegetation information accurately in desertification region, taking southeast of Sunite Right Banner, Inner Mongolia, as the test site and Tiangong-1 hyperspectral image as the main data, sparse vegetation coverage and biomass were retrieved based on normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), combined with the field investigation data. Then the advantages and disadvantages between them were compared. Firstly, the correlation between vegetation indexes and vegetation coverage under different bands combination was analyzed, as well as the biomass. Secondly, the best bands combination was determined when the maximum correlation coefficient turned up between vegetation indexes (VI) and vegetation parameters. It showed that the maximum correlation coefficient between vegetation parameters and NDVI could reach as high as 0.7, while that of SAVI could nearly reach 0.8. The center wavelength of red band in the best bands combination for NDVI was 630nm, and that of the near infrared (NIR) band was 910 nm. Whereas, when the center wavelength was 620 and 920 nm respectively, they were the best combination for SAVI. Finally, the linear regression models were established to retrieve vegetation coverage and biomass based on Tiangong-1 VIs. R2 of all models was more than 0.5, while that of the model based on SAVI was higher than that based on NDVI, especially, the R2 of vegetation coverage retrieve model based on SAVI was as high as 0.59. By intersection validation, the standard errors RMSE based on SAVI models were lower than that of the model based on NDVI. The results showed that the abundant spectral information of Tiangong-1 hyperspectral image can reflect the actual vegetaion condition effectively, and SAVI can estimate the sparse vegetation information more accurately than NDVI in desertification region.

  3. Recording Fathometer Techniques for Determining Distribution and Biomass of Hydrilla verticillata Royle.

    DTIC Science & Technology

    1980-10-01

    infestation or extent of open water was measured following the same procedures described for deter- fmination of transect percent cover. This value was...procedure where the last vegetation type ended along the transect (i.e. hydrilla, eelgrass, open water ), vegetation coverage was determined for the entire...ated open water , no measurements were made. Approximately 150 to 200 prediction stations were used per monthly sample. 61. For sparse and thick

  4. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    PubMed

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA.

    USDA-ARS?s Scientific Manuscript database

    A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...

  6. Vegetation mapping of the Mond Protected Area of Bushehr Province (south-west Iran).

    PubMed

    Mehrabian, Ahmadreza; Naqinezhad, Alireza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan; Kouchekzadeh, Mohsen

    2009-03-01

    Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.

  7. Current state and projection of the probable original vegetation of the São Carlos region of São Paulo State, Brazil.

    PubMed

    Soares, J J; da Silva, D W; Lima, M I

    2003-08-01

    A map of the native vegetation remaining in São Carlos County was built based on aerial images, satellite images, and field observations, and a projection of the probable original vegetation was made by checking it against soil and relief surveys. The existing vegetation is very fragmented and improverished, consisting predominantly of cerrados (savanna vegetation of various physiognomies), semideciduous and riparian forest, and regeneration areas. Araucaria angustifolia (Bertol.) Kuntze, found in patches inside the semideciduous forest beginning at a minimum altitude of 850 m, has practically disappeared. By evaluating areas on the map for different forms of vegetation, we obtained the following results for original coverage: 27% cerrado (sparsely arboreal and short-shrub savanna, and wet meadows); 16% cerradão (arboreal savanna); 55% semideciduous and riparian forests; and 2% forest with A. angustifolia. There are now 2% cerrados; 2.5% cerradão; 1% semideciduous forest and riparian forests; 1.5% regeneration areas; and 0% forest with A. angustifolia.

  8. Coverage-dependent amplifiers of vegetation change on global water cycle dynamics

    NASA Astrophysics Data System (ADS)

    Feng, Huihui; Zou, Bin; Luo, Juhua

    2017-07-01

    The terrestrial water cycle describes the circulation of water worldwide from one store to another via repeated evapotranspiration (E) from land and precipitation (P) back to the surface. The cycle presents significant spatial variability, which is strongly affected by natural climate and anthropogenic influences. As one of the major anthropogenic influences, vegetation change unavoidably alters surface property and subsequent the terrestrial water cycle, while its contribution is yet difficult to isolate from the mixed influences. Here, we use satellite and in-situ datasets to identify the terrestrial water cycle dynamics in spatial detail and to evaluate the impact of vegetation change. Methodologically, the water cycle is identified by the indicator of difference between evapotranspiration and precipitation (E-P). Then the scalar form of the indicator's trend (ΔE + ΔP) is used for evaluating the dynamics of water cycle, with the positive value means acceleration and negative means deceleration. Then, the contributions of climate and vegetation change are isolated by the trajectory-based method. Our results indicate that 4 accelerating and 4 decelerating water cycles can be identified, affecting 42.11% of global land. The major water cycle type is characterized by non-changing precipitation and increasing evapotranspiration (PNO-EIN), which covers 20.88% of globally land. Vegetation change amplifies both accelerating and decelerating water cycles. It tends to intensify the trend of the decelerating water cycles, while climate change weakens the trend. In the accelerating water cycles, both vegetation and climate change present positive effect to intensify the trend. The effect of plant cover change varies with the coverage. In particular, vegetation change intensifies the water cycle in moderately vegetated regions (0.1 < NDVI < 0.6), but weakens the cycle in sparsely or highly vegetated regions (NDVI < 0.1 or 0.6 < NDVI < 0.8). In extremely vegetated regions (NDVI > 0.85), the water cycle is accelerated because of the significant increase of precipitation. We conclude that vegetation change acts as an amplifier for both accelerating and decelerating terrestrial water cycles, depending on the degree of vegetation coverage.

  9. Greedy Sparse Approaches for Homological Coverage in Location Unaware Sensor Networks

    DTIC Science & Technology

    2017-12-08

    GlobalSIP); 2013 Dec; Austin , TX . p. 595– 598. 33. Farah C, Schwaner F, Abedi A, Worboys M. Distributed homology algorithm to detect topological events...ARL-TR-8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence...8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence J Moore

  10. Effect of Climate Change on Vegetation Phenology of Different Land Cover Types on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Jin, J.

    2017-12-01

    Vegetation phenology is one of the most sensitive bio-indicators of climate change, and it has received increasing interests in the context of global warming. As one of the most sensitive areas to global change, the Tibetan Plateau is a unique region to study the trends in vegetation phenology in response to climate change because of its unique vegetation composition, climate features and low-level human disturbance. Although some studies have aroused wide controversies about the actual plant phenology patterns in the Tibetan Plateau, yet the reasons remain unclear. In particular, the phenology characteristics of sparse herbaceous or sparse shrub and evergreen forest that are mostly located in the northwest and southeast of the Tibetan Plateau remain less studied. In this study, the spatio-temporal patterns of the start (SOS), end (EOS) and length (LOS) of the vegetation growing season for six vegetation types in the Tibetan Plateau, including evergreen broadleaf forests, evergreen coniferous forests, evergreen shrub, meadow, steppe and sparse herbaceous or sparse shrub, were quantified from 1982 to 2014 using NOAA/AVHRR NDVI data set at a spatial resolution of 0.05°×0.05° and 7-day intervals using NDVI relative change rate threshold and sixth order polynomial fit models. Assisted with the monthly precipitation and temperature data, the relative effects of changing climates on the variability of phenology were also examined. Diverse phenological changes were observed for different land cover types, with an advancing start of growing season (SOS), delaying end of growing season (EOS) and increasing length of growing season (LOS) in the eastern Tibetan Plateau where meadow was the dominant vegetation type, but with the opposite changes in the steppe and sparse herbaceous or sparse shrub regions which are mostly located in the northwestern and western edges of the Tibetan Plateau. Correlation analysis indicated that sufficient preseason precipitation may delay the SOS of evergreen forests in the southeastern Plateau and advance the SOS of steppe and sparse herbaceous or sparse shrub in relatively arid areas, while the advance of SOS in meadow areas could be related to higher preseason temperature.

  11. [Effects of climate and land use change on the changes of vegetation coverage in farming-pastoral ecotone of Northern China].

    PubMed

    Liu, Jun-Hui; Gao, Ji-Xi

    2008-09-01

    Based on the remote sensing images and the meteorological data in 1986 and 2000, and by using the model of extracting vegetation coverage, the spatiotemporal changes of vegetation coverage in the farming-pastoral ecotone of Northern China in 1986-2000 were studied, with the effects of climate and land use change on the changes analyzed. The results showed that in this ecotone, the area with lower vegetation coverage was increasing, while that with higher vegetation coverage was in adverse. The regions with increasing vegetation coverage were mainly in the east of northeast section, the west of north section, and the west of northwest section of the ecotone, while the vegetation coverage in the other sections was obviously degraded. The vegetation coverage were positively correlated with precipitation and aridity index, but negatively correlated with temperature. The change direction and extent of the vegetation coverage varied with land use types.

  12. Experimental study on influence of vegetation coverage on runoff in wind-water erosion crisscross region

    NASA Astrophysics Data System (ADS)

    Wang, Jinhua; Zhang, Ronggang; Sun, Juan

    2018-02-01

    Using artificial rainfall simulation method, 23 simulation experiments were carried out in water-wind erosion crisscross region in order to analyze the influence of vegetation coverage on runoff and sediment yield. The experimental plots are standard plots with a length of 20m, width of 5m and slope of 15 degrees. The simulation experiments were conducted in different vegetation coverage experimental plots based on three different rainfall intensities. According to the experimental observation data, the influence of vegetation coverage on runoff and infiltration was analyzed. Vegetation coverage has a significant impact on runoff, and the higher the vegetation coverage is, the smaller the runoff is. Under the condition of 0.6mm/min rainfall intensity, the runoff volume from the experimental plot with 18% vegetation coverage was 1.2 times of the runoff from the experimental with 30% vegetation coverage. What’s more, the difference of runoff is more obvious in higher rainfall intensity. If the rainfall intensity reaches 1.32mm/min, the runoff from the experimental plot with 11% vegetation coverage is about 2 times as large as the runoff from the experimental plot with 53%vegetation coverage. Under the condition of small rainfall intensity, the starting time of runoff in the experimental plot with higher vegetation coverage is later than that in the experimental plot with low vegetation coverage. However, under the condition of heavy rainfall intensity, there is no obvious difference in the beginning time of runoff. In addition, the higher the vegetation coverage is, the deeper the rainfall infiltration depth is.The results can provide reference for ecological construction carried out in wind erosion crisscross region with serious soil erosion.

  13. Relationship between vegetation coverage and abundance, size, and diet of juvenile largemouth bass during winter

    USGS Publications Warehouse

    Miranda, L.E.; Pugh, L.L.

    1997-01-01

    Juvenile largemouth bass Micropterus salmoides were collected by electrofishing during October through March 1992-1994 from coves (???25 ha) covered with aquatic macrophytes over 1-65% of their area. Mean total length of juvenile largemouth bass was highest in coves with the least vegetated cover, but increase in mean length between October and March was highest in coves having near 20% vegetation coverage. Catch per unit effort decreased between October and March; decreases were least at vegetation coverages near 10-20%, highest at coverages of 5% or less, and intermediate at coverages of 30-65%. By March, these disparate decreases contributed to the formation of a dome-like relationship between vegetation coverage and catch per unit effort. Consumption of fish foods was highest when vegetation coverage was low, but decreased asymptotically as coverage increased; consumption of invertebrate foods increased at low coverage, peaked near 20-30% coverage, and decreased at higher coverage. We suggest that greater length increases and greater abundance at 10-25% vegetation coverage were stimulated by a favorable blend of food availability and cover. Our results support reports that maximum recruitment of largemouth bass occurs at intermediate levels of vegetation coverage, and we further suggests that such increased production is reinforced during winter, when survival, invertebrate consumption, and length increases are highest at intermediate levels of vegetation coverage.

  14. [Correlationships between the coverage of vegetation and the quality of groundwater in the lower reaches of the Tarim River].

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen

    2010-03-01

    The variations vegetation coverage is the result of conjunct effects of inner and outer energy of the earth, however, the human activity always makes the coverage of vegetation change a lot. Based on the monitoring data of chemistry of groundwater and the coverage of vegetation from 2002 to 2007 in the lower reaches of Tarim River, relations between vegetation coverage and groundwater chemistry were studied. It is found that vegetation coverage at Sector A was more than 80%, and decreased from sector to sector, the coverage of Sector I was less than 10%. At the same sector, samples near to water source owned high coverage index, and samples far away from the river had low coverage index. The variations of pH in groundwater expressed similar regulation to vegetation coverage, that is, Sectors near the water source had higher pH index comparing than those far away. Regression between groundwater quality and vegetation coverage disclosed that the coverage of Populus euphratica climbed up along with increase of pH in groundwater, change of Tamarix ramosissima coverage expressed an opposite trend to the Populus euphratica with the same environmental factors. This phenomenon can interpret spatial distribution of Populus euphratica and Tamarix ramosissima in lower reaches of the Tarim River.

  15. Spatio-Temporal Change of Vegetation Coverage and its Driving Forces Based on Landsat Images: a Case Study of Changchun City

    NASA Astrophysics Data System (ADS)

    Dong, L.; Jiang, H.; Yang, L.

    2018-04-01

    Based on the Landsat images in 2006, 2011 and 2015, and the method of dimidiate pixel model, the Normalized Difference Vegetation Index (NDVI) and the vegetation coverage, this paper analyzes the spatio-temporal variation of vegetation coverage in Changchun, China from 2006 to 2015, and investigates the response of vegetation coverage change to natural and artificial factors. The research results show that in nearly 10 years, the vegetation coverage in Changchun dropped remarkably, and reached the minimum in 2011. Moreover, the decrease of maximum NDVI was significant, with a decrease of about 27.43 %, from 2006 to 2015. The vegetation coverage change in different regions of the research area was significantly different. Among them, the vegetation change in Changchun showed a little drop, and it decreased firstly and then increased slowly in Yushu, Nong'an and Dehui. In addition, the temperature and precipitation change, land reclamation all affect the vegetation coverage. In short, the study of vegetation coverage change contributes scientific and technical support to government and environmental protection department, so as to promote the coordinated development of ecology and economy.

  16. Removal of nuisance signals from limited and sparse 1H MRSI data using a union-of-subspaces model.

    PubMed

    Ma, Chao; Lam, Fan; Johnson, Curtis L; Liang, Zhi-Pei

    2016-02-01

    To remove nuisance signals (e.g., water and lipid signals) for (1) H MRSI data collected from the brain with limited and/or sparse (k, t)-space coverage. A union-of-subspace model is proposed for removing nuisance signals. The model exploits the partial separability of both the nuisance signals and the metabolite signal, and decomposes an MRSI dataset into several sets of generalized voxels that share the same spectral distributions. This model enables the estimation of the nuisance signals from an MRSI dataset that has limited and/or sparse (k, t)-space coverage. The proposed method has been evaluated using in vivo MRSI data. For conventional chemical shift imaging data with limited k-space coverage, the proposed method produced "lipid-free" spectra without lipid suppression during data acquisition at 130 ms echo time. For sparse (k, t)-space data acquired with conventional pulses for water and lipid suppression, the proposed method was also able to remove the remaining water and lipid signals with negligible residuals. Nuisance signals in (1) H MRSI data reside in low-dimensional subspaces. This property can be utilized for estimation and removal of nuisance signals from (1) H MRSI data even when they have limited and/or sparse coverage of (k, t)-space. The proposed method should prove useful especially for accelerated high-resolution (1) H MRSI of the brain. © 2015 Wiley Periodicals, Inc.

  17. Habitat relationships of birds overwintering in a managed coastal prairie

    USGS Publications Warehouse

    Baldwin, H.Q.; Grace, J.B.; Barrow, W.C.; Rohwer, F.C.

    2007-01-01

    Grassland birds are considered to be rapidly declining in North America. Management approaches for grassland birds frequently rely on prescribed burning to maintain habitat in suitable condition. We evaluated the relationships among years since burn, vegetation structure, and overwintering grassland bird abundance in coastal prairie. Le Conte's Sparrows (Ammodramus leconteii) were most common in areas that had: (1) been burned within the previous 2 years, (2) medium density herbaceous vegetation, and (3) sparse shrub densities. Savannah Sparrows (Passerculus sandwichensis) were associated with areas: (1) burned within 1 year, (2) with sparse herbaceous vegetation, and (3) with sparse shrub densities. Sedge Wrens (Cistothorus platensis) were most common in areas that had: (1) burned greater than 2 years prior and (2) dense herbaceous vegetation. Swamp Sparrows (Melospiza georgiana): (1) were most common in areas of dense shrubs, (2) not related to time since burnings, and (3) demonstrated no relationship to herbaceous vegetation densities. The relationships to fire histories for all four bird species could be explained by the associated vegetation characteristics indicating the need for a mosaic of burn rotations and modest levels of woody vegetation.

  18. Vegetation dynamics and responses to climate change and human activities in Central Asia.

    PubMed

    Jiang, Liangliang; Guli Jiapaer; Bao, Anming; Guo, Hao; Ndayisaba, Felix

    2017-12-01

    Knowledge of the current changes and dynamics of different types of vegetation in relation to climatic changes and anthropogenic activities is critical for developing adaptation strategies to address the challenges posed by climate change and human activities for ecosystems. Based on a regression analysis and the Hurst exponent index method, this research investigated the spatial and temporal characteristics and relationships between vegetation greenness and climatic factors in Central Asia using the Normalized Difference Vegetation Index (NDVI) and gridded high-resolution station (land) data for the period 1984-2013. Further analysis distinguished between the effects of climatic change and those of human activities on vegetation dynamics by means of a residual analysis trend method. The results show that vegetation pixels significantly decreased for shrubs and sparse vegetation compared with those for the other vegetation types and that the degradation of sparse vegetation was more serious in the Karakum and Kyzylkum Deserts, the Ustyurt Plateau and the wetland delta of the Large Aral Sea than in other regions. The Hurst exponent results indicated that forests are more sustainable than grasslands, shrubs and sparse vegetation. Precipitation is the main factor affecting vegetation growth in the Kazakhskiy Melkosopochnik. Moreover, temperature is a controlling factor that influences the seasonal variation of vegetation greenness in the mountains and the Aral Sea basin. Drought is the main factor affecting vegetation degradation as a result of both increased temperature and decreased precipitation in the Kyzylkum Desert and the northern Ustyurt Plateau. The residual analysis highlighted that sparse vegetation and the degradation of some shrubs in the southern part of the Karakum Desert, the southern Ustyurt Plateau and the wetland delta of the Large Aral Sea were mainly triggered by human activities: the excessive exploitation of water resources in the upstream areas of the Amu Darya basin and oil and natural gas extraction in the southern part of the Karakum Desert and the southern Ustyurt Plateau. The results also indicated that after the collapse of the Soviet Union, abandoned pastures gave rise to increased vegetation in eastern Kazakhstan, Kyrgyzstan and Tajikistan, and abandoned croplands reverted to grasslands in northern Kazakhstan, leading to a decrease in cropland greenness. Shrubs and sparse vegetation were extremely sensitive to short-term climatic variations, and our results demonstrated that these vegetation types were the most seriously degraded by human activities. Therefore, regional governments should strive to restore vegetation to sustain this fragile arid ecological environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evaluation of fast highly undersampled contrast-enhanced MR angiography (sparse CE-MRA) in intracranial applications - initial study.

    PubMed

    Gratz, Marcel; Schlamann, Marc; Goericke, Sophia; Maderwald, Stefan; Quick, Harald H

    2017-03-01

    To assess the image quality of sparsely sampled contrast-enhanced MR angiography (sparse CE-MRA) providing high spatial resolution and whole-head coverage. Twenty-three patients scheduled for contrast-enhanced MR imaging of the head, (N = 19 with intracranial pathologies, N = 9 with vascular diseases), were included. Sparse CE-MRA at 3 Tesla was conducted using a single dose of contrast agent. Two neuroradiologists independently evaluated the data regarding vascular visibility and diagnostic value of overall 24 parameters and vascular segments on a 5-point ordinary scale (5 = very good, 1 = insufficient vascular visibility). Contrast bolus timing and the resulting arterio-venous overlap was also evaluated. Where available (N = 9), sparse CE-MRA was compared to intracranial Time-of-Flight MRA. The overall rating across all patients for sparse CE-MRA was 3.50 ± 1.07. Direct influence of the contrast bolus timing on the resulting image quality was observed. Overall mean vascular visibility and image quality across different features was rated good to intermediate (3.56 ± 0.95). The average performance of intracranial Time-of-Flight was rated 3.84 ± 0.87 across all patients and 3.54 ± 0.62 across all features. Sparse CE-MRA provides high-quality 3D MRA with high spatial resolution and whole-head coverage within short acquisition time. Accurate contrast bolus timing is mandatory. • Sparse CE-MRA enables fast vascular imaging with full brain coverage. • Volumes with sub-millimetre resolution can be acquired within 10 seconds. • Reader's ratings are good to intermediate and dependent on contrast bolus timing. • The method provides an excellent overview and allows screening for vascular pathologies.

  20. Controls on sinuosity in the sparsely vegetated Fossálar River, southern Iceland

    NASA Astrophysics Data System (ADS)

    Ielpi, Alessandro

    2017-06-01

    Vegetation exerts strong controls on fluvial sinuosity, providing bank stability and buffering surface runoff. These controls are manifest in densely vegetated landscapes, whereas sparsely vegetated fluvial systems have been so far overlooked. This study integrates remote sensing and gauging records of the meandering to wandering Fossálar River, a relatively steep-sloped (< 2.5%) Icelandic river featuring well-developed point bars (79%-85% of total active bar surface) despite the lack of thick, arborescent vegetation. Over four decades, fluctuations in the sinuosity index (1.15-1.43) and vegetation cover (63%-83%) are not significantly correlated (r = 0.28, p > 0.05), suggesting that relationships between the two are mediated by intervening variables and uncertain lag times. By comparison, discharge regime and fluvial planform show direct correlation over monthly to yearly time scales, with stable discharge stages accompanying the accretion of meander bends and peak floods related to destructive point-bar reworking. Rapid planform change is aided by the unconsolidated nature of unrooted alluvial banks, with recorded rates of lateral channel-belt migration averaging 18 m/yr. Valley confinement and channel mobility also control the geometry and evolution of individual point bars, with the highest degree of spatial geomorphic variability recorded in low-gradient stretches where lateral migration is unimpeded. Point bars in the Fossálar River display morphometric values comparable to those of other sparsely vegetated rivers, suggesting shared scalar properties. This conjecture prompts the need for more sophisticated integrations between remote sensing and gauging records on modern rivers lacking widespread plant life. While a large volume of experimental and field-based work maintains that thick vegetation has a critical role in limiting braiding, thus favouring sinuosity, this study demonstrates the stronger controls of discharge regime and alluvial morphology on sparsely vegetated sinuous rivers.

  1. [Responses of alpine grassland landscape in the source region of Shule River Basin to topographical factors and frozen ground types].

    PubMed

    Chen, Jian-Jun; Yi, Shu-Hua; Qin, Yu; Wang, Xiao-Yun

    2014-06-01

    This paper retrieved the fractional vegetation cover of alpine grassland in the source region of the Shule River Basin based on Chinese environmental satellite (HJ-1A/1B) images and field data, and analyzed the response of the vegetation cover to topographic factors and types of frozen ground. The results showed that the vegetation coverage of this region was low with large spatial heterogeneity and high degree of dispersion. The landscape consisted mainly of non-vegetation surface types, eg. ice, snow, the bare rock gravel land and bare land. Slopes and aspects were the main limiting factors of vegetation distribution. The average vegetation coverage decreased with the increase of slope. The average vegetation coverage was the lowest on the sunny slope, and the highest on the shady slope. There were significant differences of vegetation coverage among different types of frozen ground. The distribution of vegetation coverage presented a reversed "U" curve trend by extremely stable permafrost, stable permafrost, sub-stable permafrost, transition permafrost, unstable permafrost and seasonal frost, and the average vegetation coverage was the highest in the sub-stable permafrost.

  2. Energy budgets and resistances to energy transport in sparsely vegetated rangeland

    USGS Publications Warehouse

    Nichols, W.D.

    1992-01-01

    Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.

  3. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years

    NASA Astrophysics Data System (ADS)

    A, Duo; Zhao, Wenji; Qu, Xinyuan; Jing, Ran; Xiong, Kai

    2016-12-01

    Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) - NDVI data and climate data, during 1981-2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P < 0.01). This may be due to the disappearance of 0 °C isotherm, the rise of spring temperature. At the same time, precipitation showed a significant reduction trend (-1.75 mm/10a, P > 0.05). The climate mutation period was during 1991-1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the agricultural ecological zones showed a significant response from the vegetation coverage change rate point of view. The effect of human activity in degradation region was higher than that in improvement area. But after the climate abruptly changing, the effect of human activity in improvement area was higher than that in degradation region, and the influence of human activity will continue in the future.

  4. Vegetation Coverage Mapping and Soil Effect Correction in Estimating Vegetation Water Content and Dry Biomass from Satellites

    NASA Astrophysics Data System (ADS)

    Huang, J.; Chen, D.

    2005-12-01

    Vegetation water content (VWC) attracts great research interests in hydrology research in recent years. As an important parameter describing the horizontal expansion of vegetation, vegetation coverage is essential to implement soil effect correction for partially vegetated fields to estimate VWC accurately. Ground measurements of corn and soybeans in SMEX02 resulted in an identical expolinear relationship between vegetation coverage and leaf area index (LAI), which is used for vegetation coverage mapping. Results illustrated two parts of LAI growth quantitatively: the horizontal expansion of leaf coverage and the vertical accumulation of leaf layers. It is believed that the former part contributes significantly to LAI growth at initial vegetation growth stage and the latter is more dominant after vegetation coverage reaches a certain level. The Normalized Difference Water Index (NDWI) using short-wave infrared bands is convinced for its late saturation at high LAI values, in contrast to the Normalized Difference Vegetation Index (NDVI). NDWI is then utilized to estimate LAI, via another expolinear relationship, which is evidenced having vegetation species independency in study of corn and soybeans in SMEX02 sites. It is believed that the surface reflectance measured at satellites spectral bands are the mixed results of signals reflected from vegetation and bare soil, especially at partially vegetated fields. A simple linear mixture model utilizing vegetation coverage information is proposed to correct soil effect in such cases. Surface reflectance fractions for -rpure- vegetation are derived from the model. Comparing with ground measurements, empirical models using soil effect corrected vegetation indices to estimate VWC and dry biomass (DB) are generated. The study enhanced the in-depth understanding of the mechanisms how vegetation growth takes effect on satellites spectral reflectance with and without soil effect, which are particularly useful for modeling in hydrology, agriculture, forestry and meteorology etc.

  5. [Analysis of vegetation spatial and temporal variations in Qinghai Province based on remote sensing].

    PubMed

    Wang, Li-wen; Wei, Ya-xing; Niu, Zheng

    2008-06-01

    1 km MODIS NDVI time series data combining with decision tree classification, supervised classification and unsupervised classification was used to classify land cover type of Qinghai Province into 14 classes. In our classification system, sparse grassland and sparse shrub were emphasized, and their spatial distribution locations were labeled. From digital elevation model (DEM) of Qinghai Province, five elevation belts were achieved, and we utilized geographic information system (GIS) software to analyze vegetation cover variation on different elevation belts. Our research result shows that vegetation cover in Qinghai Province has been improved in recent five years. Vegetation cover area increases from 370047 km2 in 2001 to 374576 km2 in 2006, and vegetation cover rate increases by 0.63%. Among five grade elevation belts, vegetation cover ratio of high mountain belt is the highest (67.92%). The area of middle density grassland in high mountain belt is the largest, of which area is 94 003 km2. Increased area of dense grassland in high mountain belt is the greatest (1280 km2). During five years, the biggest variation is the conversion from sparse grassland to middle density grassland in high mountain belt, of which area is 15931 km2.

  6. Spatial-temporal Evolution of Vegetation Coverage and Analysis of it’s Future Trends in Wujiang River Basin

    NASA Astrophysics Data System (ADS)

    Xiao, Jianyong; Bai, Xiaoyong; Zhou, Dequan; Qian, Qinghuan; Zeng, Cheng; Chen, Fei

    2018-01-01

    Vegetation coverage dynamics is affected by climatic, topography and human activities, which is an important indicator reflecting the regional ecological environment. Revealing the spatial-temporal characteristics of vegetation coverage is of great significance to the protection and management of ecological environment. Based on MODIS NDVI data and the Maximum Value Composites (MVC), we excluded soil spectrum interference to calculate Fractional Vegetation Coverage (FVC). Then the long-term FVC was used to calculate the spatial pattern and temporal variation of vegetation in Wujiang River Basin from 2000 to 2016 by using Trend analysis and Hurst index. The relationship between topography and spatial distribution of FVC was analyzed. The main conclusions are as follows: (1) The multi-annual mean vegetation coverage reveals a spatial distribution variation characteristic of low value in midstream and high level in other parts of the basin, owing a mean value of 0.6567. (2) From 2000 to 2016, the FVC of the Wujiang River Basin fluctuated between 0.6110 and 0.7380, and the overall growth rate of FVC was 0.0074/a. (3) The area of vegetation coverage tending to improve is more than that going to degrade in the future. Grass land, Arable land and Others improved significantly; karst rocky desertification comprehensive management project lead to persistent vegetation coverage improvement of Grass land, Arable land and Others. Residential land is covered with obviously degraded vegetation, resulting of urban sprawl; (4) The spatial distribution of FVC is positively correlated with TNI. Researches of spatial-temporal evolution of vegetation coverage have significant meaning for the ecological environment protection and management of the Wujiang River Basin.

  7. [Estimation on value of water and soil conservation of agricultural ecosystems in Xi' an metropolitan, Northwest China].

    PubMed

    Yang, Wen-yan; Zhou, Zhong-xue

    2014-12-01

    With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.

  8. Improved meteorology from an updated WRF/CMAQ modeling ...

    EPA Pesticide Factsheets

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) that employs the Pleim-Xiu land surface model (PX LSM). Recently, PX LSM WRF/CMAQ has been updated in vegetation, soil, and boundary layer processes resulting in improved 2 m temperature (T) and mixing ratio (Q), 10 m wind speed, and surface ozone simulations across the domain compared to the previous version for a period around August 2006. Yearlong meteorology simulations with the updated system demonstrate that MODIS input helps reduce bias of the 2 m Q estimation during the growing season from April to September. Improvements follow the green-up in the southeast from April and move toward the west and north through August. From October to March, MODIS input does not have much influence on the system because vegetation is not as active. The greatest effects of MODIS input include more accurate phenology, better representation of leaf area index (LAI) for various forest ecosystems and agricultural areas, and realistically sparse vegetation coverage in the western drylands. Despite the improved meteorology, MODIS input causes higher bias for the surface O3 simulation in April, August, and October in areas where MODIS LAI is much less than the base LAI. Thus, improvement

  9. Assessment of Tibetan grassland degeneration via landscape analysis

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Hou, Ge; Ma, Baibing; Zang, Wenqian

    2017-04-01

    Desertification as one of the most severity social-economic-environmental issues has been extensive researched, and the assessments of desertification can be implemented accurately and efficiently based on the landscape indicators of vegetation coverage. Consequently, we explored the relationships of the degeneration index of the grassland with climate factors (temperature and precipitation), and human disturbance factors (livestock quantity and animal husbandry output value) via a landscape assessment approach across Tibet. The results showed that the vegetation coverage presented an increase tendency in the central region of Tibet, but the adverse phenomenon was observed in the northwest region. Meanwhile, the correlation of vegetation coverage with precipitation presented as positive effect in most region of Tibet except some regions of the alpine steppe, and the positive correlation of vegetation coverage with temperature also was observed in the less northwest region of Tibet. In addition, we found that the livestock quantity play a key roles in regulating vegetation coverage of the central region. Furthermore, the landscape indexes [number of patches (NP), patch density (PD), contagion index (CONTAG), landscape shape index (LSI), aggregation index (AI)] of grasslands were analyzed, the results exposed that vegetation coverage (1%-20%) has the positive influences on CONTAG and AI, but negative affects LSI, PD and NP. Morreover, there are opposite correlations among vegetation coverage and landscape indexes when vegetation coverage is 21%-40%. We concluded that overgrazing is the main reason of grassland degradation in Tibet, especially the number of livestock aggravates the landscape fragmentation. The results highlighted the alpine grassland management in future.

  10. In the hot seat : Insolation and ENSO controls on vegetation productivity in tropical Africa inferred from NDVI

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Russell, J. L.; Cohen, A. S.

    2010-12-01

    Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.

  11. Effects of Re-vegetation on Herbaceous Species Composition and Biological Soil Crusts Development in a Coal Mine Dumping Site

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Peng; Hu, Yigang; Huang, Lei

    2016-02-01

    Despite the critical roles of plant species' diversity and biological soil crusts (BSCs) in arid and semi-arid ecosystems, the restoration of the diversity of herbaceous species and BSCs are rarely discussed during the process of vegetation restoration of anthropogenically damaged areas in these regions. In this study, the herbaceous plant species composition, along with the BSCs coverage and thicknesses, was investigated at six different re-vegetation type sites, and the natural vegetation site of the Heidaigou open pit coal mine in China's Inner Mongolia Autonomous Region was used as a reference. The highest total species richness (16), as well as the species richness (4.4), occurred in the Tree and Herbaceous vegetation type site. The species composition similarities between the restored sites and the reference site were shown to be very low, and ranged from 0.09 to 0.42. Also, among the restored sites, the similarities of the species were fairly high and similar, and ranged from 0.45 to 0.93. The density and height of the re-vegetated woody plants were significantly correlated with the indexes of the diversity of the species. The Shrub vegetation type site showed the greatest total coverage (80 %) of BSCs and algae crust coverage (48 %). The Shrub and Herbaceous type had the greatest thicknesses of BSCs, with as much as 3.06 mm observed, which was followed by 2.64 mm for the Shrub type. There was a significant correlation observed between the coverage of the total BSCs, and the total vegetation and herbaceous vegetation coverage, as well as between the algae crust coverage and the herbaceous vegetation coverage. It has been suggested that the re-vegetated dwarf woody plant species (such as shrubs and semi-shrubs) should be chosen for the optimal methods of the restoration of herbaceous species diversity at dumping sites, and these should be planted with low density. Furthermore, the effects of vegetation coverage on the colonization and development the BSCs should be considered in order to reconstruct the vegetation in disturbed environments, such as mine dumpsites in arid areas.

  12. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  13. Analysis on the Change of Vegetation Coverage in Qinghai Province from 2000 TO 2012

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yan, Q.; Liu, Z.; Luo, C.

    2013-07-01

    Qinghai Province is one of the important provinces on the Qinghai-Tibet Plateau in China. Its unique alpine meadow ecosystem makes it become the most concentrated areas of biodiversity in high altitudes in the world. Researching the vegetation coverage and changes of Qinghai province can reflect effectively and timely processing of changes and problems of ecological quality in the region. This research will give a long time series monitoring of the vegetation coverage of Qinghai province based on maximum value composite (MVC) and S-G filtering algorithm using MODIS data of the year of 2000-2012, then analyze the change using coefficient of variability(CV) and trend line analysis. According to research, during the past 13 years, more than half of Qinghai Province's vegetation coverage is well, both the east and south have a high coverage, while the northwest is lower. The changing of vegetation coverage also has showed a steady and improving trend in 13 years. The largest area is slight improved area is about 29.08% of the total area, and the second largest area is significant improved area is about 21.09% of the total area. In this research can learn directly the vegetation coverage and changes of Qinghai province and provide reference and scientific basis for the protection and governance of ecological environment.

  14. Analysis on Temporal-Spatial Changes of Vegetation Cverrge in Farming-Pastoral Ecotone of Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Yan, X.; Li, J.; Yang, Z.

    2018-04-01

    Chen Barag Banner is located in the typical farming-pastoral ecotone of Inner Mongolia, and it is also the core area of Hulunbuir steppe. Typical agricultural and pastoral staggered production mode so that the vegetation growth of the region not only determines the local ecological environment, and animal husbandry production, but also have a significant impact on the whole Hulunbuir ecological security and economic development. Therefore, it is necessary to monitor the change of vegetation in this area. Based on 17 MODIS Normalized Difference Vegetation Index (NDVI) images, the authors reconstructed the dynamic change characteristics of Fraction vegetation coverage (FVC) in Chen Barag Banner from 2000 to 2016. In this paper, first at all, Pixel Decomposition Models was introduced to inversion FVC, and the time series of vegetation coverage was reconstructed. Then we analyzed the temporal-spatial changes of FVC by employing transition matrix. Finally, through image analyzing and processing, the results showed that the vegetation coverage in the study area was influenced by effectors including climate, topography and human actives. In the past 17 years, the overall effect of vegetation coverage showed a downward trend of fluctuation. The average vegetation coverage decreased from 58.81 % in 2000 to 48.14 % in 2016, and the area of vegetation cover degradation accounts for 40.09 % of the total change area. Therefore, the overall degradation trend was obvious.

  15. Retrieval of seasonal dynamics of forest understory reflectance from semi-arid to boreal forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-04-01

    Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated. The retrieval of understory signal can be used e.g. to improve the estimates of leaf area index (LAI), fAPAR in sparsely vegetated areas, and also to study the phenology of understory layer. Our results are particularly useful to producing Northern hemisphere maps of seasonal dynamics of forests, allowing to separately retrieve understory variability, being a main contributor to spring emergence and fall senescence uncertainty. The inclusion of understory variability in ecological models will ultimately improve prediction and forecast horizons of vegetation dynamics.

  16. Global discrimination of land cover types from metrics derived from AVHRR pathfinder data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFries, R.; Hansen, M.; Townshend, J.

    1995-12-01

    Global data sets of land cover are a significant requirement for global biogeochemical and climate models. Remotely sensed satellite data is an increasingly attractive source for deriving these data sets due to the resulting internal consistency, reproducibility, and coverage in locations where ground knowledge is sparse. Seasonal changes in the greenness of vegetation, described in remotely sensed data as changes in the normalized difference vegetation index (NDVI) throughout the year, have been the basis for discriminating between cover types in previous attempts to derive land cover from AVHRR data at global and continental scales. This study examines the use ofmore » metrics derived from the NDVI temporal profile, as well as metrics derived from observations in red, infrared, and thermal bands, to improve discrimination between 12 cover types on a global scale. According to separability measures calculated from Bhattacharya distances, average separabilities improved by using 12 of the 16 metrics tested (1.97) compared to separabilities using 12 monthly NDVI values alone (1.88). Overall, the most robust metrics for discriminating between cover types were: mean NDVI, maximum NDVI, NDVI amplitude, AVHRR Band 2 (near-infrared reflectance) and Band 1 (red reflectance) corresponding to the time of maximum NDVI, and maximum land surface temperature. Deciduous and evergreen vegetation can be distinguished by mean NDVI, maximum NDVI, NDVI amplitude, and maximum land surface temperature. Needleleaf and broadleaf vegetation can be distinguished by either mean NDVI and NDVI amplitude or maximum NDVI and NDVI amplitude.« less

  17. Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach.

    DTIC Science & Technology

    1998-05-01

    Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for

  18. Cities as selective land predators? A lesson on urban growth, deregulated planning and sprawl containment.

    PubMed

    Colantoni, Andrea; Grigoriadis, Efstathios; Sateriano, Adele; Venanzoni, Giuseppe; Salvati, Luca

    2016-03-01

    The present study investigates changes in the use of land caused by the expansion of an informal city in the Mediterranean region (Athens, Greece) and it proposes a simplified methodology to assess selective land take at the scale of municipalities. The amount of land take over twenty years (1987-2007) for cropland, sparsely vegetated areas and natural land was compared with the surface area of the respective class at the beginning of the study period (1987). Indicators of selective land take by class were correlated with socioeconomic indicators at the scale of municipalities to verify the influence of the local context and the impact of urban planning on land take processes. Evidence indicates that urban expansion into fringe land consumes primarily cropland and sparse vegetation in the case of the Athens' metropolitan region. Cropland and sparse vegetation were consumed proportionally more than the respective availability in 16 municipalities out of 60. Agricultural land take was positively correlated with population density and growth rate, rate of participation to the job market and road density. Sparse vegetation land take was observed in municipalities with predominance of high density settlements. As a result of second-home expansion in coastal municipalities, natural land was converted to urban use in proportion to the availability in the landscape. Urban planning seems to have a limited impact on selective land take. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield.

    PubMed

    Rime, Thomas; Hartmann, Martin; Brunner, Ivano; Widmer, Franco; Zeyer, Josef; Frey, Beat

    2015-03-01

    Spatial patterns of microbial communities have been extensively surveyed in well-developed soils, but few studies investigated the vertical distribution of micro-organisms in newly developed soils after glacier retreat. We used 454-pyrosequencing to assess whether bacterial and fungal community structures differed between stages of soil development (SSD) characterized by an increasing vegetation cover from barren (vegetation cover: 0%/age: 10 years), sparsely vegetated (13%/60 years), transient (60%/80 years) to vegetated (95%/110 years) and depths (surface, 5 and 20 cm) along the Damma glacier forefield (Switzerland). The SSD significantly influenced the bacterial and fungal communities. Based on indicator species analyses, metabolically versatile bacteria (e.g. Geobacter) and psychrophilic yeasts (e.g. Mrakia) characterized the barren soils. Vegetated soils with higher C, N and root biomass consisted of bacteria able to degrade complex organic compounds (e.g. Candidatus Solibacter), lignocellulolytic Ascomycota (e.g. Geoglossum) and ectomycorrhizal Basidiomycota (e.g. Laccaria). Soil depth only influenced bacterial and fungal communities in barren and sparsely vegetated soils. These changes were partly due to more silt and higher soil moisture in the surface. In both soil ages, the surface was characterized by OTUs affiliated to Phormidium and Sphingobacteriales. In lower depths, however, bacterial and fungal communities differed between SSD. Lower depths of sparsely vegetated soils consisted of OTUs affiliated to Acidobacteria and Geoglossum, whereas depths of barren soils were characterized by OTUs related to Gemmatimonadetes. Overall, plant establishment drives the soil microbiota along the successional gradient but does not influence the vertical distribution of microbiota in recently deglaciated soils. © 2014 John Wiley & Sons Ltd.

  20. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  1. Coupling Analysis of Heat Island Effects, Vegetation Coverage and Urban Flood in Wuhan

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, Q.; Fan, W.; Wang, G.

    2018-04-01

    In this paper, satellite image, remote sensing technique and geographic information system technique are main technical bases. Spectral and other factors comprehensive analysis and visual interpretation are main methods. We use GF-1 and Landsat8 remote sensing satellite image of Wuhan as data source, and from which we extract vegetation distribution, urban heat island relative intensity distribution map and urban flood submergence range. Based on the extracted information, through spatial analysis and regression analysis, we find correlations among heat island effect, vegetation coverage and urban flood. The results show that there is a high degree of overlap between of urban heat island and urban flood. The area of urban heat island has buildings with little vegetation cover, which may be one of the reasons for the local heavy rainstorms. Furthermore, the urban heat island has a negative correlation with vegetation coverage, and the heat island effect can be alleviated by the vegetation to a certain extent. So it is easy to understand that the new industrial zones and commercial areas which under constructions distribute in the city, these land surfaces becoming bare or have low vegetation coverage, can form new heat islands easily.

  2. Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone.

    PubMed

    Bestelmeyer, Brandon T; Ward, Judy P; Havstad, Kris M

    2006-04-01

    Soil properties are well known to affect vegetation, but the role of soil heterogeneity in the patterning of vegetation dynamics is poorly documented. We asked whether the location of an ecotone separating grass-dominated and sparsely vegetated areas reflected only historical variation in degradation or was related to variation in inherent soil properties. We then asked whether changes in the cover and spatial organization of vegetated and bare patches assessed using repeat aerial photography reflected self-organizing dynamics unrelated to soil variation or the stable patterning of soil variation. We found that the present-day ecotone was related to a shift from more weakly to more strongly developed soils. Parts of the ecotone were stable over a 60-year period, but shifts between bare and vegetated states, as well as persistently vegetated and bare states, occurred largely in small (<40 m2) patches throughout the study area. The probability that patches were presently vegetated or bare, as well as the probability that vegetation persisted and/or established over the 60-year period, was negatively related to surface calcium carbonate and positively related to subsurface clay content. Thus, only a fraction of the landscape was susceptible to vegetation change, and the sparsely vegetated area probably featured a higher frequency of susceptible soil patches. Patch dynamics and self-organizing processes can be constrained by subtle (and often unrecognized) soil heterogeneity.

  3. Classification of multispectral or hyperspectral satellite imagery using clustering of sparse approximations on sparse representations in learned dictionaries obtained using efficient convolutional sparse coding

    DOEpatents

    Moody, Daniela; Wohlberg, Brendt

    2018-01-02

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  4. Objective sea level pressure analysis for sparse data areas

    NASA Technical Reports Server (NTRS)

    Druyan, L. M.

    1972-01-01

    A computer procedure was used to analyze the pressure distribution over the North Pacific Ocean for eleven synoptic times in February, 1967. Independent knowledge of the central pressures of lows is shown to reduce the analysis errors for very sparse data coverage. The application of planned remote sensing of sea-level wind speeds is shown to make a significant contribution to the quality of the analysis especially in the high gradient mid-latitudes and for sparse coverage of conventional observations (such as over Southern Hemisphere oceans). Uniform distribution of the available observations of sea-level pressure and wind velocity yields results far superior to those derived from a random distribution. A generalization of the results indicates that the average lower limit for analysis errors is between 2 and 2.5 mb based on the perfect specification of the magnitude of the sea-level pressure gradient from a known verification analysis. A less than perfect specification will derive from wind-pressure relationships applied to satellite observed wind speeds.

  5. Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone

    NASA Astrophysics Data System (ADS)

    Duffy, James P.; Pratt, Laura; Anderson, Karen; Land, Peter E.; Shutler, Jamie D.

    2018-01-01

    Seagrass ecosystems are highly sensitive to environmental change. They are also in global decline and under threat from a variety of anthropogenic factors. There is now an urgency to establish robust monitoring methodologies so that changes in seagrass abundance and distribution in these sensitive coastal environments can be understood. Typical monitoring approaches have included remote sensing from satellites and airborne platforms, ground based ecological surveys and snorkel/scuba surveys. These techniques can suffer from temporal and spatial inconsistency, or are very localised making it hard to assess seagrass meadows in a structured manner. Here we present a novel technique using a lightweight (sub 7 kg) drone and consumer grade cameras to produce very high spatial resolution (∼4 mm pixel-1) mosaics of two intertidal sites in Wales, UK. We present a full data collection methodology followed by a selection of classification techniques to produce coverage estimates at each site. We trialled three classification approaches of varying complexity to investigate and illustrate the differing performance and capabilities of each. Our results show that unsupervised classifications perform better than object-based methods in classifying seagrass cover. We also found that the more sparsely vegetated of the two meadows studied was more accurately classified - it had lower root mean squared deviation (RMSD) between observed and classified coverage (9-9.5%) compared to a more densely vegetated meadow (RMSD 16-22%). Furthermore, we examine the potential to detect other biotic features, finding that lugworm mounds can be detected visually at coarser resolutions such as 43 mm pixel-1, whereas smaller features such as cockle shells within seagrass require finer grained data (<17 mm pixel-1).

  6. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China

    PubMed Central

    Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt

    2015-01-01

    Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and –51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change. PMID:26237220

  7. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    PubMed

    Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt

    2015-01-01

    Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change.

  8. Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Xue, Lianqing; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Wei, Guanghui

    2018-01-01

    The Tarim River (TR), as the longest inland river at an arid area in China, is a typical regions of vegetation variation research and plays a crucial role in the sustainable development of regional ecological environment. In this paper, the newest dataset of MODND1M NDVI, at a resolution of 500m, were applied to calculate vegetation index in growing season during the period 2000-2015. Using a vegetation coverage index, a trend line analysis, and the local spatial autocorrelation analysis, this paper investigated the landscape patterns and spatio-temporal variation of vegetation coverage at regional and pixel scales over mainstream of the Tarim River, Xinjiang. The results showed that (1) The bare land area on both sides of Tarim River appeared to have a fluctuated downward trend and there were two obvious valley values in 2005 and 2012. (2) Spatially, the vegetation coverage improved areas is mostly distributed in upstream and the degraded areas is mainly distributed in the left bank of midstream and the end of Tarim River during 2000-2005. (3) The local spatial auto-correlation analysis revealed that vegetation coverage was spatially positive autocorrelated and spatial concentrated. The high-high self-related areas are mainly distributed in upstream, where vegetation cover are relatively good, and the low-low self-related areas are mostly with lower vegetation cover in the lower reaches of Tarim River.

  9. Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.

    2004-12-01

    The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it relative to the sparsely vegetated tundra. Duration of melt was similar in the forest and shrub tundra at 20 days while the sparse tundra was shorter at 13 days; the differences due to differing snow accumulation and melt rates. The greatest variability in the timing and rate of melt was found in the shrub tundra, where the effect of the shrub canopy over snow depends on snow depth and insolation and is reduced in years with high snow accumulation or extensive cloudy periods in spring. The results show that it is necessary to consider the combination of elevation and vegetation effects on snow microclimate and melt processes in high latitude mountain catchments, but that weather patterns induce substantial variability on the effect these factors.

  10. Quantifying vegetation distribution and structure using high resolution drone-based structure-from-motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Okin, G.

    2017-12-01

    Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.02 m, -0.03, and -0.1 m, respectively. These results indicate a good agreement between drone-based remote sensing and field measurement.

  11. [Micro-community characteristics of vegetations in blowouts and depositional areas of Hulunbuir grassland, Inner Mongolia].

    PubMed

    Man, Liang; Hasi, Eerdun; Zhang, Ping; Yan, Xu; Xia, Xian-Dong

    2008-10-01

    By using traditional sampling methods, the micro-communities of vegetations in fixed, semi-bare, and bare blowouts of Hulunbuir grassland were investigated, and the investigation data were statistical analyzed. The results showed that the vegetation coverage decreased in the order of fixed blowout, semi-bare blowout, and bare blowout, and was lower than that of the primary vegetation Form. Stipa grandis. Potentilla acaulis and Kengia squarrosa were the dominant species in fixed blowout, with the coverage being 5%; while P. acaulis and Carex sp. were the dominant species in semi-bare blowout, with the coverage being 2%. The dominant species in depositional areas of semi-bare blowout were P. acaulis, K. squarrosa, Agropyron cristatum, and Thymus mongolicus, and the coverage was 4%. The dominant species on the southwest slope of bare blowout was Agriophyllum pungens. The middle depositional area of bare blowout was also occupied by A. pungens (coverage 4.7%), and the edge of it was dominated by A. cristatum (coverage 2.7%), Carex sp. (coverage 2.6%), and T. mongolicus (coverage 1.7%) from the edge of the depositional area to primary grassland. The mean species importance value in fixed, semi-bare, and bare blowouts was 12.64%, 13.38%, and 20.08%, while that in the depositional area of semi-bare blowout and in the middle and edge of bare blowout was 12.55%, 40.18%, and 11.15%, respectively.

  12. Parameterization of sparse vegetation in thermal images of natural ground landscapes

    NASA Astrophysics Data System (ADS)

    Agassi, Eyal; Ben-Yosef, Nissim

    1997-10-01

    The radiant statistics of thermal images of desert terrain scenes and their temporal behavior have been fully understood and well modeled. Unlike desert scenes, most natural terrestrial landscapes contain vegetative objects. A plant is a living object that regulates its temperature through evapotranspiration of leaf stomata, and plant interaction with the outside world is influenced by its physiological processes. Therefore, the heat balance equation for a vegetative object differs from that for an inorganic surface element. Despite this difficulty, plants can be incorporated into the desert surface model when an effective heat conduction parameter is associated with vegetation. Due to evapotranspiration, the effective heat conduction of plants during daytime is much higher than at night. As a result, plants (mainly trees and bushes) are usually the coldest objects in the scene in the daytime while they are not necessarily the warmest objects at night. The parameterization of vegetative objects in terms of effective heat conduction enables the extension of the desert terrain model for scenes with sparse vegetation and the estimation of their radiant statistics and their diurnal behavior. The effective heat conduction image can serve as a tool for vegetation type classification and assessment of the dominant physical process that determinate thermal image properties.

  13. Assessment of actual transpiration rate in olive tree field combining sap-flow, leaf area index and scintillometer measurements

    NASA Astrophysics Data System (ADS)

    Agnese, C.; Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G.; Rallo, G.; de Bruin, H. A. R.

    2009-09-01

    Models to estimate the actual evapotranspiration (ET) in sparse vegetation area can be fundamental for agricultural water managements, especially when water availability is a limiting factor. Models validation must be carried out by considering in situ measurements referred to the field scale, which is the relevant scale of the modelled variables. Moreover, a particular relevance assumes to consider separately the components of plant transpiration (T) and soil evaporation (E), because only the first is actually related to the crop stress conditions. Objective of the paper was to assess a procedure aimed to estimate olive trees actual transpiration by combining sap flow measurements with the scintillometer technique at field scale. The study area, located in Western Sicily (Italy), is mainly cultivated with olive crop and is characterized by typical Mediterranean semi-arid climate. Measurements of sap flow and crop actual evapotranspiration rate were carried out during 2008 irrigation season. Crop transpiration fluxes, measured on some plants by means of sap flow sensors, were upscaled considering the leaf area index (LAI). The comparison between evapotranspiration values, derived by displaced-beam small-aperture scintillometer (DBSAS-SLS20, Scintec AG), with the transpiration fluxes obtained by the sap flow sensors, also allowed to evaluate the contribute of soil evaporation in an area characterized by low vegetation coverage.

  14. Mapping impervious surfaces using object-oriented classification in a semiarid urban region

    USDA-ARS?s Scientific Manuscript database

    Mapping the expansion of impervious surfaces in urbanizing areas is important for monitoring and understanding the hydrologic impacts of land development. The most common approach using spectral vegetation indices, however, is difficult in arid and semiarid environments where vegetation is sparse an...

  15. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Brooks, V.

    1997-01-01

    This paper describes the use of satellite data to calibrate a new climate-vegetation greenness relationship for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes If the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980's in order to refine our understanding of intra-annual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global 1o gridded data sets suggest that three climate indexes: degree days (growing/chilling), annual precipitation total, and an annual moisture index together can account to 70-80 percent of the geographic variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same annual climate index values from the previous year explains no substantial additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes is closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from lo grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI for several different years at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes are not accurately predicted are mainly high latitude zones, mixed and disturbed vegetation types, and other remote locations where climate station data are sparse.

  16. Flood Inundation Modelling in Data Sparse Deltas

    NASA Astrophysics Data System (ADS)

    Hawker, Laurence; Bates, Paul; Neal, Jeffrey

    2017-04-01

    An estimated 7% of global population currently live in deltas, and this number is increasing over time. This has resulted in numerous human induced impacts on deltas ranging from subsidence, upstream sediment trapping and coastal erosion amongst others. These threats have already impacted on flood dynamics in deltas and could intensify in line with human activities. However, the myriad of threats creates a large number of potential scenarios that need to be evaluated. Therefore, to assess the impacts of these scenarios, a pre-requisite is a flood inundation model that is both computationally efficient and flexible in its setup so it can be applied in data-sparse settings. An intermediate scale, which compromises between the computational speed of a global model and the detail of a case specific bespoke model, was chosen to achieve this. To this end, we have developed an intermediate scale flood inundation model at a resolution of 540m of the Mekong Delta, built with freely available data, using the LISFLOOD-FP hydrodynamic model. The purpose of this is to answer the following questions: 1) How much detail is required to accurately simulate flooding in the Mekong Delta? , 2) What characteristics of deltas are most important to include in flood inundation models? Models were run using a vegetation removed SRTM DEM and a hind-casting of tidal heights as a downstream boundary. Results indicate the importance of vegetation removal in the DEM for inundation extent and the sensitivity of water level to roughness coefficients. The propagation of the tidal signal was found to be sensitive to bathymetry, both within the river channel and offshore, yet data availability for this is poor, meaning the modeller has to be careful in his or her choice of bathymetry interpolation Supplementing global river channel data with more localised data demonstrated minor improvements in results suggesting detailed channel information is not always needed to produce good results. It is envisaged that this work will lead to current and future flood risk analysis of not only the Mekong Delta, but also other data sparse deltas owing to the model's utilisation of freely available data that has a global coverage. This will ultimately aid in the much-needed estimation of flood risk in deltaic settings.

  17. Limited Area Coverage/High Resolution Picture Transmission (LAC/HRPT) data vegetative index calculation processor user's manual

    NASA Technical Reports Server (NTRS)

    Obrien, S. O. (Principal Investigator)

    1980-01-01

    The program, LACVIN, calculates vegetative indexes numbers on limited area coverage/high resolution picture transmission data for selected IJ grid sections. The IJ grid sections were previously extracted from the full resolution data tapes and stored on disk files.

  18. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    PubMed

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

  19. Variation of Vegetation Ecological Water Consumption and Its Response to Vegetation Coverage Changes in the Rocky Desertification Areas in South China

    PubMed Central

    Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai

    2016-01-01

    Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values’ responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky desertification areas. Understanding the vegetation ecological water consumption response to the vegetation coverage changes is essential for the vegetation restoration and water stresses mitigation in rocky desertification areas. PMID:27798642

  20. Variation of Vegetation Ecological Water Consumption and Its Response to Vegetation Coverage Changes in the Rocky Desertification Areas in South China.

    PubMed

    Wan, Long; Tong, Jing; Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai

    2016-01-01

    Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values' responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky desertification areas. Understanding the vegetation ecological water consumption response to the vegetation coverage changes is essential for the vegetation restoration and water stresses mitigation in rocky desertification areas.

  1. Factors Impacting Spatial Patterns of Snow Distribution in a Small Catchment near Nome, AK

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wilson, C. J.; Charsley-Groffman, L.; Busey, R.; Bolton, W. R.

    2017-12-01

    Snow cover plays an important role in the climate, hydrology and ecological systems of the Arctic due to its influence on the water balance, thermal regimes, vegetation and carbon flux. Thus, snow depth and coverage have been key components in all the earth system models but are often poorly represented for arctic regions, where fine scale snow distribution data is sparse. The snow data currently used in the models is at coarse resolution, which in turn leads to high uncertainty in model predictions. Through the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, high resolution snow distribution data is being developed and applied in catchment scale models to ultimately improve representation of snow and its interactions with other model components in the earth system models . To improve these models, it is important to identify key factors that control snow distribution and quantify the impacts of those factors on snow distribution. In this study, two intensive snow depth surveys (1 to 10 meters scale) were conducted for a 2.3 km2 catchment on the Teller road, near Nome, AK in the winter of 2016 and 2017. We used a statistical model to quantify the impacts of vegetation types, macro-topography, micro-topography, and meteorological parameters on measured snow depth. The results show that snow spatial distribution was similar between 2016 and 2017, snow depth was spatially auto correlated over small distance (2-5 meters), but not spatially auto correlated over larger distance (more than 2-5 meters). The coefficients of variation of snow depth was above 0.3 for all the snow survey transects (500-800 meters long). Variation of snow depth is governed by vegetation height, aspect, slope, surface curvature, elevation and wind speed and direction. We expect that this empirical statistical model can be used to estimate end of winter snow depth for the whole watershed and will further develop the model using data from other arctic regions to estimate seasonally dynamic snow coverage and properties for use in catchment scale to pan-Arctic models.

  2. Satellite microwave observations of soil moisture variations. [by the microwave radiometer on the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Rango, A.; Neff, R.

    1975-01-01

    The electrically scanning microwave radiometer (ESMR) on the Nimbus 5 satellite was used to observe microwave emissions from vegetated and soil surfaces over an Illinois-Indiana study area, the Mississippi Valley, and the Great Salt Lake Desert in Utah. Analysis of microwave brightness temperatures (T sub B) and antecedent rainfall over these areas provided a way to monitor variations of near-surface soil moisture. Because vegetation absorbs microwave emission from the soil at the 1.55 cm wavelength of ESMR, relative soil moisture measurements can only be obtained over bare or sparsely vegetated soil. In general T sub B increased during rainfree periods as evaporation of water and drying of the surface soil occurs, and drops in T sub B are experienced after significant rainfall events wet the soil. Microwave observations from space are limited to coarse resolutions (10-25 km), but it may be possible in regions with sparse vegetation cover to estimate soil moisture conditions on a watershed or agricultural district basis, particularly since daily observations can be obtained.

  3. Competition between hardwood hammocks and mangroves

    USGS Publications Warehouse

    Sternberg, L.D.S.L.; Teh, S.Y.; Ewe, S.M.L.; Miralles-Wilhelm, F.; DeAngelis, D.L.

    2007-01-01

    The boundaries between mangroves and freshwater hammocks in coastal ecotones of South Florida are sharp. Further, previous studies indicate that there is a discontinuity in plant predawn water potentials, with woody plants either showing predawn water potentials reflecting exposure to saline water or exposure to freshwater. This abrupt concurrent change in community type and plant water status suggests that there might be feedback dynamics between vegetation and salinity. A model examining the salinity of the aerated zone of soil overlying a saline body of water, known as the vadose layer, as a function of precipitation, evaporation and plant water uptake is presented here. The model predicts that mixtures of saline and freshwater vegetative species represent unstable states. Depending on the initial vegetation composition, subsequent vegetative change will lead either to patches of mangrove coverage having a high salinity vadose zone or to freshwater hammock coverage having a low salinity vadose zone. Complete or nearly complete coverage by either freshwater or saltwater vegetation represents two stable steady-state points. This model can explain many of the previous observations of vegetation patterns in coastal South Florida as well as observations on the dynamics of vegetation shifts caused by sea level rise and climate change. ?? 2007 Springer Science+Business Media, LLC.

  4. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  5. Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data

    PubMed Central

    Kato, Soushi; Yamaguchi, Yasushi; Liu, Cheng-Chien; Sun, Chen-Yi

    2008-01-01

    The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures. PMID:27873856

  6. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  7. The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; Durso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.

    2010-12-01

    For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15-50%). The TSEB model heat flux estimates are compared with micro-meteorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≍35%) and relatively tall crop (≍3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter accounting for the roughness sub-layer of the underlying vegetative surface. The analysis also suggests that within-canopy wind profile model discrepancies become important, in terms of impact on modelled sensible heat flux, only for sparse canopies with moderate vegetation coverage.

  8. Real-time incident detection using social media data.

    DOT National Transportation Integrated Search

    2016-05-09

    The effectiveness of traditional incident detection is often limited by sparse sensor coverage, and reporting incidents to emergency response systems : is labor-intensive. This research project mines tweet texts to extract incident information on bot...

  9. Multiple View Zenith Angle Observations of Reflectance From Ponderosa Pine Stands

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Reflectance factors (RF(lambda)) from dense and sparse ponderosa pine (Pinus ponderosa) stands, derived from radiance data collected in the solar principal plane by the Advanced Solid-State Array Spectro-radiometer (ASAS), were examined as a function of view zenith angle (theta(sub v)). RF(lambda) was maximized with theta(sub v) nearest the solar retrodirection, and minimized near the specular direction throughout the ASAS spectral region. The dense stand had much higher RF anisotropy (ma)dmurn RF is minimum RF) in the red region than did the sparse stand (relative differences of 5.3 vs. 2.75, respectively), as a function of theta(sub v), due to the shadow component in the canopy. Anisotropy in the near-infrared (NIR) was more similar between the two stands (2.5 in the dense stand and 2.25 in the sparse stand); the dense stand exhibited a greater hotspot effect than 20 the sparse stand in this spectral region. Two common vegetation transforms, the NIR/red ratio and the normalized difference vegetation index (NDVI), both showed a theta(sub v) dependence for the dense stand. Minimum values occurred near the retrodirection and maximum values occurred near the specular direction. Greater relative differences were noted for the NIR/red ratio (2.1) than for the NDVI (1.3). The sparse stand showed no obvious dependence on theta(sub v) for either transform, except for slightly elevated values toward the specular direction.

  10. The red edge in arid region vegetation: 340-1060 nm spectra

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Murray, Bruce C.; Chehbouni, A.; Njoku, Eni

    1993-01-01

    The remote sensing study of vegetated regions of the world has typically been focused on the use of broad-band vegetation indices such as NDVI. Various modifications of these indices have been developed in attempts to minimize the effect of soil background, e.g., SAVI, or to reduce the effect of the atmosphere, e.g., ARVI. Most of these indices depend on the so-called 'red edge,' the sharp transition between the strong absorption of chlorophyll pigment in visible wavelengths and the strong scattering in the near-infrared from the cellular structure of leaves. These broadband indices tend to become highly inaccurate as the green canopy cover becomes sparse. The advent of high spectral resolution remote sensing instrument such as the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) has allowed the detection of narrow spectral features in vegetation and there are reports of detection of the red edge even for pixels with very low levels of green vegetation cover by Vane et al. and Elvidge et al., and to characterize algal biomass in coastal areas. Spectral mixing approaches similar to those of Smith et al. can be extended into the high spectral resolution domain allowing for the analysis of more endmembers, and potentially, discrimination between material with narrow spectral differences. Vegetation in arid regions tends to be sparse, often with small leaves such as the creosote bush. Many types of arid region vegetation spend much of the year with their leaves in a senescent state, i.e., yellow, with lowered chlorophyll pigmentation. The sparseness of the leaves of many arid region plants has the dual effect of lowering the green leaf area which can be observed and of allowing more of the sub-shrub soil to be visible which further complicates the spectrum of a region covered with arid region vegetation. Elvidge examined the spectral characteristics of dry plant materials showing significant differences in the region of the red edge and the diagnostic ligno-cellulose absorptions at 2090 nm and 2300 nm. Ray et al. detected absorption at 2100 nm in AVIRIS spectra of an abandoned field known to be covered by a great deal of dead plant litter. In order to better study arid region vegetation remote sensing data, it is necessary to better characterize the reflectance spectra of in situ, living, arid region plants.

  11. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature

    NASA Astrophysics Data System (ADS)

    Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong

    2017-02-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.

  12. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg. We also show some significant differences between fluorescence and coincident normalized difference vegetation indices (NDVI) retrievals.

  13. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-Spectral-Resolution Near-Infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 0.5. We also show some significant differences between fluorescence and coincident normalized difference vegetation indices (NDVI) retrievals.

  14. Node Deployment Algorithm Based on Connected Tree for Underwater Sensor Networks

    PubMed Central

    Jiang, Peng; Wang, Xingmin; Jiang, Lurong

    2015-01-01

    Designing an efficient deployment method to guarantee optimal monitoring quality is one of the key topics in underwater sensor networks. At present, a realistic approach of deployment involves adjusting the depths of nodes in water. One of the typical algorithms used in such process is the self-deployment depth adjustment algorithm (SDDA). This algorithm mainly focuses on maximizing network coverage by constantly adjusting node depths to reduce coverage overlaps between two neighboring nodes, and thus, achieves good performance. However, the connectivity performance of SDDA is irresolute. In this paper, we propose a depth adjustment algorithm based on connected tree (CTDA). In CTDA, the sink node is used as the first root node to start building a connected tree. Finally, the network can be organized as a forest to maintain network connectivity. Coverage overlaps between the parent node and the child node are then reduced within each sub-tree to optimize coverage. The hierarchical strategy is used to adjust the distance between the parent node and the child node to reduce node movement. Furthermore, the silent mode is adopted to reduce communication cost. Simulations show that compared with SDDA, CTDA can achieve high connectivity with various communication ranges and different numbers of nodes. Moreover, it can realize coverage as high as that of SDDA with various sensing ranges and numbers of nodes but with less energy consumption. Simulations under sparse environments show that the connectivity and energy consumption performances of CTDA are considerably better than those of SDDA. Meanwhile, the connectivity and coverage performances of CTDA are close to those depth adjustment algorithms base on connected dominating set (CDA), which is an algorithm similar to CTDA. However, the energy consumption of CTDA is less than that of CDA, particularly in sparse underwater environments. PMID:26184209

  15. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon '90 experiment

    USGS Publications Warehouse

    Stannard, D.I.; Blanford, J.H.; Kustas, William P.; Nichols, W.D.; Amer, S.A.; Schmugge, T.J.; Weltz, M.A.

    1994-01-01

    A network of 9-m-tall surface flux measurement stations were deployed at eight sparsely vegetated sites during the Monsoon '90 experiment to measure net radiation, Q, soil heat flux, G, sensible heat flux, H (using eddy correlation), and latent heat flux, λE (using the energy balance equation). At four of these sites, 2-m-tall eddy correlation systems were used to measure all four fluxes directly. Also a 2-m-tall Bowen ratio system was deployed at one site. Magnitudes of the energy balance closure (Q + G + H + λE) increased as the complexity of terrain increased. The daytime Bowen ratio decreased from about 10 before the monsoon season to about 0.3 during the monsoons. Source areas of the measurements are developed and compared to scales of heterogeneity arising from the sparse vegetation and the topography. There was very good agreement among simultaneous measurements of Q with the same model sensor at different heights (representing different source areas), but poor agreement among different brands of sensors. Comparisons of simultaneous measurements of G suggest that because of the extremely small source area, extreme care in sensor deployment is necessary for accurate measurement in sparse canopies. A recently published model to estimate fetch is used to interpret measurements of H at the 2 m and 9 m heights. Three sites were characterized by undulating topography, with ridgetops separated by about 200–600 m. At these sites, sensors were located on ridgetops, and the 9-m fetch included the adjacent valley, whereas the 2-m fetch was limited to the immediate ridgetop and hillside. Before the monsoons began, vegetation was mostly dormant, the watershed was uniformly hot and dry, and the two measurements of H were in close agreement. After the monsoons began and vegetation fully matured, the 2-m measurements of H were significantly greater than the 9-m measurements, presumably because the vegetation in the valleys was denser and cooler than on the ridgetops and hillsides. At one lowland site with little topographic relief, the vegetation was more uniform, and the two measurements of H were in close agreement during peak vegetation. Values of λE could only be compared at two sites, but the 9-m values were greater than the 2-m values, suggesting λE from the dense vegetation in the valleys was greater than elsewhere.

  16. Exacerbated grassland degradation and desertification in Central Asia during 2000-2014.

    PubMed

    Zhang, Geli; Biradar, Chandrashekhar M; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Qin, Yuanwei; Zhang, Yao; Liu, Fang; Ding, Mingjun; Thomas, Richard J

    2018-03-01

    Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVI TGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVI TGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change processes, this study provided reference information for identification of desertification hotspots to support further grassland degradation and desertification treatment, and the method could be useful to be extended to other regions. © 2017 by the Ecological Society of America.

  17. Assessment of actual evapotranspiration over a semiarid heterogeneous land surface by means of coupled low-resolution remote sensing data with an energy balance model: comparison to extra-large aperture scintillometer measurements

    NASA Astrophysics Data System (ADS)

    Saadi, Sameh; Boulet, Gilles; Bahir, Malik; Brut, Aurore; Delogu, Émilie; Fanise, Pascal; Mougenot, Bernard; Simonneaux, Vincent; Lili Chabaane, Zohra

    2018-04-01

    In semiarid areas, agricultural production is restricted by water availability; hence, efficient agricultural water management is a major issue. The design of tools providing regional estimates of evapotranspiration (ET), one of the most relevant water balance fluxes, may help the sustainable management of water resources. Remote sensing provides periodic data about actual vegetation temporal dynamics (through the normalized difference vegetation index, NDVI) and water availability under water stress (through the surface temperature Tsurf), which are crucial factors controlling ET. In this study, spatially distributed estimates of ET (or its energy equivalent, the latent heat flux LE) in the Kairouan plain (central Tunisia) were computed by applying the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model fed by low-resolution remote sensing data (Terra and Aqua MODIS). The work's goal was to assess the operational use of the SPARSE model and the accuracy of the modeled (i) sensible heat flux (H) and (ii) daily ET over a heterogeneous semiarid landscape with complex land cover (i.e., trees, winter cereals, summer vegetables). SPARSE was run to compute instantaneous estimates of H and LE fluxes at the satellite overpass times. The good correspondence (R2 = 0.60 and 0.63 and RMSE = 57.89 and 53.85 W m-2 for Terra and Aqua, respectively) between instantaneous H estimates and large aperture scintillometer (XLAS) H measurements along a path length of 4 km over the study area showed that the SPARSE model presents satisfactory accuracy. Results showed that, despite the fairly large scatter, the instantaneous LE can be suitably estimated at large scales (RMSE = 47.20 and 43.20 W m-2 for Terra and Aqua, respectively, and R2 = 0.55 for both satellites). Additionally, water stress was investigated by comparing modeled (SPARSE) and observed (XLAS) water stress values; we found that most points were located within a 0.2 confidence interval, thus the general tendencies are well reproduced. Even though extrapolation of instantaneous latent heat flux values to daily totals was less obvious, daily ET estimates are deemed acceptable.

  18. ToxCast Data Expands Universe of Chemical-Gene Interactions (SOT)

    EPA Science Inventory

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. Thi...

  19. [Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China].

    PubMed

    Zong, Ning; Chai, Xi; Shi, Pei Li; Jiang, Jing; Niu, Ben; Zhang, Xian Zhou; He, Yong Tao

    2016-12-01

    Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm -2 ·a -1 . From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future climate change scenarios would dramatically influence the vegetation coverage and species composition. Additionally, the effects of increasing atmospheric N deposition on vegetation community might also depend on the change of rainfall patterns.

  20. Juvenile flatfish in the northern Baltic Sea - long-term decline and potential links to habitat characteristics

    NASA Astrophysics Data System (ADS)

    Jokinen, Henri; Wennhage, Håkan; Ollus, Victoria; Aro, Eero; Norkko, Alf

    2016-01-01

    Flatfish in the northern Baltic Sea are facing multiple environmental pressures due to on-going large-scale ecosystem changes linked to eutrophication and climate change. Shallow juvenile habitats of flatfishes are expected to be especially susceptible to these environmental pressures. Using previously unpublished historical and present-state data on juvenile flatfish in nursery areas along the Finnish coast we demonstrate a drastic (up to 40 ×) decline in 1-Y-O flounder densities since the 1980s and a particularly low current occurrence of both flounders and turbots in several known juvenile habitats. As a consequence of ongoing coastal eutrophication vegetation coverage and filamentous algae have generally increased in shallow areas. We examined the predicted negative effect of vegetation/algae by exploring quantitative relationships between juvenile flatfish (flounder and turbot) occurrence and vegetation/algae among other environmental factors in shallow juvenile habitats. Despite sparse occurrence of juveniles we found a significant negative relationship between flatfish abundance and vegetation cover, implicating eutrophication as a potential major driver affecting the value of juvenile habitat. Shallow littoral habitats play a particularly central role for flatfish due to the spatial concentration of fish in these areas during the critical juvenile stage. Despite their importance, these areas have been relatively poorly studied in the northern Baltic Sea, which makes it difficult to quantify overall changes in environmental conditions and to relate these changes to flatfish recruitment. The low present-state flatfish densities recorded preclude strong inferences of the role of habitat quality to be drawn. Our study does, however, provide a baseline for future assessment. Based on existing evidence, we cannot thus establish any bottlenecks but hypothesize that the current low occurrence of juvenile flatfish, and the population decline of flounder on the Finnish coast, might have resulted from a combination of altered larval supply and reduced nursery value.

  1. Involvement of allelopathy in inhibition of understory growth in red pine forests.

    PubMed

    Kato-Noguchi, Hisashi; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2017-11-01

    Japanese red pine (Pinus densiflora Sieb. et Zucc.) forests are characterized by sparse understory vegetation although sunlight intensity on the forest floor is sufficient for undergrowth. The possible involvement of pine allelopathy in the establishment of the sparse understory vegetation was investigated. The soil of the red pine forest floor had growth inhibitory activity on six test plant species including Lolium multiflorum, which was observed at the edge of the forest but not in the forest. Two growth inhibitory substances were isolated from the soil and characterized to be 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid. Those compounds are probably formed by degradation process of resin acids. Resin acids are produced by pine and delivered into the soil under the pine trees through balsam and defoliation. Threshold concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid for the growth inhibition of L. multiflorum were 30 and 10μM, respectively. The concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid in the soil were 312 and 397μM, respectively, which are sufficient concentrations to cause the growth inhibition because of the threshold. These results suggest that those compounds are able to work as allelopathic agents and may prevent from the invasion of herbaceous plants into the forests by inhibiting their growth. Therefore, allelopathy of red pine may be involved in the formation of the sparse understory vegetation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Determination of wetland ecosystem boundaries and validation of land use maps using remote sensing: Fuente de Piedra case study (Spain)

    NASA Astrophysics Data System (ADS)

    Sánchez, Antonio; Malak, Dania Abdul; Schröder, Christoph; Martinez-Murillo, Juan F.

    2016-04-01

    Remote sensing techniques (SRS) are valid tools for wetland monitoring that could support wetland managers in assessing the spatial and temporal changes in wetland ecosystems as well as in understanding their condition and the ecosystem services they provide. This study focuses on the one hand, on drawing hydro-ecological guidelines for the delimitation of wetland ecosystems; and on the other hand, to assess the reliability of widely available satellite images (Landsat) in estimating the land use/ land cover types covering wetlands. This research develops comprehensive guidelines to determine the boundaries of the Fuente de Piedra wetland ecosystem located in Andalusia, Spain and defines the main land use/ land cover classes covering this ecosystem using Landsat 8 images. An accuracy of the SRS results delivered is tested using the regional inventory of land use produced by the regional government of Andalusia in 2011. By using the ecological and hydrological settings of the area, the boundaries of the Fuente de Piedra wetland ecosystem are determined as an alternative to improve the current delimitations methodology (the Ramsar and Natura 2000 delineations), used by the local authorities so far and based mainly on administrative reasoning. In terms of the land use land cover definition in the area, Fuente de Piedra wetland ecosystem shows to cover a total area of 195 km2 composed mainly by agricultural areas (81.46%): olive groves, non-irrigated arable land and pastures, being 54.82%, 25.71% and 0.93% of the surface respectively. Wetland related land covers (water surface, wetland vegetation) represent 6.85% while natural vegetation is distributed in forest, 1.67%, and shrub areas, 4.14%, being 5.81% in total. 4.58% of the area corresponds to urban and other artificial surfaces. The rest, 1.30%, is composed of different areas without vegetation (sands, bare rock, dumps, etc.). The classification of the Landsat images made with the newly developed SWOS toolbox (under the Horizon 2020 SWOS project) provides reliable results (r2= 0.98). The image segmentation corresponds very closely with the plots of land observed in the satellite image, and the allocation of land use coverages corresponds in 82% of the segments. Forest and olive groves are the best identified coverages with an accuracy of 93% in both cases. Wetlands are correctly classified by 87%, where linear features (narrow streams, etc.) are not detected by the methodology used due to the limitations of Landsat resolution. Arable lands are classified with an accuracy of 85.5%; where the methodology seems to confuse this land use with sparse olive grove. In the case of shrubs, accuracy round the 72%, with confusions with this land use are related with arable land, sparse forests in wetland areas. In the case of urban areas, only 60.5% of the segments are correctly classified as the distinction between urban fabric and industrial areas does not seem to be possible and linear features are not detected (highways, secondary roads,…).

  3. [Nitrogen fixation potential of biological soil crusts in Heidaigou open coal mine, Inner Mongolia, China].

    PubMed

    Zhang, Peng; Huang, Lei; Hu, Yi-gang; Zhao, Yang; Wu, Yong-chen

    2016-02-01

    Nitrogen limitation is common in terrestrial ecosystems, and it is particularly severe in damaged ecosystems in arid regions. Biological soil crusts (BSCs) , as a crucial component of recovered vegetation, play a vital role in nitrogen fixation during the ecological restoration processes of damaged ecosystems in arid and semi-arid regions. In this study, two dominant types of BSCs (i.e., cyanobacterial-algal crusts and moss crusts) that are widely distributed in the re-vegetated area of Heidaigou open pit coal mine were investigated. Samples were collected in the field and their nitrogenase activities (NA) were measured in the laboratory. The responses of NA to different hydro-thermal factors and the relationships between NA and herbs in addition to crust coverage were analyzed. The results indicated that BSCs under reconstructed vegetation at different succession stages, abandoned land and natural vegetation showed values of NA ranging from 9 to 150 µmol C2H4 . m-2 . h-1, and the NA value of algae crust (77 µmol C2H4 . m-2 . h-1) was markedly higher than that of moss crust (17 µmol C2H4 . m-2 . h-1). In the re-vegetated area, cyanobacterial-algal crust and moss crust under shrub-herb had higher NA values than those of crusts under arbor-shrnb and arbor-shrub-herb. The relationship between NA of the two BSCs and soil relative water content (10% - 100%) as well as culture temperature (5-45 °C) were of quadratic function. With elevated water content and cultural temperature, the NA values increased at the initial stage and then decreased, and reached the maximum value at 25 °C of cultural temperature and 60% or 80% of relative water content. The NA of cyanobacterial-algal crust had a significant quadratic function with herb coverage, as NA declined when herb coverage was higher than 20%. A significant negative correlation was observed between the NA of moss crusts and herb coverage. The NA values of the two types of BSCs had a significant positive correlation with crust coverage, since the NA was enhanced when the crust coverage was increased. We concluded that the different NA of the two BSCs in the re-vegetated area of Heidaigou open pit coal mine were caused by the composition of cryptograms. In addition, the differences of hydrothermal conditions and the composition of herb or crust coverage at different succession stages were also the contribution factors. Therefore, BSC construction and nitrogen fixation in re-vegetated areas is an important symbol for sustainable development in ecosystems.

  4. Southern Ocean Seasonal Net Production from Satellite, Atmosphere, and Ocean Data Sets

    NASA Technical Reports Server (NTRS)

    Keeling, Ralph F.; Campbell, J. (Technical Monitor)

    2002-01-01

    A new climatology of monthly air-sea O2 flux was developed using the net air-sea heat flux as a template for spatial and temporal interpolation of sparse hydrographic data. The climatology improves upon the previous climatology of Najjar and Keeling in the Southern Hemisphere, where the heat-based approach helps to overcome limitations due to sparse data coverage. The climatology is used to make comparisons with productivity derived from CZCS images. The climatology is also used in support of an investigation of the plausible impact of recent global warming an oceanic O2 inventories.

  5. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges

    PubMed Central

    Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map’s coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445

  6. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    PubMed

    Zanin, Marina; Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.

  7. Spatiotemporal Variations in the Difference between Satellite-observed Land Surface Temperature and Station-based Near-surface Air Temperature

    NASA Astrophysics Data System (ADS)

    Lian, X.

    2016-12-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature ( ). Using satellite observations and in-situ station-based datasets, we conducted a global-scale assessment of the spatial, seasonal, and interannual variations in the difference between daytime maximum LST and daytime maximum ( , LST - ) during 2003-2014. Spatially, LST is generally higher than over arid and sparsely vegetated regions in the mid-low latitudes, but LST is lower than in the tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the mid-latitudes and boreal regions. The seasonality in the mid-latitudes is a result of the asynchronous responses of LST and to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. At an interannual scale, only a small proportion of the land surface displays a statistically significant trend (P <0.05) due to the short time span of current measurements. Our study identified substantial spatial heterogeneity and seasonality in , as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface temperature changes using remote sensing, particularly in remote regions.

  8. The interactions between vegetation and climate seasonality, topography on different time scales under the Budyko framework: case study in China's Loess Plateau

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ning, T.; Shen, H.; Li, Z.

    2017-12-01

    Vegetation, climate seasonality and topography are the main impact factors controlling the water and heat balance over a catchment, and they are usually empirically formulated into the controlling parameter in Budyko model. However, their interactions on different time scales have not been fully addressed. Taking 30 catchments in China's Loess Plateau as an example, on annual scale, vegetation coverage was found poorly correlated with climate seasonality index; therefore, they could be both parameterized into the Budyko model. On the long-term scale, vegetation coverage tended to have close relationships with topographic conditions and climate seasonality, which was confirmed by the multi-collinearity problems; in that sense, vegetation information could fit the controlling parameter exclusively. Identifying the dominant controlling factors over different time scales, this study simplified the empirical parameterization of the Budyko formula. Though the above relationships further investigation over the other regions/catchments.

  9. Temporal and spatial analysis of vegetation coverage changes in Ordos area based on time series GIMMS-NDVI data

    NASA Astrophysics Data System (ADS)

    Han, Ruimei; Zou, Youfeng; Ma, Chao; Liu, Pei

    2014-11-01

    Ordos area is the desert-wind erosion desertification steppe transition zone and the complex ecological zone. As the research area, Ordos City has the similar natural geographic environment to ShenDong coalfield. To research its ecological patterns and natural evolution law, it has instructive to reveal temporal and spatial changes of ecological environment with artificial disturbance in western mining. In this paper, a time series of AVHRR-NDVI(Normalized Difference Vegetation Index) data was used to monitor the change of vegetation temporal and spatial dynamics from 1981 to 2006 in Ordos City and ShenDong coalfield, where were as the research area. The MVC (Maximum Value Composites) method, average operation, linear regression, and gradation for NDVI change trend were used to obtained some results, as follows: ¬vegetation coverage had obvious characteristics with periodic change in research area for 26 years, and vegetation growth peak appeared on August, while the lowest appeared on January. The extreme values in Ordos City were 0.2351 and 0.1176, while they were 0.2657 and 0.1272 in ShenDong coalfield. The NDVI value fluctuation was a modest rise trend overall in research area. The extreme values were 0.3071 and 0.1861 in Ordos City, while they were 0.3454 and 0.1904 in ShenDong coalfield. In spatial distribution, slight improvement area and slight degradation area were accounting for 42.49% and 8.37% in Ordos City, while slight improvement area moderate improvement area were accounting for 70.59% and 29.41% in ShenDong coalfield. Above of results indicated there was less vegetation coverage in research area, which reflected the characteristics of fragile natural geographical environment. In addition, vegetation coverage was with a modest rise on the whole, which reflected the natural environment change.

  10. Long-term of analysis of MODIS, NDVI and NDWI for the Mesopotamian Marshlands, Iraq.

    NASA Astrophysics Data System (ADS)

    Al barakat, R. H. R.; Lakshmi, V.

    2016-12-01

    The Mesopotamian marshlands are considered as a one of the most important wetlands in the world. During past decades, the marsh area has varied between 10,500 km² to 20,000 km² in flood seasons. These marshes are located in the Mesopotamain plain lying mostly within Southern Iraq and a portion of South western Iran, along Euphrates,Tigris and Shatt Al-Arab river which formed by the confluence of Tigris and Euphrates rivers. They are characterized by a good environment for various flora such as Phragmites australis and fauna. Through early 1990 to the present the marshes subjected to many changes such as water supply diversions that have dramatically impacted the ecosystem. By using a long-term values of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS), between 2000 and 2016, we examined the annual changes during entire time series in both of the vegetation and water coverage in the three majar marshes; Al-Huwaizah marsh, the Central marshes and Al-Hammar marsh. The long-term has been divided into three periods (2000-2003, 2004-2008 and 2009-2016) based on ratios of coverage vegetation and water. The 1st period is characterized by low coverage in both vegetation and water due to human activities, which is represented by the construction of a large number of dams on the downstream of Tigris and Euphrates rivers during late 1980s until 2003. The 2nd period shows significantly increasing coverage of greater than 50% were the increases in the vegetation coverage of the original marsh areas. The 3rd period shows increases in the barren lands, while the water bodies and vegetation coverage are decreased. This variations are attributed to different effects. First, the marshes have received little water due to constructions of dams in the upstream countries, and they were completed during 3rd period 2009-2016. Second they occurred during a period of severe drought in the neighboring countries (upstream). Additional to that, this research aims to detect the environmental changes in the marshes by using multi-temporal and multi-spectral satellite images. The spatial resolution of the MODIS imagery is enhanced using Landsat data.

  11. Influence factors and prediction of stormwater runoff of urban green space in Tianjin, China: laboratory experiment and quantitative theory model.

    PubMed

    Yang, Xu; You, Xue-Yi; Ji, Min; Nima, Ciren

    2013-01-01

    The effects of limiting factors such as rainfall intensity, rainfall duration, grass type and vegetation coverage on the stormwater runoff of urban green space was investigated in Tianjin. The prediction equation of stormwater runoff was established by the quantitative theory with the lab experimental data of soil columns. It was validated by three field experiments and the relative errors between predicted and measured stormwater runoff are 1.41, 1.52 and 7.35%, respectively. The results implied that the prediction equation could be used to forecast the stormwater runoff of urban green space. The results of range and variance analysis indicated the sequence order of limiting factors is rainfall intensity > grass type > rainfall duration > vegetation coverage. The least runoff of green land in the present study is the combination of rainfall intensity 60.0 mm/h, duration 60.0 min, grass Festuca arundinacea and vegetation coverage 90.0%. When the intensity and duration of rainfall are 60.0 mm/h and 90.0 min, the predicted volumetric runoff coefficient is 0.23 with Festuca arundinacea of 90.0% vegetation coverage. The present approach indicated that green space is an effective method to reduce stormwater runoff and the conclusions are mainly applicable to Tianjin and the semi-arid areas with main summer precipitation and long-time interval rainfalls.

  12. High-frame-rate full-vocal-tract 3D dynamic speech imaging.

    PubMed

    Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P

    2017-04-01

    To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. The role of cross-shore tidal dynamics in controlling intertidal sediment exchange in mangroves in Cù Lao Dung, Vietnam

    NASA Astrophysics Data System (ADS)

    Bryan, Karin R.; Nardin, William; Mullarney, Julia C.; Fagherazzi, Sergio

    2017-09-01

    Mangroves are halophytic plants common in tropical and sub-tropical environments. Their roots and pneumatophores strongly affect intertidal hydrodynamics and related sediment transport. Here, we investigate the role tree and root structures may play in altering tidal currents and the effect of these currents on the development of intertidal landscapes in mangrove-dominated environments. We use a one-dimensional Delft3D model, forced using typical intertidal slopes and vegetation characteristics from two sites with contrasting slope on Cù Lao Dung within the Mekong Delta in Vietnam, to examine the vegetation controls on tidal currents and suspended sediment transport as the tides propagate into the forest. Model results show that vegetation characteristics at the seaward fringe determine the shape of the cross-shore bottom profile, with sparse vegetation leading to profiles that are close to linear, whereas with dense vegetation resulting in a convex intertidal topography. Examples showing different profile developments are provided from a variety of published studies, ranging from linear profiles in sandier sites, and distinctive convex profiles in muddier sites. As expected, profile differences in the model are caused by increased dissipation due to enhanced drag caused by vegetation; however, the reduction of flow shoreward in sparsely vegetated or non-vegetated cases was similar, indicating that shallowing of the profile and slope effects play a dominant role in dissipation. Here, tidal velocities are measured in the field using transects of Acoustic Doppler Current Profilers, and confirm that cross-shore tidal currents diminish quickly as they move over the fringe of the forest; they then stay fairly consistent within the outer few 100 m of the forest, indicating that the fringing environment is likely a region of deposition. An understanding of how vegetation controls the development of topography is critical to predicting the resilience of these sensitive intertidal areas to changes in inundation caused by sea-level rise.

  14. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2015-06-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition, and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverages of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverages of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  15. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2016-01-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM, which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs, which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverage of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large-scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverage of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  16. Chemical-Gene Interactions from ToxCast Bioactivity Data Expands Universe of Literature Network-Based Associations (SOT)

    EPA Science Inventory

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets....

  17. Selecting informative subsets of sparse supermatrices increases the chance to find correct trees.

    PubMed

    Misof, Bernhard; Meyer, Benjamin; von Reumont, Björn Marcus; Kück, Patrick; Misof, Katharina; Meusemann, Karen

    2013-12-03

    Character matrices with extensive missing data are frequently used in phylogenomics with potentially detrimental effects on the accuracy and robustness of tree inference. Therefore, many investigators select taxa and genes with high data coverage. Drawbacks of these selections are their exclusive reliance on data coverage without consideration of actual signal in the data which might, thus, not deliver optimal data matrices in terms of potential phylogenetic signal. In order to circumvent this problem, we have developed a heuristics implemented in a software called mare which (1) assesses information content of genes in supermatrices using a measure of potential signal combined with data coverage and (2) reduces supermatrices with a simple hill climbing procedure to submatrices with high total information content. We conducted simulation studies using matrices of 50 taxa × 50 genes with heterogeneous phylogenetic signal among genes and data coverage between 10-30%. With matrices of 50 taxa × 50 genes with heterogeneous phylogenetic signal among genes and data coverage between 10-30% Maximum Likelihood (ML) tree reconstructions failed to recover correct trees. A selection of a data subset with the herein proposed approach increased the chance to recover correct partial trees more than 10-fold. The selection of data subsets with the herein proposed simple hill climbing procedure performed well either considering the information content or just a simple presence/absence information of genes. We also applied our approach on an empirical data set, addressing questions of vertebrate systematics. With this empirical dataset selecting a data subset with high information content and supporting a tree with high average boostrap support was most successful if information content of genes was considered. Our analyses of simulated and empirical data demonstrate that sparse supermatrices can be reduced on a formal basis outperforming the usually used simple selections of taxa and genes with high data coverage.

  18. AmeriFlux US-Cop Corral Pocket

    DOE Data Explorer

    Bowling, David [University of Utah

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Cop Corral Pocket. Site Description - The Corral Pocket site is located in a semi-arid grassland in southeastern Utah, just east of Canyonlands National park. For the greater part of the year, 38-80% of the ground is essentially bare. Vegetation is primarily native perennial C3/C4 grasses with annual ground converge ranging from 8-35%. Leaving the remaining 0-15% coverage to interspersed annual grasses, the remaining 0-15% coverage is occupied by annual grasses. 6-8 weeks during the late fall or winter, Livestock grazing is responsible for the majority of aboveground vegetation loss and subsequent high variability of ground coverage.

  19. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  20. Detection and mapping of hydrothermally altered rocks in the vicinity of the comstock lode, Virginia Range, Nevada, using enhanced LANDSAT images

    NASA Technical Reports Server (NTRS)

    Ashley, R. P. (Principal Investigator); Goetz, A. F. H.; Rowan, L. C.; Abrams, M. J.

    1979-01-01

    The author has identified the following significant results. LANDSAT images enhanced by the band-ratioing method can be used for reconnaissance alteration mapping in moderately heavily vegetated semiarid terrain as well as in sparsely vegetated to semiarid terrain where the technique was originally developed. Significant vegetation cover in a scene, however, requires the use of MSS ratios 4/5, 4/6, and 6/7 rather than 4/5, 5/6, and 6/7, and requires careful interpretation of the results. Supplemental information suitable to vegetation identification and cover estimates, such as standard LANDSAT false-color composites and low altitude aerial photographs of selected areas is desirable.

  1. Suppression of vegetation in LANDSAT ETM+ remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael

    2010-05-01

    Vegetation cover is an impediment to the interpretation of multispectral remote sensing images for geological applications, especially in densely vegetated terrains. In order to enhance the underlying geological information in such terrains, it is desirable to suppress the reflectance component of vegetation. One form of spectral unmixing that has been successfully used for vegetation reflectance suppression in multispectral images is called "forced invariance". It is based on segregating components of the reflectance spectrum that are invariant with respect to a specific spectral index such as the NDVI. The forced invariance method uses algorithms such as software defoliation. However, the outputs of software defoliation are single channel data, which are not amenable to geological interpretations. Crippen and Blom (2001) proposed a new forced invariance algorithm that utilizes band statistics, rather than band ratios. The authors demonstrated the effectiveness of their algorithms on a LANDSAT TM scene from Nevada, USA, especially in open canopy areas in mixed and semi-arid terrains. In this presentation, we report the results of our experimentation with this algorithm on a densely to sparsely vegetated Landsat ETM+ scene. We selected a scene (Path 119, Row 39) acquired on 18th July, 2004. Two study areas located around the city of Hangzhou, eastern China were tested. One of them covers uninhabited hilly terrain characterized by low rugged topography, parts of the hills are densely vegetated; another one covers both inhabited urban areas and uninhabited hilly terrain, which is densely vegetated. Crippen and Blom's algorithm is implemented in the following sequential steps: (1) dark pixel correction; (2) vegetation index calculation; (3) estimation of statistical relationship between vegetation index and digital number (DN) values for each band; (4) calculation of a smooth best-fit curve for the above relationships; and finally, (5) selection of a target average DN value and scaling all pixels at each vegetation index level by an amount that shifts the curve to the target digital number (DN). The main drawback of their algorithm is severe distortions of the DN values of non-vegetated areas, a suggested solution is masking outliers such as cloud, water, etc. We therefore extend this algorithm by masking non-vegetated areas. Our algorithm comprises the following three steps: (1) masking of barren or sparsely vegetated areas using a threshold based on a vegetation index that is calculated after atmosphere correction (dark pixel correction and ACTOR were compared) in order to conserve their original spectral information through the subsequent processing; (2) applying Crippen and Blom's forced invariance algorithm to suppress the spectral response of vegetation only in vegetated areas; and (3) combining the processed vegetated areas with the masked barren or sparsely vegetated areas followed by histogram equalization to eliminate the differences in color-scales between these two types of areas, and enhance the integrated image. The output images of both study areas showed significant improvement over the original images in terms of suppression of vegetation reflectance and enhancement of the underlying geological information. The processed images show clear banding, probably associated with lithological variations in the underlying rock formations. The colors of non-vegetated pixels are distorted in the unmasked results but in the same location the pixels in the masked results show regions of higher contrast. We conclude that the algorithm offers an effective way to enhance geological information in LANDSAT TM/ETM+ images of terrains with significant vegetation cover. It is also suitable to other multispectral satellite data have bands in similar wavelength regions. In addition, an application of this method to hyperspectral data may be possible as long as it can provide the vegetation band ratios.

  2. The Role of Vegetation Cover in Interactions between Climate and Erosion

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Torres-Acosta, V.; Düsing, W.; Garcin, Y.; Strecker, M. R.

    2016-12-01

    Interactions between tectonics, climate and erosion during mountain building are often considered to include a positive feedback between precipitation and erosion, with the onset of orographic rainfall inducing greater erosion, which in turn may drive faster deformation. Here, we consider two different case studies that explore specifically the relationship between climate and erosion. Within the Kenya Rift of East Africa, spatial variations in 10Be derived erosion rates show no clear dependency on yearly precipitation. Instead, we find that the data fall into two categories. In areas that are sparsely vegetated, erosion rates increase rapidly with slope, whereas in areas that are densely vegetated, erosion rates increase slowly with slope. These data imply that vegetation cover plays a major role in stabilizing hillslopes. From these results, we hypothesize that in a sparsely vegetated region, the onset of greater precipitation will lead to faster erosion, but only until vegetation becomes denser, after which erosion rates will strongly decrease. Initial results from an ongoing study that reconstruct paleo-erosion rates from a sedimentary archive support this hypothesis. Hence, we infer that in this region, vegetation cover acts as a negative feedback in the interactions between climate and erosion. Compared to East Africa, we find a very different relationship between climate and 10Be derived erosion rates in the Toro intermontane basin in NW Argentina. There, the fastest erosion rates occur in the wettest areas with dense vegetation cover, implying a positive feedback between increased precipitation and erosion rates. Also, paleo-erosion rates from the nearby Humahuaca Basin derived from fluvial terraces point to faster erosion during wetter periods in the past. In this region, the stabilizing effects of vegetation cover may be muted. Ultimately, whether increased precipitation leads to faster or slower erosion could hinge on the dominant erosion processes. Along the steep slopes of NW Argentina, landslides are the dominant process, and appear to be minimally affected by vegetation cover. In contrast, the more gentle hillslopes in East Africa appear to be stabilized by a dense vegetation cover.

  3. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30years.

    PubMed

    Zhang, Zengxin; Chang, Juan; Xu, Chong-Yu; Zhou, Yang; Wu, Yanhong; Chen, Xi; Jiang, Shanshan; Duan, Zheng

    2018-09-01

    Lakes and vegetation are important factors of the Earth's hydrological cycle and can be called an "indicator" of climate change. In this study, long-term changes of lakes' area and vegetation coverage in the Qinghai-Tibetan Plateau (QTP) and their relations to the climate change were analyzed by using Mann-Kendall method during the past 30years. Results showed that: 1) the lakes' area of the QTP increased significantly during the past 30years as a whole, and the increasing rates have been dramatically sped up since the year of 2000. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, which increased from 618km 2 in the 1980s to 983km 2 in the 2010s; 2) overall, the Normalized Difference Vegetation Index (NDVI) increased in the QTP during the past 30years. Above 79% of the area in the QTP showed increasing trend of NDVI before the year of 2000; 3) the air temperature increased significantly, the precipitation increased slightly, and the pan evaporation decreased significantly during the past 30years. The lake area and vegetation coverage changes might be related to the climate change. The shifts in the temporal climate trend occurred around the year 2000 had led the lake area and vegetation coverage increasing. This study is of importance in further understanding the environmental changes under global warming over the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Assessing alternative industrial fortification portfolios: a Bangladesh case study.

    PubMed

    Fiedler, John L; Lividini, Keith; Guyondet, Christophe; Bermudez, Odilia I

    2015-03-01

    Approximately 1.2 million disability-adjusted life years (DALYs) are lost annually in Bangladesh due to deficiencies of vitamin A, iron, and zinc. To provide evidence on the coverage, costs, and cost-effectiveness of alternative fortification interventions to inform nutrition policy-making in Bangladesh. Combining the 2005 Bangladesh Household Income and Expenditure Survey with a Bangladesh food composition table, apparent intakes of energy, vitamin A, iron, and zinc, and the coverage and apparent consumption levels of fortifiable vegetable oil and wheat flour are estimated. Assuming that fortification levels are those established in official regulations, the costs and cost-effectiveness of the two vehicles are assessed independently and as a two-vehicle portfolio. Vegetable oil has a coverage rate of 76% and is estimated to reduce the prevalence of inadequate vitamin A intake from 83% to 64%. The coverage of wheat flour is high (65%), but the small quantities consumed result in small reductions in the prevalence of inadequate intakes: 1.5 percentage points for iron, less than 1 for zinc, and 2 for vitamin A, while reducing average Estimated Average Requirement (EAR) gaps by 8%, 9%, and 15%, respectively. The most cost-effective 10-micronutrient wheat flour formulation costs US $1.91 million annually, saving 129,212 DALYs at a unit cost of US $14.75. Fortifying vegetable oil would cost US $1.27 million annually, saving 406,877 DALYs at an average cost of US $3.25. Sensitivity analyses explore various permutations of the wheat flour formulation. Divisional variations in coverage, cost, and impact are examined. Vegetable oil fortification is the most cost-effective of the three portfolios analyzed, but all three are very cost-effective options for Bangladesh.

  5. An assessment of geographical distribution of different plant functional types over North America simulated using the CLASS-CTEM modelling framework

    NASA Astrophysics Data System (ADS)

    Shrestha, Rudra K.; Arora, Vivek K.; Melton, Joe R.; Sushama, Laxmi

    2017-10-01

    The performance of the competition module of the CLASS-CTEM (Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem Model) modelling framework is assessed at 1° spatial resolution over North America by comparing the simulated geographical distribution of its plant functional types (PFTs) with two observation-based estimates. The model successfully reproduces the broad geographical distribution of trees, grasses and bare ground although limitations remain. In particular, compared to the two observation-based estimates, the simulated fractional vegetation coverage is lower in the arid southwest North American region and higher in the Arctic region. The lower-than-observed simulated vegetation coverage in the southwest region is attributed to lack of representation of shrubs in the model and plausible errors in the observation-based data sets. The observation-based data indicate vegetation fractional coverage of more than 60 % in this arid region, despite only 200-300 mm of precipitation that the region receives annually, and observation-based leaf area index (LAI) values in the region are lower than one. The higher-than-observed vegetation fractional coverage in the Arctic is likely due to the lack of representation of moss and lichen PFTs and also likely because of inadequate representation of permafrost in the model as a result of which the C3 grass PFT performs overly well in the region. The model generally reproduces the broad spatial distribution and the total area covered by the two primary tree PFTs (needleleaf evergreen trees, NDL-EVG; and broadleaf cold deciduous trees, BDL-DCD-CLD) reasonably well. The simulated fractional coverage of tree PFTs increases after the 1960s in response to the CO2 fertilization effect and climate warming. Differences between observed and simulated PFT coverages highlight model limitations and suggest that the inclusion of shrubs, and moss and lichen PFTs, and an adequate representation of permafrost will help improve model performance.

  6. Monitoring global vegetation using Nimbus-7 37 GHz data - Some empirical relations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Tucker, C. J.

    1987-01-01

    The difference of the vertically and horizontally polarized brightness temperatures observed by the 37 GHz channel of the SMMR on board the Nimbus-7 satellite are correlated temporally with three indicators of vegetation density, namely the temporal variation of the atmospheric CO2 concentration at Mauna Loa (Hawaii), rainfall over the Sahel and the normalized difference vegetation index derived from the AVHRR on board the NOAA-7 satellite. SMMR 37 GHz and AVHRR provide complementary data sets for monitoring global vegetation, the 37 GHz data being more suitable for arid and semiarid regions as these data are more sensitive to changes in sparse vegetation. The 37-GHz data might be useful for understanding desertification and indexing Co2 exchange between the biosphere and the atmosphere.

  7. Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela Irina

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detectmore » geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.« less

  8. [Effects of climate and grazing on the vegetation cover change in Xilinguole League of Inner Mongolia, North China].

    PubMed

    Wang, Hai-Mei; Li, Zheng-Hai; Wang, Zhen

    2013-01-01

    Based on the monthly temperature and precipitation data of 15 meteorological stations and the statistical data of livestock density in Xilinguole League in 1981-2007, and by using ArcGIS, this paper analyzed the spatial distribution of the climate aridity and livestock density in the League, and in combining with the ten-day data of the normalized difference vegetation index (NDVI) in 1981-2007, the driving factors of the vegetation cover change in the League were discussed. In the study period, there was a satisfactory linear regression relationship between the climate aridity and the vegetation coverage. The NDVI and the livestock density had a favorable binomial regression relationship. With the increase of NDVI, the livestock density increased first and decreased then. The vegetation coverage had a complex linear relationship with livestock density and climate aridity. The NDVI had a positive correlation with climate aridity, but a negative correlation with livestock density. Compared with livestock density, climate aridity had far greater effects on the NDVI.

  9. Effect of Atmospheric Conditions on Coverage of Fogger Applications in a Desert Surface Boundary Layer

    DTIC Science & Technology

    2012-01-01

    2007) in pecan orchards, among others. In this sparse shrub desert environment, Nappo et al. (2010) showed that, during sta- ble conditions, the...measuring water use in flood-irrigated pecans (Carya illinoinensis). Agric. Water Mgmt. 88(1-3): 181-191. Solanelles, F., E. Gregorio, R. Sanz, J. R

  10. Coverage maximization under resource constraints using a nonuniform proliferating random walk.

    PubMed

    Saha, Sudipta; Ganguly, Niloy

    2013-02-01

    Information management services on networks, such as search and dissemination, play a key role in any large-scale distributed system. One of the most desirable features of these services is the maximization of the coverage, i.e., the number of distinctly visited nodes under constraints of network resources as well as time. However, redundant visits of nodes by different message packets (modeled, e.g., as walkers) initiated by the underlying algorithms for these services cause wastage of network resources. In this work, using results from analytical studies done in the past on a K-random-walk-based algorithm, we identify that redundancy quickly increases with an increase in the density of the walkers. Based on this postulate, we design a very simple distributed algorithm which dynamically estimates the density of the walkers and thereby carefully proliferates walkers in sparse regions. We use extensive computer simulations to test our algorithm in various kinds of network topologies whereby we find it to be performing particularly well in networks that are highly clustered as well as sparse.

  11. Incorporating Ecosystem Processes Controlling Carbon Balance Into Models of Coupled Human-Natural Systems

    NASA Astrophysics Data System (ADS)

    Currie, W.; Brown, D. G.; Brunner, A.; Fouladbash, L.; Hadzick, Z.; Hutchins, M.; Kiger, S. E.; Makino, Y.; Nassauer, J. I.; Robinson, D. T.; Riolo, R. L.; Sun, S.

    2012-12-01

    A key element in the study of coupled human-natural systems is the interactions of human populations with vegetation and soils. In human-dominated landscapes, vegetation production and change results from a combination of ecological processes and human decision-making and behavior. Vegetation is often dramatically altered, whether to produce food for humans and livestock, to harvest fiber for construction and other materials, to harvest fuel wood or feedstock for biofuels, or simply for cultural preferences as in the case of residential lawns with sparse trees in the exurban landscape. This alteration of vegetation and its management has a substantial impact on the landscape carbon balance. Models can be used to simulate scenarios in human-natural systems and to examine the integration of processes that determine future trajectories of carbon balance. However, most models of human-natural systems include little integration of the human alteration of vegetation with the ecosystem processes that regulate carbon balance. Here we illustrate a few case studies of pilot-study models that strive for this integration from our research across various types of landscapes. We focus greater detail on a fully developed research model linked to a field study of vegetation and soils in the exurban residential landscape of Southeastern Michigan, USA. The field study characterized vegetation and soil carbon storage in 5 types of ecological zones. Field-observed carbon storage in the vegetation in these zones ranged widely, from 150 g C/m2 in turfgrass zones, to 6,000 g C/m2 in zones defined as turfgrass with sparse woody vegetation, to 16,000 g C/m2 in a zone defined as dense trees and shrubs. Use of these zones facilitated the scaling of carbon pools to the landscape, where the areal mixtures of zone types had a significant impact on landscape C storage. Use of these zones also facilitated the use of the ecosystem process model Biome-BGC to simulate C trajectories and also facilitated our linkage of vegetation management, such as lawn mowing, fertilizer use, and leaf litter removal, to agent-based modeling of human preferences and behaviors.

  12. Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland

    NASA Astrophysics Data System (ADS)

    Keefe, Steffanie H.; Daniels, Joan S. (Thullen); Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.

    2010-11-01

    A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one-dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start-up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross-sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short-circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.

  13. Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland

    USGS Publications Warehouse

    Keefe, Steffanie H.; Daniels, Joan S.; Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.

    2010-01-01

    A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one‐dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start‐up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross‐sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short‐circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.

  14. Aeolian Sediment Trapping Efficiencies of Sparse Vegetation and its Ecohydrological Consequences in Drylands

    NASA Astrophysics Data System (ADS)

    Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.

    2016-12-01

    Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.

  15. [Ecological distribution and antimicrobial effects of soil actinomycetes in artificial vegetation systems in Shazhuyu of Qinghai, China].

    PubMed

    Yang, Bin; Xue, Quan-hong; Chen, Zhan-quan; Guo, Zhi-ying; Zhang, Xiao-lu; Zhou, Yong-qiang; Xu, Ying-jun; Sun, De-fu

    2008-08-01

    In order to probe into the effects of artificial vegetation rehabilitation on soil actinomycetes, dilution plate and agar block methods were used to investigate the ecological distribution and antimicrobial effects of actinomycetes in sandy soil in Shazhuyu area of Qinghai after artificial vegetation restoration. The results showed that with the vegetation rehabilitation and the improvement of vegetation coverage on alpine sandy dry land, the quantity of soil actinomycetes increased significantly, being 145.4% higher in the grassland transferred from farmland than in sandy land. The quantity of soil Micromonospora in grassland transferred from farmland was about six times as much as that in sandy land. The average selection rate of antimicrobial actinomycetes was increased greatly, with the antimicrobial actinomycetes in the soil of grassland transferred from farmland, the antibacterial actinomycetes in the soil of natural grassland, and the pathogenic fungus resistant aetinomycetes in the soil of forestland being approximately 2, 3.2 and 1.5 times as much as those in the soil of sandy land, respectively. Vegetation coverage and soil nutrients had great influences on the quantities of actinomycetes and antimicrobial actinomycetes. The contents of soil organic matter and alkali-hydrolyzable nitrogen and the yield of fresh grasses had significant correlations with the quantities of actinomycetes (P < 0.01), and the content of soil organic matter and the yield of fresh grasses significantly correlated with the strain numbers of antimicrobial actinomycetes (P < 0.01). Furthermore, vegetation coverage and the contents of soil total nitrogen, total phosphorous, total potassium, total salt, and available potassium had significant correlations with the total quantities of actinomycetes, Streptomycetes, and Micromonospora (P < 0.05).

  16. RELATIONSHIP BETWEEN THE AERODYNAMIC ROUGHNESS LENGTH AND THE ROUGHNESS DENSITY IN CASES OF LOW ROUGHNESS DENSITY

    EPA Science Inventory

    This paper presents measurements of roughness length performed in a wind tunnel for low roughness density. The experiments were performed with both compact and porous obstacles (clusters), in order to simulate the behavior of sparsely vegetated surfaces.

  17. An Intercomparison of Vegetation Products from Satellite-based Observations used for Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; de Jeu, Richard; Wagner, Wolfgang; Dorigo, Wouter; Hahn, Sebastian; Bloeschl, Guenter

    2013-04-01

    Vegetation and its water content affect active and passive microwave soil moisture retrievals and need to be taken into account in such retrieval methodologies. This study compares the vegetation parameterisation that is used in the TU-Wien soil moisture retrieval algorithm to other vegetation products, such as the Vegetation Optical Depth (VOD), Net Primary Production (NPP) and Leaf Area Index (LAI). When only considering the retrieval algorithm for active microwaves, which was developed by the TU-Wien, the effect of vegetation on the backscattering coefficient is described by the so-called slope [1]. The slope is the first derivative of the backscattering coefficient in relation to the incidence angle. Soil surface backscatter normally decreases quite rapidly with the incidence angle over bare or sparsely vegetated soils, whereas the contribution of dense vegetation is fairly uniform over a large range of incidence angles. Consequently, the slope becomes less steep with increasing vegetation. Because the slope is a derivate of noisy backscatter measurements, it is characterised by an even higher level of noise. Therefore, it is averaged over several years assuming that the state of the vegetation doesn't change inter-annually. The slope is compared to three dynamic vegetation products over Australia, the VOD, NPP and LAI. The VOD was retrieved from AMSR-E passive microwave data using the VUA-NASA retrieval algorithm and provides information on vegetation with a global coverage of approximately every two days [2]. LAI is defined as half the developed area of photosynthetically active elements of the vegetation per unit horizontal ground area. In this study LAI is used from the Geoland2 products derived from SPOT Vegetation*. The NPP is the net rate at which plants build up carbon through photosynthesis and is a model-based estimate from the BiosEquil model [3, 4]. Results show that VOD and slope correspond reasonably well over vegetated areas, whereas in arid areas, where the microwave signals mostly stem from the soil surface and deeper soil layers, they are negatively correlated. A second comparison of monthly values of both vegetation parameters to modelled NPP data shows that particularly over dry areas the VOD corresponds better to the NPP, with r=0.79 for VOD-NPP and r=-0.09 for slope-NPP. 1. Wagner, W., et al., A Study of Vegetation Cover Effects on ERS Scatterometer Data. IEEE Transactions on Geoscience and Remote Sensing, 1999. 37(2): p. 938-948. 2. Owe, M., R. de Jeu, and J. Walker, A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. Geoscience and Remote Sensing, IEEE Transactions on, 2001. 39(8): p. 1643-1654. 3. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosphorus in Australian Landscapes: (1) Project Description and Results, 2001, Sustainable Minerals Institute, CSIRO Land and Water. 4. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosporus in Australian Landscapes: (2) Model Formulation and Testing, 2001, Sustainable Minerals Institute, CSIRO Land and Water. * These products are the joint property of INRA, CNES and VITO under copyright of Geoland2. They are generated from the SPOT VEGETATION data under copyright CNES and distribution by VITO.

  18. A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity.

    PubMed

    Obrist, Daniel; Pearson, Christopher; Webster, Jackson; Kane, Tyler; Lin, Che-Jen; Aiken, George R; Alpers, Charles N

    2016-10-15

    A synthesis of published vegetation mercury (Hg) data across 11 contiguous states in the western United States showed that aboveground biomass concentrations followed the order: leaves (26μgkg(-1))~branches (26μgkg(-1))>bark (16μgkg(-1))>bole wood (1μgkg(-1)). No spatial trends of Hg in aboveground biomass distribution were detected, which likely is due to very sparse data coverage and different sampling protocols. Vegetation data are largely lacking for important functional vegetation types such as shrubs, herbaceous species, and grasses. Soil concentrations collected from the published literature were high in the western United States, with 12% of observations exceeding 100μgkg(-1), reflecting a bias toward investigations in Hg-enriched sites. In contrast, soil Hg concentrations from a randomly distributed data set (1911 sampling points; Smith et al., 2013a) averaged 24μgkg(-1) (A-horizon) and 22μgkg(-1) (C-horizon), and only 2.6% of data exceeded 100μgkg(-1). Soil Hg concentrations significantly differed among land covers, following the order: forested upland>planted/cultivated>herbaceous upland/shrubland>barren soils. Concentrations in forests were on average 2.5 times higher than in barren locations. Principal component analyses showed that soil Hg concentrations were not or weakly related to modeled dry and wet Hg deposition and proximity to mining, geothermal areas, and coal-fired power plants. Soil Hg distribution also was not closely related to other trace metals, but strongly associated with organic carbon, precipitation, canopy greenness, and foliar Hg pools of overlying vegetation. These patterns indicate that soil Hg concentrations are related to atmospheric deposition and reflect an overwhelming influence of plant productivity - driven by water availability - with productive landscapes showing high soil Hg accumulation and unproductive barren soils and shrublands showing low soil Hg values. Large expanses of low-productivity, arid ecosystems across the western U.S. result in some of the lowest soil Hg concentrations observed worldwide. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales.

    PubMed

    Feng, Huihui

    2016-09-07

    Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and -14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed -40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate.

  20. [Green space vegetation quantity in workshop area of Wuhan Iron and Steel Company].

    PubMed

    Chen, Fang; Zhou, Zhixiang; Wang, Pengcheng; Li, Haifang; Zhong, Yingfei

    2006-04-01

    Aimed at the complex community structure and higher fragmentation of urban green space, and based on the investigation of synusia structure and its coverage, this paper studied the vegetation quantity of ornamental green space in the workshop area of Wuhan Iron and Steel Company, with the help of GIS. The results showed that different life forms of ornamental plants in this area had a greater difference in their single leaf area and leaf area index (LAI), and the LAI was not only depended on single leaf area, but also governed by the shape of tree crown and the intensive degree of branches and leaves. The total vegetation quantity was 1 694.2 hm2, with the average LAI being 7.75, and the vegetation quantity of arbor-shrub-herb and arbor-shrub communities accounted for 79.7% and 92.3% of the total, respectively, reflecting that the green space structure was dominated by arbor species and by arbor-shrub-herb and arbor-shrub community types. Single layer-structured lawn had a less percentage, while the vegetation quantity of herb synusia accounted for 22.9% of the total, suggesting an afforestation characteristic of "making use of every bit of space" in the workshop area. The vegetation quantity of urban ornamental green space depended on the area of green space, its synusia structure, and the LAI and coverage of ornamental plants. In enlarging urban green space, ornamental plant species with high LAI should be selected, and community structure should be improved to have a higher vegetation quantity in urban area. To quantify the vegetation quantity of urban ornamental green space more accurately, synusia should be taken as the unit to measure the LAI of typical species, and the synusia structure and its coverage of different community types should be investigated with the help of remote sensing images and GIS.

  1. Can seed removal through soil erosion explain the scarcity of vegetation in the Chinese Loess Plateau?

    NASA Astrophysics Data System (ADS)

    Jiao, Juying; Han, Luyan; Jia, Yanfeng; Wang, Ning; Lei, Dong; Li, Linyu

    2011-09-01

    Seed removal by water erosion may explain the sparse vegetation cover in systems like the Chinese Loess Plateau, which is characterized by severe soil erosion. The seeds from 16 species found on the plateau were examined in relation to the likelihood of their removal by erosion, as tested by rainfall simulation experiments. The experiments were performed over 1-m 2 plots with slopes of 10°, 15°, 20° and 25° for 60 min at intensities of 50 mm h -1, 100 mm h -1 and 150 mm h -1, respectively. Seed loss occurred at simulated rainfall intensities of 100 mm h -1 and 150 mm h -1, with total seed loss rates of 26-33% and 59-67%, respectively. Most seeds were displaced, even at 50 mm h -1. The degrees of seed loss and displacement varied among species. These data, in combination with data from our former research on propagule, seedling and population development in these species, indicate that the species with high seed loss rates either compensate by having a soil seed bank that produces seedlings during the growing season or reproduce by vegetative propagation; the species with no seed loss are still sparsely distributed. Seed germination and seedling survival seem to be more important than seed loss in determining establishment in these regions of the Loess Plateau. Seed translocation by water erosion, however, contributes to the observed distribution of vegetation in this geographic region.

  2. Mountain plover nest survival in relation to prairie dog and fire dynamics in shortgrass steppe

    USDA-ARS?s Scientific Manuscript database

    Disturbed xeric grasslands with short, sparse vegetation provide important breeding habitat for mountain plovers (Charadrius montanus) across the western Great Plains. Maintaining local disturbance regimes through prairie dog conservation and prescribed fire may contribute to the sustainability of r...

  3. Classification of vegetation types in military region

    NASA Astrophysics Data System (ADS)

    Gonçalves, Miguel; Silva, Jose Silvestre; Bioucas-Dias, Jose

    2015-10-01

    In decision-making process regarding planning and execution of military operations, the terrain is a determining factor. Aerial photographs are a source of vital information for the success of an operation in hostile region, namely when the cartographic information behind enemy lines is scarce or non-existent. The objective of present work is the development of a tool capable of processing aerial photos. The methodology implemented starts with feature extraction, followed by the application of an automatic selector of features. The next step, using the k-fold cross validation technique, estimates the input parameters for the following classifiers: Sparse Multinomial Logist Regression (SMLR), K Nearest Neighbor (KNN), Linear Classifier using Principal Component Expansion on the Joint Data (PCLDC) and Multi-Class Support Vector Machine (MSVM). These classifiers were used in two different studies with distinct objectives: discrimination of vegetation's density and identification of vegetation's main components. It was found that the best classifier on the first approach is the Sparse Logistic Multinomial Regression (SMLR). On the second approach, the implemented methodology applied to high resolution images showed that the better performance was achieved by KNN classifier and PCLDC. Comparing the two approaches there is a multiscale issue, in which for different resolutions, the best solution to the problem requires different classifiers and the extraction of different features.

  4. Using an Android application to assess registration strategies in open hepatic procedures: a planning and simulation tool

    NASA Astrophysics Data System (ADS)

    Doss, Derek J.; Heiselman, Jon S.; Collins, Jarrod A.; Weis, Jared A.; Clements, Logan W.; Geevarghese, Sunil K.; Miga, Michael I.

    2017-03-01

    Sparse surface digitization with an optically tracked stylus for use in an organ surface-based image-to-physical registration is an established approach for image-guided open liver surgery procedures. However, variability in sparse data collections during open hepatic procedures can produce disparity in registration alignments. In part, this variability arises from inconsistencies with the patterns and fidelity of collected intraoperative data. The liver lacks distinct landmarks and experiences considerable soft tissue deformation. Furthermore, data coverage of the organ is often incomplete or unevenly distributed. While more robust feature-based registration methodologies have been developed for image-guided liver surgery, it is still unclear how variation in sparse intraoperative data affects registration. In this work, we have developed an application to allow surgeons to study the performance of surface digitization patterns on registration. Given the intrinsic nature of soft-tissue, we incorporate realistic organ deformation when assessing fidelity of a rigid registration methodology. We report the construction of our application and preliminary registration results using four participants. Our preliminary results indicate that registration quality improves as users acquire more experience selecting patterns of sparse intraoperative surface data.

  5. A LANDSAT study of ephemeral and perennial rangeland vegetation and soils

    NASA Technical Reports Server (NTRS)

    Bentley, R. G., Jr. (Principal Investigator); Salmon-Drexler, B. C.; Bonner, W. J.; Vincent, R. K.

    1976-01-01

    The author has identified the following significant results. Several methods of computer processing were applied to LANDSAT data for mapping vegetation characteristics of perennial rangeland in Montana and ephemeral rangeland in Arizona. The choice of optimal processing technique was dependent on prescribed mapping and site condition. Single channel level slicing and ratioing of channels were used for simple enhancement. Predictive models for mapping percent vegetation cover based on data from field spectra and LANDSAT data were generated by multiple linear regression of six unique LANDSAT spectral ratios. Ratio gating logic and maximum likelihood classification were applied successfully to recognize plant communities in Montana. Maximum likelihood classification did little to improve recognition of terrain features when compared to a single channel density slice in sparsely vegetated Arizona. LANDSAT was found to be more sensitive to differences between plant communities based on percentages of vigorous vegetation than to actual physical or spectral differences among plant species.

  6. Considering Spatial Scale and Reproductive Consequences of Habitat Selection when Managing Grasslands for a Threatened Species

    PubMed Central

    Pearson, Scott F.; Knapp, Shannon M.

    2016-01-01

    Habitat selection that has fitness consequences has important implications for conservation activities. For example, habitat characteristics that influence nest success in birds can be manipulated to improve habitat quality with the goal of ultimately improving reproductive success. We examined habitat selection by the threatened streaked horned lark (Eremophila alpestris strigata) at both the breeding-site (territory) and nest-site scales. Larks were selective at both spatial scales but with contrasting selection. At the territory scale, male larks selected sparsely vegetated grasslands with relatively short vegetation. At the nest-site scale, female larks selected sites within territories with higher vegetation density and more perennial forbs. These nest-site scale choices had reproductive consequences, with greater nest success in areas with higher densities of perennial forbs. We experimentally manipulated lark habitat structure in an attempt to mimic the habitat conditions selected by larks by using late summer prescribed fires. After the burn, changes in vegetation structure were in the direction preferred by larks but habitat effects attenuated by the following year. Our results highlight the importance of evaluating habitat selection at spatial scales appropriate to the species of interest, especially when attempting to improve habitat quality for rare and declining species. They also highlight the importance of conducting restoration activities in a research context. For example, because the sparsely vegetated conditions created by fire attenuate, there may be value in examining more frequent burns or hotter fires as the next management and research action. We hope the design outlined in this study will serve as an integrated research and management example for conserving grassland birds generally. PMID:27322196

  7. Mapping of the Land Cover Spatiotemporal Characteristics in Northern Russia Caused by Climate Change

    NASA Astrophysics Data System (ADS)

    Panidi, E.; Tsepelev, V.; Torlopova, N.; Bobkov, A.

    2016-06-01

    The study is devoted to the investigation of regional climate change in Northern Russia. Due to sparseness of the meteorological observation network in northern regions, we investigate the application capabilities of remotely sensed vegetation cover as indicator of climate change at the regional scale. In previous studies, we identified statistically significant relationship between the increase of surface air temperature and increase of the shrub vegetation productivity. We verified this relationship using ground observation data collected at the meteorological stations and Normalised Difference Vegetation Index (NDVI) data produced from Terra/MODIS satellite imagery. Additionally, we designed the technique of growing seasons separation for detailed investigation of the land cover (shrub cover) dynamics. Growing seasons are the periods when the temperature exceeds +5°C and +10°C. These periods determine the vegetation productivity conditions (i.e., conditions that allow growth of the phytomass). We have discovered that the trend signs for the surface air temperature and NDVI coincide on planes and river floodplains. On the current stage of the study, we are working on the automated mapping technique, which allows to estimate the direction and magnitude of the climate change in Northern Russia. This technique will make it possible to extrapolate identified relationship between land cover and climate onto territories with sparse network of meteorological stations. We have produced the gridded maps of NDVI and NDWI for the test area in European part of Northern Russia covered with the shrub vegetation. Basing on these maps, we may determine the frames of growing seasons for each grid cell. It will help us to obtain gridded maps of the NDVI linear trend for growing seasons on cell-by-cell basis. The trend maps can be used as indicative maps for estimation of the climate change on the studied areas.

  8. Introduction to Biological Soil Crusts

    Science.gov Websites

    Introduction to Biological Soil Crusts In more arid regions, vegetative cover is generally sparse. Open spaces are usually covered by biological soil crusts, a highly specialized community of cyanobacteria, mosses , and lichens (Figure 1). Biological soil crusts are commonly found in semiarid and arid environments

  9. Restoration of temperate savannas and woodlands

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  10. SUBMERSED MACROPHYTE DISTRIBUTION AND FUNCTION IN THE TIDAL FRESHWATER HUDSON RIVER

    EPA Science Inventory

    In the tidal freshwater Hudson River submerged aquatic vegetation (SAV) occupies on average 6 percent of the river area with much greater coverage in the mid Hudson (Kingston-Hudson) and much lower areal coverage south of Hyde Park. The native water celery ( Vallisneria americana...

  11. Review on urban vegetation and particle air pollution - Deposition and dispersion

    NASA Astrophysics Data System (ADS)

    Janhäll, Sara

    2015-03-01

    Urban vegetation affects air quality through influencing pollutant deposition and dispersion. Both processes are described by many existing models and experiments, on-site and in wind tunnels, focussing e.g. on urban street canyons and crossings or vegetation barriers adjacent to traffic sources. There is an urgent need for well-structured experimental data, including detailed empirical descriptions of parameters that are not the explicit focus of the study. This review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements. The reduced mixing in trafficked street canyons on adding large trees increases local air pollution levels, while low vegetation close to sources can improve air quality by increasing deposition. Filtration vegetation barriers have to be dense enough to offer large deposition surface area and porous enough to allow penetration, instead of deflection of the air stream above the barrier. The choice between tall or short and dense or sparse vegetation determines the effect on air pollution from different sources and different particle sizes.

  12. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    USGS Publications Warehouse

    Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia

    2014-01-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  13. LiDAR point classification based on sparse representation

    NASA Astrophysics Data System (ADS)

    Li, Nan; Pfeifer, Norbert; Liu, Chun

    2017-04-01

    In order to combine the initial spatial structure and features of LiDAR data for accurate classification. The LiDAR data is represented as a 4-order tensor. Sparse representation for classification(SRC) method is used for LiDAR tensor classification. It turns out SRC need only a few of training samples from each class, meanwhile can achieve good classification result. Multiple features are extracted from raw LiDAR points to generate a high-dimensional vector at each point. Then the LiDAR tensor is built by the spatial distribution and feature vectors of the point neighborhood. The entries of LiDAR tensor are accessed via four indexes. Each index is called mode: three spatial modes in direction X ,Y ,Z and one feature mode. Sparse representation for classification(SRC) method is proposed in this paper. The sparsity algorithm is to find the best represent the test sample by sparse linear combination of training samples from a dictionary. To explore the sparsity of LiDAR tensor, the tucker decomposition is used. It decomposes a tensor into a core tensor multiplied by a matrix along each mode. Those matrices could be considered as the principal components in each mode. The entries of core tensor show the level of interaction between the different components. Therefore, the LiDAR tensor can be approximately represented by a sparse tensor multiplied by a matrix selected from a dictionary along each mode. The matrices decomposed from training samples are arranged as initial elements in the dictionary. By dictionary learning, a reconstructive and discriminative structure dictionary along each mode is built. The overall structure dictionary composes of class-specified sub-dictionaries. Then the sparse core tensor is calculated by tensor OMP(Orthogonal Matching Pursuit) method based on dictionaries along each mode. It is expected that original tensor should be well recovered by sub-dictionary associated with relevant class, while entries in the sparse tensor associated with other classed should be nearly zero. Therefore, SRC use the reconstruction error associated with each class to do data classification. A section of airborne LiDAR points of Vienna city is used and classified into 6classes: ground, roofs, vegetation, covered ground, walls and other points. Only 6 training samples from each class are taken. For the final classification result, ground and covered ground are merged into one same class(ground). The classification accuracy for ground is 94.60%, roof is 95.47%, vegetation is 85.55%, wall is 76.17%, other object is 20.39%.

  14. Trend Patterns of Vegetative Coverage and Their Underlying Causes in the Deserts of Northwest China over 1982 – 2008

    PubMed Central

    Zhang, Tianyi; Wang, Hesong

    2015-01-01

    We identified the spatiotemporal patterns of the Normalized Difference Vegetation Index (NDVI) for the years 1982–2008 in the desert areas of Northwest China and quantified the impacts of climate and non-climate factors on NDVI changes. The results indicate that although the mean NDVI has improved in 24.7% of the study region; 16.3% among the region has been stagnating in recent years and only 8.4% had a significantly increasing trend. Additionally, 45.3% of the region has maintained a stable trend over the study period and 30.0% has declined. A multiple regression model suggests that a wetter climate (quantified by the Palmer Drought Severity Index, PDSI) is associated with higher NDVI in most areas (18.1% of significance) but these historical changes in PDSI only caused an average improvement of approximately 0.4% over the study region. Contrasting the regression results under different trend patterns, no significant differences in PDSI impacts were detected among the four trend patterns. Therefore, we conclude that climate is not the primary driver for vegetative coverage in Northwest China. Future studies will be required to identify the impacts of specific non-climatic factors on vegetative coverage based on high-resolution data, which will be beneficial in creating an effective strategy to combat the recent desertification trend in China. PMID:25961563

  15. Remote Sensing of Aquatic Vegetation Coverage in the Kafue River, Zambia and Comparison to Climatic Variables

    NASA Astrophysics Data System (ADS)

    Mischler, J. A.; Abdalati, W.; Hussein, K.; Townsend, A. R.

    2013-12-01

    The Kafue River is the longest river in Zambia and is a major tributary of the Zambezi River. It is a vital source of fish, transportation, drinking water, and hydropower for much of Zambia's population, over half of whom live in the Kafue River basin. Like many important water bodies in developing countries the Kafue and its ecosystems face pollution from industrial, mining, agricultural, and domestic/sewage discharge. The Kafue River forms a wide and shallow wetland (the Kafue Flats) during the rainy season (Nov. - Apr.) which serves as habitat for diverse groups of birds and mammals. In recent years the unprecedented emergence of invasive aquatic vegetation such as the water hyacinth (Eichhornia crassipes) and Salvinia molesta have choked the river, degrading its ability to provide adequate habitat to promote biodiversity, ecosystem services, and hydropower. In addition, these plants provide additional habitat for mosquitoes (vectors for malaria) and aquatic snails (vectors of schistosomiasis). Nutrient-rich effluents are widely believed to contribute to the proliferation and explosive growth of this floating aquatic vegetation. The general methods for managing these aquatic weeds have included mechanical and physical removal, herbicides, and bio-control agents which have had very little impact. However, as in neighboring Lake Victoria, total weed coverage has fluctuated dramatically from year to year making evaluation of the efficacy of management programs difficult. The objectives of this study were to (1) generate the first record of aquatic plant coverage for a section of the Kafue River which is immediately downstream of a sugar plantation (a major source of nitrogen and phosphorus to the river) and (2) determine if plant coverage is correlated with any major climatic (ENSO, temperature, rainfall) or management (introduction of bio-control agents) indices. We utilized remote sensing techniques in conjunction with Landsat 4-5 TM and Landsat 7 ETM imagery for the time range 1990 to 2013 to identify the extent of aquatic vegetation in the dry season for all years available within the time range using spectral data. We derived rainfall for the time period from TRMM data and temperature from MODIS LST data. Overall weed coverage tended to increase from 1990 to 2013. There was no significant correlation between rainfall (as measured by TRMM) and water hyacinth coverage. However there was a significant positive correlation between minimum October temperatures (the warmest month of the year) and weed coverage (exponential fit, R2 = 0.81). There was no indication that the release of bio-control agents reduced weed coverage. Water hyacinth is known to be sensitive to temperature, with cooler temperatures retarding growth. In the Kafue River, aquatic plant coverage varies mainly with October low temperatures indicating an overall control of temperature on weed coverage. Increasing low temperatures in the region would be expected to exacerbate problems associated with aquatic weeds.

  16. Biomass assessment of microbial surface communities by means of hyperspectral remote sensing data.

    PubMed

    Rodríguez-Caballero, Emilio; Paul, Max; Tamm, Alexandra; Caesar, Jennifer; Büdel, Burkhard; Escribano, Paula; Hill, Joachim; Weber, Bettina

    2017-05-15

    Dryland vegetation developed morphological and physiological strategies to cope with drought. However, as aridity increases, vascular plant coverage gets sparse and microbially-dominated surface communities (MSC), comprising cyanobacteria, algae, lichens and bryophytes together with heterotropic bacteria, archaea and fungi, gain relevance. Nevertheless, the relevance of MSC net primary productivity has only rarely been considered in ecosystem scale studies, and detailed information on their contribution to the total photosynthetic biomass reservoir is largely missing. In this study, we mapped the spatial distribution of two different MSC (biological soil crusts and quartz fields hosting hypolithic crusts) at two different sites within the South African Succulent Karoo (Soebatsfontein and Knersvlakte). Then we characterized both types of MSC in terms of chlorophyll content, and combining these data with the biocrust and quartz field maps, we estimated total biomass values of MSCs and their spatial patterns within the two different ecosystems. Our results revealed that MSC are important vegetation components of the South African Karoo biome, revealing clear differences between the two sites. At Soebatsfontein, MSC occurred as biological soil crusts (biocrusts), which covered about one third of the landscape reaching an overall biomass value of ~480gha -1 of chlorophyll a+b at the landscape scale. In the Knersvlakte, which is characterized by harsher environmental conditions (i.e. higher solar radiation and potential evapotranspiration), MSC occurred as biocrusts, but also formed hypolithic crusts growing on the lower soil-immersed parts of translucent quartz pebbles. Whereas chlorophyll concentrations of biocrusts and hypolithic crusts where insignificantly lower in the Knersvlakte, the overall MSC biomass reservoir was by far larger with ~780gha -1 of chlorophyll a+b. Thus, the complementary microbially-dominated surface communities promoted biomass formation within the environmentally harsh Knersvlakte ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Through Geo-Informatics Approach

    NASA Astrophysics Data System (ADS)

    Koppad, A. G.; Janagoudar, B. S.

    2017-05-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non-vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  18. Historical analysis of riparian vegetation change in response to shifting management objectives on the Middle Rio Grande

    USGS Publications Warehouse

    Petrakis, Roy; van Leeuwen, Willem J.D.; Villarreal, Miguel; Tashjian, Paul; Dello Russo, Regina; Scott, Christopher A.

    2017-01-01

    Riparian ecosystems are valuable to the ecological and human communities that depend on them. Over the past century, they have been subject to shifting management practices to maximize human use and ecosystem services, creating a complex relationship between water policy, management, and the natural ecosystem. This has necessitated research on the spatial and temporal dynamics of riparian vegetation change. The San Acacia Reach of the Middle Rio Grande has experienced multiple management and river flow fluctuations, resulting in threats to its riparian and aquatic ecosystems. This research uses remote sensing data, GIS, a review of management decisions, and an assessment of climate to both quantify how riparian vegetation has been altered over time and provide interpretations of the relationships between riparian change and shifting climate and management objectives. This research focused on four management phases from 1935 to 2014, each highlighting different management practices and climate-driven river patterns, providing unique opportunities to observe a direct relationship between river management, climate, and riparian response. Overall, we believe that management practices coupled with reduced surface river-flows with limited overbank flooding influenced the compositional and spatial patterns of vegetation, including possibly increasing non-native vegetation coverage. However, recent restoration efforts have begun to reduce non-native vegetation coverage.

  19. A comparison of methods to assess long-term changes in Sonoran Desert vegetation

    USGS Publications Warehouse

    Munson, S.M.; Webb, R.H.; Hubbard, J.A.

    2011-01-01

    Knowledge about the condition of vegetation cover and composition is critical for assessing the structure and function of ecosystems. To effectively quantify the impacts of a rapidly changing environment, methods to track long-term trends of vegetation must be precise, repeatable, and time- and cost-efficient. Measuring vegetation cover and composition in arid and semiarid regions is especially challenging because vegetation is typically sparse, discontinuous, and individual plants are widely spaced. To meet the goal of long-term vegetation monitoring in the Sonoran Desert and other arid and semiarid regions, we determined how estimates of plant species, total vegetation, and soil cover obtained using a widely-implemented monitoring protocol compared to a more time- and resource-intensive plant census. We also assessed how well this protocol tracked changes in cover through 82 years compared to the plant census. Results from the monitoring protocol were comparable to those from the plant census, despite low and variable plant species cover. Importantly, this monitoring protocol could be used as a rapid, "off-the shelf" tool for assessing land degradation (or desertification) in arid and semiarid ecosystems.

  20. Continuous measurement of soil evaporation in a drip-irrigated wine vineyard in a desert area

    USDA-ARS?s Scientific Manuscript database

    Evaporation from the soil surface (E) can be a significant source of water loss in arid areas. In sparsely vegetated systems, E is expected to be a function of soil, climate, irrigation regime, precipitation patterns, and plant canopy development, and will therefore change dynamically at both daily ...

  1. Spatial and diurnal below canopy evaporation in a desert vineyard: measurements and modeling

    USDA-ARS?s Scientific Manuscript database

    Evaporation from the soil surface (E) can be a significant source of water loss in arid areas. In sparsely vegetated systems, E is expected to be a function of soil, climate, irrigation regime, precipitation patterns, and plant canopy development, and will therefore change dynamically at both daily ...

  2. Feral herbivores suppress mamane and other browse species on Mauna Kea, Hawaii

    Treesearch

    Paul G Scowcroft; Jon G. Giffin

    1983-01-01

    Abundance, survival, and growth ofmamane (Sophora chrysophylla) regeneration were determined inside and outside sheep exclosures located in heavily browsed portions of the mamane forest of Mauna Kea, Hawaii. Vegetational cover of other species was estimated. Mamane grew abundantly inside 16-year-old exclosures but was sparse outside. Height class...

  3. Restoration of temperate savannas and woodlands [Chapter 11

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  4. Habitat selection by female swift foxes (Vulpes velox) during the pup-rearing season

    USGS Publications Warehouse

    Sasmal, Indrani; Jenks, Jonathan A.; Grovenburg, Troy W.; Datta, Shubham; Schroeder, Greg M.; Klaver, Robert W.; Honness, Kevin M.

    2011-01-01

    The swift fox (Vulpes velox) was historically distributed in western South Dakota including the region surrounding Badlands National Park (BNP). The species declined during the mid-1800s, largely due to habitat loss and poisoning targeted at wolves (Canis lupis) and coyotes (C. latrans). Only a small population of swift foxes near Ardmore, South Dakota persisted. In 2003, an introduction program was initiated at BNP with swift foxes translocated from Colorado and Wyoming. We report on habitat use by female swift foxes during the pup-rearing season (May–July) in 2009. Analyses of location data from 13 radiomarked female foxes indicated disproportional use (P Ŷ = 1.01), sparse vegetation (Ŷ = 1.43) and prairie dog towns (Ŷ = 1.18) in proportion to their availability, whereas they were less likely to use woodland (Ŷ = 0.00), shrubland (Ŷ = 0.14), pasture/agricultural-land (Ŷ = 0.25) and development (Ŷ = 0.16) relative to availability. Swift foxes typically are located in habitats that provide greater visibility, such as shortgrass prairie and areas with sparse vegetation; which allow detection of approaching coyotes (e.g., primary predator of swift foxes).

  5. Comparative habitat ecology of Texas and masked bobwhites

    USGS Publications Warehouse

    Guthery, F.S.; King, N.M.; Nolte, K.R.; Kuvlesky, W.P.; DeStefano, S.; Gall, S.A.; Silvy, N.J.

    2000-01-01

    The habitat ecology of masked bobwhites (Colinus virginianus ridgwayi) is poorly understood, which hampers recovery efforts for this endangered bird. During 1994-96, we analyzed the habitat ecology of masked bobwhites in Sonora, Mexico, and Arizona, and compared these findings with the habitat ecology of Texas bobwhites (C. v. texanus) in southern Texas. Mean values for the quantity of low screening cover (<50 cm aboveground), operative temperature (??C), and exposure to aerial predators were relatively constant across regions (CV <14.2%), indicating these variables are important in adaptive habitat-use decisions by bobwhites. Bobwhites exhibited preference in all regions for higher canopy coverage of woody vegetation, lower exposure to aerial predators, and lower operative temperatures in comparison with randomly available conditions. The major habitat deficiencies for masked bobwhites were lack of woody and herbaceous cover, which led to high exposure to aerial predators in Sonora and Arizona. High operative temperatures at quail level were associated with the loss of ???24% of potential habitat space-time in Texas, Sonora, and Arizona. Management to improve habitat for masked bobwhites includes any practice that increases canopy coverage of woody vegetation, and height and coverage of herbaceous vegetation.

  6. Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest

    USGS Publications Warehouse

    Chen, X.; Vierling, Lee; Rowell, E.; DeFelice, Tom

    2004-01-01

    Structural and functional analyses of ecosystems benefit when high accuracy vegetation coverages can be derived over large areas. In this study, we utilize IKONOS, Landsat 7 ETM+, and airborne scanning light detection and ranging (lidar) to quantify coniferous forest and understory grass coverages in a ponderosa pine (Pinus ponderosa) dominated ecosystem in the Black Hills of South Dakota. Linear spectral mixture analyses of IKONOS and ETM+ data were used to isolate spectral endmembers (bare soil, understory grass, and tree/shade) and calculate their subpixel fractional coverages. We then compared these endmember cover estimates to similar cover estimates derived from lidar data and field measures. The IKONOS-derived tree/shade fraction was significantly correlated with the field-measured canopy effective leaf area index (LAIe) (r2=0.55, p<0.001) and with the lidar-derived estimate of tree occurrence (r2=0.79, p<0.001). The enhanced vegetation index (EVI) calculated from IKONOS imagery showed a negative correlation with the field measured tree canopy effective LAI and lidar tree cover response (r2=0.30, r=−0.55 and r2=0.41, r=−0.64, respectively; p<0.001) and further analyses indicate a strong linear relationship between EVI and the IKONOS-derived grass fraction (r2=0.99, p<0.001). We also found that using EVI resulted in better agreement with the subpixel vegetation fractions in this ecosystem than using normalized difference of vegetation index (NDVI). Coarsening the IKONOS data to 30 m resolution imagery revealed a stronger relationship with lidar tree measures (r2=0.77, p<0.001) than at 4 m resolution (r2=0.58, p<0.001). Unmixed tree/shade fractions derived from 30 m resolution ETM+ imagery also showed a significant correlation with the lidar data (r2=0.66, p<0.001). These results demonstrate the power of using high resolution lidar data to validate spectral unmixing results of satellite imagery, and indicate that IKONOS data and Landsat 7 ETM+ data both can serve to make the important distinction between tree/shade coverage and exposed understory grass coverage during peak summertime greenness in a ponderosa pine forest ecosystem.

  7. A sampling device for counting insect egg clusters and measuring vertical distribution of vegetation

    Treesearch

    Robert L. Talerico; Robert W., Jr. Wilson

    1978-01-01

    The use of a vertical sampling pole that delineates known volumes and position is illustrated and demonstrated for counting egg clusters of N. sertifer. The pole can also be used to estimate vertical and horizontal coverage, distribution or damage of vegetation or foliage.

  8. Nitrogen-limitation and invasive sweetclover impacts vary between two Great Plains plant communities

    USGS Publications Warehouse

    Van Riper, Laura C.; Larson, Diane L.; Larson, Jennifer L.

    2010-01-01

    Yellow sweetclover is an exotic herbaceous legume common in the Great Plains of the US. Although woody legumes have been shown to affect ecosystem processes through nitrogen (N) fixation (i.e., they can be considered "transformers" sensu Richardson et al. (2000)), the same has not been shown for short-lived herbaceous species. The objectives of this study were to (1) quantify the effects of yellow sweetclover on N mineralization and nitrification and (2) assess the effects of N fertilization on two plant communities, badlands sparse vegetation and western wheatgrass prairie. We used in situ (in wheatgrass prairie) and laboratory incubations (for both plant communities) to assess N dynamics at sites with high and low sweetclover cover in the two plant communities. We found that both N mineralization and nitrification were higher in the high sweetclover plots in the sparse plant community, but not in the wheatgrass prairie. To assess fertilization effects and determine if nutrients or water were limiting at our sites, we conducted a field experiment with five resource addition treatments, (1) N, (2) N + water, (3) water, (4) phosphorus, and (5) no addition. Water was limiting in the wheatgrass prairie but contrary to expectation, N was not. In contrast, N was limiting in the sparse community, where a fertilization effect was seen in exotic forbs, especially the toxic invader Halogeton glomeratus. Our results emphasize the contingent nature of plant invasion in which effects are largely dependent on attributes of the recipient vegetation.

  9. Site-specific diel mercury emission fluxes in landfill: Combined effects of vegetation and meteorological factors.

    PubMed

    Liu, Yang; Wu, Boran; Hao, Yongxia; Zhu, Wei; Li, Zhonggen; Chai, Xiaoli

    2017-01-01

    Mercury emission fluxes (MEFs) under different surface coverage conditions in a landfill were investigated in this study. The results show similar diel patterns of Hg emission flux under different coverage conditions, with peak fluxes occurring at midday and decreasing during night. We examined the effects of environmental factors on MEFs, such as the physiological characteristics of vegetation and meteorological conditions. The results suggest that growth of vegetation in the daytime facilitates the release of Hg in the anaerobic unit, while in the semi-aerobic unit, where vegetation had been removed, the higher mercury content of the cover soil prompted the photo-reduction pathway to become the main path of mercury release and increased MEFs. MEFs are positively correlated with solar radiation and air temperature, but negatively correlated with relative humidity. The correlation coefficients for MEFs with different environmental parameters indicate that in the anaerobic unit, solar radiation was the main influence on MEFs in September, while air temperature became the main determining factor in December. These observations suggest that the effects of meteorological conditions on the mercury release mechanism varies depending on the vegetation and soil pathways. Copyright © 2016. Published by Elsevier Ltd.

  10. Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Bolten, John; Crow, Wade

    2012-01-01

    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.

  11. Results of time-domain electromagnetic soundings in Everglades National Park, Florida

    USGS Publications Warehouse

    Fitterman, D.V.; Deszcz-Pan, Maria; Stoddard, C.E.

    1999-01-01

    This report describes the collection, processing, and interpretation of time-domain electromagnetic soundings from Everglades National Park. The results are used to locate the extent of seawater intrusion in the Biscayne aquifer and to map the base of the Biscayne aquifer in regions where well coverage is sparse. The data show no evidence of fresh, ground-water flows at depth into Florida Bay.

  12. Partitioning evapotranspiration in sparsely vegetated rangeland using a portable chamber

    USGS Publications Warehouse

    Stannard, David I.; Weltz, Mark A.

    2006-01-01

    A portable chamber was used to separate evapotranspiration (ET) from a sparse, mixed‐species shrub canopy in southeastern Arizona, United States, into vegetation and soil components. Chamber measurements were made of ET from the five dominant species, and from bare soil, on 3 days during the monsoon season when the soil surface was dry. The chamber measurements were assembled into landscape ET using a simple geometric model of the vegetated land surface. Chamber estimates of landscape ET were well correlated with, but about 26% greater than, simultaneous eddy‐correlation measurements. Excessive air speed inside the chamber appears to be the primary cause of the overestimate. Overall, transpiration accounted for 84% of landscape ET, and bare soil evaporation for 16%. Desert zinnia, a small (∼0.1 m high) but abundant species, was the greatest water user, both per unit area of shrub and of landscape. Partitioning of ETinto components varied as a function of air temperature and shallow soil moisture. Transpiration from shorter species was more highly correlated with air temperature whereas transpiration from taller species was more highly correlated with shallow soil moisture. Application of these results to a full drying cycle between rainfalls at a similar site suggests that during the monsoon, ET at such sites may be about equally partitioned between transpiration and bare soil evaporation.

  13. Drought in West Africa

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Drought settled over West Africa's Ivory Coast region when wet season rains came late in 2007. Instead of beginning in February, the rainy season didn't start until March, and steady rains didn't start until late March, said the Famine Early Warning System Network. Though the rain had started to alleviate the drought, vegetation was still depressed in parts of Cote d'Ivoire (Ivory Coast) between March 22 and April 6, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured the data used to make this image. The image shows current vegetation conditions compared to average conditions recorded since 2000. Areas where plants are growing more slowly or more sparsely than average are brown, while areas where vegetation is denser than average are green. The brown tint that dominates the image indicates that plants through most of the country are more sparse than normal. Among the crops affected by the lack of rain was West Africa's cocoa crop. About 70 percent of the world's cocoa comes from West Africa, and Cote d'Ivoire is a top grower, said Reuters. Cocoa prices climbed as the crop fell short. Farmers called the drought the worst in living memory, Reuters said. The delay in rainfall also led to water shortages in parts of Cote d'Ivoire, according to the United Nations Office for the Coordination of Humanitarian Affairs.

  14. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya P. K.; Landis, David; Middleton, Elizabeth

    2012-01-01

    Climate change in tundra regions may alter vegetation species composition and ecosystem carbon balance. Remote sensing provides critical tools for monitoring these changes as optical signals provide a way to scale from plot measurements to regional patterns. Gas exchange measurements of pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK, show three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012 0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Further, discriminant analysis of patch reflectance identifies five spectral bands that can separate each vegetation functional type as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. Patch-level statistical discriminant functions applied to in situ hyperspectral reflectance successfully unmixed cover fractions of the vegetation functional types. These functions, developed from the tram data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine regional variability in distribution of the vegetation functional types and from those distributions, the variability of LUE. Across the landscape, there was a fivefold variation in tundra LUE that was correlated to a spectral vegetation index developed to detect vegetation chlorophyll content.

  15. National project for the evaluation of ERTS imagery applications to various earth resources problems of Turkey

    NASA Technical Reports Server (NTRS)

    Alpan, S. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. It is observed that LANDSAT images can be used in preparing an accurate tectonic map of the study areas. These images are most useful in geological mapping areas where vegetation cover is sparse. LANDSAT images can be used to identify and separate evergreens and trees with leaves, and they can successfully delineate boundaries of forestry areas. Water holding capacity of the soil, internal and external drainage, vegetation pattern, irrigated and nonirrigated land, and fallow and planted fields are also detected on the LANDSAT imagery.

  16. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    NASA Astrophysics Data System (ADS)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land-use and land-cover changes in the periods analyzed, it was determined that between years 1984 and 2006 most of the burned area remained pre-fire cover type (above 80% of the area). However, in areas that experienced change, the most important transitions were recorded in wooded areas, especially conifers, which became shrubs or sparsely vegetated areas, followed by non-irrigated crops, which were replaced by grasslands or industrial areas, and sparse vegetation which changed to shrubs. Finally, the analysis of land-use changes over burned areas situated shrubland as the most favored type of cover, either as a result of a vegetative degradation process after intense burning of wooded areas, especially conifers, or as stage of natural increase in areas previously covered by sparsely vegetation.

  17. Role of vegetation in modulating denudation and topography across the Himalaya

    NASA Astrophysics Data System (ADS)

    Olen, Stephanie; Bookhagen, Bodo; Strecker, Manfred

    2015-04-01

    Studies of Himalayan denudation, to date, have primarily focused on the effects of lithology, tectonic activity, and climate in shaping landscape and controlling denudation rates. Climate can impact denudation not only through increased precipitation, runoff, or glaciation, but also via its role in controlling vegetation cover. Since the classical study of Langbein and Schumm [1958] emphasizing the role of vegetation cover in determining erosional efficiency, theoretical and plot-scale studies have highlighted the role of vegetation on surface processes [Collins et al., 2004; Istanbulluoglu and Bras, 2005; Collins and Bras, 2010; Carretier et al., 2013; Jeffery et al., 2014]. Vegetation cover and density vary considerably in the Himalaya, both across and along strike. Across strike, vegetation transitions from dense forest and agriculturally-used plots in the Lesser Himalaya to sparse alpine and arid, virtually non-vegetated regions at high elevation and in the rain shadow north of the Higher Himalaya peaks. Along-strike vegetation densities also differ significantly and show a pronounced E-W gradient. To quantify the along-strike vegetation gradient, we use 14 years of MODIS 13C1 enhanced vegetation index (EVI) data to calculate mean annual, summer (MJJASO), and winter (NDJFMA) for the entire Himalaya. Additionally, we calculate a differential EVI that compares summer versus winter vegetation density (MJJASO/NDJFMA). A decrease in vegetation density is observed from east to west, with the greatest difference in winter vegetation cover (225% higher in the eastern than western Himalaya). In contrast, differential EVI is higher in the western Himalaya, increasing 170% from east to west. To evaluate the effect of vegetation on denudation and landscape evolution, we combine the 14-year EVI data, topographic analysis, and a compilation of >100 published and unpublished 10-Be terrestrial cosmogenic nuclide (TCN) catchment-mean denudation rates from across the Himalaya [Godard et al., 2014; Portenga et al., 2014; Scherler et al., 2014; Olen et al., submitted]. We calculate the relationship between various topographic metrics (e.g. mean basin slope, normalized channel steepness [ksn]) and the TCN catchment-mean denudation of non-glaciated fluvial watersheds from previously published and submitted studies. The variation in vegetation density between study sites correlates with the relationship between topography and denudation in each region. In sparsely vegetated areas, denudation increases in a rapid, non-linear fashion as topographic metrics such as the normalized channel steepness (ksn) or mean basin hillslope increase. Where vegetation cover is denser, the relationship between denudation and topography becomes increasingly linear, such that lower denudation rates are maintained as hillslopes and channels steepen. Additionally, more sparsely vegetated regions appear to reach a maximum steepness lower than that observed in densely vegetated regions. We therefore observe a negative correlation between increasing annual, summer, and winter EVI and the power-law exponent p of the relationship denudation ≈ (topographic metric)p; and a positive correlation between p and differential EVI. In contrast to recent studies arguing that Himalayan denudation is primarily forced by tectonics, our study emphasizes how vegetation density, as a climatic agent, modulates erosional style and landscape development along strike across the Himalaya. Carretier, S., et al. (2013), Slope and climate variability control of erosion in the Andes of central Chile, Geology, 41(2), 195-198. Collins, D. B. G., and R. L. Bras (2010), Climatic and ecological controls of equilibrium drainage density, relief, and channel concavity in dry lands, Water Resources Research, 46(4), W04508. Collins, D. B. G., R. L. Bras, and G. E. Tucker (2004), Modeling the effects of vegetation-erosion coupling on landscape evolution, Journal of Geophysical Research: Earth Surface, 109(F3), F03004. Godard, V., D. L. Bourlés, F. Spinabella, D. W. Burbank, B. Bookhagen, G. B. Fisher, A. Moulin, and L. Léanni (2014), Dominance of tectonics over climate in Himalayan denudation, Geology. Istanbulluoglu, E., and R. L. Bras (2005), Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography, Journal of Geophysical Research: Earth Surface, 110(F2), F02012. Jeffery, M. L., B. J. Yanites, C. J. Poulsen, and T. A. Ehlers (2014), Vegetation-precipitation controls on Central Andean topography, Journal of Geophysical Research: Earth Surface, 2013JF002919. Langbein, W., and S. Schumm (1958), Yield of sediment in relation to mean annual precipitation, American Geophysical Union Transactions, 39, 1076-1084. Portenga, E. W., P. R. Bierman, C. Duncan, L. B. Corbett, N. M. Kehrwald, and D. H. Rood (2014), Erosion rates of the Bhutanese Himalaya determined using in situ-produced 10Be, Geomorphology(0). Scherler, D., B. Bookhagen, and M. R. Strecker (2014), Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India, Journal of Geophysical Research: Earth Surface, 2013JF002955.

  18. Use of radar remote sensing (RADARSAT) to map winter wetland habitat for shorebirds in an agricultural landscape.

    PubMed

    Taft, Oriane W; Haig, Susan M; Kiilsgaard, Chris

    2004-05-01

    Many of today's agricultural landscapes once held vast amounts of wetland habitat for waterbirds and other wildlife. Successful restoration of these landscapes relies on access to accurate maps of the wetlands that remain. We used C-band (5.6-cm-wavelength), HH-polarized radar remote sensing (RADARSAT) at a 38 degrees incidence angle (8-m resolution) to map the distribution of winter shorebird (Charadriiformes) habitat on agricultural lands in the Willamette Valley of western Oregon. We acquired imagery on three dates (10 December 1999, 27 January 2000, and 15 March 2000) and simultaneously collected ground reference data to classify radar signatures and evaluate map accuracy of four habitat classes: (1) wet with < or = 50% vegetation (considered optimal shorebird habitat), (2) wet with > 50% vegetation, (3) dry with < or = 50% vegetation, and (4) dry with > 50% vegetation. Overall accuracy varied from 45 to 60% among the three images, but the accuracy of focal class 1 was greater, ranging from 72 to 80%. Class 4 coverage was stable and dominated maps (40% of mapped study area) for all three dates, while coverage of class 3 decreased slightly throughout the study period. Among wet classes, class 1 was most abundant (about 30% coverage) in December and January, decreasing in March to approximately 15%. Conversely, class 2 increased dramatically from January to March, likely due to transition from class 1 as vegetation grew. This approach was successful in detecting optimal habitat for shorebirds on agricultural lands. For modest classification schemes, radar remote sensing is a valuable option for wetland mapping in areas where cloud cover is persistent.

  19. Landscape scale vegetation-type conversion and fire hazard in the San Francisco bay area open spaces

    USGS Publications Warehouse

    Russell, W.H.; McBride, J.R.

    2003-01-01

    Successional pressures resulting from fire suppression and reduced grazing have resulted in vegetation-type conversion in the open spaces surrounding the urbanized areas of the San Francisco bay area. Coverage of various vegetation types were sampled on seven sites using a chronosequence of remote images in order to measure change over time. Results suggest a significant conversion of grassland to shrubland dominated by Baccharis pilularison five of the seven sites sampled. An increase in Pseudotsuga menziesii coverage was also measured on the sites where it was present. Increases fuel and fire hazard were determined through field sampling and use of the FARSITE fire area simulator. A significant increase in biomass resulting from succession of grass-dominated to shrub-dominated communities was evident. In addition, results from the FARSITE simulations indicated significantly higher fire-line intensity, and flame length associated with shrublands over all other vegetation types sampled. These results indicate that the replacement of grass dominated with shrub-dominated landscapes has increased the probability of high intensity fires. ?? 2003 Elsevier Science B.V. All rights reserved.

  20. "More Closeted Than Gayness Itself": The Depiction of Same-Sex Couple Violence in Newspaper Media.

    PubMed

    Estes, Michelle L; Webber, Gretchen R

    2017-10-01

    Same-sex intimate partner violence (IPV) lacks mainstream news media coverage. News media report on those stories that are most prominent, and these stories are often shaped and presented within a White, heterosexual, upper-class, male framework. This framework largely ignores or misrepresents those that do not fit these characteristics, resulting in a gap in research and coverage of same-sex IPV. This article explores whether U.S. newspapers cover same-sex IPV, how often, and how same-sex couple violence is portrayed in newspapers when covered. Twenty-five newspaper articles published from 2005 to 2015, 10 years prior to the U.S. Supreme Court decision that legalized same-sex marriage, were located and analyzed. Findings indicate sparse newspaper coverage of IPV in same-sex couples. Ten articles highlight the lack of coverage and knowledge related to same-sex couple IPV. Eighteen articles address same-sex IPV as a social issue and highlight resource concerns, police involvement, and heteronormativity and heterosexism. Sixteen articles depict specific instances of IPV in same-sex couples. The overall lack of coverage and how same-sex IPV is covered remains problematic and limited. More mainstream and accurate coverage is needed to effectively address this social issue. Limitations and directions for future research are also discussed.

  1. Astronomical Site Survey for Mountain Wumingshan Area in Western Sichuan Based on GIS

    NASA Astrophysics Data System (ADS)

    Wu, N.; Liu, Y.; Zhao, H. M.

    2016-11-01

    In the Western-China Astronomical Site Survey project, we utilize the Geographic Information System (GIS) for the collection of long-term data, in order to investigate and study the Wumingshan (WMS) mountain and its surrounding areas for their geography, geology, climate, meteorology, social and demographic trends. Data analysis results show that the WMS mountain is located in the eastern fold belt of the Tibet Plateau--the typical region of the Hengduan Mountains, which leads to its large elevation, gently trended ridge, and stable geological structure. The highest altitude above the sea level at the WMS is more than 5000 m, but there are population settlements nearby with the low altitude of only 2000-3000 m, which are important for realizing low-level cost logistics conditions for the future headquarter or logistic base. Earthquake landslides and other geological disasters were rarely recorded. The other facts are such as the dry and clean atmosphere, the sparse vegetation, the semi-dry-state land, the perennial prevailing southwest wind, the rain-less winter, and the relatively short rainy-season summer, the location in the heartland of the large Shangri-La, no records of dust storms and the other inclement weather, low cloud coverage, the stability of wind direction, the small wind speed, the high possibility of clear sky, the far distance away from the developed areas in Sichuan and Yunnan provinces, and Tibet Autonomous Region, the sparsely populated people, the slowly developed economy, the peaceful and stable social environment, etc. Specially, in recent years, with the development of the local tourist resources, the traffic conditions in Daocheng have been significantly improved. With high quality highway maintenance and daily air transport capacity, the transportation of land and aviation is rarely interrupted due to snowing, which often happens in high plateau regions. Therefore, the WMS area possesses the potential conditions to establish the future high altitude observatory, and it is really a very rare astronomical site resource.

  2. Radiative transfer in shrub savanna sites in Niger: Preliminary results from HAPEX-Sahel. Part 3: Optical dynamics and vegetation index sensitivity to biomass and plant cover

    NASA Technical Reports Server (NTRS)

    vanLeeuwen, W. J. D.; Huete, A. R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.

  3. Factors associated with dental health care coverage in Mexico: Findings from the National Performance Evaluation Survey 2002-2003.

    PubMed

    Pérez-Núñez, Ricardo; Medina-Solis, Carlo Eduardo; Maupomé, Gerardo; Vargas-Palacios, Armando

    2006-10-01

    To determine the level of dental health care coverage in people aged > or =18 years across the country, and to identify the factors associated with coverage. Using the instruments and sampling strategies developed by the World Health Organization for the World Health Survey, a cross-sectional national survey was carried out at the household and individual (adult) levels. Dental data were collected in 20 of Mexico's 32 states. The relationship between coverage and environmental and individual characteristics was examined through logistic regression models. Only 6098 of 24 159 individual respondents reported having oral problems during the preceding 12 months (accounting for 14 284 621 inhabitants of the country if weighted). Only 48% of respondents reporting problems were covered, although details of the appropriateness, timeliness and effectiveness of the intervention(s) were not assessed. The multivariate regression model showed that higher level of education, better socioeconomic status, having at least one chronic disease and having medical insurance were positively associated with better dental care coverage. Age and sex were also associated. Overall dental health care coverage could be improved, assuming that ideal coverage is 100%. Some equality of access issues are apparent because there are differences in coverage across populations in terms of wealth and social status. Identifying the factors associated with sparse coverage is a step in the right direction allowing policymakers to establish strategies aimed at increasing this coverage, focusing on more vulnerable groups and on individuals in greater need of preventive and rehabilitative interventions.

  4. The magic of fairy circles: Built or created?

    NASA Astrophysics Data System (ADS)

    Sahagian, Dork

    2017-05-01

    Fairy circles are rings of relatively dense grass in arid regions with sparse vegetation. The most famous examples are found in the Namib Desert. There has been an ongoing debate regarding the origin of these features, and a recent paper by Ravi et al. (2017, doi:10.1002/2016JG003604) sheds some light on this situation.

  5. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  6. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-10-01

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  7. Herbal Earth

    NASA Image and Video Library

    2017-12-08

    Subtle vegetation changes are visible in this year-long visualization. Large-scale patterns vary with seasons, but the local variations in green are also sensitive precipitation, drought and fire. High values of Normalized Difference Vegetation Index, or NDVI, represent dense green functioning vegetation and low NDVI values represent sparse green vegetation or vegetation under stress from limiting conditions, such as drought. The visualization was created from a year’s worth of data from April 2012 to April 2013. The information was sent back to Earth from the Visible-Infrared Imager/Radiometer Suite (VIIRS) instrument aboard the Suomi National Polar-orbiting Partnership or Suomi NPP satellite, a partnership between NASA and the National Oceanic and Atmospheric Administration, or NOAA. Credit: NASA/NOAA To read more go to: www.nasa.gov/mission_pages/NPP/news/vegetation.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data.

    PubMed

    Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing

    2015-01-01

    Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing.

  9. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus: SPATIAL COVERAGE AND BIAS IN TREND

    DOE PAGES

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; ...

    2017-09-13

    Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less

  10. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus: SPATIAL COVERAGE AND BIAS IN TREND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong

    Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less

  11. What is left? Macrophyte meadows and Atlantic herring (Clupea harengus) spawning sites in the Greifswalder Bodden, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kanstinger, Philipp; Beher, Jutta; Grenzdörffer, Görres; Hammer, Cornelius; Huebert, Klaus B.; Stepputis, Daniel; Peck, Myron A.

    2018-02-01

    Coastal zones are productive areas of marine ecosystems which are also hotspots of anthropogenic activities causing habitat degradation. In the southwest Baltic Sea, eutrophication is thought to have caused the massive reduction in submerged macrophytes observed in recent decades. Here, we surveyed the submarine vegetation and examined locations of spawning of herring (Clupea harengus) in the Greifswalder Bodden, one of the most important reproductive habitats of the Western Baltic Spring Spawner herring stock (WBSS). This stock deposits eggs onto submerged vegetation and changes in macrophyte coverage are expected to influence the availability of reproductive habitat. Aerial, underwater video tows and SCUBA surveys conducted in spring 2009 revealed that only ∼7% of the lagoon was vegetated. Herring eggs were observed on 12 of 32 SCUBA transects, at depths between 0.2 and 5 m and were attached to a variety of spermatophyte and algae species but not to stones or mussels. A classification tree model indicated that spawning sites were strongly associated with the vegetation cover within a 100- and 500-m radius, implying that herring schools preferentially spawn on dense and large underwater meadows. Only ∼5% of the lagoon now falls into this vegetation category. Despite 20 years of efforts to reduce eutrophication, no increase in macroalgae and spermatophyte vegetation towards the historical level of 90% coverage in the area is apparent.

  12. Management intensity and vegetation complexity affect web-building spiders and their prey.

    PubMed

    Diehl, Eva; Mader, Viktoria L; Wolters, Volkmar; Birkhofer, Klaus

    2013-10-01

    Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.

  13. Investigations on soil organic carbon stocks and active layer thickness in West Greenland

    NASA Astrophysics Data System (ADS)

    Gries, Philipp; Wagner, Julia; Kandolf, Lorenz; Henkner, Jessica; Kühn, Peter; Scholten, Thomas; Schmidt, Karsten

    2017-04-01

    The soil organic carbon (SOC) pool in the first 300 cm of arctic soils includes about 50 % of the estimated global terrestrial belowground organic carbon, which makes about 1024 Pg C and up to 496 Pg within the upper permafrost one meter. Being a sensible ecosystem, the Arctic is sensitive to climate change. Hence, thawing of permafrost-affected soils to greater depth and for longer periods increases the release of CO2 and CH4 to the atmosphere, which queries soils as an important carbon pool. Especially in arctic environments, sparse soil data and limited knowledge of soil processes cause underestimation of SOC stocks. Due to different regional climatic conditions, changing soil-environmental conditions result in varying soil organic carbon contents in Greenland. In West Greenland, coastal oceanic conditions turn into continental climate at the ice margin showing less precipitation, higher insolation and increasing permafrost thickness. The objectives of this study are (i) to determine SOC stocks and active layer thickness (ALT), (ii) to identify main environmental factors influencing SOC stocks and ALT, and (iii) to specify differences of SOC stocks, ALT and influencing factors induced by a climatic trend in West Greenland. Respecting different climatic conditions, one study area is situated next to the ice margin in the Kangerlussuaq area and the second one is located near Sisimiut at the coast. Both study areas (2 km2) are representative for each region and have similar environmental settings. Soil samples were taken from depth increments (0-25, 25-50, 50-100, and 100-200 cm) at 80 sampling locations in each study area. Additionally, we addressed soil moisture content (TDR-measurements), ALT, and soil horizons, vegetation (types, coverage), and terrain characteristics (aspect, geomorphology) at each sampling point. As a preliminary result, at the coast the average SOC stock is 13.1 kg/m2 in the upper 25 cm and about 35.9 kg/m2 in the first 200 cm. The amount of SOC stocks is slightly connected to terrain with higher values at depressions and decreasing values upslope. We assume for the Sisimiut area that south (SE, S, SW) facing areas have high SOC stocks due to higher biomass production because of higher insolation. In both study areas, plant growth, aspect, and soil moisture affect the amount of ALT, which is low beneath dense and tall dwarf shrub vegetation on flat plains and depressions having high soil moisture contents. At north facing slopes, absence of direct insolation results in low ALT less than 14 cm at the Kangerlussuaq study area. Soil moisture content, ALT and occurrence of permafrost as well as vegetation type and coverage reflect the climatic trend from the coast to the ice margin in West Greenland.

  14. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Using Remote Sensign and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Koppad, A. G.; Janagoudar, B. S.

    2017-10-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  15. Role of invasive Melilotus officinalis in two native plant communities

    USGS Publications Warehouse

    Van Riper, Laura C.; Larson, Diane L.

    2009-01-01

    This study examines the impact of the exotic nitrogen-fixing legume Melilotus officinalis (L.) Lam. on native and exotic species cover in two Great Plains ecosystems in Badlands National Park, South Dakota. Melilotus is still widely planted and its effects on native ecosystems are not well studied. Melilotus could have direct effects on native plants, such as through competition or facilitation. Alternatively, Melilotus may have indirect effects on natives, e.g., by favoring exotic species which in turn have a negative effect on native species. This study examined these interactions across a 4-year period in two contrasting vegetation types: Badlands sparse vegetation and western wheatgrass (Pascopyrum smithii) mixed-grass prairie. Structural equation models were used to analyze the pathways through which Melilotus, native species, and other exotic species interact over a series of 2-year time steps. Melilotus can affect native and exotic species both in the current year and in the years after its death (a lag effect). A lag effect is possible because the death of a Melilotus plant can leave an open, potentially nitrogen-enriched site on the landscape. The results showed that the relationship between Melilotus and native and exotic species varied depending on the habitat and the year. In Badlands sparse vegetation, there was a consistent, strong, and positive relationship between Melilotus cover and native and exotic species cover suggesting that Melilotus is acting as a nurse plant and facilitating the growth of other species. In contrast, in western wheatgrass prairie, Melilotus was acting as a weak competitor and had no consistent effect on other species. In both habitats, there was little evidence for a direct lag effect of Melilotus on other species. Together, these results suggest both facilitative and competitive roles for Melilotus, depending on the vegetation type it invades.

  16. Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban Beijing, China, 7 years after reclamation with contrasting site treatment methods.

    PubMed

    Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin

    2013-09-01

    Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.

  17. A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity

    USGS Publications Warehouse

    Obrist, Daniel; Pearson, Christopher; Webster, Jackson; Kane, Tyler J.; Lin, Che-Jen; Aiken, George R.; Alpers, Charles N.

    2016-01-01

    A synthesis of published vegetation mercury (Hg) data across 11 contiguous states in the western United States showed that aboveground biomass concentrations followed the order: leaves (26 μg kg− 1) ~ branches (26 μg kg− 1) > bark (16 μg kg− 1) > bole wood (1 μg kg− 1). No spatial trends of Hg in aboveground biomass distribution were detected, which likely is due to very sparse data coverage and different sampling protocols. Vegetation data are largely lacking for important functional vegetation types such as shrubs, herbaceous species, and grasses.Soil concentrations collected from the published literature were high in the western United States, with 12% of observations exceeding 100 μg kg− 1, reflecting a bias toward investigations in Hg-enriched sites. In contrast, soil Hg concentrations from a randomly distributed data set (1911 sampling points; Smith et al., 2013a) averaged 24 μg kg− 1 (A-horizon) and 22 μg kg− 1 (C-horizon), and only 2.6% of data exceeded 100 μg kg− 1. Soil Hg concentrations significantly differed among land covers, following the order: forested upland > planted/cultivated > herbaceous upland/shrubland > barren soils. Concentrations in forests were on average 2.5 times higher than in barren locations. Principal component analyses showed that soil Hg concentrations were not or weakly related to modeled dry and wet Hg deposition and proximity to mining, geothermal areas, and coal-fired power plants. Soil Hg distribution also was not closely related to other trace metals, but strongly associated with organic carbon, precipitation, canopy greenness, and foliar Hg pools of overlying vegetation. These patterns indicate that soil Hg concentrations are related to atmospheric deposition and reflect an overwhelming influence of plant productivity — driven by water availability — with productive landscapes showing high soil Hg accumulation and unproductive barren soils and shrublands showing low soil Hg values. Large expanses of low-productivity, arid ecosystems across the western U.S. result in some of the lowest soil Hg concentrations observed worldwide.

  18. A global 2007-2015 spaceborne sun-induced vegetation fluorescence time series evaluated with Australian flux tower observations

    NASA Astrophysics Data System (ADS)

    Verstraeten, Willem W.; Sanders, Abram F. J.; Kooreman, Maurits L.; van Leth, Thomas C.; Beringer, Jason; Joiner, Joanna; Delcloo, Andy

    2017-04-01

    The Gross Primary Production (GPP) of the terrestrial biosphere is a key quantity in the understanding of the global carbon cycle. GPP is the amount of atmospheric carbon fixed through the process of plant photosynthesis and it represents the largest ecosystem gross flux of CO2 between the atmosphere and the Earth surface. To date, monitoring of GPP has not been possible at scales beyond that of a single agricultural field or natural ecosystem. At those scales, networks of eddy-covariance towers provide a platform to measure Net Ecosystem Exchange (NEE) of carbon at high temporal resolution, although with only sparse spatial coverage. Satellite observations can bridge that gap by providing the spatial distributions and changes over time of vegetation-related spectral indices. These "greenness indicators", however, tend to return the potential carbon uptake by plants rather than the actual uptake since short term environmental changes affecting plant productivity (e.g., water availability, temperature, nutrient deficiency, diseases) are not well captured. Sun-induced plant fluorescence (SiF), however, is tightly related to photosynthetic activity in the red and near-infrared wavelength range, and SiF can be retrieved from spaceborne measurements from sensors with good signal-to-noise ratios and fine spectral resolutions. We use optical data from the Global Ozone Monitoring Instrument 2 (GOME-2A) satellite sensor to infer terrestrial fluorescence from space. The spectral signatures of atmospheric absorption, surface reflectance, and fluorescence radiance are disentangled using reference hyperspectral data of non-fluorescence surfaces (desserts) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach was applied. Here we show a global 2007-2015 times series of sun-induced vegetation fluorescence derived from GOME-2A observations which we have compared with GPP data derived from twelve Net Ecosystem Exchange flux tower measurements in Australia. Correlations for individual towers range from 0.37 to 0.84. They are particularly high for managed biome types. Furthermore, we show that deseasonalized Australian SiF time series are able to clearly indicate the break of the Millennium Drought during the local summer of 2010/2011. It illustrates the strong potential of SiF data to monitor vegetation activity in relation with meteorological anomalies which may have impact on the ecosystem carbon budget and thus affect our climate at the long range.

  19. Soil and Douglas-fir (Pseudotsuga menziesii) foliar nitrogen responses to variable logging-debris retention and competing vegetation control in the Pacific Northwest

    Treesearch

    Robert A. Slesak; Timothy B. Harrington; Stephen H. Schoenholtz

    2010-01-01

    Experimental treatments of logging-debris retention (0%, 40%, or 80% surface coverage) and competing vegetation control (initial or annual applications) were installed at two sites in the Pacific Northwest following clearcutting Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) stands to assess short term...

  20. Regional to Global Biogenic Isoprene Emission Responses to Changes in Vegetation From 2000 to 2015

    NASA Astrophysics Data System (ADS)

    Chen, W. H.; Guenther, A. B.; Wang, X. M.; Chen, Y. H.; Gu, D. S.; Chang, M.; Zhou, S. Z.; Wu, L. L.; Zhang, Y. Q.

    2018-04-01

    Isoprene, a dominant biogenic volatile organic compound that is mainly emitted by trees, has a significant impact on the atmospheric chemistry. Regional to global changes in biogenic isoprene emission associated with vegetation variations between 2000 and 2015 were estimated using the MEGAN model with satellite land cover data for inputs in this study. The satellite data estimates of land cover changes were compared to results from previous investigators that have either conducted regional studies or have used lower resolution land cover data. The analysis indicates that tree coverage increases of >5% occurred in 13% of locations including in central China and Europe. In contrast, a decrease of >5% was observed in about 5% of locations, especially in tropical regions. The trends in global tree coverage from 2000 to 2015 resulted in a global isoprene emission decrease of only 1.5%, but there were significant regional variations. Obvious decreases in tree coverage in some tropical areas (e.g., Amazon Basin, Western Africa, Southeast Asia) resulted in a 10% reduction of regional isoprene emission due to agricultural expansion. Distinct increments of isoprene emission (5-10%) were mainly found in Northeast China and India and were associated with afforestation efforts. Deforestation and afforestation associated with managed plantations does not only affect the total forest coverage but also impacts average isoprene emission capacity, which can result in accelerated isoprene emission variations. Consequently, isoprene variation assessments are needed that not only account for changes in vegetation fractions but also consider the changes in plant species compositions of forests and other landscapes.

  1. [Spatio-temporal analysis of the biophysical and ecological conditions of Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) in the northeast region of Colombia].

    PubMed

    Badel-Mogollón, Jaime; Rodríguez-Figueroa, Laura; Parra-Henao, Gabriel

    2017-03-29

    Due to the lack of information regarding biophysical and spatio-temporal conditions (hydrometheorologic and vegetal coverage density) in areas with Triatoma dimidiata in the Colombian departments of Santander and Boyacá, there is a need to elucidate the association patterns of these variables to determine the distribution and control of this species. To make a spatio-temporal analysis of biophysical variables related to the distribution of T. dimidiate observed in the northeast region of Colombia. We used the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) data bases registering vector presence and hydrometheorologic data. We studied the variables of environmental temperature, relative humidity, rainfall and vegetal coverage density at regional and local levels, and we conducted spatial geostatistic, descriptive statistical and Fourier temporal series analyses. Temperatures two meters above the ground and on covered surface ranged from 14,5°C to 18,8°C in the areas with the higher density of T. dimidiata. The environmental temperature fluctuated between 30 and 32°C. Vegetal coverage density and rainfall showed patterns of annual and biannual peaks. Relative humidity values fluctuated from 66,8 to 85,1%. Surface temperature and soil coverage were the variables that better explained the life cycle of T. dimidiata in the area. High relative humidity promoted the seek of shelters and an increase of the geographic distribution in the annual and biannual peaks of regional rainfall. The ecologic and anthropic conditions suggest that T. dimidiata is a highly resilient species.

  2. Erosion Control and Recultivation Measures at a Headrace Channel of a Hydroelectric Power Plant using Different Combined Soil Bioengineering Techniques

    NASA Astrophysics Data System (ADS)

    Obriejetan, M.; Florineth, F.; Rauch, H. P.

    2012-04-01

    As a consequence of land use change resulting in an increased number of slope protection constructions and with respect to effects associated with climate change like extremes in temperatures and temperature variations or increased frequency of heavy precipitation, adaptation strategies for sustainable erosion protection systems are needed which meet ecological compatibility and economical requirements. Therefore a wide range of different technical solutions respectively geotextiles and geotextile-related products (blankets, nettings, grids etc.) are available on the market differing considerably in function, material, durability and pricing. Manufacturers usually provide product-specific information pertaining to application field, functional range or (technical) installation features whereas vegetational aspects are frequently neglected while vegetation can contribute substantially to increased near-surface erosion protection respectively slope stability. Though, the success of sustainable erosion control is directly dependent on several vegetational aspects. Adequate development of a functional vegetation layer in combination with geotextiles is closely associated to application aspects such as seeding technique, sowing date and intensity, seed-soil contact or maintenance measures as well as to qualitative aspects like seed quality, germination rates, area of origin, production method or certification. As a general guideline, erosion control within an initial phase is directly related to restoration techniques whereas vegetation specifics with regard to species richness or species composition play a key role in medium to long-term development and slope protection. In this context one of the fundamental objectives of our study is the identification and subsequently the determination of the main interaction processes between technical and biological components of combined slope protection systems. The influence of different geotextile characteristics on specific vegetation properties are studied by setting up comparative test plots at a field study site located at a headrace channel of a hydroelectric power plant. Different vegetational parameters such as basal coverage, species richness, species composition, abundance/dominance values by using a refined Braun-Blanquet cover estimation scale were collected as well as local environmental properties. Results during the first vegetation period show distinct effects of geotextiles especially on overall vegetation coverage and grasses-herbs-ratio. Geotextile supported plots show 20% higher overall coverage but lower amount of herbs after three months of vegetation growth compared to control plots without installation of auxiliary materials. Furthermore coir blankets reveal higher penetration resistance for seed leaves of herbal plants compared to coir nettings. Hence technical erosion protection products, biological components and it's combination have to be closely coordinated in order to achieve specified revegetation objectives and meet long-term functionality.

  3. Inventory methods for trees in nonforest areas in the Great Plains States

    Treesearch

    Andrew J. Lister; Charles T. Scott; Steven Rasmussen

    2012-01-01

    The US Forest Service's Forest Inventory and Analysis (FIA) program collects information on trees in areas that meet its definition of forest. However, the inventory excludes trees in areas that do not meet this definition, such as those found in urban areas, in isolated patches, in areas with sparse or predominantly herbaceous vegetation, in narrow strips (e.g.,...

  4. Inventory of trees in nonforest areas in the Great Plains states

    Treesearch

    Andrew Lister; Chip Scott; Steve Rasmussen

    2009-01-01

    The U.S. Forest Service's Forest Inventory and Analysis (FIA) program collects information on trees in areas that meet its definition of forest. However, the inventory excludes trees in areas that do not meet this definition, such as those found in isolated patches, in areas with sparse or predominantly herbaceous vegetation, in narrow strips (e.g., shelterbelts...

  5. 75 FR 78513 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To List Astragalus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... than 3 years of age and without grass-like, shrub-like, or tree-like vegetation) that dies back to the... quality (or degraded) habitat. A historic rank (H) indicates an occurrence that has not been visited for... sagebrush species, cacti, sparse grasses, and other scattered shrubs. Shrubs are primarily represented by...

  6. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland

    USGS Publications Warehouse

    Stannard, David I.

    1993-01-01

    Eddy correlation measurements of sensible and latent heat flux are used with measurements of net radiation, soil heat flux, and other micrometeorological variables to develop the Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for use in a sparsely vegetated, semiarid rangeland. The Penman-Monteith model, a one-component model designed for use with dense crops, is not sufficiently accurate (r2 = 0.56 for hourly data and r2 = 0.60 for daily data). The Shuttleworth-Wallace model, a two-component logical extension of the Penman-Monteith model for use with sparse crops, performs significantly better (r2 = 0.78 for hourly data and r2 = 0.85 for daily data). The modified Priestley-Taylor model, a one-component simplified form of the Penman potential evapotranspiration model, surprisingly performs as well as the Shuttle worth-Wallace model. The rigorous Shuttleworth-Wallace model predicts that about one quarter of the vapor flux to the atmosphere is from bare-soil evaporation. Further, during daylight hours, the small leaves are sinks for sensible heat produced at the hot soil surface.

  7. Floral Visitors of Three Asteraceae Species in a Xeric Environment in Central Mexico.

    PubMed

    Figueroa-Castro, Dulce María; González-Tochihuitl, Guadalupe; Rivas-Arancibia, Sombra Patricia; Castaño-Meneses, Gabriela

    2016-12-01

    We describe the spatial variation in the structure and composition of the communities of insects visiting the inflorescences of Flaveria ramosissima Klatt, Florestina pedata (Cav.) Cass., and Parthenium bipinnatifidum (Ort.) Rollins (Asteraceae) in a xeric environment in Central Mexico. Inflorescences of the three Asteraceae were visited by a total of 96 species of Hymenoptera, Diptera, Lepidoptera, Coleoptera, and Hemiptera. Total species richness of floral visitors to the three Asteraceae and total abundance of insects of Fl. pedata and P. bipinnatifidum did not differ between low and high vegetation cover sites. Total abundance of insects visiting the inflorescences of F. ramosissima and abundance of Hymenoptera in all three Asteraceae were higher at the low vegetation coverage (LVC) site than at the high vegetation coverage (HVC) one. Diversity of insects of Fl. pedata and P. bipinnatifidum was higher at the HVC site. However, in F. ramosissima diversity was higher at the LVC site. The communities of insects of each Asteraceae were dissimilar between sites. These differences can be attributed to variation in the abundance of Lepidophora (Diptera: Bombyliidae), Miridae (Hemiptera), Melyridae (Coleoptera), Tiphiidae (Hymenoptera), Myrmecocystus mexicanus Wesmael, and Dorymyrmex grandulus (Forel) (Hymenoptera: Formicidae). The first three insect groups were sensitive to LVC, high temperature, and low humidity, whereas the last three tolerated those same environmental conditions. Changes in temperature, humidity, and resources associated with vegetation coverage seem to differentially affect each species of floral visitors of the three Asteraceae species studied. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Identifying optimal remotely-sensed variables for ecosystem monitoring in Colorado Plateau drylands

    USGS Publications Warehouse

    Poitras, Travis; Villarreal, Miguel; Waller, Eric K.; Nauman, Travis; Miller, Mark E.; Duniway, Michael C.

    2018-01-01

    Water-limited ecosystems often recover slowly following anthropogenic or natural disturbance. Multitemporal remote sensing can be used to monitor ecosystem recovery after disturbance; however, dryland vegetation cover can be challenging to accurately measure due to sparse cover and spectral confusion between soils and non-photosynthetic vegetation. With the goal of optimizing a monitoring approach for identifying both abrupt and gradual vegetation changes, we evaluated the ability of Landsat-derived spectral variables to characterize surface variability of vegetation cover and bare ground across a range of vegetation community types. Using three year composites of Landsat data, we modeled relationships between spectral information and field data collected at monitoring sites near Canyonlands National Park, UT. We also developed multiple regression models to assess improvement over single variables. We found that for all vegetation types, percent cover bare ground could be accurately modeled with single indices that included a combination of red and shortwave infrared bands, while near infrared-based vegetation indices like NDVI worked best for quantifying tree cover and total live vegetation cover in woodlands. We applied four models to characterize the spatial distribution of putative grassland ecological states across our study area, illustrating how this approach can be implemented to guide dryland ecosystem management.

  9. 1100 years of human impact on woodland and soils in Kjarardalur, West Iceland

    NASA Astrophysics Data System (ADS)

    Gísladóttir, Guðrún; Erlendsson, Egill; Lal, Rattan

    2013-04-01

    Prior to the Norse settlement of Iceland around AD 874 climate was the principal control of ecosystem variability. Since then, drastic changes have been imposed on the island's ecosystem through human activities. Unsustainable land use has reduced vegetation coverage, altered floral composition and accelerated soil erosion, especially in conjunction with harsh climate. Healthy ecosystem, soil and vegetation, is not only an important resource to meet human demands but also a prominent sink of atmospheric CO2. In contrast, soil erosion and land degradation are major sources of atmospheric CO2. This study discusses the impact of human activities and climate change on vegetation, soil erosion, and soil organic carbon (SOC) in West Iceland. Analyses conducted include pollen in Histosols, soil properties, soil accumulation rates and SOC in Histosols and Andosols. Our data demonstrate a pre-settlement landscape that was not entirely stable, where relatively small differences in climate may have caused subtle changes to the terrestrial environment. However, the early colonists and subsequent occupants altered the environment significantly. The magnitude of alteration was spatially variable depending on land management. The vegetation and soil data demonstrate a swift transformation of environmental conditions across AD 874. The most profound impacts include reduction in birch woodland and concurrent decline of important habitat for fragile understory, which facilitated soil exposure and reduced soil quality. After about 300 years, land degradation-anticipated management towards enhanced sustainability was probably adopted at one of the farming properties in the study area, allowing for soil recovery after a period of drastic decline. At other properties unsustainable land use continued to degrade the terrestrial ecosystem. The late-Medieval climatic change and introduction of the Little-Ice age exerted added strain on the environments over the entire area, resulting in further soil degradation. The property where sustainable land use had been adopted preserved woodland cover and maintained greater soil quality than elsewhere in the valley, where thresholds of ecosystem resilience were crossed. Unsustainable land use over 1100 years caused vegetation denudation that accelerated soil erosion, with attendant redistribution of soil over the landscape, and decline in its quality. Vegetated areas became important sinks for wind-transported soils, as evidenced by increase in deposition rate and higher bulk density. This led to an increase in susceptibility to soil erosion, and decline in SOC content. Despite decrease in SOC content, the high sedimentation rate and elevated bulk weight resulted in higher SOC sequestration at these sites, even though soil quality declined. The potential soil C sequestration in adjacent sparsely or devegetated soils were highly impaired and along with soil mass losses these areas became sources of anthropogenic CO2.

  10. Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data.

    PubMed

    Jiang, Geng-Ming; Li, Zhao-Liang

    2008-11-10

    This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended.

  11. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.

    PubMed

    Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G

    2016-09-01

    Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.

  12. Interactive Effects of Moss-Dominated Crusts and Artemisia ordosica on Wind Erosion and Soil Moisture in Mu Us Sandland, China

    PubMed Central

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion. PMID:24982973

  13. Interactive effects of moss-dominated crusts and Artemisia ordosica on wind erosion and soil moisture in Mu Us sandland, China.

    PubMed

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion.

  14. Vegetation cover, avoided erosion and water quality in high Andean wetlands, Yeso River Basin

    NASA Astrophysics Data System (ADS)

    León, Alejandro; Soto, Jorge; Seguel, Oscar; Pérez, Javier; Osses, Daniela; Leiva, Nicolás; Zerega, Linka

    2017-04-01

    Wetlands on the high Andes mountains near Santiago de Chile have been impacted by overgrazing and off-road tourists. We studied wetlands in El Yeso River basin. In February 2015 we established 36 exclusions and measured vegetation cover and height, biomass production in and out the exclusions starting in October. Water and undisturbed soil samples were collected. Data were analyzed statistically to estimate i) the recovery of vegetation, and ii) the influence of grazing and vehicle traffic on vegetation loss, and iii) impacts on soil and water quality. In areas with less intense traffic, the difference in vegetation coverage in and out the exclusions is 22% (± 11.4%); in areas with more intense traffic this difference is 16% (± 16%). Height of vegetation, in the less intense traffic areas, ranges from 6.25 cm (± 2.8) to 13.32 cm (± 6.3). With higher traffic it varies between 6.9 cm (± 3.1) and 13.6 cm (± 5.4). Biomass varies between 0.06 kg DM/m2 to 0.57 kg DM/m2 depending on botanical composition and date. After water circulates through the wetlands its content of nitrogen increases 37.33% to 0.37 mg N/l and the fecal coliforms 66.67% to 0.67 MPN/100 ml, because of cattle. On the contrary, turbidity decreases 20.67% to 0.21 UNT because sediments are captured by vegetation. We also estimated an avoided erosion rate, ranging between 1.23% and 31.87% (depending on the slope) due to the increase in coverage within the exclusions.

  15. Defining the ecogeomorphic succession of land building for freshwater, intertidal wetlands in Wax Lake Delta, Louisiana

    NASA Astrophysics Data System (ADS)

    Olliver, Elizabeth A.; Edmonds, Douglas A.

    2017-09-01

    Land building in deltaic environments occurs when sediment discharged from a river mouth is deposited subaqueously and transitions to subaerial land. The transition from subaqueous deposition to subaerial land is a critical process that marks the creation of relatively stable land, yet it is unclear what controls the speed and style of this transition. We define how this transition, herein termed the land building succession, varies in time and space for the freshwater, intertidal wetlands in Wax Lake Delta, LA. Using remote sensing and field data we classify land cover into sediment, water, or vegetation classes at maximum and minimum biomass. We see two succession patterns within Wax Lake Delta. Deltaic islands near the apex are initially covered by sediment and open water. Through time, open water and sediment coverage decreases as vegetation coverage increases. On the other hand, distal islands show little sediment exposure through time. In both cases, all deltaic islands become covered with vegetation by 2015. As vegetation colonizes the island, the topography organizes into two platforms vertically separated by ∼0.35 m. The lower, intertidal platform occurs in the island interiors and is commonly inundated by water and dominated by subaqueous or floating vegetation. The upper, subaerial platform occurs along island edges and is dominated by a variety of vegetation species including Salix nigra, Colocasia esculenta, and Polygonum punctatum. It takes an average of ∼10 years for the intertidal platform to transition to the subaerial platform. These two platforms are separated by the tidal range measured in Atchafalaya Bay, and the different vegetation communities occupying each platform suggest they are a manifestation of multiple stable states and arise due to vegetation and sedimentation feedbacks.

  16. Pacific Northwest

    NASA Image and Video Library

    2017-12-08

    The Rocky, Cascade, and Coast Mountain Ranges dominate the landscape of the Pacific Northwest in this image created June 11-17, 2012 from the Visible-Infrared Imager/Radiometer Suite (VIIRS) instrument aboard the Suomi National Polar-orbiting Partnership or Suomi NPP satellite, a partnership between NASA and the National Oceanic and Atmospheric Administration, or NOAA. Potato and other agriculture can be seen in the bottom center of the image, as the Rockies transition to the plains of Idaho. High values of Normalized Difference Vegetation Index, or NDVI, represent dense green functioning vegetation and low NDVI values represent sparse green vegetation or vegetation under stress from limiting conditions, such as drought. Credit: NASA/NOAA To read more go to: www.nasa.gov/mission_pages/NPP/news/vegetation.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Use of slope, aspect, and elevation maps derived from digital elevation model data in making soil surveys

    USGS Publications Warehouse

    Klingebiel, A.A.; Horvath, E.H.; Moore, D.G.; Reybold, W.U.

    1987-01-01

    Maps showing different classes of slope, aspect, and elevation were developed from U.S. Geological Survey digital elevation model data. The classes were displayed on clear Mylar at 1:24 000-scale and registered with topographic maps and orthophotos. The maps were used with aerial photographs, topographic maps, and other resource data to determine their value in making order-three soil surveys. They were tested on over 600 000 ha in Wyoming, Idaho, and Nevada under various climatic and topographic conditions. Field evaluations showed that the maps developed from digital elevation model data were accurate, except for slope class maps where slopes were <4%. The maps were useful to soil scientists, especially where (i) class boundaries coincided with soil changes, landform delineations, land use and management separations, and vegetation changes, and (ii) rough terrain and dense vegetation made it difficult to traverse the area. In hot, arid areas of sparse vegetation, the relationship of slope classes to kinds of soil and vegetation was less significant.

  18. Neotropical Migratory Bird Communities in a Developing Pine Plantation

    Treesearch

    James G. Dickson; Richard N. Conner; J. Howard Williamson

    1993-01-01

    Birds were censused annually from 4 250-x80-in transects in a young pine plantation from age to 2 to 17 to assess changes in the bird community.Bird abundance was low and the bird communitry was the least diverse when the pine plantation was sparsely vegetated at age 2. As the plantation developed rapidly into the shrub stage, the bird communitry became more abundant...

  19. Dose-shaping using targeted sparse optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, George A.; Ruan, Dan

    2013-07-15

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, themore » authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot}{sup sparse} improves tradeoff between planning goals by 'sacrificing' voxels that have already been violated to improve PTV coverage, PTV homogeneity, and/or OAR-sparing. In doing so, overall plan quality is increased since these large violations only arise if a net reduction in E{sub tot}{sup sparse} occurs as a result. For example, large violations to dose prescription in the PTV in E{sub tot}{sup sparse}-optimized plans will naturally localize to voxels in and around PTV-OAR overlaps where OAR-sparing may be increased without compromising target coverage. The authors compared the results of our method and the corresponding clinical plans using analyses of DVH plots, dose maps, and two quantitative metrics that quantify PTV homogeneity and overdose. These metrics do not penalize underdose since E{sub tot}{sup sparse}-optimized plans were planned such that their target coverage was similar or better than that of the clinical plans. Finally, plan deliverability was assessed with the 2D modulation index.Results: The proposed method was implemented using IBM's CPLEX optimization package (ILOG CPLEX, Sunnyvale, CA) and required 1-4 min to solve with a 12-core Intel i7 processor. In the testing procedure, the authors optimized for several points on the Pareto surface of four 7-field 6MV prostate cases that were optimized for different levels of PTV homogeneity and OAR-sparing. The generated results were compared against each other and the clinical plan by analyzing their DVH plots and dose maps. After developing intuition by planning the four prostate cases, which had relatively few tradeoffs, the authors applied our method to a 7-field 6 MV pancreas case and a 9-field 6MV head-and-neck case to test the potential impact of our method on more challenging cases. The authors found that our formulation: (1) provided excellent flexibility for balancing OAR-sparing with PTV homogeneity; and (2) permitted the dose planner more control over the evolution of the PTV's spatial dose distribution than conventional objective functions. In particular, E{sub tot}{sup sparse}-optimized plans for the pancreas case and head-and-neck case exhibited substantially improved sparing of the spinal cord and parotid glands, respectively, while maintaining or improving sparing for other OARs and markedly improving PTV homogeneity. Plan deliverability for E{sub tot}{sup sparse}-optimized plans was shown to be better than their associated clinical plans, according to the two-dimensional modulation index.Conclusions: These results suggest that our formulation may be used to improve dose-shaping and OAR-sparing for complicated disease sites, such as the pancreas or head and neck. Furthermore, our objective function and constraints are linear and constitute a linear program, which converges to the global minimum quickly, and can be easily implemented in treatment planning software. Thus, the authors expect fast translation of our method to the clinic where it may have a positive impact on plan quality for challenging disease sites.« less

  20. Initial Validation of NDVI time seriesfrom AVHRR, VEGETATION, and MODIS

    NASA Technical Reports Server (NTRS)

    Morisette, Jeffrey T.; Pinzon, Jorge E.; Brown, Molly E.; Tucker, Jim; Justice, Christopher O.

    2004-01-01

    The paper will address Theme 7: Multi-sensor opportunities for VEGETATION. We present analysis of a long-term vegetation record derived from three moderate resolution sensors: AVHRR, VEGETATION, and MODIS. While empirically based manipulation can ensure agreement between the three data sets, there is a need to validate the series. This paper uses atmospherically corrected ETM+ data available over the EOS Land Validation Core Sites as an independent data set with which to compare the time series. We use ETM+ data from 15 globally distributed sites, 7 of which contain repeat coverage in time. These high-resolution data are compared to the values of each sensor by spatially aggregating the ETM+ to each specific sensors' spatial coverage. The aggregated ETM+ value provides a point estimate for a specific site on a specific date. The standard deviation of that point estimate is used to construct a confidence interval for that point estimate. The values from each moderate resolution sensor are then evaluated with respect to that confident interval. Result show that AVHRR, VEGETATION, and MODIS data can be combined to assess temporal uncertainties and address data continuity issues and that the atmospherically corrected ETM+ data provide an independent source with which to compare that record. The final product is a consistent time series climate record that links historical observations to current and future measurements.

  1. Expanding the catalog of binary black-hole simulations: aligned-spin configurations

    NASA Astrophysics Data System (ADS)

    Chu, Tony; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2015-04-01

    A major goal of numerical relativity is to model the inspiral and merger of binary black holes through sufficiently accurate and long simulations, to enable the successful detection of gravitational waves. However, covering the full parameter space of binary configurations is a computationally daunting task. The SXS Collaboration has made important progress in this direction recently, with a catalog of 174 publicly available binary black-hole simulations [black-holes.org/waveforms]. Nevertheless, the parameter-space coverage remains sparse, even for non-precessing binaries. In this talk, I will describe an addition to the SXS catalog to improve its coverage, consisting of 95 new simulations of aligned-spin binaries with moderate mass ratios and dimensionless spins as high as 0.9. Some applications of these new simulations will also be mentioned.

  2. Ground sample data for the Conterminous U.S. Land Cover Characteristics Database

    Treesearch

    Robert Burgan; Colin Hardy; Donald Ohlen; Gene Fosnight; Robert Treder

    1999-01-01

    Ground sample data were collected for a land cover database and raster map that portray 159 vegetation classes at 1 km2 resolution for the conterminous United States. Locations for 3,500 1 km2 ground sample plots were selected randomly across the United States. The number of plots representing each vegetation class was weighted by the proportionate coverage of each...

  3. Plan for the uniform mapping of earth resources and environmental complexes from Skylab imagery. [vegetation of Colorado Plateau and rice crops in California

    NASA Technical Reports Server (NTRS)

    Poulton, C. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Below approximately 25% cover visual photointerpretation of vegetation analogs of Skylab 2 Sl9OA color infrared imagery is poor. Correct identifications of vegetation analogs in this category range from 28 to 57%. Good photointerpretation results (64 to 96%) were obtained on vegetation analogs with higher cover values. The four semidesert vegetation analogs (greasewood, saltbush, big sagebrush, and pinyon-juniper) are consistently distinguishable as a group. Photointerpretation accuracy equals 90.1%. When these same types are broken into two sub-groups (salt desert vegetation and shrub steppe/sparse pinyon-juniper vegetation) interpretation success drops to 76% and 85%, respectively. Band ratioing and transmittance differences between two forested analogs as imaged on Skylab 2 S19OA film shows significant differences. In the infrared wavelength both analogs have very similar transmittance characteristics while the visible wavelength shows separation between the two. Relative transmittance values for stands of ponderosa pine forestland and pinyon-juniper woodland are 719.3 + or - 65.9 and 223.6 + or - 48.1, respectively on negative transparencies. In image interpretation along the low-elevation fringe of forested regions these are the two forest analogs most frequently requiring separation.

  4. Relationship of attenuation in a vegetation canopy to physical parameters of the canopy

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Levine, D. M.

    1993-01-01

    A discrete scatter model is employed to compute the radiometric response (i.e. emissivity) of a layer of vegetation over a homogeneous ground. This was done to gain insight into empirical formulas for the emissivity which have recently appeared in the literature and which indicate that the attenuation through the canopy is proportional to the water content of the vegetation and inversely proportional to wavelength raised to a power around unity. The analytical result assumes that the vegetation can be modeled by a sparse layer of discrete, randomly oriented particles (leaves, stalks, etc.). The attenuation is given by the effective wave number of the layer obtained from the solution for the mean wave using the effective field approximation. By using the Ulaby-El Rayes formula to relate the dielectric constant of the vegetation to its water content, it can be shown that the attenuation is proportional to water content. The analytical form offers insight into the dependence of the empirical parameters on other variables of the canopy, including plant geometry (i.e. shape and orientation of the leaves and stalks of which the vegetation is comprised), frequency of the measurement and even the physical temperature of the vegetation. Solutions are presented for some special cases including layers consisting of cylinders (stalks) and disks (leaves).

  5. Mapping Forest Height in Gabon Using UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Lidar Fusion

    NASA Astrophysics Data System (ADS)

    Simard, M.; Denbina, M. W.

    2017-12-01

    Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems Dynamics Investigation (GEDI) lidar.

  6. Urban land use of the Sao Paulo metropolitan area by automatic analysis of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Niero, M.; Foresti, C.

    1983-01-01

    The separability of urban land use classes in the metropolitan area of Sao Paulo was studied by means of automatic analysis of MSS/LANDSAT digital data. The data were analyzed using the media K and MAXVER classification algorithms. The land use classes obtained were: CBD/vertical growth area, residential area, mixed area, industrial area, embankment area type 1, embankment area type 2, dense vegetation area and sparse vegetation area. The spectral analysis of representative samples of urban land use classes was done using the "Single Cell" analysis option. The classes CBD/vertical growth area, residential area and embankment area type 2 showed better spectral separability when compared to the other classes.

  7. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul

    2016-04-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  8. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.

    2016-12-01

    The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  9. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.

    2017-08-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  10. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.

    2017-04-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  11. Parametrizing Evaporative Resistance for Heterogeneous Sparse Canopies through Novel Wind Tunnel Experimentation

    NASA Astrophysics Data System (ADS)

    Sloan, B.; Ebtehaj, A. M.; Guala, M.

    2017-12-01

    The understanding of heat and water vapor transfer from the land surface to the atmosphere by evapotranspiration (ET) is crucial for predicting the hydrologic water balance and climate forecasts used in water resources decision-making. However, the complex distribution of vegetation, soil and atmospheric conditions makes large-scale prognosis of evaporative fluxes difficult. Current ET models, such as Penman-Monteith and flux-gradient methods, are challenging to apply at the microscale due to ambiguity in determining resistance factors to momentum, heat and vapor transport for realistic landscapes. Recent research has made progress in modifying Monin-Obukhov similarity theory for dense plant canopies as well as providing clearer description of diffusive controls on evaporation at a smooth soil surface, which both aid in calculating more accurate resistance parameters. However, in nature, surfaces typically tend to be aerodynamically rough and vegetation is a mixture of sparse and dense canopies in non-uniform configurations. The goal of our work is to parameterize the resistances to evaporation based on spatial distributions of sparse plant canopies using novel wind tunnel experimentation at the St. Anthony Falls Laboratory (SAFL). The state-of-the-art SAFL wind tunnel was updated with a retractable soil box test section (shown in Figure 1), complete with a high-resolution scale and soil moisture/temperature sensors for recording evaporative fluxes and drying fronts. The existing capabilities of the tunnel were used to create incoming non-neutral stability conditions and measure 2-D velocity fields as well as momentum and heat flux profiles through PIV and hotwire anemometry, respectively. Model trees (h = 5 cm) were placed in structured and random configurations based on a probabilistic spacing that was derived from aerial imagery. The novel wind tunnel dataset provides the surface energy budget, turbulence statistics and spatial soil moisture data under varying atmospheric stability for each sparse canopy configuration. We will share initial data results and progress toward the development of new parametrizations that can account for the evolution of a canopy roughness sublayer on the momentum, heat and vapor resistance terms as a function of a stochastic representation of canopy spacing.

  12. Comparison of various techniques for calibration of AIS data

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Yamaguchi, Y.; Lyon, R. J. P.

    1986-01-01

    The Airborne Imaging Spectrometer (AIS) samples a region which is strongly influenced by decreasing solar irradiance at longer wavelengths and strong atmospheric absorptions. Four techniques, the Log Residual, the Least Upper Bound Residual, the Flat Field Correction and calibration using field reflectance measurements were investigated as a means for removing these two features. Of the four techniques field reflectance calibration proved to be superior in terms of noise and normalization. Of the other three techniques, the Log Residual was superior when applied to areas which did not contain one dominant cover type. In heavily vegetated areas, the Log Residual proved to be ineffective. After removing anomalously bright data values, the Least Upper Bound Residual proved to be almost as effective as the Log Residual in sparsely vegetated areas and much more effective in heavily vegetated areas. Of all the techniques, the Flat Field Correction was the noisest.

  13. Ecological feedbacks. Termite mounds can increase the robustness of dryland ecosystems to climatic change.

    PubMed

    Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E

    2015-02-06

    Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.

  14. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  15. Dynamics Change of Vegetated Lands in A Highway Corridor during 37 Years (Case study of Jagorawi Toll Road, Jakarta-Bogor)

    NASA Astrophysics Data System (ADS)

    Perdana, B. P.; Setiawan, Y.; Prasetyo, L. B.

    2018-02-01

    Recently, a highway development is required as a liaison between regions to support the economic development of the regions. Even the availability of highways give positive impacts, it also has negative impacts, especially related to the changes of vegetated lands. This study aims to determine the change of vegetation coverage in Jagorawi corridor Jakarta-Bogor during 37 years, and to analyze landscape patterns in the corridor based on distance factor from Jakarta to Bogor. In this study, we used a long-series of Landsat images taken by Landsat 2 MSS (1978), Landsat 5 TM (1988, 1995, and 2005) and Landsat 8 OLI/TIRS (2015). Analysis of landscape metrics was conducted through patch analysis approach to determine the change of landscape patterns in the Jagorawi corridor Jakarta-Bogor. Several parameters of landscape metrics used are Number of Patches (NumP), Mean Patch Size (MPS), Mean Shape Index (MSI), and Edge Density (ED). These parameters can be used to provide information of structural elements of landscape, composition and spatial distribution in the corridor. The results indicated that vegetation coverage in the Jagorawi corridor Jakarta-Bogor decreased about 48% for 35 years. Moreover, NumP value increased and decreasing of MPS value as a means of higher fragmentation level occurs with patch size become smaller. Meanwhile, The increase in ED parameters indicates that vegetated land is damaged annually. MSI parameter shows a decrease in every year which means land degradation on vegetated land. This indicates that the declining value of MSI will have an impact on land degradation.

  16. Molecular characterization of phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Frey, Beat; Bühler, Lukas; Schmutz, Stefan; Zumsteg, Anita; Furrer, Gerhard

    2013-03-01

    Recently deglaciated areas are ideal environments to study soil formation and primary microbial succession where phototrophic microorganisms may play a role as primary producers. The aim of our study was to investigate the cyanobacterial and green algal community composition in three different successional stages of the Damma glacier forefield in the Swiss Alps using 16S rDNA and ITS rDNA clone libraries. Cyanobacterial target sequences varied along the glacier forefield, with the highest cyanobacterial 16S rRNA gene copies found in sparsely vegetated soils. Sequence analysis revealed that the phototrophic communities were distinct in each of the three soil environments. The majority of the cyanobacterial sequences retrieved from barren soils were related to the Oscillatoriales. The diversity in sparsely vegetated soils was low, and sequences closely related to Nostoc sp. dominated. The majority of the algal phylotypes are related to members of the Trebouxiophyceae known to live as symbiotic partners in lichens. We conclude that the community composition appears to shift markedly along the chronosequence, indicating that each soil environment selects for its phototrophic community. When cyanobacteria occur together with eukaryotic microalgae, they form a rich source of organic matter and may be important contributors of carbon in nutrient-deficient deglaciated soils.

  17. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  18. JESTR: Jupiter Exploration Science in the Time Regime

    NASA Technical Reports Server (NTRS)

    Noll, Keith S.; Simon-Miller, A. A.; Wong, M. H.; Choi, D. S.

    2012-01-01

    Solar system objects are inherently time-varying with changes that occur on timescales ranging from seconds to years. For all planets other than the Earth, temporal coverage of atmospheric phenomena is limited and sparse. Many important atmospheric phenomena, especially those related to atmospheric dynamics, can be studied in only very limited ways with current data. JESTR is a mission concept that would remedy this gap in our exploration of the solar system by ncar-continuous imaging and spectral monitoring of Jupiter over a multi-year mission lifetime.

  19. [Relations of landslide and debris flow hazards to environmental factors].

    PubMed

    Zhang, Guo-ping; Xu, Jing; Bi, Bao-gui

    2009-03-01

    To clarify the relations of landslide and debris flow hazards to environmental factors is of significance to the prediction and evaluation of landslide and debris flow hazards. Base on the latitudinal and longitudinal information of 18431 landslide and debris flow hazards in China, and the 1 km x 1 km grid data of elevation, elevation difference, slope, slope aspect, vegetation type, and vegetation coverage, this paper analyzed the relations of landslide and debris flow hazards in this country to above-mentioned environmental factors by the analysis method of frequency ratio. The results showed that the landslide and debris flow hazards in China more occurred in lower elevation areas of the first and second transitional zones. When the elevation difference within a 1 km x 1 km grid cell was about 300 m and the slope was around 30 degree, there was the greatest possibility of the occurrence of landslide and debris hazards. Mountain forest land and slope cropland were the two land types the hazards most easily occurred. The occurrence frequency of the hazards was the highest when the vegetation coverage was about 80%-90%.

  20. Reduced sediment transport in the Chinese Loess Plateau due to climate change and human activities.

    PubMed

    Yang, Xiaonan; Sun, Wenyi; Li, Pengfei; Mu, Xingmin; Gao, Peng; Zhao, Guangju

    2018-06-14

    The sediment load on the Chinese Loess Plateau has sharply decreased in recent years. However, the contribution of terrace construction and vegetation restoration projects to sediment discharge reduction remains uncertain. In this paper, eight catchments located in the Loess Plateau were chosen to explore the effects of different driving factors on sediment discharge changes during the period from the 1960s to 2012. Attribution approaches were applied to evaluate the effects of climate, terrace, and vegetation coverage changes on sediment discharge. The results showed that the annual sediment discharge decreased significantly in all catchments ranging from -0.007 to -0.039 Gt·yr -1 . Sediment discharge in most tributaries has shown abrupt changes since 1996, and the total sediment discharge was reduced by 60.1% during 1997-2012. We determined that increasing vegetation coverage was the primary factor driving the reductions in sediment loads since 1996 and accounted for 47.7% of the total reduction. Climate variability and terrace construction accounted for 9.1% and 18.6% of sediment discharge reductions, respectively. Copyright © 2018. Published by Elsevier B.V.

  1. Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; Raynolds, M.; Walker, D. A.

    2003-01-01

    We have developed maps of dominant vegetation types, plant functional types, percent vegetation cover, aboveground plant biomass, and above and belowground annual net primary productivity for Canada north of the northern limit of trees. The area mapped covers 2.5 million km2 including glaciers. Ice-free land covers 2.3 million km2 and represents 42% of all ice-free land in the Circumpolar Arctic. The maps combine information on climate, soils, geology, hydrology, remotely sensed vegetation classifications, previous vegetation studies, and regional expertise to define polygons drawn using photo-interpretation of a 1:4,000,000 scale advanced very high resolution radiometer (AVHRR) color infrared image basemap. Polygons are linked to vegetation description, associated properties, and descriptive literature through a series of lookup tables in a graphic information systems (GIS) database developed as a component of the Circumpolar Arctic Vegetation Map (CAVM) project. Polygons are classified into 20 landcover types including 17 vegetation types. Half of the region is sparsely vegetated (<50% vegetation cover), primarily in the High Arctic (bioclimatic subzones A-C). Whereas most (86%) of the estimated aboveground plant biomass (1.5 × 1015 g) and 87% of the estimated above and belowground annual net primary productivity (2.28 × 1014 g yr-1) are concentrated in the Low Arctic (subzones D and E). The maps present more explicit spatial patterns of vegetation and ecosystem attributes than have been previously available, the GIS database is useful in summarizing ecosystem properties and can be easily updated and integrated into circumpolar mapping efforts, and the derived estimates fall within the range of current published estimates.

  2. Ground penetrating radar imaging of cap rock, caliche and carbonate strata

    USGS Publications Warehouse

    Kruse, S.E.; Schneider, J.C.; Campagna, D.J.; Inman, J.A.; Hickey, T.D.

    2000-01-01

    Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to ~3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to ~2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (~5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida. (C) 2000 Elsevier Science B.V. All rights reserved.Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to approx. 3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to approx. 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (approx. 5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.

  3. Selection of nest-site habitat by interior least terns in relation to sandbar construction

    USGS Publications Warehouse

    Sherfy, M.H.; Stucker, J.H.; Buhl, D.A.

    2012-01-01

    Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (na =a 798) and random points (na =a 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns. ?? 2011 The Wildlife Society.

  4. Selection of nest-site habitat by interior least terns in relation to sandbar construction

    USGS Publications Warehouse

    Sherfy, Mark H.; Stucker, Jennifer H.; Buhl, Deborah A.

    2012-01-01

    Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (n = 798) and random points (n = 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns.

  5. Discerning spatial and temporal LAI and clear-sky FAPAR variability during summer at the Toolik Lake vegetation monitoring grid (North Slope, Alaska)

    NASA Astrophysics Data System (ADS)

    Heim, B.; Beamish, A. L.; Walker, D. A.; Epstein, H. E.; Sachs, T.; Chabrillat, S.; Buchhorn, M.; Prakash, A.

    2016-12-01

    Ground data for the validation of satellite-derived terrestrial Essential Climate Variables (ECVs) at high latitudes are sparse. Also for regional model evaluation (e.g. climate models, land surface models, permafrost models), we lack accurate ranges of terrestrial ground data and face the problem of a large mismatch in scale. Within the German research programs `Regional Climate Change' (REKLIM) and the Environmental Mapping and Analysis Program (EnMAP), we conducted a study on ground data representativeness for vegetation-related variables within a monitoring grid at the Toolik Lake Long-Term Ecological Research station; the Toolik Lake station lies in the Kuparuk River watershed on the North Slope of the Brooks Mountain Range in Alaska. The Toolik Lake grid covers an area of 1 km2 containing Eight five grid points spaced 100 meters apart. Moist acidic tussock tundra is the most dominant vegetation type within the grid. Eight five permanent 1 m2 plots were also established to be representative of the individual gridpoints. Researchers from the University of Alaska Fairbanks have undertaken assessments at these plots, including Leaf Area Index (LAI) and field spectrometry to derive the Normalized Difference Vegetation Index (NDVI). During summer 2016, we conducted field spectrometry and LAI measurements at selected plots during early, peak and late summer. We experimentally measured LAI on more spatially extensive Elementary Sampling Units (ESUs) to investigate the spatial representativeness of the permanent 1 m2 plots and to map ESUs for various tundra types. LAI measurements are potentially influenced by landscape-inherent microtopography, sparse vascular plant cover, and dead woody matter. From field spectrometer measurements, we derived a clear-sky mid-day Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). We will present the first data analyses comparing FAPAR and LAI, and maps of biophysically-focused ESUs for evaluation of the use of remote sensing data to estimate these ecosystem properties.

  6. Exploring vegetation in the fourth dimension.

    PubMed

    Mitchell, Fraser J G

    2011-01-01

    Much ecological research focuses on changes in vegetation on spatial scales from stands to landscapes; however, capturing data on vegetation change over relevant timescales remains a challenge. Pollen analysis offers unrivalled access to data with global coverage over long timescales. Robust techniques have now been developed that enable pollen data to be converted into vegetation data in terms of individual taxa, plant communities or biomes, with the possibility of deriving from those data a range of plant attributes and ecological indicators. In this review, I discuss how coupling pollen with macrofossil, charcoal and genetic data opens up the extensive pollen databases to investigation of the drivers of vegetation change over time and also provides extensive data sets for testing hypotheses with wide ecological relevance. © 2010 Elsevier Ltd. All rights reserved.

  7. Combining GOES-16 Geostationary Lightning Mapper with the ground based Earth Networks Total Lightning Network

    NASA Astrophysics Data System (ADS)

    Stock, M.; Lapierre, J. L.; Zhu, Y.

    2017-12-01

    Recently, the Geostationary Lightning Mapper (GLM) began collecting optical data to locate lightning events and flashes over the North and South American continents. This new instrument promises uniformly high detection efficiency (DE) over its entire field of view, with location accuracy on the order of 10 km. In comparison, Earth Networks Total Lightning Networks (ENTLN) has a less uniform coverage, with higher DE in regions with dense sensor coverage, and lower DE with sparse sensor coverage. ENTLN also offers better location accuracy, lightning classification, and peak current estimation for their lightning locations. It is desirable to produce an integrated dataset, combining the strong points of GLM and ENTLN. The easiest way to achieve this is to simply match located lightning processes from each system using time and distance criteria. This simple method will be limited in scope by the uneven coverage of the ground based network. Instead, we will use GLM group locations to look up the electric field change data recorded by ground sensors near each GLM group, vastly increasing the coverage of the ground network. The ground waveforms can then be used for: improvements to differentiation between glint and lightning for GLM, higher precision lighting location, current estimation, and lightning process classification. Presented is an initial implementation of this type of integration using preliminary GLM data, and waveforms from ENTLN.

  8. The Plant Foliage Projective Coverage Change over the Northern Tibetan Plateau during 1957-2009

    NASA Astrophysics Data System (ADS)

    Cuo, L.

    2015-12-01

    Northern Tibetan Plateau is the headwater of the Yellow River, the Yangtze River and the Mekong River that support billions of the population. Vegetation change will affect the regional ecosystem and water balances through the changes in biomass and evapotranspiration. Dynamic vegetation growth is determined by physiological, morphological, bioclimatic and phenological properties. These properties are affected by climate variables such as air temperature, precipitation, soil temperature and concentration of CO2, etc. Due to climate change, some parts of the northern Tibetan Plateau are under the threat of desertification. Identifying the places of vegetation degradation and the dominant driven climatic factors will help mitigate the climate change impacts on ecosystem and water resources in this region. In this study, the changes of foliage projective coverages (FPCs) of various plant functional types (PFTs) existed in the northern Tibetan Plateau and the responses of FPCs to the four climate variables over 1957-2009 are examined. The dominant factors among the four climate variables are also identified. The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) is modified and used for the investigation. The modified LPJ-DGVM can better account for soil temperature in the top 0.4-m depth where vegetation root concentrates over the northern Tibetan Plateau. The modified model is evaluated by using monthly and annual soil temperature observed at stations across the region, and the eco-geographic maps that describe plant types and spatial distributions developed from field surveys and satellite images for this region.

  9. Method for determining surface coverage by materials exhibiting different fluorescent properties

    NASA Technical Reports Server (NTRS)

    Chappelle, Emmett W. (Inventor); Daughtry, Craig S. T. (Inventor); Mcmurtrey, James E., III (Inventor)

    1995-01-01

    An improved method for detecting, measuring, and distinguishing crop residue, live vegetation, and mineral soil is presented. By measuring fluorescence in multiple bands, live and dead vegetation are distinguished. The surface of the ground is illuminated with ultraviolet radiation, inducing fluorescence in certain molecules. The emitted fluorescent emission induced by the ultraviolet radiation is measured by means of a fluorescence detector, consisting of a photodetector or video camera and filters. The spectral content of the emitted fluorescent emission is characterized at each point sampled, and the proportion of the sampled area covered by residue or vegetation is calculated.

  10. How vegetation and sediment transport feedbacks drive landscape change in the Everglades and wetlands worldwide

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson W.

    2010-01-01

    Mechanisms reported to promote landscape self‐organization cannot explain vegetation patterning oriented parallel to flow. Recent catastrophic shifts in Everglades landscape pattern and ecological function highlight the need to understand the feedbacks governing these ecosystems. We modeled feedback between vegetation, hydrology, and sediment transport on the basis of a decade of experimentation. Results from more than 100 simulations showed that flows just sufficient to redistribute sediment from sparsely vegetated sloughs to dense ridges were needed for an equilibrium patterned landscape oriented parallel to flow. Surprisingly, although vegetation heterogeneity typically conveys resilience, in wetlands governed by flow/sediment feedbacks it indicates metastability, whereby the landscape is prone to catastrophic shifts. Substantial increases or decreases in flow relative to the equilibrium condition caused an expansion of emergent vegetation and loss of open‐water areas that was unlikely to revert upon restoration of the equilibrium hydrology. Understanding these feedbacks is critical in forecasting wetland responses to changing conditions and designing management strategies that optimize ecosystem services, such as carbon sequestration or habitat provision. Our model and new sensitivity analysis techniques address these issues and make it newly apparent that simply returning flow to predrainage conditions in the Everglades may not be sufficient to restore historic landscape patterns and processes.

  11. Infiltration in layered loessial deposits: Revised numerical simulations and recharge assessment

    NASA Astrophysics Data System (ADS)

    Dafny, Elad; Šimůnek, Jirka

    2016-07-01

    The objective of this study is to assess recharge rates and their timing under layered loessial deposits at the edge of arid zones. Particularly, this study is focused on the case of the coastal plain of Israel and Gaza. First, results of a large-scale field infiltration test were used to calibrate the van Genuchten parameters of hydraulic properties of the loessial sediments using HYDRUS (2D/3D). Second, optimized soil hydraulic parameters were used by HYDRUS-1D to simulate the water balance of the sandy-loess sediments during a 25-year period (1990-2015) for three environmental conditions: bare soil, and soil with both sparse and dense natural vegetation. The best inverse parameter optimization run fitted the infiltration test data with the RMSE of 0.27 d (with respect to a moisture front arrival) and R2 of 96%. The calibrated model indicates that hydraulic conductivities of the two soil horizons, namely sandy loam and sandy clay loam, are 81 cm/d and 17.5 cm/d, respectively. These values are significantly lower than those previously reported, based on numerical simulations, for the same site. HYDRUS-1D simulation of natural recharge under bare soil resulted in recharge estimates (to the aquifer) in the range of 21-93 mm/yr, with an average recharge of 63 mm/yr. Annual precipitation in the same period varied between 100 and 300 mm/yr, with an average of 185 mm/yr. For semi-stabilized dunes, with 26% of the soil surface covered by local shrub (Artemisia monosperma), the mean annual recharge was 28 mm. For the stabilized landscape, with as much as 50% vegetation coverage, it was only 2-3 mm/yr. In other words, loessial sediments can either be a source of significant recharge, or of no recharge at all, depending on the degree of vegetative cover. Additionally, the time lag between specific rainy seasons and corresponding recharge events at a depth of 22 m, increased from 2.5 to 5 years, and to about 20 years, respectively, with an increasing vegetative cover. For this reason, and also likely due to a great depth of loessial sediments, no correlation was found between annual recharge and annual precipitations of the same year or subsequent years. Similarly, no differences were found between summer and winter recharge fluxes. Instead, numerical simulations indicated continuous year-round recharge of the aquifer. We conclude that the layered subsurface acts as a short-term (annual) and long-term (multi-annual) buffer to smooth sudden precipitation/infiltration events. Vegetation conditions can help in predicting long-term recharge rates (as percentage of annual precipitation), which in turn need to be considered when assigning recharge characteristics in regional assessments and models.

  12. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA

    NASA Astrophysics Data System (ADS)

    El-Vilaly, Mohamed Abd Salam; Didan, Kamel; Marsh, Stuart E.; van Leeuwen, Willem J. D.; Crimmins, Michael A.; Munoz, Armando Barreto

    2018-03-01

    For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountainWestern United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multisensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness ( p<0.05), while 3.87% show an unexpected green up, with the remaining areas showing no consistent change. Vegetation in the area show a significant positive correlation with elevation and precipitation gradients. These results, while, confirming the region's vegetation decline due to drought, shed further light on the future directions and challenges to the region's already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surface-based climate and vegetation monitoring record is spatially and temporally limited.

  13. Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: Insights from an extreme rainfall event in the Colorado Front Range

    USGS Publications Warehouse

    McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Coe, Jeffrey A.; Mirus, Benjamin B.; Baum, Rex L.; Godt, Jonathan W.

    2016-01-01

    More than 1100 debris flows were mobilized from shallow landslides during a rainstorm from 9 to 13 September 2013 in the Colorado Front Range, with the vast majority initiating on sparsely vegetated, south facing terrain. To investigate the physical processes responsible for the observed aspect control, we made measurements of soil properties on a densely forested north facing hillslope and a grassland-dominated south facing hillslope in the Colorado Front Range and performed numerical modeling of transient changes in soil pore water pressure throughout the rainstorm. Using the numerical model, we quantitatively assessed interactions among vegetation, rainfall interception, subsurface hydrology, and slope stability. Results suggest that apparent cohesion supplied by roots was responsible for the observed connection between debris flow initiation and slope aspect. Results suggest that future climate-driven modifications to forest structure could substantially influence landslide hazards throughout the Front Range and similar water-limited environments where vegetation communities may be more susceptible to small variations in climate.

  14. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems

    USGS Publications Warehouse

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William

    2016-01-01

    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  15. Change detection in Arctic satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.

    2015-06-01

    Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.

  16. Long-Term Effects of Xerophytic Shrub Haloxylon ammodendron Plantations on Soil Properties and Vegetation Dynamics in Northwest China

    PubMed Central

    Fan, Baoli; Zhang, Aiping; Yang, Yi; Ma, Quanlin; Li, Xuemin; Zhao, Changming

    2016-01-01

    The xerophytic desert shrub Haloxylon ammodendron (C. A. Mey.) Bunge. is distributed naturally in Asian and African deserts, and is widely used for vegetation restoration in the desert regions of Northern China. However, there are limited long-term chrono-sequence studies on the impact of changed soil properties and vegetation dynamics following establishment of this shrub on mobile sand dunes. In Minqin County, Gansu Province, we investigated soil properties and herbaceous vegetation development of 10, 20, 30, 40, 50-year-old H. ammodendron plantations on mobile sand dunes. Soil sampling at two depths (0–5 and 5–20 cm) under the shrubs determined SOC, nutrition and soil physical characteristics. The results showed that: establishment of H. ammodendron had improved soil physio-chemical properties, increased thickness of soil crusts and coverage of biological soil crusts (BSCs), and promoted development of topsoil over an extended period of 5 decades. Soil texture and soil nutrition improved along the chrono-sequence according to three distinct phases: i) an initial fast development from 0 to 10 years, ii) a stabilizing phase from 10 to 30 years followed by iii) a relatively marked restoration development in 40 and 50-year-old plantations. Meanwhile, herbaceous community coverage also markedly increased in 30-year-old plantations. However, both soil and vegetation restoration were very slow due to low annual precipitation in Minqin county compared to other Northern China sand afforestation sites. Canonical Correspondence Analysis results demonstrated that herbaceous plant development was closely associated with changes in soil texture (increased clay and silt percentage) and availability of soil nutrients. Thus our results indicated that selection of the long-lived shrub H. ammodendron is an essential and effective tool in arid desert re-vegetation. PMID:27992458

  17. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates

    NASA Technical Reports Server (NTRS)

    Running, Steven W.; Nemani, Ramakrishna R.

    1988-01-01

    Weekly AVHRR Normalized Difference Vegetation Index (NDVI) values for 1983-1984 for seven sites of diverse climate in North America were correlated with results of an ecosystem simulation model of a hypothetical forest stand for the corresponding period at each site. The tendency of raw NDVI data to overpredict photosynthesis and transpiration on water limited sites was shown to be partially corrected by using an aridity index of annual radiation/annual precipitation. The results suggest that estimates of vegetation productivity using the global vegetation index are only accurate as annual integrations, unless unsubsampled local area coverage NDVI data can be tested against forest photosynthesis, transpiration and aboveground net primary production data measured at shorter time intervals.

  18. The Joker: A Custom Monte Carlo Sampler for Binary-star and Exoplanet Radial Velocity Data

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Hogg, David W.; Foreman-Mackey, Daniel; Rix, Hans-Walter

    2017-03-01

    Given sparse or low-quality radial velocity measurements of a star, there are often many qualitatively different stellar or exoplanet companion orbit models that are consistent with the data. The consequent multimodality of the likelihood function leads to extremely challenging search, optimization, and Markov chain Monte Carlo (MCMC) posterior sampling over the orbital parameters. Here we create a custom Monte Carlo sampler for sparse or noisy radial velocity measurements of two-body systems that can produce posterior samples for orbital parameters even when the likelihood function is poorly behaved. The six standard orbital parameters for a binary system can be split into four nonlinear parameters (period, eccentricity, argument of pericenter, phase) and two linear parameters (velocity amplitude, barycenter velocity). We capitalize on this by building a sampling method in which we densely sample the prior probability density function (pdf) in the nonlinear parameters and perform rejection sampling using a likelihood function marginalized over the linear parameters. With sparse or uninformative data, the sampling obtained by this rejection sampling is generally multimodal and dense. With informative data, the sampling becomes effectively unimodal but too sparse: in these cases we follow the rejection sampling with standard MCMC. The method produces correct samplings in orbital parameters for data that include as few as three epochs. The Joker can therefore be used to produce proper samplings of multimodal pdfs, which are still informative and can be used in hierarchical (population) modeling. We give some examples that show how the posterior pdf depends sensitively on the number and time coverage of the observations and their uncertainties.

  19. Tropical Wetland Monitoring Using RapidEye and Sentinel 1 Satellite Images in Ifakara (Tanzania)

    NASA Astrophysics Data System (ADS)

    Kirimi, Fridah; Menz, Gunter

    2016-08-01

    Food insecurity has been a topic of concern particularly for the developing countries. Wetlands have a consistent supply of water throughout the year. To determine whether the utilization of the wetland for increased food production is viable, there was need to analyse the land uses in different months of the year to better understand the dynamics of existing vegetation.Support Vector Machine was used to classify the optical to establish the dynamics of changing vegetation. Bare land coverage gives an indication of the potentially available land that can be utilized for crop growth. The optical images are affected by cloud coverage. As a remedial action the use of SAR images in monitoring the wetlands is assessed. A great percentage of land remains bare. Quantification of this from the classified images forms a basis upon which decisions on strategic plans of increasing production sustainably in the region can be implemented.

  20. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India.

    PubMed

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-09-01

    Mosquito foraging behavior is a determinant of host-vector contact and has an impact on the risk of arboviral epidemics. Therefore, blood-feeding patterns is a useful tool for assessing the role in pathogen transmission by vector mosquitoes. Competent vectors of dengue and chikungunya viz. Aedes aegypti and Aedes albopictus are widely prevalent in the Andaman and Nicobar archipelago. Considering the vector potential, medical importance of both these mosquito species and lack of information on host-feeding patterns, blood meal analysis of both these vector mosquitoes was undertaken. Biogents Sentinel traps were used for sampling blooded mosquitoes, for identifying the source of blood meal by agar gel-precipitin test. We identified vertebrate source of 147 and 104 blood meals in Ae. aegypti and Ae. albopictus from heterogeneous landscapes in South Andaman district. Results revealed that Ae. aegypti (88 %) and Ae. albopictus (49 %) fed on human and a small proportion on mammals and fowls, indicative of predominance of anthropophilism. Ae. aegypti predominantly fed on human blood (94.2 %-densely built urban, 89.8 %-low vegetation coverage, and 78.3 %-medium vegetation coverage). Anthropophilism in Ae. albopictus was maximal in densely built urban (90.5 %) and progressively decreased from low vegetation-vegetation/forested continuum (66.7, 36.4, and 8.7 %), indicating plasticity in feeding across these landscapes. Epidemiological significance of the findings is discussed.

  1. Solar radiation and landscape evolution: co-evolution of topography, vegetation, and erosion rates in a semi-arid ecosystem

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, Erkan; Yetemen, Omer

    2016-04-01

    In this study CHILD landscape evolution model (LEM) is used to study the role of solar radiation on the co-evolution of landscape morphology, vegetation patterns, and erosion rates in a central New Mexico catchment. In the study site north facing slopes (NFS) are characterized by steep diffusion-dominated planar hillslopes covered by co-exiting juniper pine and grass vegetation. South facing slopes (SFS) are characterized by shallow slopes and covered by sparse shrub vegetation. Measured short-term and Holocene-averaged erosion rates show higher soil loss on SFS than NFS. In this study CHILD LEM is first confirmed with ecohydrologic field data and used to systematically examine the co-evolution of topography, vegetation pattern, and erosion rates. Aspect- and network-control are identified as the two main topographic drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of solar radiation driven ecohdrologic patterns emerged in modeled landscape: NFS supported denser vegetation cover and became steeper and planar, while on SFS vegetation grew sparser and slopes declined with more fluvial activity. At the landscape scale, these differential erosion processes led to asymmetric development of catchment forms, consistent with regional observations. While the general patterns of vegetation and topography were reproduced by the model using a stationary representation of the current climate, the observed differential Holocene erosion rates were captured by the model only when cyclic climate is used. This suggests sensitivity of Holocene erosion rates to long-term climate fluctuations.

  2. Neogene biomarker record of vegetation change in eastern Africa

    PubMed Central

    Polissar, Pratigya J.; Jackson, Kevin E.; deMenocal, Peter B.

    2016-01-01

    The evolution of C4 grassland ecosystems in eastern Africa has been intensely studied because of the potential influence of vegetation on mammalian evolution, including that of our own lineage, hominins. Although a handful of sparse vegetation records exists from middle and early Miocene terrestrial fossil sites, there is no comprehensive record of vegetation through the Neogene. Here we present a vegetation record spanning the Neogene and Quaternary Periods that documents the appearance and subsequent expansion of C4 grasslands in eastern Africa. Carbon isotope ratios from terrestrial plant wax biomarkers deposited in marine sediments indicate constant C3 vegetation from ∼24 Ma to 10 Ma, when C4 grasses first appeared. From this time forward, C4 vegetation increases monotonically to present, with a coherent signal between marine core sites located in the Somali Basin and the Red Sea. The response of mammalian herbivores to the appearance of C4 grasses at 10 Ma is immediate, as evidenced from existing records of mammalian diets from isotopic analyses of tooth enamel. The expansion of C4 vegetation in eastern Africa is broadly mirrored by increasing proportions of C4-based foods in hominin diets, beginning at 3.8 Ma in Australopithecus and, slightly later, Kenyanthropus. This continues into the late Pleistocene in Paranthropus, whereas Homo maintains a flexible diet. The biomarker vegetation record suggests the increase in open, C4 grassland ecosystems over the last 10 Ma may have operated as a selection pressure for traits and behaviors in Homo such as bipedalism, flexible diets, and complex social structure. PMID:27274042

  3. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a fivefold variation in tundra LUE was observed. LUE calculated from the functional type cover fractions was also correlated to a spectral vegetation index developed to detect vegetation chlorophyll content. The concurrence of these alternate methods suggest that hyperspectral remote sensing can distinguish functionally distinct vegetation types and can be used to develop regional estimates of photosynthetic LUE in tundra landscapes.

  4. Study of the relation between soil use, vegetation coverage, and the discharge of sediments from artificial reservoirs using MSS/LANDSAT images. Example: The Tres Marias reservoir and its supply basin

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The land use and types of vegetation in the region of the upper Sao Francisco River, Brazil, are identified. This region comprises the supply basin of the Tres Marias reservoir. Imagery from channels 5 and 7 of the LANDSAT multispectral band scanner during wet and rainy seasons and ground truth data were employed to characterize and map the vegetation, land use, and sedimentary discharges from the reservoir. Agricultural and reforested lands, meadows, and forests are identified. Changes in land use due to human activity are demonstrated.

  5. Measuring suspended sediment: Chapter 10

    USGS Publications Warehouse

    Gray, J.R.; Landers, M.N.

    2013-01-01

    Suspended sediment in streams and rivers can be measured using traditional instruments and techniques and (or) surrogate technologies. The former, as described herein, consists primarily of both manually deployed isokinetic samplers and their deployment protocols developed by the Federal Interagency Sedimentation Project. They are used on all continents other than Antarctica. The reliability of the typically spatially rich but temporally sparse data produced by traditional means is supported by a broad base of scientific literature since 1940. However, the suspended sediment surrogate technologies described herein – based on hydroacoustic, nephelometric, laser, and pressure difference principles – tend to produce temporally rich but in some cases spatially sparse datasets. The value of temporally rich data in the accuracy of continuous sediment-discharge records is hard to overstate, in part because such data can often overcome the shortcomings of poor spatial coverage. Coupled with calibration data produced by traditional means, surrogate technologies show considerable promise toward providing the fluvial sediment data needed to increase and bring more consistency to sediment-discharge measurements worldwide.

  6. Carbon Sequestration at United States Marine Corps Installations West

    DTIC Science & Technology

    2014-05-20

    22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any oenalty for failing to...Falge et al., 2002a, b; Law et al., 2002). This, in turn, is perhaps due to the perception that sparse vegetation cover and seemingly bare soil...feasibility of carbon capture and storage (CCS) is divided into three components or steps: 1) CO2 capture and compression, 2) transportation of CO2with

  7. Factors influencing habitat selection by arboreal pit vipers.

    PubMed

    Sawant, Nitin S; Jadhav, Trupti D

    2013-01-01

    We studied factors influencing habitat selection by two arboreal species of pit viper, namely Trimeresurus malabaricus (Malabar pit viper) and T. gramineus (Bamboo pit viper). The macrohabitat of these species was classified as forest, forest edge, or open habitat. To determine microhabitat selection, a variety of features at every other snake location were measured. Whether or not the animal was found in a tree, the tree species, its height of perch, position on the branch (distal/ apical/middle), diameter of the branch, the tree canopy (thick/sparse) and vegetation of the area (thick/sparse) were recorded. Assessment of habitat was done to determine how patterns of habitat use vary seasonally. Shaded ambient (air) temperatures and humidity were recorded. Data pertaining to 90 individuals of T. malabaricus and 100 individuals of T. gramineus were recorded. Trimeresurus malabaricus selected home ranges that included areas with thick vegetation and were encountered at regions of higher altitude. Neither of the species was found in open habitats. Both of the species preferred diverse habitats and were spread over the entire available space during the monsoon; they did not show any preference for the perch height during different seasons. Males had a positive correlation between body mass and preferred perch diameter. The present study suggests that several factors play an important role in habitat selection by these arboreal pit vipers, thus making them highly habitat-specific.

  8. Soil and fertilizer amendments and edge effects on the floral succession of pulverized fuel ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, P.

    2009-01-15

    Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots thatmore » had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species (D. incarnata, Pyrola rotundifolia, some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting ({ge} 10 years) effects on cover and soil composition.« less

  9. [Spatio-temporal distribution of carabids and spiders between semi-natural field margin and the adjacent crop fields in agricultural landscape].

    PubMed

    Zhang, Xu Zhu; Han, Yin; Yu, Zhen Rong; Liu, Yun Hui

    2017-06-18

    This study was conducted before and after harvesting of wheat and maize in a typical agricultural landscape of the North China Plain. We investigated the diversity of two important natural enemy groups, carabids and spiders, using pitfall traps at crop field margin with different vegetation structures and their neighboring crop field. Throughout the comparison of the spatial and temporal distribution of the diversity of carabids and spiders in field margin and neighboring field, and the investigation of the relationship between arthropod communities and vegetation structure, this study aimed to understand the role of semi-natural field margin in biodiversity conservation of different natural enemy taxa. Results showed that the abundance of spiders was significantly higher in field margin than in neighboring fields over the entire period. No significant difference of the diversity of carabids in field margin and crop field was observed, but the community composition was different. Number of spider families increased in field margin but deceased in crop field after harvesting, indicating a migration activity between field and field margin. Vegetation structure in the field margin had different association with carabids than with spiders, with diversity of dominant carabid species positively associated with herb coverage and negatively with wood coverage, while the diversity of spider family Linyphiidae was positively associated with herb coverage only. Semi-natural habitat benefited the conservation of the diversity of arthropod natural enemies in crop field via promoting their dispersal to crop field, while such impacts differed from different vegetation structures and varied from target beneficial natural enemy communities. Future studies should focus on in-depth understanding of the food and habitat source requirement of different natural enemy taxa, and hence to design suitable semi-natural habitats to maintain a high diversity of natural enemy communities.

  10. Multi-scale enhancement of climate prediction over land by improving the model sensitivity to vegetation variability

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.

    2017-12-01

    Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.Above results are discussed in a peer-review paper just being accepted for publication on Climate Dynamics (Alessandri et al., 2017; doi:10.1007/s00382-017-3766-y).

  11. Amchitka, Alaska Site Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-12-15

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lowermore » elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Tirtha; Vercauteren, Nikki; Muste, Marian

    Flume experiments with particle imaging velocimetry (PIV) were conducted recently to study a complex flow problem where wind shear acts on the surface of a static water body in presence of flexible emergent vegetation and induces a rich dynamics of wave–turbulence–vegetation interaction inside the water body without any gravitational gradient. The experiments were aimed at mimicking realistic vegetated wetlands and the present work is targeted to improve the understanding of the coherent structures associated with this interaction by employing a combination of techniques such as quadrant analysis, proper orthogonal decomposition (POD), Shannon entropy and mutual information content (MIC). The turbulentmore » transfer of momentum is found to be dominated by organized motions such as sweeps and ejections, while the wave component of vertical momentum transport does not show any such preference. Furthermore, by reducing the data using POD we see that wave energy for large flow depths and turbulent energy for all water depths is concentrated among the top few modes, which can allow development of simple reduced order models. Vegetation flexibility is found to induce several roll type structures, however if the vegetation density is increased, drag effects dominate over flexibility and organize the flow. The interaction between waves and turbulence is also found to be highest among flexible sparse vegetation. But, rapidly evolving parts of the flow such as the air–water interface reduces wave–turbulence interaction.« less

  13. Remote sensing applications to forest vegetation classification and conifer vigor loss due to dwarf mistletoe

    NASA Technical Reports Server (NTRS)

    Douglass, R. W.; Meyer, M. P.; French, D. W.

    1972-01-01

    Criteria was established for practical remote sensing of vegetation stress and mortality caused by dwarf mistletoe infections in black spruce subboreal forest stands. The project was accomplished in two stages: (1) A fixed tower-tramway site in an infected black spruce stand was used for periodic multispectral photo coverage to establish basic film/filter/scale/season/weather parameters; (2) The photographic combinations suggested by the tower-tramway tests were used in low, medium, and high altitude aerial photography.

  14. Integrated NDVI images for Niger 1986-1987. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Harrington, John A., Jr.; Wylie, Bruce K.; Tucker, Compton J.

    1988-01-01

    Two NOAA AVHRR images are presented which provide a comparison of the geographic distribution of an integration of the normalized difference vegetation index (NDVI) for the Sahel zone in Niger for the growing seasons of 1986 and 1987. The production of the images and the application of the images for resource management are discussed. Daily large area coverage with a spatial resolution of 1.1 km at nadir were transformed to the NDVI and geographically registered to produce the images.

  15. Coherent structures in wind shear induced wave–turbulence–vegetation interaction in water bodies

    DOE PAGES

    Banerjee, Tirtha; Vercauteren, Nikki; Muste, Marian; ...

    2017-08-26

    Flume experiments with particle imaging velocimetry (PIV) were conducted recently to study a complex flow problem where wind shear acts on the surface of a static water body in presence of flexible emergent vegetation and induces a rich dynamics of wave–turbulence–vegetation interaction inside the water body without any gravitational gradient. The experiments were aimed at mimicking realistic vegetated wetlands and the present work is targeted to improve the understanding of the coherent structures associated with this interaction by employing a combination of techniques such as quadrant analysis, proper orthogonal decomposition (POD), Shannon entropy and mutual information content (MIC). The turbulentmore » transfer of momentum is found to be dominated by organized motions such as sweeps and ejections, while the wave component of vertical momentum transport does not show any such preference. Furthermore, by reducing the data using POD we see that wave energy for large flow depths and turbulent energy for all water depths is concentrated among the top few modes, which can allow development of simple reduced order models. Vegetation flexibility is found to induce several roll type structures, however if the vegetation density is increased, drag effects dominate over flexibility and organize the flow. The interaction between waves and turbulence is also found to be highest among flexible sparse vegetation. But, rapidly evolving parts of the flow such as the air–water interface reduces wave–turbulence interaction.« less

  16. Land cover mapping of the National Park Service northwest Alaska management area using Landsat multispectral and thematic mapper satellite data

    USGS Publications Warehouse

    Markon, C.J.; Wesser, Sara

    1998-01-01

    A land cover map of the National Park Service northwest Alaska management area was produced using digitally processed Landsat data. These and other environmental data were incorporated into a geographic information system to provide baseline information about the nature and extent of resources present in this northwest Alaskan environment.This report details the methodology, depicts vegetation profiles of the surrounding landscape, and describes the different vegetation types mapped. Portions of nine Landsat satellite (multispectral scanner and thematic mapper) scenes were used to produce a land cover map of the Cape Krusenstern National Monument and Noatak National Preserve and to update an existing land cover map of Kobuk Valley National Park Valley National Park. A Bayesian multivariate classifier was applied to the multispectral data sets, followed by the application of ancillary data (elevation, slope, aspect, soils, watersheds, and geology) to enhance the spectral separation of classes into more meaningful vegetation types. The resulting land cover map contains six major land cover categories (forest, shrub, herbaceous, sparse/barren, water, other) and 19 subclasses encompassing 7 million hectares. General narratives of the distribution of the subclasses throughout the project area are given along with vegetation profiles showing common relationships between topographic gradients and vegetation communities.

  17. Application of global datasets for hydrological modelling of a remote, snowmelt driven catchment in the Canadian Sub-Arctic

    NASA Astrophysics Data System (ADS)

    Casson, David; Werner, Micha; Weerts, Albrecht; Schellekens, Jaap; Solomatine, Dimitri

    2017-04-01

    Hydrological modelling in the Canadian Sub-Arctic is hindered by the limited spatial and temporal coverage of local meteorological data. Local watershed modelling often relies on data from a sparse network of meteorological stations with a rough density of 3 active stations per 100,000 km2. Global datasets hold great promise for application due to more comprehensive spatial and extended temporal coverage. A key objective of this study is to demonstrate the application of global datasets and data assimilation techniques for hydrological modelling of a data sparse, Sub-Arctic watershed. Application of available datasets and modelling techniques is currently limited in practice due to a lack of local capacity and understanding of available tools. Due to the importance of snow processes in the region, this study also aims to evaluate the performance of global SWE products for snowpack modelling. The Snare Watershed is a 13,300 km2 snowmelt driven sub-basin of the Mackenzie River Basin, Northwest Territories, Canada. The Snare watershed is data sparse in terms of meteorological data, but is well gauged with consistent discharge records since the late 1970s. End of winter snowpack surveys have been conducted every year from 1978-present. The application of global re-analysis datasets from the EU FP7 eartH2Observe project are investigated in this study. Precipitation data are taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP) and temperature data from Watch Forcing Data applied to European Reanalysis (ERA)-Interim data (WFDEI). GlobSnow-2 is a global Snow Water Equivalent (SWE) measurement product funded by the European Space Agency (ESA) and is also evaluated over the local watershed. Downscaled precipitation, temperature and potential evaporation datasets are used as forcing data in a distributed version of the HBV model implemented in the WFLOW framework. Results demonstrate the successful application of global datasets in local watershed modelling, but that validation of actual frozen precipitation and snowpack conditions is very difficult. The distributed hydrological model shows good streamflow simulation performance based on statistical model evaluation techniques. Results are also promising for inter-annual variability, spring snowmelt onset and time to peak flows. It is expected that data assimilation of stream flow using an Ensemble Kalman Filter will further improve model performance. This study shows that global re-analysis datasets hold great potential for understanding the hydrology and snowpack dynamics of the expansive and data sparse sub-Arctic. However, global SWE products will require further validation and algorithm improvements, particularly over boreal forest and lake-rich regions.

  18. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhao, Anzhou; Zhang, Anbing; Liu, Xianfeng; Cao, Sen

    2018-04-01

    Extreme drought, precipitation, and other extreme climatic events often have impacts on vegetation. Based on meteorological data from 52 stations in the Loess Plateau (LP) and a satellite-derived normalized difference vegetation index (NDVI) from the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset, this study investigated the relationship between vegetation change and climatic extremes from 1982 to 2013. Our results showed that the vegetation coverage increased significantly, with a linear rate of 0.025/10a ( P < 0.001) from 1982 to 2013. As for the spatial distribution, NDVI revealed an increasing trend from the northwest to the southeast, with about 61.79% of the LP exhibiting a significant increasing trend ( P < 0.05). Some temperature extreme indices, including TMAXmean, TMINmean, TN90p, TNx, TX90p, and TXx, increased significantly at rates of 0.77 mm/10a, 0.52 °C/10a, 0.62 °C/10a, 0.80 °C/10a, 5.16 days/10a, and 0.65 °C/10a, respectively. On the other hand, other extreme temperature indices including TX10p and TN10p decreased significantly at rates of -2.77 days/10a and 4.57 days/10a ( P < 0.01), respectively. Correlation analysis showed that only TMINmean had a significant relationship with NDVI at the yearly time scale ( P < 0.05). At the monthly time scale, vegetation coverage and different vegetation types responded significantly positively to precipitation and temperature extremes (TMAXmean, TMINmean, TNx, TNn, TXn, and TXx) ( P < 0.01). All of the precipitation extremes and temperature extremes exhibited significant positive relationships with NDVI during the spring and autumn ( P < 0.01). However, the relationship between NDVI and RX1day, TMAXmean, TXn, and TXx was insignificant in summer. Vegetation exhibited a significant negative relationship with precipitation extremes in winter ( P < 0.05). In terms of human activity, our results indicate a strong correlation between the cumulative afforestation area and NDVI in Yan'an and Yulin during 1998-2013, r = 0.859 and 0.85, n = 16, P < 0.001.

  19. Single-breath-hold abdominal [Formula: see text]  mapping using 3D Cartesian Look-Locker with spatiotemporal sparsity constraints.

    PubMed

    Lugauer, Felix; Wetzl, Jens; Forman, Christoph; Schneider, Manuel; Kiefer, Berthold; Hornegger, Joachim; Nickel, Dominik; Maier, Andreas

    2018-06-01

    Our aim was to develop and validate a 3D Cartesian Look-Locker [Formula: see text] mapping technique that achieves high accuracy and whole-liver coverage within a single breath-hold. The proposed method combines sparse Cartesian sampling based on a spatiotemporally incoherent Poisson pattern and k-space segmentation, dedicated for high-temporal-resolution imaging. This combination allows capturing tissue with short relaxation times with volumetric coverage. A joint reconstruction of the 3D + inversion time (TI) data via compressed sensing exploits the spatiotemporal sparsity and ensures consistent quality for the subsequent multistep [Formula: see text] mapping. Data from the National Institute of Standards and Technology (NIST) phantom and 11 volunteers, along with reference 2D Look-Locker acquisitions, are used for validation. 2D and 3D methods are compared based on [Formula: see text] values in different abdominal tissues at 1.5 and 3 T. [Formula: see text] maps obtained from the proposed 3D method compare favorably with those from the 2D reference and additionally allow for reformatting or volumetric analysis. Excellent agreement is shown in phantom [bias[Formula: see text] < 2%, bias[Formula: see text] < 5% for (120; 2000) ms] and volunteer data (3D and 2D deviation < 4% for liver, muscle, and spleen) for clinically acceptable scan (20 s) and reconstruction times (< 4 min). Whole-liver [Formula: see text] mapping with high accuracy and precision is feasible in one breath-hold using spatiotemporally incoherent, sparse 3D Cartesian sampling.

  20. Shuttle imaging radar views the Earth from Challenger: The SIR-B experiment

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Cimino, J. B.; Holt, B.; Ruzek, M. R.

    1986-01-01

    In October 1984, SIR-B obtained digital image data of about 6.5 million km2 of the Earth's surface. The coverage is mostly of selected experimental test sites located between latitudes 60 deg north and 60 deg south. Programmed adjustments made to the look angle of the steerable radar antenna and to the flight attitude of the shuttle during the mission permitted collection of multiple-incidence-angle coverage or extended mapping coverage as required for the experiments. The SIR-B images included here are representative of the coverage obtained for scientific studies in geology, cartography, hydrology, vegetation cover, and oceanography. The relations between radar backscatter and incidence angle for discriminating various types of surfaces, and the use of multiple-incidence-angle SIR-B images for stereo measurement and viewing, are illustrated with examples. Interpretation of the images is facilitated by corresponding images or photographs obtained by different sensors or by sketch maps or diagrams.

  1. Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands

    USGS Publications Warehouse

    Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.

    2018-01-01

    Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.

  2. The changing Arctic carbon cycle: using the past to understand terrestrial-aquatic linkages

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.; van Hardenbroek, M.; Jones, V.; McGowan, S.; Langdon, P. G.; Whiteford, E.; Turner, S.; Edwards, M. E.

    2016-12-01

    Predicted shifts in terrestrial vegetation cover associated with Arctic warming are altering the delivery and processing of carbon to aquatic ecosystems. This process could determine whether lakes are net carbon sources or sinks and, because lake density is high in many Arctic areas, may alter regional carbon budgets. Lake sediment records integrate information from within the lake and its catchment and can be used quantify past vegetation shifts associated with known climatic episodes of warmer (Holocene Thermal Maximum) and cooler (Neoglacial) conditions. We analysed sediment cores located in different Arctic vegetation biomes (tundra, shrub, forested) in Greenland, Norway and Alaska and used biochemical (algal pigments, stable isotopes) remains to evaluate whether past vegetation shifts were associated with changes in ecosystem carbon processing and biodiversity. When lake catchments were sparsely vegetated and soil vegetation was limited ultra-violet radiation (UVR) screening pigments indicate clear lake waters, scarce dissolved organic carbon/ matter (DOC/M). Moderate vegetation development (birch scrub in Norway; herb tundra in Greenland) appears to enhance delivery of DOM to lakes, and to stimulate algal production which is apparently linked to heterotrophic carbon processing pathways (e.g. algal mixotrophy, nutrient release via the microbial loop). Mature forest cover (in Alaska and Norway) supressed lake autotrophic production, most likely because coloured DOM delivered from catchment vegetation limited light availability. During wetter periods when mires developed lake carbon processing also changed, indicating that hydrological delivery of terrestrial DOM is also important. Therefore, future changes in Arctic vegetation and precipitation patterns are highly likely to alter the way that arctic ecosystems process carbon. Our approach provides an understanding of how ecosystem diversity and carbon processing respond to past climate change and the difficulty of identifying the drivers of state changes in the arctic.

  3. Effects of spatial variations of soil moisture and vegetation on the evolution of a prestorm environment - A numerical case study

    NASA Technical Reports Server (NTRS)

    Chang, Jy-Tai; Wetzel, Peter J.

    1991-01-01

    To examine the effects of spatial variations of soil moisture and vegetation coverage on the evolution of a prestorm environment, the Goddard mesoscale model is modified to incorporate a simple evapotranspiration model that requires these two parameters. The case study of 3-4 June 1980 is of special interest due to the development of a tornado producing convective complex near Grand Island, Nebraska during a period of comparatively weak synoptic-scale forcing. It is shown that the observed stationary front was strongly enhanced by differential heating created by observed gradients of soil moisture, as acted upon by the vegetation cover.

  4. Analysis of radio wave propagation for ISM 2.4 GHz Wireless Sensor Networks in inhomogeneous vegetation environments.

    PubMed

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-12-10

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments.

  5. Desertification in 1957-2015 Estimated from Vegetation Coverage and Climate Conditions on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cuo, L.

    2017-12-01

    Desert is an area that receives less than 25 cm precipitation in cold climate or 50 cm precipitation in hot climate (Miller, 1961). Others defined true desert as a region having no recorded precipitation in 12 consecutive months (McGinnies et al., 1968). According to Koppen-Gieger climate classification system, if mean annual precipitation is less than 50% of the value A calculated by mean annual temperature times 20 plus 280 if 70% or more precipitation falls in April-September, the region has desert climate; if the mean annual precipitation is within 50%-100% of the value A, the region has semi-arid or steppe climate. On the Tibetan Plateau, the above definitions will result in no desert at all or the majority of the region falling into the category of desert which is not consistent with reality based on field exploration. In this study, the fractional vegetation coverage (FPC), precipitation, soil moisture and extreme wind days are used as indices to define areas of various degrees of desertification which produces much more realistic distribution of desert areas on the plateau. The Lund-Potsdam-Jena Dynamic Vegetation model (LPJ) is used to simulate vegetation growth, succession and vegetation properties such as FPC and soil moisture on the Tibetan Plateau. Gridded daily climate data are generated to drive the model and to analyze the status and changes of various deserts including light desert, medium desert, severe desert, extremely severe desert and desert proned area. The study will reveal the status and changes of possible driving factors of desertification, as well as various kinds of desert on the Tibetan Plateau during 1957-2015.

  6. Deploying temporary networks for upscaling of sparse network stations

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Kelly, Victoria; Hall, Mark; Palecki, Michael A.; Temimi, Marouane

    2016-10-01

    Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, business and consumer applications, or even human health issues. The installation of soil moisture sensors as sparse, national networks is necessitated by limited financial resources. However, this results in the incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, and the fine spatial distribution of precipitation events. To this end, temporary networks can be installed in the areas surrounding a permanent installation within a sparse network. The temporary networks deployed in this study provide a more representative average at the 3 km and 9 km scales, localized about the permanent gauge. The value of such temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor set to approximate the average of a temporary network at the 3 km and 9 km scales using a simple linear scaling function is tested. The capacity of a temporary network to provide reliable estimates with diminishing numbers of sensors, the temporal stability of those networks, and ultimately, the relationship of the variability of those networks to soil moisture conditions at the permanent sensor are investigated. In this manner, this work demonstrates the single-season installation of a temporary network as a mechanism to characterize the soil moisture variability at a permanent gauge within a sparse network.

  7. Climate Responses to Changes in Land-surface Properties due to Wildfires

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hao, X.; Qu, J. J.

    2015-12-01

    Wildfires can feedback the atmosphere by impacting atmospheric radiation transfer and cloud microphysics through emitting smoke particles and the land-air heat and water fluxes through modifying land-surface properties. While the impacts through smoke particles have been extensively investigated recently, very few studies have been conducted to examine the impacts through land-surface property change. This study is to fill this gap by examining the climate responses to the changes in land-surface properties induced by several large wildfires in the United States. Satellite remote sensing tools including MODIS and Landsat are used to quantitatively evaluate the land-surface changes characterized by reduced vegetation coverage and increased albedo over long post-fire periods. Variations in air and soil temperature and moisture of the burned areas are also monitored. Climate modeling is conducted to simulate climate responses and understand the related physical processes and interactions. The preliminary results indicate noticeable changes in water and heat transfers from the ground to the atmosphere through several mechanisms. Larger albedo reduces solar radiation absorbed on the ground, leading to less energy for latent and sensible heat fluxes. With smaller vegetation coverage, water transfer from the soil to the atmosphere through transpiration is reduced. Meanwhile, the Bowen ratio becomes larger after burning and therefore more solar energy absorbed on the ground is converted into sensible heat instead of being used as latent energy for water phase change. In addition, reduced vegetation coverage reduces roughness and increases wind speed, which modify dynamic resistances to water and heat movements. As a result of the changes in the land-air heat and water fluxes, clouds and precipitation as well as other atmospheric processes are affected by wildfires.

  8. The Change in the area of various land covers on the Tibetan Plateau during 1957-2015

    NASA Astrophysics Data System (ADS)

    Cuo, Lan; Zhang, Yongxin

    2017-04-01

    With average elevation of 4000 m and area of 2.5×106 km2, Tibetan Plateau hosts various fragile ecosystems such as perennial alpine meadow, perennial alpine steppe, temperate evergreen needleleaf trees, temperate deciduous trees, temperate shrub grassland, and barely vegetated desert. Perennial alpine meadow and steppe are the two dominant vegetation types on the heartland of the plateau. MODIS Leaf Area Index (LAI) ranges from 0 to 2 in most part of the plateau. With climate change, these ecosystems are expected to undergo alteration. This study uses a dynamic vegetation model - Lund-Potsdam-Jena (LPJ) to investigate the change of the barely vegetated area and other vegetation types caused by climate change during 1957-2015 on the Tibetan Plateau. Model simulated foliage projective coverage (FPC) and plant functional types (PFTs) are selected for the investigation. The model is evaluated first using both field surveyed land cover map and MODIS LAI images. Long term trends of vegetation FPC is examined. Decadal variations of vegetated and barely vegetated land are compared. The impacts of extreme precipitation, air temperature and CO2 on the expansion and contraction of barely vegetated and vegetated areas are shown. The study will identify the dominant climate factors in affecting the desert area in the region.

  9. Tri-stereo Pleiades images-derived digital surface models for tectonic geomorphology studies

    NASA Astrophysics Data System (ADS)

    Ferry, Matthieu; Le Roux-Mallouf, Romain; Ritz, Jean-François; Berthet, Théo; Peyret, Michel; Vernant, Philippe; Maréchal, Anaïs; Cattin, Rodolphe; Mazzotti, Stéphane; Poujol, Antoine

    2014-05-01

    Very high resolution digital elevation models are a key component of modern quantitative geomorphology. In parallel to high-precision but time-consuming kinematic GPS and/or total station surveys and dense coverage but expensive LiDAR campaigns, we explore the usability of affordable, flexible, wide coverage digital surface models (DSMs) derived from Pleiades tri-stereo optical images. We present two different approaches to extract DSM from a triplet of images. The first relies on the photogrammetric extraction of 3 DSMs from the 3 possible stereo couples and subsequent merge based on the best correlation score. The second takes advantage of simultaneous correlation over the 3 images to derive a point cloud. We further extract DSM from panchromatic 0.5 m resolution images and multispectral 2 m resolution images to test for correlation and noise and determine optimal correlation window size and achievable resolution. Georeferencing is also assessed by comparing raw coordinates derived from Pleiades Rational Polynomial Coefficients to ground control points. Primary images appear to be referenced within ~15 m over flat areas where parallax is minimal while derived DSMs and associated orthorectified images show a much improved referencing within ~5 m of GCPs. In order to assess the adequacy of Pleiades DSMs for tectonic geomorphology, we present examples from case studies along the Trougout normal fault (Morocco), the Hovd strike-slip fault (Mongolia), the Denali strike-slip fault (USA and Canada) and the Main Frontal Thrust (Bhutan). In addition to proposing a variety of tectonic contexts, these examples cover a wide range of climatic conditions (semi-arid, arctic and tropical), vegetation covers (bare earth, sparse Mediterranean, homogeneous arctic pine, varied tropical forest), lithological natures and related erosion rates. The capacity of derived DSMs is demonstrated to characterize geomorphic markers of active deformation such as marine and alluvial terraces, stream gullies, alluvial fans and fluvio-glacial deposits in terms of vertical (from DSMs) and horizontal (from orthorectified optical images) offsets. Values extracted from Pleiades DSMs compare well to field measurements in terms of relief and slope, which suggests effort and resources necessary for field topography could be significantly reduced, especially in poorly accessible areas.

  10. Potential and Limitations of Low-Cost Unmanned Aerial Systems for Monitoring Altitudinal Vegetation Phenology in the Tropics

    NASA Astrophysics Data System (ADS)

    Silva, T. S. F.; Torres, R. S.; Morellato, P.

    2017-12-01

    Vegetation phenology is a key component of ecosystem function and biogeochemical cycling, and highly susceptible to climatic change. Phenological knowledge in the tropics is limited by lack of monitoring, traditionally done by laborious direct observation. Ground-based digital cameras can automate daily observations, but also offer limited spatial coverage. Imaging by low-cost Unmanned Aerial Systems (UAS) combines the fine resolution of ground-based methods with and unprecedented capability for spatial coverage, but challenges remain in producing color-consistent multitemporal images. We evaluated the applicability of multitemporal UAS imaging to monitor phenology in tropical altitudinal grasslands and forests, answering: 1) Can very-high resolution aerial photography from conventional digital cameras be used to reliably monitor vegetative and reproductive phenology? 2) How is UAS monitoring affected by changes in illumination and by sensor physical limitations? We flew imaging missions monthly from Feb-16 to Feb-17, using a UAS equipped with an RGB Canon SX260 camera. Flights were carried between 10am and 4pm, at 120-150m a.g.l., yielding 5-10cm spatial resolution. To compensate illumination changes caused by time of day, season and cloud cover, calibration was attempted using reference targets and empirical models, as well as color space transformations. For vegetative phenological monitoring, multitemporal response was severely affected by changes in illumination conditions, strongly confounding the phenological signal. These variations could not be adequately corrected through calibration due to sensor limitations. For reproductive phenology, the very-high resolution of the acquired imagery allowed discrimination of individual reproductive structures for some species, and its stark colorimetric differences to vegetative structures allowed detection of the reproductive timing on the HSV color space, despite illumination effects. We conclude that reliable vegetative phenology monitoring may exceed the capabilities of consumer cameras, but reproductive phenology can be successfully monitored for species with conspicuous reproductive structures. Further research is being conducted to improve calibration methods and information extraction through machine learning.

  11. Aquatic Invertebrate Assemblages in Shallow Prairie Lakes: Fish and Environmental Influences

    USGS Publications Warehouse

    Paukert, C.P.; Willis, D.W.

    2003-01-01

    We sampled zooplankton and benthic macroinvertebrate assemblages in 30 shallow natural lakes to determine the effects of the environment (i.e., habitat and fish abundance) on invertebrates. Zooplankters were identified to genus, and up to 120 individuals per genus were measured. Macroinvertebrates were identified to order, class, or family. Fish communities were also sampled. Relative abundances of zooplankton and macroinvertebrates were low at increased chlorophyll a concentrations, although mean zooplankton length increased with total phosphorus, possibly because of an increased proportion of microzooplankton (rotifers and copepod nauplii) at higher phosphorus levels. Canonical correspondence analysis revealed that zooplankton and macroinvertebrate abundance was influenced by submersed vegetation coverage, whereas zooplankton abundance and size structure were also related to productivity (i.e., chlorophyll a and total phosphorus). However, relative abundance of fish species or fish feeding guilds was not strongly correlated with zooplankton or macroinvertebrate abundance or zooplankton size structure. Physical habitat (e.g., vegetation coverage) may exert substantial influences on invertebrate assemblages in these lakes, possibly providing a refuge from fish predation.

  12. Characterizing LEDAPS surface reflectance products by comparisons with AERONET, field spectrometer, and MODIS data

    USGS Publications Warehouse

    Maiersperger, Tom; Scaramuzza, Pat; Leigh, Larry; Shrestha, S.; Gallo, Kevin; Jenkerson, Calli B.; Dwyer, John L.

    2013-01-01

    This study provides a baseline quality check on provisional Landsat Surface Reflectance (SR) products as generated by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software. Characterization of the Landsat SR products leveraged comparisons between aerosol optical thickness derived from LEDAPS and measured by Aerosol Robotic Network (AERONET), as well as reflectance correlations with field spectrometer and Moderate Resolution Imaging Spectroradiometer (MODIS) data. Results consistently indicated similarity between LEDAPS and alternative data products in longer wavelengths over vegetated areas with no adjacent water, while less reliable performance was observed in shorter wavelengths and sparsely vegetated areas. This study demonstrates the strengths and weaknesses of the atmospheric correction methodology used in LEDAPS, confirming its successful implementation to generate Landsat SR products.

  13. Evaluation of barrier treatments on native vegetation in a southern California desert habitat.

    PubMed

    Britch, Seth C; Linthicum, Kenneth J; Wynn, Wayne W; Walker, Todd W; Farooq, Muhammad; Smith, Vincent L; Robinson, Cathy A; Lothrop, Branka B; Snelling, Melissa; Gutierrez, Arturo; Lothrop, Hugh D

    2009-06-01

    Treating perimeters with residual insecticides for protection from mosquito vectors has shown promise. These barrier treatments are typically evaluated in temperate or tropical areas using abundant vegetation as a substrate. However, there is an emerging interest to develop this technology to protect deployed US troops in extreme desert environments with sparse vegetation. We used a remote desert area in the Coachella Valley, California, to 1) evaluate bifenthrin barrier treatments on native xeric vegetation and 2) compare treatments applied with electrostatic and conventional spray technologies. Through a combination of laboratory bioassays on treated and control vegetation sampled at specific intervals over 63 days, synchronized with field surveillance of mosquitoes, we measured the temporal pattern of bioactivity of bifenthrin barriers under natural hot, dry, and dusty desert conditions. Regardless of spray technology, mosquito catch in treated plots was about 80% lower than the catch in control plots 1 day after treatment. This reduction in mosquito numbers in treated plots declined each week after treatment but remained at about 40% lower than control plots after 28 days. Field data were corroborated by results from bioassays that showed significantly higher mosquito mortality on treated vegetation over controls out to 28 days postspray. We concluded that barrier treatments in desert environments, when implemented as part of a suite of integrated control measures, may offer a significant level of protection from mosquitoes for deployed troops. Given the comparable performance of the tested spray technologies, we discuss considerations for choosing a barrier treatment sprayer for military scenarios.

  14. Performance of quantitative vegetation sampling methods across gradients of cover in Great Basin plant communities

    USGS Publications Warehouse

    Pilliod, David S.; Arkle, Robert S.

    2013-01-01

    Resource managers and scientists need efficient, reliable methods for quantifying vegetation to conduct basic research, evaluate land management actions, and monitor trends in habitat conditions. We examined three methods for quantifying vegetation in 1-ha plots among different plant communities in the northern Great Basin: photography-based grid-point intercept (GPI), line-point intercept (LPI), and point-quarter (PQ). We also evaluated each method for within-plot subsampling adequacy and effort requirements relative to information gain. We found that, for most functional groups, percent cover measurements collected with the use of LPI, GPI, and PQ methods were strongly correlated. These correlations were even stronger when we used data from the upper canopy only (i.e., top “hit” of pin flags) in LPI to estimate cover. PQ was best at quantifying cover of sparse plants such as shrubs in early successional habitats. As cover of a given functional group decreased within plots, the variance of the cover estimate increased substantially, which required more subsamples per plot (i.e., transect lines, quadrats) to achieve reliable precision. For GPI, we found that that six–nine quadrats per hectare were sufficient to characterize the vegetation in most of the plant communities sampled. All three methods reasonably characterized the vegetation in our plots, and each has advantages depending on characteristics of the vegetation, such as cover or heterogeneity, study goals, precision of measurements required, and efficiency needed.

  15. Comparing evapotranspiration from Eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada a, b

    DOE PAGES

    Wang, Shusen; Pan, Ming; Mu, Qiaozhen; ...

    2015-07-29

    Here, this study compares six evapotranspiration ET products for Canada's landmass, namely, eddy covariance EC measurements; surface water budget ET; remote sensing ET from MODIS; and land surface model (LSM) ET from the Community Land Model (CLM), the Ecological Assimilation of Land and Climate Observations (EALCO) model, and the Variable Infiltration Capacity model (VIC). The ET climatology over the Canadian landmass is characterized and the advantages and limitations of the datasets are discussed. The EC measurements have limited spatial coverage, making it difficult for model validations at the national scale. Water budget ET has the largest uncertainty because of datamore » quality issues with precipitation in mountainous regions and in the north. MODIS ET shows relatively large uncertainty in cold seasons and sparsely vegetated regions. The LSM products cover the entire landmass and exhibit small differences in ET among them. Annual ET from the LSMs ranges from small negative values to over 600 mm across the landmass, with a countrywide average of 256 ± 15 mm. Seasonally, the countrywide average monthly ET varies from a low of about 3 mm in four winter months (November-February) to 67 ± 7 mm in July. The ET uncertainty is scale dependent. Larger regions tend to have smaller uncertainties because of the offset of positive and negative biases within the region. More observation networks and better quality controls are critical to improving ET estimates. Future techniques should also consider a hybrid approach that integrates strengths of the various ET products to help reduce uncertainties in ET estimation.« less

  16. Comparing evapotranspiration from Eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada a, b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shusen; Pan, Ming; Mu, Qiaozhen

    Here, this study compares six evapotranspiration ET products for Canada's landmass, namely, eddy covariance EC measurements; surface water budget ET; remote sensing ET from MODIS; and land surface model (LSM) ET from the Community Land Model (CLM), the Ecological Assimilation of Land and Climate Observations (EALCO) model, and the Variable Infiltration Capacity model (VIC). The ET climatology over the Canadian landmass is characterized and the advantages and limitations of the datasets are discussed. The EC measurements have limited spatial coverage, making it difficult for model validations at the national scale. Water budget ET has the largest uncertainty because of datamore » quality issues with precipitation in mountainous regions and in the north. MODIS ET shows relatively large uncertainty in cold seasons and sparsely vegetated regions. The LSM products cover the entire landmass and exhibit small differences in ET among them. Annual ET from the LSMs ranges from small negative values to over 600 mm across the landmass, with a countrywide average of 256 ± 15 mm. Seasonally, the countrywide average monthly ET varies from a low of about 3 mm in four winter months (November-February) to 67 ± 7 mm in July. The ET uncertainty is scale dependent. Larger regions tend to have smaller uncertainties because of the offset of positive and negative biases within the region. More observation networks and better quality controls are critical to improving ET estimates. Future techniques should also consider a hybrid approach that integrates strengths of the various ET products to help reduce uncertainties in ET estimation.« less

  17. Regulation leads to increases in riparian vegetation, but not direct allochthonous inputs, along the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Kennedy, T.A.; Ralston, B.E.

    2012-01-01

    Dams and associated river regulation have led to the expansion of riparian vegetation, especially nonnative species, along downstream ecosystems. Nonnative saltcedar is one of the dominant riparian plants along virtually every major river system in the arid western United States, but allochthonous inputs have never been quantified along a segment of a large river that is dominated by saltcedar. We developed a novel method for estimating direct allochthonous inputs along the 387km-long reach of the Colorado River downstream of Glen Canyon Dam that utilized a GIS vegetation map developed from aerial photographs, empirical and literature-derived litter production data for the dominant vegetation types, and virtual shorelines of annual peak discharge (566m 3s -1 stage elevation). Using this method, we estimate that direct allochthonous inputs from riparian vegetation for the entire reach studied total 186metric tonsyear -1, which represents mean inputs of 470gAFDMm -1year -1 of shoreline or 5.17gAFDMm -2year -1 of river surface. These values are comparable to allochthonous inputs for other large rivers and systems that also have sparse riparian vegetation. Nonnative saltcedar represents a significant component of annual allochthonous inputs (36% of total direct inputs) in the Colorado River. We also estimated direct allochthonous inputs for 46.8km of the Colorado River prior to closure of Glen Canyon Dam using a vegetation map that was developed from historical photographs. Regulation has led to significant increases in riparian vegetation (270-319% increase in cover, depending on stage elevation), but annual allochthonous inputs appear unaffected by regulation because of the lower flood peaks on the post-dam river. Published in 2010 by John Wiley & Sons, Ltd.

  18. Global response of the growing season to soil moisture and topography

    NASA Astrophysics Data System (ADS)

    Guevara, M.; Arroyo, C.; Warner, D. L.; Equihua, J.; Lule, A. V.; Schwartz, A.; Taufer, M.; Vargas, R.

    2017-12-01

    Soil moisture has a direct influence in plant productivity. Plant productivity and its greenness can be inferred by remote sensing with higher spatial detail than soil moisture. The objective was to improve the coarse scale of currently available satellite soil moisture estimates and identify areas of strong coupling between the interannual variability soil moisture and the maximum greenness vegetation fraction (MGVF) at the global scale. We modeled, cross-validated and downscaled remotely sensed soil moisture using machine learning and digital terrain analysis across 23 years (1991-2013) of available data. Improving the accuracy (0.69-0.87 % of cross-validated explained variance) and the spatial detail (from 27 to 15km) of satellite soil moisture, we filled temporal gaps of information across vegetated areas where satellite soil moisture does not work properly. We found that 7.57% of global vegetated area shows strong correlation with our downscaled product (R2>0.5, Fig. 1). We found a dominant positive response of vegetation greenness to topography-based soil moisture across water limited environments, however, the tropics and temperate environments of higher latitudes showed a sparse negative response. We conclude that topography can be used to effectively improve the spatial detail of globally available remotely sensed soil moisture, which is convenient to generate unbiased comparisons with global vegetation dynamics, and better inform land and crop modeling efforts.

  19. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    PubMed

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  20. A brief description of the simple biosphere model (SiB)

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Mintz, Y.; Sud, Y. C.

    1986-01-01

    A biosphere model for calculating the transfer of energy, mass, and momentum between the atmosphere and the vegetated surface of the Earth was designed for atmospheric general circulation models. An upper vegetation layer represents the perennial canopy of trees or shrubs, a lower layer represents the annual ground cover of grasses and other herbacious species. The local coverage of each vegetation layer may be fractional or complete but as the individual vegetation elements are considered to be evenly spaced, their root systems are assumed to extend uniformly throughout the entire grid-area. The biosphere has seven prognostic physical-state variables: two temperatures (one for the canopy and one for the ground cover and soil surface); two interception water stores (one for the canopy and one for the ground cover); and three soil moisture stores (two of which can be reached by the vegetation root systems and one underlying recharge layer into and out of which moisture is transferred only by hydraulic diffusion).

  1. Historic macrophyte development in Par Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grace, J.B.

    1985-08-01

    Aerial photographs from 1975, 1980, and 1983 were examined to evaluate the changes that have occurred in the wetland vegetation of Par Pond, a reactor-cooling reservoir. Evaluation of the aerial photographs was based on comparisons with ground-level vegetation maps made during July 1984. Comparisons of photographs from August and December of 1983 revealed the main seasonal change in the aerial coverage of wetland vegetation to be the wintertime loss of non-persistent emergent species such as Nelumbo lutea and Nymphaea odorata. Comparisons between September 1980 and August 1983 revealed that the lakeward extent of non-persistent macrophytes has increased by an averagemore » of 8.2 m, though not all sites have changed equally. For persistent macrophytes (principally Typha), the average increase in lakeward extent between December 1975 and August 1983 was 3.48 m. The extensive development of wetland vegetation in Par Pond as well as the substantial spread of vegetation over only a few years time indicates the high suitability of this habitat for the growth of wetland plants.« less

  2. Exchange pattern of gaseous elemental mercury in landfill: mercury deposition under vegetation coverage and interactive effects of multiple meteorological conditions.

    PubMed

    Tao, Zhengkai; Liu, Yang; Zhou, Meng; Chai, Xiaoli

    2017-12-01

    Landfill is known as a potential source of atmospheric Hg and an important component of the local or regional atmospheric Hg budget. This study investigated the gaseous elemental Hg surface-air fluxes under differing conditions at a typical municipal solid waste landfill site, highlighting the interactive effects of plant coverage and meteorological conditions. The results indicated that Hg fluxes exhibited a feature represented by diel variation. In particular, Hg deposition was observed under a condition of Kochia sieversiana coverage, whereas emission that occurred after K. sieversiana was removed. Hg emission was the dominant mode under conditions of Setaria viridis coverage and its removal; however, the average Hg emission flux with the S. viridis coverage was nearly four times lower than after its removal. These findings verified that the plant coverage should be a key factor influencing the Hg emission from landfills. In addition, Hg fluxes were correlated positively with solar radiation and air/soil temperature and correlated inversely with relative humidity under all conditions, except K. sieversiana coverage. This suggested that the interactive effects of meteorological conditions and plant coverage played a jointly significant role in the Hg emission from landfills. It was established that K. sieversiana can inhibit Hg emission efficiently, and therefore, it could potentially be suitable for use as a plant-based method to control Hg pollution from landfills.

  3. A new vegetation map of the western Seward Peninsula, Alaska, based on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Anderson, J. H.; Belon, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A reconstituted, simulated color-infrared ERTS-1 image covering the western Seward Peninsula was prepared and it is used for identifying and mapping vegetation types by direct visual examination. The image, NASA ERTS E-1009-22095, was obtained approximately at 1110 hours, 165 degrees WMT on August 1, 1972. Seven major colors are identified. Four of these are matched with units on existing vegetation maps: bright red - shrub thicket; light gray-red - upland tundra; medium gray-red - coastal coastal wet tundra; gray - alpine barrens. The three colors having no map equivalents are tentatively interpreted as follows: pink - grassland tundra; dark gray-red - burn scars; light orange-red - senescent vegetation. A vegetation map, drawn by tracing on an acetate overlay of the image is presented. Significantly more information is depicted than on existing maps with regards to vegetation types and their areal distribution. Furthermore the preparation of the new map from ERTS-1 imagery required little time relative to conventional methods and extent of areal coverage.

  4. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    PubMed Central

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, S. B.

    2013-01-01

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD that predict H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations. PMID:23277576

  5. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    DOE PAGES

    Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga; ...

    2017-11-27

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less

  6. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less

  7. On the Comparison of the Global Surface Soil Moisture product and Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Delorme, B., Jr.; Ottlé, C.; Peylin, P.; Polcher, J.

    2016-12-01

    Thanks to its large spatio-temporal coverage, the new ESA CCI multi-instruments dataset offers a good opportunity to assess and improve land surface models parametrization. In this study, the ESA CCI surface soil moisture (SSM) combined product (v2.2) has been compared to the simulated top first layers of the ORCHIDEE LSM (the continental part of the IPSL earth system model), in order to evaluate its potential of improvements with data assimilation techniques. The ambition of the work was to develop a comprehensive comparison methodology by analyzing simultaneously the temporal and spatial structures of both datasets. We analyzed the SSM synoptic, seasonal, and inter-annual variations by decomposing the signals into fast and slow components. ORCHIDEE was shown to adequately reproduce the observed SSM dynamics in terms of temporal correlation. However, these correlation scores are supposed to be strongly influenced by SSM seasonal variability and the quality of the model input forcing. Autocorrelation and spectral analyses brought out disagreements in the temporal inertia of the upper soil moisture reservoirs. By linking our results to land cover maps, we found that ORCHIDEE is more dependent on rainfall events compared to the observations in regions with sparse vegetation cover. These diflerences might be due to a wrong partition of rainfall between soil evaporation, transpiration, runofl and drainage in ORCHIDEE. To refine this analysis, a single value decomposition (SVD) of the co-variability between rainfall provided by WFDEI and soil moisture was pursued over Central Europe and South Africa. It showed that spatio-temporal co-varying patterns between ORCHIDEE and rainfall and the ESA-CCI product and rainfall are in relatively good agreement. However, the leading SVD pattern, which exhibits a strong annual cycle and explains the same portion of covariance for both datasets, explains a much larger fraction of variance for ORCHIDEE than for the ESA-CCI product. These results highlight that the role of other surface variables presenting a strong seasonal variability (like vegetation cover, possibly irrigation) is not accounted for similarly in both the model and the product, and that further work is needed to explore these discrepancies.

  8. Retrieval of seasonal dynamics of forest understory reflectance over a set of boreal, sub-boreal and temperate forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, J.; Lang, M.; Kuusk, J.; Kobayashi, H.; Suzuki, R.; Rautiainen, M.; Schaepman, M. E.; Nikopensius, M.; Raabe, K.

    2013-12-01

    Since ground vegetation (understory) has an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal and temperate forests, its reflectance spectra are urgently needed in various forest reflectance modelling efforts. However, systematic reflectance data covering different site types are almost missing. Measurement of understory reflectance is a real challenge because of extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum and its variable nature. Understory consists of several sub-layers (tree regeneration, shrub, grasses or dwarf shrub, mosses or lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional problems are introduced by patchiness of ground vegetation, ground surface roughness and understory-overstory relations. Due to this variability, remote sensing might be the only technology to provide consistent data at the required spatially extensive scales. Here we follow on our previous effort at mapping understory reflectance dynamics using multi-angle remote sensing observations (Pisek et al. (2012). Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data. Remote Sensing of Environment, 117, 464-468). This presentation will focus on the validation of this approach against an extended collection of different types of forest sites with available in-situ understory reflectance measurements distributed along a wide latitudinal gradient: a sparse black spruce forest in Alaska (Poker range; 65.12 N), a northern European boreal forest (Hyytiala; 61.85 N), hemiboreal needleleaf and deciduous stands in Estonia (Jarvselja; 58.27 N), a temperate deciduous forest in Switzerland (Laegeren; 47.48 N), and a dense black spruce forest in Canada (Sudbury; 47.16 N). Our results are pertinent to the ultimate goal of production of circumpolar maps of seasonal dynamics of forest understory over boreal forests using the MODIS BRDF data, starting from 2000. This will allow us to assess the changes in seasonal dynamics of boreal forest understory over the full decade.

  9. Mapping Water Level Dynamics over Central Congo River Using PALSAR Images, Envisat Altimetry, and Landsat NDVI Data

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, H.; Jung, H. C.; Beighley, E.; Laraque, A.; Tshimanga, R.; Alsdorf, D. E.

    2016-12-01

    Rivers and wetlands are very important for ecological habitats, and it plays a key role in providing a source of greenhouse gases (CO2 and CH4). The floodplains ecosystems depend on the process between the vegetation and flood characteristics. The water level is a prerequisite to an understanding of terrestrial water storage and discharge. Despite the lack of in situ data over the Congo Basin, which is the world's third largest in size ( 3.7 million km2), and second only to the Amazon River in discharge ( 40,500 m3 s-1 annual average between 1902 and 2015 in the main Brazzaville-Kinshasa gauging station), the surface water level dynamics in the wetlands have been successfully estimated using satellite altimetry, backscattering coefficients (σ0) from Synthetic Aperture Radar (SAR) images and, interferometric SAR technique. However, the water level estimation of the Congo River remains poorly quantified due to the sparse orbital spacing of radar altimeters. Hence, we essentially have limited information only over the sparsely distributed the so-called "virtual stations". The backscattering coefficients from SAR images have been successfully used to distinguish different vegetation types, to monitor flood conditions, and to access soil moistures over the wetlands. However, σ0 has not been used to measure the water level changes over the open river because of very week return signal due to specular scattering. In this study, we have discovered that changes in σ0 over the Congo River occur mainly due to the water level changes in the river with the existence of the water plants (macrophytes, emergent plants, and submersed plant), depending on the rising and falling stage inside the depression of the "Cuvette Centrale". We expand the finding into generating the multi-temporal water level maps over the Congo River using PALSAR σ0, Envisat altimetry, and Landsat Normalized Difference Vegetation Index (NDVI) data. We also present preliminary estimates of the river discharge using the water level maps.

  10. The association between landscape and climate and reported tick paralysis cases in dogs and cats in Australia.

    PubMed

    Brazier, Isabel; Kelman, Mark; Ward, Michael P

    2014-08-29

    The aim of this study was to describe the association between landscape and climate factors and the occurrence of tick paralysis cases in dogs and cats reported by veterinarians in Australia. Data were collated based on postcode of residence of the animal and the corresponding landscape (landcover and elevation) and climate (precipitation, temperature) information was derived. During the study period (October 2010-December 2012), a total of 5560 cases (4235 [76%] canine and 1325 [24%] feline cases) were reported from 341 postcodes, mostly along the eastern seaboard of Australia and from the states of New South Wales and Queensland. Significantly more cases were reported from postcodes which contained areas of broadleaved, evergreen tree coverage (P=0.0019); broadleaved, deciduous open tree coverage (P=0.0416); and water bodies (P=0.0394). Significantly fewer tick paralysis cases were reported from postcodes which contained areas of sparse herbaceous or sparse shrub coverage (P=0.0297) and areas that were cultivated and managed (P=0.0005). No significant (P=0.6998) correlation between number of tick paralysis cases reported per postcode and elevation was found. Strong positive correlations were found between number of cases reported per postcode and the annual minimum (rSP=0.9552, P<0.0001) and maximum (rSP=0.9075; P=0.0001) precipitation. Correlations between reported tick paralysis cases and temperature variables were much weaker than for precipitation, rSP<0.23. For maximum temperature, the strongest correlation between cases was found in winter (rSP=0.1877; P=0.0005) and for minimum temperature in autumn (rSP=0.2289: P<0.0001). Study findings suggest that tick paralysis cases are more likely to occur and be reported in certain eco-climatic zones, such as those with higher rainfall and containing tree cover and areas of water. Veterinarians and pet owners in these zones should be particularly alert for tick paralysis cases to maximize the benefits of early treatment, and to be vigilant to use chemical prophylaxis to reduce the risk of tick parasitism. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Wide-area ratios of evapotranspiration to precipitation in monsoon-dependent semiarid vegetation communities

    USGS Publications Warehouse

    Glenn, Edward P.; Scott, Russell L.; Nguyen, Uyen; Nagler, Pamela L.

    2015-01-01

    Evapotranspiration (ET) and the ratio of ET to precipitation (PPT) are important factors in the water budget of semiarid rangelands and are in part determined by the dominant plant communities. Our goal was to see if landscape changes such as tree or shrub encroachment and replacement of native grasses by invasive grasses impacted ET and ET/PPT and therefore watershed hydrology in this biome. We determined ET and ET/PPT for shrublands, grasslands and mesquite savannas in southern Arizona at five moisture flux towers and determined the environmental factors controlling ET in each plant community. We then scaled ET over areas of 4–36 km2, representing homogeneous patches of each plant community, using the Enhanced Vegetation Index (EVI) from MODIS sensors on the Terra satellite. Over wide areas, estimated ET/PPT projected from MODIS EVI ranged from 0.71 for a sparsely-vegetated shrub site to 1.00 for grasslands and mesquite savannas. The results did not support hypotheses that encroachment of mesquites into grasslands or that replacement of native grasses with introduced Eragrostis lehmanniana (lehmann lovegrass) have increased rangeland ET.

  12. Seasonal Dietary Intakes and Socioeconomic Status among Women in the Terai of Nepal

    PubMed Central

    Campbell, Rebecca K.; Talegawkar, Sameera A.; Christian, Parul; LeClerq, Steven C.; Khatry, Subarna K.; Wu, Lee S.F.

    2014-01-01

    ABSTRACT Despite widespread nutritional deficiencies, investigations of usual diet in rural South Asia remain sparse. The present study characterizes year-round and seasonal dietary patterns of women in the Terai of Nepal by sociodemographic status, using a novel, weekly single-visit and usual food frequency questionnaire that links recall to the agricultural season. The study was conducted across seasons in 2006-2008 among 15,899 women of reproductive age in Sarlahi district. Intakes were tabulated for all foods, overall and by socioeconomic status (SES), and in and out of season, as appropriate. Foods consumed regularly [median (interquartile range) weekly frequency] were rice [13 (7-13)], potatoes [10 (5-13)], legumes [6 (2-9)], and vegetable oil [13 (13-13)]. Animal products were infrequently consumed [1 (0-2) time per week] as were fruits and vegetables, most with a median weekly intake frequency of 0. Higher SES was associated with more frequent consumption of most food-groups, including in-season fruits and vegetables. Diets of women in the Terai of Nepal lack diversity and, likely, nutrient adequacy, which may pose health risks. PMID:25076658

  13. Grassland bird communtiy response to large wildfires

    USGS Publications Warehouse

    Roberts, Anthony J.; Boal, Clint W.; Wester, David B.; Rideout-Hanzak, Sandra; Whitlaw, Heather A.

    2012-01-01

    We studied breeding season communities of grassland birds on short-grass and mixed-grass prairie sites during the second and third breeding seasons following two large wildfires in March 2006 in the Texas panhandle, USA. There was an apparent temporary shift in avian community composition following the fires due to species-specific shifts associated with life-history traits and vegetation preferences. Species that prefer sparse vegetation and bare ground on short-grass sites, such as Horned Lark (Eremophila alpestris), benefited from wildfires, while others, such as Western Meadowlark (Sturnella neglecta), that prefer more dense vegetation, were negatively impacted. Mixed-grass sites had species-specific shifts in 2007, two breeding seasons after the fires; grassland bird communities on burned plots were similar by 2008 to those on unburned plots. Avian communities appeared to return to pre-burn levels within 3 years following wildfires. Many of the responses in our study of wildfire were similar to those reported following prescribed fires elsewhere. Prescribed fires appear to have similar effects on the avian community despite differences in intensity and environmental conditions during wildfires.

  14. Effects of metals and arsenic on riparian communities in southwest Montana.

    PubMed

    Lejeune, K; Galbraith, H; Lipton, J; Kapustka, L A

    1996-10-01

    : Concentrations of metals and arsenic in floodplain soils of Silver Bow Creek and the upper Clark Fork River in southwest Montana were related to phytotoxic responses by individual plants in laboratory experiments, vegetative community structure and composition in the field and wildlife habitat. Samples collected from barren or very sparsely vegetated mixed mine tailings and alluvium deposits (slickens) in the floodplains along Silver Bow Creek and the Clark Fork River had concentrations of As, Cd, Cu, Pb and Zn that were significantly elevated relative to reference sites. Laboratory phytotoxicity tests demonstrated severe and rapid effects of the elevated concentrations of metals and As on hybrid poplar and standard test species (alfalfa, lettuce and wheat): growth inhibition of hybrid poplars was nearly 100% and of standard test species ≥75%. Vegetation community measurements revealed that slickens have replaced riparian forest, shrub, hay fields and pasture land; in doing so, the slickens have reduced both the compositional and structural heterogeneity of the riparian habitat. This reduction in habitat complexity has reduced the capacity of the area to provide a diversity of suitable wildlife habitat.

  15. Correlations among seasonal water quality, discharge, weather, and coverage by submersed aquatic vegetation in the tidal Potomac River and Potomac Estuary, 1983-96

    USGS Publications Warehouse

    Carter, Virginia; Rybicki, N.B.; Landwehr, J.M.; Reel, J.T.; Ruhl, H.

    1998-01-01

    The U.S. Geological Survey has been cooperating with other scientists under the auspices of the Interstate Commission on the Potomac River Basin to utilize existing data from the tidal Potomac River and Estuary for investigating linkages among living resources (primary producers, consumers) and abiotic components of the environment. Because the distribution and abundance of submersed aquatic vegetation in the tidal Potomac River and Estuary are controlled largely by light availability, the first step in investigating linkages with submersed aquatic vegetation is to examine the correlations that exist among vegetative cover, discharge, water quality and weather, all of which can affect light availability directly or indirectly. Growing season (April-October), spring (April-June), and summer (July-August) correlations are presented along with figures demonstrating the significant relationships among variables.

  16. Potential climatic impacts of vegetation change: A regional modeling study

    NASA Astrophysics Data System (ADS)

    Copeland, Jeffrey H.; Pielke, Roger A.; Kittel, Timothy G. F.

    1996-03-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage.

  17. Potential climatic impacts of vegetation change: A regional modeling study

    USGS Publications Warehouse

    Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.

    1996-01-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.

  18. Gravity Data from Newark Valley, White Pine County, Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; McKee, Edwin H.

    2007-01-01

    The Newark Valley area, eastern Nevada is one of thirteen major ground-water basins investigated by the BARCAS (Basin and Range Carbonate Aquifer Study) Project. Gravity data are being used to help characterize the geophysical framework of the region. Although gravity coverage was extensive over parts of the BARCAS study area, data were sparse for a number of the valleys, including the northern part of Newark Valley. We addressed this lack of data by establishing seventy new gravity stations in and around Newark Valley. All available gravity data were then evaluated to determine their reliability, prior to calculating an isostatic residual gravity map to be used for subsequent analyses. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a view of subsurface shape of the basin and will provide information useful for the development of hydrogeologic models for the region.

  19. A quantitative assessment of Arctic shipping in 2010–2014

    PubMed Central

    Eguíluz, Victor M.; Fernández-Gracia, Juan; Irigoien, Xabier; Duarte, Carlos M.

    2016-01-01

    Rapid loss of sea ice is opening up the Arctic Ocean to shipping, a practice that is forecasted to increase rapidly by 2050 when many models predict that the Arctic Ocean will largely be free of ice toward the end of summer. These forecasts carry considerable uncertainty because Arctic shipping was previously considered too sparse to allow for adequate validation. Here, we provide quantitative evidence that the extent of Arctic shipping in the period 2011–2014 is already significant and that it is concentrated (i) in the Norwegian and Barents Seas, and (ii) predominantly accessed via the Northeast and Northwest Passages. Thick ice along the forecasted direct trans-Arctic route was still present in 2014, preventing transit. Although Arctic shipping remains constrained by the extent of ice coverage, during every September, this coverage is at a minimum, allowing the highest levels of shipping activity. Access to Arctic resources, particularly fisheries, is the most important driver of Arctic shipping thus far. PMID:27477878

  20. Use of NDVI and land surface temperature for assessing vegetation health: merits and limitations

    USDA-ARS?s Scientific Manuscript database

    To date, most drought indices used in drought monitoring are based on precipitation and meteorological data collected on the ground from distributed monitoring networks. Few satellite-based drought indices are currently in production, although these afford better spatial and temporal coverage and r...

  1. Estimation of effective aerodynamic roughness with altimeter measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.; Ritchie, J. C.

    1992-01-01

    A new method is presented for estimating the aerodynamic roughness length of heterogeneous land surfaces and complex landscapes using elevation measurements performed with an airborne laser altimeter and the Seasat radar altimeter. Land surface structure is characterized at increasing length scales by considering three basic landscape elements: (1) partial to complete canopies of herbaceous vegetation; (2) sparse obstacles (e.g., shrubs and trees); and (3) local relief. Measured parameters of land surface geometry are combined to obtain an effective aerodynamic roughness length which parameterizes the total atmosphere-land surface stress.

  2. Remedial Investigation Report: White Phosphorus Contamination of Salt Marsh Sediments at Eagle River Flats, Alaska

    DTIC Science & Technology

    1992-03-31

    ponds (Bread Truck Pond) were significantly higher than those from the other ponds. Area C and the Bread Truck ponds, covering an area of about 15 ha (37...Figure 1-12. Aerial view of Eagle River Flats in January 1991 viewed to the north showing Knik Arm and ice- covered ERF. Figure 11-13. Ice core...levees of some distributaries are tall stands of beach rye (Elymus arenarius). Inside or landward of this sparsely vegetated mudflat zone is a low sedge

  3. Remedial Investigations Report for Fort Devens Subbury Training Annex, Maynard, Massachusetts, Sites P11/P13 and Sites A12/P36/P37, Phase 2. Volume 1

    DTIC Science & Technology

    1995-12-01

    woody vines occur in this area. Scarboro muck, the underlying soil in this wetland area, is listed by the SCS as a hydric soil (USDA 1987). Hydric...dense understory consists primarily of regenerating overstory and flowering dogwood. In addition, woody vines , including poison ivy, Virginia Creeper, and...covers the ground. Mosses, partridge berry, bracken fern, and pink ladyslipper comprise the sparsely vegetated herbaceous layer. No woody vines grow in

  4. Final Environmental Impact Statement. Permit Application by United States Steel Corp., Proposed Lake Front Steel Mill, Conneaut, Ohio. Volume 2.

    DTIC Science & Technology

    1979-01-01

    Horticultural products are also important. Production of trees, shrubs , vines and ornamental plants as well as cut flowers, potted plants, florist greens and... shrubs are beginning to die off and invasion by red maple or other woody plants was found to be typical. No prevernal flowering plants were encountered and...is low and only sparsely vegetated. However, the east bank is higher and supports woody shrubs and trees which provide a minimal amount of shade. At

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guiling; Yu, Miao; Pal, Jeremy

    This paper presents a regional climate system model RCM-CLM-CN-DV and its validation over Tropical Africa. The model development involves the initial coupling between the ICTP regional climate model RegCM4.3.4 (RCM) and the Community Land Model version 4 (CLM4) including models of carbon-nitrogen dynamics (CN) and vegetation dynamics (DV), and further improvements of the models. Model improvements derive from the new parameterization from CLM4.5 that addresses the well documented overestimation of gross primary production (GPP), a refinement of stress deciduous phenology scheme in CN that addresses a spurious LAI fluctuation for drought-deciduous plants, and the incorporation of a survival rule intomore » the DV model to prevent tropical broadleaf evergreens trees from growing in areas with a prolonged drought season. The impact of the modifications on model results is documented based on numerical experiments using various subcomponents of the model. The performance of the coupled model is then validated against observational data based on three configurations with increasing capacity: RCM-CLM with prescribed leaf area index and fractional coverage of different plant functional types (PFTs); RCM-CLM-CN with prescribed PFTs coverage but prognostic plant phenology; RCM-CLM-CN-DV in which both the plant phenology and PFTs coverage are simulated by the model. Results from these three models are compared against the FLUXNET up-scaled GPP and ET data, LAI and PFT coverages from remote sensing data including MODIS and GIMMS, University of Delaware precipitation and temperature data, and surface radiation data from MVIRI and SRB. Our results indicate that the models perform well in reproducing the physical climate and surface radiative budgets in the domain of interest. However, PFTs coverage is significantly underestimated by the model over arid and semi-arid regions of Tropical Africa, caused by an underestimation of LAI in these regions by the CN model that gets exacerbated through vegetation dynamics in RCM-CLM-CN-DV.« less

  6. Sparse trees and shrubs confers a high biodiversity to pastures: Case study on spiders from Transylvania.

    PubMed

    Gallé, Róbert; Urák, István; Nikolett, Gallé-Szpisjak; Hartel, Tibor

    2017-01-01

    The integration of food production and biodiversity conservation represents a key challenge for sustainability. Several studies suggest that even small structural elements in the landscape can make a substantial contribution to the overall biodiversity value of the agricultural landscapes. Pastures can have high biodiversity potential. However, their intensive and monofunctional use typically erodes its natural capital, including biodiversity. Here we address the ecological value of fine scale structural elements represented by sparsely scattered trees and shrubs for the spider communities in a moderately intensively grazed pasture in Transylvania, Eastern Europe. The pasture was grazed with sheep, cattle and buffalo (ca 1 Livestock Unit ha-1) and no chemical fertilizers were applied. Sampling sites covered the open pasture as well as the existing fine-scale heterogeneity created by scattered trees and shrub. 40 sampling locations each being represented by three 1 m2 quadrats were situated in a stratified design while assuring spatial independency of sampling locations. We identified 140 species of spiders, out of which 18 were red listed and four were new for the Romanian fauna. Spider species assemblages of open pasture, scattered trees, trees and shrubs and the forest edge were statistically distinct. Our study shows that sparsely scattered mature woody vegetation and shrubs substantially increases the ecological value of managed pastures. The structural complexity provided by scattered trees and shrubs makes possible the co-occurrence of high spider diversity with a moderately high intensity grazing possible in this wood-pasture. Our results are in line with recent empirical research showing that sparse trees and shrubs increases the biodiversity potential of pastures managed for commodity production.

  7. Sparse trees and shrubs confers a high biodiversity to pastures: Case study on spiders from Transylvania

    PubMed Central

    Nikolett, Gallé-Szpisjak; Hartel, Tibor

    2017-01-01

    The integration of food production and biodiversity conservation represents a key challenge for sustainability. Several studies suggest that even small structural elements in the landscape can make a substantial contribution to the overall biodiversity value of the agricultural landscapes. Pastures can have high biodiversity potential. However, their intensive and monofunctional use typically erodes its natural capital, including biodiversity. Here we address the ecological value of fine scale structural elements represented by sparsely scattered trees and shrubs for the spider communities in a moderately intensively grazed pasture in Transylvania, Eastern Europe. The pasture was grazed with sheep, cattle and buffalo (ca 1 Livestock Unit ha-1) and no chemical fertilizers were applied. Sampling sites covered the open pasture as well as the existing fine-scale heterogeneity created by scattered trees and shrub. 40 sampling locations each being represented by three 1 m2 quadrats were situated in a stratified design while assuring spatial independency of sampling locations. We identified 140 species of spiders, out of which 18 were red listed and four were new for the Romanian fauna. Spider species assemblages of open pasture, scattered trees, trees and shrubs and the forest edge were statistically distinct. Our study shows that sparsely scattered mature woody vegetation and shrubs substantially increases the ecological value of managed pastures. The structural complexity provided by scattered trees and shrubs makes possible the co-occurrence of high spider diversity with a moderately high intensity grazing possible in this wood-pasture. Our results are in line with recent empirical research showing that sparse trees and shrubs increases the biodiversity potential of pastures managed for commodity production. PMID:28886058

  8. Retrieval of Understory NDVI in Sparse Boreal Forests By MODIS Brdf Data

    NASA Astrophysics Data System (ADS)

    Yang, W.; Kobayashi, H.; Suzuki, R.; Nasahara, K. N.

    2014-12-01

    Global products of leaf area index (LAI) usually show large uncertainties in sparsely vegetated areas. The reason is that the understory contribution is not negligible in reflectance modeling for the case of low to intermediate canopy cover. Therefore many efforts have been carried out on inclusion of understory properties in the LAI estimation algorithms. Compared with conventional data bank method, estimation of forest understory property from satellite data is superior in the studies at global or continental scale during a long periods. However, the existing remote sensing method based on multi-angular observations is very complicated to implement. Alternatively, a simple method to retrieve understory NDVI (NDVIu) for sparse boreal forests was proposed in this study. The method is based on the property that the bi-directional variation of NDVIu is much smaller than that of the canopy-level NDVI. To retrieve NDVIu for a certain pixel, linear extrapolation was applied using the pixels within a 5×5 target-pixel-centered window. The NDVI values were reconstructed from the MODIS BRDF data corresponding to eight different solar-view angles. NDVIu was estimated as the average of the NDVI values corresponding to the position where the stand NDVI has the smallest angular variation. Validation by noise-free simulation dataset yielded high agreement between estimated and true NDVIu with R2 and RMSE of 0.99 and 0.03, respectively. By the MODIS BRDF data, we got the estimate of NDVIu close to the in situ measured value (0.61 vs. 0.66 for estimate and measurement, respectively), and also reasonable seasonal patterns of NDVIu in 2010-2013. The results imply a potential application of the retrieved NDVIu to improve the estimation of overstory LAI for sparse boreal forests.

  9. Forest floor methane flux modelled by soil water content and ground vegetation - comparison to above canopy flux

    NASA Astrophysics Data System (ADS)

    Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Ryhti, Kira; Rannik, Üllar; Pihlatie, Mari

    2017-04-01

    Methane (CH4) is an important and strong greenhouse gas of which atmospheric concentration is rising. While boreal forests are considered as an important sink of CH4 due to soil CH4 oxidation, the soils have also a capacity to emit CH4. Moreover, vegetation is shown to contribute to the ecosystem-atmosphere CH4 flux, and it has been estimated to be the least well known natural sources of CH4. In addition to well-known CH4 emissions from wetland plants, even boreal trees have been discovered to emit CH4. At the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) II station in Hyytiälä, southern Finland (61° 51' N, 24°17' E; 181 m asl), we have detected small CH4 emissions from above the canopy of a Scots pine (Pinus sylvestris) dominated forest. To assess the origin of the observed emissions, we conducted forest floor CH4 flux measurements with 54 soil chambers at the footprint area of the above canopy flux measurements during two growing seasons. In addition, we measured the soil volumetric water content (VWC) every time next to the forest floor chamber measurements, and estimated vegetation coverages inside the chambers. In order to model the forest floor CH4 flux at the whole footprint area, we combined lidar (light detection and ranging) data with the field measurements. To predict the soil water content and thus the potential CH4 flux, we used local elevation, slope, and ground return intensity (GRI), calculated from the lidar data (National Land Survey of Finland). We categorized the soil chambers into four classes based on the VWC so that the class with the highest VWC values includes all the soil chambers with a potential to emit CH4. Based on a statistically significant correlation between the VWC and the forest floor CH4 flux (r = 0.30, p < 0.001), we modelled the potential forest floor CH4 flux of the whole area. The results of the soil chamber measurements show a few areas of the forest floor with significant CH4 emissions. The modelled map of the potential CH4 flux is consistent with the measurements of the flux and the VWC, indicating that the wetter areas have potential for CH4 emissions, while the drier areas have potential for CH4 uptake. Preliminary results of the vegetation coverage show a positive correlation between the first year forest floor CH4 flux and the coverage of Sphagnum spp. mosses (r = 0.55, p < 0.001). Furthermore, we will include the vegetation coverage to the analysis, and compare the modelled forest floor CH4 flux with the measured above canopy flux. This ongoing research will give valuable information about the CH4 sources and dynamics in boreal forests.

  10. Late Quaternary history of the Atacama Desert

    USGS Publications Warehouse

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.; Smith, Mike; Hesse, Paul

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (16–26°S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  11. Characterization of Vegetation Change in a Sub-Arctic Mire using Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    DelGreco, J. L.; McArthur, K. J.; Palace, M. W.; Herrick, C.; Garnello, A.; Finnell, D.; McCalley, C. K.; Anderson, S. M.; Varner, R. K.

    2015-12-01

    Climate change is impacting northern ecosystems through the thawing of the permafrost, which has resulted in changes to plant communities and greenhouse gas emissions, such as carbon dioxide (CO2) and methane (CH4). These greenhouse gases are of concern due to their potential feedbacks which create a warmer climate, thus increasing permafrost thawing. Our study focuses on how vegetation type differs in areas that have been impacted by thawing permafrost at Stordalen Mire located in Abisko, Sweden. To estimate change in vegetation communities, field-based measurements combined with remotely sensed image data was used. 75 randomized square-meter plots were measured for vegetation composition and classified into one of five site-types, each representing a different stage of permafrost degradation. New high-resolution imagery (1 cm) was collected using Unmanned Aerial Vehicles (UAV) providing insight into the spatial patterning, characterizations, and changes of these communities. The UAV imagery was georectified using high precision GPS points collected across the mire. The imagery was then examined using a neural network analysis to estimate cover type across the mire. This 2015 cover type classification was then compared to previous UAV imagery taken on July 2014 to analyze changes in vegetation distribution as an indication of permafrost thaw. Hummock sites represent intact permafrost and have lost 21.5% coverage since 2014, while tall gramminoid sites, which indicate fully thawed sites, have increased coverage by 12.1%. A discriminate function analysis showed that site types can be differentiated based on species composition, thus showing that vegetation differs significantly across the thaw gradient. Using average flux rates of CH4 from each cover type reported previously, the percent of CH4 emitted over the mire was estimated for 2014 and 2015. Comparing both estimates, CH4 emissions increased with a flux change of 5604.5 g CH4/day. Our estimates of vegetation change may be used to parameterize simulation models and create future scenarios of how the vegetation cover will change in response to climate change. Data from this study will also help to explain how the ecology of the subarctic peatlands, now a carbon sink, may be on its way to changing into a source of carbon.

  12. Evaluation of SIR-A (Shuttle Imaging Radar) images from the Tres Marias region (Minas Gerais State, Brazil) using derived spatial features and registration with MSS-LANDSAT images

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Kux, H. J. H.; Dutra, L. V.

    1984-01-01

    Two image processing experiments are described using a MSS-LANDSAT scene from the Tres Marias region and a shuttle Imaging Radar SIR-A image digitized by a vidicon scanner. In the first experiment the study area is analyzed using the original and preprocessed SIR-A image data. The following thematic classes are obtained: (1) water, (2) dense savanna vegetation, (3) sparse savanna vegetation, (4) reforestation areas and (5) bare soil areas. In the second experiment, the SIR-A image was registered together with MSS-LANDSAT bands five, six, and seven. The same five classes mentioned above are obtained. These results are compared with those obtained using solely MSS-LANDSAT data. The spatial information as well as coregistered SIR-A and MSS-LANDSAT data can increase the separability between classes, as compared to the use of raw SIR-A data solely.

  13. San Francisco, San Pablo Bay Area

    NASA Image and Video Library

    1994-09-30

    STS068-244-022 (30 September-11 October 1994) --- (San Francisco, San Pablo Bay Area) Photographed through the Space Shuttle Endeavour's flight deck windows, the heavily populated bay area is featured in this 70mm frame. The relatively low altitude of Endeavour's orbit (115 nautical miles) and the use of a 250mm lens on the Hasselblad camera allowed for capturing detail in features such as the Berkeley Marina (frame center). The region's topography is well depicted with the lowland areas heavily populated and the hills much more sparsely covered. The Oakland Hills in the right lower center appear to be re-vegetated after a devastating fire. The Golden Gate Recreation Area in the upper left also shows heavy vegetation. The three bridges across the main part of the bay and their connecting roads are prominent. Cultural features such as Golden Gate Park and the Presidio contrast with the gray of the city.

  14. Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation.

    PubMed

    Artieri, Carlo G; Fraser, Hunter B

    2014-12-01

    The recent advent of ribosome profiling-sequencing of short ribosome-bound fragments of mRNA-has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling data set have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a method that implicated positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that it produces false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling. © 2014 Artieri and Fraser; Published by Cold Spring Harbor Laboratory Press.

  15. Cataract surgical coverage and outcome in the Tibet Autonomous Region of China

    PubMed Central

    Bassett, K L; Noertjojo, K; Liu, L; Wang, F S; Tenzing, C; Wilkie, A; Santangelo, M; Courtright, P

    2005-01-01

    Background: A recently published, population based survey of the Tibet Autonomous Region (TAR) of China reported on low vision, blindness, and blinding conditions. This paper presents detailed findings from that survey regarding cataract, including prevalence, cataract surgical coverage, surgical outcome, and barriers to use of services. Methods: The Tibet Eye Care Assessment (TECA) was a prevalence survey of people from randomly selected households from three of the seven provinces of the TAR (Lhoka, Nakchu, and Lingzhr), representing its three main environmental regions. The survey, conducted in 1999 and 2000, assessed visual acuity, cause of vision loss, and eye care services. Results: Among the 15 900 people enumerated, 12 644 were examined (79.6%). Cataract prevalence was 5.2% and 13.8%, for the total population, and those over age 50, respectively. Cataract surgical coverage (vision <6/60) for people age 50 and older (85–90% of cataract blind) was 56% overall, 70% for men and 47% for women. The most common barriers to use of cataract surgical services were distance and cost. In the 216 eyes with cataract surgery, 60% were aphakic and 40% were pseudophakic. Pseudophakic surgery left 19% of eyes blind (<6/60) and an additional 20% of eyes with poor vision (6/24–6/60). Aphakic surgery left 24% of eyes blind and an additional 21% of eyes with poor vision. Even though more women remained blind than men, 28% versus 18% respectively, the different was not statistically significant (p = 0.25). Conclusions: Cataract surgical coverage was remarkably high despite the difficulty of providing services to such an isolated and sparse population. Cataract surgical outcome was poor for both aphakic and pseudophakic surgery. Two main priorities are improving cataract surgical quality and cataract surgical coverage, particularly for women. PMID:15615736

  16. Stable isotope-based approach to validate effects of understory vegetation on shallow soil water movement in a Japanese cypress plantation

    NASA Astrophysics Data System (ADS)

    Sakashita, W.; Onda, Y.; Boutefnouchet, M. R.; Kato, H.; Gomi, T.

    2017-12-01

    Evapotranspiration is an important controlling factor of the hydrological cycle in forested watershed. In general, the evapotranspiration is partitioned into three components (evaporation, transpiration, and interception). In a Japanese cypress plantation, our previous work using hydrometric method revealed that total evapotranspiration rate was 47.5% of the total rainfall amount during the growing season. This research also provided the contribution rates of three evapotranspiration components. Our previous study reported the difference of forest floor evaporation between pre-thinning and post-thinning periods (pre-thinning: Nov 2010-Oct 2011; post-thinning: Nov 2011-Oct 2012), indicating that a significant change appeared in the evaporation flux after the thinning. To examine the long-term changes of evapotranspiration, we have to consider the influence of increased understory vegetation. However, hydrometric-based method using such as weighting lysimeter is sensitive to vegetation conditions inside and outside lysimeter. This disadvantage makes it difficult to evaluate the contribution rates of each evapotranspiration components. In this study, we focus on the isotope-based method to obtain each flux of evapotranspiration under the condition including understory vegetation. Our study site is Mt. Karasawa, Tochigi Prefecture, in central Japan (139°36'E, 36°22'N; 198 m a.s.l.), and we prepare both sparse and dense areas of understory vegetation. In these two plots, we collect soil water samples from shallow depth profiles after various intensity precipitation events. Throughfall and understory-intercepted water are also obtained. Stable water isotope measurements of these samples may provide information about (a) effects of understory vegetation on shallow soil water movement and (b) interception flux of understory vegetation. In this paper, we report the results and interpretations of our measurements.

  17. Woody-Herbaceous Species Coexistence in Mulga Hillslopes: Modelling Structure and Function

    NASA Astrophysics Data System (ADS)

    Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.

    2016-12-01

    The fundamental processes underlying the coexistence of woody and herbaceous species in arid and semi-arid areas have been a topic of intense research during the last few decades. Experimental and modelling studies have both supported and disputed alternative hypotheses explaining this phenomenon. Vegetation models including the key processes that drive coexistence can be used to understand vegetation pattern dynamics and structure under current climate conditions, and to predict changes under future conditions. Here we present work done towards linking the observations to modelling. The model captures woody-herbaceous coexistence along a rainfall gradient characteristic of typical conditions on Mulga ecosystems in Australia. The dynamic vegetation model simulates the spatial dynamics of overland flow, soil moisture and vegetation growth of two species. It incorporates key mechanisms for coexistence and pattern formation, including facilitation by evaporation reduction through shading, and infiltration feedbacks, local and non-local seed dispersal, competition for water uptake. Model outcomes, obtained including diflerent mechanisms, are qualitatively compared to typical vegetation cover patterns in the Australian Mulga bioregion where bush fire is very infrequent and the fate of vegetation cover is mostly determined by intra- and interspecies interactions. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the dynamics of such ecosystems, we identify main mechanisms that need an improved representation in the dynamic vegetation models. We show that a realistic parameterization of the model leads to results which are aligned with the observations reported in the literature. At the lower end of the rainfall gradient woody species coexist with herbaceous species within a sparse banded pattern, while at higher rainfall woody species tend to dominate the landscape.

  18. Controls on desert dune activity - a geospatial approach

    NASA Astrophysics Data System (ADS)

    Lancaster, N.; Hesse, P. P.

    2017-12-01

    Desert and other inland dunes occur on a wide spectrum of activity (defined loosely as the proportion of the surface area subject to sand movement) from unvegetated to sparsely vegetated "active" dunes through discontinuously vegetated inactive dunes to completely vegetated and degraded dunes. Many of the latter are relicts of past climatic conditions. Although field studies and modeling of the interactions between winds, vegetation cover, and dune activity can provide valuable insights, the response of dune systems to climate change and variability past, present, and future has until now been hampered by the lack of pertinent observational data on geomorphic and climatic boundary conditions and dune activity status for most dune areas. We have developed GIS-based approach that permits analysis of boundary conditions and controls on dune activity at a range of spatial scales from dunefield to global. In this approach, the digital mapping of dune field and sand sea extent has been combined with systematic observations of dune activity at 0.2° intervals from high resolution satellite image data, resulting in four classes of activity. 1 km resolution global gridded datasets for the aridity index (AI); precipitation, satellite-derived percent vegetation cover; and estimates of sand transport potential (DP) were re-sampled for each 0.2° grid cell, and dune activity was compared to vegetation cover, sand transport potential, precipitation, and the aridity index. Results so far indicate that there are broad-scale relationships between dunefield mean activity, climate, and vegetation cover. However, the scatter in the data suggest that other local factors may be at work. Intra-dune field patterns are complex in many cases. Overall, much more work needs to be done to gain a full understanding of controls at different spatial and temporal scales, which can be faciliated by this spatial database.

  19. Meteorological satellite data: A tool to describe the health of the world's agriculture

    NASA Technical Reports Server (NTRS)

    Gray, T. I., Jr.; Mccrary, D. G. (Principal Investigator); Scott, L.

    1981-01-01

    Local area coverage data acquired aboard the TIROS-N satellite family by the advanced very high resolution radiometer systems was examined to determine the agricultural information current. Albedo differences between channel 2 and channel 1 of the advanced very high resolution radiometer LAC (called EVI) are shown to be closely correlated to the Ashburn vegetative index produced from LANDSAT multispectral scanner data which have been shown to vary in response to "greenness", soil moisture, and crop production. The statistical correlation between the EVI and the Ashburn Vegetative Index (+ or - 1 deg) is 0.86.

  20. Characterizing land surface phenology and responses to rainfall in the Sahara desert

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.

    2016-08-01

    Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.

  1. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s

    USGS Publications Warehouse

    Stow, D.; Daeschner, Scott; Hope, A.; Douglas, David C.; Petersen, A.; Myneni, Ranga B.; Zhou, L.; Oechel, W.

    2003-01-01

    The interannual variability and trend of above-ground photosynthetic activity of Arctic tundra vegetation in the 1990s is examined for the north slope region of Alaska, based on the seasonally integrated normalized difference vegetation index (SINDVI) derived from local area coverage (LAC) National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data. Smaller SINDVI values occurred during the three years (1992-1994) following the volcanic eruption of Mt Pinatubo. Even after implementing corrections for this stratospheric aerosol effect and adjusting for changes in radiometric calibration coefficients, an apparent increasing trend of SINDVI in the 1990s is evident for the entire north slope. The most pronounced increase was observed for the foothills physiographical province.

  2. On the role of vegetation in the formation of river anabranching patterns

    NASA Astrophysics Data System (ADS)

    Crouzy, B.; D'Odorico, P.; Wütrich, D.; Perona, P.

    2012-04-01

    Part of studies on the couplings between the evolution of riparian vegetation and the river morphodynamics, we investigate the effect of spatial interactions between vegetation located at different positions within the channel. This work generalizes the experimental and theoretical results by Perona et al. and by Crouzy and Perona (both Advances in Water Resources, in Press) on colonization of riverbars by seedlings or large woody debris by relaxing the hypothesis made in those two works of the biomass growth and uprooting being independent on the presence of neighboring plants. While the hypothesis of independent vegetation growth and uprooting is justified for sparse vegetation cover or young seedlings, it fails as soon as the canopy significantly disturbs the flow or changes the sediment stability. Then, flow-mediated interactions between riparian vegetation located at different positions within the channel can be observed. Those interactions are either constructive or destructive. For example, a region favorable to the development of biomass appears on the lee side of a vegetated obstacle (with bleed flow) due to increased deposition of seeds and sediment (Schnauder and Moggridge, 2008) while conversely scouring can be increased laterally due to obstacle-induced flow diversion (Roulund et al., 2005; Melville and Sutherland, 1988; Zong and Nepf, 2008). We focus on the role of vegetation in the formation of the regular vegetated ridge patterns found in ephemeral rivers (see for example the work by Tooth and Nanson, 2004 on anabranching patterns) or as a succession of swales and ridges on the inside of meander bends (scroll bars). From the analysis of aerial images, we obtain the characteristic length scale of the patterns. We show how in the limit where the hydrological (interarrival time of floods) and the biological (germination and growth rates) timescales are comparable the combination between both positive and negative feedbacks between vegetation located at different positions can lead to the spatial organization of the vegetation. Classically, the presence of the anabranches has been ascribed to an optimization of the sediment load transport (Huang and Nanson, 2007) or for the scroll bars to channel migration, without explicitly accounting for the role of vegetation.

  3. Fertility -- A new trend for a global business.

    PubMed

    Farley, J U

    1969-01-01

    Cooperation between the public and private sectors in helping control population is possible. The usual public outlet for contraceptives, the clinic, is unsatisfactory for 3 reasons: coverage is sparse; there is no simple, repetitive supply activity; and more immediate medical problems take precedence. The public sector is not conversant with advertising and merchandising techniques and research which aid dissemination of both information and the product. Common marketing notions, e.g., 'trading up' may be relevant, i.e., many new aspects of oral contraceptives, IUDs, had already used conventional methods of contraception. The private sector is less sensitive to the political and religious aspects of contraception than the public sector.

  4. Ethical issues in the translation of social neuroscience: a policy analysis of current guidelines for public dialogue in human research.

    PubMed

    Zimmerman, Emma; Racine, Eric

    2012-01-01

    Social neuroscience and its potential implications create an interesting case study for examining human research ethics policies on the topic of public communication of research. We reviewed mainstream national and international human research ethics guidelines and policies on issues of public communication of research. Our analysis relied on five thematic nets to capture the interactions between research and the public: public understanding, knowledge translation, public participation, social outcomes, and dual use. Coverage of these topics is sparse and inconsistent in mainstream policies and guidelines. We identify three options to address these gaps and analyze their strengths and weaknesses.

  5. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation.

    PubMed

    Gill, Karen M; Goater, Lori A; Braatne, Jeffrey H; Rood, Stewart B

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this 'irrigation effect' we studied the facultative shrub, netleaf hackberry (Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow (Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  6. Using chloride and chlorine-36 as soil-water tracers to estimate deep percolation at selected locations on the U.S. Department of Energy Hanford site, Washington

    USGS Publications Warehouse

    Prych, Edmund A.

    1995-01-01

    Long-term average deep-percolation rates of water from precipitation on the U.S. Department of Energy Hanford Site in semiarid south-central Washington, as estimated by a chloride mass-balance method, range from 0.008 to 0.30 mm/yr (millimeters per year) at nine locations covered by a variety of fine-grain soils and vegetated with sagebrush and other deep-rooted plants plus sparse shallow-rooted grasses. Deep-percolation rates estimated using a chlorine-36 bomb-pulse method at three of the nine locations range from 2.1 to 3.4 mm/yr. Because the mass-balance method may underestimate percolation rates and the bomb-pulse method probably overestimates percolation rates, estimates by the two methods probably bracket actual rates. These estimates, as well as estimates by previous investigators who used different methods, are a small fraction of mean annual precipitation, which ranges from about 160 to 210 mm/yr at the different test locations. Estimates by the mass-balance method at four locations in an area that is vegetated only with sparse shallow-rooted grasses range from 0.39 to 2.0 mm/yr. Chlorine-36 data at one location in this area were sufficient only to determine that the upper limit of deep percolation is more than 5.1 mm/yr. Although estimates for locations in this area are larger than the estimates for locations with deep-rooted plants, they are at the lower end of the range of estimates for this area made by previous investigators.

  7. Turbulent mixing and fluid transport within Florida Bay seagrass meadows

    NASA Astrophysics Data System (ADS)

    Hansen, Jennifer C. R.; Reidenbach, Matthew A.

    2017-10-01

    Seagrasses serve an important function in the ecology of Florida Bay, providing critical nursery habitat and a food source for a variety of organisms. They also create significant benthic structure that induces drag, altering local hydrodynamics that can influence mixing and nutrient dynamics. Thalassia testudinum seagrass meadows were investigated to determine how shoot density and morphometrics alter local wave conditions, the generation of turbulence, and fluid exchange above and within the canopy. Sparsely vegetated and densely vegetated meadows were monitored, with shoot densities of 259 ± 26 and 484 ± 78 shoots m-2, respectively. The temporal and spatial structure of velocity and turbulence were measured using acoustic Doppler velocimeters and an in situ particle image velocimetry (PIV) system positioned both above and within the seagrass canopy. The retention of fluid within the canopy was determined by examining e-folding times calculated from the concentration curves of dye plumes released within the seagrass canopy. Results show that a shear layer with an inflection point develops at the top of the seagrass canopy, which generates instabilities that impart turbulence into the seagrass meadow. Compared to the overlying water column, turbulence was enhanced within the sparse canopy due to flow interaction with the seagrass blades, but reduced within the dense canopy. Wave generated oscillatory motion penetrated deeper into the canopy than unidirectional currents, enhancing fluid exchange. Both shoot density and the relative magnitude of wave- versus current-driven flow conditions were found to be important controls on turbulent exchange of water masses across the canopy-water interface.

  8. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  9. Estimation of water flux in urban area using eddy covariance measurements in Riverside, Southern California

    USDA-ARS?s Scientific Manuscript database

    Micrometeorological methods can direct measure the sensible and latent heat flux in specific sites and provide robust estimates of the evaporative fraction (EF), which is the fraction of available surface energy contained in latent heat. Across a vegetation coverage gradient in urban area, an empir...

  10. Spatial fuel data products of the LANDFIRE Project

    Treesearch

    Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...

  11. Classification of a wetland area along the upper Mississippi River with aerial videography

    USGS Publications Warehouse

    Jennings, C.A.; Vohs, P.A.; Dewey, M.R.

    1992-01-01

    We evaluated the use of aerial videography for classifying wetland habitats along the upper Mississippi River and found the prompt availability of habitat feature maps to be the major advantage of the video imagery technique. We successfully produced feature maps from digitized video images that generally agreed with the known distribution and areal coverages of the major habitat types independently identified and quantified with photointerpretation techniques. However, video images were not sufficiently detailed to allow us to consistently discriminate among the classes of aquatic macrophytes present or to quantify their areal coverage. Our inability to consistently distinguish among emergent, floating, and submergent macrophytes from the feature maps may have been related to the structural complexity of the site, to our limited vegetation sampling, and to limitations in video imagery. We expect that careful site selection (i.e., the desired level of resolution is available from video imagery) and additional vegetation samples (e.g., along a transect) will allow improved assignment of spectral values to specific plant types and enhance plant classification from feature maps produced from video imagery.

  12. Greenhouse gas emissions from vegetation fires in Southern Africa.

    PubMed

    Scholes, R J

    1995-01-01

    Methane (CH4), carbon monoxide (CO), nitrogen oxides (NOx), volatile organic carbon, and aerosols emitted as a result of the deliberate or accidental burning of natural vegetation constitute a large component of the greenhouse gas emissions of many African countries, but the data needed for calculating these emissions by the IPCC methodology is sparse and subject to estimation errors. An improved procedure for estimating emissions from fires in southern Africa has been developed. The proposed procedure involves reclassifying existing vegetation maps into one of eleven broad, functional vegetation classes. Fuel loads are calculated within each 0.5 × 0.5° cell based on empirical relationships to climate data for each class. The fractional area of each class that burns is estimated by using daily low-resolution satellite fire detection, which is calibrated against a subsample of pre- and post-fire high-resolution satellite images. The emission factors that relate the quantity of gas released to the mass of fuel burned are based on recent field campaigns in Africa and are related to combustion efficiency, which is in turn related to the fuel mix. The emissions are summed over the 1989 fire season for Africa south of the equator. The estimated emissions from vegetation burning in the subcontinent are 0.5 Tg CH4, 14.9 Tg CO, 1.05 Tg NOx, and 1.08 Tg of particles smaller than 2.5µm. The 324 Tg CO2 emitted is expected to be reabsorbed in subsequent years. These estimates are smaller than previous estimates.

  13. Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, U.S.A.) kettle ponds

    USGS Publications Warehouse

    Roman, C.T.; Barrett, N.E.; Portnoy, J.W.

    2001-01-01

    The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.

  14. Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, USA) kettle ponds

    USGS Publications Warehouse

    Roman, C.T.; Barrett, N.E.; Portnoy, J.W.

    2001-01-01

    The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.

  15. Foredune morphodynamics and seasonal sediment budget patterns at Humboldt Bay, Arcata, California.

    NASA Astrophysics Data System (ADS)

    Rader, A. M.; Walker, I. J.; Pickart, A.; Bauer, B. O.; Hesp, P.

    2017-12-01

    Coastal dune erosion, rebuilding, and ecosystem restoration are examined along a dune barrier system at Humboldt Bay, Arcata California. The long-term evolution of the system indicates progradation in the north (up to +0.51 m a-1) with densely vegetated, tall and topographically simple foredunes and landward retreat in the south (up to -0.49 m a-1) with sparsely vegetated, hummocky foredunes and blowouts. Spatial-temporal patterns of change from seasonal bare-Earth models during the early stages of a dynamic restoration project indicate that, in the year following initial removal of invasive vegetation (May 2015 - September 2016), the foredune system experienced a net positive sediment budget (+0.54 m3 m-2) while net erosion occurred on the beach (-0.38 m3 m-2). Five years of cross-shore profiles show a seaward migration of the foredune crest (+0.15 m mo-1) during the same time period. However, net erosion of the beach occurred during winter (November 2015 - April 2016), due to high-water and wave run-up during intense storms. Summer monitoring reveals site-wide accretion due to beach rebuilding and increased aeolian activity. As such, seasonal sediment budgets may be controlled primarily by the amount of beach sediment available for aeolian transport and secondarily by localized vegetation zonation on the upper beach and foredune. Further monitoring of the dune barrier system at Humboldt Bay throughout the remaining dynamic restoration process will provide further insight into the role of vegetation zonation and foredune morphodynamics.

  16. Land Use on the Island of Oahu, Hawaii, 1998

    USGS Publications Warehouse

    Klasner, Frederick L.; Mikami, Clinton D.

    2003-01-01

    A hierarchical land-use classification system for Hawaii was developed, and land use on the island of Oahu was mapped. The land-use classification system emphasizes agriculture, developed (urban), and barren/mining uses. Areas with other land uses (conservation, forest reserve, natural areas, wetlands, water, and barren [sand, rock, or soil] regions, and unmanaged vegetation [native or exotic]) were defined as 'other.' Multiple sources of digital orthophotographs from 1998 and 1999 were used as source data. The 1998 island of Oahu land-use data are provided in digital format at http://water.usgs.gov/lookup/getspatial?oahu_lu98 for use in a Geographic Information System (GIS), at 1:24,000-scale with minimum mapping units of 2 hectares (4.9 acres) area and 30-meters (98.4 feet) feature width. In 1998, a total of 59,195 acres (15.4 percent) of the island of Oahu were classified as agricultural land use; 98,663 acres (25.7 percent) were classified as developed; 1,522 acres (0.4 percent) were classified as barren/mining; and 224,331 acres (58.5 percent) were classified as other. An accuracy assessment identified 98 percent accuracy for all land-use classes. In windward (moister) areas, dense vegetation and canopy cover along with rapid recolonization by vegetation potentially obscured land use from photo-interpretation. While in leeward (drier) areas, sparse vegetative cover and slower vegetation recolonization may have resulted in more frequent recognition of apparent land-use patterns.

  17. Establishment and performance of an experimental green roof under extreme climatic conditions.

    PubMed

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating that higher evapotranspiration rates compensated for the higher net radiation at the green roof. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Determination of microwave vegetation optical depth and water content in the source region of the Yellow River

    NASA Astrophysics Data System (ADS)

    Liu, R.; Wen, J.; Wang, X.

    2017-12-01

    In this study, we use dual polarization brightness temperature observational data at the K frequency band collected by the Micro Wave Radiation Imager (MWRI) on board the Fengyun-3B satellite (FY-3B) to improve the τ-ω model by considering the contribution of water bodies in the pixels to radiation in the wetland area of the Yellow River source region. We define a dual polarization slope parameter and express the surface emissivity in the τ-ω model as the sum of the soil and water body emissivity to retrieve the vegetation optical depth (VOD); however, in regions without water body coverage, we still use the τ-ω model to solve for the VOD. By using the field observation data on the vegetation water content (VWC) in the source region of the Yellow River during the summer of 2012, we establish the regression relationship between the VOD and VWC and retrieve the spatial distribution of the VWC. The results indicate that in the entire source region of the Yellow River in 2012, the VOD was in the range of 0.20-1.20 and the VWC was in the range of 0.20 to 1.40, thereby exhibiting a trend of low values in the west and high values in the east. The area with the largest regional variation is along the Yellow River. We compare the results from remote-sensing estimated and ground-measured vegetation water content, and the root-mean-square error is 0.12. The analysis results indicated that by considering the coverage of seasonal wetlands in the source region of the Yellow River, the microwave remote sensing data collected by the FY-3B MWRI can be used to retrieve the vegetation water content in the source region of the Yellow River.

  19. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion.

    PubMed

    Goulden, Michael L; Bales, Roger C

    2014-09-30

    Climate change has the potential to reduce surface-water supply by expanding the activity, density, or coverage of upland vegetation, although the likelihood and severity of this effect are poorly known. We quantified the extent to which vegetation and evapotranspiration (ET) are presently cold-limited in California's upper Kings River basin and used a space-for-time substitution to calculate the sensitivity of riverflow to vegetation expansion. We found that runoff is highly sensitive to vegetation migration; warming projected for 2100 could increase average basin-wide ET by 28% and decrease riverflow by 26%. Kings River basin ET currently peaks at midelevation and declines at higher elevation, creating a cold-limited zone above 2,400 m that is disproportionately important for runoff generation. Climate projections for 2085-2100 indicate as much as 4.1 °C warming in California's Sierra Nevada, which would expand high rates of ET 700-m upslope if vegetation maintains its current correlation with temperature. Moreover, we observed that the relationship between basin-wide ET and temperature is similar across the entire western slope of California's Sierra Nevada, implying that the risk of increasing montane ET with warming is widespread.

  20. Long-term changes in abundance and diversity of macrophyte and waterfowl populations in an estuary with exotic macrophytes and improving water quality

    USGS Publications Warehouse

    Rybicki, N.B.; Landwehr, J.M.

    2007-01-01

    We assessed species-specific coverage (km2) of a submerged aquatic vegetation (SAV) community in the fresh and upper oligohaline Potomac Estuary from 1985 to 2001 using a method combining field observations of species-proportional coverage data with congruent remotely sensed coverage and density (percent canopy cover) data. Biomass (estimated by density-weighted coverage) of individual species was calculated. Under improving water quality conditions, exotic SAV species did not displace native SAV; rather, the percent of natives increased over time. While coverage-based diversity did fluctuate and increased, richness-based community turnover rates were not significantly different from zero. SAV diversity was negatively related to nitrogen concentration. Differences in functional traits, such as reproductive potential, between the dominant native and exotic species may explain some interannual patterns in SAV. Biomass of native, as well as exotic, SAV species varied with factors affecting water column light attenuation. We also show a positive response by a higher trophic level, waterfowl, to SAV communities dominated by exotic SAV from 1959 to 2001. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  1. Effect of vegetation on the energy balance and evapotranspiration in tallgrass prairie: a paired study with eddy covariance systems

    NASA Astrophysics Data System (ADS)

    Sun, X.; Zou, C.; Wilcox, B. P.; Stebler, E.

    2017-12-01

    Whole-year measurement with eddy covariance system was carried out over two adjoining plots with contrasting vegetation coverage in tallgrass prairie, one was treated with herbicide and mowing while the other one kept as undisturbed control. The magnitude and phase difference between soil heat storage and ground heat flux were explicitly examined for its relative weights and energy balance. Surface turbulent flux (sensible heat and latent heat) accounted for about 85% of available energy at both sites, implying that vegetation coverage didn't significantly influence the closure scenario of energy imbalance. The seasonal and daily pattern of energy partitioning were dramatically different between the contrasting sites during growing season. The treated site received slightly lower net radiation due to high albedo, had higher sensible heat, and reduced latent heat due to reduction on transpiration. Annual evapotranspiration (ET) in treated site was only accounts for about 73% of annual ET in control. Meanwhile, lower surface conductance and decoupling factor showed that vegetation removal would increase the sensibility of ET to vapor pressure deficit and soil drought. ET dynamics is controlled by leaf area and net radiation when soil moisture is high, while soil drought caused stomata closure and subdued ET during drought. Stomata closure and transpiration reduction caused decline in ET, surface conductance, and decoupling factor. Soil moisture storage served as an important reservoir to meet peak ET demand during growing season. In summary, ET was the dominant component of water balance in tallgrass prairie, and any land management alterring the albedo, soil mositure storage, or canopy phenology (e.g., NDVI) could significantly affect energy and water budgets in .

  2. Vegetation dynamics under fire exclusion and logging in a Rocky Mountain watershed, 1856-1996

    USGS Publications Warehouse

    Gallant, Alisa L.; Hansen, A.J.; Councilman, J.S.; Monte, D.K.; Betz, D.W.

    2003-01-01

    How have changes in land management practices affected vegetation patterns in the greater Yellowstone ecosystem? This question led us to develop a deterministic, successional, vegetation model to “turn back the clock” on a study area and assess how patterns in vegetation cover type and structure have changed through different periods of management. Our modeling spanned the closing decades of use by Native Americans, subsequent Euro-American settlement, and associated indirect methods of fire suppression, and more recent practices of fire exclusion and timber harvest. Model results were striking, indicating that the primary forest dynamic in the study area is not fragmentation of conifer forest by logging, but the transition from a fire-driven mosaic of grassland, shrubland, broadleaf forest, and mixed forest communities to a conifer-dominated landscape. Projections for conifer-dominated stands showed an increase in areal coverage from 15% of the study area in the mid-1800s to ∼50% by the mid-1990s. During the same period, projections for aspen-dominated stands showed a decline in coverage from 37% to 8%. Substantial acreage previously occupied by a variety of age classes has given way to extensive tracts of mature forest. Only 4% of the study area is currently covered by young stands, all of which are coniferous. While logging has replaced wildfire as a mechanism for cycling younger stands into the landscape, the locations, species constituents, patch sizes, and ecosystem dynamics associated with logging do not mimic those associated with fire. It is also apparent that the nature of these differences varies among biophysical settings, and that land managers might consider a biophysical class strategy for tailoring management goals and restoration efforts.

  3. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    NASA Astrophysics Data System (ADS)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation Index (NDVI) average values in the adjacent uplands also decreased over thirty years and were correlated with the previous year's annual precipitation. Hence an increase in ET in the uplands did not appear to be responsible for the decrease in river flows in this study, leaving increased regional groundwater pumping as a feasible alternative explanation for decreased flows and deterioration of the riparian forest. The second research objective was to develop a new method of classification using very high-resolution aerial photo to map riparian vegetation at the species level in the Colorado River Ecosystem, Grand Canyon area, Arizona. Ground surveys have showed an obvious trend in which non-native saltcedar (Tamarix spp.) has replaced native vegetation over time. Our goal was to develop a quantitative mapping procedure to detect changes in vegetation as the ecosystem continues to respond to hydrological and climate changes. Vegetation mapping for the Colorado River Ecosystem needed an updated database map of the area covered by riparian vegetation and an indicator of species composition in the river corridor. The objective of this research was to generate a new riparian vegetation map at species level using a supervised image classification technique for the purpose of patch and landscape change detection. A new classification approach using multispectral images allowed us to successfully identify and map riparian species coverage the over whole Colorado River Ecosystem, Grand Canyon area. The new map was an improvement over the initial 2002 map since it reduced fragmentation from mixed riparian vegetation areas. The most dominant tree species in the study areas is saltcedar (Tamarix spp.). The overall accuracy is 93.48% and the kappa coefficient is 0.88. The reference initial inventory map was created using 2002 images to compare and detect changes through 2009. The third objective of my research focused on using multiplatform of remote sensing and ground calibration to estimate the effects of vegetation, land use patterns and water cycles. Climate change, hydrological and human uses are also leading to riparian, upland, grassland and crop vegetation changes at a variety of temporal and spatial scales, particularly in the arid and semi arid ecosystems, which are more sensitive to changes in water availability than humid ecosystems. The objectives of these studies from the last three articles were to evaluate the effect of water balance on vegetation indices in different plant communities based on relevant spatial and temporal scales. The new methodology of estimating water requirements using remote sensing data and ground calibration with flux tower data has been successfully tested at a variety sites, a sparse desert shrub environment as well as mixed riparian and cropland systems and upland vegetation in the arid and semi-arid regions. The main finding form these studies is that vegetation-index methods have to be calibrated with ground data for each new ecosystem but once calibrated they can accurately scale ET over wide areas and long time spans.

  4. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China's Loess Plateau.

    PubMed

    Li, Shuai; Liang, Wei; Fu, Bojie; Lü, Yihe; Fu, Shuyi; Wang, Shuai; Su, Huimin

    2016-11-01

    Recently, relationship between vegetation activity and temperature variability has received much attention in China. However, vegetation-induced changes in water resources through changing land surface energy balance (e.g. albedo), has not been well documented. This study investigates the underlying causes of vegetation change and subsequent impacts on runoff for the Northern Shaanxi Loess Plateau. Results show that satellite-derived vegetation index has experienced a significantly increasing trend during the past three decades, especially during 2000-2012. Large-scale ecological restorations, i.e., the Natural Forest Conservation project and the Grain for Green project, are found to be the primary driving factors for vegetation increase. The increased vegetation coverage induces decrease in surface albedo and results in an increase in temperature. This positive effect can be counteracted by higher evapotranspiration and the net effect is a decrease in daytime land surface temperature. A higher evapotranspiration rate from restored vegetation is the primary reason for the reduced runoff coefficient. Other factors including less heavy precipitation, increased water consumption from town, industry and agriculture also appear to be the important causes for the reduction of runoff. These two ecological restoration projects produce both positive and negative effects on the overall ecosystem services. Thus, long-term continuous monitoring is needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Natural resource inventories and management applications in the Great Basin. [Nevada vegetation and wildlands

    NASA Technical Reports Server (NTRS)

    Tueller, P. T.; Lorain, G.; Halvorson, R. M.

    1974-01-01

    ERTS-1 resolution capabilities and repetitive coverage have allowed the acquisition of several statewide inventories of natural resource features not previously completed or that could not be completed in any other way. Familiarity with landform, tone, pattern and other converging factors, along with multidate imagery, has been required. Nevada's vegetation has been mapped from ERTS-1. Dynamic characteristics of the landscape have been studied. Sequential ERTS-1 imagery has proved its usefulness for mapping vegetation, following vegetation phenology changes, monitoring changes in lakes and reservoirs (including water quality), determining changes in surface mining use, making fire fuel estimates and determining potential hazard, mapping the distribution of rain and snow events, making range readiness determinations, monitoring marshland management practices and other uses. Feasibility has been determined, but details of incorporating the data in management systems awaits further research and development. The need is to accurately define the steps necessary to extract required or usable information from ERTS imagery and fit it into on-going management programs.

  6. Detection of prescribed burn on National Forest

    NASA Technical Reports Server (NTRS)

    Erb, R. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The effects of a prescribed burn in the Sam Houston National Forest have been detected from ERTS-1 coverage of November 27, 1972. The burn was first identified on aircraft underflight photography of November 7, 1972. On color infrared aircraft photography it appeared as a green patch, indicating stressed vegetation, in an area of red coloration, indicating vigorous vegetation. It was later detected on the color composite of ERTS-1 bands 4, 5, and 7, as a black area in otherwise red vegetation. The fire, covering approximately 40 hectares (100 acres), was intentionally started to clear out heavy underbrush so that trees could be marked prior to harvesting. The significance of this observation is that a light burn of this type and its subsequent effects on vegetation could be detected on ERTS-1 imagery. Continued observation of this type of phenomenon under various conditions may provide a means of identifying such an occurrence without a prior knowledge of the event.

  7. An approach to predict water quality in data-sparse catchments using hydrological catchment similarity

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Glendell, Miriam; Stutter, Marc I.; Helliwell, Rachel C.

    2017-04-01

    An understanding of catchment response to climate and land use change at a regional scale is necessary for the assessment of mitigation and adaptation options addressing diffuse nutrient pollution. It is well documented that the physicochemical properties of a river ecosystem respond to change in a non-linear fashion. This is particularly important when threshold water concentrations, relevant to national and EU legislation, are exceeded. Large scale (regional) model assessments required for regulatory purposes must represent the key processes and mechanisms that are more readily understood in catchments with water quantity and water quality data monitored at high spatial and temporal resolution. While daily discharge data are available for most catchments in Scotland, nitrate and phosphorus are mostly available on a monthly basis only, as typified by regulatory monitoring. However, high resolution (hourly to daily) water quantity and water quality data exist for a limited number of research catchments. To successfully implement adaptation measures across Scotland, an upscaling from data-rich to data-sparse catchments is required. In addition, the widespread availability of spatial datasets affecting hydrological and biogeochemical responses (e.g. soils, topography/geomorphology, land use, vegetation etc.) provide an opportunity to transfer predictions between data-rich and data-sparse areas by linking processes and responses to catchment attributes. Here, we develop a framework of catchment typologies as a prerequisite for transferring information from data-rich to data-sparse catchments by focusing on how hydrological catchment similarity can be used as an indicator of grouped behaviours in water quality response. As indicators of hydrological catchment similarity we use flow indices derived from observed discharge data across Scotland as well as hydrological model parameters. For the latter, we calibrated the lumped rainfall-runoff model TUWModel using multiple objective functions. The relationships between indicators of hydrological catchment similarity, physical catchment characteristics and nitrate and phosphorus concentrations in rivers are then investigated using multivariate statistics. This understanding of the relationship between catchment characteristics, hydrological processes and water quality will allow us to implement more efficient regulatory water quality monitoring strategies, to improve existing water quality models and to model mitigation and adaptation scenarios to global change in data-sparse catchments.

  8. Estimation of the Anthropogenic Dust Emission at Global Scale from 2007 to 2010

    NASA Astrophysics Data System (ADS)

    Chen, S.; Huang, J.; Jiang, N.

    2017-12-01

    Dust emission refers to the spatial displacement of dust particles by the wind forcing, which is a key component of the dust circulation. It plays an important role in energy, hydrological and carbon cycle in the Earth system. However, most of the dust emission schemes only considered the natural dust, neglecting the anthropogenic dust induced by human activities, which led to the large uncertainties in the quantitative estimations of dust emission in the numerical modeling. In order to fully consider the mechanism of anthropogenic dust emission, the "indrect" and "direct" anthropogenic dust emission schemes were constructed and developed in the study. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) retrievals were used to evaluate the simulations at global scales. The results showed that the schemes reasonably reproduced the spatio-temporal distributions of anthropogenic dust from 2007 to 2010. The high centers of anthropogenic dust emission flux appeared in India, east of China, North America and Africa with a value of 12 μg m-2 s-1. For the indirect anthropogenic dust emission, it has an obvious seasonal variations, with maximum in spring and winter, while minimum in summer. Compared with the cropland, pastureland (including pastures and artificially sparse grasslands) has the higher potential anthropogenic dust emission, with emission of approximately 4.7 μg m-2 s-1, accounting for 39% of the total anthropogenic dust emission. Moreover, the direct anthropogenic dust emission is larger than the indirect dust emission at gobal scale. Especially when the increasing vegetation coverage in summer, the contribution of the direct anthropogenic dust emission flux can reach up to about 75.2%. It demonstrates that the environmental problems caused by urban anthropogenic dust can not be ignored.

  9. Disentangling natural and anthropogenic influences on Patagonian pond water quality.

    PubMed

    Epele, Luis B; Manzo, Luz M; Grech, Marta G; Macchi, Pablo; Claverie, Alfredo Ñ; Lagomarsino, Leonardo; Miserendino, M Laura

    2018-02-01

    The water quality of wetlands is governed not only by natural variability in hydrology and other factors, but also by anthropogenic activities. Patagonia is a vast sparsely-populated in which ponds are a key component of rural and urban landscapes because they provide several ecosystem services such as habitat for wildlife and watering for livestock. Integrating field-based and geospatial data of 109 ponds sampled across the region, we identified spatial trends and assessed the effects of anthropogenic and natural factors in pond water quality. The studied ponds were generally shallow, well oxygenated, with maximum nutrient values reported in sites used for livestock breeding. TN:TP ratio values were lower than 14 in >90% of the ponds, indicating nitrogen limitation. Water conductivity decreased from de east to the west, meanwhile pH and dissolved oxygen varied associated with the latitude. To assess Patagonian ponds water status we recommend the measure of total suspended solids and total nitrogen in the water, and evaluate the mallín (wetland vegetation) coverage in a 100m radius from the pond, since those features were significantly influenced by livestock land use. To evaluate the relative importance of natural variability and anthropogenic influences as driving factors of water quality we performed three generalized linear models (GLM) that encompassed the hydrology, hydroperiod and biome (to represent natural influences), and land use (to represent anthropogenic influences) as fixed effects. Our results revealed that at the Patagonian scale, ponds water quality would be strongly dependent on natural gradients. We synthetized spatial patterns of Patagonian pond water quality, and disentangled natural and anthropic factors finding that the dominant environmental influence is rainfall gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Yepes Quintero, A. P.; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.

    2012-07-01

    High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40%) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  11. High-resolution Mapping of Forest Carbon Stocks in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.

    2012-03-01

    High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or Light Detection and Ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (>40 %) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon mapping samples had 14.6 % uncertainty at 1 ha resolution, and regional maps based on stratification and regression approaches had 25.6 % and 29.6 % uncertainty, respectively, in any given hectare. High-resolution approaches with reported local-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision-makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  12. Increased tree establishment in Lithuanian peat bogs--insights from field and remotely sensed approaches.

    PubMed

    Edvardsson, Johannes; Šimanauskienė, Rasa; Taminskas, Julius; Baužienė, Ieva; Stoffel, Markus

    2015-02-01

    Over the past century an ongoing establishment of Scots pine (Pinus sylvestris L.), sometimes at accelerating rates, is noted at three studied Lithuanian peat bogs, namely Kerėplis, Rėkyva and Aukštumala, all representing different degrees of tree coverage and geographic settings. Present establishment rates seem to depend on tree density on the bog surface and are most significant at sparsely covered sites where about three-fourth of the trees have established since the mid-1990s, whereas the initial establishment in general was during the early to mid-19th century. Three methods were used to detect, compare and describe tree establishment: (1) tree counts in small plots, (2) dendrochronological dating of bog pine trees, and (3) interpretation of aerial photographs and historical maps of the study areas. In combination, the different approaches provide complimentary information but also weigh up each other's drawbacks. Tree counts in plots provided a reasonable overview of age class distributions and enabled capturing of the most recently established trees with ages less than 50 years. The dendrochronological analysis yielded accurate tree ages and a good temporal resolution of long-term changes. Tree establishment and spread interpreted from aerial photographs and historical maps provided a good overview of tree spread and total affected area. It also helped to verify the results obtained with the other methods and an upscaling of findings to the entire peat bogs. The ongoing spread of trees in predominantly undisturbed peat bogs is related to warmer and/or drier climatic conditions, and to a minor degree to land-use changes. Our results therefore provide valuable insights into vegetation changes in peat bogs, also with respect to bog response to ongoing and future climatic changes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Applying time series Landsat data for vegetation change analysis in the Florida Everglades Water Conservation Area 2A during 1996-2016

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun; Smith, Molly; Lv, Jie; Fang, Chaoyang

    2017-05-01

    Mapping plant communities and documenting their changes is critical to the on-going Florida Everglades restoration project. In this study, a framework was designed to map dominant vegetation communities and inventory their changes in the Florida Everglades Water Conservation Area 2A (WCA-2A) using time series Landsat images spanning 1996-2016. The object-based change analysis technique was combined in the framework. A hybrid pixel/object-based change detection approach was developed to effectively collect training samples for historical images with sparse reference data. An object-based quantification approach was also developed to assess the expansion/reduction of a specific class such as cattail (an invasive species in the Everglades) from the object-based classifications of two dates of imagery. The study confirmed the results in the literature that cattail was largely expanded during 1996-2007. It also revealed that cattail expansion was constrained after 2007. Application of time series Landsat data is valuable to document vegetation changes for the WCA-2A impoundment. The digital techniques developed will benefit global wetland mapping and change analysis in general, and the Florida Everglades WCA-2A in particular.

  14. Drought in Southeastern United States

    NASA Technical Reports Server (NTRS)

    2007-01-01

    May 2007 was a record-setting month in Georgia. Typically a dry month in this southern state, May 2007 was exceptionally so, with many locations setting record-low rainfall records and some receiving no rain at all, said state climatologist David Emory Stooksbury on GeorgiaDrought.org. The lack of rain slowed plant growth, as shown in this vegetation index image. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite collected the data used to make this image between May 9 and May 24, 2007. The image shows vegetation conditions compared to average conditions observed from 2000 through 2006. Areas in which plants are more sparse or are growing more slowly than average are brown, while better-than-average growth is green. Georgia and its neighbors (South Carolina, Alabama, and Florida) are all brown, an indication that the lack of rainfall is suppressing plant growth. The gray area in southern Georgia and northern Florida shows where MODIS could not collect valid vegetation measurements, either because of clouds or smoke. In this case, the area corresponds with land that burned during this period and was probably masked by smoke. NASA image created by Jesse Allen, Earth Observatory, using data provided by Inbal Reshef, Global Agricultural Monitoring Project.

  15. Interaction of plant and earthworm during primary succession in heaps after coal

    NASA Astrophysics Data System (ADS)

    Roubíčková, Alena; Frouz, Jan

    2015-04-01

    These results of field manipulation experiment show that earthworms can remarkably influence vegetation succession on spoil heaps, namely promoting grasses and late succession species. This is in agreement with concurrent appearance of earthworms and some plant species typical for late-succession communities of meadows and forests aren't purely coincidental. On the other hand, facilitation of soil conditions by plant communities during succession is an important factor in earthworm distribution on the spoil heaps; earthworms showed a low survival on sites with sparse vegetation cover and thin litter layer, which means that their occurrence in certain stages of succession isn't determined only by migration abilities or passive dispersal. More field experiments are needed to test if earthworms could be used in directed succession management practices to speed up the natural rate of succession. Preliminary results from an experiment with introduction earthworms to a 20- year old, earthworm-free site indicate that colonization of this site from a single deposition of about 100 specimen of epigeic and 100 endogeic earthworms is slow and not very efficient. Results show that interaction between earthworm and vegetation are important in ecosystem development in post mining sites.

  16. A Case Study on a Combination NDVI Forecasting Model Based on the Entropy Weight Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shengzhi; Ming, Bo; Huang, Qiang

    It is critically meaningful to accurately predict NDVI (Normalized Difference Vegetation Index), which helps guide regional ecological remediation and environmental managements. In this study, a combination forecasting model (CFM) was proposed to improve the performance of NDVI predictions in the Yellow River Basin (YRB) based on three individual forecasting models, i.e., the Multiple Linear Regression (MLR), Artificial Neural Network (ANN), and Support Vector Machine (SVM) models. The entropy weight method was employed to determine the weight coefficient for each individual model depending on its predictive performance. Results showed that: (1) ANN exhibits the highest fitting capability among the four orecastingmore » models in the calibration period, whilst its generalization ability becomes weak in the validation period; MLR has a poor performance in both calibration and validation periods; the predicted results of CFM in the calibration period have the highest stability; (2) CFM generally outperforms all individual models in the validation period, and can improve the reliability and stability of predicted results through combining the strengths while reducing the weaknesses of individual models; (3) the performances of all forecasting models are better in dense vegetation areas than in sparse vegetation areas.« less

  17. Vegetative impacts upon bedload transport capacity and channel stability for differing alluvial planforms in the Yellow River source zone

    NASA Astrophysics Data System (ADS)

    Li, Zhi Wei; Yu, Guo An; Brierley, Gary; Wang, Zhao Yin

    2016-07-01

    The influence of vegetation upon bedload transport and channel morphodynamics is examined along a channel stability gradient ranging from meandering to anabranching to anabranching-braided to fully braided planform conditions along trunk and tributary reaches of the Upper Yellow River in western China. Although the regional geology and climate are relatively consistent across the study area, there is a distinct gradient in the presence and abundance of riparian vegetation for these reaches atop the Qinghai-Tibet Plateau (elevations in the study area range from 2800 to 3400 m a.s.l.). To date, the influence of vegetative impacts upon channel planform and bedload transport capacity of alluvial reaches of the Upper Yellow River remains unclear because of a lack of hydrological and field data. In this region, the types and pattern of riparian vegetation vary with planform type as follows: trees exert the strongest influence in the anabranching reach, the meandering reach flows through meadow vegetation, the anabranching-braided reach has a grass, herb, and sparse shrub cover, and the braided reach has no riparian vegetation. A non-linear relation between vegetative cover on the valley floor and bedload transport capacity is evident, wherein bedload transport capacity is the highest for the anabranching reach, roughly followed by the anabranching-braided, braided, and meandering reaches. The relationship between the bedload transport capacity of a reach and sediment supply from upstream exerts a significant influence upon channel stability. Bedload transport capacity during the flood season (June-September) in the braided reach is much less than the rate of sediment supply, inducing bed aggradation and dynamic channel adjustments. Rates of channel adjustment are less pronounced for the anabranching-braided and anabranching reaches, while the meandering reach is relatively stable (i.e., this is a passive meandering reach).

  18. Designing and Testing Broadly-Protective Filoviral Vaccines Optimized for Cytotoxic T-Lymphocyte Epitope Coverage

    PubMed Central

    Fenimore, Paul W.; Foley, Brian T.; Bakken, Russell R.; Thurmond, James R.; Yusim, Karina; Yoon, Hyejin; Parker, Michael; Hart, Mary Kate; Dye, John M.; Korber, Bette; Kuiken, Carla

    2012-01-01

    We report the rational design and in vivo testing of mosaic proteins for a polyvalent pan-filoviral vaccine using a computational strategy designed for the Human Immunodeficiency Virus type 1 (HIV-1) but also appropriate for Hepatitis C virus (HCV) and potentially other diverse viruses. Mosaics are sets of artificial recombinant proteins that are based on natural proteins. The recombinants are computationally selected using a genetic algorithm to optimize the coverage of potential cytotoxic T lymphocyte (CTL) epitopes. Because evolutionary history differs markedly between HIV-1 and filoviruses, we devised an adapted computational technique that is effective for sparsely sampled taxa; our first significant result is that the mosaic technique is effective in creating high-quality mosaic filovirus proteins. The resulting coverage of potential epitopes across filovirus species is superior to coverage by any natural variants, including current vaccine strains with demonstrated cross-reactivity. The mosaic cocktails are also robust: mosaics substantially outperformed natural strains when computationally tested against poorly sampled species and more variable genes. Furthermore, in a computational comparison of cross-reactive potential a design constructed prior to the Bundibugyo outbreak performed nearly as well against all species as an updated design that included Bundibugyo. These points suggest that the mosaic designs would be more resilient than natural-variant vaccines against future Ebola outbreaks dominated by novel viral variants. We demonstrate in vivo immunogenicity and protection against a heterologous challenge in a mouse model. This design work delineates the likely requirements and limitations on broadly-protective filoviral CTL vaccines. PMID:23056184

  19. Uncertainty in regional temperatures inferred from sparse global observations: Application to a probabilistic classification of El Niño

    NASA Astrophysics Data System (ADS)

    Ilyas, Maryam; Brierley, Christopher M.; Guillas, Serge

    2017-09-01

    Instrumental records showing increases in surface temperature are some of the robust and iconic evidence of climate change. But how much should we trust regional temperature estimates interpolated from sparse observations? Here we quantify the uncertainty in the instrumental record by applying multiresolution lattice kriging, a recently developed interpolation technique that leverages the multiple spatial scales of temperature anomalies. The probability of monthly anomalies across the globe is represented by an ensemble, based on HadCRUT4 and accounting for observational and coverage uncertainties. To demonstrate the potential of these new data, we investigate the area-averaged temperature anomalies over the Niño 3.4 region in the equatorial Pacific. Having developed a definition of the El Niño-Southern Oscillation (ENSO) able to cope with probability distribution functions, we classify the ENSO state for each year since 1851. We find that for many years it is ambiguous as to whether there was an El Niño or not from the Niño 3.4 region alone. These years are mainly before 1920, but also just after World War II.

  20. Estimating Highway Volumes Using Vehicle Probe Data - Proof of Concept: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yi; Young, Stanley E; Sadabadi, Kaveh

    This paper examines the feasibility of using sampled commercial probe data in combination with validated continuous counter data to accurately estimate vehicle volume across the entire roadway network, for any hour during the year. Currently either real time or archived volume data for roadways at specific times are extremely sparse. Most volume data are average annual daily traffic (AADT) measures derived from the Highway Performance Monitoring System (HPMS). Although methods to factor the AADT to hourly averages for typical day of week exist, actual volume data is limited to a sparse collection of locations in which volumes are continuously recorded.more » This paper explores the use of commercial probe data to generate accurate volume measures that span the highway network providing ubiquitous coverage in space, and specific point-in-time measures for a specific date and time. The paper examines the need for the data, fundamental accuracy limitations based on a basic statistical model that take into account the sampling nature of probe data, and early results from a proof of concept exercise revealing the potential of probe type data calibrated with public continuous count data to meet end user expectations in terms of accuracy of volume estimates.« less

  1. Forest fire impact on bird habitat in a mixed oak-pine forest in Puebla, Mexico

    Treesearch

    Laura P. Ponce-Calderón Ponce-Calderón; Dante A. Rodríguez-Trejo; Beatriz C. Aguilar-Váldez; Elvia López-Pérez

    2013-01-01

    To assess the impact of different-severity wildfires on bird habitat, habitat quality was determined by analyzing the degree of richness association, abundance and diversity of bird species and vegetation structure (richness, abundance, diversity and coverage). These attributes were quantified with four sampling sites for birds and five for quadrant-centered points...

  2. Defensible space in the news: public discussion of a neglected topic

    Treesearch

    Jayne Fingerman Johnson; David N. Bengston; David P. Fan

    2006-01-01

    Managers have an opportunity during times of peak media coverage of wildfire to expand the discussion about defensible space from the current focus on vegetation clearing to include the full range of activities a homeowner can undertake to mitigate damage. Currently, news media discussion of wildfire is overwhelmingly dominated by firefighting, and discussion of...

  3. Species Composition (SC)

    Treesearch

    John F. Caratti

    2006-01-01

    The FIREMON Species Composition (SC) method is used to provide ocular estimates of cover and height measurements for plant species on a macroplot. The SC method provides plant species composition and coverage estimates to describe a stand or plant community and can be used to document changes over time. It is suited for a wide variety of vegetation types and is...

  4. A non-destructive method for quantifying small-diameter woody biomass in southern pine forests

    Treesearch

    D. Andrew Scott; Rick Stagg; Morris Smith

    2006-01-01

    Quantifying the impact of silvicultural treatments on woody understory vegetation largely has been accomplished by destructive sampling or through estimates of frequency and coverage. In studies where repeated measures of understory biomass across large areas are needed, destructive sampling and percent cover estimates are not satisfactory. For example, estimates of...

  5. Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk

    USDA-ARS?s Scientific Manuscript database

    Monitoring of agricultural used soils at frequent intervals is needed to get a sufficient understanding of soil erosion processes. This is crucial to support decision making and refining soil policies especially in the context of climate change. Along with rainfall erosivity, soil coverage by vegeta...

  6. An integrated genetic linkage map of watermelon and genetic diversity based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers

    USDA-ARS?s Scientific Manuscript database

    Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...

  7. Land and Land-use Change in the Climate Sensitive High Plains: An Automated Approach with Landsat

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F.; Williams, D. L. (Technical Monitor)

    2002-01-01

    The High Plains is an economically important and climatologically sensitive region of the United States and Canada. The High Plains contain 100,000 sq km of Holocene sand dunes and sand sheets that are currently stabilized by natural vegetation. Droughts and the larger threat of global warming are climate phenomena that could cause depletion of natural vegetation and make this region susceptible to sand dune reactivation. The original proposal was directed toward the use of Landsat TM data to establish the state and ongoing changes of the surface in the 1.2 million sq. km, semi-arid High Plains region of the central US, A key objective was to develop a model to predict the reactivation of the 100,000 sq. km of Holocene dunes found on the High Plains during an extended drought. At least one Landsat 5 image per year for 1985, 1988 and 1996 was obtained for 32 scenes on the High Plains to coincide with wet and dry years. Additional Landsat 7 data were acquired for 1999 and 2000 primarily for Colorado and Nebraska. As luck would have it, there was no severe drought during the study period 1985-2000. Attention was focused on developing methods for mapping dry vs. green vegetation on sparsely vegetated rangelands in sandy soils, since these were the areas most susceptible to surface reactivation during a drought.

  8. IPR 1.0: an efficient method for calculating solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, W.; Li, J.

    2014-07-01

    Climate change may alter the spatial distribution, composition, structure and functions of plant communities. Transitional zones between biomes, or ecotones, are particularly sensitive to climate change. Ecotones are usually heterogeneous with sparse trees. The dynamics of ecotones are mainly determined by the growth and competition of individual plants in the communities. Therefore it is necessary to calculate the solar radiation absorbed by individual plants in order to understand and predict their responses to climate change. In this study, we developed an individual plant radiation model, IPR (version 1.0), to calculate solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities. The model is developed based on geometrical optical relationships assuming that crowns of woody plants are rectangular boxes with uniform leaf area density. The model calculates the fractions of sunlit and shaded leaf classes and the solar radiation absorbed by each class, including direct radiation from the sun, diffuse radiation from the sky, and scattered radiation from the plant community. The solar radiation received on the ground is also calculated. We tested the model by comparing with the results of random distribution of plants. The tests show that the model results are very close to the averages of the random distributions. This model is efficient in computation, and can be included in vegetation models to simulate long-term transient responses of plant communities to climate change. The code and a user's manual are provided as Supplement of the paper.

  9. Analysis on the Change of Grassland Coverage in the Source Region of Three Rivers during 2000-2012

    NASA Astrophysics Data System (ADS)

    Luo, Chengfeng; Wang, Jiao; Liu, Meilin; Liu, Zhengjun

    2014-03-01

    The Source Region of Three Rivers (SRTR) has very important ecological functions which form an ecological security barrier for China's Qinghai-Tibet plateau. As the biggest nationally occuring nature reserve region in China, the ecological environment here is very fragile. In SRTR the grassland coverage is an effective detector to reflect the ecological environment condition, because it records the changing process of climatic and environmental sensitively. In recent years SRTR has been suffering pressures from both nature and social pressures. With MODIS data the study monitored the grassland coverage continuously in SRTR from 2000 to 2012. The density-model was adapted to estimate grassland coverage degree firstly. Then the degree of change and the change intensity, change type were used to judge the grassland coverage change trend comprehensively. For grassland coverage there was natural change annual or within the year, and the degree of change was used to judge if there was change or not. The grassland has another important characteristic, annual fluctuation, and it can be differed from sustained changes with change type. For grassland coverage, such continuous change, like improvement or degradation, and to what extent, has more guidance sense on specific production practice. On the base of change type and degree of change, change intensity was used to identify the change trend of the grassland coverage. The analysis results from our study show that steady state and fluctuation are two main change trends for the vegetation coverage in SRTR from 2000 to 2012. The conclusion of this paper can provide references in response to environment change research and in the regional ecological environmental protection project in SRTR.

  10. Differential response of vegetation in Hulun Lake region at the northern margin of Asian summer monsoon to extreme cold events of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, Shengrui; Xiao, Jule; Xu, Qinghai; Wen, Ruilin; Fan, Jiawei; Huang, Yun; Yamagata, Hideki

    2018-06-01

    The response of vegetation to extreme cold events during the last deglaciation is important for assessing the impact of possible extreme climatic events on terrestrial ecosystems under future global warming scenarios. Here, we present a detailed record of the development of regional vegetation in the northern margin of Asian summer monsoon during the last deglaciation (16,500-11,000 cal yr BP) based on a radiocarbon-dated high-resolution pollen record from Hulun Lake, northeast China. The results show that the regional vegetation changed from subalpine meadow-desert steppe to mixed coniferous and deciduous forest-typical steppe during the last deglaciation. However, its responses to the Heinrich event 1 (H1) and the Younger Dryas event (YD) were significantly different: during the H1 event, scattered sparse forest was present in the surrounding mountains, while within the lake catchment the vegetation cover was poor and was dominated by desert steppe. In contrast, during the YD event, deciduous forest developed and the proportion of coniferous forest increased in the mountains, the lake catchment was occupied by typical steppe. We suggest that changes in Northern Hemisphere summer insolation and land surface conditions (ice sheets and sea level) caused temperature and monsoonal precipitation variations that contributed to the contrasting vegetation response during the two cold events. We conclude that under future global warming scenarios, extreme climatic events may cause a deterioration of the ecological environment of the Hulun Lake region, resulting in increased coniferous forest and decreased total forest cover in the surrounding mountains, and a reduction in typical steppe in the lake catchment.

  11. Assessing the effectiveness of specially protected areas for conservation of Antarctica's botanical diversity.

    PubMed

    Hughes, Kevin A; Ireland, Louise C; Convey, Peter; Fleming, Andrew H

    2016-02-01

    Vegetation is sparsely distributed over Antarctica's ice-free ground, and distinct plant communities are present in each of the continent's 15 recently identified Antarctic Conservation Biogeographic Regions (ACBRs). With rapidly increasing human activity in Antarctica, terrestrial plant communities are at risk of damage or destruction by trampling, overland transport, and infrastructure construction and from the impacts of anthropogenically introduced species, as well as uncontrollable pressures such as fur seal (Arctocephalus gazella) activity and climate change. Under the Protocol on Environmental Protection to the Antarctic Treaty, the conservation of plant communities can be enacted and facilitated through the designation of Antarctic Specially Protected Areas (ASPAs). We examined the distribution within the 15 ACBRs of the 33 ASPAs whose explicit purpose includes protecting macroscopic terrestrial flora. We completed the first survey using normalized difference vegetation index (NDVI) satellite remote sensing to provide baseline data on the extent of vegetation cover in all ASPAs designated for plant protection in Antarctica. Large omissions in the protection of Antarctic botanical diversity were found. There was no protection of plant communities in 6 ACBRs, and in another 6, <0.4% of the ACBR area was included in an ASPA that protected vegetation. Protected vegetation cover within the 33 ASPAs totaled 16.1 km(2) for the entire Antarctic continent; over half was within a single protected area. Over 96% of the protected vegetation was contained in 2 ACBRs, which together contributed only 7.8% of the continent's ice-free ground. We conclude that Antarctic botanical diversity is clearly inadequately protected and call for systematic designation of ASPAs protecting plant communities by the Antarctic Treaty Consultative Parties, the members of the governing body of the continent. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  12. Evapotranspiration from selected fallowed agricultural fields on the Tule Lake National Wildlife Refuge, California, during May to October 2000

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    An investigation of evapotranspiration, vegetation quantity and composition, and depth to the water table below the land surface was made at three sites in two fallowed agricultural lots on the 15,800-hectare Tule Lake National Wildlife Refuge in northern California during the 2000 growing season. All three sites had been farmed during 1999, but were not irrigated since the 1999 growing season. Vegetation at the lot C1B and lot 6 stubble sites included weedy species and small grain plants. The lot 6 cover crop site supported a crop of cereal rye that had been planted during the previous winter. Percentage of coverage by live vegetation ranged from 0 to 43.2 percent at the lot C1B site, from approximately 0 to 63.2 percent at the lot 6 stubble site, and it was estimated to range from 0 to greater than 90 percent at the lot 6 cover crop site. Evapotranspiration was measured using the Bowen ratio energy balance technique and it was estimated using a model that was based on the Priestley-Taylor equation and a model that was based on reference evapotranspiration with grass as the reference crop. Total evapotranspiration during May to October varied little among the three evapotranspiration measurement sites, although the timing of evapotranspiration losses did vary among the sites. Total evapotranspiration from the lot C1B site was 426 millimeters, total evapotranspiration from the lot 6 stubble site was 444 millimeters, and total evapotranspiration from the lot 6 cover crop site was 435 millimeters. The months of May to July accounted for approximately 78 percent of the total evapotranspiration from the lot C1B site, approximately 63 percent of the evapotranspiration from the lot 6 stubble site, and approximately 86 percent of the total evapotranspiration from the lot 6 cover crop site. Estimated growing season precipitation accounted for 16 percent of the growing-season evapotranspiration at the lot C1B site and for 17 percent of the growing-season evapotranspiration at the lot 6 stubble and cover crop sites. The ratio of evapotranspiration rate to the reference evapotranspiration rate was strongly correlated with percentage of site coverage by vegetation at the lot C1B and lot 6 stubble sites (correlation coefficient = 0.95, sample size = 6), where percentage of site coverage was determined from quantitative vegetation surveys. It is concluded that evapotranspiration was mediated by the vegetation at all three sites, and that the differences in seasonal timing of evapotranspiration losses were caused by differences in timing of vegetation growth and development and senescence among the sites. Depth to the water table below the land surface at lot C1B ranged from 0.67 meters in early July to greater than 1.39 meters in late August. Depth to the water table at lot 6 ranged from 0.77 meter in late May to greater than 1.40 meters in late August.

  13. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    NASA Astrophysics Data System (ADS)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of such VLDs can occur today in some coasts where the wind is quite strong and the rain can support some shrubs.

  14. Evaluating Climate Causation of Conflict in Darfur Using Multi-temporal, Multi-resolution Satellite Image Datasets With Novel Analyses

    NASA Astrophysics Data System (ADS)

    Brown, I.; Wennbom, M.

    2013-12-01

    Climate change, population growth and changes in traditional lifestyles have led to instabilities in traditional demarcations between neighboring ethic and religious groups in the Sahel region. This has resulted in a number of conflicts as groups resort to arms to settle disputes. Such disputes often centre on or are justified by competition for resources. The conflict in Darfur has been controversially explained by resource scarcity resulting from climate change. Here we analyse established methods of using satellite imagery to assess vegetation health in Darfur. Multi-decadal time series of observations are available using low spatial resolution visible-near infrared imagery. Typically normalized difference vegetation index (NDVI) analyses are produced to describe changes in vegetation ';greenness' or ';health'. Such approaches have been widely used to evaluate the long term development of vegetation in relation to climate variations across a wide range of environments from the Arctic to the Sahel. These datasets typically measure peak NDVI observed over a given interval and may introduce bias. It is furthermore unclear how the spatial organization of sparse vegetation may affect low resolution NDVI products. We develop and assess alternative measures of vegetation including descriptors of the growing season, wetness and resource availability. Expanding the range of parameters used in the analysis reduces our dependence on peak NDVI. Furthermore, these descriptors provide a better characterization of the growing season than the single NDVI measure. Using multi-sensor data we combine high temporal/moderate spatial resolution data with low temporal/high spatial resolution data to improve the spatial representativity of the observations and to provide improved spatial analysis of vegetation patterns. The approach places the high resolution observations in the NDVI context space using a longer time series of lower resolution imagery. The vegetation descriptors derived are evaluated using independent high spatial resolution datasets that reveal the pattern and health of vegetation at metre scales. We also use climate variables to support the interpretation of these data. We conclude that the spatio-temporal patterns in Darfur vegetation and climate datasets suggest that labelling the conflict a climate-change conflict is inaccurate and premature.

  15. Vegetation Cover Analysis in Shaanxi Province of China Based on Grid Pixel Ternd Analysis and Stability Evaluation

    NASA Astrophysics Data System (ADS)

    Yue, H.; Liu, Y.

    2018-04-01

    As a key factor affecting the biogeochemical cycle of human existence, terrestrial vegetation is vulnerable to natural environment and human activities, with obvious temporal and spatial characteristics. The change of vegetation cover will affect the ecological balance and environmental quality to a great extent. Therefore, the research on the causes and influencing factors of vegetation cover has become the focus of attention of scholars at home and abroad. In the evolution of human activities and natural environment, the vegetation coverage in Shaanxi has changed accordingly. Using MODIS/NDVI 2000-2014 time series data, using the method of raster pixel trend analysis, stability evaluation, rescaled range analysis and correlation analysis, the climatic factors in Shaanxi province were studied in the near 15 years vegetation spatial and temporal variation and influence of vegetation NDVI changes. The results show that NDVI in Shaanxi province in the near 15 years increased by 0.081, the increase of NDVI in Northern Shaanxi was obvious, and negative growth was found in some areas of Guanzhong, southern Shaanxi NDVI overall still maintained at a high level; the trend of vegetation change in Shaanxi province has obvious spatial differences, most of the province is a slight tendency to improve vegetation, there are many obvious improvement areas in Northern Shaanxi Province. Guanzhong area vegetation area decreased, the small range of variation of vegetation in Shaanxi province; the most stable areas are mainly concentrated in the southern, southern Yanan, Yulin, Xi'an area of Weinan changed greatly; Shaanxi Province in recent 15 a, the temperature and precipitation have shown an increasing trend, and the vegetation NDVI is more closely related to the average annual rainfall, with increase of 0.48 °C/10 years and 69.5 mm per year.

  16. Disk Density Tuning of a Maximal Random Packing

    PubMed Central

    Ebeida, Mohamed S.; Rushdi, Ahmad A.; Awad, Muhammad A.; Mahmoud, Ahmed H.; Yan, Dong-Ming; English, Shawn A.; Owens, John D.; Bajaj, Chandrajit L.; Mitchell, Scott A.

    2016-01-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations. PMID:27563162

  17. Disk Density Tuning of a Maximal Random Packing.

    PubMed

    Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A; Mahmoud, Ahmed H; Yan, Dong-Ming; English, Shawn A; Owens, John D; Bajaj, Chandrajit L; Mitchell, Scott A

    2016-08-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.

  18. Pesticides in U.S. streams and groundwater

    USGS Publications Warehouse

    Gilliom, Robert J.

    2007-01-01

    A 10­-year study by the U.S. Geological Survey’s (USGS’s) National Water-­Quality Assessment (NAWQA) Program provides a national-­scale view of pesticide occurrence in streams and groundwater. The 1992-2001 study builds upon a preliminary analysis from NAWQA’s first phase of studies during 1992-1996 (1, 2). Pesticide data available from various studies prior to 1992 did not allow national assessment because of limited and variable geographic coverage (usually focusing on individual states or regions), sparse and inconsistent inclusion of pesticides in use, and variable sampling designs (3-5). The expanded geographic coverage and improved data following 10 years of study (Figure 1) confirm and reinforce previously reported findings and enable more detailed analyses of each topic. This article summarizes selected findings from a comprehensive report (6), with a focus on the nature of pesticide occurrence and potential significance to human health and stream ecosystems. Information on study design and methods as well as additional analysis of geographic patterns and trends in relation to use and management practices are available in the full report (6).

  19. SDN-enabled hybrid emergency message transmission architecture in internet-of-vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Wanting; Gao, Deyun; Zhao, Weicheng; Zhang, Hongke; Chiang, Hua-Pei

    2018-04-01

    With the increasing number of vehicles connected to the Internet-of-Things (IoT), Internet-of-Vehicles (IoV) is becoming a hot research topic. It can improve traffic safety and efficiency and promote the development of the intelligent transportation that is a very important element in Smart Cities. As an important part of the safety application in IoV, the emergency message transmission is designed to inform all the vehicles in the relevant area timely of the accident information through the multi-hop broadcast communication. In this paper, we propose a hybrid emergency message transmission (HEMT), which introduces the SDN technology into the vehicular network environment and utilizes the flexibility of inter-vehicle communication. By deploying SDN-enabled central controller and RSU switches, we can obtain reliable and fast emergency message dissemination. Moreover, considering the space between the coverages of RSUs caused by the sparse deployment, we also use inter-vehicle multi-hop broadcast communication to improve the message coverage ratio by adding the packet modification module on the RSU switch. Simulation results show the feasibility and effectiveness of our proposed scheme.

  20. Geophysical Data from Spring Valley to Delamar Valley, East-Central Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; Roberts, Carter W.; McKee, Edwin H.; Chuchel, Bruce A.; Morin, Robert L.

    2007-01-01

    Cenozoic basins in eastern Nevada and western Utah constitute major ground-water recharge areas in the eastern part of the Great Basin and these were investigated to characterize the geologic framework of the region. Prior to these investigations, regional gravity coverage was variable over the region, adequate in some areas and very sparse in others. Cooperative studies described herein have established 1,447 new gravity stations in the region, providing a detailed description of density variations in the middle to upper crust. All previously available gravity data for the study area were evaluated to determine their reliability, prior to combining with our recent results and calculating an up-to-date isostatic residual gravity map of the area. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill in the major valleys of the study area. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a much improved view of subsurface shapes of these basins and provides insights useful for the development of hydrogeologic models for the region.

  1. Hierarchical spatial models of abundance and occurrence from imperfect survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans

    2007-01-01

    Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.

  2. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Borgman, L. E.; Agard, S. S.; Barton, R.; Blackstone, D. L.; Breckenridge, R. M.; Decker, E. R.; Earle, J.; Evans, M. A.

    1975-01-01

    The author has identified the following significant results. The Earth Resources Technology Satellite data included the following successful applications: (1) general geologic mapping, (2) structural and tectonic studies, (3) landforms and surface processes, (4) mineral exploration, (5) land use inventories, (6) hydrologic studies, (7) investigations in agriculture and forestry, and (8) environmental quality and ecology. The chief advantages of ERTS-1 data for geologic studies are synoptic view, spectral information, and seasonal coverage. The spectral data and repetitive aspect are also important for land use and vegetation studies. Low resolution and lack of steoscopic coverage were found to be the main limitations of ERTS data.

  3. Quantifying interception associated with new urban vegetation canopies

    NASA Astrophysics Data System (ADS)

    Yerk, W.; Montalto, F. A.

    2013-12-01

    Interception of precipitation by vegetation canopies has long been recognized as an important component of the hydrologic cycle, though most research has been in closed or sparse canopy forests. Much less work has been published on interception by urban vegetation, and especially associated with the low growing shrubs commonly installed in green infrastructure program. To inform urban watershed model with vegetation-specific interception data, a field experiment was designed to directly measure canopy throughfall associated with two shrub species commonly included in urban greening programs. Data was collected at a high (e.g. five second) sampling frequency. A non-parametric Kruskal-Wallis test performed on data collected between August and October of 2012 demonstrated statistically significant (p= 0.0011) differences in recorded throughfall between two species (94% for Itea virginica, 86% for Cornus sericea). Additionally, the results suggested that the relationship of throughfall to rainfall intensity varied by species. For Itea, the ratio of throughfall to precipitation intensity was close to 1:1. However, for Cornus, the throughfall rate was on average slower (or 0.85 of the precipitation intensity). An improved and expanded set-up installed in 2013 added two additional species (Prunus laurocerasus and Hydrangea quercifolia). The 2013 results confirm interspecies differences in both throughfall amount, and in the relationship of throughfall rate to precipitation intensity. The results are discussed with respect to droplet splashing and enhanced evaporation within the canopy. Both years' findings suggest that the quantity of water intercepted by vegetation canopies exceeds the canopy storage capacity, as assumed in many conventional hydrologic models.

  4. Correlates of Recent Declines of Rodents in Northern and Southern Australia: Habitat Structure Is Critical

    PubMed Central

    Lawes, Michael J.; Fisher, Diana O.; Johnson, Chris N.; Blomberg, Simon P.; Frank, Anke S. K.; Fritz, Susanne A.; McCallum, Hamish; VanDerWal, Jeremy; Abbott, Brett N.; Legge, Sarah; Letnic, Mike; Thomas, Colette R.; Thurgate, Nikki; Fisher, Alaric; Gordon, Iain J.; Kutt, Alex

    2015-01-01

    Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia) on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent) and red foxes (in the south). Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall), our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south. PMID:26111037

  5. Correlates of Recent Declines of Rodents in Northern and Southern Australia: Habitat Structure Is Critical.

    PubMed

    Lawes, Michael J; Fisher, Diana O; Johnson, Chris N; Blomberg, Simon P; Frank, Anke S K; Fritz, Susanne A; McCallum, Hamish; VanDerWal, Jeremy; Abbott, Brett N; Legge, Sarah; Letnic, Mike; Thomas, Colette R; Thurgate, Nikki; Fisher, Alaric; Gordon, Iain J; Kutt, Alex

    2015-01-01

    Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia) on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent) and red foxes (in the south). Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall), our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south.

  6. A Changing Number of Alternative States in the Boreal Biome: Reproducibility Risks of Replacing Remote Sensing Products.

    PubMed

    Xu, Chi; Holmgren, Milena; Van Nes, Egbert H; Hirota, Marina; Chapin, F Stuart; Scheffer, Marten

    2015-01-01

    Publicly available remote sensing products have boosted science in many ways. The openness of these data sources suggests high reproducibility. However, as we show here, results may be specific to versions of the data products that can become unavailable as new versions are posted. We focus on remotely-sensed tree cover. Recent studies have used this public resource to detect multi-modality in tree cover in the tropical and boreal biomes. Such patterns suggest alternative stable states separated by critical tipping points. This has important implications for the potential response of these ecosystems to global climate change. For the boreal region, four distinct ecosystem states (i.e., treeless, sparse and dense woodland, and boreal forest) were previously identified by using the Collection 3 data of MODIS Vegetation Continuous Fields (VCF). Since then, the MODIS VCF product has been updated to Collection 5; and a Landsat VCF product of global tree cover at a fine spatial resolution of 30 meters has been developed. Here we compare these different remote-sensing products of tree cover to show that identification of alternative stable states in the boreal biome partly depends on the data source used. The updated MODIS data and the newer Landsat data consistently demonstrate three distinct modes around similar tree-cover values. Our analysis suggests that the boreal region has three modes: one sparsely vegetated state (treeless), one distinct 'savanna-like' state and one forest state, which could be alternative stable states. Our analysis illustrates that qualitative outcomes of studies may change fundamentally as new versions of remote sensing products are used. Scientific reproducibility thus requires that old versions remain publicly available.

  7. The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography

    NASA Astrophysics Data System (ADS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter, designed and developed at NASA's Goddard Space Flight Center (GSFC). LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25-m wide footprints. The entire time history of the outgoing and return pulses is digitised, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with dm accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 ns, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the US and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in year 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  8. Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene

    NASA Astrophysics Data System (ADS)

    Forrest, M.; Eronen, J. T.; Utescher, T.; Knorr, G.; Stepanek, C.; Lohmann, G.; Hickler, T.

    2015-12-01

    There is an increasing need to understand the pre-Quaternary warm climates, how climate-vegetation interactions functioned in the past, and how we can use this information to understand the present. Here we report vegetation modelling results for the Late Miocene (11-7 Ma) to study the mechanisms of vegetation dynamics and the role of different forcing factors that influence the spatial patterns of vegetation coverage. One of the key uncertainties is the atmospheric concentration of CO2 during past climates. Estimates for the last 20 million years range from 280 to 500 ppm. We simulated Late Miocene vegetation using two plausible CO2 concentrations, 280 ppm CO2 and 450 ppm CO2, with a dynamic global vegetation model (LPJ-GUESS) driven by climate input from a coupled AOGCM (Atmosphere-Ocean General Circulation Model). The simulated vegetation was compared to existing plant fossil data for the whole Northern Hemisphere. For the comparison we developed a novel approach that uses information of the relative dominance of different plant functional types (PFTs) in the palaeobotanical data to provide a quantitative estimate of the agreement between the simulated and reconstructed vegetation. Based on this quantitative assessment we find that pre-industrial CO2 levels are largely consistent with the presence of seasonal temperate forests in Europe (suggested by fossil data) and open vegetation in North America (suggested by multiple lines of evidence). This suggests that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.

  9. Improving the prediction of African savanna vegetation variables using time series of MODIS products

    NASA Astrophysics Data System (ADS)

    Tsalyuk, Miriam; Kelly, Maggi; Getz, Wayne M.

    2017-09-01

    African savanna vegetation is subject to extensive degradation as a result of rapid climate and land use change. To better understand these changes detailed assessment of vegetation structure is needed across an extensive spatial scale and at a fine temporal resolution. Applying remote sensing techniques to savanna vegetation is challenging due to sparse cover, high background soil signal, and difficulty to differentiate between spectral signals of bare soil and dry vegetation. In this paper, we attempt to resolve these challenges by analyzing time series of four MODIS Vegetation Products (VPs): Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation (FPAR) for Etosha National Park, a semiarid savanna in north-central Namibia. We create models to predict the density, cover, and biomass of the main savanna vegetation forms: grass, shrubs, and trees. To calibrate remote sensing data we developed an extensive and relatively rapid field methodology and measured herbaceous and woody vegetation during both the dry and wet seasons. We compared the efficacy of the four MODIS-derived VPs in predicting vegetation field measured variables. We then compared the optimal time span of VP time series to predict ground-measured vegetation. We found that Multiyear Partial Least Square Regression (PLSR) models were superior to single year or single date models. Our results show that NDVI-based PLSR models yield robust prediction of tree density (R2 = 0.79, relative Root Mean Square Error, rRMSE = 1.9%) and tree cover (R2 = 0.78, rRMSE = 0.3%). EVI provided the best model for shrub density (R2 = 0.82) and shrub cover (R2 = 0.83), but was only marginally superior over models based on other VPs. FPAR was the best predictor of vegetation biomass of trees (R2 = 0.76), shrubs (R2 = 0.83), and grass (R2 = 0.91). Finally, we addressed an enduring challenge in the remote sensing of semiarid vegetation by examining the transferability of predictive models through space and time. Our results show that models created in the wetter part of Etosha could accurately predict trees' and shrubs' variables in the drier part of the reserve and vice versa. Moreover, our results demonstrate that models created for vegetation variables in the dry season of 2011 could be successfully applied to predict vegetation in the wet season of 2012. We conclude that extensive field data combined with multiyear time series of MODIS vegetation products can produce robust predictive models for multiple vegetation forms in the African savanna. These methods advance the monitoring of savanna vegetation dynamics and contribute to improved management and conservation of these valuable ecosystems.

  10. Mid-late Holocene climate and vegetation in northeastern part of the Altai Mountains recorded in Lake Teletskoye

    NASA Astrophysics Data System (ADS)

    Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Babich, Valery; Kalugin, Ivan; Daryin, Andrei

    2015-04-01

    We report the first high-resolution (with intervals ca. 20-50 years) late-Holocene (4200 yr BP) pollen record from Lake Teletskoye, Altai Mountains, obtained from the underwater Ridge of Sofia Lepneva in 2006 (core Tel 2006). The study presents (i) the results of palynological analysis of Tel 2006; (ii) the results of spectral analysis of natural cycles based on the periodical fluctuation of taiga-biome curve; and (iii) quantitative reconstructions of the late-Holocene regional vegetation, woody coverage and climate in northern part of the Altai Mountains in order to define place of Northeast Altai on the map of the late-Holocene Central Asian environmental history. Late Holocene vegetation of the northeastern part of Altai recorded in Tel 2006 core is characterized by spread of dark-coniferous forest with structure similar to modern. Dominant trees, Siberian pine (Pinus sibirica) and Siberian fir (Abies sibirica), are the most ecological sensitive taxa between Siberian conifers (Shumilova, 1962), that as a whole suggests mild and humid climatic conditions during last 4200 years. However, changes of pollen taxa percentages and results of numerical analysis reveal pronounced fluctuation of climate and vegetation. Relatively cool and dry stage occurred prior to ca. 3500 cal yr BP. Open vegetation was widespread in the region with maximum deforestation and minimal July temperatures between 3800-3500 cal yr BP. Steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae could grow on the open sites around Lake Teletskoye. Reconstructed woody coverage is very low and varies between 29-35%. After ca. 3500 cal yr BP the area of dark-coniferous mountain taiga has significantly enlarged with maximums of woody coverages and taiga biome scores between ca. 2470-1040 cal yr BP. In the period of ~3500-2500 cal yr BP the averages July temperatures increased more than 1 0C. Climate became warmer and wetter. During last millennium (after 1040 cal yr BP) average July temperatures fell to 17.04 0C. Minimums of July temperatures related to AD1560-1650 and may reflect Little Ice Age in the northeastern Altai. This assumption is in an agreement with previous data from Lake Teletskoye (core Tel 2001-02 covered last 1000 years) where the period with relatively cold and dry climate was revealed between AD1560 and 1820 (Andreev et al., 2007). The coldest period in Tuva according to dendrochronological data (Myglan, Oidupaa, Vaganov, 2012) was in 17-19 centuries with minimum of June-July temperatures at AD1778-1819. Pollen records from the Chuya basin (southeastern part of Russian Altai) revealed the onset of LIA around AD1600 (Schluetz&Lehmkuhl, 2007). Open steppe-like vegetation slightly enlarged after ~AD1700 with increasing of continentality. Modern Index of Continentality mapping for the Altai Mountains is in range of 50-59 (Grieser et al., 2006). The average Index of Continentality calculated for last 30 years using data from Barnaul meteostation, located 300 km northwest of the lake in forest-steppe zone, is 40.6; the average Index of Continentality for Yailu meteostation (north shore of Lake Teletskoye) is 20. Index of Continentality reconstructed from Tel 2006 varies in limits of 48-58 and obviously shows regional but not local situation. Throughout the Tel 2006 record woody coverages vary between 29.0% at the 3890 cal yr BP and 50.3% at the AD1830. Woody coverage greater than 65% is associated with the Siberian mid-latitudinal zonal taiga. Areas north and south of the taiga zone have moderate forest coverage (25-45%), suggesting greater landscape openness (Tarasov et al., 2007). Regarding to VCF data, modern woody cover in 20 km around the lake is ca. 55% (http://glcf.umiacs.umd.edu/data/vcf). Reconstructed woody coverage is lower than observed and reflect probably forest development in the whole lake catchment basin. Spectral analysis of Tel 2006 data demonstrates periodic changes of taiga-biome curve of ~1050, ~470 and ~210 years intervals during the Late Holocene. Kravchinsky et al. (2013) presume that the 1000- and 500-year periodicities recorded in magnetic properties of soil layers correspond to solar activity induced climate changes in Southern Siberia; however, Stuiver&Braziunas (1993) relate the ~500-yr cycle to flux oscillations in the Atlantic Ocean thermohaline circulation. The ˜210-year periodicities may reflect the ~200-year solar de Vries cycle that is commonly believed to be one of the most intense solar cycles (e.g. Wagner G. et al., 2001; Damon&Peristykh, 2000; Stuiver&Braziunas, 1993). Dendrochronlogical data obtained from the Tien Shan and Qinghai-Tibetan Plateau confirm the existence of 200-year climatic cycles associated with solar activity in Central Asia (Raspopov et al., 2008). Absence of 1500-year climatic cycles (Bond events) in Tel 2006 record may be explained by deep intercontinental location of the Lake Teletskoye whereas 1500-year cycles are linked with the North Atlantic oceanic circulation (Bond et al., 2001; Debret et al., 2007).

  11. Soil respiration and carbon responses to logging debris and competing vegetation

    Treesearch

    Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington

    2010-01-01

    Management practices following forest harvesting that modify organic matter (OM) inputs and influence changes in the soil environment have the potential to alter soil C pools, but there is still much uncertainty regarding how these practices influence soil C flux. We examined the influence of varying amounts of logging-debris retention (0, 40, and 80% coverage) and...

  12. Coupling of phenological information and synthetically generated time-series for crop types as indicator for vegetation coverage information

    USDA-ARS?s Scientific Manuscript database

    It is widely believed that in Germany and Europe the risk of soil erosion by water increases as a result of changes in climate. Especially, an increase of the frequency of extreme precipitation events during phenological crop phases with reduced soil cover is very likely for the near future. A monit...

  13. Disking and Prescribed Burning: Sixth-Year Residual Effects on Loblolly Pine and Competing Vegetation

    Treesearch

    Kenneth E. Trousdell

    1970-01-01

    In the Virginia Coastal Plain, the effects of disking and of three series of prescribed burns on crown coverage and height of regenerating loblolly pine (Pinus taeda L.) and competing hardwoods and shrubs were compared after 6 years. One winter burn followed by three annual summer burns just before harvesting was the site preparation most effective...

  14. Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA

    USGS Publications Warehouse

    Parsekian, A.D.; Jones, Benjamin M.; Jones, M.; Grosse, G.; Walter, Anthony K.M.; Slater, L.

    2011-01-01

    Investigations on the northern Seward Peninsula in Alaska identified zones of recent (<50years) permafrost collapse that led to the formation of floating vegetation mats along thermokarst lake margins. The occurrence of floating vegetation mat features indicates rapid degradation of near-surface permafrost and lake expansion. This paper reports on the recent expansion of these collapse features and their geometry is determined using geophysical and remote sensing measurements. The vegetation mats were observed to have an average thickness of 0.57m and petrophysical modeling indicated that gas content of 1.5-5% enabled floatation above the lake surface. Furthermore, geophysical investigation provides evidence that the mats form by thaw and subsidence of the underlying permafrost rather than terrestrialization. The temperature of the water below a vegetation mat was observed to remain above freezing late in the winter. Analysis of satellite and aerial imagery indicates that these features have expanded at maximum rates of 1-2myr-1 over a 56year period. Including the spatial coverage of floating 'thermokarst mats' increases estimates of lake area by as much as 4% in some lakes. ?? 2011 John Wiley & Sons, Ltd.

  15. Spatiotemporal variations in vegetation cover on the Loess Plateau, China, between 1982 and 2013: possible causes and potential impacts.

    PubMed

    Kong, Dongxian; Miao, Chiyuan; Borthwick, Alistair G L; Lei, Xiaohui; Li, Hu

    2018-05-01

    Vegetation is a key component of the ecosystem and plays an important role in water retention and resistance to soil erosion. In this study, we used a multiyear normalized difference vegetation index (NDVI) dataset (1982-2013) and corresponding datasets for observed climatic variables to analyze changes in the NDVI at both temporal and spatial scales. The relationships between NDVI, climate change, and human activities were also investigated. The annual average NDVI showed an upward trend over the 32-year study period, especially in the center of the Loess Plateau. NDVI variations lagged behind monthly temperature changes by approximately 1 month. The contribution of human activities to variations in NDVI has become increasingly significant in recent years, with human activities responsible for 30.4% of the change in NDVI during the period 2001-2013. The increased vegetation coverage has reduced soil erosion on the Loess Plateau in recent years. It is suggested that natural restoration of vegetation is the most effective measure for control of erosion; engineering measures that promote this should feature in the future governance of the Loess Plateau.

  16. Benefit assessment of soil and water conservation from cropland to forest in hilly Loess Plateau at Qinghai.

    PubMed

    Zhao, Chuanchuan; Yang, Ninggui; Wang, Zhen; Liu, Sili; Dong, Xu; Xin, Wenrong

    2013-01-01

    The information of slope and vegetation coverage of the monitoring region were extracted, based on DEM (Digital Evaluation Model) and Spot5 Satellite data images, and fishnet grid was generated using GIS (Geographic Information System) and RS (Remote Sensing) technique. Applying the information of slop and vegetation coverage layers into the corresponding space grid by using the function of zonal statistics and analysis, it can realize overlay analysis based on Standards for Classification and Gradation of Soil Erosion (SL190-2007), and obtains the map of soil erosion intensity of the monitoring region. Finally, according to Specifications for Assessment of Forest Ecosystem Services (LY/T1721-2008) and monitoring data of typical plot, the soil and water conservation value from cropland to forest was evaluated quantitatively in 2009. The results showed that the area, on and below the moderate level, was 93600 ha, taking up 50.03% of total conversion of farmland to forest area (185100 ha), which indicates a 14.64 million (t/a) of soil conversion, and a 1520 million Yuan for erosion control. The results of the study showed that the soil and water conservation was very effective.

  17. Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data

    NASA Astrophysics Data System (ADS)

    Gulbe, Linda; Caune, Vairis; Korats, Gundars

    2017-12-01

    The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.

  18. The applicability of ERTS-1 data covering the major landforms of Kenya. [landforms, vegetation, soils, forests

    NASA Technical Reports Server (NTRS)

    Omino, J. H. O. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Five investigators report on the applicability of ERTS-1 data covering the major landforms of Kenya. Deficiencies due to lack of equipment, repetitive coverage and interpretation know-how are also reported on. Revision of lake shorelines is an immediate benefit. Basement system metasediments are rapidly differentiated, but dune areas are not readily distinguishable from sandy soils. Forest, moorland, high altitude grass, tea, and conifer plantations are readily distinguished, with podocarpus forest especially distinguishable from podocarpus/juniperus forest. In the arid areas physiographic features, indicating the major soil types, are readily identified and mapped. Preliminary vegetation type analysis in the Mara Game Reserve indicates that in a typical savannah area about 36% of the vegetation types are distinguishable at a scale of 1:1 million as well as drainage patterns and terrain features.

  19. Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation

    NASA Technical Reports Server (NTRS)

    Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.

    2013-01-01

    The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.

  20. Bacteria increase arid-land soil surface temperature through the production of sunscreens

    DOE PAGES

    Couradeau, Estelle; Karaoz, Ulas; Lim, Hsiao Chien; ...

    2016-01-20

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparentmore » and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. In conclusion, these results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales.« less

  1. Antiphospholipid antibody-associated non-infective mitral valve endocarditis successfully treated with medical therapy.

    PubMed

    Contractor, Tahmeed; Bell, Adrian; Khasnis, Atul; Silverberg, Bruce J; Martinez, Matthew W

    2013-01-01

    Non-bacterial endocarditis lesions associated with antiphospholipid antibodies (aPLs) in the absence of other criteria for antiphospholipid syndrome or systemic lupus erythematosus is termed an aPL-associated cardiac valve disease. Evidence regarding the management of this condition is sparse. A rare case is described of a 20-year-old female who presented with an incidental finding of 'vegetations on a heart valve'. Echocardiography revealed mitral valve leaflet thickening and echodensities with moderate mitral regurgitation. She had an elevated partial thromboplastin time that did not correct with a mixing study, and elevated levels of antiocardiolipin antibodies. Hence, a diagnosis of aPL-associated cardiac valve disease was made, and the patient commenced on warfarin, hydroxychloroquine, and a short course of oral prednisone. At one year after diagnosis the patient remained symptom-free, and follow up echocardiography revealed resolution of the vegetations with minimal mitral regurgitation. Further evidence is needed to guide the therapy of this rare condition.

  2. Vegetation Patchiness Enhances Hydrological Connectivity in River Deltas Below the Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Wright, K. A.; Hiatt, M. R.; Passalacqua, P.

    2017-12-01

    The humanitarian and ecological importance of coastal deltas has led many to research the factors influencing their ecogeomorphic evolution, in hopes of predicting the response of these regions to the growing number of natural and anthropogenic threats they face. One area of this effort, in which many unresolved questions remain, concerns the hydrological connectivity between the distributary channels and interdistributary islands, which field observations and numerical modeling have shown to be significant. Island vegetation is known to affect the degree of connectivity, but the effect of the spatial distribution of vegetation on connectivity remains an important question. This research aims to determine to what extent vegetation percent cover, patch size, and plant density affect connectivity in an idealized deltaic system. A 2D hydrodynamic model was used to numerically solve the shallow water equations in an idealized channel-island complex, modeled after Wax Lake Delta in Louisiana. For each model run, vegetation patches were distributed randomly throughout the islands according to a specified percent cover and patch size. Vegetation was modeled as a modified bed roughness, which was varied to represent a range of sparse-to-dense vegetation. To determine the effect of heterogeneity, the results of each patchy scenario were compared to results from a uniform run with the same spatially-averaged roughness. It was found that, while all patchy model runs demonstrated more channel-island connectivity than comparable uniform runs, this was particularly true when vegetation patches were dense and covered <50% of the island domain. Below this threshold, high-velocity pathways form in-between patches, greatly enhancing connectivity and transport capabilities. Above this threshold, however, little discrepancy is seen between patchy and uniform model runs. This threshold sits within the range of percent cover values observed in natural systems, and calculations show that these pathways affect shear stresses and residence time distributions in the deltaic islands, which can have implications for the fate and transport of sediment/nutrients. These results indicate that the spatial distribution of vegetation can have a notable impact on our ability to model connectivity in deltaic systems.

  3. Semi-arid grassland bird responses to patch-burn grazing and drought

    USGS Publications Warehouse

    Skagen, Susan K.; Augustine, David J.; Derner, Justin D.

    2018-01-01

    As grassland birds of central North America experience steep population declines with changes in land use, management of remaining tracts becomes increasingly important for population viability. The integrated use of fire and grazing may enhance vegetation heterogeneity and diversity in breeding birds, but the subsequent effects on reproduction are unknown. We examined the influence of patch-burn grazing management in shortgrass steppe in eastern Colorado on habitat use and reproductive success of 3 grassland bird species, horned lark (Eremophila alpestris), lark bunting (Calamospiza melanocorys), and McCown’s longspur (Rhynchophanes mccownii), at several spatial scales during 2011 and 2012. Although no simple direct relationship to patch-burn grazing treatment existed, habitat selection depended on precipitation- and management-induced vegetation conditions and spatial scale. All species selected taller-than-expected vegetation at the nest site, whereas at the territory scale, horned larks and McCown’s longspurs selected areas with low vegetation height and sparse cover of tall plants (taller than the dominant shortgrasses). Buntings nested primarily in unburned grassland under average rainfall. Larks and longspurs shifted activity from patch burns during average precipitation (2011) to unburned pastures during drought (2012). Daily survival rate (DSR) of nests varied with time in season, species, weather, and vegetation structure. Daily survival rate of McCown’s longspur nests did not vary with foliar cover of relatively tall vegetation at the nest under average precipitation but declined with increasing cover during drought. At the 200-m scale, increasing cover of shortgrasses, rather than taller plant species, improved DSR of larks and longspurs. These birds experience tradeoffs in the selection of habitat at different spatial scales: tall structure at nests may reduce visual detection by predators and provide protection from sun, wind, and rain, yet taller structure surrounding territories may host nest predators. Patch-burn grazing management in combination with other strategies that retain taller-structured vegetation may help sustain a diversity of breeding habitats for shortgrass birds under varying weather conditions.

  4. Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites.

    PubMed

    Zhao, Dan; Di Nicola, Matteo; Khani, Mohammad M; Jestin, Jacques; Benicewicz, Brian C; Kumar, Sanat K

    2016-09-14

    We compare the self-assembly of silica nanoparticles (NPs) with physically adsorbed polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymers (BCP) against NPs with grafted bimodal (BM) brushes comprised of long, sparsely grafted PS chains and a short dense carpet of P2VP chains. As with grafted NPs, the dispersion state of the BCP NPs can be facilely tuned in PS matrices by varying the PS coverage on the NP surface or by changes in the ratio of the PS graft to matrix chain lengths. Surprisingly, the BCP NPs are remarkably better dispersed than the NPs tethered with bimodal brushes at comparable PS grafting densities. We postulate that this difference arises because of two factors inherent in the synthesis of the NPs: In the case of the BCP NPs the adsorption process is analogous to the chains being "grafted to" the NP surface, while the BM case corresponds to "grafting from" the surface. We have shown that the "grafted from" protocol yields patchy NPs even if the graft points are uniformly placed on each particle. This phenomenon, which is caused by chain conformation fluctuations, is exacerbated by the distribution function associated with the (small) number of grafts per particle. In contrast, in the case of BCP adsorption, each NP is more uniformly coated by a P2VP monolayer driven by the strongly favorable P2VP-silica interactions. Since each P2VP block is connected to a PS chain we conjecture that these adsorbed systems are closer to the limit of spatially uniform sparse brush coverage than the chemically grafted case. We finally show that the better NP dispersion resulting from BCP adsorption leads to larger mechanical reinforcement than those achieved with BM particles. These results emphasize that physical adsorption of BCPs is a simple, effective and practically promising strategy to direct NP dispersion in a chemically unfavorable polymer matrix.

  5. Improved Detection of Local Earthquakes in the Vienna Basin (Austria), using Subspace Detectors

    NASA Astrophysics Data System (ADS)

    Apoloner, Maria-Theresia; Caffagni, Enrico; Bokelmann, Götz

    2016-04-01

    The Vienna Basin in Eastern Austria is densely populated and highly-developed; it is also a region of low to moderate seismicity, yet the seismological network coverage is relatively sparse. This demands improving our capability of earthquake detection by testing new methods, enlarging the existing local earthquake catalogue. This contributes to imaging tectonic fault zones for better understanding seismic hazard, also through improved earthquake statistics (b-value, magnitude of completeness). Detection of low-magnitude earthquakes or events for which the highest amplitudes slightly exceed the signal-to-noise-ratio (SNR), may be possible by using standard methods like the short-term over long-term average (STA/LTA). However, due to sparse network coverage and high background noise, such a technique may not detect all potentially recoverable events. Yet, earthquakes originating from the same source region and relatively close to each other, should be characterized by similarity in seismic waveforms, at a given station. Therefore, waveform similarity can be exploited by using specific techniques such as correlation-template based (also known as matched filtering) or subspace detection methods (based on the subspace theory). Matching techniques basically require a reference or template event, usually characterized by high waveform coherence in the array receivers, and high SNR, which is cross-correlated with the continuous data. Instead, subspace detection methods overcome in principle the necessity of defining template events as single events, but use a subspace extracted from multiple events. This approach theoretically should be more robust in detecting signals that exhibit a strong variability (e.g. because of source or magnitude). In this study we scan the continuous data recorded in the Vienna Basin with a subspace detector to identify additional events. This will allow us to estimate the increase of the seismicity rate in the local earthquake catalogue, therefore providing an evaluation of network performance and efficiency of the method.

  6. National-scale aboveground biomass geostatistical mapping with FIA inventory and GLAS data: Preparation for sparsely sampled lidar assisted forest inventory

    NASA Astrophysics Data System (ADS)

    Babcock, C. R.; Finley, A. O.; Andersen, H. E.; Moskal, L. M.; Morton, D. C.; Cook, B.; Nelson, R.

    2017-12-01

    Upcoming satellite lidar missions, such as GEDI and IceSat-2, are designed to collect laser altimetry data from space for narrow bands along orbital tracts. As a result lidar metric sets derived from these sources will not be of complete spatial coverage. This lack of complete coverage, or sparsity, means traditional regression approaches that consider lidar metrics as explanatory variables (without error) cannot be used to generate wall-to-wall maps of forest inventory variables. We implement a coregionalization framework to jointly model sparsely sampled lidar information and point-referenced forest variable measurements to create wall-to-wall maps with full probabilistic uncertainty quantification of all inputs. We inform the model with USFS Forest Inventory and Analysis (FIA) in-situ forest measurements and GLAS lidar data to spatially predict aboveground forest biomass (AGB) across the contiguous US. We cast our model within a Bayesian hierarchical framework to better model complex space-varying correlation structures among the lidar metrics and FIA data, which yields improved prediction and uncertainty assessment. To circumvent computational difficulties that arise when fitting complex geostatistical models to massive datasets, we use a Nearest Neighbor Gaussian process (NNGP) prior. Results indicate that a coregionalization modeling approach to leveraging sampled lidar data to improve AGB estimation is effective. Further, fitting the coregionalization model within a Bayesian mode of inference allows for AGB quantification across scales ranging from individual pixel estimates of AGB density to total AGB for the continental US with uncertainty. The coregionalization framework examined here is directly applicable to future spaceborne lidar acquisitions from GEDI and IceSat-2. Pairing these lidar sources with the extensive FIA forest monitoring plot network using a joint prediction framework, such as the coregionalization model explored here, offers the potential to improve forest AGB accounting certainty and provide maps for post-model fitting analysis of the spatial distribution of AGB.

  7. Vegetation in the Flood Plain Adjacent to the Mississippi River between Cairo, Illinois, and St. Paul, Minnesota, and in the Flood Plain of the Illinois River between Grafton, Illinois, and Chicago, and the Possible Impacts That Will Result from the Construction of L & D 26 and the Associated Increase in Barge Traffic,

    DTIC Science & Technology

    1975-01-20

    americana), green ash (Fraxinus lanceolata), pecan (Carya illinoensis), sugarberry (Celtis laevigata), and red mulberry (Morus rubra). Also...cottonwood (Populus deltoides), silver maple (Acer saccharinum), box elder (Acer negundo), and green ash (Frax- inus lanceolata). There is a rather sparse...Amer- ican elm (Ulmus americana), slippery elm (U. rubra), box elder (Acer negundo), sycamore (Platanus occidentalis) green ash (Fraxinus lanceo- lata

  8. A New Population Estimate for the Florida Scrub Jay on Merritt Island National Wildlife Refuge

    NASA Technical Reports Server (NTRS)

    Breininger, David R.

    1989-01-01

    The variable circular plot method was used to sample avifauna within different vegetation types determined from aerial imagery. The Florida Scrub Jay (Aphelocoma coerulescens coerulescens) population was estimated to range between 1,415 and 3,603 birds. Approximately half of the scrub and slash pine habitat appeared to be unused by Florida Scrub Jay, probably because the slash pine cover was too dense or the oak cover was too sparse. Results from the study suggest that the entire state population may be much lower than believed because the size of two of the three largest populations may have been overestimated.

  9. Experimental removal of woody vegetation does not increase nesting success or fledgling production in two grassland sparrows (Ammodramus) in Pennsylvania

    USGS Publications Warehouse

    Hill, Jason M.; Diefenbach, Duane R.

    2013-01-01

    The influence of vegetation structure on the probability of daily nest survival (DNS) for grassland passerines has received considerable attention. Some correlative studies suggest that the presence of woody vegetation lowers DNS. Over 3 years (2009–2011), we monitored 215 nests of the Grasshopper Sparrow (Ammodramus savannarum) and Henslow's Sparrow (A. henslowii) on 162 ha of reclaimed surface-mine grasslands in Pennsylvania. We removed shrubs from treatment plots with ≤36% areal coverage of woody vegetation in a before-after-control-impact-pairs (BACIP) design framework. Daily nest survival (95% CI: 0.94–0.96) was as high as previous studies have reported but was not associated with woody vegetative cover, proximity to woody vegetation, or woody stem density. Variation in DNS was best explained by increasing nonwoody-vegetation height. Grasshopper Sparrow fledgling production on treatment plots in 2010 (95% CI: 3.3–4.7) and 2011 (95% CI: 3.8–5.0) was similar to baseline conditions of treatment plots (95% CI: 3.4–4.9) and control plots (95% CI: 3.2–4.5) in 2009. Fledgling production was associated with thatch depth (β ± SE = 0.13 ± 0.09) and bare ground (β ± SE = -2.62 ± 1.29) adjacent to the nest and plot woody vegetative cover ( ± SE = -3.09 ± 1.02). Our experimental research suggests that overall reproductive success of Grasshopper and Henslow's sparrows on reclaimed surfacemine grasslands is driven by a suite of largely nonwoody—vegetation components, and both species can successfully nest and produce young in habitats with greater amounts of scattered woody vegetation than has generally been considered.

  10. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya K.; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012+/-0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals.

  11. Fire responses to postglacial climate change and human impact in northern Patagonia (41-43°S).

    PubMed

    Iglesias, Virginia; Whitlock, Cathy

    2014-12-23

    Forest/steppe boundaries are among the most dynamic ecosystems on Earth and are highly vulnerable to changes in climate and land use. In this study we examine the postglacial history of the Patagonian forest/steppe ecotone (41-43°S) to better understand its sensitivity to past variations in climate, disturbance, and human activity before European colonization. We present regional trends in vegetation and biomass burning, as detected by generalized additive models fitted to seven pollen and charcoal records, and compare the results with other paleoenvironmental data, as well as archeological and ecological information to (i) estimate postglacial fire trends at regional scales, (ii) assess the evolution of climate-vegetation-fire linkages over the last 18,000 calibrated (cal) years B.P., and (iii) evaluate the role of humans in altering pre-European landscapes and fire regimes. Pollen and charcoal data indicate that biomass burning was relatively low during warm/dry steppe-dominated landscapes in the late glacial/Early Holocene transition and increased as more humid conditions favored forest development after ca. 10,000 cal years B.P. Postglacial fire activity was thus limited by fuel availability associated with sparse vegetation cover rather than by suitable climate conditions. In contrast to extensive burning by European settlers, variations in indigenous population densities were not associated with fluctuations in regional or watershed-scale fire occurrence, suggesting that climate-vegetation-fire linkages in northern Patagonia evolved with minimal or very localized human influences before European settlement.

  12. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    NASA Astrophysics Data System (ADS)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  13. Mapping Alpine Vegetation Location Properties by Dense Matching

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Steinbauer, Klaus; Winkler, Manuela; Pauli, Harald

    2016-06-01

    Highly accurate 3D micro topographic mapping in mountain research demands for light equipment and low cost solutions. Recent developments in structure from motion and dense matching techniques provide promising tools for such applications. In the following, the feasibility of terrestrial photogrammetry for mapping topographic location properties of sparsely vegetated areas in selected European mountain regions is investigated. Changes in species composition at alpine vegetation locations are indicators of climate change consequences, such as the pronounced rise of average temperatures in mountains compared to the global average. Better understanding of climate change effects on plants demand for investigations on a micro-topographic scale. We use professional and consumer grade digital single-lens reflex cameras mapping 288 plots each 3 x 3 m on 18 summits in the Alps and Mediterranean Mountains within the GLORIA (GLobal Observation Research Initiative in Alpine environments) network. Image matching tests result in accuracies that are in the order of millimetres in the XY-plane and below 0.5 mm in Z-direction at the second image pyramid level. Reconstructing vegetation proves to be a challenge due to its fine and small structured architecture and its permanent movement by wind during image acquisition, which is omnipresent on mountain summits. The produced 3D point clouds are gridded to 6 mm resolution from which topographic parameters such as slope, aspect and roughness are derived. At a later project stage these parameters will be statistically linked to botanical reference data in order to conclude on relations between specific location properties and species compositions.

  14. Modeling dynamics of western juniper under climate change in a semiarid ecosystem

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Glenn, N. F.; Flores, A. N.

    2013-12-01

    Modeling future vegetation dynamics in response to climate change and disturbances such as fire relies heavily on model parameterization. Fine-scale field-based measurements can provide the necessary parameters for constraining models at a larger scale. But the time- and labor-intensive nature of field-based data collection leads to sparse sampling and significant spatial uncertainties in retrieved parameters. In this study we quantify the fine-scale carbon dynamics and uncertainty of juniper woodland in the Reynolds Creek Experimental Watershed (RCEW) in southern Idaho, which is a proposed critical zone observatory (CZO) site for soil carbon processes. We leverage field-measured vegetation data along with airborne lidar and timeseries Landsat imagery to initialize a state-and-transition model (VDDT) and a process-based fire-model (FlamMap) to examine the vegetation dynamics in response to stochastic fire events and climate change. We utilize recently developed and novel techniques to measure biomass and canopy characteristics of western juniper at the individual tree scale using terrestrial and airborne laser scanning techniques in RCEW. These fine-scale data are upscaled across the watershed for the VDDT and FlamMap models. The results will immediately improve our understanding of fine-scale dynamics and carbon stocks and fluxes of woody vegetation in a semi-arid ecosystem. Moreover, quantification of uncertainty will also provide a basis for generating ensembles of spatially-explicit alternative scenarios to guide future land management decisions in the region.

  15. Mapping Landslides Susceptibility in a Traditional Northern Nigerian City

    NASA Astrophysics Data System (ADS)

    Oluwafemi, Olawale A.; Yakubu, Tahir A.; Muhammad, Mahmud U.; Shitta, Nyofo; Akinwumiju, Akinola S.

    2018-05-01

    As a result of dearth of relevant information about Landslides Susceptibility in Nigeria, the monitoring and assessment appears intractable. Hence, the study developed a Remote Sensing approach to mapping landslides susceptibility, landuse and landcover analysis in Jos South LGA, Plateau State, Nigeria. Field Observation, SPOT 5 2009 and 2012, ASTER DEM 2009, Geological Map 2006, Topographical Map 1966 were used to map Landslide Susceptibility and Landuse /Lancover Analysis in the study area. Geospatial Analytical Operations employed using ArcGIS 10.3 and Erdas Imagine 2014 include Spatial Modeling, Vectorization, Pre-lineament Extraction, Image Processing among others. Result showed that 72.38 % of the study area is underlain by granitic rocks. The landuse/cover types delineated for the study area include floodplain (29.27 %), farmland (23.96 %), sparsely vegetated land (15.43 %), built up area (13.65 %), vegetated outcrop (8.48 %), light vegetation (5.37 %), thick vegetation (2.39 %), water body (0.58 %), plantation (0.50 %) and mining pond (0.37 %). Landslide Susceptibility Analysis also revealed that 87 % of the study area is relatively at low to very low risk of landslide event. While only 13 % of the study area is at high to very high risk of landslide event. The study revealed that the susceptibility of landslide event is very low in the study area. However, possible landslide event in the hot spots could be pronounced and could destabilize the natural and man-made environmental systems of the study area.

  16. Skipper Richness (Hesperiidae) Along Elevational Gradients in Brazilian Atlantic Forest.

    PubMed

    Carneiro, E; Mielke, O H H; Casagrande, M M; Fiedler, K

    2014-02-01

    Hesperiidae are claimed to be a group of elusive butterflies that need major effort for sampling, thus being frequently omitted from tropical butterfly surveys. As no studies have associated species richness patterns of butterflies with environmental gradients of high altitudes in Brazil, we surveyed Hesperiidae ensembles in Serra do Mar along elevational transects (900-1,800 m above sea level) on three mountains. Transects were sampled 11-12 times on each mountain to evaluate how local species richness is influenced by mountain region, vegetation type, and elevational zones. Patterns were also analyzed for the subfamilies, and after disregarding species that exhibit hilltopping behavior. Species richness was evaluated by the observed richness, Jacknife2 estimator and Chao 1 estimator standardized by sample coverage. Overall, 155 species were collected, but extrapolation algorithms suggest a regional richness of about 220 species. Species richness was far higher in forest than in early successional vegetation or grassland. Richness decreased with elevation, and was higher on Anhangava mountain compared with the two others. Patterns were similar between observed and extrapolated Jacknife2 richness, but vegetation type and mountain richness became altered using sample coverage standardization. Hilltopping species were more easily detected than species that do not show this behavior; however, their inclusion did neither affect estimated richness nor modify the shape of the species accumulation curve. This is the first contribution to systematically study highland butterflies in southern Brazil where all records above 1,200 m are altitudinal extensions of the known geographical ranges of skipper species in the region.

  17. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.

    PubMed

    Qin, Haiming; Wang, Cheng; Zhao, Kaiguang; Xi, Xiaohuan

    2018-01-01

    Accurate estimation of the fraction of absorbed photosynthetically active radiation (fPAR) for maize canopies are important for maize growth monitoring and yield estimation. The goal of this study is to explore the potential of using airborne LiDAR and hyperspectral data to better estimate maize fPAR. This study focuses on estimating maize fPAR from (1) height and coverage metrics derived from airborne LiDAR point cloud data; (2) vegetation indices derived from hyperspectral imagery; and (3) a combination of these metrics. Pearson correlation analyses were conducted to evaluate the relationships among LiDAR metrics, hyperspectral metrics, and field-measured fPAR values. Then, multiple linear regression (MLR) models were developed using these metrics. Results showed that (1) LiDAR height and coverage metrics provided good explanatory power (i.e., R2 = 0.81); (2) hyperspectral vegetation indices provided moderate interpretability (i.e., R2 = 0.50); and (3) the combination of LiDAR metrics and hyperspectral metrics improved the LiDAR model (i.e., R2 = 0.88). These results indicate that LiDAR model seems to offer a reliable method for estimating maize fPAR at a high spatial resolution and it can be used for farmland management. Combining LiDAR and hyperspectral metrics led to better performance of maize fPAR estimation than LiDAR or hyperspectral metrics alone, which means that maize fPAR retrieval can benefit from the complementary nature of LiDAR-detected canopy structure characteristics and hyperspectral-captured vegetation spectral information.

  18. Application of decision tree for prediction of cutaneous leishmaniasis incidence based on environmental and topographic factors in Isfahan Province, Iran.

    PubMed

    Ramezankhani, Roghieh; Sajjadi, Nooshin; Nezakati Esmaeilzadeh, Roya; Jozi, Seyed Ali; Shirzadi, Mohammad Reza

    2018-05-08

    Cutaneous Leishmaniasis (CL) is a neglected tropical disease that continues to be a health problem in Iran. Nearly 350 million people are thought to be at risk. We investigated the impact of the environmental factors on CL incidence during the period 2007- 2015 in a known endemic area for this disease in Isfahan Province, Iran. After collecting data with regard to the climatic, topographic, vegetation coverage and CL cases in the study area, a decision tree model was built using the classification and regression tree algorithm. CL data for the years 2007 until 2012 were used for model construction and the data for the years 2013 until 2015 were used for testing the model. The Root Mean Square error and the correlation factor were used to evaluate the predictive performance of the decision tree model. We found that wind speeds less than 14 m/s, altitudes between 1234 and 1810 m above the mean sea level, vegetation coverage according to the normalized difference vegetation index (NDVI) less than 0.12, rainfall less than 1.6 mm and air temperatures higher than 30°C would correspond to a seasonal incidence of 163.28 per 100,000 persons, while if wind speed is less than 14 m/s, altitude less than 1,810 m and NDVI higher than 0.12, then the mean seasonal incidence of the disease would be 2.27 per 100,000 persons. Environmental factors were found to be important predictive variables for CL incidence and should be considered in surveillance and prevention programmes for CL control.

  19. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires

    PubMed Central

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I.

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire. PMID:27780249

  20. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Fagherazzi, S.; Nardin, W.; Woodcock, C. E.; Locatelli, S.; Rulli, M. C.; Pasquarella, V. J.

    2016-02-01

    Mangrove forests dominate many tropical coastlines and are one of the most bio-diverse and productive environments on Earth. However, little is known of the large scale dynamics of mangrove canopies and how they colonize intertidal areas. Here we focus on a fringe mangrove forest located in the Mekong delta, Vietnam, a fast prograding shoreline where mangroves are encroaching tidal flats. The spatial and temporal evolution of the mangrove canopy is studied using a time series of Landsat images spanning two decades as well as Shuttle Radar Topography Mission (SRTM) elevation data. Our results show that fast mangrove expansion is followed by an increase in Normalized Difference Vegetation Index (NDVI) in the newly established canopy. We observe two different dynamics of the mangrove fringe: near the mouth of the rivers where the fringe boundary is linear the canopy expands uniformly on the tidal flats with a high colonization rate and high NDVI values. Far from the river mouths the fringe boundary is highly irregular and mangroves expansion in characterized by sparse vegetated patches displaying low NDVI values. We conclude that high NDVI values and a regular vegetation-water interface are indicative of stable mangrove canopies undergoing expansion, and therefore of resilient coastlines. In the Mekong delta these area are more likely located near a river mouth.

  1. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires.

    PubMed

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.

  2. Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey.

    PubMed

    Evrendilek, Fatih; Gulbeyaz, Onder

    2008-09-01

    The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.

  3. Fish assemblages in coastal lagoons in land-uplift succession: The relative importance of local and regional environmental gradients

    NASA Astrophysics Data System (ADS)

    Snickars, Martin; Sandström, Alfred; Lappalainen, Antti; Mattila, Johanna; Rosqvist, Kajsa; Urho, Lauri

    2009-01-01

    The assemblages of young-of-the-year fish were studied in coastal lagoons in an archipelago with post-glacial land-uplift, which affects environmental gradients at local and regional scale, i.e. lagoon habitat isolation and archipelago position, respectively. The categorisation of 40 undisturbed lagoons into nine habitat types based on habitat isolation and archipelago position was supported by clear relationships with spring temperature and total fish abundance. Rutilus rutilus, breams ( Abramis/Blicca sp.) and Perca fluviatilis were the most abundant and frequently occurring species. The fish assemblage differed among the nine habitat types. Rutilus rutilus, P. fluviatilis and breams were discriminating species in the majority of habitat types with low physical harshness, whereas Alburnus alburnus and Gasterosteus aculeatus increased their contributions in habitat types with high physical harshness. Rutilus rutilus and breams were thus common in lagoons with high habitat isolation situated in the inner archipelago. These lagoons were characterised by warm water and high vegetation coverage. Gasterosteus aculeatus was restricted to lagoons with low habitat isolation and exposure and low vegetation coverage, situated in the outer archipelago. Perca fluviatilis had the widest distribution of all species. The coverage of two macrophytes, Potamogeton perfoliatus and Zannichellia palustris, and salinity matched best the distance among habitat types. These habitat characteristics, as well as the fish abundances and assemblages differed most across the habitat types in the outer and mid archipelago zones and in the lowest habitat isolation. These patterns suggest that the structuring effect of habitat isolation increases along the archipelago gradient as differences between local and regional conditions increase. In the inner archipelago, overall low physical harshness induces homogeneous conditions and the habitat isolation is less important here than in the other zones. We suggest that this difference in the relative importance of the two gradients depending on the level of respective gradient ultimately forms these heterogeneous coastal habitats in a successional landscape. Rutilus rutilus and P. fluviatilis were responsible for large parts of the assemblage patterns. Although sympatric due to similar habitat requirements, differences in dispersal capability, competitive ability and predation vulnerability may add explanation to detected differences in distribution and abundance in these two species in an open system. Our results also stress the structuring role of vegetation in terms of total coverage and species composition, as these two aspects of macrophyte diversity may act as complementary habitat modifiers across gradients of physical harshness.

  4. Remote Sensing Monitoring Methods for Detecting Invasive Weed Coverage in Delta Waterways and Bay Marshlands

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2018-01-01

    This presentation is part of the Independent Science Board of the State of California Delta Stewardship Council brown bag seminar series on the "How the Delta is Monitored", followed with a panel discussion. Various remote sensing approaches for aquatic vegetation will be reviewed. Key research and application issues with remote sensing monitoring in the Delta will be addressed.

  5. Golden trout habitat selection and movement patterns in degraded and recovering sites within the Golden Trout Wilderness, California

    Treesearch

    K.R. Matthews

    1996-01-01

    Abstract.—I used radio transmitters to determine habitat selection and movement patterns of California golden trout Oncorhynchus mykiss aguabonita in two areas defined by their different levels of habitat recovery in the Golden Trout Wilderness, California. Study areas were differentiated by the amount of streamside vegetation (low or high coverage of beaked sedge...

  6. Filling gaps in large ecological databases: consequences for the study of global-scale plant functional trait patterns

    NASA Astrophysics Data System (ADS)

    Schrodt, Franziska; Shan, Hanhuai; Fazayeli, Farideh; Karpatne, Anuj; Kattge, Jens; Banerjee, Arindam; Reichstein, Markus; Reich, Peter

    2013-04-01

    With the advent of remotely sensed data and coordinated efforts to create global databases, the ecological community has progressively become more data-intensive. However, in contrast to other disciplines, statistical ways of handling these large data sets, especially the gaps which are inherent to them, are lacking. Widely used theoretical approaches, for example model averaging based on Akaike's information criterion (AIC), are sensitive to missing values. Yet, the most common way of handling sparse matrices - the deletion of cases with missing data (complete case analysis) - is known to severely reduce statistical power as well as inducing biased parameter estimates. In order to address these issues, we present novel approaches to gap filling in large ecological data sets using matrix factorization techniques. Factorization based matrix completion was developed in a recommender system context and has since been widely used to impute missing data in fields outside the ecological community. Here, we evaluate the effectiveness of probabilistic matrix factorization techniques for imputing missing data in ecological matrices using two imputation techniques. Hierarchical Probabilistic Matrix Factorization (HPMF) effectively incorporates hierarchical phylogenetic information (phylogenetic group, family, genus, species and individual plant) into the trait imputation. Advanced Hierarchical Probabilistic Matrix Factorization (aHPMF) on the other hand includes climate and soil information into the matrix factorization by regressing the environmental variables against residuals of the HPMF. One unique opportunity opened up by aHPMF is out-of-sample prediction, where traits can be predicted for specific species at locations different to those sampled in the past. This has potentially far-reaching consequences for the study of global-scale plant functional trait patterns. We test the accuracy and effectiveness of HPMF and aHPMF in filling sparse matrices, using the TRY database of plant functional traits (http://www.try-db.org). TRY is one of the largest global compilations of plant trait databases (750 traits of 1 million plants), encompassing data on morphological, anatomical, biochemical, phenological and physiological features of plants. However, despite of unprecedented coverage, the TRY database is still very sparse, severely limiting joint trait analyses. Plant traits are the key to understanding how plants as primary producers adjust to changes in environmental conditions and in turn influence them. Forming the basis for Dynamic Global Vegetation Models (DGVMs), plant traits are also fundamental in global change studies for predicting future ecosystem changes. It is thus imperative that missing data is imputed in as accurate and precise a way as possible. In this study, we show the advantages and disadvantages of applying probabilistic matrix factorization techniques in incorporating hierarchical and environmental information for the prediction of missing plant traits as compared to conventional imputation techniques such as the complete case and mean approaches. We will discuss the implications of using gap-filled data for global-scale studies of plant functional trait - environment relationship as opposed to the above-mentioned conventional techniques, using examples of out-of-sample predictions of foliar Nitrogen across several species' ranges and biomes.

  7. The influence of competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, Joe; Arora, Vivek

    2015-04-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the earth system modelling framework of the Canadian Centre for Climate Modelling and Analysis (CCCma). In its current framework, CTEM uses prescribed fractional coverage of plant functional types (PFTs) in each grid cell. In reality, vegetation cover is continually adjusting to changes in climate, atmospheric composition, and anthropogenic forcing, for example, through human-caused fires and CO2 fertilization. These changes in vegetation spatial patterns occur over timescales of years to centuries as tree migration is a slow process and vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM that includes a representation of competition between PFTs through a modified version of the Lotka-Volterra (L-V) predator-prey equations. The simulated areal extents of CTEM's seven non-crop PFTs are compared with available observation-based estimates, and simulations using unmodified L-V equations (similar to other models like TRIFFID), to demonstrate that the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. Differences remain, however, since representing the multitude of plant species with just seven non-crop PFTs only allows the large scale climatic controls on the distributions of PFTs to be captured. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model and the corresponding driving climate or the limited number of PFTs used to model the terrestrial ecosystem processes. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably with each other and observation-based estimates. These results illustrate that the parametrization of competition between PFTs in CTEM behaves in a reasonably realistic manner while the use of unmodified L-V equations results in unrealistic plant distributions.

  8. The Potential of Food Fortification to Add Micronutrients in Young Children and Women of Reproductive Age – Findings from a Cross-Sectional Survey in Abidjan, Côte d’Ivoire

    PubMed Central

    Rohner, Fabian; Leyvraz, Magali; Konan, Amoin G.; Esso, Lasme J. C. E.; Wirth, James P.; Norte, Augusto; Adiko, Adiko F.; Bonfoh, Bassirou; Aaron, Grant J.

    2016-01-01

    Poor micronutrient intakes are a major contributing factor to the high burden of micronutrient deficiencies in Côte d’Ivoire. Large-scale food fortification is considered a cost-effective approach to deliver micronutrients, and fortification of salt (iodine), wheat flour (iron and folic acid), and vegetable oil (vitamin A) is mandatory in Côte d’Ivoire. A cross-sectional survey on households with at least one child 6–23 months was conducted to update coverage figures with adequately fortified food vehicles in Abidjan, the capital of and largest urban community in Côte d’Ivoire, and to evaluate whether additional iron and vitamin A intake is sufficient to bear the potential to reduce micronutrient malnutrition. Information on demographics and food consumption was collected, along with samples of salt and oil. Wheat flour was sampled from bakeries and retailers residing in the selected clusters. In Abidjan, 86% and 97% of salt and vegetable oil samples, respectively, were adequately fortified, while only 32% of wheat flour samples were adequately fortified, but all samples contained some added iron. There were no major differences in additional vitamin A and iron intake between poor and non-poor households. For vitamin A in oil, the additional percentage of the recommended nutrient intake was 27% and 40% for children 6–23 months and women of reproductive age, respectively, while for iron from wheat flour, only 13% and 19% could be covered. Compared to previous estimates, coverage has remained stable for salt and wheat flour, but improved for vegetable oil. Fortification of vegetable oil clearly provides a meaningful additional amount of vitamin A. This is not currently the case for iron, due to the low fortification levels. Iron levels in wheat flour should be increased and monitored, and additional vehicles should be explored to add iron to the Ivorian diet. PMID:27384762

  9. Microseismic Monitoring Using Sparse Surface Network of Broadband Instruments: Western Canada Shale Play Case Study

    NASA Astrophysics Data System (ADS)

    Yenier, E.; Baturan, D.; Karimi, S.

    2016-12-01

    Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface network and the use of broadband instrumentation. The results indicate that sparse surface networks of high quality instruments can provide rich and reliable datasets for evaluation of the impact and effectiveness of hydraulic fracture operations in regions with favorable surface noise, local stress and attenuation characteristics.

  10. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less

  11. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus

    USGS Publications Warehouse

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin

    2017-01-01

    Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921–2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998–2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the “hiatus” period 1998–2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951–2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.

  12. Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data.

    PubMed

    Basu, Sumanta; Duren, William; Evans, Charles R; Burant, Charles F; Michailidis, George; Karnovsky, Alla

    2017-05-15

    Recent technological advances in mass spectrometry, development of richer mass spectral libraries and data processing tools have enabled large scale metabolic profiling. Biological interpretation of metabolomics studies heavily relies on knowledge-based tools that contain information about metabolic pathways. Incomplete coverage of different areas of metabolism and lack of information about non-canonical connections between metabolites limits the scope of applications of such tools. Furthermore, the presence of a large number of unknown features, which cannot be readily identified, but nonetheless can represent bona fide compounds, also considerably complicates biological interpretation of the data. Leveraging recent developments in the statistical analysis of high-dimensional data, we developed a new Debiased Sparse Partial Correlation algorithm (DSPC) for estimating partial correlation networks and implemented it as a Java-based CorrelationCalculator program. We also introduce a new version of our previously developed tool Metscape that enables building and visualization of correlation networks. We demonstrate the utility of these tools by constructing biologically relevant networks and in aiding identification of unknown compounds. http://metscape.med.umich.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. Late Pleistocene climate change and landscape dynamics in the Eastern Alps: the inner-alpine Unterangerberg record (Austria)

    PubMed Central

    Starnberger, Reinhard; Drescher-Schneider, Ruth; Reitner, Jürgen M.; Rodnight, Helena; Reimer, Paula J.; Spötl, Christoph

    2013-01-01

    Drill cores from the inner-alpine valley terrace of Unterangerberg, located in the Eastern Alps of Austria, offer first insights into a Pleistocene sedimentary record that was not accessible so far. The succession comprises diamict, gravel, sand, lignite and thick, fine grained sediments. Additionally, cataclastic deposits originating from two paleo-landslide events are present. Multi-proxy analyses including sedimentological and palynological investigations as well as radiocarbon and luminescence data record the onset of the last glacial period (Würmian) at Unterangerberg at ∼120–110 ka. This first time period, correlated to the MIS 5d, was characterised by strong fluvial aggradation under cold climatic conditions, with only sparse vegetation cover. Furthermore, two large and quasi-synchronous landslide events occurred during this time interval. No record of the first Early Würmian interstadial (MIS 5c) is preserved. During the second Early Würmian interstadial (MIS 5a), the local vegetation was characterised by a boreal forest dominated by Picea, with few thermophilous elements. The subsequent collapse of the vegetation is recorded by sediments dated to ∼70–60 ka (i.e. MIS 4), with very low pollen concentrations and the potential presence of permafrost. Climatic conditions improved again between ∼55 and 45 ka (MIS 3) and cold-adapted trees re-appeared during interstadials, forming an open forest vegetation. MIS 3 stadials were shorter and less severe than the MIS 4 at Unterangerberg, and vegetation during these cold phases was mainly composed of shrubs, herbs and grasses, similar to what is known from today's alpine timberline. The Unterangerberg record ended at ∼45 ka and/or was truncated by ice during the Last Glacial Maximum. PMID:23805019

  14. Vegetation-induced turbulence influencing evapotranspiration-soil moisture coupling: Implications for semiarid regions

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Kirchner, J. W.; Entekhabi, D.

    2016-12-01

    The relationship between soil moisture and evapotranspiration (ET) fluxes is an important component of land-atmosphere interactions controlling hydrology-climate feedback processes. Important as this relationship is, it remains empirical and physical mechanisms governing its dynamics are insufficiently studied. This is particularly of importance for semiarid regions (currently comprising about half of the Earth's land surface) where the shallow surface soil layer is the primary source of ET and direct evaporation from bare soil is likely a large component of the total flux. Hence, ET-soil moisture coupling in these regions is hypothesized to be strongly influenced by soil evaporation and associated mechanisms. Motivated by recent progress in mechanistic modeling of localized heat and mass exchange rates from bare soil surfaces covered by cylindrical bluff-body elements, we developed a physically based ET model explicitly incorporating coupled impacts of soil moisture and vegetation-induced turbulence in the near-surface region. Model predictions of ET and its partitioning were in good agreement with measured data and suggest that the strength and nature of ET-soil moisture interactions in sparsely vegetated areas are strongly influenced by aerodynamic (rather than radiative) forcing namely wind speed and near-surface turbulence generation as a function of vegetation type and cover fraction. The results demonstrated that the relationship between ET and soil moisture varies from a nonlinear function (the dual regime behavior) to a single moisture-limited regime (linear relationship) by increasing wind velocity and enhancing turbulence generation in the near-surface region (small-scale woody vegetation species of low cover fraction). Potential benefits of this study for improving accuracy and predictive capabilities of remote sensing techniques when applied to semiarid environments will also be discussed.

  15. The role of urban forest to reduce rain acid in urban industrial areas

    NASA Astrophysics Data System (ADS)

    Slamet, B.; Agustiarni, Y.; Hidayati; Basyuni, M.

    2018-03-01

    Urban forest has many functions mainly on improving the quality of the urban environment. One of the functions is to increase pH and reduce dangerous chemical content. The aim of the research is to find out the role of vegetation density of urban forest around the industrial area in reducing the acid rain. The condition of land cover was classified into four classes which are dense, medium, sparse and open area. The water of the throughfall and stemflow was taken from each type of land cover except in the open area. Parameters measured in this study are water acidity (pH), anion content (SO4 2- and NO3 -), cation content (Ca2+, Mg2+, and NH4 +) and electrical conductivity (EC). The results indicated that urban forest vegetation was able to increase the pH of rain water from 5.42 which is in an open area without vegetation to be 7.13 and 7.32 in dense and moderate vegetation cover by throughfall mechanism, respectively. Rain water acidity also decreased through stemflow mechanism with a pH ranged from 5.92 - 6.43. Urban forest vegetation decreased sulfate content (SO42-) from 528.67 mg/l in open area to 44 - 118 mg/l by throughfall mechanism and ranged from 90 to 366.67 mg/l through stemflow mechanism. Urban forest vegetation significantly decreased the rainwater nitrate content from 27 mg/l to 0.03 - 0.70 mg/l through the mechanism of throughfall and between 1.53 - 8.82 mg/l through the stemflow mechanism. Urban forest vegetation also increased the concentration of cations (NH4+, Ca2+, Mg2+, Na+) compared with open areas. Urban forest vegetation showed increased the electrical conductivity (EC) from 208.12 μmhos/cm to 344.67 - 902.17 μmhos/cm through the through fall mechanism and 937.67 - 1058.70 μmhos/cm through the stemflow mechanism. The study suggested that urban forests play a significant role in reducing rainwater acidity and improving the quality of rainwater that reached the soil surface.

  16. Cruciferous Vegetable Intake Is Inversely Associated with Lung Cancer Risk among Current Nonsmoking Men in the Japan Public Health Center (JPHC) Study.

    PubMed

    Mori, Nagisa; Shimazu, Taichi; Sasazuki, Shizuka; Nozue, Miho; Mutoh, Michihiro; Sawada, Norie; Iwasaki, Motoki; Yamaji, Taiki; Inoue, Manami; Takachi, Ribeka; Sunami, Ayaka; Ishihara, Junko; Sobue, Tomotaka; Tsugane, Shoichiro

    2017-05-01

    Background: Cruciferous vegetables, a rich source of isothiocyanates, have been reported to lower the risk of several types of cancer, including lung cancer. However, evidence from prospective observations of populations with a relatively high intake of cruciferous vegetables is sparse. Objective: We investigated the association between cruciferous vegetable intake and lung cancer risk in a large-scale population-based prospective study in Japan. Methods: We studied 82,330 participants (38,663 men; 43,667 women) aged 45-74 y without a past history of cancer. Participants were asked to respond to a validated questionnaire that included 138 food items. The association between cruciferous vegetable intake and lung cancer incidence was assessed with the use of Cox proportional hazard regression analysis to estimate HRs and 95% CIs (with adjustments for potential confounding factors). Results: After 14.9 y of follow-up, a total of 1499 participants (1087 men; 412 women) were diagnosed with lung cancer. After deleting early-diagnosed cancer and adjusting for confounding factors, we observed a nonsignificant inverse trend between cruciferous vegetable intake and lung cancer risk in men in the highest compared with the lowest quartiles (multivariate HR: 0.85; 95% CI: 0.69, 1.06; P -trend = 0.13). Stratified analysis by smoking status revealed a significant inverse association between cruciferous vegetable intake and lung cancer risk among those who were never smokers and those who were past smokers after deleting lung cancer cases in the first 3 y of follow-up [multivariate HR for never smokers: 0.49 (95% CI: 0.27, 0.87; P -trend = 0.04); multivariate HR for past smokers: 0.59 (95% CI: 0.35, 0.99; P -trend = 0.10)]. No association was noted in men who were current smokers and women who were never smokers. Conclusion: This study suggests that cruciferous vegetable intake may be associated with a reduction in lung cancer risk among men who are currently nonsmokers. © 2017 American Society for Nutrition.

  17. An Approach to Modeling the Water Balance Sensitivity to Landscape Vegetation Changes

    NASA Astrophysics Data System (ADS)

    Mohammed, I. N.; Tarboton, D. G.

    2008-12-01

    Watershed development and management require an understanding of how hydrological processes affect water balance components. The study of water resources management, especially in Western United States, is currently motivated by climate change, the impact of vegetation cover change on water production, and the need to manage water supplies. Vegetation management and its relation to runoff has been well documented, as reduction of forest cover, reducing evapotranspiration, increases water yield and in contrast the establishment of forest cover on sparsely vegetated land, increasing evapotranspiration, deceases water yield. This paper presents a water balance model developed to quantify the sensitivity of runoff production to changes in vegetation based on differences in evapotranspiration from different land cover types. The model is intended to provide a simple framework for estimating long term yield changes due to managed vegetation change. The model assumes that relative potential evapotranspiration from specific land cover can be quantified by a set of potential evapotranspiration coefficients for each land cover type. The model uses the Budyko curve to partition precipitation into evapotranspiration and runoff over the long term. Potential evapotranspiration is estimated from the Budyko curve for present conditions, then adjusted for land cover changes using the relative potential evapotranspiration coefficients for each land cover type. The adjusted potential evapotranspiration is then partitioned using the Budyko curve to provide estimates of long term runoff and evapotranspiration for the changed conditions. We found that the changes in runoff were in general close to being linearly proportional to the changes in land cover. In Utah study watersheds, reducing 50% of the present coniferous forests resulted in runoff increase that ranged from 0.5 to 38 mm/year, while the transition of 50% of area present as range/shrub/other to forest resulted in runoff decrease that ranged from 3.8 to 37 mm/year. The model helps to evaluate long term runoff production sensitivities to vegetation changes and answer, in a broad sense without requiring detailed information or modeling, how much runoff production could potentially be changed through vegetation management. The theoretical approach taken in this study is simple and general and could be applied to a wide range of watersheds.

  18. GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.

    2008-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.

  19. Improve EPA's AIRNow Air Quality Index Maps with NASA/NOAA Satellite Data

    NASA Astrophysics Data System (ADS)

    Pasch, A.; Zahn, P. H.; DeWinter, J. L.; Haderman, M. D.; White, J. E.; Dickerson, P.; Dye, T. S.; Martin, R. V.

    2011-12-01

    The U.S. Environmental Protection Agency's (EPA) AIRNow program provides maps of real-time hourly Air Quality Index (AQI) conditions and daily AQI forecasts nationwide (http://www.airnow.gov). The public uses these maps to make decisions concerning their respiratory health. The usefulness of the AIRNow air quality maps depends on the accuracy and spatial coverage of air quality measurements. Currently, the maps use only ground-based measurements, which have significant gaps in coverage in some parts of the United States. As a result, contoured AQI levels have high uncertainty in regions far from monitors. To improve the usefulness of air quality maps, scientists at EPA and Sonoma Technology, Inc. are working in collaboration with the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and university researchers on a project to incorporate additional measurements into the maps via the AIRNow Satellite Data Processor (ASDP). These measurements include estimated surface PM

  20. The impacts of the dust radiative effect on vegetation growth in the Sahel

    NASA Astrophysics Data System (ADS)

    Evans, S. M.; Shevliakova, E.; Malyshev, S.; Ginoux, P. A.

    2017-12-01

    Many studies have been conducted on the effects of dust on rainfall in the Sahel, and generally show that African dust weakens the West African Monsoon, drying the region. This drying is often assumed to reduce vegetation cover for the region, providing a positive feedback with dust emission. There are, however, other competing effects of dust that are also important to plant growth, including a reduction in surface temperature, a reduction in downwelling solar radiation, and an increase in the diffuse fraction of that solar radiation. Using the NOAA/GFDL CM3 model coupled to the dynamic vegetation model LM3, we demonstrate that the combined effect of all these processes is to decrease the vegetation coverage and productivity of the Sahel and West Africa. We accomplish this by comparing experiments with radiatively active dust to experiments with radiatively invisible dust. We find that in modern conditions, the dust radiative effect reduces the net primary productivity of West Africa and the Sahel by up to 30% locally, and when summed over the region accounts for a difference of approximately 0.4 GtC per year. Experiments where the vegetation experiences preindustrial rather than modern CO2 levels show that without carbon fertilization, this loss of productivity would be approximately 10% stronger. In contrast, during preindustrial conditions the vegetation response is less than half as strong, despite the dust induced rainfall and temperature anomalies being similar. We interpret this as the vegetation being less susceptible to drought in a less evaporative climate. These changes in vegetation create the possibility of a dust-vegetation feedback loop whose strength varies with the mean state of the climate, and which may grow stronger in the future.

  1. Estimation of Physical Parameters of a Multilayered Multi-Scale Vegetated Surface

    NASA Astrophysics Data System (ADS)

    Hosni, I.; Bennaceur Farah, L.; Naceur, M. S.; Farah, I. R.

    2016-06-01

    Soil moisture is important to enable the growth of vegetation in the way that it also conditions the development of plant population. Additionally, its assessment is important in hydrology and agronomy, and is a warning parameter for desertification. Furthermore, the soil moisture content affects exchanges with the atmosphere via the energy balance at the soil surface; it is significant due to its impact on soil evaporation and transpiration. Therefore, it conditions the energy transfer between Earth and atmosphere. Many remote sensing methods were tested. For the soil moisture; the first methods relied on the optical domain (short wavelengths). Obviously, due to atmospheric effects and the presence of clouds and vegetation cover, this approach is doomed to fail in most cases. Therefore, the presence of vegetation canopy complicates the retrieval of soil moisture because the canopy contains moisture of its own. This paper presents a synergistic methodology of SAR and optical remote sensing data, and it's for simulation of statistical parameters of soil from C-band radar measurements. Vegetation coverage, which can be easily estimated from optical data, was combined in the backscattering model. The total backscattering was divided into the amount attributed to areas covered with vegetation and that attributed to areas of bare soil. Backscattering coefficients were simulated using the established backscattering model. A two-dimensional multiscale SPM model has been employed to investigate the problem of electromagnetic scattering from an underlying soil. The water cloud model (WCM) is used to account for the effect of vegetation water content on radar backscatter data, whereof to eliminate the impact of vegetation layer and isolate the contributions of vegetation scattering and absorption from the total backscattering coefficient.

  2. Contribution of climate and fires to vegetation composition in the boreal forest of China

    NASA Astrophysics Data System (ADS)

    Venevsky, S.; Wu, C.; Sitch, S.

    2017-12-01

    Climate is well known as an important determinant of biogeography. Although climate is directly important for vegetation composition in the boreal forests, these ecosystems are strongly sensitive to an indirect effect of climate via fire disturbance. However, the driving balance of fire disturbance and climate on composition is poorly understood. In this study we quantitatively analyzed their individual contributions for the boreal forests of the Heilongjiang province, China and their response to climate change using four warming scenarios (+1.5, 2, 3, and 4°C). This study employs the statistical methods of Redundancy Analysis (RDA) and variation partitioning combined with simulation results from a Dynamic Global Vegetation Model, SEVER-DGVM, and remote sensing datasets of global land cover (GLC2000) and the Global Fire Emissions Database (GFED3). Results show that the vegetation distribution for the present day is mainly determined directly by climate (35%) rather than fire (1%-10.9%). However, with a future global warming of 1.5°C, local vegetation composition will be determined by fires rather than climate (36.3% > 29.3%). Above a 1.5°C warming, temperature will be more important than fires in regulating vegetation distribution although other factors like precipitation can also contribute. The spatial pattern in vegetation composition over the region, as evaluated by Moran's Eigenvector Map (MEM), has a significant impact on local vegetation coverage, i.e. composition at any individual location is highly related to that in its neighborhood. It represents the largest contribution to vegetation distribution in all scenarios, but will not change the driving balance between climate and fires. Our results are highly relevant for forest and wildfires' management.

  3. Dispersion and Transport of Cryptosporidium Oocysts from Fecal Pats under Simulated Rainfall Events

    PubMed Central

    Davies, Cheryl M.; Ferguson, Christobel M.; Kaucner, Christine; Krogh, Martin; Altavilla, Nanda; Deere, Daniel A.; Ashbolt, Nicholas J.

    2004-01-01

    The dispersion and initial transport of Cryptosporidium oocysts from fecal pats were investigated during artificial rainfall events on intact soil blocks (1,500 by 900 by 300 mm). Rainfall events of 55 mm h−1 for 30 min and 25 mm h−1 for 180 min were applied to soil plots with artificial fecal pats seeded with approximately 107 oocysts. The soil plots were divided in two, with one side devoid of vegetation and the other left with natural vegetation cover. Each combination of event intensity and duration, vegetation status, and degree of slope (5° and 10°) was evaluated twice. Generally, a fivefold increase (P < 0.05) in runoff volume was generated on bare soil compared to vegetated soil, and significantly more infiltration, although highly variable, occurred through the vegetated soil blocks (P < 0.05). Runoff volume, event conditions (intensity and duration), vegetation status, degree of slope, and their interactions significantly affected the load of oocysts in the runoff. Surface runoff transported from 100.2 oocysts from vegetated loam soil (25-mm h−1, 180-min event on 10° slope) to up to 104.5 oocysts from unvegetated soil (55-mm h−1, 30-min event on 10° slope) over a 1-m distance. Surface soil samples downhill of the fecal pat contained significantly higher concentrations of oocysts on devegetated blocks than on vegetated blocks. Based on these results, there is a need to account for surface soil vegetation coverage as well as slope and rainfall runoff in future assessments of Cryptosporidium transport and when managing pathogen loads from stock grazing near streams within drinking water watersheds. PMID:14766600

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, J.A.

    This report is a sequel to ORNL/CSD-96 in the ongoing supplements to Professor A.S. Householder's KWIC Index for Numerical Algebra. With this supplement, the coverage has been restricted to Numerical Linear Algebra and is now roughly characterized by the American Mathematical Society's classification section 15 and 65F but with little coverage of inifinite matrices, matrices over fields of characteristics other than zero, operator theory, optimization and those parts of matrix theory primarily combinatorial in nature. Some recognition is made of the uses of graph theory in Numerical Linear Algebra, particularly as regards their use in algorithms for sparse matrix computations.more » The period covered by this report is roughly the calendar year 1981 as measured by the appearance of the articles in the American Mathematical Society's Contents of Mathematical Publications. The review citations are limited to the Mathematical Reviews (MR) and Das Zentralblatt fur Mathematik und Ihre Grenzgebiete (ZBL). Future reports will be made more timely by closer ovservation of the few journals which supply the bulk of the listings rather than what appears to be too much reliance on secondary sources. Some thought is being given to the physical appearance of these reports and the author welcomes comments concerning both their appearance and contents.« less

  5. Global assimilation of X Project Loon stratospheric balloon observations

    NASA Astrophysics Data System (ADS)

    Coy, L.; Schoeberl, M. R.; Pawson, S.; Candido, S.; Carver, R. W.

    2017-12-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  6. Global Assimilation of X Project Loon Stratospheric Balloon Observations

    NASA Technical Reports Server (NTRS)

    Coy, Lawrence; Schoeberl, Mark R.; Pawson, Steven; Candido, Salvatore; Carver, Robert W.

    2017-01-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  7. Use of generalized regression tree models to characterize vegetation favoring Anopheles albimanus breeding.

    PubMed

    Hernandez, J E; Epstein, L D; Rodriguez, M H; Rodriguez, A D; Rejmankova, E; Roberts, D R

    1997-03-01

    We propose the use of generalized tree models (GTMs) to analyze data from entomological field studies. Generalized tree models can be used to characterize environments with different mosquito breeding capacity. A GTM simultaneously analyzes a set of predictor variables (e.g., vegetation coverage) in relation to a response variable (e.g., counts of Anopheles albimanus larvae), and how it varies with respect to a set of criterion variables (e.g., presence of predators). The algorithm produces a treelike graphical display with its root at the top and 2 branches stemming down from each node. At each node, conditions on the value of predictors partition the observations into subgroups (environments) in which the relation between response and criterion variables is most homogeneous.

  8. The WEPP Model Application in a Small Watershed in the Loess Plateau

    PubMed Central

    Han, Fengpeng; Ren, Lulu; Zhang, Xingchang; Li, Zhanbin

    2016-01-01

    In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83m3; sediment content is 0.097 t/m3, annual erosion sediment 8.057t and erosion intensity 0.288 t ha-1 yr-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau. PMID:26963704

  9. Assessment and prediction of land ecological environment quality change based on remote sensing-a case study of the Dongting lake area in China

    NASA Astrophysics Data System (ADS)

    Hu, Wenmin; Wang, Zhongcheng; Li, Chunhua; Zhao, Jin; Li, Yi

    2018-02-01

    Multi-source remote sensing data is rarely used for the comprehensive assessment of land ecologic environment quality. In this study, a digital environmental model was proposed with the inversion algorithm of land and environmental factors based on the multi-source remote sensing data, and a comprehensive index (Ecoindex) was applied to reconstruct and predict the land environment quality of the Dongting Lake Area to assess the effect of human activities on the environment. The main finding was that with the decrease of Grade I and Grade II quality had a decreasing tendency in the lake area, mostly in suburbs and wetlands. Atmospheric water vapour, land use intensity, surface temperature, vegetation coverage, and soil water content were the main driving factors. The cause of degradation was the interference of multi-factor combinations, which led to positive and negative environmental agglomeration effects. Positive agglomeration, such as increased rainfall and vegetation coverage and reduced land use intensity, could increase environmental quality, while negative agglomeration resulted in the opposite. Therefore, reasonable ecological restoration measures should be beneficial to limit the negative effects and decreasing tendency, improve the land ecological environment quality and provide references for macroscopic planning by the government.

  10. Effects of hydrologic connectivity and environmental nariables on nekton assemblage in a coastal marsh system

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Hydrologic connectivity and environmental variation can influence nekton assemblages in coastal ecosystems. We evaluated the effects of hydrologic connectivity (permanently connected pond: PCP; temporary connected pond: TCP), salinity, vegetation coverage, water depth and other environmental variables on seasonal nekton assemblages in freshwater, brackish, and saline marshes of the Chenier Plain, Louisiana, USA. We hypothesize that 1) nekton assemblages in PCPs have higher metrics (density, biomass, assemblage similarity) than TCPs within all marsh types and 2) no nekton species would be dominant across all marsh types. In throw traps, freshwater PCPs in Fall (36.0 ± 1.90) and Winter 2009 (43.2 ± 22.36) supported greater biomass than freshwater TCPs (Fall 2009: 9.1 ± 4.65; Winter 2009: 8.3 ± 3.42). In minnow traps, saline TCPs (5.9 ± 0.85) in Spring 2009 had higher catch per unit effort than saline PCPs (0.7 ± 0.67). Our data only partially support our first hypothesis as freshwater marsh PCPs had greater assemblage similarity than TCPs. As predicted by our second hypothesis, no nekton species dominated across all marsh types. Nekton assemblages were structured by individual species responses to the salinity gradient as well as pond habitat attributes (submerged aquatic vegetation coverage, dissolved oxygen, hydrologic connectivity).

  11. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery

    PubMed Central

    Marcello, Javier; Eugenio, Francisco; Perdomo, Ulises; Medina, Anabella

    2016-01-01

    The precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S) has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas). In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%). Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations related to the human activity and climate change. PMID:27706064

  12. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery.

    PubMed

    Marcello, Javier; Eugenio, Francisco; Perdomo, Ulises; Medina, Anabella

    2016-09-30

    The precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S) has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas). In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%). Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations related to the human activity and climate change.

  13. Impact of vegetation feedback at subseasonal & seasonal timescales on precipitation over North America

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Wang, G.

    2006-05-01

    Soil moisture-vegetation-precipitation feedbacks tend to enhance soil moisture memory in some areas of the globe, which contributes to the subseasonal and seasonal climate prediction skill. In this study, the impact of vegetation on precipitation over North America is investigated using a coupled land-atmosphere model CAM3- CLM3. The coupled model has been modified to include a predictive vegetation phenology scheme and validated against the MODIS data. Vegetation phenology is modeled by updating the leaf area index (LAI) daily in response to cumulative and concurrent hydrometeorological conditions. First, driven with the climatological SST, a large group of 5-member ensembles of simulations from the late spring and summer to the end of year are generated with the different initial conditions of soil moisture. The impact of initial soil moisture anomalies on subsequent precipitation is examined with the predictive vegetation phenology scheme disabled/enabled ("SM"/"SM_Veg" ensembles). The simulated climate differences between "SM" and "SM_Veg" ensembles represent the role of vegetation in soil moisture-vegetation- precipitation feedback. Experiments in this study focus on how the response of precipitation to initial soil moisture anomalies depends on their characteristics, including the timing, magnitude, spatial coverage and vertical depth, and further how it is modified by the interactive vegetation. Our results, for example, suggest that the impact of late spring soil moisture anomalies is not evident in subsequent precipitation until early summer when local convective precipitation dominates. With the summer wet soil moisture anomalies, vegetation tends to enhance the positive feedback between soil moisture and precipitation, while vegetation tends to suppress such positive feedback with the late spring anomalies. Second, the impact of vegetation feedback is investigated by driving the model with the inter-annually varying monthly SST (1983-1994). With the predictive vegetation phenology disabled/enabled ("SM"/"SM_Veg" ensembles), the simulated climates are compared with the observation. This will present the role of an interactive or predictive vegetation phenology scheme in subseasonal and seasonal climate prediction. Specifically, the extreme climate events such as drought in 1988 and flood in 1993 over the Midwestern United States will be the focus of results analyses.

  14. Floristic and vegetation successional processes within landslides in a Mediterranean environment.

    PubMed

    Neto, Carlos; Cardigos, Patrícia; Oliveira, Sérgio Cruz; Zêzere, José Luís

    2017-01-01

    Floristic and vegetation analysis in seven Mediterranean landslides led to the understanding of the successional processes occurring in different landslide disturbed sectors. Our study showed that in landslides that occurred between 1996 and 2010 there is a clear differentiation between the three main landslide sectors (scarp, main body and foot) concerning floristic composition, vegetation structure, floristic richness, successional processes and plant functional type. Additional differences were found between landslide areas and undisturbed agricultural areas adjacent to landslides. In this study 48 floristic relevés were made using a stratified random sampling design. The main landslide body exhibits the highest floristic richness whereas the landslide scarp has the lowest coverage rate and the highest presence of characteristic species from ruderal and strongly perturbed habitats. Finally, the landslide foot shows a late stage in the succession (maquis or pre-forest stage) with a high dominance of vines. We further discuss the importance of landslides as reservoirs of biodiversity especially for Mediterranean orchids. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Understorey vegetation along a heavy-metal pollution gradient in SW Finland.

    PubMed

    Salemaa, M; Vanha-Majamaa, I; Derome, J

    2001-01-01

    Understorey vegetation of Scots pine forests was studied along a 8-km transect running SE from a Cu-Ni smelter at Harjavalta, SW Finland. Long-term accumulation of heavy metals and sulphur in the forest ecosystem has drastically changed plant communities. Vegetation was almost absent up to a distance of 0.5 km from the smelter. The total coverage and the number of plant species increased with increasing distance from the smelter. Ordination by global non-metric multidimensional scaling (GNMDS) indicated that the floristic composition was differentiated in response to the pollution level. The main compositional gradient of GNMDS was correlated with the heavy metal concentrations in the organic soil layer and with the size of the overstorey trees. Vascular plants were more pollution-resistant than ground lichens, whereas mosses were the most sensitive plant group. In addition to heavy metals, nutrient imbalances and the considerably reduced water-holding capacity of the surface soil also restrict plant recolonisation on the degraded sites.

  16. Relative dating of Hawaiian lava flows using multispectral thermal infrared images - A new tool for geologic mapping of young volcanic terranes

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B.; Gillespie, Alan R.; Abbott, Elsa A.; Abrams, Michael J.; Walker, Richard E.

    1988-01-01

    The weathering of Hawaiian basalts in arid and semiarid environments is accompanied by changes in their thermal infrared emittance spectra. The spectral differences can be measured and mapped with multispectral imaging systems. The differences appear to be related to the degree of development, preservation, and alteration of glassy crusts; the oxidation of iron; and the accretion of silica-rich surface veneers. Because the measurements are quantitative and in image format, they are useful for estimating relative ages in geologic mapping of lava flows. In Hawaii this technique is most diagnostic for distinguishing among sparsely vegetated flows less than 1.5 ka in age.

  17. Soil Moisture Estimate under Forest using a Semi-empirical Model at P-Band

    NASA Astrophysics Data System (ADS)

    Truong-Loi, M.; Saatchi, S.; Jaruwatanadilok, S.

    2013-12-01

    In this paper we show the potential of a semi-empirical algorithm to retrieve soil moisture under forests using P-band polarimetric SAR data. In past decades, several remote sensing techniques have been developed to estimate the surface soil moisture. In most studies associated with radar sensing of soil moisture, the proposed algorithms are focused on bare or sparsely vegetated surfaces where the effect of vegetation can be ignored. At long wavelengths such as L-band, empirical or physical models such as the Small Perturbation Model (SPM) provide reasonable estimates of surface soil moisture at depths of 0-5cm. However for densely covered vegetated surfaces such as forests, the problem becomes more challenging because the vegetation canopy is a complex scattering environment. For this reason there have been only few studies focusing on retrieving soil moisture under vegetation canopy in the literature. Moghaddam et al. developed an algorithm to estimate soil moisture under a boreal forest using L- and P-band SAR data. For their studied area, double-bounce between trunks and ground appear to be the most important scattering mechanism. Thereby, they implemented parametric models of radar backscatter for double-bounce using simulations of a numerical forest scattering model. Hajnsek et al. showed the potential of estimating the soil moisture under agricultural vegetation using L-band polarimetric SAR data and using polarimetric-decomposition techniques to remove the vegetation layer. Here we use an approach based on physical formulation of dominant scattering mechanisms and three parameters that integrates the vegetation and soil effects at long wavelengths. The algorithm is a simplification of a 3-D coherent model of forest canopy based on the Distorted Born Approximation (DBA). The simplified model has three equations and three unknowns, preserving the three dominant scattering mechanisms of volume, double-bounce and surface for three polarized backscattering coefficients: σHH, σVV and σHV. The inversion process, which is not an ill-posed problem, uses the non-linear optimization method of Levenberg-Marquardt and estimates the three model parameters: vegetation aboveground biomass, average soil moisture and surface roughness. The model analytical formulation will be first recalled and sensitivity analyses will be shown. Then some results obtained with real SAR data will be presented and compared to ground estimates.

  18. Advances in soil erosion modelling through remote sensing data availability at European scale

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Karydas, Christos; Borrelli, Pasqualle; Ballabio, Cristiano; Meusburger, Katrin

    2014-08-01

    Under the European Union's Thematic Strategy for Soil Protection, the European Commission's Directorate-General for the Environment (DG Environment) has identified the mitigation of soil losses by erosion as a priority area. Policy makers call for an overall assessment of soil erosion in their geographical area of interest. They have asked that risk areas for soil erosion be mapped under present land use and climate conditions, and that appropriate measures be taken to control erosion within the legal and social context of natural resource management. Remote sensing data help to better assessment of factors that control erosion, such as vegetation coverage, slope length and slope angle. In this context, the data availability of remote sensing data during the past decade facilitates the more precise estimation of soil erosion risk. Following the principles of the Universal Soil Loss Equation (USLE), various options to calculate vegetative cover management (C-factor) have been investigated. The use of the CORINE Land Cover dataset in combination with lookup table values taken from the literature is presented as an option that has the advantage of a coherent input dataset but with the drawback of static input. Recent developments in the Copernicus programme have made detailed datasets available on land cover, leaf area index and base soil characteristics. These dynamic datasets allow for seasonal estimates of vegetation coverage, and their application in the G2 soil erosion model which represents a recent approach to the seasonal monitoring of soil erosion. The use of phenological datasets and the LUCAS land use/cover survey are proposed as auxiliary information in the selection of the best methodology.

  19. [Effects of highway on the vegetation species composition along a distance gradient from road edge in southeastern margin of Tengeer Desert].

    PubMed

    Feng, Li; Li, Xin-Rong; Guo, Qun; Zhang, Jing-Guang; Zhang, Zhi-Shan

    2011-05-01

    Aimed to examine the effects of highway on the vegetation species composition in arid desert area, forty-eight transects perpendicular to the provincial highway 201 from Shapotou to Jing-tai in the southeastern margin of Tengger Desert were installed, with the vegetation species distribution along a distance gradient from the road edge investigated. The results showed that with increasing distance from the road edge, the species number, coverage, biomass, and alpha-diversity of herbaceous plants declined, but had no significant differences with the control beyond 5 m. Within 0-6 m to the road edge, the herbaceous plant height was greater than that of the control, but their density had less change. Within 0-2 m to the road edge, the species turnover rate of herbaceous plants was lower; at 2-5m, this rate was the highest; while beyond 10 m, the species composition of herbaceous plants was similar to that of the control. The herbaceous plant community at the road edge was dominated by gramineous plants, with the disturbance-tolerant species Pennisetum centrasiaticum, Chloris virgata, and Agropyron cristatum accounting for 68.6% of the total. C. virgata beyond 1 m to the road edge had a rapid decrease in its individual number and presence frequency, P. centrasiaticum and A. cristatum beyond 2 m also showed a similar trend, while the composite plants Artemisia capillaris and A. frigida beyond 2 m from the road edge had a rapid increase in its individual number, accounting for 70% of the herbaceous plants. At the road edge, the coverage and density of shrubs were significantly lower than those of the control, but the species composition had no significant difference.

  20. USAID Expands eMODIS Coverage for Famine Early Warning

    NASA Astrophysics Data System (ADS)

    Jenkerson, C.; Meyer, D. J.; Evenson, K.; Merritt, M.

    2011-12-01

    Food security in countries at risk is monitored by U.S. Agency for International Development (USAID) through its Famine Early Warning Systems Network (FEWS NET) using many methods including Moderate Resolution Imaging Spectroradiometer (MODIS) data processed by U.S. Geological Survey (USGS) into eMODIS Normalized Difference Vegetation Index (NDVI) products. Near-real time production is used comparatively with trends derived from the eMODIS archive to operationally monitor vegetation anomalies indicating threatened cropland and rangeland conditions. eMODIS production over Central America and the Caribbean (CAMCAR) began in 2009, and processes 10-day NDVI composites every 5 days from surface reflectance inputs produced using predicted spacecraft and climatology information at Land and Atmosphere Near real time Capability for Earth Observing Systems (EOS) (LANCE). These expedited eMODIS composites are backed by a parallel archive of precision-based NDVI calculated from surface reflectance data ordered through Level 1 and Atmosphere Archive and Distribution System (LAADS). Success in the CAMCAR region led to the recent expansion of eMODIS production to include Africa in 2010, and Central Asia in 2011. Near-real time 250-meter products are available for each region on the last day of an acquisition interval (generally before midnight) from an anonymous file transfer protocol (FTP) distribution site (ftp://emodisftp.cr.usgs.gov/eMODIS). The FTP site concurrently hosts the regional historical collections (2000 to present) which are also searchable using the USGS Earth Explorer (http://edcsns17.cr.usgs.gov/NewEarthExplorer). As eMODIS coverage continues to grow, these geographically gridded, georeferenced tagged image file format (GeoTIFF) NDVI composites increase their utility as effective tools for operational monitoring of near-real time vegetation data against historical trends.

  1. Soil crusts to warm the planet

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin

    2016-04-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  2. Wolf Creek Research Basin Cold REgion Process Studies - 1992-2003

    NASA Astrophysics Data System (ADS)

    Janowicz, R.; Hedstrom, N.; Pomeroy, J.; Granger, R.; Carey, S.

    2004-12-01

    The development of hydrological models in northern regions are complicated by cold region processes. Sparse vegetation influences snowpack accumulation, redistribution and melt, frozen ground effects infiltration and runoff and cold soils in the summer effect evapotranspiration rates. Situated in the upper Yukon River watershed, the 195 km2 Wolf Creek Research Basin was instrumented in 1992 to calibrate hydrologic flow models, and has since evolved into a comprehensive study of cold region processes and linkages, contributing significantly to hydrological and climate change modelling. Studies include those of precipitation distribution, snowpack accumulation and redistribution, energy balance, snowmelt infiltration, and water balance. Studies of the spatial variability of hydrometeorological data demonstrate the importance of physical parameters on their distribution and control on runoff processes. Many studies have also identified the complex interaction of several of the physical parameters, including topography, vegetation and frozen ground (seasonal or permafrost) as important. They also show that there is a fundamental, underlying spatial structure to the watershed that must be adequately represented in parameterization schemes for scaling and watershed modelling. The specific results of numerous studies are presented.

  3. Scale-dependent feedbacks between patch size and plant reproduction in desert grassland

    USGS Publications Warehouse

    Svejcar, Lauren N.; Bestelmeyer, Brandon T.; Duniway, Michael C.; James, Darren K.

    2015-01-01

    Theoretical models suggest that scale-dependent feedbacks between plant reproductive success and plant patch size govern transitions from highly to sparsely vegetated states in drylands, yet there is scant empirical evidence for these mechanisms. Scale-dependent feedback models suggest that an optimal patch size exists for growth and reproduction of plants and that a threshold patch organization exists below which positive feedbacks between vegetation and resources can break down, leading to critical transitions. We examined the relationship between patch size and plant reproduction using an experiment in a Chihuahuan Desert grassland. We tested the hypothesis that reproductive effort and success of a dominant grass (Bouteloua eriopoda) would vary predictably with patch size. We found that focal plants in medium-sized patches featured higher rates of grass reproductive success than when plants occupied either large patch interiors or small patches. These patterns support the existence of scale-dependent feedbacks in Chihuahuan Desert grasslands and indicate an optimal patch size for reproductive effort and success in B. eriopoda. We discuss the implications of these results for detecting ecological thresholds in desert grasslands.

  4. Vegetation Health and Productivity Indicators for Sustained National Climate Assessments

    NASA Astrophysics Data System (ADS)

    Jones, M. O.; Running, S. W.

    2014-12-01

    The National Climate Assessment process is developing a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public. Implementing a 14 year record of Gross and Net Primary Productivity (GPP/NPP) derived from the NASA EOS MODIS satellite sensor we demonstrate how these products can serve as Ecosystem Productivity and Vegetation Health National Climate Indicators for implementation in sustained National Climate Assessments. The NPP product combines MODIS vegetation data with daily global meteorology to calculate annual growth of all plant material at 1 sq. km resolution. NPP anomalies identify regions with above or below average plant growth that may result from climate fluctuations and can inform carbon source/sink dynamics, agricultural and forestry yield measures, and response to wildfire or drought conditions. The GPP product provides a high temporal resolution (8-day) metric of vegetation growth which can be used to monitor short-term vegetation response to extreme events and implemented to derive vegetation phenology metrics; growing season start, end, and length, which can elucidate land cover and regionally specific vegetation responses to a changing climate. The high spatial resolution GPP and NPP indicators can also inform and clarify responses seen from other proposed Pilot Indicators such as forest growth/productivity, land cover, crop production, and phenology. The GPP and NPP data are in continuous production and will be sustained into the future with the next generation satellite missions. The long-term Ecosystem Productivity and Vegetation Health Indicators are ideal for use in sustained National Climate Assessments, providing regionally specific responses to a changing climate and complete coverage at the national scale.

  5. Study of Maowusu Sandy Land Vegetation Coverage Change Based on Modis Ndvi

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Liu, H.; Lin, Y.; Han, R.

    2018-04-01

    This paper selected 2006-2016 MODIS NDVI data with a spatial resolution of 500m and time resolution of 16d, got the 11 years' time series NDVI data of Maowusu sandy land through mosaicking, projection transformation, cutting process in batch. Analysed the spatial and temporal distribution and variation characteristics of vegetation cover in year, season and month time scales by maximum value composite, and unary linear regression analysis. Then, we combined the meteorological data of 33 sites around the sandy area, analysed the response characteristics of vegetation cover change to temperature and precipitation through Pearson correlation coefficient. Studies have shown that: (1) The NDVI value has a stable increase trend, which rate is 0.0075 / a. (2) The vegetation growth have significantly difference in four seasons, the NDVI value of summer > autumn > spring > winter. (3) The NDVI value change trend is conformed to the gauss normal distribution in a year, and it comes to be largest in August, its green season is in April, and yellow season is in the middle of November, the growth period is about 220 d. (4) The vegetation has a decreasing trend from the southeast to the northwest, most part is slightly improved, and Etuokeqianqi improved significantly. (5) The correlation indexes of annual NDVI with temperature and precipitation are -0.2178 and 0.6309, the vegetation growth is mainly affected by precipitation. In this study, a complete vegetation cover analysis and evaluation model for sandy land is established. It has important guiding significance for the sand ecological environment protection.

  6. Spatialization of instantaneous and daily average net radiation and soil heat flux in the territory of Itaparica, Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Lopes, Helio L.; Silva, Bernardo B.; Teixeira, Antônio H. C.; Accioly, Luciano J. O.

    2012-09-01

    This work has as aim to quantify the energy changes between atmosphere and surface by modeling both net radiation and soil heat flux related to land use and cover. The methodology took into account modeling and mapping of physical and biophysical parameters using MODIS images and SEBAL algorithm in an area of native vegetation and irrigated crops. The results showed that there are variations in the values of the estimated parameters for different land cover types and mainly in caatinga cover. The dense caatinga presents mean values of soil heat flux (Go) of 124.9 Wm-2 while sparse caatinga with incidence of erosion, present average value of 132.6 Wm-2. For irrigated plots cultivated with banana, coconut, and papaya the mean Go values were 103.8, 98.6, 113.9 Wm-2, respectively. With regard to the instantaneous net radiation (Rn), dense caatinga presented mean value of 626.1 Wm-2, while sparse caatinga a mean value of 575.2 Wm-2. Irrigated areas cultivated with banana, coconut, and papaya presented Rn of 658.1, 647.4 and 617.9 W m-2 respectively. Applying daily mean net radiation (RnDAve) it was found that dense caatinga had a mean value of 417.1 W m-2, while sparse caatinga had a mean value of 379.9 W m-2. For the irrigated crops of banana, coconut and papaya the RnDAve values were 430.9, 431.3 and 411.6 W m-2, respectively. Sinusoidal model can be applied to determine the maximum and RnDAve considering the diverse classes of LULC; however, there is a need to compare the results with field data for validation of this model.

  7. Transplantation of subalpine wood-pasture turfs along a natural climatic gradient reveals lower resistance of unwooded pastures to climate change compared to wooded ones.

    PubMed

    Gavazov, Konstantin; Spiegelberger, Thomas; Buttler, Alexandre

    2014-04-01

    Climate change could impact strongly on cold-adapted mountain ecosystems, but little is known about its interaction with traditional land-use practices. We used an altitudinal gradient to simulate a year-round warmer and drier climate for semi-natural subalpine grasslands across a landscape of contrasting land-use management. Turf mesocosms from three pasture-woodland land-use types-unwooded pasture, sparsely wooded pasture, and densely wooded pasture-spanning a gradient from high to low management intensity were transplanted downslope to test their resistance to two intensities of climate change. We found strong overall effects of intensive (+4 K) experimental climate change (i.e., warming and reduced precipitation) on plant community structure and function, while moderate (+2 K) climate change did not substantially affect the studied land-use types, thus indicating an ecosystem response threshold to moderate climate perturbation. The individual land-use types were affected differently under the +4 K scenario, with a 60% decrease in aboveground biomass (AGB) in unwooded pasture turfs, a 40% decrease in sparsely wooded pasture turfs, and none in densely wooded ones. Similarly, unwooded pasture turfs experienced a 30% loss of species, advanced (by 30 days) phenological development, and a mid-season senescence due to drought stress, while no such effects were recorded for the other land-use types. The observed contrasting effects of climate change across the pasture-woodland landscape have important implications for future decades. The reduced impact of climate change on wooded pastures as compared to unwooded ones should promote the sustainable land use of wooded pastures by maintaining low management intensity and a sparse forest canopy, which buffer the immediate impacts of climate change on herbaceous vegetation.

  8. Transverse and longitudinal variation in woody riparian vegetation along a montane river

    USGS Publications Warehouse

    Friedman, J.M.; Auble, G.T.; Andrews, E.D.; Kittel, G.; Madole, R.F.; Griffin, E.R.; Allred, Tyler M.

    2006-01-01

    This study explores how the relationship between flow and riparian vegetation varies along a montane river. We mapped occurrence of woody riparian plant communities along 58 km of the San Miguel River in southwestern Colorado. We determined the recurrence interval of inundation for each plant community by combining step-backwater hydraulic modeling at 4 representative reaches with Log-Pearson analysis of 4 stream gaging stations. Finally, we mapped bottomland surficial geology and used a Geographic Information System to overlay the coverages of geology and vegetation. Plant communities were distinctly arrayed along the hydrologic gradient. The Salix exigua Nuttall (sand-bar willow) community occurred mostly on surfaces with a recurrence interval of inundation shorter than 2.2 years; the Betula occidentalis Hooker (river birch) community peaked on sites with recurrence intervals of inundation between 2.2 and 4.6 years. The hydrologic position occupied by communities dominated by Populus angustifolia James (narrowleaf cottonwood) was strongly related to age of trees and species composition of understory shrubs. The fraction of riparian vegetation on surfaces historically inundated by the river decreased in the upstream direction from almost 100% near Uravan to <50% along the South Fork of the San Miguel River. In upstream reaches much of the physical disturbance necessary to maintain riparian vegetation is provided by valley-side processes including debris flows, floods from minor tributaries, landslides, and beaver activity. Where valley-side processes are important, prediction of riparian vegetation change based on alterations of river flow will be incomplete.

  9. Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Mesfin; Kifle, Demeke; Triest, Ludwig

    2017-12-01

    Understanding the biodiversity value of littoral zones of lakes is a priority for aquatic biodiversity conservation. However, less emphasis has been given to the littoral part of tropical African lakes, with many of the previous researches focusing only on the open water side. The aim of the present study was, therefore, to investigate the impact of the littoral zone of a shallow freshwater tropical lake (Ziway, Ethiopia), dominated by two emergent macrophytes, on zooplankton community structure. We hypothesized that the wetland vegetation serves as a preferred microhabitat for zooplankton communities. A lake with substantial coverage of emergent macrophytes was monitored monthly from January to August, 2016. The monitoring included the measurements of physical, chemical, and biological parameters. Sampling sites were selected to represent areas of the macrophyte vegetation ( Typha latifolia and Phragmites australis) and the open water part of the lake. Sites with macrophyte vegetation were found to be the home of more dense and diverse zooplankton community. However, during the period of high vegetation loss, the density of crustacean zooplankton showed significant reduction within the patches of macrophytes. From biodiversity conservation perspective, it was concluded that the preservation of such small areas of macrophytes covering the littoral zone of lakes could be as important as protecting the whole lake. However, the rapid degradation of wetland vegetation by human activities is a real threat to the lake ecosystem. In the not-too-far future, it could displace and evict riparian vegetation and the biota it supports.

  10. Waveform LiDAR processing: comparison of classic approaches and optimized Gold deconvolution to characterize vegetation structure and terrain elevation

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.

    2016-12-01

    Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: 1) direct decomposition, 2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from discrete LiDAR data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, < 0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, < 1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (< 1.01m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE.

  11. Meandering channels without vegetation: Examples from Nevada and Chile

    NASA Astrophysics Data System (ADS)

    Matsubara, Y.; Howard, A. D.; Burr, D. M.; Williams, R. M.; Moore, J. M.

    2012-12-01

    We report on a study motivated by the occurrence of highly sinuous, actively migrating paleochannels on Mars. Highly sinuous, unconfined meanders require small aspect ratios, which in turn require cohesive channel banks. This cohesion is obtained most commonly by vegetation cover coupled with high suspended sediment loading. The dominant role of vegetation in meandering is reflected in the difficulty in creating highly sinuous channels in flume experiment without introduction of vegetation. The occurrence of strongly meandering channels on Mars suggests meanders can develop in the absence of vegetation. The main objective of our study is to understand the processes of meander evolution in non-vegetated surfaces. We have studied two terrestrial sites in which meandering channels form where vegetation is sparse and has little influence on bank erodibility or point-bar deposition, indicating that there must be other mechanisms creating bank cohesion. One mechanism is stabilization of point-bar deposits by mud drapes. The Quinn River in Nevada is a sinuous channel that flows through fine lacustrine sediments on the floor of paleolake Lahontan resulting in the river having both bed and bank composed of sediment containing least 40% silt/clay. In addition to abundant mud, high salt content of the river water encourages flocculation and settling of fine sediment; thus both high clay/silt content and salt work together at the Quinn River to maintain a small aspect ratio. In contrast to the Quinn River, meandering channels on alluvial fans in the Atacama Desert in northern Chile are deposited by flows originating from the foothills of the Andes Mountains where sediments are coarser and more variable in size. Like Quinn River both fine sediments and salts contribute to meandering. The bank cohesion is provided by mudflows or hyperconcentrated flows creating bank drapes as well as extensive overbank levees which harden to adobe-like consistency. The Atacama Desert is rich in precipitated salts forming salt crusted deposits, and because grains are coarser, we speculate that these salts may possibly be playing a much more direct role in providing the cohesion than they do in the Quinn River. We are using chemical analyses and Scanning Electron Microscope (SEM) images of sediment samples to investigate cementation mechanisms.

  12. Assessing the relationship between microwave vegetation optical depth and gross primary production

    NASA Astrophysics Data System (ADS)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Liu, Yi Y.; Miralles, Diego G.; Parinussa, Robert; van der Schalie, Robin; Vreugdenhil, Mariette; Schwalm, Christopher R.; Tramontana, Gianluca; Camps-Valls, Gustau; Dorigo, Wouter A.

    2018-03-01

    At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time series than for ΔVOD or ΔVOD≥0 in case of sparsely to moderately vegetated areas and evergreen forests, while the opposite was true for deciduous forests. Results suggest that original VOD time series should be used jointly with changes in VOD for the estimation of GPP across biomes, which may further benefit from combining active and passive VOD data.

  13. Ecogeomorphology of semiarid rangelands: understanding and quantifying rates and feedbacks to prevent landscape degradation.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia; Azadi, Samira; Moreno-de las Heras, Mariano; Keesstra, Saskia

    2017-04-01

    In semiarid systems, hydrologic, geomorphic and ecological processes are tightly coupled through strong feedback mechanisms occurring across fine to coarse scales. These feedbacks have implications for equilibrium and resilience of the landscape and are particularly relevant for understanding the potential degradation effects of climate and anthropogenic pressures. The vegetation of these regions is sparse and often associated to the development and maintenance of spatially variable infiltration rates, with lower infiltration in the bare areas. These variable infiltration rates have been observed in many field studies and are responsible for the emergence of a runoff-runon system, and for the associated redistribution of water and sediments. We will present a modelling framework developed to understand the role of surface water connectivity in degradation processes in semiarid landscapes with patchy vegetation. Surface water connectivity in these systems is highly dynamic and emerges from non-linear feedbacks between vegetation patterns and the coevolving landforms. The model captures these feedbacks through the coupled nature of the processes included in the landform-vegetation modules. As increased surface runoff connectivity has been linked to degradation, we focus on evolving hydrologic connectivity patterns resulting from feedback effects and co-evolving structures. First, we will discuss some general results on the coevolution of semiarid rangelands, and the effects of varying abiotic and biotic conditions. Next we will present results in which we investigate changes in functional hydrologic connectivity, and the existence of tipping points as observed in several sites in Australia. These results are based on data from our recent studies along a precipitation gradient in the Mulga bioregion of Australia. The analysis from satellite images reveals a major role of surface connectivity on the spatial organization of patchy vegetation, suggesting that transitions on the distribution of vegetation leading to degradation are related to sharp variations on the landscape surface connectivity. Finally we will discuss results analysing the potential effect of soils depths on the coevolution of system structures and connectivity. The relevance and implications of these results for the successful reclamation of water-limited environments in which vegetation stability largely depends on the redistribution of the scarce water resources will be discussed.

  14. Vegetation history and climate variability since 1.3kaBP reconstructed from high-resolution multiproxy analysis of mountainous peat sediment, Southeast China

    NASA Astrophysics Data System (ADS)

    Ma, Chunmei; Cui, Anning; Fang, Yiman; Zhao, Lin; Jia, Yulian

    2017-04-01

    Climate change during the last two millennia is one of the most important focuses of the "Past Global Changes" (PAGES) initiative. In this study, vegetation history and climate variability since 1.3kaBP was reconstructed from high-resolution multiproxy analysis of mountainous peat sediment from the central part of a swamp in Jiangxi Province, China. 210Pb, 137Cs and AMS14C dating were used to build the age framework on the basis of Bacon model. Pollen, Humification degree (HD), Loss-on ignition (LOI), XRF scan elements and grain-size distribution were analyzed. During 637-800 AD, the vegetation combination consists of upland herbs taxa and scattered evergreen Quercus (Quercus E). However, the pollen concentration was very low, and plant genera were seldom. Since harsh environment is not conducive to pollen storage, vegetation condition reconstructed by pollen information cannot reflect real climate change. During the Medieval Warm Period (MWP, 800-1250 AD) vegetation is abundant through the entire period, Quercus E is the building group of the forest, Pinus and Castanopsis are sporadic. Upland herbs grew up vigorously in the lower part of forest. Peat began to accumulate in the basin high terrain, where wetland herbs grew vigorous. The climate during MWP was characterized by warm and wet, inside there were obvious secondary fluctuations. Dramatic vegetation changes were recorded during the Little Ice Age LIA,1340-1870 AD). The vegetation community was primarily dominated by Castanopsis, upland land herbs thrive; wetland herbs were sparse with great fluctuations depending on changes in the humidity. Overall, during LIA, temperature pattern was featured by "four cold period and three warm period", and humidity condition was experienced a process from drought to wet. Periodic analysis of the moisture proxy (PCA 1) and temperature indicator (E/D: evergreen/deciduous tree pollen) shows cyclic fluctuations of 150 years in the temperature and precipitation, which is corresponded to historical document records. Solar activity should be the fundamental force that drove the same-phase variation of the temperature and precipitation in this region.

  15. Modelling post-fire vegetation recovery in Portugal

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2011-05-01

    Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 yr (1998-2009), at 1 × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In what respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus Pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland-shrub, which tend to dominate the areas following the fire event.

  16. Modelling post-fire vegetation recovery in Portugal

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C. M.; Dacamara, C. C.; Trigo, R. M.

    2011-12-01

    Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 years (1998-2009), at 1 km × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland-shrub, which tend to dominate the areas following the fire event.

  17. Shore Vegetation of Lakes Oahe and Sakakawea, Mainstream Missouri River Reservoirs.

    DTIC Science & Technology

    1978-04-01

    Atriplex rosea, Polygonum ramosissimum, Thlaspi arvense and Xanthium strumarium were also important on ungrazed plots and were reduced or absent on grazed... strumarium were all important on ungrazed plots, and absent on grazed plots at Minnconjou. Melilotus spp. and Thlaspi arvense were also important on ungrazed...the increase in coverage with fertilization of Chenopodium album, from 0% to 75%, and in :125 Xanthium strumarium , from 14%to 28%, Melilotus s de

  18. A Vegetation Database for the Colorado River Ecosystem from Glen Canyon Dam to the Western Boundary of Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Ralston, Barbara E.; Davis, Philip A.; Weber, Robert M.; Rundall, Jill M.

    2008-01-01

    A vegetation database of the riparian vegetation located within the Colorado River ecosystem (CRE), a subsection of the Colorado River between Glen Canyon Dam and the western boundary of Grand Canyon National Park, was constructed using four-band image mosaics acquired in May 2002. A digital line scanner was flown over the Colorado River corridor in Arizona by ISTAR Americas, using a Leica ADS-40 digital camera to acquire a digital surface model and four-band image mosaics (blue, green, red, and near-infrared) for vegetation mapping. The primary objective of this mapping project was to develop a digital inventory map of vegetation to enable patch- and landscape-scale change detection, and to establish randomized sampling points for ground surveys of terrestrial fauna (principally, but not exclusively, birds). The vegetation base map was constructed through a combination of ground surveys to identify vegetation classes, image processing, and automated supervised classification procedures. Analysis of the imagery and subsequent supervised classification involved multiple steps to evaluate band quality, band ratios, and vegetation texture and density. Identification of vegetation classes involved collection of cover data throughout the river corridor and subsequent analysis using two-way indicator species analysis (TWINSPAN). Vegetation was classified into six vegetation classes, following the National Vegetation Classification Standard, based on cover dominance. This analysis indicated that total area covered by all vegetation within the CRE was 3,346 ha. Considering the six vegetation classes, the sparse shrub (SS) class accounted for the greatest amount of vegetation (627 ha) followed by Pluchea (PLSE) and Tamarix (TARA) at 494 and 366 ha, respectively. The wetland (WTLD) and Prosopis-Acacia (PRGL) classes both had similar areal cover values (227 and 213 ha, respectively). Baccharis-Salix (BAXX) was the least represented at 94 ha. Accuracy assessment of the supervised classification determined that accuracies varied among vegetation classes from 90% to 49%. Causes for low accuracies were similar spectral signatures among vegetation classes. Fuzzy accuracy assessment improved classification accuracies such that Federal mapping standards of 80% accuracies for all classes were met. The scale used to quantify vegetation adequately meets the needs of the stakeholder group. Increasing the scale to meet the U.S. Geological Survey (USGS)-National Park Service (NPS)National Mapping Program's minimum mapping unit of 0.5 ha is unwarranted because this scale would reduce the resolution of some classes (e.g., seep willow/coyote willow would likely be combined with tamarisk). While this would undoubtedly improve classification accuracies, it would not provide the community-level information about vegetation change that would benefit stakeholders. The identification of vegetation classes should follow NPS mapping approaches to complement the national effort and should incorporate the alternative analysis for community identification that is being incorporated into newer NPS mapping efforts. National Vegetation Classification is followed in this report for association- to formation-level categories. Accuracies could be improved by including more environmental variables such as stage elevation in the classification process and incorporating object-based classification methods. Another approach that may address the heterogeneous species issue and classification is to use spectral mixing analysis to estimate the fractional cover of species within each pixel and better quantify the cover of individual species that compose a cover class. Varying flights to capture vegetation at different times of the year might also help separate some vegetation classes, though the cost may be prohibitive. Lastly, photointerpretation instead of automated mapping could be tried. Photointerpretation would likely not improve accuracies in this case, howev

  19. Organization of an optimal adaptive immune system

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra; Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry

    The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from a diverse set of pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. I will discuss a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters and individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens. I will show that the optimal repertoires can be reached by dynamics that describes the competitive binding of antigens by receptors, and selective amplification of stimulated receptors.

  20. Using Remotely Sensed Soil Moisture to Estimate Fire Risk in Tropical Peatlands

    NASA Astrophysics Data System (ADS)

    Dadap, N.; Cobb, A.; Hoyt, A.; Harvey, C. F.; Konings, A. G.

    2017-12-01

    Tropical peatlands in Equatorial Asia have become more vulnerable to fire due to deforestation and peatland drainage over the last 30 years. In these regions, water table depth has been shown to play an important role in mediating fire risk as it serves as a proxy for peat moisture content. However, water table depth observations are sparse and expensive. Soil moisture could provide a more direct indicator of fire risk than water table depth. In this study, we use new soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite to demonstrate that - contrary to popular wisdom - remotely sensed soil moisture observations are possible over most Southeast Asian peatlands. Soil moisture estimation in this region was previously thought to be impossible over tropical peatlands because of dense vegetation cover. We show that vegetation density is sufficiently low across most Equatorial Asian peatlands to allow soil moisture estimation, and hypothesize that deforestation and other anthropogenic changes in land cover have combined to reduce overall vegetation density sufficient to allow soil moisture estimation. We further combine burned area estimates from the Global Fire Emissions Database and SMAP soil moisture retrievals to show that soil moisture provides a strong signal for fire risk in peatlands, with fires occurring at a much greater rate over drier soils. We will also develop an explicit fire risk model incorporating soil moisture with additional climatic, land cover, and anthropogenic predictor variables.

  1. Integration of aerial and satellite remote sensing for archaeological investigations: a case study of the Etruscan site of San Giovenale

    NASA Astrophysics Data System (ADS)

    Lasaponara, R.; Masini, N.; Holmgren, R.; Backe Forsberg, Y.

    2012-08-01

    The objective of this research is to detect and extract traces of past human activities on the Etruscan site of San Giovenale (Blera) in Northern Lazio, Italy. Investigations have been conducted by integrating high-resolution satellite data with digital models derived from LiDAR survey and multisensory aerial prospection (traditional, thermal and near infrared pictures). The use of different sensor technologies is requested to cope with (i) different types of surface covers, i.e. vegetated and non-vegetated areas (trees, bushes, agricultural uses, etc), (ii) variety of archaeological marks (micro-relief, crop marks, etc) and (iii) different types of expected spatial/spectral feature patterns linked to past human activities (urban necropoleis, palaeorivers, etc). Field surveys enabled us to confirm remotely sensed features which were detected in both densely and sparsely vegetated areas, thus revealing a large variety of cultural transformations, ritual and infrastructural remains such as roads, tombs and water installations. Our findings clearly point out a connection between the Vignale plateau and the main acropolis (San Giovenale) as well as with the surrounding burial grounds. Our results suggest that the synergic use of multisensory/multisource data sets, including ancillary information, provides a comprehensive overview of new findings. This facilitates the interpretation of various results obtained from different sensors when studied in a larger prospective.

  2. A Comparison of Soil Moisture Retrieval Models Using SIR-C Measurements over the Little Washita River Watershed

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Hsu, A.; Shi, J. C.; ONeill, P. E.; Engman, E. T.

    1997-01-01

    Six SIR-C L-band measurements over the Little Washita River watershed in Chickasha, Oklahoma during 11-17 April 1994 have been analyzed for studying the change of soil moisture in the region. Two algorithms developed recently for estimation of moisture content in bare soil were applied to these measurements and the results were compared with those sampled on the ground. There is a good agreement between the values of soil moisture estimated by either one of the algorithms and those measured from ground sampling for bare or sparsely vegetated fields. The standard error from this comparison is on the order of 0.05-0.06 cu cm/cu cm, which is comparable to that expected from a regression between backscattering coefficients and measured soil moisture. Both algorithms provide a poor estimation of soil moisture or fail to give solutions to areas covered with moderate or dense vegetation. Even for bare soils the number of pixels that bear no numerical solution from the application of either one of the two algorithms to the data is not negligible. Results from using one of these algorithms indicate that the fraction of these pixels becomes larger as the bare soils become drier. The other algorithm generally gives a larger fraction of these pixels when the fields are vegetation-covered. The implication and impact of these features are discussed in this article.

  3. Characterization of subarctic vegetation using ground based remote sensing methods

    NASA Astrophysics Data System (ADS)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from <0.0001 to 0.0461. A stepwise discriminant analysis on site type vs. texture yielded a 10% misclassification rate. Through the use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future work will involve scaling up from the 50 plots through the use of data collected from two unmanned aerial systems (UAS), as well as WorldView-2 satellite imagery collected during the years 2012-2014. Identification of methane flux regions will later be analyzed based on vegetation coverage to aid classification of increased emission zones within the mire.

  4. Analysing land cover and land use change in the Ruma National Park and surroundings in Kenya

    NASA Astrophysics Data System (ADS)

    Scharsich, Valeska; Ochuodho Otieno, Dennis; Bogner, Christina

    2017-04-01

    The change of land use and land cover (LULC) is often driven by the growth of human population. In the Lambwe valley, Kenya, the most important reason for accelerated settlement in the last decades was the control of the tsetse fly, the biological vector of trypanosomes. Since the huge efforts of tsetse control in the 1970s, the population of the Lambwe valley in Kenya increased rapidly and therefore the cultivated area expanded. This amplified the pressure on the forested areas at higher elevations and the Ruma National Park which occupies one third of the Lambwe valley. Here, we investigate possible effects of this pressure on the land cover in the Lambwe valley and in particular in the Ruma National Park. To answer this question, we analysed the surface reflectance of three Landsat images of Ruma National Park and its surroundings from 1984, 2002 and 2014. To compensate for the lack of ground data we inferred past land use and land cover from recent observations combining Google Earth images and change detection. By supervised classification with Random Forests, we identified four land use and land cover types, namely the forest dominant at the high elevation; dense shrub land; savanna; and sparsely covered soil including bare light soils with little vegetation, fields and settlements. Subsequently, we compared the three classifications and identified LULC changes that occurred between 1984 and 2014. We observed an increase of agricultural area in the western part of the Lambwe valley, where high elevation vegetation was dominant. This goes hand in hand with farming on higher slopes and a decrease of forest. In the National Park itself the savanna increased by about 8% and the proportion of sparsely covered soil decreased by about 10%. This might be due to the fire management in the park and the recovering of burned areas.

  5. Changes in arctic and boreal ecosystem productivity in response to changes in growing season length

    NASA Astrophysics Data System (ADS)

    Hmimina, G.; Yu, R.; Billesbach, D. P.; Huemmrich, K. F.; Gamon, J. A.

    2017-12-01

    Large-scale greening and browning trends have been reported in northern terrestrial ecosystems over the last two decades. The greening is interpreted as an increased productivity in response to increases in temperature. Boreal and arctic ecosystem productivity is expected to increase as the length of growing seasons increases, resulting in a bigger northern carbon sink pool. While evidences of such greening based on the use of remotely-sensed vegetation indices are compelling, analysis over the sparse network of flux tower sites available in northern latitudes paint a more complex story, and raise some issues as to whether vegetation indices based on NIR reflectance at large spatial scales are suited to the analysis of very fragmented landscapes that exhibit strong patterns in snow and standing water cover. In a broader sense, whether "greenness" is a sufficiently good proxy of ecosystem productivity in northern latitudes is unclear. The current work focused on deriving continuous estimates of ecosystem potential productivity and photosynthesis limitation over a network of flux towers, and on analyzing the relationships between potential yearly productivity and the length of the growing season over time and space. A novel partitioning method was used to derive ecophysiological parameters from sparse carbon fluxes measurements, and those parameters were then used to delimit the growing season and to estimate potential yearly productivity over a wide range of ecosystems. The relationships obtained between those two metrics were then computed for each of the 23 studied sites, exhibiting a wide range of different responses to changes in growing season length. While an overall significant increasing productivity trend was found (R²=0.12) suggesting increased productivity, the more northern sites exhibited a consistent decreasing trend (0.11 The attribution of these trends to either changes in potential productivity or productivity limitation by abiotic factors will be discussed, as well as the potential of extending this analysis over space by using remote-sensing data along with flux tower data.

  6. A Bayesian random effects discrete-choice model for resource selection: Population-level selection inference

    USGS Publications Warehouse

    Thomas, D.L.; Johnson, D.; Griffith, B.

    2006-01-01

    Modeling the probability of use of land units characterized by discrete and continuous measures, we present a Bayesian random-effects model to assess resource selection. This model provides simultaneous estimation of both individual- and population-level selection. Deviance information criterion (DIC), a Bayesian alternative to AIC that is sample-size specific, is used for model selection. Aerial radiolocation data from 76 adult female caribou (Rangifer tarandus) and calf pairs during 1 year on an Arctic coastal plain calving ground were used to illustrate models and assess population-level selection of landscape attributes, as well as individual heterogeneity of selection. Landscape attributes included elevation, NDVI (a measure of forage greenness), and land cover-type classification. Results from the first of a 2-stage model-selection procedure indicated that there is substantial heterogeneity among cow-calf pairs with respect to selection of the landscape attributes. In the second stage, selection of models with heterogeneity included indicated that at the population-level, NDVI and land cover class were significant attributes for selection of different landscapes by pairs on the calving ground. Population-level selection coefficients indicate that the pairs generally select landscapes with higher levels of NDVI, but the relationship is quadratic. The highest rate of selection occurs at values of NDVI less than the maximum observed. Results for land cover-class selections coefficients indicate that wet sedge, moist sedge, herbaceous tussock tundra, and shrub tussock tundra are selected at approximately the same rate, while alpine and sparsely vegetated landscapes are selected at a lower rate. Furthermore, the variability in selection by individual caribou for moist sedge and sparsely vegetated landscapes is large relative to the variability in selection of other land cover types. The example analysis illustrates that, while sometimes computationally intense, a Bayesian hierarchical discrete-choice model for resource selection can provide managers with 2 components of population-level inference: average population selection and variability of selection. Both components are necessary to make sound management decisions based on animal selection.

  7. Estimating vegetation vulnerability to detect areas prone to land degradation in the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Imbrenda, Vito; Coluzzi, Rosa; D'Emilio, Mariagrazia; Lanfredi, Maria; Simoniello, Tiziana

    2013-04-01

    Vegetation is one of the key components to study land degradation vulnerability because of the complex interactions and feedbacks that link it to soil. In the Mediterranean region, degradation phenomena are due to a mix of predisposing factors (thin soil horizons, low soil organic matter, increasing aridity, etc.) and bad management practices (overgrazing, deforestation, intensification of agriculture, tourism development). In particular, in areas threatened by degradation processes but still covered by vegetation, large scale soil condition evaluation is a hard task and the detection of stressed vegetation can be useful to identify on-going soil degradation phenomena and to reduce their impacts through interventions for recovery/rehabilitation. In this context the use of satellite time series can increase the efficacy and completeness of the land degradation assessment, providing precious information to understand vegetation dynamics. In order to estimate vulnerability levels in Basilicata (a Mediterranean region of Southern Italy) in the framework of PRO-LAND project (PO-FESR Basilicata 2007-2013), we crossed information on potential vegetation vulnerability with information on photosynthetic activity dynamics. Potential vegetation vulnerability represents the vulnerability related to the type of present cover in terms of fire risk, erosion protection, drought resistance and plant cover distribution. It was derived from an updated land cover map by separately analyzing each factor, and then by combining them to obtain concise information on the possible degradation exposure. The analysis of photosynthetic activity dynamics provides information on the status of vegetation, that is fundamental to discriminate the different vulnerability levels within the same land cover, i.e. the same potential vulnerability. For such a purpose, we analyzed a time series (2000-2010) of a satellite vegetation index (MODIS NDVI) with 250m resolution, available as 16-day composite from the NASA LP DAAC dataset. Vegetation activity trends were estimated and then normalized to the starting conditions to obtain the percentage variation (NDVI-PV) for the considered period. Information on the potential vulnerability and vegetation activity dynamics were classified into indexes and combined to obtain the final map of the actual vegetation vulnerability and to identify on-going degradation phenomena and priority sites within areas already compromised. As for the investigated area, this map shows a composite picture in which only a few values of high vulnerability are scattered along areas where medium-high vulnerability values generally prevail. Here, we singled out two kind of areas: one largely devoted to intensive agriculture, and other one mostly characterized by bare soils and sparse vegetation. On the contrary, a large part of natural and seminatural vegetation located along the Apennine chain does not show critical vulnerability values. By comparing the vegetation vulnerability map with the vulnerability map due to anthropic factors (pressure induced by agricultural and grazing activities, estimated by indicators derived from census data), we found correlation, confirming the anthropogenic cause of vulnerability and therefore the major role held by soil management in areas mainly devoted to intensive farming.

  8. Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experiencemore » temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.« less

  9. Evaluation and attribution of vegetation contribution to seasonal climate predictability

    NASA Astrophysics Data System (ADS)

    Catalano, Franco; Alessandri, Andrea; De Felice, Matteo

    2015-04-01

    The land surface model of EC-Earth has been modified to include dependence of vegetation densities on the Leaf Area Index (LAI), based on the Lambert-Beer formulation. Effective vegetation fractional coverage can now vary at seasonal and interannual time-scales and therefore affect biophysical parameters such as the surface roughness, albedo and soil field capacity. The modified model is used to perform a real predictability seasonal hindcast experiment. LAI is prescribed using a recent observational dataset based on the third generation GIMMS and MODIS satellite data. Hindcast setup is: 7 months forecast length, 2 start dates (1st May and 1st November), 10 members, 28 years (1982-2009). The effect of the realistic LAI prescribed from observation is evaluated with respect to a control experiment where LAI does not vary. Hindcast results demonstrate that a realistic representation of vegetation significantly improves the forecasts of temperature and precipitation. The sensitivity is particularly large for temperature during boreal winter over central North America and Central Asia. This may be attributed in particular to the effect of the high vegetation component on the snow cover. Summer forecasts are improved in particular for precipitation over Europe, Sahel, North America, West Russia and Nordeste. Correlation improvements depends on the links between targets (temperature and precipitation) and drivers (surface heat fluxes, albedo, soil moisture, evapotranspiration, moisture divergence) which varies from region to region.

  10. Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra

    PubMed Central

    Cundill, Sharon L.; van der Werff, Harald M. A.; van der Meijde, Mark

    2015-01-01

    The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field reflectance spectra of a grass covered dike (with varying vegetation condition). Index values for 48 indices were calculated for original narrow-band spectra and convolved data sets, and then compared. The indices Difference Vegetation Index (DVI), Global Environmental Monitoring Index (GEMI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI2) and Soil-Adjusted Vegetation Index (SAVI), which include the difference between the near-infrared and red bands, have values most similar to those of the original spectra across all 10 sensors (1:1 line mean 1:1R2 > 0.960 and linear trend mean ccR2 > 0.997). Additionally, relationships between the indices’ values and two quality indicators for grass covered dikes were compared to those of the original spectra. For the soil moisture indicator, indices that ratio bands performed better across sensors than those that difference bands, while for the dike cover quality indicator, both the choice of bands and their formulation are important. PMID:25781511

  11. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2012-01-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary energy fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  12. A Novel Tool Improves Existing Estimates of Recent Tuberculosis Transmission in Settings of Sparse Data Collection.

    PubMed

    Kasaie, Parastu; Mathema, Barun; Kelton, W David; Azman, Andrew S; Pennington, Jeff; Dowdy, David W

    2015-01-01

    In any setting, a proportion of incident active tuberculosis (TB) reflects recent transmission ("recent transmission proportion"), whereas the remainder represents reactivation. Appropriately estimating the recent transmission proportion has important implications for local TB control, but existing approaches have known biases, especially where data are incomplete. We constructed a stochastic individual-based model of a TB epidemic and designed a set of simulations (derivation set) to develop two regression-based tools for estimating the recent transmission proportion from five inputs: underlying TB incidence, sampling coverage, study duration, clustered proportion of observed cases, and proportion of observed clusters in the sample. We tested these tools on a set of unrelated simulations (validation set), and compared their performance against that of the traditional 'n-1' approach. In the validation set, the regression tools reduced the absolute estimation bias (difference between estimated and true recent transmission proportion) in the 'n-1' technique by a median [interquartile range] of 60% [9%, 82%] and 69% [30%, 87%]. The bias in the 'n-1' model was highly sensitive to underlying levels of study coverage and duration, and substantially underestimated the recent transmission proportion in settings of incomplete data coverage. By contrast, the regression models' performance was more consistent across different epidemiological settings and study characteristics. We provide one of these regression models as a user-friendly, web-based tool. Novel tools can improve our ability to estimate the recent TB transmission proportion from data that are observable (or estimable) by public health practitioners with limited available molecular data.

  13. A Novel Tool Improves Existing Estimates of Recent Tuberculosis Transmission in Settings of Sparse Data Collection

    PubMed Central

    Kasaie, Parastu; Mathema, Barun; Kelton, W. David; Azman, Andrew S.; Pennington, Jeff; Dowdy, David W.

    2015-01-01

    In any setting, a proportion of incident active tuberculosis (TB) reflects recent transmission (“recent transmission proportion”), whereas the remainder represents reactivation. Appropriately estimating the recent transmission proportion has important implications for local TB control, but existing approaches have known biases, especially where data are incomplete. We constructed a stochastic individual-based model of a TB epidemic and designed a set of simulations (derivation set) to develop two regression-based tools for estimating the recent transmission proportion from five inputs: underlying TB incidence, sampling coverage, study duration, clustered proportion of observed cases, and proportion of observed clusters in the sample. We tested these tools on a set of unrelated simulations (validation set), and compared their performance against that of the traditional ‘n-1’ approach. In the validation set, the regression tools reduced the absolute estimation bias (difference between estimated and true recent transmission proportion) in the ‘n-1’ technique by a median [interquartile range] of 60% [9%, 82%] and 69% [30%, 87%]. The bias in the ‘n-1’ model was highly sensitive to underlying levels of study coverage and duration, and substantially underestimated the recent transmission proportion in settings of incomplete data coverage. By contrast, the regression models’ performance was more consistent across different epidemiological settings and study characteristics. We provide one of these regression models as a user-friendly, web-based tool. Novel tools can improve our ability to estimate the recent TB transmission proportion from data that are observable (or estimable) by public health practitioners with limited available molecular data. PMID:26679499

  14. Neighborhood deprivation, vehicle ownership, and potential spatial access to a variety of fruits and vegetables in a large rural area in Texas.

    PubMed

    Sharkey, Joseph R; Horel, Scott; Dean, Wesley R

    2010-05-25

    There has been limited study of all types of food stores, such as traditional (supercenters, supermarkets, and grocery stores), convenience stores, and non-traditional (dollar stores, mass merchandisers, and pharmacies) as potential opportunities for purchase of fresh and processed (canned and frozen) fruits and vegetables, especially in small-town or rural areas. Data from the Brazos Valley Food Environment Project (BVFEP) are combined with 2000 U.S. Census data for 101 Census block groups (CBG) to examine neighborhood access to fruits and vegetables. BVFEP data included identification and geocoding of all food stores (n = 185) in six rural counties in Texas, using ground-truthed methods and on-site assessment of the availability and variety of fresh and processed fruits and vegetables in all food stores. Access from the population-weighted centroid of each CBG was measured using proximity (minimum network distance) and coverage (number of shopping opportunities) for a good selection of fresh and processed fruits and vegetables. Neighborhood inequalities (deprivation and vehicle ownership) and spatial access for fruits and vegetables were examined using Wilcoxon matched-pairs signed-rank test and multivariate regression models. The variety of fruits or vegetables was greater at supermarkets compared with grocery stores. Among non-traditional and convenience food stores, the largest variety was found at dollar stores. On average, rural neighborhoods were 9.9 miles to the nearest supermarket, 6.7 miles and 7.4 miles to the nearest food store with a good variety of fresh fruits and vegetables, respectively, and 4.7 miles and 4.5 miles to a good variety of fresh and processed fruits or vegetables. High deprivation or low vehicle ownership neighborhoods had better spatial access to a good variety of fruits and vegetables, both in the distance to the nearest source and in the number of shopping opportunities. Supermarkets and grocery stores are no longer the only shopping opportunities for fruits or vegetables. The inclusion of data on availability of fresh or processed fruits or vegetables in the measurements provides robust meaning to the concept of potential access in this large rural area.

  15. Regional climate and vegetation response to orbital forcing within the mid-Pliocene Warm Period: A study using HadCM3

    NASA Astrophysics Data System (ADS)

    Prescott, C. L.; Dolan, A. M.; Haywood, A. M.; Hunter, S. J.; Tindall, J. C.

    2018-02-01

    Regional climate and environmental variability in response to orbital forcing during interglacial events within the mid-Piacenzian (Pliocene) Warm Period (mPWP; 3.264-3.025 Ma) has been rarely studied using climate and vegetation models. Here we use climate and vegetation model simulations to predict changes in regional vegetation patterns in response to orbital forcing for four different interglacial events within the mPWP (Marine Isotope Stages (MIS) G17, K1, KM3 and KM5c). The efficacy of model-predicted changes in regional vegetation is assessed by reference to selected high temporal resolution palaeobotanical studies that are theoretically capable of discerning vegetation patterns for the selected interglacial stages. Annual mean surface air temperatures for the studied interglacials are between 0.4 °C to 0.7 °C higher than a comparable Pliocene experiment using modern orbital parameters. Increased spring/summer and reduced autumn/winter insolation in the Northern Hemisphere during MIS G17, K1 and KM3 enhances seasonality in surface air temperature. The two most robust and notable regional responses to this in vegetation cover occur in North America and continental Eurasia, where forests are replaced by more open-types of vegetation (grasslands and shrubland). In these regions our model results appear to be inconsistent with local palaeobotanical data. The orbitally driven changes in seasonal temperature and precipitation lead to a 30% annual reduction in available deep soil moisture (2.0 m from surface), a critical parameter for forest growth, and subsequent reduction in the geographical coverage of forest-type vegetation; a phenomenon not seen in comparable simulations of Pliocene climate and vegetation run with a modern orbital configuration. Our results demonstrate the importance of examining model performance under a range of realistic orbital forcing scenarios within any defined time interval (e.g. mPWP). Additional orbitally resolved records of regional vegetation are needed to further examine the validity of model-predicted regional climate and vegetation responses in greater detail.

  16. Neighborhood deprivation, vehicle ownership, and potential spatial access to a variety of fruits and vegetables in a large rural area in Texas

    PubMed Central

    2010-01-01

    Objective There has been limited study of all types of food stores, such as traditional (supercenters, supermarkets, and grocery stores), convenience stores, and non-traditional (dollar stores, mass merchandisers, and pharmacies) as potential opportunities for purchase of fresh and processed (canned and frozen) fruits and vegetables, especially in small-town or rural areas. Methods Data from the Brazos Valley Food Environment Project (BVFEP) are combined with 2000 U.S. Census data for 101 Census block groups (CBG) to examine neighborhood access to fruits and vegetables. BVFEP data included identification and geocoding of all food stores (n = 185) in six rural counties in Texas, using ground-truthed methods and on-site assessment of the availability and variety of fresh and processed fruits and vegetables in all food stores. Access from the population-weighted centroid of each CBG was measured using proximity (minimum network distance) and coverage (number of shopping opportunities) for a good selection of fresh and processed fruits and vegetables. Neighborhood inequalities (deprivation and vehicle ownership) and spatial access for fruits and vegetables were examined using Wilcoxon matched-pairs signed-rank test and multivariate regression models. Results The variety of fruits or vegetables was greater at supermarkets compared with grocery stores. Among non-traditional and convenience food stores, the largest variety was found at dollar stores. On average, rural neighborhoods were 9.9 miles to the nearest supermarket, 6.7 miles and 7.4 miles to the nearest food store with a good variety of fresh fruits and vegetables, respectively, and 4.7 miles and 4.5 miles to a good variety of fresh and processed fruits or vegetables. High deprivation or low vehicle ownership neighborhoods had better spatial access to a good variety of fruits and vegetables, both in the distance to the nearest source and in the number of shopping opportunities. Conclusion Supermarkets and grocery stores are no longer the only shopping opportunities for fruits or vegetables. The inclusion of data on availability of fresh or processed fruits or vegetables in the measurements provides robust meaning to the concept of potential access in this large rural area. PMID:20500853

  17. Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data

    PubMed Central

    Ran, Bin; Song, Li; Cheng, Yang; Tan, Huachun

    2016-01-01

    Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%. PMID:27448326

  18. Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data.

    PubMed

    Ran, Bin; Song, Li; Zhang, Jian; Cheng, Yang; Tan, Huachun

    2016-01-01

    Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.

  19. N-mixture models for estimating population size from spatially replicated counts

    USGS Publications Warehouse

    Royle, J. Andrew

    2004-01-01

    Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, i describe a class of models (n-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, n, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for n. Carroll and lombard (1985, journal of american statistical association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on n that is exploited by the n-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the n-mixture estimator compared to the caroll and lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.

  20. [Spatiotemporal dynamics of land cover in northern Tibetan Plateau with responses to climate change].

    PubMed

    Song, Chun-qiao; You, Song-cai; Ke, Ling-hong; Liu, Gao-huan; Zhong, Xin-ke

    2011-08-01

    By using the 2001-2008 MOMS land cover products (MCDl2Ql) and based on the modified classification scheme embodied the characteristics of land cover in northern Tibetan Plateau, the annual land cover type maps of the Plateau were drawn, with the dynamic changes of each land cover type analyzed by classification statistics, dynamic transfer matrix, and landscape pattern indices. In 2001-2008, due to the acceleration of global climate warming, the areas of glacier and snow-covered land in the Plateau decreased rapidly, and the melted snow water gathered into low-lying valley or basin, making the lake level raised and the lake area enlarged. Some permanent wetlands were formed because of partially submersed grassland. The vegetation cover did not show any evident meliorated or degraded trend. From 2001 to 2004, as the climate became warmer and wetter, the spatial distribution of desert began to shrink, and the proportions of sparse grassland and grassland increased. From 2006 to 2007, due to the warmer and drier climate, the desert bare land increased, and the sparse grassland decreased. From 2001 to 2008, both the landscape fragmentation degree and the land cover heterogeneity decreased, and the differences in the proportions of all land cover types somewhat enlarged.

Top