Sample records for sparsely connected ad

  1. Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's Disease diagnosis.

    PubMed

    Ortiz, Andrés; Munilla, Jorge; Álvarez-Illán, Ignacio; Górriz, Juan M; Ramírez, Javier

    2015-01-01

    Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people. Its development has been shown to be closely related to changes in the brain connectivity network and in the brain activation patterns along with structural changes caused by the neurodegenerative process. Methods to infer dependence between brain regions are usually derived from the analysis of covariance between activation levels in the different areas. However, these covariance-based methods are not able to estimate conditional independence between variables to factor out the influence of other regions. Conversely, models based on the inverse covariance, or precision matrix, such as Sparse Gaussian Graphical Models allow revealing conditional independence between regions by estimating the covariance between two variables given the rest as constant. This paper uses Sparse Inverse Covariance Estimation (SICE) methods to learn undirected graphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose (18F-FDG) Position Emission Tomography (PET) data and segmented Magnetic Resonance images (MRI), drawn from the ADNI database, for Control, MCI (Mild Cognitive Impairment Subjects), and AD subjects. Sparse computation fits perfectly here as brain regions usually only interact with a few other areas. The models clearly show different metabolic covariation patters between subject groups, revealing the loss of strong connections in AD and MCI subjects when compared to Controls. Similarly, the variance between GM (Gray Matter) densities of different regions reveals different structural covariation patterns between the different groups. Thus, the different connectivity patterns for controls and AD are used in this paper to select regions of interest in PET and GM images with discriminative power for early AD diagnosis. Finally, functional an structural models are combined to leverage the classification accuracy. The results obtained in this work show the usefulness of the Sparse Gaussian Graphical models to reveal functional and structural connectivity patterns. This information provided by the sparse inverse covariance matrices is not only used in an exploratory way but we also propose a method to use it in a discriminative way. Regression coefficients are used to compute reconstruction errors for the different classes that are then introduced in a SVM for classification. Classification experiments performed using 68 Controls, 70 AD, and 111 MCI images and assessed by cross-validation show the effectiveness of the proposed method.

  2. Connectivity Strength-Weighted Sparse Group Representation-Based Brain Network Construction for MCI Classification

    PubMed Central

    Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang

    2017-01-01

    Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l1-norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a “connectivity strength-weighted sparse group constraint.” In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. PMID:28150897

  3. Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification.

    PubMed

    Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang

    2017-05-01

    Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l 1 -norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a "connectivity strength-weighted sparse group constraint." In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. Hum Brain Mapp 38:2370-2383, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Modeling Alzheimer's disease cognitive scores using multi-task sparse group lasso.

    PubMed

    Liu, Xiaoli; Goncalves, André R; Cao, Peng; Zhao, Dazhe; Banerjee, Arindam

    2018-06-01

    Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by loss of memory and reduction in cognitive functions due to progressive degeneration of neurons and their connections, eventually leading to death. In this paper, we consider the problem of simultaneously predicting several different cognitive scores associated with categorizing subjects as normal, mild cognitive impairment (MCI), or Alzheimer's disease (AD) in a multi-task learning framework using features extracted from brain images obtained from ADNI (Alzheimer's Disease Neuroimaging Initiative). To solve the problem, we present a multi-task sparse group lasso (MT-SGL) framework, which estimates sparse features coupled across tasks, and can work with loss functions associated with any Generalized Linear Models. Through comparisons with a variety of baseline models using multiple evaluation metrics, we illustrate the promising predictive performance of MT-SGL on ADNI along with its ability to identify brain regions more likely to help the characterization Alzheimer's disease progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.

    PubMed

    Lee, Young-Beom; Lee, Jeonghyeon; Tak, Sungho; Lee, Kangjoo; Na, Duk L; Seo, Sang Won; Jeong, Yong; Ye, Jong Chul

    2016-01-15

    Recent studies of functional connectivity MR imaging have revealed that the default-mode network activity is disrupted in diseases such as Alzheimer's disease (AD). However, there is not yet a consensus on the preferred method for resting-state analysis. Because the brain is reported to have complex interconnected networks according to graph theoretical analysis, the independency assumption, as in the popular independent component analysis (ICA) approach, often does not hold. Here, rather than using the independency assumption, we present a new statistical parameter mapping (SPM)-type analysis method based on a sparse graph model where temporal dynamics at each voxel position are described as a sparse combination of global brain dynamics. In particular, a new concept of a spatially adaptive design matrix has been proposed to represent local connectivity that shares the same temporal dynamics. If we further assume that local network structures within a group are similar, the estimation problem of global and local dynamics can be solved using sparse dictionary learning for the concatenated temporal data across subjects. Moreover, under the homoscedasticity variance assumption across subjects and groups that is often used in SPM analysis, the aforementioned individual and group analyses using sparse dictionary learning can be accurately modeled by a mixed-effect model, which also facilitates a standard SPM-type group-level inference using summary statistics. Using an extensive resting fMRI data set obtained from normal, mild cognitive impairment (MCI), and Alzheimer's disease patient groups, we demonstrated that the changes in the default mode network extracted by the proposed method are more closely correlated with the progression of Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A sparse structure learning algorithm for Gaussian Bayesian Network identification from high-dimensional data.

    PubMed

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2013-06-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph--a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer's disease (AD) and reveal findings that could lead to advancements in AD research.

  7. A Sparse Structure Learning Algorithm for Gaussian Bayesian Network Identification from High-Dimensional Data

    PubMed Central

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2014-01-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph (DAG)—a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer’s disease (AD) and reveal findings that could lead to advancements in AD research. PMID:22665720

  8. Kanerva's sparse distributed memory: An associative memory algorithm well-suited to the Connection Machine

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1988-01-01

    The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.

  9. Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging.

    PubMed

    Schouten, Tijn M; Koini, Marisa; Vos, Frank de; Seiler, Stephan; Rooij, Mark de; Lechner, Anita; Schmidt, Reinhold; Heuvel, Martijn van den; Grond, Jeroen van der; Rombouts, Serge A R B

    2017-05-15

    Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity, and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to contribute towards reliable diagnosis of AD. We used diffusion MRI to classify AD patients (N=77), and controls (N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with probabilistic tractography, as well as graph measures based on these structural connectivity graphs. Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy clustered into ICA components was the best performing measure. These findings may be useful for future incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of AD using diffusion MRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    PubMed

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Sparse dictionary learning of resting state fMRI networks.

    PubMed

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  12. PRP: peripheral routing protocol for WSN realistic marginal mobility model

    NASA Astrophysics Data System (ADS)

    Tudorache, I. G.; Popescu, A. M.; Kemp, A. H.

    2017-02-01

    This article proposes a new routing protocol called Peripheral Routing Protocol (PRP) for the scenario where the mobile destination (D) moves at the wireless sensor network (WSN) periphery for gathering data. From a connectivity point of view, when D follows the marginal mobility model (MMM), the WSN becomes a hybrid network: a sparse network, because of the interrupted connectivity between D and the rest of the nodes and a well-connected network, because of the connectivity between all the other nodes of the WSN except D. It will be proven through MATLAB simulations that, for a military application scenario where D's connectivity to the WSN varies between 10% and 95%, compared with the 100% case, PRP outperforms routing protocols recommended for Mobile Ad-hoc Networks (MANET) in three ways: it maintains an average Packet Delivery Ratio (PDR) over 90%, a below 10% and 5% increase for the Average End to End Delay (AETED) and energy per transmitted packet.

  13. Contrasting Patterns of Cortical Input to Architectural Subdivisions of the Area 8 Complex: A Retrograde Tracing Study in Marmoset Monkeys

    PubMed Central

    Reser, David H.; Burman, Kathleen J.; Yu, Hsin-Hao; Chaplin, Tristan A.; Richardson, Karyn E.; Worthy, Katrina H.; Rosa, Marcello G.P.

    2013-01-01

    Contemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas. In contrast, areas 8aD and 8aV received the bulk of the projections from posterior parietal cortex and dorsal midline areas. In the frontal lobe, area 8aV received projections primarily from ventrolateral areas, while both 8aD and 8b received dense inputs from areas on the dorsolateral surface. Whereas area 8aD received the most significant auditory projections, these were relatively sparse, in comparison with those previously reported in macaques. Finally, area 8aV was distinct from both 8aD and 8b by virtue of its widespread input from the extrastriate visual areas. These results are compatible with a homologous organization of the prefrontal cortex in New and Old World monkeys, and suggest significant parallels between the present pathways, revealed by tract-tracing, and networks revealed by functional connectivity analysis in Old World monkeys and humans. PMID:22735155

  14. Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks: A Simple Model for the Collective Activity of Striatal Projection Neurons.

    PubMed

    Angulo-Garcia, David; Berke, Joshua D; Torcini, Alessandro

    2016-02-01

    Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We find that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson's and Huntington's diseases.

  15. Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules

    PubMed Central

    Sacramento, João; Wichert, Andreas; van Rossum, Mark C. W.

    2015-01-01

    It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L 1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum. PMID:26046817

  16. Normalization for sparse encoding of odors by a wide-field interneuron.

    PubMed

    Papadopoulou, Maria; Cassenaer, Stijn; Nowotny, Thomas; Laurent, Gilles

    2011-05-06

    Sparse coding presents practical advantages for sensory representations and memory storage. In the insect olfactory system, the representation of general odors is dense in the antennal lobes but sparse in the mushroom bodies, only one synapse downstream. In locusts, this transformation relies on the oscillatory structure of antennal lobe output, feed-forward inhibitory circuits, intrinsic properties of mushroom body neurons, and connectivity between antennal lobe and mushroom bodies. Here we show the existence of a normalizing negative-feedback loop within the mushroom body to maintain sparse output over a wide range of input conditions. This loop consists of an identifiable "giant" nonspiking inhibitory interneuron with ubiquitous connectivity and graded release properties.

  17. Population coding in sparsely connected networks of noisy neurons.

    PubMed

    Tripp, Bryan P; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.

  18. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.

    PubMed

    Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio

    2018-06-19

    Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.

  19. Sparsely-synchronized brain rhythm in a small-world neural network

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2013-07-01

    Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling ( i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and wiring cost.

  20. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.

    PubMed

    Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M

    2018-05-07

    A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.

  1. Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification

    PubMed Central

    Li, Yang; Wee, Chong-Yaw; Jie, Biao; Peng, Ziwen

    2014-01-01

    Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach. PMID:24595922

  2. Generative models for discovering sparse distributed representations.

    PubMed Central

    Hinton, G E; Ghahramani, Z

    1997-01-01

    We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations. PMID:9304685

  3. Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction

    PubMed Central

    Shen, Li; Qi, Yuan; Kim, Sungeun; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Saykin, Andrew J.

    2010-01-01

    We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures. PMID:20879451

  4. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.

    PubMed

    Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying

    2016-04-01

    As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sparse dictionary learning for resting-state fMRI analysis

    NASA Astrophysics Data System (ADS)

    Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul

    2011-09-01

    Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.

  6. A generative model of whole-brain effective connectivity.

    PubMed

    Frässle, Stefan; Lomakina, Ekaterina I; Kasper, Lars; Manjaly, Zina M; Leff, Alex; Pruessmann, Klaas P; Buhmann, Joachim M; Stephan, Klaas E

    2018-05-25

    The development of whole-brain models that can infer effective (directed) connection strengths from fMRI data represents a central challenge for computational neuroimaging. A recently introduced generative model of fMRI data, regression dynamic causal modeling (rDCM), moves towards this goal as it scales gracefully to very large networks. However, large-scale networks with thousands of connections are difficult to interpret; additionally, one typically lacks information (data points per free parameter) for precise estimation of all model parameters. This paper introduces sparsity constraints to the variational Bayesian framework of rDCM as a solution to these problems in the domain of task-based fMRI. This sparse rDCM approach enables highly efficient effective connectivity analyses in whole-brain networks and does not require a priori assumptions about the network's connectivity structure but prunes fully (all-to-all) connected networks as part of model inversion. Following the derivation of the variational Bayesian update equations for sparse rDCM, we use both simulated and empirical data to assess the face validity of the model. In particular, we show that it is feasible to infer effective connection strengths from fMRI data using a network with more than 100 regions and 10,000 connections. This demonstrates the feasibility of whole-brain inference on effective connectivity from fMRI data - in single subjects and with a run-time below 1 min when using parallelized code. We anticipate that sparse rDCM may find useful application in connectomics and clinical neuromodeling - for example, for phenotyping individual patients in terms of whole-brain network structure. Copyright © 2018. Published by Elsevier Inc.

  7. Detection of Alzheimer's disease using group lasso SVM-based region selection

    NASA Astrophysics Data System (ADS)

    Sun, Zhuo; Fan, Yong; Lelieveldt, Boudewijn P. F.; van de Giessen, Martijn

    2015-03-01

    Alzheimer's disease (AD) is one of the most frequent forms of dementia and an increasing challenging public health problem. In the last two decades, structural magnetic resonance imaging (MRI) has shown potential in distinguishing patients with Alzheimer's disease and elderly controls (CN). To obtain AD-specific biomarkers, previous research used either statistical testing to find statistically significant different regions between the two clinical groups, or l1 sparse learning to select isolated features in the image domain. In this paper, we propose a new framework that uses structural MRI to simultaneously distinguish the two clinical groups and find the bio-markers of AD, using a group lasso support vector machine (SVM). The group lasso term (mixed l1- l2 norm) introduces anatomical information from the image domain into the feature domain, such that the resulting set of selected voxels are more meaningful than the l1 sparse SVM. Because of large inter-structure size variation, we introduce a group specific normalization factor to deal with the structure size bias. Experiments have been performed on a well-designed AD vs. CN dataset1 to validate our method. Comparing to the l1 sparse SVM approach, our method achieved better classification performance and a more meaningful biomarker selection. When we vary the training set, the selected regions by our method were more stable than the l1 sparse SVM. Classification experiments showed that our group normalization lead to higher classification accuracy with fewer selected regions than the non-normalized method. Comparing to the state-of-art AD vs. CN classification methods, our approach not only obtains a high accuracy with the same dataset, but more importantly, we simultaneously find the brain anatomies that are closely related to the disease.

  8. Highly parallel sparse Cholesky factorization

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.

  9. Low-rank network decomposition reveals structural characteristics of small-world networks

    NASA Astrophysics Data System (ADS)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-12-01

    Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.

  10. Neighboring and connectivity-aware routing in VANETs.

    PubMed

    Ghafoor, Huma; Koo, Insoo; Gohar, Nasir-ud-Din

    2014-01-01

    A novel position-based routing protocol anchor-based connectivity-aware routing (ACAR) for vehicular ad hoc networks (VANETs) is proposed in this paper to ensure connectivity of routes with more successfully delivered packets. Both buses and cars are considered as vehicular nodes running in both clockwise and anticlockwise directions in a city scenario. Both directions are taken into account for faster communication. ACAR is a hybrid protocol, using both the greedy forwarding approach and the store-carry-and-forward approach to minimize the packet drop rate on the basis of certain assumptions. Our solution to situations that occur when the network is sparse and when any (source or intermediate) node has left its initial position makes this protocol different from those existing in the literature. We consider only vehicle-to-vehicle (V2V) communication in which both the source and destination nodes are moving vehicles. Also, no road-side units are considered. Finally, we compare our protocol with A-STAR (a plausible connectivity-aware routing protocol for city environments), and simulation results in NS-2 show improvement in the number of packets delivered to the destination using fewer hops. Also, we show that ACAR has more successfully-delivered long-distance packets with reasonable packet delay than A-STAR.

  11. Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Chen, Guowei; Itoh, Kenichi; Sato, Takuro

    Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.

  12. Synergistic growth studies of Entamoeba gingivalis using an Ecologen.

    PubMed

    Gannon, J T; Linke, H A

    1992-11-01

    A unique multiple diffusion growth chamber, an Ecologen, designed for the study of interactions among microorganisms, was introduced as a means of growing xenic cultures of Entamoeba gingivalis with Crithidia sp. or Yersinia enterocolitica. Entamoeba gingivalis was grown in the central diffusion reservoir of the Ecologen connected to separate growth chambers inoculated with the microorganisms to be evaluated. Growth of the accompanying bacteria in the E. gingivalis compartment was almost completely eliminated, except for sparse Pseudomonas sp. growth. The most vital E. gingivalis cultures were observed when either Crithidia sp. or Y. enterocolitica were added to the Ecologen 48 h prior to the E. gingivalis inoculum. The medium which provided the best growth of the oral protozoan in this system was the new improved E. gingivalis medium containing antibiotics.

  13. BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks

    PubMed Central

    Shen, Hong-Bin

    2011-01-01

    Modern science of networks has brought significant advances to our understanding of complex systems biology. As a representative model of systems biology, Protein Interaction Networks (PINs) are characterized by a remarkable modular structures, reflecting functional associations between their components. Many methods were proposed to capture cohesive modules so that there is a higher density of edges within modules than those across them. Recent studies reveal that cohesively interacting modules of proteins is not a universal organizing principle in PINs, which has opened up new avenues for revisiting functional modules in PINs. In this paper, functional clusters in PINs are found to be able to form unorthodox structures defined as bi-sparse module. In contrast to the traditional cohesive module, the nodes in the bi-sparse module are sparsely connected internally and densely connected with other bi-sparse or cohesive modules. We present a novel protocol called the BinTree Seeking (BTS) for mining both bi-sparse and cohesive modules in PINs based on Edge Density of Module (EDM) and matrix theory. BTS detects modules by depicting links and nodes rather than nodes alone and its derivation procedure is totally performed on adjacency matrix of networks. The number of modules in a PIN can be automatically determined in the proposed BTS approach. BTS is tested on three real PINs and the results demonstrate that functional modules in PINs are not dominantly cohesive but can be sparse. BTS software and the supporting information are available at: www.csbio.sjtu.edu.cn/bioinf/BTS/. PMID:22140454

  14. A robust holographic autofocusing criterion based on edge sparsity: comparison of Gini index and Tamura coefficient for holographic autofocusing based on the edge sparsity of the complex optical wavefront

    NASA Astrophysics Data System (ADS)

    Tamamitsu, Miu; Zhang, Yibo; Wang, Hongda; Wu, Yichen; Ozcan, Aydogan

    2018-02-01

    The Sparsity of the Gradient (SoG) is a robust autofocusing criterion for holography, where the gradient modulus of the complex refocused hologram is calculated, on which a sparsity metric is applied. Here, we compare two different choices of sparsity metrics used in SoG, specifically, the Gini index (GI) and the Tamura coefficient (TC), for holographic autofocusing on dense/connected or sparse samples. We provide a theoretical analysis predicting that for uniformly distributed image data, TC and GI exhibit similar behavior, while for naturally sparse images containing few high-valued signal entries and many low-valued noisy background pixels, TC is more sensitive to distribution changes in the signal and more resistive to background noise. These predictions are also confirmed by experimental results using SoG-based holographic autofocusing on dense and connected samples (such as stained breast tissue sections) as well as highly sparse samples (such as isolated Giardia lamblia cysts). Through these experiments, we found that ToG and GoG offer almost identical autofocusing performance on dense and connected samples, whereas for naturally sparse samples, GoG should be calculated on a relatively small region of interest (ROI) closely surrounding the object, while ToG offers more flexibility in choosing a larger ROI containing more background pixels.

  15. Interpretation of the Precision Matrix and Its Application in Estimating Sparse Brain Connectivity during Sleep Spindles from Human Electrocorticography Recordings

    PubMed Central

    Das, Anup; Sampson, Aaron L.; Lainscsek, Claudia; Muller, Lyle; Lin, Wutu; Doyle, John C.; Cash, Sydney S.; Halgren, Eric; Sejnowski, Terrence J.

    2017-01-01

    The correlation method from brain imaging has been used to estimate functional connectivity in the human brain. However, brain regions might show very high correlation even when the two regions are not directly connected due to the strong interaction of the two regions with common input from a third region. One previously proposed solution to this problem is to use a sparse regularized inverse covariance matrix or precision matrix (SRPM) assuming that the connectivity structure is sparse. This method yields partial correlations to measure strong direct interactions between pairs of regions while simultaneously removing the influence of the rest of the regions, thus identifying regions that are conditionally independent. To test our methods, we first demonstrated conditions under which the SRPM method could indeed find the true physical connection between a pair of nodes for a spring-mass example and an RC circuit example. The recovery of the connectivity structure using the SRPM method can be explained by energy models using the Boltzmann distribution. We then demonstrated the application of the SRPM method for estimating brain connectivity during stage 2 sleep spindles from human electrocorticography (ECoG) recordings using an 8 × 8 electrode array. The ECoG recordings that we analyzed were from a 32-year-old male patient with long-standing pharmaco-resistant left temporal lobe complex partial epilepsy. Sleep spindles were automatically detected using delay differential analysis and then analyzed with SRPM and the Louvain method for community detection. We found spatially localized brain networks within and between neighboring cortical areas during spindles, in contrast to the case when sleep spindles were not present. PMID:28095202

  16. Typicality Mediates Performance during Category Verification in Both Ad-Hoc and Well-Defined Categories

    ERIC Educational Resources Information Center

    Sandberg, Chaleece; Sebastian, Rajani; Kiran, Swathi

    2012-01-01

    Background: The typicality effect is present in neurologically intact populations for natural, ad-hoc, and well-defined categories. Although sparse, there is evidence of typicality effects in persons with chronic stroke aphasia for natural and ad-hoc categories. However, it is unknown exactly what influences the typicality effect in this…

  17. Bistability and up/down state alternations in inhibition-dominated randomly connected networks of LIF neurons.

    PubMed

    Tartaglia, Elisa M; Brunel, Nicolas

    2017-09-20

    Electrophysiological recordings in cortex in vivo have revealed a rich variety of dynamical regimes ranging from irregular asynchronous states to a diversity of synchronized states, depending on species, anesthesia, and external stimulation. The average population firing rate in these states is typically low. We study analytically and numerically a network of sparsely connected excitatory and inhibitory integrate-and-fire neurons in the inhibition-dominated, low firing rate regime. For sufficiently high values of the external input, the network exhibits an asynchronous low firing frequency state (L). Depending on synaptic time constants, we show that two scenarios may occur when external inputs are decreased: (1) the L state can destabilize through a Hopf bifucation as the external input is decreased, leading to synchronized oscillations spanning d δ to β frequencies; (2) the network can reach a bistable region, between the low firing frequency network state (L) and a quiescent one (Q). Adding an adaptation current to excitatory neurons leads to spontaneous alternations between L and Q states, similar to experimental observations on UP and DOWN states alternations.

  18. In-silico studies of neutral drift for functional protein interaction networks

    NASA Astrophysics Data System (ADS)

    Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    We have developed a minimal physically-motivated model of protein-protein interaction networks. Our system consists of two classes of enzymes, activators (e.g. kinases) and deactivators (e.g. phosphatases), and the enzyme-mediated activation/deactivation rates are determined by sequence-dependent binding strengths between enzymes and their targets. The network is evolved by introducing random point mutations in the binding sequences where we assume that each new mutation is either fixed or entirely lost. We apply this model to studies of neutral drift in networks that yield oscillatory dynamics, where we start, for example, with a relatively simple network and allow it to evolve by adding nodes and connections while requiring that dynamics be conserved. Our studies demonstrate both the importance of employing a sequence-based evolutionary scheme and the relative rapidity (in evolutionary time) for the redistribution of function over new nodes via neutral drift. Surprisingly, in addition to this redistribution time we discovered another much slower timescale for network evolution, reflecting hidden order in sequence space that we interpret in terms of sparsely connected domains.

  19. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  20. Joint association discovery and diagnosis of Alzheimer's disease by supervised heterogeneous multiview learning.

    PubMed

    Zhe, Shandian; Xu, Zenglin; Qi, Yuan; Yu, Peng

    2014-01-01

    A key step for Alzheimer's disease (AD) study is to identify associations between genetic variations and intermediate phenotypes (e.g., brain structures). At the same time, it is crucial to develop a noninvasive means for AD diagnosis. Although these two tasks-association discovery and disease diagnosis-have been treated separately by a variety of approaches, they are tightly coupled due to their common biological basis. We hypothesize that the two tasks can potentially benefit each other by a joint analysis, because (i) the association study discovers correlated biomarkers from different data sources, which may help improve diagnosis accuracy, and (ii) the disease status may help identify disease-sensitive associations between genetic variations and MRI features. Based on this hypothesis, we present a new sparse Bayesian approach for joint association study and disease diagnosis. In this approach, common latent features are extracted from different data sources based on sparse projection matrices and used to predict multiple disease severity levels based on Gaussian process ordinal regression; in return, the disease status is used to guide the discovery of relationships between the data sources. The sparse projection matrices not only reveal the associations but also select groups of biomarkers related to AD. To learn the model from data, we develop an efficient variational expectation maximization algorithm. Simulation results demonstrate that our approach achieves higher accuracy in both predicting ordinal labels and discovering associations between data sources than alternative methods. We apply our approach to an imaging genetics dataset of AD. Our joint analysis approach not only identifies meaningful and interesting associations between genetic variations, brain structures, and AD status, but also achieves significantly higher accuracy for predicting ordinal AD stages than the competing methods.

  1. Coherent periodic activity in excitatory Erdös-Renyi neural networks: the role of network connectivity.

    PubMed

    Tattini, Lorenzo; Olmi, Simona; Torcini, Alessandro

    2012-06-01

    In this article, we investigate the role of connectivity in promoting coherent activity in excitatory neural networks. In particular, we would like to understand if the onset of collective oscillations can be related to a minimal average connectivity and how this critical connectivity depends on the number of neurons in the networks. For these purposes, we consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erdös-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level, we observe two distinct dynamical phases: an asynchronous state corresponding to a desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous state, while PS emerges above a certain critical average connectivity (c). For sufficiently large networks, (c) saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous fully connected network for any γ-value. Apart for the peculiar exception of sparse networks, which remain intrinsically inhomogeneous at any system size.

  2. The storage capacity of Potts models for semantic memory retrieval

    NASA Astrophysics Data System (ADS)

    Kropff, Emilio; Treves, Alessandro

    2005-08-01

    We introduce and analyse a minimal network model of semantic memory in the human brain. The model is a global associative memory structured as a collection of N local modules, each coding a feature, which can take S possible values, with a global sparseness a (the average fraction of features describing a concept). We show that, under optimal conditions, the number cM of modules connected on average to a module can range widely between very sparse connectivity (high dilution, c_{M}/N\\to 0 ) and full connectivity (c_{M}\\to N ), maintaining a global network storage capacity (the maximum number pc of stored and retrievable concepts) that scales like pc~cMS2/a, with logarithmic corrections consistent with the constraint that each synapse may store up to a fraction of a bit.

  3. Implicit kernel sparse shape representation: a sparse-neighbors-based objection segmentation framework.

    PubMed

    Yao, Jincao; Yu, Huimin; Hu, Roland

    2017-01-01

    This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.

  4. Non-identical multiplexing promotes chimera states

    NASA Astrophysics Data System (ADS)

    Ghosh, Saptarshi; Zakharova, Anna; Jalan, Sarika

    2018-01-01

    We present the emergence of chimeras, a state referring to coexistence of partly coherent, partly incoherent dynamics in networks of identical oscillators, in a multiplex network consisting of two non-identical layers which are interconnected. We demonstrate that the parameter range displaying the chimera state in the homogeneous first layer of the multiplex networks can be tuned by changing the link density or connection architecture of the same nodes in the second layer. We focus on the impact of the interconnected second layer on the enlargement or shrinking of the coupling regime for which chimeras are displayed in the homogeneous first layer. We find that a denser homogeneous second layer promotes chimera in a sparse first layer, where chimeras do not occur in isolation. Furthermore, while a dense connection density is required for the second layer if it is homogeneous, this is not true if the second layer is inhomogeneous. We demonstrate that a sparse inhomogeneous second layer which is common in real-world complex systems can promote chimera states in a sparse homogeneous first layer.

  5. Sparse Modeling of Human Actions from Motion Imagery

    DTIC Science & Technology

    2011-09-02

    is here developed. Spatio-temporal features that char- acterize local changes in the image are rst extracted. This is followed by the learning of a...video comes from the optimal sparse linear com- bination of the learned basis vectors (action primitives) representing the actions. A low...computational cost deep-layer model learning the inter- class correlations of the data is added for increasing discriminative power. In spite of its simplicity

  6. Solving very large, sparse linear systems on mesh-connected parallel computers

    NASA Technical Reports Server (NTRS)

    Opsahl, Torstein; Reif, John

    1987-01-01

    The implementation of Pan and Reif's Parallel Nested Dissection (PND) algorithm on mesh connected parallel computers is described. This is the first known algorithm that allows very large, sparse linear systems of equations to be solved efficiently in polylog time using a small number of processors. How the processor bound of PND can be matched to the number of processors available on a given parallel computer by slowing down the algorithm by constant factors is described. Also, for the important class of problems where G(A) is a grid graph, a unique memory mapping that reduces the inter-processor communication requirements of PND to those that can be executed on mesh connected parallel machines is detailed. A description of an implementation on the Goodyear Massively Parallel Processor (MPP), located at Goddard is given. Also, a detailed discussion of data mappings and performance issues is given.

  7. Delay Analysis of Car-to-Car Reliable Data Delivery Strategies Based on Data Mulling with Network Coding

    NASA Astrophysics Data System (ADS)

    Park, Joon-Sang; Lee, Uichin; Oh, Soon Young; Gerla, Mario; Lun, Desmond Siumen; Ro, Won Woo; Park, Joonseok

    Vehicular ad hoc networks (VANET) aims to enhance vehicle navigation safety by providing an early warning system: any chance of accidents is informed through the wireless communication between vehicles. For the warning system to work, it is crucial that safety messages be reliably delivered to the target vehicles in a timely manner and thus reliable and timely data dissemination service is the key building block of VANET. Data mulling technique combined with three strategies, network codeing, erasure coding and repetition coding, is proposed for the reliable and timely data dissemination service. Particularly, vehicles in the opposite direction on a highway are exploited as data mules, mobile nodes physically delivering data to destinations, to overcome intermittent network connectivity cause by sparse vehicle traffic. Using analytic models, we show that in such a highway data mulling scenario the network coding based strategy outperforms erasure coding and repetition based strategies.

  8. BIRD: A general interface for sparse distributed memory simulators

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1990-01-01

    Kanerva's sparse distributed memory (SDM) has now been implemented for at least six different computers, including SUN3 workstations, the Apple Macintosh, and the Connection Machine. A common interface for input of commands would both aid testing of programs on a broad range of computer architectures and assist users in transferring results from research environments to applications. A common interface also allows secondary programs to generate command sequences for a sparse distributed memory, which may then be executed on the appropriate hardware. The BIRD program is an attempt to create such an interface. Simplifying access to different simulators should assist developers in finding appropriate uses for SDM.

  9. Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome.

    PubMed

    Pavlovic, Dragana M; Vértes, Petra E; Bullmore, Edward T; Schafer, William R; Nichols, Thomas E

    2014-01-01

    Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4-5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the "core-in-modules" decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems.

  10. Risperidone Effects on Brain Dynamic Connectivity-A Prospective Resting-State fMRI Study in Schizophrenia.

    PubMed

    Lottman, Kristin K; Kraguljac, Nina V; White, David M; Morgan, Charity J; Calhoun, Vince D; Butt, Allison; Lahti, Adrienne C

    2017-01-01

    Resting-state functional connectivity studies in schizophrenia evaluating average connectivity over the entire experiment have reported aberrant network integration, but findings are variable. Examining time-varying (dynamic) functional connectivity may help explain some inconsistencies. We assessed dynamic network connectivity using resting-state functional MRI in patients with schizophrenia, while unmedicated ( n  = 34), after 1 week ( n  = 29) and 6 weeks of treatment with risperidone ( n  = 24), as well as matched controls at baseline ( n  = 35) and after 6 weeks ( n  = 19). After identifying 41 independent components (ICs) comprising resting-state networks, sliding window analysis was performed on IC timecourses using an optimal window size validated with linear support vector machines. Windowed correlation matrices were then clustered into three discrete connectivity states (a relatively sparsely connected state, a relatively abundantly connected state, and an intermediately connected state). In unmedicated patients, static connectivity was increased between five pairs of ICs and decreased between two pairs of ICs when compared to controls, dynamic connectivity showed increased connectivity between the thalamus and somatomotor network in one of the three states. State statistics indicated that, in comparison to controls, unmedicated patients had shorter mean dwell times and fraction of time spent in the sparsely connected state, and longer dwell times and fraction of time spent in the intermediately connected state. Risperidone appeared to normalize mean dwell times after 6 weeks, but not fraction of time. Results suggest that static connectivity abnormalities in schizophrenia may partly be related to altered brain network temporal dynamics rather than consistent dysconnectivity within and between functional networks and demonstrate the importance of implementing complementary data analysis techniques.

  11. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOEpatents

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.

    2015-07-28

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.

  12. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  13. Comparing Neuropsychological Profiles between Girls with Asperger's Disorder and Girls with Learning Disabilities

    ERIC Educational Resources Information Center

    McKnight, Megan E.; Culotta, Vincent P.

    2012-01-01

    Research examining neuropsychological profiles of girls with Asperger's disorder (AD) is sparse. In this study, we sought to characterize neurocognitive profiles of girls with AD compared to girls with learning disabilities (LD). Two groups of school-age girls referred for neuropsychological assessment participated in the study. A total of 23…

  14. Sparse bursts optimize information transmission in a multiplexed neural code.

    PubMed

    Naud, Richard; Sprekeler, Henning

    2018-06-22

    Many cortical neurons combine the information ascending and descending the cortical hierarchy. In the classical view, this information is combined nonlinearly to give rise to a single firing-rate output, which collapses all input streams into one. We analyze the extent to which neurons can simultaneously represent multiple input streams by using a code that distinguishes spike timing patterns at the level of a neural ensemble. Using computational simulations constrained by experimental data, we show that cortical neurons are well suited to generate such multiplexing. Interestingly, this neural code maximizes information for short and sparse bursts, a regime consistent with in vivo recordings. Neurons can also demultiplex this information, using specific connectivity patterns. The anatomy of the adult mammalian cortex suggests that these connectivity patterns are used by the nervous system to maintain sparse bursting and optimal multiplexing. Contrary to firing-rate coding, our findings indicate that the physiology and anatomy of the cortex may be interpreted as optimizing the transmission of multiple independent signals to different targets. Copyright © 2018 the Author(s). Published by PNAS.

  15. Structured networks support sparse traveling waves in rodent somatosensory cortex.

    PubMed

    Moldakarimov, Samat; Bazhenov, Maxim; Feldman, Daniel E; Sejnowski, Terrence J

    2018-05-15

    Neurons responding to different whiskers are spatially intermixed in the superficial layer 2/3 (L2/3) of the rodent barrel cortex, where a single whisker deflection activates a sparse, distributed neuronal population that spans multiple cortical columns. How the superficial layer of the rodent barrel cortex is organized to support such distributed sensory representations is not clear. In a computer model, we tested the hypothesis that sensory representations in L2/3 of the rodent barrel cortex are formed by activity propagation horizontally within L2/3 from a site of initial activation. The model explained the observed properties of L2/3 neurons, including the low average response probability in the majority of responding L2/3 neurons, and the existence of a small subset of reliably responding L2/3 neurons. Sparsely propagating traveling waves similar to those observed in L2/3 of the rodent barrel cortex occurred in the model only when a subnetwork of strongly connected neurons was immersed in a much larger network of weakly connected neurons.

  16. Enhancing robustness of interdependent network by adding connectivity and dependence links

    NASA Astrophysics Data System (ADS)

    Cui, Pengshuai; Zhu, Peidong; Wang, Ke; Xun, Peng; Xia, Zhuoqun

    2018-05-01

    Enhancing robustness of interdependent networks by adding connectivity links has been researched extensively, however, few of them are focusing on adding both connectivity and dependence links to enhance robustness. In this paper, we aim to study how to allocate the limited costs reasonably to add both connectivity and dependence links. Firstly, we divide the attackers into stubborn attackers and smart attackers according to whether would they change their attack modes with the changing of network structure; Then by simulations, link addition strategies are given separately according to different attackers, with which we can allocate the limited costs to add connectivity links and dependence links reasonably and achieve more robustness than only adding connectivity links or dependence links. The results show that compared to only adding connectivity links or dependence links, allocating the limited resources reasonably and adding both connectivity links and dependence links could bring more robustness to the interdependent networks.

  17. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  18. Sparse brain network using penalized linear regression

    NASA Astrophysics Data System (ADS)

    Lee, Hyekyoung; Lee, Dong Soo; Kang, Hyejin; Kim, Boong-Nyun; Chung, Moo K.

    2011-03-01

    Sparse partial correlation is a useful connectivity measure for brain networks when it is difficult to compute the exact partial correlation in the small-n large-p setting. In this paper, we formulate the problem of estimating partial correlation as a sparse linear regression with a l1-norm penalty. The method is applied to brain network consisting of parcellated regions of interest (ROIs), which are obtained from FDG-PET images of the autism spectrum disorder (ASD) children and the pediatric control (PedCon) subjects. To validate the results, we check their reproducibilities of the obtained brain networks by the leave-one-out cross validation and compare the clustered structures derived from the brain networks of ASD and PedCon.

  19. FleCSI: Connection to Legion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergen, Benjamin Karl

    2016-08-03

    These are slides which are part of the ASC L2 Milestone Review. The following topics are covered: Legion Backend, Distributed-Memory Partitioning, Sparse Data Representations, and MPI-Legion Interoperability.

  20. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using amore » combinatorial algorithm.« less

  1. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine.

    PubMed

    Kim, Jongin; Lee, Boreom

    2018-05-07

    Different modalities such as structural MRI, FDG-PET, and CSF have complementary information, which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a more effective and accurate AD/MCI automatic diagnosis method by integrating complementary information of different modalities. In this paper, we propose multi-modal sparse hierarchical extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93 regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and Aβ42 as CSF features. In detail, high-level representation was individually extracted from each of MRI, FDG-PET, and CSF using a stacked sparse extreme learning machine auto-encoder (sELM-AE). Then, another stacked sELM-AE was devised to acquire a joint hierarchical feature representation by fusing the high-level representations obtained from each modality. Finally, we classified joint hierarchical feature representation using a kernel-based extreme learning machine (KELM). The results of MSH-ELM were compared with those of conventional ELM, single kernel support vector machine (SK-SVM), multiple kernel support vector machine (MK-SVM) and stacked auto-encoder (SAE). Performance was evaluated through 10-fold cross-validation. In the classification of AD vs. HC and MCI vs. HC problem, the proposed MSH-ELM method showed mean balanced accuracies of 96.10% and 86.46%, respectively, which is much better than those of competing methods. In summary, the proposed algorithm exhibits consistently better performance than SK-SVM, ELM, MK-SVM and SAE in the two binary classification problems (AD vs. HC and MCI vs. HC). © 2018 Wiley Periodicals, Inc.

  2. Discriminant WSRC for Large-Scale Plant Species Recognition.

    PubMed

    Zhang, Shanwen; Zhang, Chuanlei; Zhu, Yihai; You, Zhuhong

    2017-01-01

    In sparse representation based classification (SRC) and weighted SRC (WSRC), it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC) is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

  3. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.

    PubMed

    Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2017-06-01

    Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.

  4. Chimera-like states in structured heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2017-04-01

    Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like states, we study a heterogeneous network model comprising two groups of nodes, of high and low degrees of connectivity. The architecture facilitates the analysis of the system, which separates into a densely connected coherent group of nodes, perturbed by their sparsely connected drifting neighbors. It describes a synchronous behavior of the densely connected group and scaling properties of the induced perturbations.

  5. Stochastic Blockmodeling of the Modules and Core of the Caenorhabditis elegans Connectome

    PubMed Central

    Pavlovic, Dragana M.; Vértes, Petra E.; Bullmore, Edward T.; Schafer, William R.; Nichols, Thomas E.

    2014-01-01

    Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4–5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the “core-in-modules” decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems. PMID:24988196

  6. Changes in functional and structural brain connectome along the Alzheimer's disease continuum.

    PubMed

    Filippi, Massimo; Basaia, Silvia; Canu, Elisa; Imperiale, Francesca; Magnani, Giuseppe; Falautano, Monica; Comi, Giancarlo; Falini, Andrea; Agosta, Federica

    2018-05-09

    The aim of this study was two-fold: (i) to investigate structural and functional brain network architecture in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), stratified in converters (c-aMCI) and non-converters (nc-aMCI) to AD; and to assess the relationship between healthy brain network functional connectivity and the topography of brain atrophy in patients along the AD continuum. Ninety-four AD patients, 47 aMCI patients (25 c-aMCI within 36 months) and 53 age- and sex-matched healthy controls were studied. Graph analysis and connectomics assessed global and local, structural and functional topological network properties and regional connectivity. Healthy topological features of brain regions were assessed based on their connectivity with the point of maximal atrophy (epicenter) in AD and aMCI patients. Brain network graph analysis properties were severely altered in AD patients. Structural brain network was already altered in c-aMCI patients relative to healthy controls in particular in the temporal and parietal brain regions, while functional connectivity did not change. Structural connectivity alterations distinguished c-aMCI from nc-aMCI cases. In both AD and c-aMCI, the point of maximal atrophy was located in left hippocampus (disease-epicenter). Brain regions most strongly connected with the disease-epicenter in the healthy functional connectome were also the most atrophic in both AD and c-aMCI patients. Progressive degeneration in the AD continuum is associated with an early breakdown of anatomical brain connections and follows the strongest connections with the disease-epicenter. These findings support the hypothesis that the topography of brain connectional architecture can modulate the spread of AD through the brain.

  7. Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease

    PubMed Central

    Price, J.L.; Yan, Z.; Morris, J.C.; Sheline, Y.I.

    2011-01-01

    Objective: Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB. Methods: Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus. Results: Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus. Conclusions: Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD. PMID:21525427

  8. Sparse Learning with Stochastic Composite Optimization.

    PubMed

    Zhang, Weizhong; Zhang, Lijun; Jin, Zhongming; Jin, Rong; Cai, Deng; Li, Xuelong; Liang, Ronghua; He, Xiaofei

    2017-06-01

    In this paper, we study Stochastic Composite Optimization (SCO) for sparse learning that aims to learn a sparse solution from a composite function. Most of the recent SCO algorithms have already reached the optimal expected convergence rate O(1/λT), but they often fail to deliver sparse solutions at the end either due to the limited sparsity regularization during stochastic optimization (SO) or due to the limitation in online-to-batch conversion. Even when the objective function is strongly convex, their high probability bounds can only attain O(√{log(1/δ)/T}) with δ is the failure probability, which is much worse than the expected convergence rate. To address these limitations, we propose a simple yet effective two-phase Stochastic Composite Optimization scheme by adding a novel powerful sparse online-to-batch conversion to the general Stochastic Optimization algorithms. We further develop three concrete algorithms, OptimalSL, LastSL and AverageSL, directly under our scheme to prove the effectiveness of the proposed scheme. Both the theoretical analysis and the experiment results show that our methods can really outperform the existing methods at the ability of sparse learning and at the meantime we can improve the high probability bound to approximately O(log(log(T)/δ)/λT).

  9. Differences in functional connectivity between alcohol dependence and internet gaming disorder

    PubMed Central

    Han, Ji Won; Han, Doug Hyun; Bolo, Nicolas; Kim, BoAh; Kim, Boong Nyun; Renshaw, Perry F.

    2017-01-01

    Introduction Internet gaming disorder (IGD) and alcohol dependence (AD) have been reported to share clinical characteristics including craving and over-engagement despite negative consequences. However, there are also clinical factors that differ between individuals with IGD and those with AD in terms of chemical intoxication, prevalence age, and visual and auditory stimulation. Methods We assessed brain functional connectivity within the prefrontal, striatum, and temporal lobe in 15 patients with IGD and in 16 patients with AD. Symptoms of depression, anxiety, and the attention deficit hyperactivity disorder were assessed in patients with IGD and in patients with AD. Results Both AD and IGD subjects have positive functional connectivity between the dorsolateral prefrontal cortex (DLPFC), cingulate, and cerebellum. In addition, both groups have negative functional connectivity between the DLPFC and the orbitofrontal cortex. However, the AD subjects have positive functional connectivity between the DLPFC, temporal lobe and striatal areas while IGD subjects have negative functional connectivity between the DLPFC, temporal lobe and striatal areas. Conclusions AD and IGD subjects may share deficits in executive function, including problems with self-control and adaptive responding. However, the negative connectivity between the DLPFC and the striatal areas in IGD subjects, different from the connectivity observed in AD subjects, may be due to the earlier prevalence age, different comorbid diseases as well as visual and auditory stimulation. PMID:25282597

  10. Differences in functional connectivity between alcohol dependence and internet gaming disorder.

    PubMed

    Han, Ji Won; Han, Doug Hyun; Bolo, Nicolas; Kim, BoAh; Kim, Boong Nyun; Renshaw, Perry F

    2015-02-01

    Internet gaming disorder (IGD) and alcohol dependence (AD) have been reported to share clinical characteristics including craving and over-engagement despite negative consequences. However, there are also clinical factors that differ between individuals with IGD and those with AD in terms of chemical intoxication, prevalence age, and visual and auditory stimulation. We assessed brain functional connectivity within the prefrontal, striatum, and temporal lobe in 15 patients with IGD and in 16 patients with AD. Symptoms of depression, anxiety, and the attention deficit hyperactivity disorder were assessed in patients with IGD and in patients with AD. Both AD and IGD subjects have positive functional connectivity between the dorsolateral prefrontal cortex (DLPFC), cingulate, and cerebellum. In addition, both groups have negative functional connectivity between the DLPFC and the orbitofrontal cortex. However, the AD subjects have positive functional connectivity between the DLPFC, temporal lobe and striatal areas while IGD subjects have negative functional connectivity between the DLPFC, temporal lobe and striatal areas. AD and IGD subjects may share deficits in executive function, including problems with self-control and adaptive responding. However, the negative connectivity between the DLPFC and the striatal areas in IGD subjects, different from the connectivity observed in AD subjects, may be due to the earlier prevalence age, different comorbid diseases as well as visual and auditory stimulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. An investigation of emotion dynamics in major depressive disorder patients and healthy persons using sparse longitudinal networks.

    PubMed

    de Vos, Stijn; Wardenaar, Klaas J; Bos, Elisabeth H; Wit, Ernst C; Bouwmans, Mara E J; de Jonge, Peter

    2017-01-01

    Differences in within-person emotion dynamics may be an important source of heterogeneity in depression. To investigate these dynamics, researchers have previously combined multilevel regression analyses with network representations. However, sparse network methods, specifically developed for longitudinal network analyses, have not been applied. Therefore, this study used this approach to investigate population-level and individual-level emotion dynamics in healthy and depressed persons and compared this method with the multilevel approach. Time-series data were collected in pair-matched healthy persons and major depressive disorder (MDD) patients (n = 54). Seven positive affect (PA) and seven negative affect (NA) items were administered electronically at 90 times (30 days; thrice per day). The population-level (healthy vs. MDD) and individual-level time series were analyzed using a sparse longitudinal network model based on vector autoregression. The population-level model was also estimated with a multilevel approach. Effects of different preprocessing steps were evaluated as well. The characteristics of the longitudinal networks were investigated to gain insight into the emotion dynamics. In the population-level networks, longitudinal network connectivity was strongest in the healthy group, with nodes showing more and stronger longitudinal associations with each other. Individually estimated networks varied strongly across individuals. Individual variations in network connectivity were unrelated to baseline characteristics (depression status, neuroticism, severity). A multilevel approach applied to the same data showed higher connectivity in the MDD group, which seemed partly related to the preprocessing approach. The sparse network approach can be useful for the estimation of networks with multiple nodes, where overparameterization is an issue, and for individual-level networks. However, its current inability to model random effects makes it less useful as a population-level approach in case of large heterogeneity. Different preprocessing strategies appeared to strongly influence the results, complicating inferences about network density.

  12. Node Deployment Algorithm Based on Connected Tree for Underwater Sensor Networks

    PubMed Central

    Jiang, Peng; Wang, Xingmin; Jiang, Lurong

    2015-01-01

    Designing an efficient deployment method to guarantee optimal monitoring quality is one of the key topics in underwater sensor networks. At present, a realistic approach of deployment involves adjusting the depths of nodes in water. One of the typical algorithms used in such process is the self-deployment depth adjustment algorithm (SDDA). This algorithm mainly focuses on maximizing network coverage by constantly adjusting node depths to reduce coverage overlaps between two neighboring nodes, and thus, achieves good performance. However, the connectivity performance of SDDA is irresolute. In this paper, we propose a depth adjustment algorithm based on connected tree (CTDA). In CTDA, the sink node is used as the first root node to start building a connected tree. Finally, the network can be organized as a forest to maintain network connectivity. Coverage overlaps between the parent node and the child node are then reduced within each sub-tree to optimize coverage. The hierarchical strategy is used to adjust the distance between the parent node and the child node to reduce node movement. Furthermore, the silent mode is adopted to reduce communication cost. Simulations show that compared with SDDA, CTDA can achieve high connectivity with various communication ranges and different numbers of nodes. Moreover, it can realize coverage as high as that of SDDA with various sensing ranges and numbers of nodes but with less energy consumption. Simulations under sparse environments show that the connectivity and energy consumption performances of CTDA are considerably better than those of SDDA. Meanwhile, the connectivity and coverage performances of CTDA are close to those depth adjustment algorithms base on connected dominating set (CDA), which is an algorithm similar to CTDA. However, the energy consumption of CTDA is less than that of CDA, particularly in sparse underwater environments. PMID:26184209

  13. Sparse modeling of spatial environmental variables associated with asthma

    PubMed Central

    Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.

    2014-01-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437

  14. Sparse modeling of spatial environmental variables associated with asthma.

    PubMed

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Medical Image Fusion Based on Feature Extraction and Sparse Representation

    PubMed Central

    Wei, Gao; Zongxi, Song

    2017-01-01

    As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246

  16. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline

    PubMed Central

    Zhang, Jie; Li, Qingyang; Caselli, Richard J.; Thompson, Paul M.; Ye, Jieping; Wang, Yalin

    2017-01-01

    Alzheimer’s Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms. PMID:28943731

  17. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.

    PubMed

    Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi

    2016-01-01

    The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children.

  18. Effect of intermodular connection on fast sparse synchronization in clustered small-world neural networks

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2015-11-01

    We consider a clustered network with small-world subnetworks of inhibitory fast spiking interneurons and investigate the effect of intermodular connection on the emergence of fast sparsely synchronized rhythms by varying both the intermodular coupling strength Jinter and the average number of intermodular links per interneuron Msyn(inter ). In contrast to the case of nonclustered networks, two kinds of sparsely synchronized states such as modular and global synchronization are found. For the case of modular sparse synchronization, the population behavior reveals the modular structure, because the intramodular dynamics of subnetworks make some mismatching. On the other hand, in the case of global sparse synchronization, the population behavior is globally identical, independently of the cluster structure, because the intramodular dynamics of subnetworks make perfect matching. We introduce a realistic cross-correlation modularity measure, representing the matching degree between the instantaneous subpopulation spike rates of the subnetworks, and examine whether the sparse synchronization is global or modular. Depending on its magnitude, the intermodular coupling strength Jinter seems to play "dual" roles for the pacing between spikes in each subnetwork. For large Jinter, due to strong inhibition it plays a destructive role to "spoil" the pacing between spikes, while for small Jinter it plays a constructive role to "favor" the pacing between spikes. Through competition between the constructive and the destructive roles of Jinter, there exists an intermediate optimal Jinter at which the pacing degree between spikes becomes maximal. In contrast, the average number of intermodular links per interneuron Msyn(inter ) seems to play a role just to favor the pacing between spikes. With increasing Msyn(inter ), the pacing degree between spikes increases monotonically thanks to the increase in the degree of effectiveness of global communication between spikes. Furthermore, we employ the realistic sub- and whole-population order parameters, based on the instantaneous sub- and whole-population spike rates, to determine the threshold values for the synchronization-unsynchronization transition in the sub- and whole populations, and the degrees of global and modular sparse synchronization are also measured in terms of the realistic sub- and whole-population statistical-mechanical spiking measures defined by considering both the occupation and the pacing degrees of spikes. It is expected that our results could have implications for the role of the brain plasticity in some functional behaviors associated with population synchronization.

  19. Intrinsic functional component analysis via sparse representation on Alzheimer's disease neuroimaging initiative database.

    PubMed

    Jiang, Xi; Zhang, Xin; Zhu, Dajiang

    2014-10-01

    Alzheimer's disease (AD) is the most common type of dementia (accounting for 60% to 80%) and is the fifth leading cause of death for those people who are 65 or older. By 2050, one new case of AD in United States is expected to develop every 33 sec. Unfortunately, there is no available effective treatment that can stop or slow the death of neurons that causes AD symptoms. On the other hand, it is widely believed that AD starts before development of the associated symptoms, so its prestages, including mild cognitive impairment (MCI) or even significant memory concern (SMC), have received increasing attention, not only because of their potential as a precursor of AD, but also as a possible predictor of conversion to other neurodegenerative diseases. Although these prestages have been defined clinically, accurate/efficient diagnosis is still challenging. Moreover, brain functional abnormalities behind those alterations and conversions are still unclear. In this article, by developing novel sparse representations of whole-brain resting-state functional magnetic resonance imaging signals and by using the most updated Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we successfully identified multiple functional components simultaneously, and which potentially represent those intrinsic functional networks involved in the resting-state activities. Interestingly, these identified functional components contain all the resting-state networks obtained from traditional independent-component analysis. Moreover, by using the features derived from those functional components, it yields high classification accuracy for both AD (94%) and MCI (92%) versus normal controls. Even for SMC we can still have 92% accuracy.

  20. A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease.

    PubMed

    Tong, Tong; Gao, Qinquan; Guerrero, Ricardo; Ledig, Christian; Chen, Liang; Rueckert, Daniel; Initiative, Alzheimer's Disease Neuroimaging

    2017-01-01

    Identifying mild cognitive impairment (MCI) subjects who will progress to Alzheimer's disease (AD) is not only crucial in clinical practice, but also has a significant potential to enrich clinical trials. The purpose of this study is to develop an effective biomarker for an accurate prediction of MCI-to-AD conversion from magnetic resonance images. We propose a novel grading biomarker for the prediction of MCI-to-AD conversion. First, we comprehensively study the effects of several important factors on the performance in the prediction task including registration accuracy, age correction, feature selection, and the selection of training data. Based on the studies of these factors, a grading biomarker is then calculated for each MCI subject using sparse representation techniques. Finally, the grading biomarker is combined with age and cognitive measures to provide a more accurate prediction of MCI-to-AD conversion. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the proposed global grading biomarker achieved an area under the receiver operating characteristic curve (AUC) in the range of 79-81% for the prediction of MCI-to-AD conversion within three years in tenfold cross validations. The classification AUC further increases to 84-92% when age and cognitive measures are combined with the proposed grading biomarker. The obtained accuracy of the proposed biomarker benefits from the contributions of different factors: a tradeoff registration level to align images to the template space, the removal of the normal aging effect, selection of discriminative voxels, the calculation of the grading biomarker using AD and normal control groups, and the integration of sparse representation technique and the combination of cognitive measures. The evaluation on the ADNI dataset shows the efficacy of the proposed biomarker and demonstrates a significant contribution in accurate prediction of MCI-to-AD conversion.

  1. Temporally-Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer’s Disease

    PubMed Central

    Jie, Biao; Liu, Mingxia; Liu, Jun

    2016-01-01

    Sparse learning has been widely investigated for analysis of brain images to assist the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, most existing sparse learning-based studies only adopt cross-sectional analysis methods, where the sparse model is learned using data from a single time-point. Actually, multiple time-points of data are often available in brain imaging applications, which can be used in some longitudinal analysis methods to better uncover the disease progression patterns. Accordingly, in this paper we propose a novel temporally-constrained group sparse learning method aiming for longitudinal analysis with multiple time-points of data. Specifically, we learn a sparse linear regression model by using the imaging data from multiple time-points, where a group regularization term is first employed to group the weights for the same brain region across different time-points together. Furthermore, to reflect the smooth changes between data derived from adjacent time-points, we incorporate two smoothness regularization terms into the objective function, i.e., one fused smoothness term which requires that the differences between two successive weight vectors from adjacent time-points should be small, and another output smoothness term which requires the differences between outputs of two successive models from adjacent time-points should also be small. We develop an efficient optimization algorithm to solve the proposed objective function. Experimental results on ADNI database demonstrate that, compared with conventional sparse learning-based methods, our proposed method can achieve improved regression performance and also help in discovering disease-related biomarkers. PMID:27093313

  2. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.

    PubMed

    Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi

    2007-10-01

    Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.

  3. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer's disease patients.

    PubMed

    Son, Seong-Jin; Kim, Jonghoon; Park, Hyunjin

    2017-01-01

    Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer's disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint.

  4. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer’s disease patients

    PubMed Central

    Son, Seong-Jin; Kim, Jonghoon

    2017-01-01

    Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer’s disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint. PMID:28333946

  5. The HTM Spatial Pooler-A Neocortical Algorithm for Online Sparse Distributed Coding.

    PubMed

    Cui, Yuwei; Ahmad, Subutai; Hawkins, Jeff

    2017-01-01

    Hierarchical temporal memory (HTM) provides a theoretical framework that models several key computational principles of the neocortex. In this paper, we analyze an important component of HTM, the HTM spatial pooler (SP). The SP models how neurons learn feedforward connections and form efficient representations of the input. It converts arbitrary binary input patterns into sparse distributed representations (SDRs) using a combination of competitive Hebbian learning rules and homeostatic excitability control. We describe a number of key properties of the SP, including fast adaptation to changing input statistics, improved noise robustness through learning, efficient use of cells, and robustness to cell death. In order to quantify these properties we develop a set of metrics that can be directly computed from the SP outputs. We show how the properties are met using these metrics and targeted artificial simulations. We then demonstrate the value of the SP in a complete end-to-end real-world HTM system. We discuss the relationship with neuroscience and previous studies of sparse coding. The HTM spatial pooler represents a neurally inspired algorithm for learning sparse representations from noisy data streams in an online fashion.

  6. Investigating Focal Connectivity Deficits in Alzheimer's Disease Using Directional Brain Networks Derived from Resting-State fMRI

    PubMed Central

    Zhao, Sinan; Rangaprakash, D; Venkataraman, Archana; Liang, Peipeng; Deshpande, Gopikrishna

    2017-01-01

    Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD. PMID:28729831

  7. Autosomal dominant anhidrotic ectodermal dysplasia with immunodeficiency caused by a novel NFKBIA mutation, p.Ser36Tyr, presents with mild ectodermal dysplasia and non-infectious systemic inflammation.

    PubMed

    Yoshioka, Takakazu; Nishikomori, Ryuta; Hara, Junichi; Okada, Keiko; Hashii, Yoshiko; Okafuji, Ikuo; Nodomi, Seishiro; Kawai, Tomoki; Izawa, Kazushi; Ohnishi, Hidenori; Yasumi, Takahiro; Nakahata, Tatsutoshi; Heike, Toshio

    2013-10-01

    Anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) is characterized by hypohidrosis, dental abnormalities, sparse hair, and immunodeficiency. Autosomal dominant (AD)-EDA-ID, caused by a heterozygous mutation within NFKBIA, is very rare and its clinical features remain largely unknown. This study describes a patient with AD-EDA-ID harboring a novel NFKBIA mutation who presented with mild EDA and non-infectious systemic inflammation. The clinical presentation of an AD-EDA-ID patient was described and immunological, genetic, and biochemical analyses were performed, with a focus on nuclear factor kappa B (NF-κB) activation. The patient presented with symptoms of mild EDA-ID, namely sparse hair and hypohidrosis, although a skin biopsy confirmed the presence of sweat glands. There were no dental abnormalities. The patient also suffered from non-infectious inflammation, which responded to systemic corticosteroid therapy; however, the patient remained ill. Immunological analyses revealed reduced Toll-like receptor/IL-1 (TLR/IL-1) and tumor necrosis factor (TNF) receptor family responses to various stimuli. Genetic analysis identified a de novo heterozygous missense mutation, p.Ser36Tyr, in NFKBIA, resulting in defective NFKBIA degradation and impaired NF-κB activation. The patient was diagnosed with AD-EDA-ID and underwent hematopoietic stem cell transplantation. Engraftment was successful, with few signs of acute graft versus host disease. However, the patient suffered hemolytic anemia and thrombocytopenia, and died from a brain hemorrhage due to intractable thrombocytopenia. AD-EDA-ID patients can present with mild ectodermal dysplasia and non-infectious inflammation, rather than with recurrent infections. Also, hematopoietic stem cell transplantation for AD-EDA-ID is still a clinical challenge.

  8. SparseBeads data: benchmarking sparsity-regularized computed tomography

    NASA Astrophysics Data System (ADS)

    Jørgensen, Jakob S.; Coban, Sophia B.; Lionheart, William R. B.; McDonald, Samuel A.; Withers, Philip J.

    2017-12-01

    Sparsity regularization (SR) such as total variation (TV) minimization allows accurate image reconstruction in x-ray computed tomography (CT) from fewer projections than analytical methods. Exactly how few projections suffice and how this number may depend on the image remain poorly understood. Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT, however empirical results suggest a similar connection. The present work establishes for real CT data a connection between gradient sparsity and the sufficient number of projections for accurate TV-regularized reconstruction. A collection of 48 x-ray CT datasets called SparseBeads was designed for benchmarking SR reconstruction algorithms. Beadpacks comprising glass beads of five different sizes as well as mixtures were scanned in a micro-CT scanner to provide structured datasets with variable image sparsity levels, number of projections and noise levels to allow the systematic assessment of parameters affecting performance of SR reconstruction algorithms6. Using the SparseBeads data, TV-regularized reconstruction quality was assessed as a function of numbers of projections and gradient sparsity. The critical number of projections for satisfactory TV-regularized reconstruction increased almost linearly with the gradient sparsity. This establishes a quantitative guideline from which one may predict how few projections to acquire based on expected sample sparsity level as an aid in planning of dose- or time-critical experiments. The results are expected to hold for samples of similar characteristics, i.e. consisting of few, distinct phases with relatively simple structure. Such cases are plentiful in porous media, composite materials, foams, as well as non-destructive testing and metrology. For samples of other characteristics the proposed methodology may be used to investigate similar relations.

  9. Autistic disorder: a review for the pediatric dentist.

    PubMed

    Klein, U; Nowak, A J

    1998-01-01

    Dental publications on autism have been sparse since the first comprehensive article geared for the dental profession. New findings on the etiology of autistic disorder (AD) have been discovered, suggesting that it is an organic disorder characterized by abnormalities in the brain, especially the cerebellum and limbic system. This article summarizes the latest medical findings on the etiology, diagnosis, and treatment approaches of AD, and reviews the dental literature since 1969. The main dental topics reviewed are: oral health status and dental needs of patients with AD, characteristics of patients with AD, and self-injurious behavior (SIB) in the context of AD. Clinical behavior-management issues such as pharmacological and communicative techniques and physical restraint and desensitization are described. The affect of the dental office's environment and appointment structure on a patient with AD are presented.

  10. A high-capacity model for one shot association learning in the brain

    PubMed Central

    Einarsson, Hafsteinn; Lengler, Johannes; Steger, Angelika

    2014-01-01

    We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs. PMID:25426060

  11. A high-capacity model for one shot association learning in the brain.

    PubMed

    Einarsson, Hafsteinn; Lengler, Johannes; Steger, Angelika

    2014-01-01

    We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs.

  12. A study of structural and functional connectivity in early Alzheimer's disease using rest fMRI and diffusion tensor imaging.

    PubMed

    Balachandar, R; John, J P; Saini, J; Kumar, K J; Joshi, H; Sadanand, S; Aiyappan, S; Sivakumar, P T; Loganathan, S; Varghese, M; Bharath, S

    2015-05-01

    Alzheimer's disease (AD) is a progressive neurodegenerative condition where in early diagnosis and interventions are key policy priorities in dementia services and research. We studied the functional and structural connectivity in mild AD to determine the nature of connectivity changes that coexist with neurocognitive deficits in the early stages of AD. Fifteen mild AD subjects and 15 cognitively healthy controls (CHc) matched for age and gender, underwent detailed neurocognitive assessment and magnetic resonance imaging (MRI) of resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Rest fMRI was analyzed using dual regression approach and DTI by voxel wise statistics. Patients with mild AD had significantly lower functional connectivity (FC) within the default mode network and increased FC within the executive network. The mild AD group scored significantly lower in all domains of cognition compared with CHc. But fractional anisotropy did not significantly (p < 0.05) differ between the groups. Resting state functional connectivity alterations are noted during initial stages of cognitive decline in AD, even when there are no significant white matter microstructural changes. Copyright © 2014 John Wiley & Sons, Ltd.

  13. MEG connectivity analysis in patients with Alzheimer's disease using cross mutual information and spectral coherence.

    PubMed

    Alonso, Joan Francesc; Poza, Jesús; Mañanas, Miguel Angel; Romero, Sergio; Fernández, Alberto; Hornero, Roberto

    2011-01-01

    Alzheimer's disease (AD) is an irreversible brain disorder which represents the most common form of dementia in western countries. An early and accurate diagnosis of AD would enable to develop new strategies for managing the disease; however, nowadays there is no single test that can accurately predict the development of AD. In this sense, only a few studies have focused on the magnetoencephalographic (MEG) AD connectivity patterns. This study compares brain connectivity in terms of linear and nonlinear couplings by means of spectral coherence and cross mutual information function (CMIF), respectively. The variables defined from these functions provide statistically significant differences (p < 0.05) between AD patients and control subjects, especially the variables obtained from CMIF. The results suggest that AD is characterized by both decreases and increases of functional couplings in different frequency bands as well as by an increase in regularity, that is, more evident statistical deterministic relationships in AD patients' MEG connectivity. The significant differences obtained indicate that AD could disturb brain interactions causing abnormal brain connectivity and operation. Furthermore, the combination of coherence and CMIF features to perform a diagnostic test based on logistic regression improved the tests based on individual variables for its robustness.

  14. Cortical rewiring and information storage

    NASA Astrophysics Data System (ADS)

    Chklovskii, D. B.; Mel, B. W.; Svoboda, K.

    2004-10-01

    Current thinking about long-term memory in the cortex is focused on changes in the strengths of connections between neurons. But ongoing structural plasticity in the adult brain, including synapse formation/elimination and remodelling of axons and dendrites, suggests that memory could also depend on learning-induced changes in the cortical `wiring diagram'. Given that the cortex is sparsely connected, wiring plasticity could provide a substantial boost in storage capacity, although at a cost of more elaborate biological machinery and slower learning.

  15. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  16. Successful Object Encoding Induces Increased Directed Connectivity in Presymptomatic Early-Onset Alzheimer’s Disease

    PubMed Central

    Ochoa, John Fredy; Alonso, Joan Francesc; Duque, Jon Edinson; Tobón, Carlos Andrés; Mañanas, Miguel Angel; Lopera, Francisco; Hernández, Alher Mauricio

    2016-01-01

    Background: Recent studies report increases in neural activity in brain regions critical to episodic memory at preclinical stages of Alzheimer’s disease (AD). Although electroencephalography (EEG) is widely used in AD studies, given its non-invasiveness and low cost, there is a need to translate the findings in other neuroimaging methods to EEG. Objective: To examine how the previous findings using functional magnetic resonance imaging (fMRI) at preclinical stage in presenilin-1 E280A mutation carriers could be assessed and extended, using EEG and a connectivity approach. Methods: EEG signals were acquired during resting and encoding in 30 normal cognitive young subjects, from an autosomal dominant early-onset AD kindred from Antioquia, Colombia. Regions of the brain previously reported as hyperactive were used for connectivity analysis. Results: Mutation carriers exhibited increasing connectivity at analyzed regions. Among them, the right precuneus exhibited the highest changes in connectivity. Conclusion: Increased connectivity in hyperactive cerebral regions is seen in individuals, genetically-determined to develop AD, at preclinical stage. The use of a connectivity approach and a widely available neuroimaging technique opens the possibility to increase the use of EEG in early detection of preclinical AD. PMID:27792014

  17. Declining functional connectivity and changing hub locations in Alzheimer's disease: an EEG study.

    PubMed

    Engels, Marjolein M A; Stam, Cornelis J; van der Flier, Wiesje M; Scheltens, Philip; de Waal, Hanneke; van Straaten, Elisabeth C W

    2015-08-20

    EEG studies have shown that patients with Alzheimer's disease (AD) have weaker functional connectivity than controls, especially in higher frequency bands. Furthermore, active regions seem more prone to AD pathology. How functional connectivity is affected in AD subgroups of disease severity and how network hubs (highly connected brain areas) change is not known. We compared AD patients with different disease severity and controls in terms of functional connections, hub strength and hub location. We studied routine 21-channel resting-state electroencephalography (EEG) of 318 AD patients (divided into tertiles based on disease severity: mild, moderate and severe AD) and 133 age-matched controls. Functional connectivity between EEG channels was estimated with the Phase Lag Index (PLI). From the PLI-based connectivity matrix, the minimum spanning tree (MST) was derived. For each node (EEG channel) in the MST, the betweenness centrality (BC) was computed, a measure to quantify the relative importance of a node within the network. Then we derived color-coded head plots based on BC values and calculated the center of mass (the exact middle had x and y values of 0). A shifting of the hub locations was defined as a shift of the center of mass on the y-axis across groups. Multivariate general linear models with PLI or BC values as dependent variables and the groups as continuous variables were used in the five conventional frequency bands. We found that functional connectivity decreases with increasing disease severity in the alpha band. All, except for posterior, regions showed increasing BC values with increasing disease severity. The center of mass shifted from posterior to more anterior regions with increasing disease severity in the higher frequency bands, indicating a loss of relative functional importance of the posterior brain regions. In conclusion, we observed decreasing functional connectivity in the posterior regions, together with a shifted hub location from posterior to central regions with increasing AD severity. Relative hub strength decreases in posterior regions while other regions show a relative rise with increasing AD severity, which is in accordance with the activity-dependent degeneration theory. Our results indicate that hubs are disproportionally affected in AD.

  18. Disrupted Small-World Networks in Schizophrenia

    ERIC Educational Resources Information Center

    Liu, Yong; Liang, Meng; Zhou, Yuan; He, Yong; Hao, Yihui; Song, Ming; Yu, Chunshui; Liu, Haihong; Liu, Zhening; Jiang, Tianzi

    2008-01-01

    The human brain has been described as a large, sparse, complex network characterized by efficient small-world properties, which assure that the brain generates and integrates information with high efficiency. Many previous neuroimaging studies have provided consistent evidence of "dysfunctional connectivity" among the brain regions in…

  19. Short-term memory capacity in networks via the restricted isometry property.

    PubMed

    Charles, Adam S; Yap, Han Lun; Rozell, Christopher J

    2014-06-01

    Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.

  20. Heterogeneous iris image hallucination using sparse representation on a learned heterogeneous patch dictionary

    NASA Astrophysics Data System (ADS)

    Li, Yung-Hui; Zheng, Bo-Ren; Ji, Dai-Yan; Tien, Chung-Hao; Liu, Po-Tsun

    2014-09-01

    Cross sensor iris matching may seriously degrade the recognition performance because of the sensor mis-match problem of iris images between the enrollment and test stage. In this paper, we propose two novel patch-based heterogeneous dictionary learning method to attack this problem. The first method applies the latest sparse representation theory while the second method tries to learn the correspondence relationship through PCA in heterogeneous patch space. Both methods learn the basic atoms in iris textures across different image sensors and build connections between them. After such connections are built, at test stage, it is possible to hallucinate (synthesize) iris images across different sensors. By matching training images with hallucinated images, the recognition rate can be successfully enhanced. The experimental results showed the satisfied results both visually and in terms of recognition rate. Experimenting with an iris database consisting of 3015 images, we show that the EER is decreased 39.4% relatively by the proposed method.

  1. Distinctive Resting State Network Disruptions Among Alzheimer's Disease, Subcortical Vascular Dementia, and Mixed Dementia Patients.

    PubMed

    Kim, Hee Jin; Cha, Jungho; Lee, Jong-Min; Shin, Ji Soo; Jung, Na-Yeon; Kim, Yeo Jin; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won

    2016-01-01

    Recent advances in resting-state functional MRI have revealed altered functional networks in Alzheimer's disease (AD), especially those of the default mode network (DMN) and central executive network (CEN). However, few studies have evaluated whether small vessel disease (SVD) or combined amyloid and SVD burdens affect the DMN or CEN. The aim of this study was to evaluate whether SVD or combined amyloid and SVD burdens affect the DMN or CEN. In this cross-sectional study, we investigated the resting-state functional connectivity within DMN and CEN in 37 Pittsburgh compound-B (PiB)(+) AD, 37 PiB(-) subcortical vascular dementia (SVaD), 13 mixed dementia patients, and 65 normal controls. When the resting-state DMN of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(+) AD patients displayed lower functional connectivity in the inferior parietal lobule while the PiB(-) SVaD patients displayed lower functional connectivity in the medial frontal and superior frontal gyri. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the DMN in the posterior cingulate gyrus. When the resting-state CEN connectivity of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(-) SVaD patients displayed lower functional connectivity in the anterior insular region. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the CEN in the inferior frontal gyrus. Our findings suggest that in PiB(+) AD and PiB(-) SVaD, there is divergent disruptions in resting-state DMN and CEN. Furthermore, patients with combined amyloid and SVD burdens exhibited more disrupted resting-state DMN and CEN than patients with only amyloid or SVD burden.

  2. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study.

    PubMed

    Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M

    2017-12-01

    Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.

  3. SDN-enabled hybrid emergency message transmission architecture in internet-of-vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Wanting; Gao, Deyun; Zhao, Weicheng; Zhang, Hongke; Chiang, Hua-Pei

    2018-04-01

    With the increasing number of vehicles connected to the Internet-of-Things (IoT), Internet-of-Vehicles (IoV) is becoming a hot research topic. It can improve traffic safety and efficiency and promote the development of the intelligent transportation that is a very important element in Smart Cities. As an important part of the safety application in IoV, the emergency message transmission is designed to inform all the vehicles in the relevant area timely of the accident information through the multi-hop broadcast communication. In this paper, we propose a hybrid emergency message transmission (HEMT), which introduces the SDN technology into the vehicular network environment and utilizes the flexibility of inter-vehicle communication. By deploying SDN-enabled central controller and RSU switches, we can obtain reliable and fast emergency message dissemination. Moreover, considering the space between the coverages of RSUs caused by the sparse deployment, we also use inter-vehicle multi-hop broadcast communication to improve the message coverage ratio by adding the packet modification module on the RSU switch. Simulation results show the feasibility and effectiveness of our proposed scheme.

  4. Mild to Moderate Alzheimer Dementia with Insufficient Neuropathological Changes

    PubMed Central

    Serrano-Pozo, Alberto; Qian, Jing; Monsell, Sarah E.; Blacker, Deborah; Gómez-lsla, Teresa; Betensky, Rebecca A.; Growdon, John H.; Johnson, Keith; Frosch, Matthew P.; Sperling, Reisa A.; Hyman, Bradley T.

    2014-01-01

    Recently, ∼16% of participants in an anti-Aβ passive immunotherapy trial for mild-to-moderate Alzheimer disease (AD) had a negative baseline amyloid positron emission tomography (PET) scan. Whether they have AD or are AD clinical phenocopies remains unknown. We examined the 2005-2013 National Alzheimer's Coordinating Center autopsy database and found that ∼14% of autopsied subjects clinically diagnosed with mild-to-moderate probable AD have no or sparse neuritic plaques, which would expectedly yield a negative amyloid PET scan. More than half of these “Aβ-negative” subjects have low neurofibrillary tangle Braak stages. These findings support the implementation of a positive amyloid biomarker as an inclusion criterion in future anti-Aβ drug trials. PMID:24585367

  5. Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI.

    PubMed

    Cai, Biao; Zille, Pascal; Stephen, Julia M; Wilson, Tony W; Calhoun, Vince D; Wang, Yu Ping

    2018-05-01

    Functional connectivity (FC) estimated from functional magnetic resonance imaging (fMRI) time series, especially during resting state periods, provides a powerful tool to assess human brain functional architecture in health, disease, and developmental states. Recently, the focus of connectivity analysis has shifted toward the subnetworks of the brain, which reveals co-activating patterns over time. Most prior works produced a dense set of high-dimensional vectors, which are hard to interpret. In addition, their estimations to a large extent were based on an implicit assumption of spatial and temporal stationarity throughout the fMRI scanning session. In this paper, we propose an approach called dynamic sparse connectivity patterns (dSCPs), which takes advantage of both matrix factorization and time-varying fMRI time series to improve the estimation power of FC. The feasibility of analyzing dynamic FC with our model is first validated through simulated experiments. Then, we use our framework to measure the difference between young adults and children with real fMRI data set from the Philadelphia Neurodevelopmental Cohort (PNC). The results from the PNC data set showed significant FC differences between young adults and children in four different states. For instance, young adults had reduced connectivity between the default mode network and other subnetworks, as well as hyperconnectivity within the visual system in states 1 and 3, and hypoconnectivity in state 2. Meanwhile, they exhibited temporal correlation patterns that changed over time within functional subnetworks. In addition, the dSCPs model indicated that older people tend to spend more time within a relatively connected FC pattern. Overall, the proposed method provides a valid means to assess dynamic FC, which could facilitate the study of brain networks.

  6. Attractor neural networks with resource-efficient synaptic connectivity

    NASA Astrophysics Data System (ADS)

    Pehlevan, Cengiz; Sengupta, Anirvan

    Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.

  7. Optimal degrees of synaptic connectivity

    PubMed Central

    Litwin-Kumar, Ashok; Harris, Kameron Decker; Axel, Richard; Sompolinsky, Haim; Abbott, L. F.

    2017-01-01

    Summary Synaptic connectivity varies widely across neuronal types. Cerebellar granule cells receive five orders of magnitude fewer inputs than the Purkinje cells they innervate, and cerebellum-like circuits including the insect mushroom body also exhibit large divergences in connectivity. In contrast, the number of inputs per neuron in cerebral cortex is more uniform and large. We investigate how the dimension of a representation formed by a population of neurons depends on how many inputs they each receive and what this implies for learning associations. Our theory predicts that the dimensions of the cerebellar granule-cell and Drosophila Kenyon-cell representations are maximized at degrees of synaptic connectivity that match those observed anatomically, showing that sparse connectivity is sometimes superior to dense connectivity. When input synapses are subject to supervised plasticity, however, dense wiring becomes advantageous, suggesting that the type of plasticity exhibited by a set of synapses is a major determinant of connection density. PMID:28215558

  8. Thresholding functional connectomes by means of mixture modeling.

    PubMed

    Bielczyk, Natalia Z; Walocha, Fabian; Ebel, Patrick W; Haak, Koen V; Llera, Alberto; Buitelaar, Jan K; Glennon, Jeffrey C; Beckmann, Christian F

    2018-05-01

    Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Sparse kernel methods for high-dimensional survival data.

    PubMed

    Evers, Ludger; Messow, Claudia-Martina

    2008-07-15

    Sparse kernel methods like support vector machines (SVM) have been applied with great success to classification and (standard) regression settings. Existing support vector classification and regression techniques however are not suitable for partly censored survival data, which are typically analysed using Cox's proportional hazards model. As the partial likelihood of the proportional hazards model only depends on the covariates through inner products, it can be 'kernelized'. The kernelized proportional hazards model however yields a solution that is dense, i.e. the solution depends on all observations. One of the key features of an SVM is that it yields a sparse solution, depending only on a small fraction of the training data. We propose two methods. One is based on a geometric idea, where-akin to support vector classification-the margin between the failed observation and the observations currently at risk is maximised. The other approach is based on obtaining a sparse model by adding observations one after another akin to the Import Vector Machine (IVM). Data examples studied suggest that both methods can outperform competing approaches. Software is available under the GNU Public License as an R package and can be obtained from the first author's website http://www.maths.bris.ac.uk/~maxle/software.html.

  10. Impaired Long Distance Functional Connectivity and Weighted Network Architecture in Alzheimer's Disease

    PubMed Central

    Liu, Yong; Yu, Chunshui; Zhang, Xinqing; Liu, Jieqiong; Duan, Yunyun; Alexander-Bloch, Aaron F.; Liu, Bing; Jiang, Tianzi; Bullmore, Ed

    2014-01-01

    Alzheimer's disease (AD) is increasingly recognized as a disconnection syndrome, which leads to cognitive impairment due to the disruption of functional activity across large networks or systems of interconnected brain regions. We explored abnormal functional magnetic resonance imaging (fMRI) resting-state dynamics, functional connectivity, and weighted functional networks, in a sample of patients with severe AD (N = 18) and age-matched healthy volunteers (N = 21). We found that patients had reduced amplitude and regional homogeneity of low-frequency fMRI oscillations, and reduced the strength of functional connectivity, in several regions previously described as components of the default mode network, for example, medial posterior parietal cortex and dorsal medial prefrontal cortex. In patients with severe AD, functional connectivity was particularly attenuated between regions that were separated by a greater physical distance; and loss of long distance connectivity was associated with less efficient global and nodal network topology. This profile of functional abnormality in severe AD was consistent with the results of a comparable analysis of data on 2 additional groups of patients with mild AD (N = 17) and amnestic mild cognitive impairment (MCI; N = 18). A greater degree of cognitive impairment, measured by the mini-mental state examination across all patient groups, was correlated with greater attenuation of functional connectivity, particularly over long connection distances, for example, between anterior and posterior components of the default mode network, and greater reduction of global and nodal network efficiency. These results indicate that neurodegenerative disruption of fMRI oscillations and connectivity in AD affects long-distance connections to hub nodes, with the consequent loss of network efficiency. This profile was evident also to a lesser degree in the patients with less severe cognitive impairment, indicating that the potential of resting-state fMRI measures as biomarkers or predictors of disease progression in AD. PMID:23314940

  11. Altered Behavioral and Autonomic Pain Responses in Alzheimer’s Disease Are Associated with Dysfunctional Affective, Self-Reflective and Salience Network Resting-State Connectivity

    PubMed Central

    Beach, Paul A.; Huck, Jonathan T.; Zhu, David C.; Bozoki, Andrea C.

    2017-01-01

    While pain behaviors are increased in Alzheimer’s disease (AD) patients compared to healthy seniors (HS) across multiple disease stages, autonomic responses are reduced with advancing AD. To better understand the neural mechanisms underlying these phenomena, we undertook a controlled cross-sectional study examining behavioral (Pain Assessment in Advanced Dementia, PAINAD scores) and autonomic (heart rate, HR) pain responses in 24 HS and 20 AD subjects using acute pressure stimuli. Resting-state fMRI was utilized to investigate how group connectivity differences were related to altered pain responses. Pain behaviors (slope of PAINAD score change and mean PAINAD score) were increased in patients vs. controls. Autonomic measures (HR change intercept and mean HR change) were reduced in severe vs. mildly affected AD patients. Group functional connectivity differences associated with greater pain behavior reactivity in patients included: connectivity within a temporal limbic network (TLN) and between the TLN and ventromedial prefrontal cortex (vmPFC); between default mode network (DMN) subcomponents; between the DMN and ventral salience network (vSN). Reduced HR responses within the AD group were associated with connectivity changes within the DMN and vSN—specifically the precuneus and vmPFC. Discriminant classification indicated HR-related connectivity within the vSN to the vmPFC best distinguished AD severity. Thus, altered behavioral and autonomic pain responses in AD reflects dysfunction of networks and structures subserving affective, self-reflective, salience and autonomic regulation. PMID:28959201

  12. Characterizing structure connectivity correlation with the default mode network in Alzheimer's patients and normal controls

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Xu, Peng; Song, Chao; Yao, Li; Zhao, Xiaojie

    2012-03-01

    Magnetic resonance diffusion tensor imaging (DTI) is a kind of effective measure to do non-invasive investigation on brain fiber structure at present. Studies of fiber tracking based on DTI showed that there was structural connection of white matter fiber among the nodes of resting-state functional network, denoting that the connection of white matter was the basis of gray matter regions in functional network. Nevertheless, relationship between these structure connectivity regions and functional network has not been clearly indicated. Moreover, research of fMRI found that activation of default mode network (DMN) in Alzheimer's disease (AD) was significantly descended, especially in hippocampus and posterior cingulated cortex (PCC). The relationship between this change of DMN activity and structural connection among functional networks needs further research. In this study, fast marching tractography (FMT) algorithm was adopted to quantitative calculate fiber connectivity value between regions, and hippocampus and PCC which were two important regions in DMN related with AD were selected to compute white matter connection region between them in elderly normal control (NC) and AD patient. The fiber connectivity value was extracted to do the correlation analysis with activity intensity of DMN. Results showed that, between PCC and hippocampus of NC, there exited region with significant high connectivity value of white matter fiber whose performance has relatively strong correlation with the activity of DMN, while there was no significant white matter connection region between them for AD patient which might be related with reduced network activation in these two regions of AD.

  13. In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees

    NASA Astrophysics Data System (ADS)

    Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie

    2014-12-01

    To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.

  14. A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer's disease.

    PubMed

    Demirtaş, Murat; Falcon, Carles; Tucholka, Alan; Gispert, Juan Domingo; Molinuevo, José Luis; Deco, Gustavo

    2017-01-01

    Alzheimer's disease (AD) is the most common dementia with dramatic consequences. The research in structural and functional neuroimaging showed altered brain connectivity in AD. In this study, we investigated the whole-brain resting state functional connectivity (FC) of the subjects with preclinical Alzheimer's disease (PAD), mild cognitive impairment due to AD (MCI) and mild dementia due to Alzheimer's disease (AD), the impact of APOE4 carriership, as well as in relation to variations in core AD CSF biomarkers. The synchronization in the whole-brain was monotonously decreasing during the course of the disease progression. Furthermore, in AD patients we found widespread significant decreases in functional connectivity (FC) strengths particularly in the brain regions with high global connectivity. We employed a whole-brain computational modeling approach to study the mechanisms underlying these alterations. To characterize the causal interactions between brain regions, we estimated the effective connectivity (EC) in the model. We found that the significant EC differences in AD were primarily located in left temporal lobe. Then, we systematically manipulated the underlying dynamics of the model to investigate simulated changes in FC based on the healthy control subjects. Furthermore, we found distinct patterns involving CSF biomarkers of amyloid-beta (Aβ1 - 42) total tau (t-tau) and phosphorylated tau (p-tau). CSF Aβ1 - 42 was associated to the contrast between healthy control subjects and clinical groups. Nevertheless, tau CSF biomarkers were associated to the variability in whole-brain synchronization and sensory integration regions. These associations were robust across clinical groups, unlike the associations that were found for CSF Aβ1 - 42. APOE4 carriership showed no significant correlations with the connectivity measures.

  15. Altered Functional Connectivity of Insular Subregions in Alzheimer’s Disease

    PubMed Central

    Liu, Xingyun; Chen, Xiaodan; Zheng, Weimin; Xia, Mingrui; Han, Ying; Song, Haiqing; Li, Kuncheng; He, Yong; Wang, Zhiqun

    2018-01-01

    Recent researches have demonstrated that the insula is the crucial hub of the human brain networks and most vulnerable region of Alzheimer’s disease (AD). However, little is known about the changes of functional connectivity of insular subregions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (fMRI) data including 32 AD patients and 38 healthy controls (HCs). By defining three subregions of insula, we mapped whole-brain resting-state functional connectivity (RSFC) and identified several distinct RSFC patterns of the insular subregions: For positive connectivity, three cognitive-related RSFC patterns were identified within insula that suggest anterior-to-posterior functional subdivisions: (1) an dorsal anterior zone of the insula that exhibits RSFC with executive control network (ECN); (2) a ventral anterior zone of insula, exhibits functional connectivity with the salience network (SN); (3) a posterior zone along the insula exhibits functional connectivity with the sensorimotor network (SMN). In addition, we found significant negative connectivities between the each insular subregion and several special default mode network (DMN) regions. Compared with controls, the AD patients demonstrated distinct disruption of positive RSFCs in the different network (ECN and SMN), suggesting the impairment of the functional integrity. There were no differences of the positive RSFCs in the SN between the two groups. On the other hand, several DMN regions showed increased negative RSFCs to the sub-region of insula in the AD patients, indicating compensatory plasticity. Furthermore, these abnormal insular subregions RSFCs are closely correlated with cognitive performances in the AD patients. Our findings suggested that different insular subregions presented distinct RSFC patterns with various functional networks, which are differently affected in the AD patients. PMID:29695961

  16. Altered Functional Connectivity of Insular Subregions in Alzheimer's Disease.

    PubMed

    Liu, Xingyun; Chen, Xiaodan; Zheng, Weimin; Xia, Mingrui; Han, Ying; Song, Haiqing; Li, Kuncheng; He, Yong; Wang, Zhiqun

    2018-01-01

    Recent researches have demonstrated that the insula is the crucial hub of the human brain networks and most vulnerable region of Alzheimer's disease (AD). However, little is known about the changes of functional connectivity of insular subregions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (fMRI) data including 32 AD patients and 38 healthy controls (HCs). By defining three subregions of insula, we mapped whole-brain resting-state functional connectivity (RSFC) and identified several distinct RSFC patterns of the insular subregions: For positive connectivity, three cognitive-related RSFC patterns were identified within insula that suggest anterior-to-posterior functional subdivisions: (1) an dorsal anterior zone of the insula that exhibits RSFC with executive control network (ECN); (2) a ventral anterior zone of insula, exhibits functional connectivity with the salience network (SN); (3) a posterior zone along the insula exhibits functional connectivity with the sensorimotor network (SMN). In addition, we found significant negative connectivities between the each insular subregion and several special default mode network (DMN) regions. Compared with controls, the AD patients demonstrated distinct disruption of positive RSFCs in the different network (ECN and SMN), suggesting the impairment of the functional integrity. There were no differences of the positive RSFCs in the SN between the two groups. On the other hand, several DMN regions showed increased negative RSFCs to the sub-region of insula in the AD patients, indicating compensatory plasticity. Furthermore, these abnormal insular subregions RSFCs are closely correlated with cognitive performances in the AD patients. Our findings suggested that different insular subregions presented distinct RSFC patterns with various functional networks, which are differently affected in the AD patients.

  17. Inverse lithography using sparse mask representations

    NASA Astrophysics Data System (ADS)

    Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan

    2015-03-01

    We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.

  18. A bandwidth-efficient service for local information dissemination in sparse to dense roadways.

    PubMed

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-07-05

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.

  19. A Bandwidth-Efficient Service for Local Information Dissemination in Sparse to Dense Roadways

    PubMed Central

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-01-01

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios. PMID:23881130

  20. Effects of cholera toxin and isobutylmethylxanthine on growth of human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinoza, B.; Wharton, W.

    1986-08-01

    Cholera toxin produced a dose-dependent decrease in the restimulation of G0/G1 traverse in density-arrested human fibroblasts but did not inhibit the stimulation of cells arrested in G0 after serum starvation at low density. In addition, cholera toxin did not inhibit the proliferation of sparse logarithmically growing human fibroblasts, even when low concentrations of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) were also present. However, the final density to which sparse cells grew was limited by cholera toxin, when added either alone or together with low concentrations of IBMX. In contrast, high concentrations of the phosphodiesterase inhibitor alone produced a profound inhibition inmore » the growth of sparse human fibrobasts. IBMX produced an inhibition both in the G1 and in the G2 phases of the cell cycle by a mechanism(s) that was not related to the magnitude of the increases in adenosine 3,5-cyclic monophosphate concentrations.« less

  1. Method and apparatus for optimized processing of sparse matrices

    DOEpatents

    Taylor, Valerie E.

    1993-01-01

    A computer architecture for processing a sparse matrix is disclosed. The apparatus stores a value-row vector corresponding to nonzero values of a sparse matrix. Each of the nonzero values is located at a defined row and column position in the matrix. The value-row vector includes a first vector including nonzero values and delimiting characters indicating a transition from one column to another. The value-row vector also includes a second vector which defines row position values in the matrix corresponding to the nonzero values in the first vector and column position values in the matrix corresponding to the column position of the nonzero values in the first vector. The architecture also includes a circuit for detecting a special character within the value-row vector. Matrix-vector multiplication is executed on the value-row vector. This multiplication is performed by multiplying an index value of the first vector value by a column value from a second matrix to form a matrix-vector product which is added to a previous matrix-vector product.

  2. Aberrant distribution patterns of corneodesmosomal components of tape-stripped corneocytes in atopic dermatitis and related skin conditions (ichthyosis vulgaris, Netherton syndrome and peeling skin syndrome type B).

    PubMed

    Igawa, Satomi; Kishibe, Mari; Honma, Masaru; Murakami, Masamoto; Mizuno, Yuki; Suga, Yasushi; Seishima, Mariko; Ohguchi, Yuka; Akiyama, Masashi; Hirose, Kenji; Ishida-Yamamoto, Akemi; Iizuka, Hajime

    2013-10-01

    Atopic dermatitis (AD), Netherton syndrome (NS) and peeling skin syndrome type B (PSS) may show some clinical phenotypic overlap. Corneodesmosomes are crucial for maintaining stratum corneum integrity and the components' localization can be visualized by immunostaining tape-stripped corneocytes. In normal skin, they are detected at the cell periphery. To determine whether AD, NS, PSS and ichthyosis vulgaris (IV) have differences in the corneodesmosomal components' distribution and corneocytes surface areas. Corneocytes were tape-stripped from a control group (n=12) and a disease group (37 AD cases, 3 IV cases, 4 NS cases, and 3 PSS cases), and analyzed with immunofluorescent microscopy. The distribution patterns of corneodesmosomal components: desmoglein 1, corneodesmosin, and desmocollin 1 were classified into four types: peripheral, sparse diffuse, dense diffuse and partial diffuse. Corneocyte surface areas were also measured. The corneodesmosome staining patterns were abnormal in the disease group. Other than in the 3 PSS cases, all three components showed similar patterns in each category. In lesional AD skin, the dense diffuse pattern was prominent. A high rate of the partial diffuse pattern, loss of linear cell-cell contacts, and irregular stripping manners were unique to NS. Only in PSS was corneodesmosin staining virtually absent. The corneocyte surface areas correlated significantly with the rate of combined sparse and dense diffuse patterns of desmoglein 1. This method may be used to assess abnormally differentiated corneocytes in AD and other diseases tested. In PSS samples, tape stripping analysis may serve as a non-invasive diagnostic test. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Intrusion Detection and Forensics for Self-Defending Wireless Networks

    DTIC Science & Technology

    2012-12-01

    ICNP), Nov. 2007. 5. Yao Zhao, Yan Chen, Bo Li, and Qian Zhang, Hop ID: A Virtual Coordinate based Routing for Sparse Mobile Ad Hoc Networks, in...Liu, Hongbo Zhao, Kai Chen and Yan Chen, " DISCO : Memory Efficient and Accurate Flow Statistics for Network Measurement", in the Proc. of IEEE ICDCS

  4. Memory replay in balanced recurrent networks

    PubMed Central

    Chenkov, Nikolay; Sprekeler, Henning; Kempter, Richard

    2017-01-01

    Complex patterns of neural activity appear during up-states in the neocortex and sharp waves in the hippocampus, including sequences that resemble those during prior behavioral experience. The mechanisms underlying this replay are not well understood. How can small synaptic footprints engraved by experience control large-scale network activity during memory retrieval and consolidation? We hypothesize that sparse and weak synaptic connectivity between Hebbian assemblies are boosted by pre-existing recurrent connectivity within them. To investigate this idea, we connect sequences of assemblies in randomly connected spiking neuronal networks with a balance of excitation and inhibition. Simulations and analytical calculations show that recurrent connections within assemblies allow for a fast amplification of signals that indeed reduces the required number of inter-assembly connections. Replay can be evoked by small sensory-like cues or emerge spontaneously by activity fluctuations. Global—potentially neuromodulatory—alterations of neuronal excitability can switch between network states that favor retrieval and consolidation. PMID:28135266

  5. Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer's disease: The importance of graph creation methods

    PubMed Central

    Phillips, David J.; McGlaughlin, Alec; Ruth, David; Jager, Leah R.; Soldan, Anja

    2015-01-01

    Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer's disease (AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically investigated how methods of graph creation (i.e., type of correlation matrix and edge weighting) affect structural network properties and group differences. We estimated the structural connectivity of brain networks based on correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal older adults, 103 individuals with Mild Cognitive Impairment (MCI) who retained MCI status for at least 3 years (stable MCI), 108 individuals with MCI who progressed to AD-dementia within 3 years (progressive MCI), and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length and clustering coefficient) differed across groups, consistent with prior studies. Groups were best discriminated by the Randić index, which measures the degree to which highly connected nodes connect to other highly connected nodes. The Randić index differentiated the stable and progressive MCI groups, suggesting that it might be useful for tracking and predicting the progression of AD. Notably, however, the magnitude and direction of group differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to take into account how graphs are constructed when interpreting differences across diagnostic groups and studies. The algebraic connectivity measures showed few group differences, independent of the method of graph construction, suggesting that global connectivity as it relates to node degree is not altered in early AD. PMID:25984446

  6. Disturbed default mode network connectivity patterns in Alzheimer's disease associated with visual processing.

    PubMed

    Krajcovicova, Lenka; Mikl, Michal; Marecek, Radek; Rektorova, Irena

    2014-01-01

    Changes in connectivity of the posterior node of the default mode network (DMN) were studied when switching from baseline to a cognitive task using functional magnetic resonance imaging. In all, 15 patients with mild to moderate Alzheimer's disease (AD) and 18 age-, gender-, and education-matched healthy controls (HC) participated in the study. Psychophysiological interactions analysis was used to assess the specific alterations in the DMN connectivity (deactivation-based) due to psychological effects from the complex visual scene encoding task. In HC, we observed task-induced connectivity decreases between the posterior cingulate and middle temporal and occipital visual cortices. These findings imply successful involvement of the ventral visual pathway during the visual processing in our HC cohort. In AD, involvement of the areas engaged in the ventral visual pathway was observed only in a small volume of the right middle temporal gyrus. Additional connectivity changes (decreases) in AD were present between the posterior cingulate and superior temporal gyrus when switching from baseline to task condition. These changes are probably related to both disturbed visual processing and the DMN connectivity in AD and reflect deficits and compensatory mechanisms within the large scale brain networks in this patient population. Studying the DMN connectivity using psychophysiological interactions analysis may provide a sensitive tool for exploring early changes in AD and their dynamics during the disease progression.

  7. An efficient optical architecture for sparsely connected neural networks

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Downie, John D.; Reid, Max B.

    1990-01-01

    An architecture for general-purpose optical neural network processor is presented in which the interconnections and weights are formed by directing coherent beams holographically, thereby making use of the space-bandwidth products of the recording medium for sparsely interconnected networks more efficiently that the commonly used vector-matrix multiplier, since all of the hologram area is in use. An investigation is made of the use of computer-generated holograms recorded on such updatable media as thermoplastic materials, in order to define the interconnections and weights of a neural network processor; attention is given to limits on interconnection densities, diffraction efficiencies, and weighing accuracies possible with such an updatable thin film holographic device.

  8. Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

    PubMed

    Ponzi, Adam; Wickens, Jeff

    2010-04-28

    The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.

  9. Local receptive field constrained stacked sparse autoencoder for classification of hyperspectral images.

    PubMed

    Wan, Xiaoqing; Zhao, Chunhui

    2017-06-01

    As a competitive machine learning algorithm, the stacked sparse autoencoder (SSA) has achieved outstanding popularity in exploiting high-level features for classification of hyperspectral images (HSIs). In general, in the SSA architecture, the nodes between adjacent layers are fully connected and need to be iteratively fine-tuned during the pretraining stage; however, the nodes of previous layers further away may be less likely to have a dense correlation to the given node of subsequent layers. Therefore, to reduce the classification error and increase the learning rate, this paper proposes the general framework of locally connected SSA; that is, the biologically inspired local receptive field (LRF) constrained SSA architecture is employed to simultaneously characterize the local correlations of spectral features and extract high-level feature representations of hyperspectral data. In addition, the appropriate receptive field constraint is concurrently updated by measuring the spatial distances from the neighbor nodes to the corresponding node. Finally, the efficient random forest classifier is cascaded to the last hidden layer of the SSA architecture as a benchmark classifier. Experimental results on two real HSI datasets demonstrate that the proposed hierarchical LRF constrained stacked sparse autoencoder and random forest (SSARF) provides encouraging results with respect to other contrastive methods, for instance, the improvements of overall accuracy in a range of 0.72%-10.87% for the Indian Pines dataset and 0.74%-7.90% for the Kennedy Space Center dataset; moreover, it generates lower running time compared with the result provided by similar SSARF based methodology.

  10. A Longitudinal Study on Resting State Functional Connectivity in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease.

    PubMed

    Hafkemeijer, Anne; Möller, Christiane; Dopper, Elise G P; Jiskoot, Lize C; van den Berg-Huysmans, Annette A; van Swieten, John C; van der Flier, Wiesje M; Vrenken, Hugo; Pijnenburg, Yolande A L; Barkhof, Frederik; Scheltens, Philip; van der Grond, Jeroen; Rombouts, Serge A R B

    2017-01-01

    Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. We applied longitudinal resting state functional magnetic resonance imaging (fMRI) to delineate functional brain connections relevant for disease progression and diagnostic accuracy. We used two-center resting state fMRI data of 20 AD patients (65.1±8.0 years), 12 bvFTD patients (64.7±5.4 years), and 22 control subjects (63.8±5.0 years) at baseline and 1.8-year follow-up. We used whole-network and voxel-based network-to-region analyses to study group differences in functional connectivity at baseline and follow-up, and longitudinal changes in connectivity within and between groups. At baseline, connectivity between paracingulate gyrus and executive control network, between cuneal cortex and medial visual network, and between paracingulate gyrus and salience network was higher in AD compared with controls. These differences were also present after 1.8 years. At follow-up, connectivity between angular gyrus and right frontoparietal network, and between paracingulate gyrus and default mode network was lower in bvFTD compared with controls, and lower compared with AD between anterior cingulate gyrus and executive control network, and between lateral occipital cortex and medial visual network. Over time, connectivity decreased in AD between precuneus and right frontoparietal network and in bvFTD between inferior frontal gyrus and left frontoparietal network. Longitudinal changes in connectivity between supramarginal gyrus and right frontoparietal network differ between both patient groups and controls. We found disease-specific brain regions with longitudinal connectivity changes. This suggests the potential of longitudinal resting state fMRI to delineate regions relevant for disease progression and for diagnostic accuracy, although no group differences in longitudinal changes in the direct comparison of AD and bvFTD were found.

  11. Disrupted Intrinsic Networks Link Amyloid-β Pathology and Impaired Cognition in Prodromal Alzheimer's Disease.

    PubMed

    Koch, Kathrin; Myers, Nicholas E; Göttler, Jens; Pasquini, Lorenzo; Grimmer, Timo; Förster, Stefan; Manoliu, Andrei; Neitzel, Julia; Kurz, Alexander; Förstl, Hans; Riedl, Valentin; Wohlschläger, Afra M; Drzezga, Alexander; Sorg, Christian

    2015-12-01

    Amyloid-β pathology (Aβ) and impaired cognition characterize Alzheimer's disease (AD); however, neural mechanisms that link Aβ-pathology with impaired cognition are incompletely understood. Large-scale intrinsic connectivity networks (ICNs) are potential candidates for this link: Aβ-pathology affects specific networks in early AD, these networks show disrupted connectivity, and they process specific cognitive functions impaired in AD, like memory or attention. We hypothesized that, in AD, regional changes of ICNs, which persist across rest- and cognitive task-states, might link Aβ-pathology with impaired cognition via impaired intrinsic connectivity. Pittsburgh compound B (PiB)-positron emission tomography reflecting in vivo Aβ-pathology, resting-state fMRI, task-fMRI, and cognitive testing were used in patients with prodromal AD and healthy controls. In patients, default mode network's (DMN) functional connectivity (FC) was reduced in the medial parietal cortex during rest relative to healthy controls, relatively increased in the same region during an attention-demanding task, and associated with patients' cognitive impairment. Local PiB-uptake correlated negatively with DMN connectivity. Importantly, corresponding results were found for the right lateral parietal region of an attentional network. Finally, structural equation modeling confirmed a direct influence of DMN resting-state FC on the association between Aβ-pathology and cognitive impairment. Data provide evidence that disrupted intrinsic network connectivity links Aβ-pathology with cognitive impairment in early AD. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.

    PubMed

    Burbank, Kendra S

    2015-12-01

    The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.

  13. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons

    PubMed Central

    Burbank, Kendra S.

    2015-01-01

    The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks. PMID:26633645

  14. Friday Letters: Connecting Students, Teachers, and Families through Writing

    ERIC Educational Resources Information Center

    Newman, Terry H.; Bizzarri, Sarah A.

    2012-01-01

    An important part of student success in school is the involvement of families. However, the communication between students and families regarding school is often sparse at best and caregivers can feel left out as to what is happening. Friday letters improve communication between students and families and also provide a myriad of instructional…

  15. Functional connectivity increase in the default-mode network of patients with Alzheimer's disease after long-term treatment with Galantamine.

    PubMed

    Blautzik, Janusch; Keeser, Daniel; Paolini, Marco; Kirsch, Valerie; Berman, Albert; Coates, Ute; Reiser, Maximilian; Teipel, Stefan J; Meindl, Thomas

    2016-03-01

    Acetylcholinesterase inhibitors (AChEIs) are efficacious for the treatment of mild to moderate forms of Alzheimer's dementia (AD). Default-mode network (DMN) connectivity is considered to be early impaired in AD. Long-term effects of AChEIs on the DMN in AD have not yet been investigated. Twenty-eight AD patients and 11 age-matched healthy volunteers (HC) participated in the prospective study. AD patients were randomly assigned to either a pharmacotherapy arm (Galantamine, AD G) or to a placebo arm (AD P+G) for the period of 6 months followed by open-label Galantamine therapy from month 7-12. All subjects underwent neuropsychological testing, resting-state functional and structural MRI at baseline and after 12 months, AD patients additionally in between after 6 months. Thirteen AD patients completed the treatment trial and underwent all functional MRI follow-up sequences of good quality. Functional connectivity significantly increased within the AD G group in the posterior cingulate cortex and in the Precuneus between baseline and 12 months follow-up (pcorr<0.05). Between-group analyses demonstrated that functional connectivity in the AD G group significantly increased in the posterior cingulate cortex as well as in the Precuneus compared to the HC group and in the anteromedial aspect of the temporal lobes compared to the AD P+G group, respectively, at 12 months follow-up (pcorr<0.05). Cognitive performance remained stable within groups over time indicating that resting-state fMRI may be sensitive for the detection of pharmacologically induced effects on brain function of AD patients. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  16. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity

    PubMed Central

    Hiratani, Naoki; Fukai, Tomoki

    2016-01-01

    In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271

  17. Rich club analysis in the Alzheimer's disease connectome reveals a relatively undisturbed structural core network

    PubMed Central

    Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew; Thompson, Paul M.

    2015-01-01

    Diffusion imaging can assess the white matter connections within the brain, revealing how neural pathways break down in Alzheimer's disease (AD). We analyzed 3-Tesla whole-brain diffusion-weighted images from 202 participants scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We tested whether AD disrupts the ‘rich-club’ – a network property where high-degree network nodes are more interconnected than expected by chance. We calculated the rich-club properties at a range of degree thresholds, as well as other network topology measures including global degree, clustering coefficient, path length and efficiency. Network disruptions predominated in the low-degree regions of the connectome in patients, relative to controls. The other metrics also showed alterations, suggesting a distinctive pattern of disruption in AD, less pronounced in MCI, targeting global brain connectivity, and focusing on more remotely connected nodes rather than the central core of the network. AD involves severely reduced structural connectivity; our step-wise rich club coefficients analyze points to disruptions predominantly in the peripheral network components; other modalities of data are needed to know if this indicates impaired communication among non rich-club regions. The highly connected core was relatively preserved, offering new evidence on the neural basis of progressive risk for cognitive decline. PMID:26037224

  18. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation

    PubMed Central

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B.; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods. PMID:27242395

  19. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation.

    PubMed

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.

  20. Locality preserving non-negative basis learning with graph embedding.

    PubMed

    Ghanbari, Yasser; Herrington, John; Gur, Ruben C; Schultz, Robert T; Verma, Ragini

    2013-01-01

    The high dimensionality of connectivity networks necessitates the development of methods identifying the connectivity building blocks that not only characterize the patterns of brain pathology but also reveal representative population patterns. In this paper, we present a non-negative component analysis framework for learning localized and sparse sub-network patterns of connectivity matrices by decomposing them into two sets of discriminative and reconstructive bases. In order to obtain components that are designed towards extracting population differences, we exploit the geometry of the population by using a graphtheoretical scheme that imposes locality-preserving properties as well as maintaining the underlying distance between distant nodes in the original and the projected space. The effectiveness of the proposed framework is demonstrated by applying it to two clinical studies using connectivity matrices derived from DTI to study a population of subjects with ASD, as well as a developmental study of structural brain connectivity that extracts gender differences.

  1. Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer Disease Consortium (EADC) project.

    PubMed

    Morbelli, Silvia; Drzezga, Alex; Perneczky, Robert; Frisoni, Giovanni B; Caroli, Anna; van Berckel, Bart N M; Ossenkoppele, Rik; Guedj, Eric; Didic, Mira; Brugnolo, Andrea; Sambuceti, Gianmario; Pagani, Marco; Salmon, Eric; Nobili, Flavio

    2012-11-01

    We explored resting-state metabolic connectivity in prodromal Alzheimer's disease (pAD) patients and in healthy controls (CTR), through a voxel-wise interregional correlation analysis of 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) by means of statistical parametric mapping. Baseline 18F-fluorodeoxyglucose-positron emission tomography of 36 patients with amnestic mild cognitive impairment who converted to Alzheimer's disease (AD) dementia after an average time of 2 years (pAD) and of 105 CTR were processed. The area of hypometabolism in pAD showed less metabolic connectivity in patients than in CTR (autocorrelation and correlation with large temporal and frontal areas, respectively). pAD patients showed limited correlation even in selected nonhypometabolic areas, including the hippocampi and the dorsolateral prefrontal cortex (DLFC). On the contrary, in CTR group correlation was highlighted between hippocampi and precuneus/posterior cingulate and frontal cortex, and between dorsolateral prefrontal cortex and caudate nuclei and parietal cortex. The reduced metabolic connections both in hypometabolic and nonhypometabolic areas in pAD patients suggest that metabolic disconnection (reflecting early diaschisis) may antedate remote hypometabolism (early sign of synaptic degeneration). Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer's disease.

    PubMed

    Bajo, R; Pusil, S; López, M E; Canuet, L; Pereda, E; Osipova, D; Maestú, F; Pekkonen, E

    2015-07-01

    Scopolamine administration may be considered as a psychopharmacological model of Alzheimer's disease (AD). Here, we studied a group of healthy elderly under scopolamine to test whether it elicits similar changes in brain connectivity as those observed in AD, thereby verifying a possible model of AD impairment. We did it by testing healthy elderly subjects in two experimental conditions: glycopyrrolate (placebo) and scopolamine administration. We then analyzed magnetoencephalographic (MEG) data corresponding to both conditions in resting-state with eyes closed. This analysis was performed in source space by combining a nonlinear frequency band-specific measure of functional connectivity (phase locking value, PLV) with network analysis methods. Under scopolamine, functional connectivity between several brain areas was significantly reduced as compared to placebo, in most frequency bands analyzed. Besides, regarding the two complex network indices studied (clustering and shortest path length), clustering significantly decreased in the alpha band while shortest path length significantly increased also in alpha band both after scopolamine administration. Overall our findings indicate that both PLV and graph analysis are suitable tools to measure brain connectivity changes induced by scopolamine, which causes alterations in brain connectivity apparently similar to those reported in AD.

  3. Chapter 2: Effects of fire on nonnative invasive plants and invasibility of wildland ecosystems

    Treesearch

    Kristin Zouhar; Jane Kapler Smith; Steve Sutherland

    2008-01-01

    Considerable experimental and theoretical work has been done on general concepts regarding nonnative species and disturbance, but experimental research on the effects of fire on nonnative invasive species is sparse. We begin this chapter by connecting fundamental concepts from the literature of invasion ecology to fire. Then we examine fire behavior characteristics,...

  4. Geographical and Geodemographic Connections between Different Types of Small Area as the Origins and Destinations of Migrants to Mid-Wales

    ERIC Educational Resources Information Center

    Walford, Nigel

    2007-01-01

    Exchanges of population between supposedly "urban" and "rural" spaces have occurred throughout history as people migrate between areas with relatively, densely and sparsely settled populations. However, comparatively little is known about whether the same small areas persistently contribute to the flow and what types of…

  5. Service-Learning: Implications for Empathy and Community Engagement in Elementary School Children

    ERIC Educational Resources Information Center

    Scott, Katharine E.; Graham, James A.

    2015-01-01

    The literature on service-learning outcomes in pre-adolescent children is relatively sparse. Empathy (i.e., overall, cognitive, affective) and community engagement (i.e., connection to the community, civic awareness, civic efficacy) were assessed in 155 first, second, and fifth graders (n = 79 males; n = 76 females) using a pre/post design for a…

  6. Signal propagation and logic gating in networks of integrate-and-fire neurons.

    PubMed

    Vogels, Tim P; Abbott, L F

    2005-11-16

    Transmission of signals within the brain is essential for cognitive function, but it is not clear how neural circuits support reliable and accurate signal propagation over a sufficiently large dynamic range. Two modes of propagation have been studied: synfire chains, in which synchronous activity travels through feedforward layers of a neuronal network, and the propagation of fluctuations in firing rate across these layers. In both cases, a sufficient amount of noise, which was added to previous models from an external source, had to be included to support stable propagation. Sparse, randomly connected networks of spiking model neurons can generate chaotic patterns of activity. We investigate whether this activity, which is a more realistic noise source, is sufficient to allow for signal transmission. We find that, for rate-coded signals but not for synfire chains, such networks support robust and accurate signal reproduction through up to six layers if appropriate adjustments are made in synaptic strengths. We investigate the factors affecting transmission and show that multiple signals can propagate simultaneously along different pathways. Using this feature, we show how different types of logic gates can arise within the architecture of the random network through the strengthening of specific synapses.

  7. Decreased functional connectivity and disrupted neural network in the prefrontal cortex of affective disorders: A resting-state fNIRS study.

    PubMed

    Zhu, Huilin; Xu, Jie; Li, Jiangxue; Peng, Hongjun; Cai, Tingting; Li, Xinge; Wu, Shijing; Cao, Wei; He, Sailing

    2017-10-15

    Affective disorders (AD) have been conceptualized as neural network-level diseases. In this study, we utilized functional near infrared spectroscopy (fNIRS) to investigate the spontaneous hemodynamic activities in the prefrontal cortex (PFC) of the AD patients with or without medications. 42 optical channels were applied to cover the superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG), which constitute one of the most important affective networks of the brain. We performed resting-state measurements on 28 patients who were diagnosed as having AD and 30 healthy controls (HC). Raw fNIRS data were preprocessed with independent component analysis (ICA) and a band-pass filter to remove artifacts and physiological noise. By systematically analyzing the intra-regional, intrahemispheric, and interhemispheric connectivities based on the spontaneous oscillations of Δ[HbO], our results indicated that patients with AD exhibited significantly reduced intra-regional and symmetrically interhemispheric connectivities in the PFC when compared to HC. More specifically, relative to HC, AD patients showed significantly lower locally functional connectivity in the right IFG, and poor long-distance connectivity between bilateral IFG. In addition, AD patients without medication presented more disrupted cortical organizations in the PFC, and the severity of self-reported symptoms of depression was negatively correlated with the strength of intra-regional and symmetrically interhemispheric connectivity in the PFC. Regarding the measuring technique, fNIRS has restricted measurement depth and spatial resolution. During the study, the subgroups of AD, such as major depressive disorder, bipolar, comorbidity, or non-comorbidity, dosage of psychotropic drugs, as well as different types of pharmacological responses were not distinguished and systematically compared. Furthermore, due to the limitation of the research design, it was still not very clear how pharmacological treatment affected the resting state cortical organization of the prefrontal lobe, and the degree of the effect in patients with AD. These results strongly supported that RSFC measured by fNIRS could be a useful and powerful way of delineating the neuropathology of AD. Copyright © 2017. Published by Elsevier B.V.

  8. A Novel Characterization of Amalgamated Networks in Natural Systems

    PubMed Central

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-01-01

    Densely-connected networks are prominent among natural systems, exhibiting structural characteristics often optimized for biological function. To reveal such features in highly-connected networks, we introduce a new network characterization determined by a decomposition of network-connectivity into low-rank and sparse components. Based on these components, we discover a new class of networks we define as amalgamated networks, which exhibit large functional groups and dense connectivity. Analyzing recent experimental findings on cerebral cortex, food-web, and gene regulatory networks, we establish the unique importance of amalgamated networks in fostering biologically advantageous properties, including rapid communication among nodes, structural stability under attacks, and separation of network activity into distinct functional modules. We further observe that our network characterization is scalable with network size and connectivity, thereby identifying robust features significant to diverse physical systems, which are typically undetectable by conventional characterizations of connectivity. We expect that studying the amalgamation properties of biological networks may offer new insights into understanding their structure-function relationships. PMID:26035066

  9. Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach

    PubMed Central

    Almeida, Jorge R. C.; Stiffler, Richelle; Lockovich, Jeanette C.; Aslam, Haris A.; Phillips, Mary L.

    2016-01-01

    Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction (‘top-down’ versus ‘bottom-up’) were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that loss anticipation was characterized by denser top-down fronto-striatal and fronto-parietal connectivity in healthy control subjects, by bottom-up striatal-frontal connectivity in MDD, and by sparse connectivity lacking fronto-striatal connections in BDD. Win anticipation was characterized by dense connectivity of medial frontal with striatal and lateral frontal cortical regions in BDD, by sparser bottom-up striatum-medial frontal cortex connectivity in MDD, and by sparse connectivity in healthy control subjects. In summary, this is the first study to demonstrate that BDD and MDD with comparable levels of current depression differed from each other and healthy control subjects in density of connections, connectivity path length, and connectivity direction as a function of win or loss anticipation. These findings suggest that different neurobiological mechanisms may underlie aberrant anticipation processes in BDD and MDD, and that distinct therapeutic strategies may be required for these individuals to improve coping strategies during expectation of positive and negative outcomes. PMID:27368345

  10. Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach.

    PubMed

    Manelis, Anna; Almeida, Jorge R C; Stiffler, Richelle; Lockovich, Jeanette C; Aslam, Haris A; Phillips, Mary L

    2016-09-01

    Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction ('top-down' versus 'bottom-up') were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that loss anticipation was characterized by denser top-down fronto-striatal and fronto-parietal connectivity in healthy control subjects, by bottom-up striatal-frontal connectivity in MDD, and by sparse connectivity lacking fronto-striatal connections in BDD. Win anticipation was characterized by dense connectivity of medial frontal with striatal and lateral frontal cortical regions in BDD, by sparser bottom-up striatum-medial frontal cortex connectivity in MDD, and by sparse connectivity in healthy control subjects. In summary, this is the first study to demonstrate that BDD and MDD with comparable levels of current depression differed from each other and healthy control subjects in density of connections, connectivity path length, and connectivity direction as a function of win or loss anticipation. These findings suggest that different neurobiological mechanisms may underlie aberrant anticipation processes in BDD and MDD, and that distinct therapeutic strategies may be required for these individuals to improve coping strategies during expectation of positive and negative outcomes. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Algebraic connectivity of brain networks shows patterns of segregation leading to reduced network robustness in Alzheimer's disease

    PubMed Central

    Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Leonardo, Cassandra D.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew A.; Thompson, Paul M.

    2015-01-01

    Measures of network topology and connectivity aid the understanding of network breakdown as the brain degenerates in Alzheimer's disease (AD). We analyzed 3-Tesla diffusion-weighted images from 202 patients scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 72 with early- and 38 with late-stage mild cognitive impairment (eMCI/lMCI) and 42 with AD. Using whole-brain tractography, we reconstructed structural connectivity networks representing connections between pairs of cortical regions. We examined, for the first time in this context, the network's Laplacian matrix and its Fiedler value, describing the network's algebraic connectivity, and the Fiedler vector, used to partition a graph. We assessed algebraic connectivity and four additional supporting metrics, revealing a decrease in network robustness and increasing disarray among nodes as dementia progressed. Network components became more disconnected and segregated, and their modularity increased. These measures are sensitive to diagnostic group differences, and may help understand the complex changes in AD. PMID:26640830

  12. Design of a MIMD neural network processor

    NASA Astrophysics Data System (ADS)

    Saeks, Richard E.; Priddy, Kevin L.; Pap, Robert M.; Stowell, S.

    1994-03-01

    The Accurate Automation Corporation (AAC) neural network processor (NNP) module is a fully programmable multiple instruction multiple data (MIMD) parallel processor optimized for the implementation of neural networks. The AAC NNP design fully exploits the intrinsic sparseness of neural network topologies. Moreover, by using a MIMD parallel processing architecture one can update multiple neurons in parallel with efficiency approaching 100 percent as the size of the network increases. Each AAC NNP module has 8 K neurons and 32 K interconnections and is capable of 140,000,000 connections per second with an eight processor array capable of over one billion connections per second.

  13. A combinatorial model for dentate gyrus sparse coding

    DOE PAGES

    Severa, William; Parekh, Ojas; James, Conrad D.; ...

    2016-12-29

    The dentate gyrus forms a critical link between the entorhinal cortex and CA3 by providing a sparse version of the signal. Concurrent with this increase in sparsity, a widely accepted theory suggests the dentate gyrus performs pattern separation—similar inputs yield decorrelated outputs. Although an active region of study and theory, few logically rigorous arguments detail the dentate gyrus’s (DG) coding. We suggest a theoretically tractable, combinatorial model for this action. The model provides formal methods for a highly redundant, arbitrarily sparse, and decorrelated output signal.To explore the value of this model framework, we assess how suitable it is for twomore » notable aspects of DG coding: how it can handle the highly structured grid cell representation in the input entorhinal cortex region and the presence of adult neurogenesis, which has been proposed to produce a heterogeneous code in the DG. We find tailoring the model to grid cell input yields expansion parameters consistent with the literature. In addition, the heterogeneous coding reflects activity gradation observed experimentally. Lastly, we connect this approach with more conventional binary threshold neural circuit models via a formal embedding.« less

  14. Brain Information Sharing During Visual Short-Term Memory Binding Yields a Memory Biomarker for Familial Alzheimer's Disease.

    PubMed

    Parra, Mario A; Mikulan, Ezequiel; Trujillo, Natalia; Sala, Sergio Della; Lopera, Francisco; Manes, Facundo; Starr, John; Ibanez, Agustin

    2017-01-01

    Alzheimer's disease (AD) as a disconnection syndrome which disrupts both brain information sharing and memory binding functions. The extent to which these two phenotypic expressions share pathophysiological mechanisms remains unknown. To unveil the electrophysiological correlates of integrative memory impairments in AD towards new memory biomarkers for its prodromal stages. Patients with 100% risk of familial AD (FAD) and healthy controls underwent assessment with the Visual Short-Term Memory binding test (VSTMBT) while we recorded their EEG. We applied a novel brain connectivity method (Weighted Symbolic Mutual Information) to EEG data. Patients showed significant deficits during the VSTMBT. A reduction of brain connectivity was observed during resting as well as during correct VSTM binding, particularly over frontal and posterior regions. An increase of connectivity was found during VSTM binding performance over central regions. While decreased connectivity was found in cases in more advanced stages of FAD, increased brain connectivity appeared in cases in earlier stages. Such altered patterns of task-related connectivity were found in 89% of the assessed patients. VSTM binding in the prodromal stages of FAD are associated to altered patterns of brain connectivity thus confirming the link between integrative memory deficits and impaired brain information sharing in prodromal FAD. While significant loss of brain connectivity seems to be a feature of the advanced stages of FAD increased brain connectivity characterizes its earlier stages. These findings are discussed in the light of recent proposals about the earliest pathophysiological mechanisms of AD and their clinical expression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Multilevel Deficiency of White Matter Connectivity Networks in Alzheimer's Disease: A Diffusion MRI Study with DTI and HARDI Models.

    PubMed

    Wang, Tao; Shi, Feng; Jin, Yan; Yap, Pew-Thian; Wee, Chong-Yaw; Zhang, Jianye; Yang, Cece; Li, Xia; Xiao, Shifu; Shen, Dinggang

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia in elderly people. It is an irreversible and progressive brain disease. In this paper, we utilized diffusion-weighted imaging (DWI) to detect abnormal topological organization of white matter (WM) structural networks. We compared the differences between WM connectivity characteristics at global, regional, and local levels in 26 patients with probable AD and 16 normal control (NC) elderly subjects, using connectivity networks constructed with the diffusion tensor imaging (DTI) model and the high angular resolution diffusion imaging (HARDI) model, respectively. At the global level, we found that the WM structural networks of both AD and NC groups had a small-world topology; however, the AD group showed a significant decrease in both global and local efficiency, but an increase in clustering coefficient and the average shortest path length. We further found that the AD patients had significantly decreased nodal efficiency at the regional level, as well as weaker connections in multiple local cortical and subcortical regions, such as precuneus, temporal lobe, hippocampus, and thalamus. The HARDI model was found to be more advantageous than the DTI model, as it was more sensitive to the deficiencies in AD at all of the three levels.

  16. Advancing Our Legacy: A Black Feminist Perspective on the Significance of Mentoring for African-American Women in Educational Leadership

    ERIC Educational Resources Information Center

    Grant, Cosette M.

    2012-01-01

    There is a sparse literature base which currently informs our knowledge about the connection between mentoring African-American female doctoral students in educational leadership programs at predominantly white institutions (PWIs) interested in faculty careers and their matriculation into the academy. This has left a void in our understanding of…

  17. Archaeology and Developmental Psychology: A Brief Survey of Ancient Athenian Toys

    ERIC Educational Resources Information Center

    Sommer, Maria; Sommer, Dion

    2017-01-01

    The authors note that ancient Athens, in important ways, connected children, toys, and play. But they also find the scholarship of toys sparse and scattered. They discuss obstacles that can skew our modern view of the Greek mind, and they caution that modern eyes should not see play where the Greeks saw ritual and religious devotion. With these…

  18. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth

    ERIC Educational Resources Information Center

    Steyvers, Mark; Tenenbaum, Joshua B.

    2005-01-01

    We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…

  19. Sparse network-based models for patient classification using fMRI

    PubMed Central

    Rosa, Maria J.; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J.; Garrido, Marta I.; Shawe-Taylor, John; Mourao-Miranda, Janaina

    2015-01-01

    Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to interpret in terms of the underlying neurobiology. Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connectivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and potentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regularized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern interpretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie discriminative changes in brain function between the groups. We illustrate our technique by classifying patients with major depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets acquired while participants performed a gender discrimination and emotional task, respectively, during the visualization of emotional valent faces. PMID:25463459

  20. Changes of intranetwork and internetwork functional connectivity in Alzheimer’s disease and mild cognitive impairment

    NASA Astrophysics Data System (ADS)

    Zhu, Haoze; Zhou, Peng; Alcauter, Sarael; Chen, Yuanyuan; Cao, Hongbao; Tian, Miao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Zhao, Xin; He, Feng; Ni, Hongyan; Gao, Wei

    2016-08-01

    Objective. Alzheimer’s disease (AD) is a serious neurodegenerative disorder characterized by deficits of working memory, attention, language and many other cognitive functions. Although different stages of the disease are relatively well characterized by clinical criteria, stage-specific pathological changes in the brain remain relatively poorly understood, especially at the level of large-scale functional networks. In this study, we aimed to characterize the potential disruptions of large-scale functional brain networks based on a sample including amnestic mild cognition impairment (aMCI) and AD patients to help delineate the underlying stage-dependent AD pathology. Approach. We sought to identify the neural connectivity mechanisms of aMCI and AD through examination of both intranetwork and internetwork interactions among four of the brain’s key networks, namely dorsal attention network (DAN), default mode network (DMN), executive control network (ECN) and salience network (SAL). We analyzed functional connectivity based on resting-state functional magnetic resonance imaging (rs-fMRI) data from 25 Alzheimer’s disease patients, 20 aMCI patients and 35 elderly normal controls (NC). Main results. Intranetwork functional disruptions within the DAN and ECN were detected in both aMCI and AD patients. Disrupted intranetwork connectivity of DMN and anti-correlation between DAN and DMN were observed in AD patients. Moreover, aMCI-specific alterations in the internetwork functional connectivity of SAL were observed. Significance. Our results confirmed previous findings that AD pathology was related to dysconnectivity both within and between resting-state networks but revealed more spatial details. Moreover, the SAL network, reportedly flexibly coupling either with the DAN or DMN networks during different brain states, demonstrated interesting alterations specifically in the early stage of the disease.

  1. Detector for flow abnormalities in gaseous diffusion plant compressors

    DOEpatents

    Smith, Stephen F.; Castleberry, Kim N.

    1998-01-01

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value.

  2. Detector for flow abnormalities in gaseous diffusion plant compressors

    DOEpatents

    Smith, S.F.; Castleberry, K.N.

    1998-06-16

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.

  3. Is It Just a Bad Class? Assessing the Stability of Measured Teacher Performance. CEDR Working Paper No. 2010-3.0

    ERIC Educational Resources Information Center

    Goldhaber, Dan; Hansen, Michael

    2010-01-01

    Economic theory commonly models unobserved worker quality as a given parameter that is fixed over time, but empirical evidence supporting this assumption is sparse. In this paper we report on work estimating the stability of value-added estimates of teacher effects, an important area of investigation given that new workforce policies implicitly…

  4. Abnormal degree centrality in Alzheimer's disease patients with depression: A resting-state functional magnetic resonance imaging study.

    PubMed

    Guo, Zhongwei; Liu, Xiaozheng; Hou, Hongtao; Wei, Fuquan; Liu, Jian; Chen, Xingli

    2016-06-15

    Depression is common in Alzheimer's disease (AD) and occurs in AD patients with a prevalence of up to 40%. It reduces cognitive function and increases the burden on caregivers. Currently, there are very few medications that are useful for treating depression in AD patients. Therefore, understanding the brain abnormalities in AD patients with depression (D-AD) is crucial for developing effective interventions. The aim of this study was to investigate the intrinsic dysconnectivity pattern of whole-brain functional networks at the voxel level in D-AD patients based on degree centrality (DC) as measured by resting-state functional magnetic resonance imaging (R-fMRI). Our study included 32 AD patients. All patients were evaluated using the Neuropsychiatric Inventory and Hamilton Depression Rating Scale and further divided into two groups: 15 D-AD patients and 17 non-depressed AD (nD-AD) patients. R-fMRI datasets were acquired from these D-AD and nD-AD patients. First, we performed a DC analysis to identify voxels that showed altered whole brain functional connectivity (FC) with other voxels. We then further investigated FC using the abnormal DC regions to examine in more detail the connectivity patterns of the identified DC changes. D-AD patients had lower DC values in the right middle frontal, precentral, and postcentral gyrus than nD-AD patients. Seed-based analysis revealed decreased connectivity between the precentral and postcentral gyrus to the supplementary motor area and middle cingulum. FC also decreased in the right middle frontal, precentral, and postcentral gyrus. Thus, AD patients with depression fit a 'network dysfunction model' distinct from major depressive disorder and AD. Copyright © 2016. Published by Elsevier Inc.

  5. Functional and effective brain connectivity for discrimination between Alzheimer's patients and healthy individuals: A study on resting state EEG rhythms.

    PubMed

    Blinowska, Katarzyna J; Rakowski, Franciszek; Kaminski, Maciej; De Vico Fallani, Fabrizio; Del Percio, Claudio; Lizio, Roberta; Babiloni, Claudio

    2017-04-01

    This exploratory study provided a proof of concept of a new procedure using multivariate electroencephalographic (EEG) topographic markers of cortical connectivity to discriminate normal elderly (Nold) and Alzheimer's disease (AD) individuals. The new procedure was tested on an existing database formed by resting state eyes-closed EEG data (19 exploring electrodes of 10-20 system referenced to linked-ear reference electrodes) recorded in 42 AD patients with dementia (age: 65.9years±8.5 standard deviation, SD) and 42 Nold non-consanguineous caregivers (age: 70.6years±8.5 SD). In this procedure, spectral EEG coherence estimated reciprocal functional connectivity while non-normalized directed transfer function (NDTF) estimated effective connectivity. Principal component analysis and computation of Mahalanobis distance integrated and combined these EEG topographic markers of cortical connectivity. The area under receiver operating curve (AUC) indexed the classification accuracy. A good classification of Nold and AD individuals was obtained by combining the EEG markers derived from NDTF and coherence (AUC=86%, sensitivity=0.85, specificity=0.70). These encouraging results motivate a cross-validation study of the new procedure in age- and education-matched Nold, stable and progressing mild cognitive impairment individuals, and de novo AD patients with dementia. If cross-validated, the new procedure will provide cheap, broadly available, repeatable over time, and entirely non-invasive EEG topographic markers reflecting abnormal cortical connectivity in AD patients diagnosed by direct or indirect measurement of cerebral amyloid β and hyperphosphorylated tau peptides. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Changes in connectivity of the posterior default network node during visual processing in mild cognitive impairment: staged decline between normal aging and Alzheimer's disease.

    PubMed

    Krajcovicova, Lenka; Barton, Marek; Elfmarkova-Nemcova, Nela; Mikl, Michal; Marecek, Radek; Rektorova, Irena

    2017-12-01

    Visual processing difficulties are often present in Alzheimer's disease (AD), even in its pre-dementia phase (i.e. in mild cognitive impairment, MCI). The default mode network (DMN) modulates the brain connectivity depending on the specific cognitive demand, including visual processes. The aim of the present study was to analyze specific changes in connectivity of the posterior DMN node (i.e. the posterior cingulate cortex and precuneus, PCC/P) associated with visual processing in 17 MCI patients and 15 AD patients as compared to 18 healthy controls (HC) using functional magnetic resonance imaging. We used psychophysiological interaction (PPI) analysis to detect specific alterations in PCC connectivity associated with visual processing while controlling for brain atrophy. In the HC group, we observed physiological changes in PCC connectivity in ventral visual stream areas and with PCC/P during the visual task, reflecting the successful involvement of these regions in visual processing. In the MCI group, the PCC connectivity changes were disturbed and remained significant only with the anterior precuneus. In between-group comparison, we observed significant PPI effects in the right superior temporal gyrus in both MCI and AD as compared to HC. This change in connectivity may reflect ineffective "compensatory" mechanism present in the early pre-dementia stages of AD or abnormal modulation of brain connectivity due to the disease pathology. With the disease progression, these changes become more evident but less efficient in terms of compensation. This approach can separate the MCI from HC with 77% sensitivity and 89% specificity.

  7. Subjective Cognitive Decline Is Associated With Altered Default Mode Network Connectivity in Individuals With a Family History of Alzheimer's Disease.

    PubMed

    Verfaillie, Sander C J; Pichet Binette, Alexa; Vachon-Presseau, Etienne; Tabrizi, Shirin; Savard, Mélissa; Bellec, Pierre; Ossenkoppele, Rik; Scheltens, Philip; van der Flier, Wiesje M; Breitner, John C S; Villeneuve, Sylvia

    2018-05-01

    Both subjective cognitive decline (SCD) and a family history of Alzheimer's disease (AD) portend risk of brain abnormalities and progression to dementia. Posterior default mode network (pDMN) connectivity is altered early in the course of AD. It is unclear whether SCD predicts similar outcomes in cognitively normal individuals with a family history of AD. We studied 124 asymptomatic individuals with a family history of AD (age 64 ± 5 years). Participants were categorized as having SCD if they reported that their memory was becoming worse (SCD + ). We used extensive neuropsychological assessment to investigate five different cognitive domain performances at baseline (n = 124) and 1 year later (n = 59). We assessed interconnectivity among three a priori defined ROIs: pDMN, anterior ventral DMN, medial temporal memory system (MTMS), and the connectivity of each with the rest of brain. Sixty-eight (55%) participants reported SCD. Baseline cognitive performance was comparable between groups (all false discovery rate-adjusted p values > .05). At follow-up, immediate and delayed memory improved across groups, but the improvement in immediate memory was reduced in SCD + compared with SCD - (all false discovery rate-adjusted p values < .05). When compared with SCD - , SCD + subjects showed increased pDMN-MTMS connectivity (false discovery rate-adjusted p < .05). Higher connectivity between the MTMS and the rest of the brain was associated with better baseline immediate memory, attention, and global cognition, whereas higher MTMS and pDMN-MTMS connectivity were associated with lower immediate memory over time (all false discovery rate-adjusted p values < .05). SCD in cognitively normal individuals is associated with diminished immediate memory practice effects and a brain connectivity pattern that mirrors early AD-related connectivity failure. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Sparse magnetic resonance imaging reconstruction using the bregman iteration

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo

    2013-01-01

    Magnetic resonance imaging (MRI) reconstruction needs many samples that are sequentially sampled by using phase encoding gradients in a MRI system. It is directly connected to the scan time for the MRI system and takes a long time. Therefore, many researchers have studied ways to reduce the scan time, especially, compressed sensing (CS), which is used for sparse images and reconstruction for fewer sampling datasets when the k-space is not fully sampled. Recently, an iterative technique based on the bregman method was developed for denoising. The bregman iteration method improves on total variation (TV) regularization by gradually recovering the fine-scale structures that are usually lost in TV regularization. In this study, we studied sparse sampling image reconstruction using the bregman iteration for a low-field MRI system to improve its temporal resolution and to validate its usefulness. The image was obtained with a 0.32 T MRI scanner (Magfinder II, SCIMEDIX, Korea) with a phantom and an in-vivo human brain in a head coil. We applied random k-space sampling, and we determined the sampling ratios by using half the fully sampled k-space. The bregman iteration was used to generate the final images based on the reduced data. We also calculated the root-mean-square-error (RMSE) values from error images that were obtained using various numbers of bregman iterations. Our reconstructed images using the bregman iteration for sparse sampling images showed good results compared with the original images. Moreover, the RMSE values showed that the sparse reconstructed phantom and the human images converged to the original images. We confirmed the feasibility of sparse sampling image reconstruction methods using the bregman iteration with a low-field MRI system and obtained good results. Although our results used half the sampling ratio, this method will be helpful in increasing the temporal resolution at low-field MRI systems.

  9. The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.

    PubMed

    Landau, Itamar D; Egger, Robert; Dercksen, Vincent J; Oberlaender, Marcel; Sompolinsky, Haim

    2016-12-07

    Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance. We show that homeostatic plasticity in inhibitory synapses can align the functional connectivity to compensate for structural heterogeneity. Alternatively, spike-frequency adaptation can give rise to a novel state in which local firing rates adjust dynamically so that adaptation currents and synaptic inputs are balanced. This theory is supported by simulations of L4 barrel cortex during spontaneous and stimulus-evoked conditions. Our study shows how synaptic and cellular mechanisms yield fluctuation-driven dynamics despite structural heterogeneity in cortical circuits. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Structural connectivity of the developing human amygdala.

    PubMed

    Saygin, Zeynep M; Osher, David E; Koldewyn, Kami; Martin, Rebecca E; Finn, Amy; Saxe, Rebecca; Gabrieli, John D E; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus' connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age.

  11. Association of childhood abuse with homeless women's social networks.

    PubMed

    Green, Harold D; Tucker, Joan S; Wenzel, Suzanne L; Golinelli, Daniela; Kennedy, David P; Ryan, Gery W; Zhou, Annie J

    2012-01-01

    Childhood abuse has been linked to negative sequelae for women later in life including drug and alcohol use and violence as victim or perpetrator and may also affect the development of women's social networks. Childhood abuse is prevalent among at-risk populations of women (such as the homeless) and thus may have a stronger impact on their social networks. We conducted a study to: (a) develop a typology of sheltered homeless women's social networks; (b) determine whether childhood abuse was associated with the social networks of sheltered homeless women; and (c) determine whether those associations remained after accounting for past-year substance abuse and recent intimate partner abuse. A probability sample of 428 homeless women from temporary shelter settings in Los Angeles County completed a personal network survey that provided respondent information as well as information about their network members' demographics and level of interaction with each other. Cluster analyses identified groups of women who shared specific social network characteristics. Multinomial logistic regressions revealed variables associated with group membership. We identified three groups of women with differing social network characteristics: low-risk networks, densely connected risky networks (dense, risky), and sparsely connected risky networks (sparse, risky). Multinomial logistic regressions indicated that membership in the sparse, risky network group, when compared to the low-risk group, was associated with history of childhood physical abuse (but not sexual or emotional abuse). Recent drug abuse was associated with membership in both risky network groups; however, the association of childhood physical abuse with sparse, risky network group membership remained. Although these findings support theories proposing that the experience of childhood abuse can shape women's social networks, they suggest that it may be childhood physical abuse that has the most impact among homeless women. The effects of childhood physical abuse should be more actively investigated in clinical settings, especially those frequented by homeless women, particularly with respect to the formation of social networks in social contexts that may expose these women to greater risks. Copyright © 2012. Published by Elsevier Ltd.

  12. GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring

    NASA Astrophysics Data System (ADS)

    Fiandrotti, Attilio; Fosson, Sophie M.; Ravazzi, Chiara; Magli, Enrico

    2018-04-01

    Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.

  13. Dissertation Leadership Knowledge Transfer Using Sparsely Connected Networks with Bidirectional Edges: Case Study of Chester Hayden McCall Jr., His Dissertation Advisors, and His Students

    ERIC Educational Resources Information Center

    Mallette, Leo A.

    2012-01-01

    There are many modes of information flow in the sciences: books, journals, conferences, research and development, acquisition of companies, co-workers, students, and professors in schools of higher learning. In the sciences, dissertation students learn from their dissertation advisor (or chairperson or mentor) and the other dissertation committee…

  14. Stability and stabilisation of a class of networked dynamic systems

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Wang, D. Q.

    2018-04-01

    We investigate the stability and stabilisation of a linear time invariant networked heterogeneous system with arbitrarily connected subsystems. A new linear matrix inequality based sufficient and necessary condition for the stability is derived, based on which the stabilisation is provided. The obtained conditions efficiently utilise the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, a sufficient condition only dependent on each individual subsystem is also presented for the stabilisation of the networked systems with a large scale. Numerical simulations show that these conditions are computationally valid in the analysis and synthesis of a large-scale networked system.

  15. Nutritional approaches in the risk reduction and management of Alzheimer's disease.

    PubMed

    Mi, Weiqian; van Wijk, Nick; Cansev, Mehmet; Sijben, John W C; Kamphuis, Patrick J G H

    2013-09-01

    Alzheimer's disease (AD) is a heterogeneous and devastating neurodegenerative disease with increasing socioeconomic burden for society. In the past 30 y, notwithstanding advances in the understanding of the pathogenesis of the disease and consequent development of therapeutic approaches to novel pathogenic targets, no cure has so far emerged. This contribution focuses on recent nutritional approaches in the risk reduction and management of AD with emphasis on factors providing a rationale for nutritional approaches in AD, including compromised nutritional status, altered nutrient uptake and metabolism, and nutrient requirements for synapse formation. Collectively these factors are believed to result in specific nutritional requirement in AD. The chapter also emphasizes investigated nutritional interventions in patients with AD, including studies with single nutrients and with the specific nutrient combination Fortasyn Connect and discusses the current shift of paradigm to intervene in earlier stages of AD, which offers opportunities for investigating nutritional strategies to reduce the risk for disease progression. Fortasyn Connect was designed to enhance synapse formation and function in AD by addressing the putative specific nutritional requirements and contains docosahexaenoic acid, eicosapentaenoic acid, uridine-5'-mono-phosphate, choline, phospholipids, antioxidants, and B vitamins. Two randomized controlled trials (RCTs) with the medical food Souvenaid, containing Fortasyn Connect, showed that this intervention improved memory performance in mild, drug-naïve patients with AD. Electroencephalography outcome in one of these clinical studies suggests that Souvenaid has an effect on brain functional connectivity, which is a derivative of changed synaptic activity. Thus, these studies suggest that nutritional requirements in AD can be successfully addressed and result in improvements in behavioral and neuro-physiological alterations that are characteristic to AD. The recent advance of methodologies and techniques for early diagnosis of AD facilitates the investigation of strategies to reduce the risk for AD progression in the earliest stages of the disease. Nutrition-based approaches deserve further investigation as an integral part of such strategies due to their low risk for side effects and their potential to affect pathological processes of very early AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A Modified Sparse Representation Method for Facial Expression Recognition.

    PubMed

    Wang, Wei; Xu, LiHong

    2016-01-01

    In this paper, we carry on research on a facial expression recognition method, which is based on modified sparse representation recognition (MSRR) method. On the first stage, we use Haar-like+LPP to extract feature and reduce dimension. On the second stage, we adopt LC-K-SVD (Label Consistent K-SVD) method to train the dictionary, instead of adopting directly the dictionary from samples, and add block dictionary training into the training process. On the third stage, stOMP (stagewise orthogonal matching pursuit) method is used to speed up the convergence of OMP (orthogonal matching pursuit). Besides, a dynamic regularization factor is added to iteration process to suppress noises and enhance accuracy. We verify the proposed method from the aspect of training samples, dimension, feature extraction and dimension reduction methods and noises in self-built database and Japan's JAFFE and CMU's CK database. Further, we compare this sparse method with classic SVM and RVM and analyze the recognition effect and time efficiency. The result of simulation experiment has shown that the coefficient of MSRR method contains classifying information, which is capable of improving the computing speed and achieving a satisfying recognition result.

  17. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  18. A Modified Sparse Representation Method for Facial Expression Recognition

    PubMed Central

    Wang, Wei; Xu, LiHong

    2016-01-01

    In this paper, we carry on research on a facial expression recognition method, which is based on modified sparse representation recognition (MSRR) method. On the first stage, we use Haar-like+LPP to extract feature and reduce dimension. On the second stage, we adopt LC-K-SVD (Label Consistent K-SVD) method to train the dictionary, instead of adopting directly the dictionary from samples, and add block dictionary training into the training process. On the third stage, stOMP (stagewise orthogonal matching pursuit) method is used to speed up the convergence of OMP (orthogonal matching pursuit). Besides, a dynamic regularization factor is added to iteration process to suppress noises and enhance accuracy. We verify the proposed method from the aspect of training samples, dimension, feature extraction and dimension reduction methods and noises in self-built database and Japan's JAFFE and CMU's CK database. Further, we compare this sparse method with classic SVM and RVM and analyze the recognition effect and time efficiency. The result of simulation experiment has shown that the coefficient of MSRR method contains classifying information, which is capable of improving the computing speed and achieving a satisfying recognition result. PMID:26880878

  19. Localizationism to neuroplasticity---the evolution of metaphysical neuroscience.

    PubMed

    Acharya, Sourya; Shukla, Samarth; Mahajan, S N; Diwan, S K

    2012-09-01

    Neuroplasticity (also referred to as brain plasticity, cortical plasticity or cortical re-mapping) is the changing of neurons, organization of their networks, and their function via new experiences. The brain consists of nerve cells or neurons and glial cells which are interconnected, and learning may happen through changing of the strength of the connections between neurons, by adding or removing connections, or by adding new cells. "Plasticity" relates to learning by adding or removing connections, or adding cells. Contrary to the traditional belief of neurolocalizationism, which states that each region of brain is dedicated for a particular type of activity, neuroplasticity has struggled a long way and has created a safe niche in the neuroscientific hall of honor. Salute to the neuroplasticians for their efforts to revolutionize the doctrine of neurology for the better understanding of the remarkable powers of brain. This article is a brief attempt to fathom the mysterious and scientific ways of neuroplasticity.

  20. Disruption of Semantic Network in Mild Alzheimer’s Disease Revealed by Resting-State fMRI

    PubMed Central

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-01-01

    Subtle semantic deficits can be observed in Alzheimer’s disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke’s area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. PMID:29197559

  1. Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2016-07-01

    The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals.

  2. Sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.

  3. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    PubMed

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.

  4. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    PubMed

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  5. Black holes, anti de Sitter space, and topological strings

    NASA Astrophysics Data System (ADS)

    Yin, Xi

    This thesis is devoted to the study of black holes in string theory, their connection to two and three dimensional anti de-Sitter space, and topological strings. We start by proposing a relation between supersymmetric black holes in four and five dimensions, as well as connections between multi-centered black holes in four dimensions and black rings in five dimensions. This connection is then applied to counting supersymmetric dyonic black holes in four dimensional string compactifications with 16 and 32 supersymmetries, respectively. We then turn to the near horizon attractor geometry AdS 2 x S2 x CY 3, and study the classical supersymmetric D-branes in this background. We also find supersymmetric black hole solutions in supergravity in AdS2 x S2, although the solutions have regions of closed timelike curves. Finally we consider the M-theory attractor geometry AdS3 x S2 x CY3, and compute the elliptic genus of the dual (0, 4) CFT by counting wrapped M2-brane states in the bulk in a dilute gas approximation. This leads to a derivation of the conjectured relation between black hole partition function and topological string amplitudes.

  6. Boosting brain connectome classification accuracy in Alzheimer's disease using higher-order singular value decomposition

    PubMed Central

    Zhan, Liang; Liu, Yashu; Wang, Yalin; Zhou, Jiayu; Jahanshad, Neda; Ye, Jieping; Thompson, Paul M.

    2015-01-01

    Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying different stages of Alzheimer's disease. PMID:26257601

  7. Grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents.

    PubMed

    Li, Wenjing; Li, Jianhong; Wang, Zhenchang; Li, Yong; Liu, Zhaohui; Yan, Fei; Xian, Junfang; He, Huiguang

    2015-01-01

    Previous studies have shown brain reorganizations after early deprivation of auditory sensory. However, changes of grey matter connectivity have not been investigated in prelingually deaf adolescents yet. In the present study, we aimed to investigate changes of grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. We recruited 16 prelingually deaf adolescents and 16 age-and gender-matched normal controls, and extracted the grey matter volume as the structural characteristic from 14 regions of interest involved in auditory, language or visual processing to investigate the changes of grey matter connectivity within and between auditory, language and visual systems. Sparse inverse covariance estimation (SICE) was utilized to construct grey matter connectivity between these brain regions. The results show that prelingually deaf adolescents present weaker grey matter connectivity within auditory and visual systems, and connectivity between language and visual systems declined. Notably, significantly increased brain connectivity was found between auditory and visual systems in prelingually deaf adolescents. Our results indicate "cross-modal" plasticity after deprivation of the auditory input in prelingually deaf adolescents, especially between auditory and visual systems. Besides, auditory deprivation and visual deficits might affect the connectivity pattern within language and visual systems in prelingually deaf adolescents.

  8. From the Rendering Equation to Stratified Light Transport Inversion

    DTIC Science & Technology

    2010-12-09

    iteratively. These approaches relate closely to the radiosity method for diffuse global illumination in forward rendering (Hanrahan et al, 1991; Gortler et...currently simply use sparse matrices to represent T, we are also interested in exploring connections with hierar- chical and wavelet radiosity as in...Seidel iterative methods used in radiosity . 2.4 Inverse Light Transport Previous work on inverse rendering has considered inversion of the direct

  9. Modelling conflicts with cluster dynamics in networks

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Rodgers, G. J.

    2010-12-01

    We introduce cluster dynamical models of conflicts in which only the largest cluster can be involved in an action. This mimics the situations in which an attack is planned by a central body, and the largest attack force is used. We study the model in its annealed random graph version, on a fixed network, and on a network evolving through the actions. The sizes of actions are distributed with a power-law tail, however, the exponent is non-universal and depends on the frequency of actions and sparseness of the available connections between units. Allowing the network reconstruction over time in a self-organized manner, e.g., by adding the links based on previous liaisons between units, we find that the power-law exponent depends on the evolution time of the network. Its lower limit is given by the universal value 5/2, derived analytically for the case of random fragmentation processes. In the temporal patterns behind the size of actions we find long-range correlations in the time series of the number of clusters and the non-trivial distribution of time that a unit waits between two actions. In the case of an evolving network the distribution develops a power-law tail, indicating that through repeated actions, the system develops an internal structure with a hierarchy of units.

  10. Fiber Access Networks: Reliability Analysis and Swedish Broadband Market

    NASA Astrophysics Data System (ADS)

    Wosinska, Lena; Chen, Jiajia; Larsen, Claus Popp

    Fiber access network architectures such as active optical networks (AONs) and passive optical networks (PONs) have been developed to support the growing bandwidth demand. Whereas particularly Swedish operators prefer AON, this may not be the case for operators in other countries. The choice depends on a combination of technical requirements, practical constraints, business models, and cost. Due to the increasing importance of reliable access to the network services, connection availability is becoming one of the most crucial issues for access networks, which should be reflected in the network owner's architecture decision. In many cases protection against failures is realized by adding backup resources. However, there is a trade off between the cost of protection and the level of service reliability since improving reliability performance by duplication of network resources (and capital expenditures CAPEX) may be too expensive. In this paper we present the evolution of fiber access networks and compare reliability performance in relation to investment and management cost for some representative cases. We consider both standard and novel architectures for deployment in both sparsely and densely populated areas. While some recent works focused on PON protection schemes with reduced CAPEX the current and future effort should be put on minimizing the operational expenditures (OPEX) during the access network lifetime.

  11. An Interactive Simulation Program for Exploring Computational Models of Auto-Associative Memory.

    PubMed

    Fink, Christian G

    2017-01-01

    While neuroscience students typically learn about activity-dependent plasticity early in their education, they often struggle to conceptually connect modification at the synaptic scale with network-level neuronal dynamics, not to mention with their own everyday experience of recalling a memory. We have developed an interactive simulation program (based on the Hopfield model of auto-associative memory) that enables the user to visualize the connections generated by any pattern of neural activity, as well as to simulate the network dynamics resulting from such connectivity. An accompanying set of student exercises introduces the concepts of pattern completion, pattern separation, and sparse versus distributed neural representations. Results from a conceptual assessment administered before and after students worked through these exercises indicate that the simulation program is a useful pedagogical tool for illustrating fundamental concepts of computational models of memory.

  12. Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks

    PubMed Central

    Lallouette, Jules; De Pittà, Maurizio; Ben-Jacob, Eshel; Berry, Hugues

    2014-01-01

    Traditionally, astrocytes have been considered to couple via gap-junctions into a syncytium with only rudimentary spatial organization. However, this view is challenged by growing experimental evidence that astrocytes organize as a proper gap-junction mediated network with more complex region-dependent properties. On the other hand, the propagation range of intercellular calcium waves (ICW) within astrocyte populations is as well highly variable, depending on the brain region considered. This suggests that the variability of the topology of gap-junction couplings could play a role in the variability of the ICW propagation range. Since this hypothesis is very difficult to investigate with current experimental approaches, we explore it here using a biophysically realistic model of three-dimensional astrocyte networks in which we varied the topology of the astrocyte network, while keeping intracellular properties and spatial cell distribution and density constant. Computer simulations of the model suggest that changing the topology of the network is indeed sufficient to reproduce the distinct ranges of ICW propagation reported experimentally. Unexpectedly, our simulations also predict that sparse connectivity and restriction of gap-junction couplings to short distances should favor propagation while long–distance or dense connectivity should impair it. Altogether, our results provide support to recent experimental findings that point toward a significant functional role of the organization of gap-junction couplings into proper astroglial networks. Dynamic control of this topology by neurons and signaling molecules could thus constitute a new type of regulation of neuron-glia and glia-glia interactions. PMID:24795613

  13. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients.

    PubMed

    Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E; Kim, Hee Jin; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2016-01-01

    Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are "small world." There were significant difference between NC and AD group in characteristic path lengths (z = -2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC dataset.

  14. NCI-CONNECT - Current Initiatives | Center for Cancer Research

    Cancer.gov

    NCI-CONNECT Current Studies The Comprehensive Oncology Network Evaluating Rare CNS Tumors, or NCI-CONNECT has a number of studies that are open and available for participation and will be adding more.

  15. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Harry P.; Byers, Jeff M.; Crump, Nicholas A.

    Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of themore » solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.« less

  16. Regression analysis of sparse asynchronous longitudinal data.

    PubMed

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

    2015-09-01

    We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

  17. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo.

    PubMed

    Abivardi, Aslan; Bach, Dominik R

    2017-08-01

    Structural alterations in long-range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non-systematic. Harnessing diffusion-weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1-weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non-human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white-matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non-human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927-3940, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  18. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo

    PubMed Central

    2017-01-01

    Abstract Structural alterations in long‐range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non‐systematic. Harnessing diffusion‐weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1‐weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non‐human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white‐matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non‐human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927–3940, 2017. © 2017 Wiley Periodicals, Inc. PMID:28512761

  19. Structural Connectivity of the Developing Human Amygdala

    PubMed Central

    Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  20. Multimodal Imaging of Brain Connectivity Using the MIBCA Toolbox: Preliminary Application to Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Ribeiro, André Santos; Lacerda, Luís Miguel; Silva, Nuno André da; Ferreira, Hugo Alexandre

    2015-06-01

    The Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox is a fully automated all-in-one connectivity analysis toolbox that offers both pre-processing, connectivity, and graph theory analysis of multimodal images such as anatomical, diffusion, and functional MRI, and PET. In this work, the MIBCA functionalities were used to study Alzheimer's Disease (AD) in a multimodal MR/PET approach. Materials and Methods: Data from 12 healthy controls, and 36 patients with EMCI, LMCI and AD (12 patients for each group) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), including T1-weighted (T1-w), Diffusion Tensor Imaging (DTI) data, and 18F-AV-45 (florbetapir) dynamic PET data from 40-60 min post injection (4x5 min). Both MR and PET data were automatically pre-processed for all subjects using MIBCA. T1-w data was parcellated into cortical and subcortical regions-of-interest (ROIs), and the corresponding thicknesses and volumes were calculated. DTI data was used to compute structural connectivity matrices based on fibers connecting pairs of ROIs. Lastly, dynamic PET images were summed, and the relative Standard Uptake Values calculated for each ROI. Results: An overall higher uptake of 18F-AV-45, consistent with an increased deposition of beta-amyloid, was observed for the AD group. Additionally, patients showed significant cortical atrophy (thickness and volume) especially in the entorhinal cortex and temporal areas, and a significant increase in Mean Diffusivity (MD) in the hippocampus, amygdala and temporal areas. Furthermore, patients showed a reduction of fiber connectivity with the progression of the disease, especially for intra-hemispherical connections. Conclusion: This work shows the potential of the MIBCA toolbox for the study of AD, as findings were shown to be in agreement with the literature. Here, only structural changes and beta-amyloid accumulation were considered. Yet, MIBCA is further able to process fMRI and different radiotracers, thus leading to integration of functional information, and supporting the research for new multimodal biomarkers for AD and other neurodegenerative diseases.

  1. 78 FR 63850 - Airworthiness Directives; AgustaWestland S.p.A. (Agusta) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... occurs first. This AD was prompted by two incidents of cracking on the nuts that connect the flexible... incidents of cracking on the nuts that connect the flexible disc coupling (Thomas coupling) with the splined... this AD. Labor costs are estimated at $85 per hour. We estimate 2 work hours to inspect each nut and 16...

  2. Disruption of Semantic Network in Mild Alzheimer's Disease Revealed by Resting-State fMRI.

    PubMed

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-02-10

    Subtle semantic deficits can be observed in Alzheimer's disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke's area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Ensemble Sparse Classification of Alzheimer’s Disease

    PubMed Central

    Liu, Manhua; Zhang, Daoqiang; Shen, Dinggang

    2012-01-01

    The high-dimensional pattern classification methods, e.g., support vector machines (SVM), have been widely investigated for analysis of structural and functional brain images (such as magnetic resonance imaging (MRI)) to assist the diagnosis of Alzheimer’s disease (AD) including its prodromal stage, i.e., mild cognitive impairment (MCI). Most existing classification methods extract features from neuroimaging data and then construct a single classifier to perform classification. However, due to noise and small sample size of neuroimaging data, it is challenging to train only a global classifier that can be robust enough to achieve good classification performance. In this paper, instead of building a single global classifier, we propose a local patch-based subspace ensemble method which builds multiple individual classifiers based on different subsets of local patches and then combines them for more accurate and robust classification. Specifically, to capture the local spatial consistency, each brain image is partitioned into a number of local patches and a subset of patches is randomly selected from the patch pool to build a weak classifier. Here, the sparse representation-based classification (SRC) method, which has shown effective for classification of image data (e.g., face), is used to construct each weak classifier. Then, multiple weak classifiers are combined to make the final decision. We evaluate our method on 652 subjects (including 198 AD patients, 225 MCI and 229 normal controls) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using MR images. The experimental results show that our method achieves an accuracy of 90.8% and an area under the ROC curve (AUC) of 94.86% for AD classification and an accuracy of 87.85% and an AUC of 92.90% for MCI classification, respectively, demonstrating a very promising performance of our method compared with the state-of-the-art methods for AD/MCI classification using MR images. PMID:22270352

  4. Ultrastructure of periprosthetic Dacron knee ligament tissue. Two cases of ruptured anterior cruciate ligament reconstruction.

    PubMed

    Salvi, M; Velluti, C; Misasi, M; Bartolozzi, P; Quacci, D; Dell'Orbo, C

    1991-04-01

    Light- and electron-microscopic investigations were performed on two failed Dacron ligaments that had been removed from 2 patients shortly after failure of the implant 2-3 years after reconstruction of the anterior cruciate ligament. Two different cell populations and matrices were correlated with closeness to the Dacron threads. Fibroblasts surrounded by connective tissue with collagen fibrils were located far from the Dacron threads. Roundish cells, appearing to be myofibroblasts surrounded by a more lax connective tissue and elastic fibers, were found close to the Dacron threads. The presence of myofibroblasts and the matrix differentiation could be attributed to the different mechanical forces acting on the Dacron and on the connective tissue because of their different coefficients of elasticity. The sparse occurrence of inflammatory cells in the synovial membrane and in the connective tissue surrounding the Dacron supports the biologic inertness of this artificial material. However, the repair tissue was not structured to resist tension stresses.

  5. Interaction of multiarmed spirals in bistable media.

    PubMed

    He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng

    2013-05-01

    We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.

  6. 3D Reconstruction of human bones based on dictionary learning.

    PubMed

    Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin

    2017-11-01

    An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Dispersal capacity and genetic relatedness in Acropora cervicornis on the Florida Reef Tract

    NASA Astrophysics Data System (ADS)

    Drury, Crawford; Paris, Claire B.; Kourafalou, Vassiliki H.; Lirman, Diego

    2018-06-01

    Sexual reproduction in scleractinian corals is a critical component of species recovery, fostering population connectivity and enhancing genetic diveristy. The relative contribution of sexual reproduction to both connectivity and diversity in Acropora cervicornis may be variable due to this species' capacity to reproduce effectively by fragmentation. Using a biophysical model and genomic data in this threatened species, we construct potential connectivity pathways on the Florida Reef Tract (FRT) and compare them to inferred migration rates derived from next-generation sequencing, using a link and node-based approach. Larval connectivity on the FRT can be divided into two zones: the northern region, where most transport is unidirectional to the north with the Florida Current, and the southern region that is more dynamic and exhibits complex spatial patterns. These biophysical linkages are poorly correlated with genetic connectivity patterns, which resolve many reciprocal connections and suggest a less sparse network. These results are difficult to reconcile with genetic data which indicate that individual reefs are diverse, suggesting important contributions of sexual reproduction and recruitment. Larval connectivity models highlight potential resources for recovery, such as areas with high larval export like the Lower Keys, or areas that are well connected to most other regions on the FRT, such as the Dry Tortugas.

  8. SPECTRAL GRAPH THEORY AND GRAPH ENERGY METRICS SHOW EVIDENCE FOR THE ALZHEIMER’S DISEASE DISCONNECTION SYNDROME IN APOE-4 RISK GENE CARRIERS

    PubMed Central

    Daianu, Madelaine; Mezher, Adam; Jahanshad, Neda; Hibar, Derrek P.; Nir, Talia M.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matt A.; Thompson, Paul M.

    2015-01-01

    Our understanding of network breakdown in Alzheimer’s disease (AD) is likely to be enhanced through advanced mathematical descriptors. Here, we applied spectral graph theory to provide novel metrics of structural connectivity based on 3-Tesla diffusion weighted images in 42 AD patients and 50 healthy controls. We reconstructed connectivity networks using whole-brain tractography and examined, for the first time here, cortical disconnection based on the graph energy and spectrum. We further assessed supporting metrics - link density and nodal strength - to better interpret our results. Metrics were analyzed in relation to the well-known APOE-4 genetic risk factor for late-onset AD. The number of disconnected cortical regions increased with the number of copies of the APOE-4 risk gene in people with AD. Each additional copy of the APOE-4 risk gene may lead to more dysfunctional networks with weakened or abnormal connections, providing evidence for the previously hypothesized “disconnection syndrome”. PMID:26413205

  9. SPECTRAL GRAPH THEORY AND GRAPH ENERGY METRICS SHOW EVIDENCE FOR THE ALZHEIMER'S DISEASE DISCONNECTION SYNDROME IN APOE-4 RISK GENE CARRIERS.

    PubMed

    Daianu, Madelaine; Mezher, Adam; Jahanshad, Neda; Hibar, Derrek P; Nir, Talia M; Jack, Clifford R; Weiner, Michael W; Bernstein, Matt A; Thompson, Paul M

    2015-04-01

    Our understanding of network breakdown in Alzheimer's disease (AD) is likely to be enhanced through advanced mathematical descriptors. Here, we applied spectral graph theory to provide novel metrics of structural connectivity based on 3-Tesla diffusion weighted images in 42 AD patients and 50 healthy controls. We reconstructed connectivity networks using whole-brain tractography and examined, for the first time here, cortical disconnection based on the graph energy and spectrum. We further assessed supporting metrics - link density and nodal strength - to better interpret our results. Metrics were analyzed in relation to the well-known APOE -4 genetic risk factor for late-onset AD. The number of disconnected cortical regions increased with the number of copies of the APOE -4 risk gene in people with AD. Each additional copy of the APOE -4 risk gene may lead to more dysfunctional networks with weakened or abnormal connections, providing evidence for the previously hypothesized "disconnection syndrome".

  10. Mapping the Alzheimer’s Brain with Connectomics

    PubMed Central

    Xie, Teng; He, Yong

    2012-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. As an incurable, progressive, and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques [e.g., structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, and EEG/MEG] and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome) in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring. PMID:22291664

  11. The complexity of identifying Ryu-Takayanagi surfaces in AdS 3/CFT 2

    DOE PAGES

    Bao, Ning; Chatwin-Davies, A.

    2016-11-07

    Here, we present a constructive algorithm for the determination of Ryu-Takayanagi surfaces in AdS 3/CFT 2 which exploits previously noted connections between holographic entanglement entropy and max-flow/min-cut. We then characterize its complexity as a polynomial time algorithm.

  12. Impact of Beamforming on the Path Connectivity in Cognitive Radio Ad Hoc Networks

    PubMed Central

    Dung, Le The; Hieu, Tran Dinh; Choi, Seong-Gon; Kim, Byung-Seo; An, Beongku

    2017-01-01

    This paper investigates the impact of using directional antennas and beamforming schemes on the connectivity of cognitive radio ad hoc networks (CRAHNs). Specifically, considering that secondary users use two kinds of directional antennas, i.e., uniform linear array (ULA) and uniform circular array (UCA) antennas, and two different beamforming schemes, i.e., randomized beamforming and center-directed to communicate with each other, we study the connectivity of all combination pairs of directional antennas and beamforming schemes and compare their performances to those of omnidirectional antennas. The results obtained in this paper show that, compared with omnidirectional transmission, beamforming transmission only benefits the connectivity when the density of secondary user is moderate. Moreover, the combination of UCA and randomized beamforming scheme gives the highest path connectivity in all evaluating scenarios. Finally, the number of antenna elements and degree of path loss greatly affect path connectivity in CRAHNs. PMID:28346377

  13. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  14. Disrupted global metastability and static and dynamic brain connectivity across individuals in the Alzheimer’s disease continuum

    NASA Astrophysics Data System (ADS)

    Córdova-Palomera, Aldo; Kaufmann, Tobias; Persson, Karin; Alnæs, Dag; Doan, Nhat Trung; Moberget, Torgeir; Lund, Martina Jonette; Barca, Maria Lage; Engvig, Andreas; Brækhus, Anne; Engedal, Knut; Andreassen, Ole A.; Selbæk, Geir; Westlye, Lars T.

    2017-01-01

    As findings on the neuropathological and behavioral components of Alzheimer’s disease (AD) continue to accrue, converging evidence suggests that macroscale brain functional disruptions may mediate their association. Recent developments on theoretical neuroscience indicate that instantaneous patterns of brain connectivity and metastability may be a key mechanism in neural communication underlying cognitive performance. However, the potential significance of these patterns across the AD spectrum remains virtually unexplored. We assessed the clinical sensitivity of static and dynamic functional brain disruptions across the AD spectrum using resting-state fMRI in a sample consisting of AD patients (n = 80) and subjects with either mild (n = 44) or subjective (n = 26) cognitive impairment (MCI, SCI). Spatial maps constituting the nodes in the functional brain network and their associated time-series were estimated using spatial group independent component analysis and dual regression, and whole-brain oscillatory activity was analyzed both globally (metastability) and locally (static and dynamic connectivity). Instantaneous phase metrics showed functional coupling alterations in AD compared to MCI and SCI, both static (putamen, dorsal and default-mode) and dynamic (temporal, frontal-superior and default-mode), along with decreased global metastability. The results suggest that brains of AD patients display altered oscillatory patterns, in agreement with theoretical premises on cognitive dynamics.

  15. Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing.

    PubMed

    Dottori, Martin; Sedeño, Lucas; Martorell Caro, Miguel; Alifano, Florencia; Hesse, Eugenia; Mikulan, Ezequiel; García, Adolfo M; Ruiz-Tagle, Amparo; Lillo, Patricia; Slachevsky, Andrea; Serrano, Cecilia; Fraiman, Daniel; Ibanez, Agustin

    2017-06-19

    Developing effective and affordable biomarkers for dementias is critical given the difficulty to achieve early diagnosis. In this sense, electroencephalographic (EEG) methods offer promising alternatives due to their low cost, portability, and growing robustness. Here, we relied on EEG signals and a novel information-sharing method to study resting-state connectivity in patients with behavioral variant frontotemporal dementia (bvFTD) and controls. To evaluate the specificity of our results, we also tested Alzheimer's disease (AD) patients. The classification power of the ensuing connectivity patterns was evaluated through a supervised classification algorithm (support vector machine). In addition, we compared the classification power yielded by (i) functional connectivity, (ii) relevant neuropsychological tests, and (iii) a combination of both. BvFTD patients exhibited a specific pattern of hypoconnectivity in mid-range frontotemporal links, which showed no alterations in AD patients. These functional connectivity alterations in bvFTD were replicated with a low-density EEG setting (20 electrodes). Moreover, while neuropsychological tests yielded acceptable discrimination between bvFTD and controls, the addition of connectivity results improved classification power. Finally, classification between bvFTD and AD patients was better when based on connectivity than on neuropsychological measures. Taken together, such findings underscore the relevance of EEG measures as potential biomarker signatures for clinical settings.

  16. Simulation of Locking Space Truss Deployments for a Large Deployable Sparse Aperture Reflector

    DTIC Science & Technology

    2015-03-01

    Dr. Alan Jennings, for his unending patience with my struggles through this entire process . Without his expertise, guidance, and trust I would have...engineer since they are not automatically meshed. Fortunately, the mesh process is quite swift. Figure 13 shows both a linear hexahedral element as well...less than that of the serial process . Therefore, COMSOL’s partially parallelized algorithms will not be sped up as a function of cores added and is

  17. Integration of Network Topological and Connectivity Properties for Neuroimaging Classification

    PubMed Central

    Jie, Biao; Gao, Wei; Wang, Qian; Wee, Chong-Yaw

    2014-01-01

    Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer’s disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results. PMID:24108708

  18. Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome.

    PubMed

    Swanson, Larry W; Sporns, Olaf; Hahn, Joel D

    2016-10-04

    The cerebral nuclei form the ventral division of the cerebral hemisphere and are thought to play an important role in neural systems controlling somatic movement and motivation. Network analysis was used to define global architectural features of intrinsic cerebral nuclei circuitry in one hemisphere (association connections) and between hemispheres (commissural connections). The analysis was based on more than 4,000 reports of histologically defined axonal connections involving all 45 gray matter regions of the rat cerebral nuclei and revealed the existence of four asymmetrically interconnected modules. The modules form four topographically distinct longitudinal columns that only partly correspond to previous interpretations of cerebral nuclei structure-function organization. The network of connections within and between modules in one hemisphere or the other is quite dense (about 40% of all possible connections), whereas the network of connections between hemispheres is weak and sparse (only about 5% of all possible connections). Particularly highly interconnected regions (rich club and hubs within it) form a topologically continuous band extending through two of the modules. Connection path lengths among numerous pairs of regions, and among some of the network's modules, are relatively long, thus accounting for low global efficiency in network communication. These results provide a starting point for reexamining the connectional organization of the cerebral hemispheres as a whole (right and left cerebral cortex and cerebral nuclei together) and their relation to the rest of the nervous system.

  19. Functional connectivity and graph theory in preclinical Alzheimer's disease.

    PubMed

    Brier, Matthew R; Thomas, Jewell B; Fagan, Anne M; Hassenstab, Jason; Holtzman, David M; Benzinger, Tammie L; Morris, John C; Ances, Beau M

    2014-04-01

    Alzheimer's disease (AD) has a long preclinical phase in which amyloid and tau cerebral pathology accumulate without producing cognitive symptoms. Resting state functional connectivity magnetic resonance imaging has demonstrated that brain networks degrade during symptomatic AD. It is unclear to what extent these degradations exist before symptomatic onset. In this study, we investigated graph theory metrics of functional integration (path length), functional segregation (clustering coefficient), and functional distinctness (modularity) as a function of disease severity. Further, we assessed whether these graph metrics were affected in cognitively normal participants with cerebrospinal fluid evidence of preclinical AD. Clustering coefficient and modularity, but not path length, were reduced in AD. Cognitively normal participants who harbored AD biomarker pathology also showed reduced values in these graph measures, demonstrating brain changes similar to, but smaller than, symptomatic AD. Only modularity was significantly affected by age. We also demonstrate that AD has a particular effect on hub-like regions in the brain. We conclude that AD causes large-scale disconnection that is present before onset of symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.

    2014-06-01

    How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.

  1. "Small World" architecture in brain connectivity and hippocampal volume in Alzheimer's disease: a study via graph theory from EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Piludu, Francesca; Granata, Giuseppe; Romanello, Roberto; Caulo, Massimo; Onofrj, Valeria; Bramanti, Placido; Colosimo, Cesare; Rossini, Paolo Maria

    2017-04-01

    Brain imaging plays an important role in the study of Alzheimer's disease (AD), where atrophy has been found to occur in the hippocampal formation during the very early disease stages and to progress in parallel with the disease's evolution. The aim of the present study was to evaluate a possible correlation between "Small World" characteristics of the brain connectivity architecture-as extracted from EEG recordings-and hippocampal volume in AD patients. A dataset of 144 subjects, including 110 AD (MMSE 21.3) and 34 healthy Nold (MMSE 29.8) individuals, was evaluated. Weighted and undirected networks were built by the eLORETA solutions of the cortical sources' activities moving from EEG recordings. The evaluation of the hippocampal volume was carried out on a subgroup of 60 AD patients who received a high-resolution T1-weighted sequence and underwent processing for surface-based cortex reconstruction and volumetric segmentation using the Freesurfer image analysis software. Results showed that, quantitatively, more correlation was observed in the right hemisphere, but the same trend was seen in both hemispheres. Alpha band connectivity was negatively correlated, while slow (delta) and fast-frequency (beta, gamma) bands positively correlated with hippocampal volume. Namely, the larger the hippocampal volume, the lower the alpha and the higher the delta, beta, and gamma Small World characteristics of connectivity. Accordingly, the Small World connectivity pattern could represent a functional counterpart of structural hippocampal atrophying and related-network disconnection.

  2. Color normalization of histology slides using graph regularized sparse NMF

    NASA Astrophysics Data System (ADS)

    Sha, Lingdao; Schonfeld, Dan; Sethi, Amit

    2017-03-01

    Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.

  3. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  4. TRACTOGRAPHY DENSITY AND NETWORK MEASURES IN ALZHEIMER'S DISEASE.

    PubMed

    Prasad, Gautam; Nir, Talia M; Toga, Arthur W; Thompson, Paul M

    2013-04-01

    Brain connectivity declines in Alzheimer's disease (AD), both functionally and structurally. Connectivity maps and networks derived from diffusion-based tractography offer new ways to track disease progression and to understand how AD affects the brain. Here we set out to identify (1) which fiber network measures show greatest differences between AD patients and controls, and (2) how these effects depend on the density of fibers extracted by the tractography algorithm. We computed brain networks from diffusion-weighted images (DWI) of the brain, in 110 subjects (28 normal elderly, 56 with early and 11 with late mild cognitive impairment, and 15 with AD). We derived connectivity matrices and network topology measures, for each subject, from whole-brain tractography and cortical parcellations. We used an ODF lookup table to speed up fiber extraction, and to exploit the full information in the orientation distribution function (ODF). This made it feasible to compute high density connectivity maps. We used accelerated tractography to compute a large number of fibers to understand what effect fiber density has on network measures and in distinguishing different disease groups in our data. We focused on global efficiency, transitivity, path length, mean degree, density, modularity, small world, and assortativity measures computed from weighted and binary undirected connectivity matrices. Of all these measures, the mean nodal degree best distinguished diagnostic groups. High-density fiber matrices were most helpful for picking up the more subtle clinical differences, e.g. between mild cognitively impaired (MCI) and normals, or for distinguishing subtypes of MCI (early versus late). Care is needed in clinical analyses of brain connectivity, as the density of extracted fibers may affect how well a network measure can pick up differences between patients and controls.

  5. Perspectives on How Human Simultaneous Multi-Modal Imaging Adds Directionality to Spread Models of Alzheimer’s Disease

    PubMed Central

    Neitzel, Julia; Nuttall, Rachel; Sorg, Christian

    2018-01-01

    Previous animal research suggests that the spread of pathological agents in Alzheimer’s disease (AD) follows the direction of signaling pathways. Specifically, tau pathology has been suggested to propagate in an infection-like mode along axons, from transentorhinal cortices to medial temporal lobe cortices and consequently to other cortical regions, while amyloid-beta (Aβ) pathology seems to spread in an activity-dependent manner among and from isocortical regions into limbic and then subcortical regions. These directed connectivity-based spread models, however, have not been tested directly in AD patients due to the lack of an in vivo method to identify directed connectivity in humans. Recently, a new method—metabolic connectivity mapping (MCM)—has been developed and validated in healthy participants that uses simultaneous FDG-PET and resting-state fMRI data acquisition to identify directed intrinsic effective connectivity (EC). To this end, postsynaptic energy consumption (FDG-PET) is used to identify regions with afferent input from other functionally connected brain regions (resting-state fMRI). Here, we discuss how this multi-modal imaging approach allows quantitative, whole-brain mapping of signaling direction in AD patients, thereby pointing out some of the advantages it offers compared to other EC methods (i.e., Granger causality, dynamic causal modeling, Bayesian networks). Most importantly, MCM provides the basis on which models of pathology spread, derived from animal studies, can be tested in AD patients. In particular, future work should investigate whether tau and Aβ in humans propagate along the trajectories of directed connectivity in order to advance our understanding of the neuropathological mechanisms causing disease progression. PMID:29434570

  6. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1987-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  7. Decentralized state estimation for a large-scale spatially interconnected system.

    PubMed

    Liu, Huabo; Yu, Haisheng

    2018-03-01

    A decentralized state estimator is derived for the spatially interconnected systems composed of many subsystems with arbitrary connection relations. An optimization problem on the basis of linear matrix inequality (LMI) is constructed for the computations of improved subsystem parameter matrices. Several computationally effective approaches are derived which efficiently utilize the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, this decentralized state estimator is proved to converge to a stable system and obtain a bounded covariance matrix of estimation errors under certain conditions. Numerical simulations show that the obtained decentralized state estimator is attractive in the synthesis of a large-scale networked system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease

    PubMed Central

    Franzmeier, Nicolai; Duering, Marco; Weiner, Michael; Dichgans, Martin

    2017-01-01

    Objective: To test whether higher global functional connectivity of the left frontal cortex (LFC) in Alzheimer disease (AD) is associated with more years of education (a proxy of cognitive reserve [CR]) and mitigates the association between AD-related fluorodeoxyglucose (FDG)-PET hypometabolism and episodic memory. Methods: Forty-four amyloid-PET–positive patients with amnestic mild cognitive impairment (MCI-Aβ+) and 24 amyloid-PET–negative healthy controls (HC) were included. Voxel-based linear regression analyses were used to test the association between years of education and FDG-PET in MCI-Aβ+, controlled for episodic memory performance. Global LFC (gLFC) connectivity was computed through seed-based resting-state fMRI correlations between the LFC (seed) and each voxel in the gray matter. In linear regression analyses, education as a predictor of gLFC connectivity and the interaction of gLFC connectivity × FDG-PET hypometabolism on episodic memory were tested. Results: FDG-PET metabolism in the precuneus was reduced in MCI-Aβ+ compared to HC (p = 0.028), with stronger reductions observed in MCI-Aβ+ with more years of education (p = 0.006). In MCI-Aβ+, higher gLFC connectivity was associated with more years of education (p = 0.021). At higher levels of gLFC connectivity, the association between precuneus FDG-PET hypometabolism and lower memory performance was attenuated (p = 0.027). Conclusions: Higher gLFC connectivity is a functional substrate of CR that helps to maintain episodic memory relatively well in the face of emerging FDG-PET hypometabolism in early-stage AD. PMID:28188306

  9. Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease.

    PubMed

    Franzmeier, Nicolai; Duering, Marco; Weiner, Michael; Dichgans, Martin; Ewers, Michael

    2017-03-14

    To test whether higher global functional connectivity of the left frontal cortex (LFC) in Alzheimer disease (AD) is associated with more years of education (a proxy of cognitive reserve [CR]) and mitigates the association between AD-related fluorodeoxyglucose (FDG)-PET hypometabolism and episodic memory. Forty-four amyloid-PET-positive patients with amnestic mild cognitive impairment (MCI-Aβ+) and 24 amyloid-PET-negative healthy controls (HC) were included. Voxel-based linear regression analyses were used to test the association between years of education and FDG-PET in MCI-Aβ+, controlled for episodic memory performance. Global LFC (gLFC) connectivity was computed through seed-based resting-state fMRI correlations between the LFC (seed) and each voxel in the gray matter. In linear regression analyses, education as a predictor of gLFC connectivity and the interaction of gLFC connectivity × FDG-PET hypometabolism on episodic memory were tested. FDG-PET metabolism in the precuneus was reduced in MCI-Aβ+ compared to HC ( p = 0.028), with stronger reductions observed in MCI-Aβ+ with more years of education ( p = 0.006). In MCI-Aβ+, higher gLFC connectivity was associated with more years of education ( p = 0.021). At higher levels of gLFC connectivity, the association between precuneus FDG-PET hypometabolism and lower memory performance was attenuated ( p = 0.027). Higher gLFC connectivity is a functional substrate of CR that helps to maintain episodic memory relatively well in the face of emerging FDG-PET hypometabolism in early-stage AD. © 2017 American Academy of Neurology.

  10. Increased resting-state brain entropy in Alzheimer's disease.

    PubMed

    Xue, Shao-Wei; Guo, Yonghu

    2018-03-07

    Entropy analysis of resting-state functional MRI (R-fMRI) is a novel approach to characterize brain temporal dynamics and facilitates the identification of abnormal brain activity caused by several disease conditions. However, Alzheimer's disease (AD)-related brain entropy mapping based on R-fMRI has not been assessed. Here, we measured the sample entropy and voxel-wise connectivity of the network degree centrality (DC) of the intrinsic brain activity acquired by R-fMRI in 26 patients with AD and 26 healthy controls. Compared with the controls, AD patients showed increased entropy in the middle temporal gyrus and the precentral gyrus and also showed decreased DC in the precuneus. Moreover, the magnitude of the negative correlation between local brain activity (entropy) and network connectivity (DC) was increased in AD patients in comparison with healthy controls. These findings provide new evidence on AD-related brain entropy alterations.

  11. Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence.

    PubMed

    Sankari, Ziad; Adeli, Hojjat

    2011-04-15

    Recently, the authors presented an EEG (electroencephalogram) coherence study of the Alzheimer's disease (AD) and found statistically significant differences between AD and control groups. In this paper a probabilistic neural network (PNN) model is presented for classification of AD and healthy controls using features extracted in coherence and wavelet coherence studies on cortical connectivity in AD. The model is verified using EEGs obtained from 20 AD probable patients and 7 healthy/control subjects based on a standard 10-20 electrode configuration on the scalp. It is shown that extracting features from EEG sub-bands using coherence, as a measure of cortical connectivity, can discriminate AD patients from healthy controls effectively when a mixed band classification model is applied. For the data set used a classification accuracy of 100% is achieved using the conventional coherence and a spread parameter of the Gaussian function in a particular range found in this research. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Low-frequency oscillations in default mode subnetworks are associated with episodic memory impairments in Alzheimer's disease.

    PubMed

    Veldsman, Michele; Egorova, Natalia; Singh, Baljeet; Mungas, Dan; DeCarli, Charles; Brodtmann, Amy

    2017-11-01

    Disruptions to functional connectivity in subsystems of the default mode network are evident in Alzheimer's disease (AD). Functional connectivity estimates correlations in the time course of low-frequency activity. Much less is known about other potential perturbations to this activity, such as changes in the amplitude of oscillations and how this relates to cognition. We examined the amplitude of low-frequency fluctuations in 44 AD patients and 128 cognitively normal participants and related this to episodic memory, the core deficit in AD. We show higher amplitudes of low-frequency oscillations in AD patients. Rather than being compensatory, this appears to be maladaptive, with greater amplitude in the ventral default mode subnetwork associated with poorer episodic memory. Perturbations to default mode subnetworks in AD are evident in the amplitude of low-frequency oscillations in the resting brain. These disruptions are associated with episodic memory demonstrating their behavioral and clinical relevance in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A Compressed Sensing Based Ultra-Wideband Communication System

    DTIC Science & Technology

    2009-06-01

    principle, most of the processing at the receiver can be moved to the transmitter—where energy consumption and computation are sufficient for many advanced...extended to continuous time signals. We use ∗ to denote the convolution process in a linear time-invariant (LTI) system. Assume that there is an analog...Filter Channel Low Rate A/D Processing Sparse Bit Sequence UWB Pulse Generator α̂ Waves)(RadioGHz 5 MHz125 θ Ψ Φ y θ̂ 1 ˆ arg min s.t. yθ

  14. Functional Disconnectivity during Inter-Task Resting State in Dementia with Lewy Bodies.

    PubMed

    Chabran, Eléna; Roquet, Daniel; Gounot, Daniel; Sourty, Marion; Armspach, Jean-Paul; Blanc, Frédéric

    2018-01-01

    Limited research has been done on the functional connectivity in visuoperceptual regions in dementia with Lewy bodies (DLB) patients. This study aimed to investigate the functional connectivity differences between a task condition and an inter-task resting state condition within a visuoperceptual paradigm, in DLB patients compared with Alzheimer disease (AD) patients and healthy elderly control subjects. Twenty-six DLB, 29 AD, and 22 healthy subjects underwent a detailed clinical and neuropsychological examination along with a functional MRI during the different conditions of a visuoperceptual paradigm. Functional images were analyzed using group-level spatial independent component analysis and seed-based connectivity analyses. While the DLB patients scored well and did not differ from the control and AD groups in terms of functional activity and connectivity during the task conditions, they showed decreased functional connectivity in visuoperceptual regions during the resting state condition, along with a temporal impairment of the default-mode network activity. Functional connectivity disturbances were also found within two attentional-executive networks and between these networks and visuoperceptual regions. We found a specific functional profile in the switching between task and resting state conditions in DLB patients. This result could help better characterize functional impairments in DLB and their contribution to several core symptoms of this pathology such as visual hallucinations and cognitive fluctuations. © 2018 S. Karger AG, Basel.

  15. Fast Low-Cost Multiple Sensor Readout System

    DOEpatents

    Carter-Lewis, David; Krennich, Frank; Le Bohec, Stephane; Petry, Dirk; Sleege, Gary

    2004-04-06

    A low resolution data acquisition system is presented. The data acquisition system has a plurality of readout modules serially connected to a controller. Each readout module has a FPGA in communication with analog to digital (A/D) converters, which are connected to sensors. The A/D converter has eight bit or lower resolution. The FPGA detects when a command is addressed to it and commands the A/D converters to convert analog sensor data into digital data. The digital data is sent on a high speed serial communication bus to the controller. A graphical display is used in one embodiment to indicate if a sensor reading is outside of a predetermined range.

  16. Network Medicine for Alzheimer's Disease and Traditional Chinese Medicine.

    PubMed

    Jarrell, Juliet T; Gao, Li; Cohen, David S; Huang, Xudong

    2018-05-11

    Alzheimer’s Disease (AD) is a neurodegenerative condition that currently has no known cure. The principles of the expanding field of network medicine (NM) have recently been applied to AD research. The main principle of NM proposes that diseases are much more complicated than one mutation in one gene, and incorporate different genes, connections between genes, and pathways that may include multiple diseases to create full scale disease networks. AD research findings as a result of the application of NM principles have suggested that functional network connectivity, myelination, myeloid cells, and genes and pathways may play an integral role in AD progression, and may be integral to the search for a cure. Different aspects of the AD pathology could be potential targets for drug therapy to slow down or stop the disease from advancing, but more research is needed to reach definitive conclusions. Additionally, the holistic approaches of network pharmacology in traditional Chinese medicine (TCM) research may be viable options for the AD treatment, and may lead to an effective cure for AD in the future.

  17. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    PubMed

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed using the 1000 Functional Connectome Project database, which includes data obtained from 25 healthy subjects at three different occasions with long and short intervals between sessions. We demonstrated that SPARK provides an accurate and reliable estimation of k-hubness, suggesting a promising tool for understanding hub organization in resting-state fMRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Application distribution model and related security attacks in VANET

    NASA Astrophysics Data System (ADS)

    Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian

    2013-03-01

    In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.

  19. Regression analysis of sparse asynchronous longitudinal data

    PubMed Central

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P.

    2015-01-01

    Summary We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus. PMID:26568699

  20. Interaction mining and skill-dependent recommendations for multi-objective team composition

    PubMed Central

    Dorn, Christoph; Skopik, Florian; Schall, Daniel; Dustdar, Schahram

    2011-01-01

    Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The composition of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity. The underlying interaction structure reflects social behavior and relations of individuals and determines to a large degree how well people can be expected to collaborate. In this paper we address an extended team formation problem that does not only require direct interactions to determine team connectivity but additionally uses implicit recommendations of collaboration partners to support even sparsely connected networks. We provide two heuristics based on Genetic Algorithms and Simulated Annealing for discovering efficient team configurations that yield the best trade-off between skill coverage and team connectivity. Our self-adjusting mechanism aims to discover the best combination of direct interactions and recommendations when deriving connectivity. We evaluate our approach based on multiple configurations of a simulated collaboration network that features close resemblance to real world expert networks. We demonstrate that our algorithm successfully identifies efficient team configurations even when removing up to 40% of experts from various social network configurations. PMID:22298939

  1. Boosting Classification Accuracy of Diffusion MRI Derived Brain Networks for the Subtypes of Mild Cognitive Impairment Using Higher Order Singular Value Decomposition

    PubMed Central

    Zhan, L.; Liu, Y.; Zhou, J.; Ye, J.; Thompson, P.M.

    2015-01-01

    Mild cognitive impairment (MCI) is an intermediate stage between normal aging and Alzheimer's disease (AD), and around 10-15% of people with MCI develop AD each year. More recently, MCI has been further subdivided into early and late stages, and there is interest in identifying sensitive brain imaging biomarkers that help to differentiate stages of MCI. Here, we focused on anatomical brain networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying early versus late MCI. PMID:26413202

  2. Contrast normalization contributes to a biologically-plausible model of receptive-field development in primary visual cortex (V1)

    PubMed Central

    Willmore, Ben D.B.; Bulstrode, Harry; Tolhurst, David J.

    2012-01-01

    Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli – such as sinusoidal gratings – respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 – each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input. PMID:22230381

  3. Artificial neural networks as quantum associative memory

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis

    We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n < 1000 qubits. This work was supported by the United States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.

  4. Differential Covariance: A New Class of Methods to Estimate Sparse Connectivity from Neural Recordings

    PubMed Central

    Lin, Tiger W.; Das, Anup; Krishnan, Giri P.; Bazhenov, Maxim; Sejnowski, Terrence J.

    2017-01-01

    With our ability to record more neurons simultaneously, making sense of these data is a challenge. Functional connectivity is one popular way to study the relationship of multiple neural signals. Correlation-based methods are a set of currently well-used techniques for functional connectivity estimation. However, due to explaining away and unobserved common inputs (Stevenson, Rebesco, Miller, & Körding, 2008), they produce spurious connections. The general linear model (GLM), which models spike trains as Poisson processes (Okatan, Wilson, & Brown, 2005; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005; Pillow et al., 2008), avoids these confounds. We develop here a new class of methods by using differential signals based on simulated intracellular voltage recordings. It is equivalent to a regularized AR(2) model. We also expand the method to simulated local field potential recordings and calcium imaging. In all of our simulated data, the differential covariance-based methods achieved performance better than or similar to the GLM method and required fewer data samples. This new class of methods provides alternative ways to analyze neural signals. PMID:28777719

  5. Differential Covariance: A New Class of Methods to Estimate Sparse Connectivity from Neural Recordings.

    PubMed

    Lin, Tiger W; Das, Anup; Krishnan, Giri P; Bazhenov, Maxim; Sejnowski, Terrence J

    2017-10-01

    With our ability to record more neurons simultaneously, making sense of these data is a challenge. Functional connectivity is one popular way to study the relationship of multiple neural signals. Correlation-based methods are a set of currently well-used techniques for functional connectivity estimation. However, due to explaining away and unobserved common inputs (Stevenson, Rebesco, Miller, & Körding, 2008 ), they produce spurious connections. The general linear model (GLM), which models spike trains as Poisson processes (Okatan, Wilson, & Brown, 2005 ; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005 ; Pillow et al., 2008 ), avoids these confounds. We develop here a new class of methods by using differential signals based on simulated intracellular voltage recordings. It is equivalent to a regularized AR(2) model. We also expand the method to simulated local field potential recordings and calcium imaging. In all of our simulated data, the differential covariance-based methods achieved performance better than or similar to the GLM method and required fewer data samples. This new class of methods provides alternative ways to analyze neural signals.

  6. Coverage in Heterogeneous Sensor Networks

    DTIC Science & Technology

    2006-01-01

    and S. Banerjee, “Node Placement for Connected Coverage in Sensor Networks,” in Proceedings of WiOpt ’03, March 2003. [10] F. Koushanfar, S...Meguerdichian, M. Potkonjak, and M. Srivastava, Cov- erage Problems in Wireless Ad-Hoc Sensor Networks, in Proceedings of the IEEE INFOCOM 01, March 2001, pp...Coverage and Connectivity of Ad Hoc Networks in Presence of Channel Randomness,” in Proceedings of the IEEE INFOCOM 05, March 2005, pp. 491–502. [16] S

  7. Feasibility Report for Hydropower, St. Anthony Falls Locks and Dams, Mississippi River, Minneapolis, Minnesota.

    DTIC Science & Technology

    1984-02-01

    Added Generators and Breakers 116 * ix I~ Table of Contents (cont.) Item Pace Excitation System 117 Connection to Load 117 Bridge Crane 117 Lower St...118 Added Generator and Breaker 119 Excitation System 120 Connection to Load 120 Mobile Crane 120 Civil Features - Upper Falls 120 Powerhouse 121...intermediate plants fully integrated with the base loaded thermal plants in the area. Gavins Point is generally base- loaded to provide steady flows for

  8. Exploring the Function Space of Deep-Learning Machines

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2018-06-01

    The function space of deep-learning machines is investigated by studying growth in the entropy of functions of a given error with respect to a reference function, realized by a deep-learning machine. Using physics-inspired methods we study both sparsely and densely connected architectures to discover a layerwise convergence of candidate functions, marked by a corresponding reduction in entropy when approaching the reference function, gain insight into the importance of having a large number of layers, and observe phase transitions as the error increases.

  9. Dual pore-connectivity and flow-paths affect shale hydrocarbon production

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.; Daigle, H.; Kelly, E. D.; Milliken, K. L.; Jiang, H.

    2016-12-01

    Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  10. Dual pore-connectivity and flow-paths affect shale hydrocarbon production

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Barber, T.; Zhang, Y.; Md Golam, K.

    2017-12-01

    Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  11. Identifying group discriminative and age regressive sub-networks from DTI-based connectivity via a unified framework of non-negative matrix factorization and graph embedding

    PubMed Central

    Ghanbari, Yasser; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini

    2014-01-01

    Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter (WM) fiber tracts and their development in the brain, facilitating a network representation of brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel means of investigating brain changes arising from pathology, development or aging. The high dimensionality of these connectivity networks necessitates the development of methods that identify the connectivity building blocks or sub-network components that characterize the underlying variation in the population. In addition, the projection of the subject networks into the basis set provides a low dimensional representation of it, that teases apart different sources of variation in the sample, facilitating variation-specific statistical analysis. We propose a unified framework of non-negative matrix factorization and graph embedding for learning sub-network patterns of connectivity by their projective non-negative decomposition into a reconstructive basis set, as well as, additional basis sets representing variational sources in the population like age and pathology. The proposed framework is applied to a study of diffusion-based connectivity in subjects with autism that shows localized sparse sub-networks which mostly capture the changes related to pathology and developmental variations. PMID:25037933

  12. Prediction of vein connectivity using the percolation approach: model test with field data

    NASA Astrophysics Data System (ADS)

    Belayneh, M.; Masihi, M.; Matthäi, S. K.; King, P. R.

    2006-09-01

    Evaluating the uncertainty in fracture connectivity and its effect on the flow behaviour of natural fracture networks formed under in situ conditions is an extremely difficult task. One widely used probabilistic approach is to use percolation theory, which is well adapted to estimate the connectivity and conductivity of geometrical objects near the percolation threshold. In this paper, we apply scaling laws from percolation theory to predict the connectivity of vein sets exposed on the southern margin of the Bristol Channel Basin. Two vein sets in a limestone bed interbedded with shales on the limb of a rollover fold were analysed for length, spacing and aperture distributions. Eight scan lines, low-level aerial photographs and mosaics of photographs taken with a tripod were used. The analysed veins formed contemporaneously with the rollover fold during basin subsidence on the hanging wall of a listric normal fault. The first vein set, V1, is fold axis-parallel (i.e. striking ~100°) and normal to bedding. The second vein set, V2, strikes 140° and crosscuts V1. We find a close agreement in connectivity between our predictions using the percolation approach and the field data. The implication is that reasonable predictions of vein connectivity can be made from sparse data obtained from boreholes or (limited) sporadic outcrop.

  13. Large deformation image classification using generalized locality-constrained linear coding.

    PubMed

    Zhang, Pei; Wee, Chong-Yaw; Niethammer, Marc; Shen, Dinggang; Yap, Pew-Thian

    2013-01-01

    Magnetic resonance (MR) imaging has been demonstrated to be very useful for clinical diagnosis of Alzheimer's disease (AD). A common approach to using MR images for AD detection is to spatially normalize the images by non-rigid image registration, and then perform statistical analysis on the resulting deformation fields. Due to the high nonlinearity of the deformation field, recent studies suggest to use initial momentum instead as it lies in a linear space and fully encodes the deformation field. In this paper we explore the use of initial momentum for image classification by focusing on the problem of AD detection. Experiments on the public ADNI dataset show that the initial momentum, together with a simple sparse coding technique-locality-constrained linear coding (LLC)--can achieve a classification accuracy that is comparable to or even better than the state of the art. We also show that the performance of LLC can be greatly improved by introducing proper weights to the codebook.

  14. Ordering Unstructured Meshes for Sparse Matrix Computations on Leading Parallel Systems

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Li, Xiaoye; Heber, Gerd; Biswas, Rupak

    2000-01-01

    The ability of computers to solve hitherto intractable problems and simulate complex processes using mathematical models makes them an indispensable part of modern science and engineering. Computer simulations of large-scale realistic applications usually require solving a set of non-linear partial differential equations (PDES) over a finite region. For example, one thrust area in the DOE Grand Challenge projects is to design future accelerators such as the SpaHation Neutron Source (SNS). Our colleagues at SLAC need to model complex RFQ cavities with large aspect ratios. Unstructured grids are currently used to resolve the small features in a large computational domain; dynamic mesh adaptation will be added in the future for additional efficiency. The PDEs for electromagnetics are discretized by the FEM method, which leads to a generalized eigenvalue problem Kx = AMx, where K and M are the stiffness and mass matrices, and are very sparse. In a typical cavity model, the number of degrees of freedom is about one million. For such large eigenproblems, direct solution techniques quickly reach the memory limits. Instead, the most widely-used methods are Krylov subspace methods, such as Lanczos or Jacobi-Davidson. In all the Krylov-based algorithms, sparse matrix-vector multiplication (SPMV) must be performed repeatedly. Therefore, the efficiency of SPMV usually determines the eigensolver speed. SPMV is also one of the most heavily used kernels in large-scale numerical simulations.

  15. Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease.

    PubMed

    Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B

    2016-01-01

    Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.

  16. Large-scale DCMs for resting-state fMRI.

    PubMed

    Razi, Adeel; Seghier, Mohamed L; Zhou, Yuan; McColgan, Peter; Zeidman, Peter; Park, Hae-Jeong; Sporns, Olaf; Rees, Geraint; Friston, Karl J

    2017-01-01

    This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity . This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeling (DCM) to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of to discover the most likely sparse graph (or model) from a parent (e.g., fully connected) graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity) graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM-with functional connectivity priors-is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.

  17. Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome

    PubMed Central

    Swanson, Larry W.; Sporns, Olaf; Hahn, Joel D.

    2016-01-01

    The cerebral nuclei form the ventral division of the cerebral hemisphere and are thought to play an important role in neural systems controlling somatic movement and motivation. Network analysis was used to define global architectural features of intrinsic cerebral nuclei circuitry in one hemisphere (association connections) and between hemispheres (commissural connections). The analysis was based on more than 4,000 reports of histologically defined axonal connections involving all 45 gray matter regions of the rat cerebral nuclei and revealed the existence of four asymmetrically interconnected modules. The modules form four topographically distinct longitudinal columns that only partly correspond to previous interpretations of cerebral nuclei structure–function organization. The network of connections within and between modules in one hemisphere or the other is quite dense (about 40% of all possible connections), whereas the network of connections between hemispheres is weak and sparse (only about 5% of all possible connections). Particularly highly interconnected regions (rich club and hubs within it) form a topologically continuous band extending through two of the modules. Connection path lengths among numerous pairs of regions, and among some of the network’s modules, are relatively long, thus accounting for low global efficiency in network communication. These results provide a starting point for reexamining the connectional organization of the cerebral hemispheres as a whole (right and left cerebral cortex and cerebral nuclei together) and their relation to the rest of the nervous system. PMID:27647882

  18. Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network

    NASA Astrophysics Data System (ADS)

    Wee, Chong-Yaw; Yap, Pew-Thian; Brownyke, Jeffery N.; Potter, Guy G.; Steffens, David C.; Welsh-Bohmer, Kathleen; Wang, Lihong; Shen, Dinggang

    Mild cognitive impairment (MCI), often a prodromal phase of Alzheimer's disease (AD), is frequently considered to be a good target for early diagnosis and therapeutic interventions of AD. Recent emergence of reliable network characterization techniques have made understanding neurological disorders at a whole brain connectivity level possible. Accordingly, we propose a network-based multivariate classification algorithm, using a collection of measures derived from white-matter (WM) connectivity networks, to accurately identify MCI patients from normal controls. An enriched description of WM connections, utilizing six physiological parameters, i.e., fiber penetration count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusivities (λ 1, λ 2, λ 3), results in six connectivity networks for each subject to account for the connection topology and the biophysical properties of the connections. Upon parcellating the brain into 90 regions-of-interest (ROIs), the average statistics of each ROI in relation to the remaining ROIs are extracted as features for classification. These features are then sieved to select the most discriminant subset of features for building an MCI classifier via support vector machines (SVMs). Cross-validation results indicate better diagnostic power of the proposed enriched WM connection description than simple description with any single physiological parameter.

  19. Holographic implementation of a binary associative memory for improved recognition

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Somnath; Ghosh, Ajay; Datta, Asit K.

    1998-03-01

    Neural network associate memory has found wide application sin pattern recognition techniques. We propose an associative memory model for binary character recognition. The interconnection strengths of the memory are binary valued. The concept of sparse coding is sued to enhance the storage efficiency of the model. The question of imposed preconditioning of pattern vectors, which is inherent in a sparsely coded conventional memory, is eliminated by using a multistep correlation technique an the ability of correct association is enhanced in a real-time application. A potential optoelectronic implementation of the proposed associative memory is also described. The learning and recall is possible by using digital optical matrix-vector multiplication, where full use of parallelism and connectivity of optics is made. A hologram is used in the experiment as a longer memory (LTM) for storing all input information. The short-term memory or the interconnection weight matrix required during the recall process is configured by retrieving the necessary information from the holographic LTM.

  20. Competition in high dimensional spaces using a sparse approximation of neural fields.

    PubMed

    Quinton, Jean-Charles; Girau, Bernard; Lefort, Mathieu

    2011-01-01

    The Continuum Neural Field Theory implements competition within topologically organized neural networks with lateral inhibitory connections. However, due to the polynomial complexity of matrix-based implementations, updating dense representations of the activity becomes computationally intractable when an adaptive resolution or an arbitrary number of input dimensions is required. This paper proposes an alternative to self-organizing maps with a sparse implementation based on Gaussian mixture models, promoting a trade-off in redundancy for higher computational efficiency and alleviating constraints on the underlying substrate.This version reproduces the emergent attentional properties of the original equations, by directly applying them within a continuous approximation of a high dimensional neural field. The model is compatible with preprocessed sensory flows but can also be interfaced with artificial systems. This is particularly important for sensorimotor systems, where decisions and motor actions must be taken and updated in real-time. Preliminary tests are performed on a reactive color tracking application, using spatially distributed color features.

  1. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and "hidden" dimensions.

    PubMed

    Meng, Xi; Nguyen, Bao D; Ridge, Clark; Shaka, A J

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to "reduced-dimensionality" strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the filter diagonalization method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra-dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths.

  2. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and “hidden” dimensions

    PubMed Central

    Meng, Xi; Nguyen, Bao D.; Ridge, Clark; Shaka, A. J.

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to “reduced-dimensionality” strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the Filter Diagonalization Method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths. PMID:18926747

  3. Visual recognition and inference using dynamic overcomplete sparse learning.

    PubMed

    Murray, Joseph F; Kreutz-Delgado, Kenneth

    2007-09-01

    We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.

  4. Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems

    PubMed Central

    Smith, Jason F.; Pillai, Ajay; Chen, Kewei; Horwitz, Barry

    2012-01-01

    Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI) data has proliferated. Here we identify six issues with existing effective connectivity methods that need to be addressed. The issues are discussed within the framework of linear dynamic systems for fMRI (LDSf). The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while stochastic models can capture this variability. The second concerns the simplistic (constant) connectivity modeled by most methods. Connectivity parameters of the LDSf model can vary at the same timescale as the input data. Further, extending LDSf to mixtures of multiple models provides more robust connectivity variation. The third concerns the correct identification of the network itself including the number and anatomical origin of the network nodes. Augmentation of the LDSf state space can identify additional nodes of a network. The fourth concerns the locus of the signal used as a “node” in a network. A novel extension LDSf incorporating sparse canonical correlations can select most relevant voxels from an anatomically defined region based on connectivity. The fifth concerns connection interpretation. Individual parameter differences have received most attention. We present alternative network descriptors of connectivity changes which consider the whole network. The sixth concerns the temporal resolution of fMRI data relative to the timescale of the inter-regional interactions in the brain. LDSf includes an “instantaneous” connection term to capture connectivity occurring at timescales faster than the data resolution. The LDS framework can also be extended to statistically combine fMRI and EEG data. The LDSf framework is a promising foundation for effective connectivity analysis. PMID:22279430

  5. Reconstruction of networks from one-step data by matching positions

    NASA Astrophysics Data System (ADS)

    Wu, Jianshe; Dang, Ni; Jiao, Yang

    2018-05-01

    It is a challenge in estimating the topology of a network from short time series data. In this paper, matching positions is developed to reconstruct the topology of a network from only one-step data. We consider a general network model of coupled agents, in which the phase transformation of each node is determined by its neighbors. From the phase transformation information from one step to the next, the connections of the tail vertices are reconstructed firstly by the matching positions. Removing the already reconstructed vertices, and repeatedly reconstructing the connections of tail vertices, the topology of the entire network is reconstructed. For sparse scale-free networks with more than ten thousands nodes, we almost obtain the actual topology using only the one-step data in simulations.

  6. Information jet: Handling noisy big data from weakly disconnected network

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    Sudden aggregation (information jet) of large amount of data is ubiquitous around connected social networks, driven by sudden interacting and non-interacting events, network security threat attacks, online sales channel etc. Clustering of information jet based on time series analysis and graph theory is not new but little work is done to connect them with particle jet statistics. We show pre-clustering based on context can element soft network or network of information which is critical to minimize time to calculate results from noisy big data. We show difference between, stochastic gradient boosting and time series-graph clustering. For disconnected higher dimensional information jet, we use Kallenberg representation theorem (Kallenberg, 2005, arXiv:1401.1137) to identify and eliminate jet similarities from dense or sparse graph.

  7. Code Properties from Holographic Geometries

    NASA Astrophysics Data System (ADS)

    Pastawski, Fernando; Preskill, John

    2017-04-01

    Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015) 163., 10.1007/JHEP04(2015)163] proposed a highly illuminating connection between the AdS /CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.

  8. Cortical connectivity and memory performance in cognitive decline: A study via graph theory from EEG data.

    PubMed

    Vecchio, F; Miraglia, F; Quaranta, D; Granata, G; Romanello, R; Marra, C; Bramanti, P; Rossini, P M

    2016-03-01

    Functional brain abnormalities including memory loss are found to be associated with pathological changes in connectivity and network neural structures. Alzheimer's disease (AD) interferes with memory formation from the molecular level, to synaptic functions and neural networks organization. Here, we determined whether brain connectivity of resting-state networks correlate with memory in patients affected by AD and in subjects with mild cognitive impairment (MCI). One hundred and forty-four subjects were recruited: 70 AD (MMSE Mini Mental State Evaluation 21.4), 50 MCI (MMSE 25.2) and 24 healthy subjects (MMSE 29.8). Undirected and weighted cortical brain network was built to evaluate graph core measures to obtain Small World parameters. eLORETA lagged linear connectivity as extracted by electroencephalogram (EEG) signals was used to weight the network. A high statistical correlation between Small World and memory performance was found. Namely, higher Small World characteristic in EEG gamma frequency band during the resting state, better performance in short-term memory as evaluated by the digit span tests. Such Small World pattern might represent a biomarker of working memory impairment in older people both in physiological and pathological conditions. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Maintaining Limited-Range Connectivity Among Second-Order Agents

    DTIC Science & Technology

    2016-07-07

    we consider ad-hoc networks of robotic agents with double integrator dynamics. For such networks, the connectivity maintenance problems are: (i) do...hoc networks of mobile autonomous agents. This loose ter- minology refers to groups of robotic agents with limited mobility and communica- tion...connectivity can be preserved. 3.1. Networks of robotic agents with second-order dynamics and the connectivity maintenance problem. We begin by

  10. The influence of common free radicals and antioxidants on development of Alzheimer's Disease.

    PubMed

    Wojtunik-Kulesza, Karolina A; Oniszczuk, Anna; Oniszczuk, Tomasz; Waksmundzka-Hajnos, Monika

    2016-03-01

    Alzheimer's Disease (AD) is one of the most important neurodegenerative disorders in the 21st century for the continually aging population. Despite an increasing number of patients, there are only few drugs to treat the disease. Numerous studies have shown several causes of the disorder, one of the most important being oxidative stress. Oxidative stress is connected with a disturbance between the levels of free radicals and antioxidants in organisms. Solutions to this problem are antioxidants, which counteract the negative impact of the reactive molecules. Unfortunately, the currently available drugs against AD do not exhibit activity toward these structures. Due to the fact that natural substances are extremely significant in new drug development, numerous studies are focused on substances which exhibit a few activities including antioxidants and other anti-AD behaviors. This review article presents the most important studies connected with the influence of free radicals on development of AD and antioxidants as potential drugs toward AD. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Influence of topology in the mobility enhancement of pulse-coupled oscillator synchronization

    NASA Astrophysics Data System (ADS)

    Beardo, A.; Prignano, L.; Sagarra, O.; Díaz-Guilera, A.

    2017-12-01

    In this work we revisit the nonmonotonic behavior (NMB) of synchronization time with velocity reported for systems of mobile pulse-coupled oscillators (PCOs). We devise a control parameter that allows us to predict in which range of velocities NMB may occur, also uncovering the conditions allowing us to establish the emergence of NMB based on specific features of the connectivity rule. Specifically, our results show that if the connectivity rule is such that the interaction patterns are sparse and, more importantly, include a large fraction of nonreciprocal interactions, then the system will display NMB. We furthermore provide a microscopic explanation relating the presence of such features of the connectivity patterns to the existence of local clusters unable to synchronize, termed frustrated clusters, for which we also give a precise definition in terms of simple graph concepts. We conclude that, if the probability of finding a frustrated cluster in a system of moving PCOs is high enough, NMB occurs in a predictable range of velocities.

  12. A neural network with modular hierarchical learning

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)

    1994-01-01

    This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

  13. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.

    PubMed

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

  14. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

    PubMed Central

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems. PMID:29503613

  15. Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons.

    PubMed

    Yger, Pierre; El Boustani, Sami; Destexhe, Alain; Frégnac, Yves

    2011-10-01

    The relationship between the dynamics of neural networks and their patterns of connectivity is far from clear, despite its importance for understanding functional properties. Here, we have studied sparsely-connected networks of conductance-based integrate-and-fire (IF) neurons with balanced excitatory and inhibitory connections and with finite axonal propagation speed. We focused on the genesis of states with highly irregular spiking activity and synchronous firing patterns at low rates, called slow Synchronous Irregular (SI) states. In such balanced networks, we examined the "macroscopic" properties of the spiking activity, such as ensemble correlations and mean firing rates, for different intracortical connectivity profiles ranging from randomly connected networks to networks with Gaussian-distributed local connectivity. We systematically computed the distance-dependent correlations at the extracellular (spiking) and intracellular (membrane potential) levels between randomly assigned pairs of neurons. The main finding is that such properties, when they are averaged at a macroscopic scale, are invariant with respect to the different connectivity patterns, provided the excitatory-inhibitory balance is the same. In particular, the same correlation structure holds for different connectivity profiles. In addition, we examined the response of such networks to external input, and found that the correlation landscape can be modulated by the mean level of synchrony imposed by the external drive. This modulation was found again to be independent of the external connectivity profile. We conclude that first and second-order "mean-field" statistics of such networks do not depend on the details of the connectivity at a microscopic scale. This study is an encouraging step toward a mean-field description of topological neuronal networks.

  16. Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models

    PubMed Central

    Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz

    2012-01-01

    Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain–stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5–2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01–0.5 s−1 strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multimode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus. PMID:21207094

  17. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.

    2018-04-01

    Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  18. Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.

    PubMed

    Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M

    2018-04-01

    Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  19. Abnormal functional connectivity of the posterior cingulate cortex is associated with depressive symptoms in patients with Alzheimer’s disease

    PubMed Central

    Zhang, Jiangtao; Guo, Zhongwei; Liu, Xiaozheng; Jia, Xize; Li, Jiapeng; Li, Yaoyao; Lv, Danmei; Chen, Wei

    2017-01-01

    Background Depressive symptoms are significant and very common psychiatric complications in patients with Alzheimer’s disease (AD), which can aggravate the decline in social function. However, changes in the functional connectivity (FC) of the brain in AD patients with depressive symptoms (D-AD) remain unclear. Objective To investigate whether any differences exist in the FC of the posterior cingulate cortex (PCC) between D-AD patients and non-depressed AD patients (nD-AD). Materials and methods We recruited 15 D-AD patients and 17 age-, sex-, educational level-, and Mini-Mental State Examination (MMSE)-matched nD-AD patients to undergo tests using the Neuropsychiatric Inventory, Hamilton Depression Rating Scale, and 3.0T resting-state functional magnetic resonance imaging. Bilateral PCC were selected as the regions of interest and between-group differences in the PCC FC network were assessed using Student’s t-test. Results Compared with the nD-AD group, D-AD patients showed increased PCC FC in the right amygdala, right parahippocampus, right superior temporal pole, right middle temporal lobe, right middle temporal pole, and right hippocampus (AlphaSim correction; P<0.05). In the nD-AD group, MMSE scores were positively correlated with PCC FC in the right superior temporal pole and right hippocampus (false discovery rate corrected; P<0.05). Conclusion Differences were detected in PCC FC between nD-AD and D-AD patients, which may be related to depressive symptoms. Our study provides a significant enhancement to our understanding of the functional mechanisms underlying D-AD. PMID:29066900

  20. Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification.

    PubMed

    Li, Weikai; Wang, Zhengxia; Zhang, Limei; Qiao, Lishan; Shen, Dinggang

    2017-01-01

    Functional brain network (FBN) has been becoming an increasingly important way to model the statistical dependence among neural time courses of brain, and provides effective imaging biomarkers for diagnosis of some neurological or psychological disorders. Currently, Pearson's Correlation (PC) is the simplest and most widely-used method in constructing FBNs. Despite its advantages in statistical meaning and calculated performance, the PC tends to result in a FBN with dense connections. Therefore, in practice, the PC-based FBN needs to be sparsified by removing weak (potential noisy) connections. However, such a scheme depends on a hard-threshold without enough flexibility. Different from this traditional strategy, in this paper, we propose a new approach for estimating FBNs by remodeling PC as an optimization problem, which provides a way to incorporate biological/physical priors into the FBNs. In particular, we introduce an L 1 -norm regularizer into the optimization model for obtaining a sparse solution. Compared with the hard-threshold scheme, the proposed framework gives an elegant mathematical formulation for sparsifying PC-based networks. More importantly, it provides a platform to encode other biological/physical priors into the PC-based FBNs. To further illustrate the flexibility of the proposed method, we extend the model to a weighted counterpart for learning both sparse and scale-free networks, and then conduct experiments to identify autism spectrum disorders (ASD) from normal controls (NC) based on the constructed FBNs. Consequently, we achieved an 81.52% classification accuracy which outperforms the baseline and state-of-the-art methods.

  1. Contextual Modulation is Related to Efficiency in a Spiking Network Model of Visual Cortex.

    PubMed

    Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo; Vanni, Simo

    2015-01-01

    In the visual cortex, stimuli outside the classical receptive field (CRF) modulate the neural firing rate, without driving the neuron by themselves. In the primary visual cortex (V1), such contextual modulation can be parametrized with an area summation function (ASF): increasing stimulus size causes first an increase and then a decrease of firing rate before reaching an asymptote. Earlier work has reported increase of sparseness when CRF stimulation is extended to its surroundings. However, there has been no clear connection between the ASF and network efficiency. Here we aimed to investigate possible link between ASF and network efficiency. In this study, we simulated the responses of a biomimetic spiking neural network model of the visual cortex to a set of natural images. We varied the network parameters, and compared the V1 excitatory neuron spike responses to the corresponding responses predicted from earlier single neuron data from primate visual cortex. The network efficiency was quantified with firing rate (which has direct association to neural energy consumption), entropy per spike and population sparseness. All three measures together provided a clear association between the network efficiency and the ASF. The association was clear when varying the horizontal connectivity within V1, which influenced both the efficiency and the distance to ASF, DAS. Given the limitations of our biophysical model, this association is qualitative, but nevertheless suggests that an ASF-like receptive field structure can cause efficient population response.

  2. Using sparse photometric data sets for asteroid lightcurve studies

    NASA Astrophysics Data System (ADS)

    Warner, Brian D.; Harris, Alan W.

    2011-12-01

    With the advent of wide-field imagers, it has become possible to conduct a photometric lightcurve survey of many asteroids simultaneously, either for that single purpose (e.g., Dermawan, B., Nakamura, T., Yoshida, F. [2011]. Publ. Astron. Soc. Japan 63, S555-S576; Masiero, J., Jedicke, R., Ďurech, J., Gwyn, S., Denneau, L., Larsen, J. [2009]. Icarus 204, 145-171), or as a part of a multipurpose survey (e.g., Pan-STARRS, LSST). Such surveys promise to yield photometric data for many thousands of asteroids, but these data sets will be “sparse” compared to most of those taken in a “targeted” mode directed to one asteroid at a time. We consider the potential limitations of sparse data sets using different sampling rates with respect to specific research questions that might be addressed with lightcurve data. For our study we created synthetic sparse data sets similar to those from wide-field surveys by generating more than 380,000 individual lightcurves that were combined into more than 47,000 composite lightcurves. The variables in generating the data included the number of observations per night, number of nights, noise, and the intervals between observations and nights, in addition to periods ranging from 0.1 to 400 h and amplitudes ranging from 0.1 to 2.0 mag. A Fourier analysis pipeline was used to find the period for each composite lightcurve and then review the derived period and period spectrum to gauge how well an automated analysis of sparse data sets would perform in finding the true period. For this part of the analysis, a normally distributed noise level of 0.03 mag was added to the data, regardless of amplitude, thus simulating a relatively high SNR for the observations. For the second part of the analysis, a smaller set of composite curves was generated with fixed core parameters of eight observations per night, 8 nights within a 14-day span, periods ranging from 2 to 6 h, and an amplitude of either 0.3 mag or 0.4 mag. Individual data sets using these fixed parameters added normally-distributed noise of 0.05, 0.1, or 0.2 mag. The analysis examined the success rates for finding the true period as the noise increased towards levels simulating data for objects close to sky background levels. After applying a filter to remove highly-ambiguous solution sets, the best chance for success was found to be when the true period was in the range of P ≈ 2-5 h and amplitudes were A ⩾ 0.5 mag. The solution sets for lightcurves with low amplitude, long periods, and/or those that were sampled too sparsely in comparison to the period were often too ambiguous to be considered reliable for statistical rotation studies. Analysis of slow rotators (P > 24 h) found that somewhat reasonable solutions of P < 6 h could be found for about 15-20% of those objects, even at higher amplitudes, indicating that the Fourier analysis had locked onto the noise in the data. Efforts to produce an automated pipeline to help determine an unambiguous (or nearly so) solution based on the period spectrum from the Fourier analysis were made. These proved unsuccessful because of the number of parameters that must be considered and the difficulties in assigning an objective weight to each one in finding a final result. Despite this initial failure, further attempts will be made to quantify the U rating system. Comparison of the synthetic data analysis results to those from two actual surveys shows a reasonable agreement between the two. A review of the pros and cons of sparse versus dense data sets shows that each has a significant role in future studies and that it will be critical to establish open lines of communications and data exchange between the deep wide-field sparse data surveys and dense data programs.

  3. A Novel Approach of Groupwise fMRI-Guided Tractography Allowing to Characterize the Clinical Evolution of Alzheimer's Disease

    PubMed Central

    Preti, Maria Giulia; Makris, Nikos; Papadimitriou, George; Laganà, Maria Marcella; Griffanti, Ludovica; Clerici, Mario; Nemni, Raffaello; Westin, Carl-Fredrik; Baselli, Giuseppe; Baglio, Francesca

    2014-01-01

    Guiding diffusion tract-based anatomy by functional magnetic resonance imaging (fMRI), we aim to investigate the relationship between structural connectivity and functional activity in the human brain. To this purpose, we introduced a novel groupwise fMRI-guided tractographic approach, that was applied on a population ranging between prodromic and moderate stages of Alzheimer's disease (AD). The study comprised of 15 subjects affected by amnestic mild cognitive impairment (aMCI), 14 diagnosed with AD and 14 elderly healthy adults who were used as controls. By creating representative (ensemble) functionally guided tracts within each group of participants, our methodology highlighted the white matter fiber connections involved in verbal fluency functions for a specific population, and hypothesized on brain compensation mechanisms that potentially counteract or reduce cognitive impairment symptoms in prodromic AD. Our hope is that this fMRI-guided tractographic approach could have potential impact in various clinical studies, while investigating white/gray matter connectivity, in both health and disease. PMID:24637718

  4. The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings.

    PubMed

    Kim, Dong-Youl; Yoo, Seung-Schik; Tegethoff, Marion; Meinlschmidt, Gunther; Lee, Jong-Hwan

    2015-08-01

    Real-time fMRI (rtfMRI) neurofeedback (NF) facilitates volitional control over brain activity and the modulation of associated mental functions. The NF signals of traditional rtfMRI-NF studies predominantly reflect neuronal activity within ROIs. In this study, we describe a novel rtfMRI-NF approach that includes a functional connectivity (FC) component in the NF signal (FC-added rtfMRI-NF). We estimated the efficacy of the FC-added rtfMRI-NF method by applying it to nicotine-dependent heavy smokers in an effort to reduce cigarette craving. ACC and medial pFC as well as the posterior cingulate cortex and precuneus are associated with cigarette craving and were chosen as ROIs. Fourteen heavy smokers were randomly assigned to receive one of two types of NF: traditional activity-based rtfMRI-NF or FC-added rtfMRI-NF. Participants received rtfMRI-NF training during two separate visits after overnight smoking cessation, and cigarette craving score was assessed. The FC-added rtfMRI-NF resulted in greater neuronal activity and increased FC between the targeted ROIs than the traditional activity-based rtfMRI-NF and resulted in lower craving score. In the FC-added rtfMRI-NF condition, the average of neuronal activity and FC was tightly associated with craving score (Bonferroni-corrected p = .028). However, in the activity-based rtfMRI-NF condition, no association was detected (uncorrected p > .081). Non-rtfMRI data analysis also showed enhanced neuronal activity and FC with FC-added NF than with activity-based NF. These results demonstrate that FC-added rtfMRI-NF facilitates greater volitional control over brain activity and connectivity and greater modulation of mental function than activity-based rtfMRI-NF.

  5. Does Functional Connectivity Provide a Marker for Cognitive Rehabilitation Effects in Alzheimer's Disease? An Interventional Study.

    PubMed

    Ochmann, Sina; Dyrba, Martin; Grothe, Michel J; Kasper, Elisabeth; Webel, Steffi; Hauenstein, Karlheinz; Teipel, Stefan J

    2017-01-01

    Cognitive rehabilitation (CR) is a cognitive intervention for patients with Alzheimer's disease (AD) that aims to maintain everyday competences. The analysis of functional connectivity (FC) in resting-state functional MRI has been used to investigate the effects of cognitive interventions. We evaluated the effect of CR on the default mode network FC in a group of patients with mild AD, compared to an active control group. We performed a three-month interventional study including 16 patients with a diagnosis of AD. The intervention group (IG) consisted of eight patients, performing twelve sessions of CR. The active control group (CG) performed a standardized cognitive training. We used a seed region placed in the posterior cingulate cortex (PCC) for FC analysis, comparing scans acquired before and after the intervention. Effects were thresholded at a significance of p < 0.001 (uncorrected) and a minimal cluster size of 50 voxels. The interaction of group by time showed a higher increase of PCC connectivity in IG compared to CG in the bilateral cerebellar cortex. CG revealed widespread, smaller clusters of higher FC increase compared with IG. Across all participants, an increase in quality of life was associated with connectivity increase over time in the bilateral precuneus. CR showed an effect on the FC of the DMN in the IG. These effects need further study in larger samples to confirm if FC analysis may suit as a surrogate marker for the effect of cognitive interventions in AD.

  6. Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia.

    PubMed

    Xu, Jingshu; Church, Stephanie J; Patassini, Stefano; Begley, Paul; Waldvogel, Henry J; Curtis, Maurice A; Faull, Richard L M; Unwin, Richard D; Cooper, Garth J S

    2017-08-16

    Datasets comprising simultaneous measurements of many essential metals in Alzheimer's disease (AD) brain are sparse, and available studies are not entirely in agreement. To further elucidate this matter, we employed inductively-coupled-plasma mass spectrometry to measure post-mortem levels of 8 essential metals and selenium, in 7 brain regions from 9 cases with AD (neuropathological severity Braak IV-VI), and 13 controls who had normal ante-mortem mental function and no evidence of brain disease. Of the regions studied, three undergo severe neuronal damage in AD (hippocampus, entorhinal cortex and middle-temporal gyrus); three are less-severely affected (sensory cortex, motor cortex and cingulate gyrus); and one (cerebellum) is relatively spared. Metal concentrations in the controls differed among brain regions, and AD-associated perturbations in most metals occurred in only a few: regions more severely affected by neurodegeneration generally showed alterations in more metals, and cerebellum displayed a distinctive pattern. By contrast, copper levels were substantively decreased in all AD-brain regions, to 52.8-70.2% of corresponding control values, consistent with pan-cerebral copper deficiency. This copper deficiency could be pathogenic in AD, since levels are lowered to values approximating those in Menkes' disease, an X-linked recessive disorder where brain-copper deficiency is the accepted cause of severe brain damage. Our study reinforces others reporting deficient brain copper in AD, and indicates that interventions aimed at safely and effectively elevating brain copper could provide a new experimental-therapeutic approach.

  7. Sparse Covariance Matrix Estimation With Eigenvalue Constraints

    PubMed Central

    LIU, Han; WANG, Lie; ZHAO, Tuo

    2014-01-01

    We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online. PMID:25620866

  8. Thermodynamic and classical instability of AdS black holes in fourth-order gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Moon, Taeyoon

    2014-04-01

    We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermo-dynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity.

  9. Medial prefrontal functional connectivity--relation to memory self-appraisal accuracy in older adults with and without memory disorders.

    PubMed

    Ries, Michele L; McLaren, Donald G; Bendlin, Barbara B; Guofanxu; Rowley, Howard A; Birn, Rasmus; Kastman, Erik K; Sager, Mark A; Asthana, Sanjay; Johnson, Sterling C

    2012-04-01

    It is tentatively estimated that 25% of people with early Alzheimer's disease (AD) show impaired awareness of disease-related changes in their own cognition. Research examining both normative self-awareness and altered awareness resulting from brain disease or injury points to the central role of the medial prefrontal cortex (MPFC) in generating accurate self-appraisals. The current project builds on this work - examining changes in MPFC functional connectivity that correspond to impaired self-appraisal accuracy early in the AD time course. Our behavioral focus was self-appraisal accuracy for everyday memory function, and this was measured using the Memory Function Scale of the Memory Awareness Rating Scale - an instrument psychometrically validated for this purpose. Using regression analysis of data from people with healthy memory (n=12) and people with impaired memory due to amnestic mild cognitive impairment or early AD (n=12), we tested the hypothesis that altered MPFC functional connectivity - particularly with other cortical midline structures and dorsolateral prefrontal cortex - explains variation in memory self-appraisal accuracy. We spatially constrained (i.e., explicitly masked) our regression analyses to those regions that work in conjunction with the MPFC to evoke self-appraisals in a normative group. This empirically derived explicit mask was generated from the result of a psychophysiological interaction analysis of fMRI self-appraisal task data in a separate, large group of cognitively healthy individuals. Results of our primary analysis (i.e., the regression of memory self-appraisal accuracy on MPFC functional connectivity) were generally consistent with our hypothesis: people who were less accurate in making memory self-appraisals showed attenuated functional connectivity between the MPFC seed region and proximal areas within the MPFC (including subgenual anterior cingulate cortex), bilateral dorsolateral prefrontal cortex, bilateral caudate, and left posterior hippocampus. Contrary to our expectations, MPFC functional connectivity with the posterior cingulate was not significantly related to accuracy of memory self-appraisals. Results reported here corroborate findings of variable memory self-appraisal accuracy during the earliest emergence of AD symptoms and reveal alterations in MPFC functional connectivity that correspond to impaired memory self-appraisal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Who's Afraid of the Big Bad Box? Children and TV Advertising in Four Countries.

    ERIC Educational Resources Information Center

    Collins, Jude; And Others

    1992-01-01

    Describes a study of nine year olds in Ireland, Australia, the United States, and Norway that investigated their attitudes to television advertising and the connection to buying patterns in their families. Highlights include enjoyment of television ads, parallels between television programs and ads, and perceived influence of ads on parents.…

  11. Powder-driven-nail connections for round timber

    Treesearch

    Ronald W. Wolfe; KugBo Shim; Marshall Begel

    2003-01-01

    In an effort to encourage the development of value-added engineered applications for small diameter round timber, research is being conducted at the US Forest Products Laboratory to develop and verify design guidelines for connections with specific application to round timbers. The objective of this work is to provide potential users with a number of viable connection...

  12. Australian Seismometers in Schools - eyes on seismology

    NASA Astrophysics Data System (ADS)

    Salmon, M.; Balfour, N.; Sambridge, M.

    2014-12-01

    The Australian Seismometers in Schools (AuSIS) program has installed 42 research quality broadband seismometers in schools around Australia. The school's infrastructure allows for real time data transfers, and eager young students monitor the instruments and report any recorded events. The reporting feature ("Caught it? Report it!") through our website works as a crude type of detection to inform us of what instruments pick up the earthquakes. It also has the added benefits of keeping schools engaged in the program, ongoing learning about earth science and geography, and obviously keeps them returning to our website. A network of professional and amateur seismologists provides support to the schools and helps promote earth science education and earthquake risk awareness. The data is publically available through the IRIS DMC and is used by not just our volunteers but also by government departments, universities and private agencies for research and monitoring. One of the challenges has been to provide a way for schools and to interact with the real time data in an accessible format. We have achieved this through website and mobile app development alongside step-by step how to guides. These tools have the added advantage that they also allow schools without their own seismometer to connect with nearby schools that do. The government run national network of seismometers in Australia is sparse; the AuSIS program provides additional instruments that are now being incorporated into the national network for improved regional earthquake locations. Although schools are not the ideal site for broadband seismometers, the program has proven that with a well-chosen location within the school we can recover high quality data for much of the day. The schools are generally well distributed across the country enabling the program to supplement the national network at the same time as bringing earth science to rural communities that often miss out on this type of opportunity.

  13. Asymmetrical Interhemispheric Connections Develop in Cat Visual Cortex after Early Unilateral Convergent Strabismus: Anatomy, Physiology, and Mechanisms

    PubMed Central

    Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal

    2011-01-01

    In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883

  14. Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Wanmo; Minor, Emily S.; Lee, Dowon; Park, Chan-Ryul

    2016-02-01

    Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.

  15. The Effect of DEM Source and Grid Size on the Index of Connectivity in Savanna Catchments

    NASA Astrophysics Data System (ADS)

    Jarihani, Ben; Sidle, Roy; Bartley, Rebecca; Roth, Christian

    2017-04-01

    The term "hydrological connectivity" is increasingly used instead of sediment delivery ratio to describe the linkage between the sources of water and sediment within a catchment to the catchment outlet. Sediment delivery ratio is an empirical parameter that is highly site-specific and tends to lump all processes, whilst hydrological connectivity focuses on the spatially-explicit hydrologic drivers of surficial processes. Detailed topographic information plays a fundamental role in geomorphological interpretations as well as quantitative modelling of sediment fluxes and connectivity. Geomorphometric analysis permits a detailed characterization of drainage area and drainage pattern together with the possibility of characterizing surface roughness. High resolution topographic data (i.e., LiDAR) are not available for all areas; however, remotely sensed topographic data from multiple sources with different grid sizes are used to undertake geomorphologic analysis in data-sparse regions. The Index of Connectivity (IC), a geomorphometric model based only on DEM data, is applied in two small savanna catchments in Queensland, Australia. The influence of the scale of the topographic data is explored by using DEMs from LiDAR ( 1 m), WorldDEM ( 10 m), raw SRTM and hydrologically corrected SRTM derived data ( 30 m) to calculate the index of connectivity. The effect of the grid size is also investigated by resampling the high resolution LiDAR DEM to multiple grid sizes (e.g. 5, 10, 20 m) and comparing the extracted IC.

  16. Vacuum-Gauge Connection For Shipping Container

    NASA Technical Reports Server (NTRS)

    Henry, Robert H.

    1990-01-01

    External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.

  17. Adding biological realism to assessments of landscape connectivity

    EPA Science Inventory

    Researchers have long appreciated the practical value of connectivity and source-sink analyses. The importance of these assessments for conservation, planning, and reserve design has motivated many empirical and simulation studies. But there are few modeling tools available that ...

  18. Emergence of ultrafast sparsely synchronized rhythms and their responses to external stimuli in an inhomogeneous small-world complex neuronal network.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2017-09-01

    We consider an inhomogeneous small-world network (SWN) composed of inhibitory short-range (SR) and long-range (LR) interneurons, and investigate the effect of network architecture on emergence of synchronized brain rhythms by varying the fraction of LR interneurons p long . The betweenness centralities of the LR and SR interneurons (characterizing the potentiality in controlling communication between other interneurons) are distinctly different. Hence, in view of the betweenness, SWNs we consider are inhomogeneous, unlike the "canonical" Watts-Strogatz SWN with nearly the same betweenness centralities. For small p long , the load of communication traffic is much concentrated on a few LR interneurons. However, as p long is increased, the number of LR connections (coming from LR interneurons) increases, and then the load of communication traffic is less concentrated on LR interneurons, which leads to better efficiency of global communication between interneurons. Sparsely synchronized rhythms are thus found to emerge when passing a small critical value p long (c) (≃0.16). The population frequency of the sparsely synchronized rhythm is ultrafast (higher than 100 Hz), while the mean firing rate of individual interneurons is much lower (∼30 Hz) due to stochastic and intermittent neural discharges. These dynamical behaviors in the inhomogeneous SWN are also compared with those in the homogeneous Watts-Strogatz SWN, in connection with their network topologies. Particularly, we note that the main difference between the two types of SWNs lies in the distribution of betweenness centralities. Unlike the case of the Watts-Strogatz SWN, dynamical responses to external stimuli vary depending on the type of stimulated interneurons in the inhomogeneous SWN. We consider two cases of external time-periodic stimuli applied to sub-populations of the LR and SR interneurons, respectively. Dynamical responses (such as synchronization suppression and enhancement) to these two cases of stimuli are studied and discussed in relation to the betweenness centralities of stimulated interneurons, representing the effectiveness for transfer of stimulation effect in the whole network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Flexible modulation of network connectivity related to cognition in Alzheimer's disease.

    PubMed

    McLaren, Donald G; Sperling, Reisa A; Atri, Alireza

    2014-10-15

    Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer's disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54-82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and encoding repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive control network (p<0.05, cluster corrected). Psychophysiological interactions revealed significantly more extensive and robust associations between paired-associate encoding task-dependent hippocampal-whole brain connectivity and performance on memory and behavioral/clinical measures than previously revealed by standard activity-behavior analysis. Compared to resting state and task-activation methods, gPPI analyses may be more sensitive to reveal additional complementary information regarding subtle within- and between-network relations. The patterns of robust correlations between hippocampal-whole brain connectivity and behavioral measures identified here suggest that there are 'coordinated states' in the brain; that the dynamic range of these states is related to behavior and cognition; and that these states can be observed and quantified, even in individuals with mild AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2016-04-12

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  1. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2015-01-27

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  2. Quantum-assisted learning of graphical models with arbitrary pairwise connectivity

    NASA Astrophysics Data System (ADS)

    Realpe-Gómez, John; Benedetti, Marcello; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    Mainstream machine learning techniques rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speedup these tasks. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful machine learning models. Here we show how to surpass this `curse of limited connectivity' bottleneck and illustrate our findings by training probabilistic generative models with arbitrary pairwise connectivity on a real dataset of handwritten digits and two synthetic datasets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding Boltzmann-like distribution. Therefore, the need to infer the effective temperature at each iteration is avoided, speeding up learning, and the effect of noise in the control parameters is mitigated, improving accuracy. This work was supported in part by NASA, AFRL, ODNI, and IARPA.

  3. Altered Functional Connectivity of Cognitive-Related Cerebellar Subregions in Alzheimer’s Disease

    PubMed Central

    Zheng, Weimin; Liu, Xingyun; Song, Haiqing; Li, Kuncheng; Wang, Zhiqun

    2017-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia. Previous studies have found disrupted resting state functional connectivities (rsFCs) in various brain networks in the AD patients. However, few studies have focused on the rsFCs of the cerebellum and its sub-regions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (rs-fMRI) data including 32 AD patients and 38 healthy controls (HCs). We selected two cognitive-related subregions of the cerebellum as seed region and mapped the whole-brain rsFCs for each subregion. We identified several distinct rsFC patterns of the two cognitive-related cerebellar subregions: default-mode network (DMN), frontoparietal network (FPN), visual network (VN) and sensorimotor network (SMN). Compared with the controls, the AD patients showed disrupted rsFCs in several different networks (DMN, VN and SMN), predicting the impairment of the functional integration in the cerebellum. Notably, these abnormal rsFCs of the two cerebellar subregions were closely associated with cognitive performance. Collectively, we demonstrated the distinct rsFCs patterns of cerebellar sub-regions with various functional networks, which were differentially impaired in the AD patients. PMID:28559843

  4. Two-dimensional shape recognition using sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti; Olshausen, Bruno

    1990-01-01

    Researchers propose a method for recognizing two-dimensional shapes (hand-drawn characters, for example) with an associative memory. The method consists of two stages: first, the image is preprocessed to extract tangents to the contour of the shape; second, the set of tangents is converted to a long bit string for recognition with sparse distributed memory (SDM). SDM provides a simple, massively parallel architecture for an associative memory. Long bit vectors (256 to 1000 bits, for example) serve as both data and addresses to the memory, and patterns are grouped or classified according to similarity in Hamming distance. At the moment, tangents are extracted in a simple manner by progressively blurring the image and then using a Canny-type edge detector (Canny, 1986) to find edges at each stage of blurring. This results in a grid of tangents. While the technique used for obtaining the tangents is at present rather ad hoc, researchers plan to adopt an existing framework for extracting edge orientation information over a variety of resolutions, such as suggested by Watson (1987, 1983), Marr and Hildreth (1980), or Canny (1986).

  5. A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs

    PubMed Central

    Siegle, Greg

    2009-01-01

    Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927

  6. Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.

    PubMed

    Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L

    2011-12-01

    Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.

  7. DETAIL OF FLOORBEAM CONNECTIONS AND STRINGERS FROM THE UNDERSIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF FLOORBEAM CONNECTIONS AND STRINGERS FROM THE UNDERSIDE OF THE BRIDGE; NOTE CABLES ADDED TO STRENGTHEN THE LOWER CHORDS OF THE TRUSS - Bedford County Bridge No. 4, Township Route 655 spanning Yellow Creek, Hopewell, Bedford County, PA

  8. The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer's dementia

    PubMed Central

    Perani, Daniela; Farsad, Mohsen; Ballarini, Tommaso; Lubian, Francesca; Malpetti, Maura; Fracchetti, Alessandro; Magnani, Giuseppe; March, Albert; Abutalebi, Jubin

    2017-01-01

    Cognitive reserve (CR) prevents cognitive decline and delays neurodegeneration. Recent epidemiological evidence suggests that lifelong bilingualism may act as CR delaying the onset of dementia by ∼4.5 y. Much controversy surrounds the issue of bilingualism and its putative neuroprotective effects. We studied brain metabolism, a direct index of synaptic function and density, and neural connectivity to shed light on the effects of bilingualism in vivo in Alzheimer’s dementia (AD). Eighty-five patients with probable AD and matched for disease duration (45 German-Italian bilingual speakers and 40 monolingual speakers) were included. Notably, bilingual individuals were on average 5 y older than their monolingual peers. In agreement with our predictions and with models of CR, cerebral hypometabolism was more severe in the group of bilingual individuals with AD. The metabolic connectivity analyses crucially supported the neuroprotective effect of bilingualism by showing an increased connectivity in the executive control and the default mode networks in the bilingual, compared with the monolingual, AD patients. Furthermore, the degree of lifelong bilingualism (i.e., high, moderate, or low use) was significantly correlated to functional modulations in crucial neural networks, suggesting both neural reserve and compensatory mechanisms. These findings indicate that lifelong bilingualism acts as a powerful CR proxy in dementia and exerts neuroprotective effects against neurodegeneration. Delaying the onset of dementia is a top priority of modern societies, and the present in vivo neurobiological evidence should stimulate social programs and interventions to support bilingual or multilingual education and the maintenance of the second language among senior citizens. PMID:28137833

  9. The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer's dementia.

    PubMed

    Perani, Daniela; Farsad, Mohsen; Ballarini, Tommaso; Lubian, Francesca; Malpetti, Maura; Fracchetti, Alessandro; Magnani, Giuseppe; March, Albert; Abutalebi, Jubin

    2017-02-14

    Cognitive reserve (CR) prevents cognitive decline and delays neurodegeneration. Recent epidemiological evidence suggests that lifelong bilingualism may act as CR delaying the onset of dementia by ∼4.5 y. Much controversy surrounds the issue of bilingualism and its putative neuroprotective effects. We studied brain metabolism, a direct index of synaptic function and density, and neural connectivity to shed light on the effects of bilingualism in vivo in Alzheimer's dementia (AD). Eighty-five patients with probable AD and matched for disease duration (45 German-Italian bilingual speakers and 40 monolingual speakers) were included. Notably, bilingual individuals were on average 5 y older than their monolingual peers. In agreement with our predictions and with models of CR, cerebral hypometabolism was more severe in the group of bilingual individuals with AD. The metabolic connectivity analyses crucially supported the neuroprotective effect of bilingualism by showing an increased connectivity in the executive control and the default mode networks in the bilingual, compared with the monolingual, AD patients. Furthermore, the degree of lifelong bilingualism (i.e., high, moderate, or low use) was significantly correlated to functional modulations in crucial neural networks, suggesting both neural reserve and compensatory mechanisms. These findings indicate that lifelong bilingualism acts as a powerful CR proxy in dementia and exerts neuroprotective effects against neurodegeneration. Delaying the onset of dementia is a top priority of modern societies, and the present in vivo neurobiological evidence should stimulate social programs and interventions to support bilingual or multilingual education and the maintenance of the second language among senior citizens.

  10. Characterization of resting state activity in MCI individuals

    PubMed Central

    Cieri, Filippo; Cera, Nicoletta

    2013-01-01

    Objectives. Aging is the major risk factor for Alzheimer Disease (AD) and Mild Cognitive Impairment (MCI). The aim of this study was to identify novel modifications of brain functional connectivity in MCI patients. MCI individuals were compared to healthy elderly subjects. Methods. We enrolled 37 subjects (age range 60–80 y.o.). Of these, 13 subjects were affected by MCI and 24 were age-matched healthy elderly control (HC). Subjects were evaluated with Mini Mental State Examination (MMSE), Frontal Assessment Battery (FAB), and prose memory (Babcock story) tests. In addition, with functional Magnetic Resonance Imaging (fMRI), we investigated resting state network (RSN) activities. Resting state (Rs) fMRI data were analyzed by means of Independent Component Analysis (ICA). Subjects were followed-up with neuropsychological evaluations for three years. Results. Rs-fMRI of MCI subjects showed increased intrinsic connectivity in the Default Mode Network (DMN) and in the Somatomotor Network (SMN). Analysis of the DMN showed statistically significant increased activation in the posterior cingulate cortex (PCC) and left inferior parietal lobule (lIPL). During the three years follow-up, 4 MCI subjects converted to AD. The subset of MCI AD-converted patients showed increased connectivity in the right Inferior Parietal Lobule (rIPL). As for SMN activity, MCI and MCI-AD converted groups showed increased level of connectivity in correspondence of the right Supramarginal Gyrus (rSG). Conclusions. Our findings indicate alterations of DMN and SMN activity in MCI subjects, thereby providing potential imaging-based markers that can be helpful for the early diagnosis and monitoring of these patients. PMID:24010015

  11. Bidirectional holographic codes and sub-AdS locality

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Hayden, Patrick; Qi, Xiaoliang

    Tensor networks implementing quantum error correcting codes have recently been used as toy models of the holographic duality which explicitly realize some of the more puzzling features of the AdS/CFT correspondence. These models reproduce the Ryu-Takayanagi entropy formula for boundary intervals, and allow bulk operators to be mapped to the boundary in a redundant fashion. These exactly solvable, explicit models have provided valuable insight but nonetheless suffer from many deficiencies, some of which we attempt to address in this talk. We propose a new class of tensor network models that subsume the earlier advances and, in addition, incorporate additional features of holographic duality, including: (1) a holographic interpretation of all boundary states, not just those in a ''code'' subspace, (2) a set of bulk states playing the role of ''classical geometries'' which reproduce the Ryu-Takayanagi formula for boundary intervals, (3) a bulk gauge symmetry analogous to diffeomorphism invariance in gravitational theories, (4) emergent bulk locality for sufficiently sparse excitations, and the ability to describe geometry at sub-AdS resolutions or even flat space. David and Lucile Packard Foundation.

  12. Bidirectional holographic codes and sub-AdS locality

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Hayden, Patrick; Qi, Xiao-Liang

    2016-01-01

    Tensor networks implementing quantum error correcting codes have recently been used to construct toy models of holographic duality explicitly realizing some of the more puzzling features of the AdS/CFT correspondence. These models reproduce the Ryu-Takayanagi entropy formula for boundary intervals, and allow bulk operators to be mapped to the boundary in a redundant fashion. These exactly solvable, explicit models have provided valuable insight but nonetheless suffer from many deficiencies, some of which we attempt to address in this article. We propose a new class of tensor network models that subsume the earlier advances and, in addition, incorporate additional features of holographic duality, including: (1) a holographic interpretation of all boundary states, not just those in a "code" subspace, (2) a set of bulk states playing the role of "classical geometries" which reproduce the Ryu-Takayanagi formula for boundary intervals, (3) a bulk gauge symmetry analogous to diffeomorphism invariance in gravitational theories, (4) emergent bulk locality for sufficiently sparse excitations, and (5) the ability to describe geometry at sub-AdS resolutions or even flat space.

  13. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure.

    PubMed

    Jenny, Jean-Philippe; Francus, Pierre; Normandeau, Alexandre; Lapointe, François; Perga, Marie-Elodie; Ojala, Antti; Schimmelmann, Arndt; Zolitschka, Bernd

    2016-04-01

    The spread of hypoxia is a threat to aquatic ecosystem functions and services as well as to biodiversity. However, sparse long-term monitoring of lake ecosystems has prevented reconstruction of global hypoxia dynamics while inhibiting investigations into its causes and assessing the resilience capacity of these systems. This study compiles the onset and duration of hypoxia recorded in sediments of 365 lakes worldwide since AD 1700, showing that lacustrine hypoxia started spreading before AD 1900, 70 years prior to hypoxia in coastal zones. This study also shows that the increase of human activities and nutrient release is leading to hypoxia onset. No correlations were found with changes in precipitation or temperature. There is no evidence for a post-1980s return to well-oxygenated lacustrine conditions in industrialized countries despite the implementation of restoration programs. The apparent establishment of stable hypoxic conditions prior to AD 1900 highlights the challenges of a growing nutrient demand, accompanied by increasing global nutrient emissions of our industrialized societies, and climate change. © 2015 John Wiley & Sons Ltd.

  14. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference

    PubMed Central

    Szekely, Akos; Silton, Rebecca L.; Heller, Wendy; Miller, Gregory A.

    2017-01-01

    Abstract The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. PMID:27998997

  15. Building a scholar in writing (BSW): A model for developing students' critical writing skills.

    PubMed

    Bailey, Annette; Zanchetta, Margareth; Velasco, Divine; Pon, Gordon; Hassan, Aafreen

    2015-11-01

    Several authors have highlighted the importance of writing in developing reflective thinking skills, transforming knowledge, communicating expressions, and filling knowledge gaps. However, difficulties with higher order processing and critical analysis affect students' ability to write critical and thoughtful essays. The Building a Scholar in Writing (BSW) model is a 6-step process of increasing intricacies in critical writing development. Development of critical writing is proposed to occur in a processed manner that transitions from presenting simple ideas (just bones) in writing, to connecting ideas (connecting bones), to formulating a thesis and connecting key components (constructing a skeleton), to supporting ideas with evidence (adding muscle), to building creativity and originality (adding essential organs), and finally, developing strong, integrated, critical arguments (adding brain). This process symbolically represents the building of a scholar. The idea of building a scholar equates to progressively giving life and meaning to a piece of writing with unique scholarly characteristics. This progression involves a transformation in awareness, thinking, and understanding, as well as advancement in students' level of critical appraisal skills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Mobile access to the Internet: from personal bubble to satellites

    NASA Astrophysics Data System (ADS)

    Gerla, Mario

    2001-10-01

    Mobile, wireless access and networking has emerged in the last few years as one of the most important directions of Internet growth. The popularity of mobile, and, more generally, nomadic Internet access is due to many enabling factors including: (a) emergence of meaningful applications tailored to the individual on the move; (b) small form factor and long battery life; (c) efficient middleware designed to support mobility; and, (d) efficient wireless networking technologies. A key player in the mobile Internet access is the nomad, i.e. the individual equipped with various computing and I/O gadgets (cellular phone, earphones, GPS navigator, palm pilot, beeper, portable scanner, digital camera, etc.). These devices form his/her Personal Area Network or PAN or personal bubble. The connectivity within the bubble is wireless (using for example a low cost, low power wireless LAN such as Bluetooth). The bubble can expand and contract dynamically depending on needs. It may temporarily include sensors and actuators as the nomad walks into a new environment. In this paper, we identify the need for the interconnection of the PAN with other wireless networks in order to achieve costeffective mobile access to the Internet. We will overview some key networking technologies required to support the PAN (eg, Bluetooth). We will also discuss an emerging technology, Ad Hoc wireless networking which is the natural complement of the PAN in sparsely populated areas. Finally, we will identify the need for intelligent routers to assist the mobile user in the selection of the best Internet access strategy.

  17. Tree-Ring Based May-July Temperature Reconstruction Since AD 1630 on the Western Loess Plateau, China

    PubMed Central

    Song, Huiming; Liu, Yu; Li, Qiang; Gao, Na; Ma, Yongyong; Zhang, Yanhua

    2014-01-01

    Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) collected at Mt. Shimen on the western Loess Plateau, China, were used to reconstruct the mean May–July temperature during AD 1630–2011. The regression model explained 48% of the adjusted variance in the instrumentally observed mean May–July temperature. The reconstruction revealed significant temperature variations at interannual to decadal scales. Cool periods observed in the reconstruction coincided with reduced solar activities. The reconstructed temperature matched well with two other tree-ring based temperature reconstructions conducted on the northern slope of the Qinling Mountains (on the southern margin of the Loess Plateau of China) for both annual and decadal scales. In addition, this study agreed well with several series derived from different proxies. This reconstruction improves upon the sparse network of high-resolution paleoclimatic records for the western Loess Plateau, China. PMID:24690885

  18. Small black holes and near-extremal CFTs

    DOE PAGES

    Benjamin, Nathan; Dyer, Ethan; Fitzpatrick, A. Liam; ...

    2016-08-02

    Pure theories of AdS 3 quantum gravity are conjectured to be dual to CFTs with sparse spectra of light primary operators. The sparsest possible spectrum consistent with modular invariance includes only black hole states above the vacuum. Witten conjectured the existence of a family of extremal CFTs, which realize this spectrum for all admissible values of the central charge. We consider the quantum corrections to the classical spectrum, and propose a specific modification of Witten’s conjecture which takes into account the existence of “small” black hole states. These have zero classical horizon area, with a calculable entropy attributed solely tomore » loop effects. Lastly, our conjecture passes various consistency checks, especially when generalized to include theories with supersymmetry. In theories with N = 2 supersymmetry, this “near-extremal CFT” proposal precisely evades the no-go results of Gaberdiel et al.« less

  19. Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice.

    PubMed

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Lütjohann, Dieter; Veltien, Andor; Heerschap, Arend; Kiliaan, Amanda J

    2017-01-01

    Cardiovascular risk factors, especially hypertension, are also major risk factors for Alzheimer's disease (AD). To elucidate the underlying vascular origin of neurodegenerative processes in AD, we investigated the relation between systolic blood pressure (SBP) cerebral blood flow (CBF) and vasoreactivity with brain structure and function in a 16-18 months old double transgenic AβPP swe /PS1 dE9 (AβPP/PS1) mouse model for AD. These aging AβPP/PS1 mice showed an increased SBP linked to a declined regional CBF. Furthermore, using advanced MRI techniques, decline of functional and structural connectivity was revealed in the AD-like mice coupled to impaired cognition, increased locomotor activity, and anxiety-related behavior. Post mortem analyses demonstrated also increased neuroinflammation, and both decreased synaptogenesis and neurogenesis in the AβPP/PS1 mice. Additionally, deviant levels of fatty acids and sterols were present in the brain tissue of the AβPP/PS1 mice indicating maladapted brain fatty acid metabolism. Our findings suggest a link between increased SBP, decreased cerebral hemodynamics and connectivity in an AD mouse model during aging, leading to behavioral and cognitive impairments. As these results mirror the complex clinical symptomatology in the prodromal phase of AD, we suggest that this AD-like murine model could be used to investigate prevention and treatment strategies for early AD patients. Moreover, this study helps to develop more efficient therapies and diagnostics for this very early stage of AD.

  20. Functional connectivity in autosomal dominant and late-onset Alzheimer disease.

    PubMed

    Thomas, Jewell B; Brier, Matthew R; Bateman, Randall J; Snyder, Abraham Z; Benzinger, Tammie L; Xiong, Chengjie; Raichle, Marcus; Holtzman, David M; Sperling, Reisa A; Mayeux, Richard; Ghetti, Bernardino; Ringman, John M; Salloway, Stephen; McDade, Eric; Rossor, Martin N; Ourselin, Sebastien; Schofield, Peter R; Masters, Colin L; Martins, Ralph N; Weiner, Michael W; Thompson, Paul M; Fox, Nick C; Koeppe, Robert A; Jack, Clifford R; Mathis, Chester A; Oliver, Angela; Blazey, Tyler M; Moulder, Krista; Buckles, Virginia; Hornbeck, Russ; Chhatwal, Jasmeer; Schultz, Aaron P; Goate, Alison M; Fagan, Anne M; Cairns, Nigel J; Marcus, Daniel S; Morris, John C; Ances, Beau M

    2014-09-01

    Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic mutations in 3 specific genes in contrast to late-onset Alzheimer disease (LOAD), which has a more polygenetic risk profile. To assess the similarities and differences in functional connectivity changes owing to ADAD and LOAD. We analyzed functional connectivity in multiple brain resting state networks (RSNs) in a cross-sectional cohort of participants with ADAD (n = 79) and LOAD (n = 444), using resting-state functional connectivity magnetic resonance imaging at multiple international academic sites. For both types of AD, we quantified and compared functional connectivity changes in RSNs as a function of dementia severity measured by the Clinical Dementia Rating Scale. In ADAD, we qualitatively investigated functional connectivity changes with respect to estimated years from onset of symptoms within 5 RSNs. A decrease in functional connectivity with increasing Clinical Dementia Rating scores were similar for both LOAD and ADAD in multiple RSNs. Ordinal logistic regression models constructed in one type of Alzheimer disease accurately predicted clinical dementia rating scores in the other, further demonstrating the similarity of functional connectivity loss in each disease type. Among participants with ADAD, functional connectivity in multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their anticipated age of symptom onset compared with asymptomatic mutation noncarriers. Resting-state functional connectivity magnetic resonance imaging changes with progressing AD severity are similar between ADAD and LOAD. Resting-state functional connectivity magnetic resonance imaging may be a useful end point for LOAD and ADAD therapy trials. Moreover, the disease process of ADAD may be an effective model for the LOAD disease process.

  1. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.

    PubMed

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2015-11-01

    Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.

  2. Gender differences in healthy aging and Alzheimer's Dementia: A 18 F-FDG-PET study of brain and cognitive reserve.

    PubMed

    Malpetti, Maura; Ballarini, Tommaso; Presotto, Luca; Garibotto, Valentina; Tettamanti, Marco; Perani, Daniela

    2017-08-01

    Cognitive reserve (CR) and brain reserve (BR) are protective factors against age-associated cognitive decline and neurodegenerative disorders. Very limited evidence exists about gender effects on brain aging and on the effect of CR on brain modulation in healthy aging and Alzheimer's Dementia (AD). We investigated gender differences in brain metabolic activity and resting-state network connectivity, as measured by 18 F-FDG-PET, in healthy aging and AD, also considering the effects of education and occupation. The clinical and imaging data were retrieved from large datasets of healthy elderly subjects (HE) (225) and AD patients (282). In HE, males showed more extended age-related reduction of brain metabolism than females in frontal medial cortex. We also found differences in brain modulation as metabolic increases induced by education and occupation, namely in posterior associative cortices in HE males and in the anterior limbic-affective and executive networks in HE females. In AD patients, the correlations between education and occupation levels and brain hypometabolism showed gender differences, namely a posterior temporo-parietal association in males and a frontal and limbic association in females, indicating the involvement of different networks. Finally, the metabolic connectivity in both HE and AD aligned with these results, suggesting greater efficiency in the posterior default mode network for males, and in the anterior frontal executive network for females. The basis of these brain gender differences in both aging and AD, obtained exploring cerebral metabolism, metabolic connectivity and the effects of education and occupation, is likely at the intersection between biological and sociodemographic factors. Hum Brain Mapp 38:4212-4227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    PubMed

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  4. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination

    PubMed Central

    Kazmier, Kelli; Alexander, Nathan S.; Meiler, Jens; Mchaourab, Hassane S.

    2010-01-01

    A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al., 2008). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 50% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, the number of which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance. PMID:21074624

  5. Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification

    PubMed Central

    Li, Weikai; Wang, Zhengxia; Zhang, Limei; Qiao, Lishan; Shen, Dinggang

    2017-01-01

    Functional brain network (FBN) has been becoming an increasingly important way to model the statistical dependence among neural time courses of brain, and provides effective imaging biomarkers for diagnosis of some neurological or psychological disorders. Currently, Pearson's Correlation (PC) is the simplest and most widely-used method in constructing FBNs. Despite its advantages in statistical meaning and calculated performance, the PC tends to result in a FBN with dense connections. Therefore, in practice, the PC-based FBN needs to be sparsified by removing weak (potential noisy) connections. However, such a scheme depends on a hard-threshold without enough flexibility. Different from this traditional strategy, in this paper, we propose a new approach for estimating FBNs by remodeling PC as an optimization problem, which provides a way to incorporate biological/physical priors into the FBNs. In particular, we introduce an L1-norm regularizer into the optimization model for obtaining a sparse solution. Compared with the hard-threshold scheme, the proposed framework gives an elegant mathematical formulation for sparsifying PC-based networks. More importantly, it provides a platform to encode other biological/physical priors into the PC-based FBNs. To further illustrate the flexibility of the proposed method, we extend the model to a weighted counterpart for learning both sparse and scale-free networks, and then conduct experiments to identify autism spectrum disorders (ASD) from normal controls (NC) based on the constructed FBNs. Consequently, we achieved an 81.52% classification accuracy which outperforms the baseline and state-of-the-art methods. PMID:28912708

  6. On the global existence of hairy black holes and solitons in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik

    2016-10-01

    We investigate the existence of black hole and soliton solutions to four dimensional, anti-de Sitter (adS), Einstein-Yang-Mills theories with general semisimple connected and simply connected gauge groups, concentrating on the so-called regular case. We here generalise results for the asymptotically flat case, and compare our system with similar results from the well-researched adS {mathfrak {su}}(N) system. We find the analysis differs from the asymptotically flat case in some important ways: the biggest difference is that for Λ <0, solutions are much less constrained as r→ infty , making it possible to prove the existence of global solutions to the field equations in some neighbourhood of existing trivial solutions, and in the limit of |Λ |→ infty . In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the {mathfrak {su}}(N) case proved important to stability.

  7. Disrupted Structural Brain Network in AD and aMCI: A Finding of Long Fiber Degeneration.

    PubMed

    Fang, Rong; Yan, Xiao-Xiao; Wu, Zhi-Yuan; Sun, Yu; Yin, Qi-Hua; Wang, Ying; Tang, Hui-Dong; Sun, Jun-Feng; Miao, Fei; Chen, Sheng-Di

    2015-01-01

    Although recent evidence has emerged that Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients show both regional brain abnormalities and topological degeneration in brain networks, our understanding of the effects of white matter fiber aberrations on brain network topology in AD and aMCI is still rudimentary. In this study, we investigated the regional volumetric aberrations and the global topological abnormalities in AD and aMCI patients. The results showed a widely distributed atrophy in both gray and white matters in the AD and aMCI groups. In particular, AD patients had weaker connectivity with long fiber length than aMCI and normal control (NC) groups, as assessed by fractional anisotropy (FA). Furthermore, the brain networks of all three groups exhibited prominent economical small-world properties. Interestingly, the topological characteristics estimated from binary brain networks showed no significant group effect, indicating a tendency of preserving an optimal topological architecture in AD and aMCI during degeneration. However, significantly longer characteristic path length was observed in the FA weighted brain networks of AD and aMCI patients, suggesting dysfunctional global integration. Moreover, the abnormality of the characteristic path length was negatively correlated with the clinical ratings of cognitive impairment. Thus, the results therefore suggested that the topological alterations in weighted brain networks of AD are induced by the loss of connectivity with long fiber lengths. Our findings provide new insights into the alterations of the brain network in AD and may indicate the predictive value of the network metrics as biomarkers of disease development.

  8. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals

    PubMed Central

    Hedden, Trey; Mormino, Elizabeth C.; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F.

    2017-01-01

    Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ1–42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ+) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ+ individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F18-AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. PMID:28314821

  9. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals.

    PubMed

    Schultz, Aaron P; Chhatwal, Jasmeer P; Hedden, Trey; Mormino, Elizabeth C; Hanseeuw, Bernard J; Sepulcre, Jorge; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F; Johnson, Keith A; Sperling, Reisa A

    2017-04-19

    Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ 1-42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ + ) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ + individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F 18 -AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. Copyright © 2017 the authors 0270-6474/17/374324-09$15.00/0.

  10. On the Connectivity and Multihop Delay of Ad Hoc Cognitive Radio Networks

    DTIC Science & Technology

    2011-04-01

    that we can move fast enough such that the driving time on the road is negligible. When the secondary network is instantaneously connected, there...1.10], and the proof of Lemma 4 is based on properties of the diameter9 of the finite connected components formed by communication links in an intermit ...realization of the destination. We can see that if the secondary network is instantaneously connected (Fig. 5-(a)), the ratio decreases very fast as

  11. Simulating synchronization in neuronal networks

    NASA Astrophysics Data System (ADS)

    Fink, Christian G.

    2016-06-01

    We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.

  12. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans

    PubMed Central

    Poliva, Oren

    2017-01-01

    In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobe (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and integration of calls with faces. I propose that the primary role of the ADS in non-human primates is the detection and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Detection of contact calls occurs by the ADS identifying a voice, localizing it, and verifying that the corresponding face is out of sight. Once a contact call is detected, the primate produces a contact call in return via descending connections from the frontal lobe to a network of limbic and brainstem regions. Because the ADS of present day humans also performs speech production, I further propose an evolutionary course for the transition from contact call exchange to an early form of speech. In accordance with this model, structural changes to the ADS endowed early members of the genus Homo with partial vocal control. This development was beneficial as it enabled offspring to modify their contact calls with intonations for signaling high or low levels of distress to their mother. Eventually, individuals were capable of participating in yes-no question-answer conversations. In these conversations the offspring emitted a low-level distress call for inquiring about the safety of objects (e.g., food), and his/her mother responded with a high- or low-level distress call to signal approval or disapproval of the interaction. Gradually, the ADS and its connections with brainstem motor regions became more robust and vocal control became more volitional. Speech emerged once vocal control was sufficient for inventing novel calls. PMID:28928931

  13. Learning pattern recognition and decision making in the insect brain

    NASA Astrophysics Data System (ADS)

    Huerta, R.

    2013-01-01

    We revise the current model of learning pattern recognition in the Mushroom Bodies of the insects using current experimental knowledge about the location of learning, olfactory coding and connectivity. We show that it is possible to have an efficient pattern recognition device based on the architecture of the Mushroom Bodies, sparse code, mutual inhibition and Hebbian leaning only in the connections from the Kenyon cells to the output neurons. We also show that despite the conventional wisdom that believes that artificial neural networks are the bioinspired model of the brain, the Mushroom Bodies actually resemble very closely Support Vector Machines (SVMs). The derived SVM learning rules are situated in the Mushroom Bodies, are nearly identical to standard Hebbian rules, and require inhibition in the output. A very particular prediction of the model is that random elimination of the Kenyon cells in the Mushroom Bodies do not impair the ability to recognize odorants previously learned.

  14. Information Transmission and Anderson Localization in two-dimensional networks of firing-rate neurons

    NASA Astrophysics Data System (ADS)

    Natale, Joseph; Hentschel, George

    Firing-rate networks offer a coarse model of signal propagation in the brain. Here we analyze sparse, 2D planar firing-rate networks with no synapses beyond a certain cutoff distance. Additionally, we impose Dale's Principle to ensure that each neuron makes only or inhibitory outgoing connections. Using spectral methods, we find that the number of neurons participating in excitations of the network becomes insignificant whenever the connectivity cutoff is tuned to a value near or below the average interneuron separation. Further, neural activations exceeding a certain threshold stay confined to a small region of space. This behavior is an instance of Anderson localization, a disorder-induced phase transition by which an information channel is rendered unable to transmit signals. We discuss several potential implications of localization for both local and long-range computation in the brain. This work was supported in part by Grants JSMF/ 220020321 and NSF/IOS/1208126.

  15. Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of 18F-FDG PET Data.

    PubMed

    Pagani, Marco; Giuliani, Alessandro; Öberg, Johanna; De Carli, Fabrizio; Morbelli, Silvia; Girtler, Nicola; Arnaldi, Dario; Accardo, Jennifer; Bauckneht, Matteo; Bongioanni, Francesca; Chincarini, Andrea; Sambuceti, Gianmario; Jonsson, Cathrine; Nobili, Flavio

    2017-07-01

    Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. Methods: We implemented independent-component analysis of 18 F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups. Results: We could identify spatially distinct independent components in each group, with generation of local circuits increasing proportionally to the severity of the disease. AD-specific independent components first appeared in the late-MCI stage and could discriminate converting MCI and AD from nonconverting MCI with an accuracy of 83.5%. Progressive disintegration of the intrinsic networks from normal aging to MCI to AD was inversely proportional to the conversion time. Conclusion: Independent-component analysis of 18 F-FDG PET data showed a gradual disruption of functional brain connectivity with progression of cognitive decline in AD. This information might be useful as a prognostic aid for individual patients and as a surrogate biomarker in intervention trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  16. Word retrieval in picture descriptions produced by individuals with Alzheimer's disease

    PubMed Central

    Kavé, Gitit; Goral, Mira

    2016-01-01

    What can tests of single-word production tell us about word retrieval in connected speech? We examined this question in 20 people with Alzheimer's disease (AD) and in 20 cognitively intact individuals. All participants completed tasks of picture naming and semantic fluency, and provided connected speech through picture descriptions. Picture descriptions were analyzed for total word output, percentages of content words, percentages of nouns, and percentages of pronouns out of all words, type-token ratio of all words and type-token ratio of nouns alone, mean frequency of all words and mean frequency of nouns alone, and mean word length. Individuals with AD performed worse than did cognitively intact individuals on the picture naming and semantic fluency tasks. They also produced a lower proportion of content words overall, a lower proportion of nouns, and a higher proportion of pronouns, as well as more frequent and shorter words on picture descriptions. Group differences in total word output and type-token ratios did not reach significance. Correlations between scores on tasks of single-word retrieval and measures of retrieval in picture descriptions emerged in the AD group but not in the control group. Scores on a picture naming task were associated with difficulties in word retrieval in connected speech in AD, while scores on a task of semantic verbal fluency were less useful in predicting measures of retrieval in context in this population. PMID:27171756

  17. Metabolic connectomics targeting brain pathology in dementia with Lewy bodies

    PubMed Central

    Caminiti, Silvia P; Tettamanti, Marco; Sala, Arianna; Presotto, Luca; Iannaccone, Sandro; Cappa, Stefano F; Magnani, Giuseppe

    2016-01-01

    Dementia with Lewy bodies is characterized by α-synuclein accumulation and degeneration of dopaminergic and cholinergic pathways. To gain an overview of brain systems affected by neurodegeneration, we characterized the [18F]FDG-PET metabolic connectivity in 42 dementia with Lewy bodies patients, as compared to 42 healthy controls, using sparse inverse covariance estimation method and graph theory. We performed whole-brain and anatomically driven analyses, targeting cholinergic and dopaminergic pathways, and the α-synuclein spreading. The first revealed substantial alterations in connectivity indexes, brain modularity, and hubs configuration. Namely, decreases in local metabolic connectivity within occipital cortex, thalamus, and cerebellum, and increases within frontal, temporal, parietal, and basal ganglia regions. There were also long-range disconnections among these brain regions, all supporting a disruption of the functional hierarchy characterizing the normal brain. The anatomically driven analysis revealed alterations within brain structures early affected by α-synuclein pathology, supporting Braak’s early pathological staging in dementia with Lewy bodies. The dopaminergic striato-cortical pathway was severely affected, as well as the cholinergic networks, with an extensive decrease in connectivity in Ch1-Ch2, Ch5-Ch6 networks, and the lateral Ch4 capsular network significantly towards the occipital cortex. These altered patterns of metabolic connectivity unveil a new in vivo scenario for dementia with Lewy bodies underlying pathology in terms of changes in whole-brain metabolic connectivity, spreading of α-synuclein, and neurotransmission impairment. PMID:27306756

  18. Healthy versus Unhealthy Suppliers in Food Desert Neighborhoods: A Network Analysis of Corner Stores' Food Supplier Networks.

    PubMed

    Mui, Yeeli; Lee, Bruce Y; Adam, Atif; Kharmats, Anna Y; Budd, Nadine; Nau, Claudia; Gittelsohn, Joel

    2015-11-30

    Products in corner stores may be affected by the network of suppliers from which storeowners procure food and beverages. To date, this supplier network has not been well characterized. Using network analysis, we examined the connections between corner stores (n = 24) in food deserts of Baltimore City (MD, USA) and their food/beverage suppliers (n = 42), to determine how different store and supplier characteristics correlated. Food and beverage suppliers fell into two categories: Those providing primarily healthy foods/beverages (n = 15) in the healthy supplier network (HSN) and those providing primarily unhealthy food/beverages (n = 41) in the unhealthy supplier network (UHSN). Corner store connections to suppliers in the UHSN were nearly two times greater (t = 5.23, p < 0.001), and key suppliers in the UHSN core were more diverse, compared to the HSN. The UHSN was significantly more cohesive and densely connected, with corner stores sharing a greater number of the same unhealthy suppliers, compared to HSN, which was less cohesive and sparsely connected (t = 5.82; p < 0.001). Compared to African Americans, Asian and Hispanic corner storeowners had on average -1.53 (p < 0.001) fewer connections to suppliers in the HSN (p < 0.001). Our findings indicate clear differences between corner stores' HSN and UHSN. Addressing ethnic/cultural differences of storeowners may also be important to consider.

  19. Aberrant activity and connectivity of the posterior superior temporal sulcus during social cognition in schizophrenia.

    PubMed

    Mier, Daniela; Eisenacher, Sarah; Rausch, Franziska; Englisch, Susanne; Gerchen, Martin Fungisai; Zamoscik, Vera; Meyer-Lindenberg, Andreas; Zink, Mathias; Kirsch, Peter

    2017-10-01

    Schizophrenia is associated with significant impairments in social cognition. These impairments have been shown to go along with altered activation of the posterior superior temporal sulcus (pSTS). However, studies that investigate connectivity of pSTS during social cognition in schizophrenia are sparse. Twenty-two patients with schizophrenia and 22 matched healthy controls completed a social-cognitive task for functional magnetic resonance imaging that allows the investigation of affective Theory of Mind (ToM), emotion recognition and the processing of neutral facial expressions. Moreover, a resting-state measurement was taken. Patients with schizophrenia performed worse in the social-cognitive task (main effect of group). In addition, a group by social-cognitive processing interaction was revealed for activity, as well as for connectivity during the social-cognitive task, i.e., patients with schizophrenia showed hyperactivity of right pSTS during neutral face processing, but hypoactivity during emotion recognition and affective ToM. In addition, hypoconnectivity between right and left pSTS was revealed for affective ToM, but not for neutral face processing or emotion recognition. No group differences in connectivity from right to left pSTS occurred during resting state. This pattern of aberrant activity and connectivity of the right pSTS during social cognition might form the basis of false-positive perceptions of emotions and intentions and could contribute to the emergence and sustainment of delusions.

  20. Healthy versus Unhealthy Suppliers in Food Desert Neighborhoods: A Network Analysis of Corner Stores’ Food Supplier Networks

    PubMed Central

    Mui, Yeeli; Lee, Bruce Y.; Adam, Atif; Kharmats, Anna Y.; Budd, Nadine; Nau, Claudia; Gittelsohn, Joel

    2015-01-01

    Background: Products in corner stores may be affected by the network of suppliers from which storeowners procure food and beverages. To date, this supplier network has not been well characterized. Methods: Using network analysis, we examined the connections between corner stores (n = 24) in food deserts of Baltimore City (MD, USA) and their food/beverage suppliers (n = 42), to determine how different store and supplier characteristics correlated. Results: Food and beverage suppliers fell into two categories: Those providing primarily healthy foods/beverages (n = 15) in the healthy supplier network (HSN) and those providing primarily unhealthy food/beverages (n = 41) in the unhealthy supplier network (UHSN). Corner store connections to suppliers in the UHSN were nearly two times greater (t = 5.23, p < 0.001), and key suppliers in the UHSN core were more diverse, compared to the HSN. The UHSN was significantly more cohesive and densely connected, with corner stores sharing a greater number of the same unhealthy suppliers, compared to HSN, which was less cohesive and sparsely connected (t = 5.82; p < 0.001). Compared to African Americans, Asian and Hispanic corner storeowners had on average −1.53 (p < 0.001) fewer connections to suppliers in the HSN (p < 0.001). Conclusions: Our findings indicate clear differences between corner stores’ HSN and UHSN. Addressing ethnic/cultural differences of storeowners may also be important to consider. PMID:26633434

  1. Afferent and efferent connections of the mesencephalic reticular formation in goldfish.

    PubMed

    Luque, M A; Pérez-Pérez, M P; Herrero, L; Torres, B

    2008-03-18

    The physiology of the mesencephalic reticular formation (MRF) in goldfish suggests its contribution to eye and body movements, but the afferent and efferent connections underlying such movements have not been determined. Therefore, we injected the bidirectional tracer biotinylated dextran amine into functionally identified MRF sites. We found retrogradely labelled neurons and anterogradely labelled boutons within nuclei of the following brain regions: (1) the telencephalon: a weak and reciprocal connectivity was confined to the central zone of area dorsalis and ventral nucleus of area ventralis; (2) the diencephalon: reciprocal connections were abundant in the ventral and dorsal thalamic nuclei; the central pretectal nucleus was also reciprocally wired with the MRF, but only boutons were present in the superficial pretectal nucleus; the preoptic and suprachiasmatic nuclei showed abundant neurons and boutons; the MRF was reciprocally connected with the preglomerular complex and the anterior tuberal nucleus; (3) the mesencephalon: neurons and boutons were abundant within deep tectal layers; reciprocal connections were also present within the torus semicircularis and the contralateral MRF; neurons were abundant within the nucleus isthmi; and (4) the rhombencephalon: the superior and middle parts of the reticular formation received strong projections from the MRF, while the projection to the inferior area was weaker; sparse neurons were present throughout the reticular formation; a reciprocal connectivity was observed with the sensory trigeminal nucleus; the medial and magnocellular nuclei of the octaval column projected to the MRF. These results support the participation of the MRF in the orienting response. The MRF could also be involved in other motor tasks triggered by visual, auditory, vestibular, or somatosensory signals.

  2. Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD).

    PubMed

    Bermúdez Ordoñez, Juan Carlos; Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando

    2018-05-16

    A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ 1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain.

  3. Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD)

    PubMed Central

    Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando

    2018-01-01

    A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain. PMID:29772731

  4. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference.

    PubMed

    Szekely, Akos; Silton, Rebecca L; Heller, Wendy; Miller, Gregory A; Mohanty, Aprajita

    2017-03-01

    The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Detecting a Multi-Homed Device Using Clock Skew

    DTIC Science & Technology

    2016-09-01

    in Testing ....................................................17  Figure 11.  Dual-Homed Raspberry Pi Used in Testing...seven Raspberry Pis as hosts. The switches used were the HP 2920 and the HP 3800, and the Raspberry Pis were connected to the network using their built...Testing 18 One of the Raspberry Pis had an added USB 2.0 Gigabit LAN adapter that was used as its second connection to the network. The connections for

  6. Thermodynamic characterization of synchronization-optimized oscillator networks

    NASA Astrophysics Data System (ADS)

    Yanagita, Tatsuo; Ichinomiya, Takashi

    2014-12-01

    We consider a canonical ensemble of synchronization-optimized networks of identical oscillators under external noise. By performing a Markov chain Monte Carlo simulation using the Kirchhoff index, i.e., the sum of the inverse eigenvalues of the Laplacian matrix (as a graph Hamiltonian of the network), we construct more than 1 000 different synchronization-optimized networks. We then show that the transition from star to core-periphery structure depends on the connectivity of the network, and is characterized by the node degree variance of the synchronization-optimized ensemble. We find that thermodynamic properties such as heat capacity show anomalies for sparse networks.

  7. Completing sparse and disconnected protein-protein network by deep learning.

    PubMed

    Huang, Lei; Liao, Li; Wu, Cathy H

    2018-03-22

    Protein-protein interaction (PPI) prediction remains a central task in systems biology to achieve a better and holistic understanding of cellular and intracellular processes. Recently, an increasing number of computational methods have shifted from pair-wise prediction to network level prediction. Many of the existing network level methods predict PPIs under the assumption that the training network should be connected. However, this assumption greatly affects the prediction power and limits the application area because the current golden standard PPI networks are usually very sparse and disconnected. Therefore, how to effectively predict PPIs based on a training network that is sparse and disconnected remains a challenge. In this work, we developed a novel PPI prediction method based on deep learning neural network and regularized Laplacian kernel. We use a neural network with an autoencoder-like architecture to implicitly simulate the evolutionary processes of a PPI network. Neurons of the output layer correspond to proteins and are labeled with values (1 for interaction and 0 for otherwise) from the adjacency matrix of a sparse disconnected training PPI network. Unlike autoencoder, neurons at the input layer are given all zero input, reflecting an assumption of no a priori knowledge about PPIs, and hidden layers of smaller sizes mimic ancient interactome at different times during evolution. After the training step, an evolved PPI network whose rows are outputs of the neural network can be obtained. We then predict PPIs by applying the regularized Laplacian kernel to the transition matrix that is built upon the evolved PPI network. The results from cross-validation experiments show that the PPI prediction accuracies for yeast data and human data measured as AUC are increased by up to 8.4 and 14.9% respectively, as compared to the baseline. Moreover, the evolved PPI network can also help us leverage complementary information from the disconnected training network and multiple heterogeneous data sources. Tested by the yeast data with six heterogeneous feature kernels, the results show our method can further improve the prediction performance by up to 2%, which is very close to an upper bound that is obtained by an Approximate Bayesian Computation based sampling method. The proposed evolution deep neural network, coupled with regularized Laplacian kernel, is an effective tool in completing sparse and disconnected PPI networks and in facilitating integration of heterogeneous data sources.

  8. Differences in Aβ brain networks in Alzheimer's disease and healthy controls.

    PubMed

    Duan, Huoqiang; Jiang, Jiehui; Xu, Jun; Zhou, Hucheng; Huang, Zhemin; Yu, Zhihua; Yan, Zhuangzhi

    2017-01-15

    The prevailing β-amyloid (Aβ)-cascade hypothesis is the most classical Alzheimer's disease (AD) pathogenesis. In this hypothesis, excessive Aβ plaque deposition in human brain is considered to be the cause of AD. Carbon 11-labeled Pittsburgh compound B Positron emission tomography (11C-PiB PET) is the latest technology to detect Aβ plaques in vivo. Thus, it is possible to investigate the difference of Aβ brain networks between AD patients and Health Controls (HC) by analyzing 11C-PiB PET images. In this study, a graph-theoretical method was employed to investigate the topological properties of Aβ networks in 18 Chinese AD patients and 16 HC subjects from Huashan Hospital, Shanghai. The results showed that both groups demonstrated small-world property, and this property was more obvious in AD group. Additionally, the clustering coefficients and path lengths were significantly lower in AD group. The global efficiency was larger in AD than in HC. A direct comparison between with and without regression found that sex, age and weight had no significant effect on the Aβ network. Moreover, three altered regions in AD group were identified, including left cuneus (CUN.L), right caudate nucleus (CAU.R) and left superior frontal gyrus (SFGdor. L). A voxel-wise correlation analysis showed that in AD patients, the regions of strengthened connection with CUN.L were mainly located in frontal cortex and parietal cortex, the regions of strengthen connection with CAU.R were mainly located in temporal cortex. Finally, a machine learning based analysis demonstrated that the three regions could be better biomarkers than the whole brain for AD classification. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment.

    PubMed

    Bai, Feng; Zhang, Zhijun; Watson, David R; Yu, Hui; Shi, Yongmei; Yuan, Yonggui; Zang, Yufeng; Zhu, Chaozhe; Qian, Yun

    2009-06-01

    Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.

  10. Altered structural brain changes and neurocognitive performance in pediatric HIV.

    PubMed

    Yadav, Santosh K; Gupta, Rakesh K; Garg, Ravindra K; Venkatesh, Vimala; Gupta, Pradeep K; Singh, Alok K; Hashem, Sheema; Al-Sulaiti, Asma; Kaura, Deepak; Wang, Ena; Marincola, Francesco M; Haris, Mohammad

    2017-01-01

    Pediatric HIV patients often suffer with neurodevelopmental delay and subsequently cognitive impairment. While tissue injury in cortical and subcortical regions in the brain of adult HIV patients has been well reported there is sparse knowledge about these changes in perinatally HIV infected pediatric patients. We analyzed cortical thickness, subcortical volume, structural connectivity, and neurocognitive functions in pediatric HIV patients and compared with those of pediatric healthy controls. With informed consent, 34 perinatally infected pediatric HIV patients and 32 age and gender matched pediatric healthy controls underwent neurocognitive assessment and brain magnetic resonance imaging (MRI) on a 3 T clinical scanner. Altered cortical thickness, subcortical volumes, and abnormal neuropsychological test scores were observed in pediatric HIV patients. The structural network connectivity analysis depicted lower connection strengths, lower clustering coefficients, and higher path length in pediatric HIV patients than healthy controls. The network betweenness and network hubs in cortico-limbic regions were distorted in pediatric HIV patients. The findings suggest that altered cortical and subcortical structures and regional brain connectivity in pediatric HIV patients may contribute to deficits in their neurocognitive functions. Further, longitudinal studies are required for better understanding of the effect of HIV pathogenesis on brain structural changes throughout the brain development process under standard ART treatment.

  11. Comparison of directed and weighted co-occurrence networks of six languages

    NASA Astrophysics Data System (ADS)

    Gao, Yuyang; Liang, Wei; Shi, Yuming; Huang, Qiuling

    2014-01-01

    To study commonalities and differences among different languages, we select 100 reports from the documents of the United Nations, each of which was written in Arabic, Chinese, English, French, Russian and Spanish languages, separately. Based on these corpora, we construct 6 weighted and directed word co-occurrence networks. Besides all the networks exhibit scale-free and small-world features, we find several new non-trivial results, including connections among English words are denser, and the expression of English language is more flexible and powerful; the connection way among Spanish words is more stringent and this indicates that the Spanish grammar is more rigorous; values of many statistical parameters of the French and Spanish networks are very approximate and this shows that these two languages share many commonalities; Arabic and Russian words have many varieties, which result in rich types of words and a sparse connection among words; connections among Chinese words obey a more uniform distribution, and one inclines to use the least number of Chinese words to express the same complex information as those in other five languages. This shows that the expression of Chinese language is quite concise. In addition, several topics worth further investigating by the complex network approach have been observed in this study.

  12. Rapid and accurate peripheral nerve detection using multipoint Raman imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kumamoto, Yasuaki; Minamikawa, Takeo; Kawamura, Akinori; Matsumura, Junichi; Tsuda, Yuichiro; Ukon, Juichiro; Harada, Yoshinori; Tanaka, Hideo; Takamatsu, Tetsuro

    2017-02-01

    Nerve-sparing surgery is essential to avoid functional deficits of the limbs and organs. Raman scattering, a label-free, minimally invasive, and accurate modality, is one of the best candidate technologies to detect nerves for nerve-sparing surgery. However, Raman scattering imaging is too time-consuming to be employed in surgery. Here we present a rapid and accurate nerve visualization method using a multipoint Raman imaging technique that has enabled simultaneous spectra measurement from different locations (n=32) of a sample. Five sec is sufficient for measuring n=32 spectra with good S/N from a given tissue. Principal component regression discriminant analysis discriminated spectra obtained from peripheral nerves (n=863 from n=161 myelinated nerves) and connective tissue (n=828 from n=121 tendons) with sensitivity and specificity of 88.3% and 94.8%, respectively. To compensate the spatial information of a multipoint-Raman-derived tissue discrimination image that is too sparse to visualize nerve arrangement, we used morphological information obtained from a bright-field image. When merged with the sparse tissue discrimination image, a morphological image of a sample shows what portion of Raman measurement points in arbitrary structure is determined as nerve. Setting a nerve detection criterion on the portion of "nerve" points in the structure as 40% or more, myelinated nerves (n=161) and tendons (n=121) were discriminated with sensitivity and specificity of 97.5%. The presented technique utilizing a sparse multipoint Raman image and a bright-field image has enabled rapid, safe, and accurate detection of peripheral nerves.

  13. A secure 3-way routing protocols for intermittently connected mobile ad hoc networks.

    PubMed

    Sekaran, Ramesh; Parasuraman, Ganesh Kumar

    2014-01-01

    The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET.

  14. A Secure 3-Way Routing Protocols for Intermittently Connected Mobile Ad Hoc Networks

    PubMed Central

    Parasuraman, Ganesh Kumar

    2014-01-01

    The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET. PMID:25136697

  15. Monitoring and tracing of critical software systems: State of the work and project definition

    DTIC Science & Technology

    2008-12-01

    analysis, troubleshooting and debugging. Some of these subsystems already come with ad hoc tracers for events like wireless connections or SCSI disk... SQLite ). Additional synthetic events (e.g. states) are added to the database. The database thus consists in contexts (process, CPU, state), event...capability on a [operating] system-by-system basis. Additionally, the mechanics of querying the data in an ad - hoc manner outside the boundaries of the

  16. Witten diagrams revisited: the AdS geometry of conformal blocks

    DOE PAGES

    Hijano, Eliot; Kraus, Per; Perlmutter, Eric; ...

    2016-01-25

    Here, we develop a new method for decomposing blocks. The steps involved are elementary, requiring no explicit integration, and operate directly in position space. Central to this construction is an appealingly simple answer to the question: what object in AdS computes a conformal block? The answer is a "geodesic Witten diagram", which is essentially an ordinary exchange Witten diagram, except that the cubic vertices are not integrated over all of AdS, but only over bulk geodesics connecting the boundary operators. In particular, we also consider the case of four-point functions of scalar operators, and show how to easily reproduce existingmore » results for the relevant conformal blocks in arbitrary dimension.« less

  17. Holographic repulsion and confinement in gauge theory

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Kothawala, Dawood

    2013-02-01

    We show that for asymptotically anti-de Sitter (AdS) backgrounds with negative energy, such as the AdS soliton and regulated negative-mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (q \\bar{q}) potential can be interpreted as affine time along null geodesics on the minimal string worldsheet and that its intrinsic curvature provides a signature of transition to confinement phase. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity. Communicated by P R L V Moniz

  18. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  19. Hypoglycaemia when adding sulphonylurea to metformin: a systematic review and network meta-analysis.

    PubMed

    Andersen, Stig Ejdrup; Christensen, Mikkel

    2016-11-01

    The risk of hypoglycaemia may differ among sulphonylureas (SUs), but evidence from head-to-head comparisons is sparse. Performing a network meta-analysis to use indirect evidence from randomized controlled trials (RCTs), we compared the relative risk of hypoglycaemia with newer generation SUs when added to metformin. A systematic review identified RCTs lasting 12-52 weeks and evaluating SUs added to inadequate metformin monotherapy (≥1000 mg/day) in type 2 diabetes. Adding RCTs investigating the active comparators from the identified SU trials, we established a coherent network. Hypoglycaemia of any severity was the primary end point. Thirteen trials of SUs and 14 of oral non-SU antihyperglycaemic agents (16 260 patients) were included. All reported hypoglycaemia only as adverse events. Producing comparable reductions in HbA 1C of -0.66 to -0.84% (-7 to -9 mmol/mol), the risk of hypoglycaemia was lowest with gliclazide compared to glipizide (OR 0.22, CrI: 0.05 to 0.96), glimepiride (OR 0.40, CrI: 0.13 to 1.27), and glibenclamide (OR 0.21, CrI: 0.03 to 1.48). A major limitation is varying definitions of hypoglycaemia across studies. When added to metformin, gliclazide was associated with the lowest risk of hypoglycaemia between the newer generation SUs. Clinicians should consider the risk of hypoglycaemia agent-specific when selecting an SU agent. © 2016 The British Pharmacological Society.

  20. Hypoglycaemia when adding sulphonylurea to metformin: a systematic review and network meta‐analysis

    PubMed Central

    Christensen, Mikkel

    2016-01-01

    Aims The risk of hypoglycaemia may differ among sulphonylureas (SUs), but evidence from head‐to‐head comparisons is sparse. Performing a network meta‐analysis to use indirect evidence from randomized controlled trials (RCTs), we compared the relative risk of hypoglycaemia with newer generation SUs when added to metformin. Methods A systematic review identified RCTs lasting 12–52 weeks and evaluating SUs added to inadequate metformin monotherapy (≥1000 mg/day) in type 2 diabetes. Adding RCTs investigating the active comparators from the identified SU trials, we established a coherent network. Hypoglycaemia of any severity was the primary end point. Results Thirteen trials of SUs and 14 of oral non‐SU antihyperglycaemic agents (16 260 patients) were included. All reported hypoglycaemia only as adverse events. Producing comparable reductions in HbA1C of −0.66 to −0.84% (−7 to −9 mmol/mol), the risk of hypoglycaemia was lowest with gliclazide compared to glipizide (OR 0.22, CrI: 0.05 to 0.96), glimepiride (OR 0.40, CrI: 0.13 to 1.27), and glibenclamide (OR 0.21, CrI: 0.03 to 1.48). A major limitation is varying definitions of hypoglycaemia across studies. Conclusions When added to metformin, gliclazide was associated with the lowest risk of hypoglycaemia between the newer generation SUs. Clinicians should consider the risk of hypoglycaemia agent‐specific when selecting an SU agent. PMID:27426428

  1. Parametric dictionary learning for modeling EAP and ODF in diffusion MRI.

    PubMed

    Merlet, Sylvain; Caruyer, Emmanuel; Deriche, Rachid

    2012-01-01

    In this work, we propose an original and efficient approach to exploit the ability of Compressed Sensing (CS) to recover diffusion MRI (dMRI) signals from a limited number of samples while efficiently recovering important diffusion features such as the ensemble average propagator (EAP) and the orientation distribution function (ODF). Some attempts to sparsely represent the diffusion signal have already been performed. However and contrarly to what has been presented in CS dMRI, in this work we propose and advocate the use of a well adapted learned dictionary and show that it leads to a sparser signal estimation as well as to an efficient reconstruction of very important diffusion features. We first propose to learn and design a sparse and parametric dictionary from a set of training diffusion data. Then, we propose a framework to analytically estimate in closed form two important diffusion features: the EAP and the ODF. Various experiments on synthetic, phantom and human brain data have been carried out and promising results with reduced number of atoms have been obtained on diffusion signal reconstruction, thus illustrating the added value of our method over state-of-the-art SHORE and SPF based approaches.

  2. 77 FR 41041 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... terminal ``A'' of the electrically heated flight deck window 1. This AD requires repetitive inspections for damage of the electrical connections at terminal ``A'' of the left and right flight deck window 1, and corrective actions if necessary. This AD also allows for replacing a flight deck window 1 with a new improved...

  3. Value-Added Models for Teacher Preparation Programs: Validity and Reliability Threats, and a Manageable Alternative

    ERIC Educational Resources Information Center

    Brady, Michael P.; Heiser, Lawrence A.; McCormick, Jazarae K.; Forgan, James

    2016-01-01

    High-stakes standardized student assessments are increasingly used in value-added evaluation models to connect teacher performance to P-12 student learning. These assessments are also being used to evaluate teacher preparation programs, despite validity and reliability threats. A more rational model linking student performance to candidates who…

  4. 77 FR 21420 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    .... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Cessna... fuel control card, due to the cross-feed inputs on the left- and right-hand fuel control cards being connected together and causing an imbalance of fuel between the left and right wing tanks. This AD requires...

  5. The Latent Structure and Test-Retest Stability of Connected Language Measures in the Wisconsin Registry for Alzheimer's Prevention (WRAP).

    PubMed

    Mueller, Kimberly D; Koscik, Rebecca L; Clark, Lindsay R; Hermann, Bruce P; Johnson, Sterling C; Turkstra, Lyn S

    2017-11-24

    While it is well known that discourse-related language functions are impaired in the dementia phase of Alzheimer's Disease (AD), the presymptomatic temporal course of discourse dysfunction are not known earlier in the course of AD. To conduct discourse-related studies in this phase of AD, validated psychometric instruments are needed. This study investigates the latent structure, validity, and test-retest stability of discourse measures in a late-middle-aged normative group who are relatively free from sporadic AD risk factors. Using a normative sample of 399 participants (mean age = 61), exploratory factor analyses (EFA) and confirmatory factor analyses (CFA) were conducted on 18 measures of connected language derived from picture descriptions. Factor invariance across sex and family history and longitudinal test-retest stability measures were calculated. The EFA revealed a four-factor solution, consisting of semantic, syntax, fluency, and lexical constructs. The CFA model substantiated the structure, and factors were invariant across sex and parental history of AD status. Test-retest stability measures were within acceptable ranges. Results confirm a factor structure that is invariant across sex and parental AD history. The factor structure could be useful in similar cohorts designed to detect early language decline in investigations of preclinical or clinical AD or as outcome measures in clinical prevention trials. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Application of probabilistically weighted graphs to image-based diagnosis of Alzheimer's disease using diffusion MRI

    NASA Astrophysics Data System (ADS)

    Maryam, Syeda; McCrackin, Laura; Crowley, Mark; Rathi, Yogesh; Michailovich, Oleg

    2017-03-01

    The world's aging population has given rise to an increasing awareness towards neurodegenerative disorders, including Alzheimers Disease (AD). Treatment options for AD are currently limited, but it is believed that future success depends on our ability to detect the onset of the disease in its early stages. The most frequently used tools for this include neuropsychological assessments, along with genetic, proteomic, and image-based diagnosis. Recently, the applicability of Diffusion Magnetic Resonance Imaging (dMRI) analysis for early diagnosis of AD has also been reported. The sensitivity of dMRI to the microstructural organization of cerebral tissue makes it particularly well-suited to detecting changes which are known to occur in the early stages of AD. Existing dMRI approaches can be divided into two broad categories: region-based and tract-based. In this work, we propose a new approach, which extends region-based approaches to the simultaneous characterization of multiple brain regions. Given a predefined set of features derived from dMRI data, we compute the probabilistic distances between different brain regions and treat the resulting connectivity pattern as an undirected, fully-connected graph. The characteristics of this graph are then used as markers to discriminate between AD subjects and normal controls (NC). Although in this preliminary work we omit subjects in the prodromal stage of AD, mild cognitive impairment (MCI), our method demonstrates perfect separability between AD and NC subject groups with substantial margin, and thus holds promise for fine-grained stratification of NC, MCI and AD populations.

  7. Motor Demonstration Using a Hand-Cranked Genecon

    DTIC Science & Technology

    2014-10-01

    available “ supercapacitors ”). Connect an ammeter (on the 200-mA dc range) with the po- larity of the leads and the rate of cranking of the Genecon ad- justed...Genecon (in translucent blue with a white handle) connected to a 1-F supercapacitor (in green). average dc voltage (V) cranking frequency (Hz) ripple

  8. Convergent and divergent intranetwork and internetwork connectivity patterns in patients with remitted late-life depression and amnestic mild cognitive impairment.

    PubMed

    Chen, Jiu; Shu, Hao; Wang, Zan; Zhan, Yafeng; Liu, Duan; Liao, Wenxiang; Xu, Lin; Liu, Yong; Zhang, Zhijun

    2016-10-01

    Both remitted late-life depression (rLLD) and amnesiac mild cognitive impairment (aMCI) alter brain functions in specific regions of the brain. They are also disconnection syndromes that are associated with a high risk of developing Alzheimer's disease (AD). Resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) was performed to define the shared and distinct aberrant patterns in intranetwork and internetwork connectivity between rLLD and aMCI and to determine how knowledge of these differences might contribute to our essential understanding of the altered sequences involved in functional systems both inside and outside of resting-state networks. We used rs-fcMRI to investigate in five functionally well-defined brain networks in two large cohorts of subjects at high risk for AD (55 rLLD and 87 aMCI) and 114 healthy controls (HC). A reduced degree of functional connectivity was observed in the bilateral inferior temporal cortex and supplemental motor area, and reduced correlations were observed within the sensory-motor network (SMN) and in the default mode network (DMN)-control network (CON) pair in the rLLD group than the HC group. The aMCI group showed only focal functional changes in regions of interest pairs, a trend toward increased correlations within the salience network and SMN, and a trend toward a reduced correlation in the DMN-CON pair. Furthermore, the rLLD group exhibited more severely altered functional connectivity than the aMCI group. Interestingly, these altered connectivities were associated with specific multi-domain cognitive and behavioral functions in both rLLD and aMCI. The degree of functional connectivity in the right primary auditory areas was negatively correlated with Hamilton Depression Scale scores in rLLD. Notably, altered connectivity between the right middle temporal cortex and the posterior cerebellum was negatively correlated with Mattis Dementia Rating Scale scores in both rLLD and aMCI. These results demonstrate that rLLD and aMCI may share convergent and divergent aberrant intranetwork and internetwork connectivity patterns as a potential continuous spectrum of the same disease. They further suggest that dysfunctions in the right specific temporal-cerebellum neural circuit may contribute to the similarities observed in rLLD and aMCI conversion to AD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cerebellin 4, a synaptic protein, enhances inhibitory activity and resistance of neurons to amyloid-β toxicity.

    PubMed

    Chacón, Pedro J; del Marco, Ángel; Arévalo, Ángeles; Domínguez-Giménez, Paloma; García-Segura, Luis Miguel; Rodríguez-Tébar, Alfredo

    2015-02-01

    Imbalances between excitatory and inhibitory transmissions in the brain anticipate the neuronal damage and death that occur in the neurodegenerative diseases like Alzheimer's disease (AD). We previously showed that amyloid-β (Aß), a natural peptide involved in the onset and development of AD, counteracts the neurotrophic activity of the nerve growth factor (NGF) by dampening the γ-aminobutyric acid (GABA)ergic connectivity of cultured hippocampal neurons. Neuronal plasticity is partly controlled by the NGF-promoted expression of the homologue of enhancer-of-split 1 (Hes1), a transcription factor that regulates the formation of GABAergic synapses. We now show that Hes1 controls the expression of cerebellin 4 (Cbln4), a member of a small family of secreted synaptic proteins, and we present the evidence that Cbln4 plays an essential role in the formation and maintenance of inhibitory GABAergic connections. Cbln4 immunoreactivity was found in the hippocampus, mostly in the dendrites and somata of pyramidal neurons. In the CA1, the hippocampal region where the first neurons degenerate in AD, Cbln4 immunoreactivity was associated with GABAergic synapses (detected by vesicular inhibitory amino acid transporter [VGAT] immunostaining), which appear to surround and embrace the somata of CA1 pyramidal neurons (basket cells). Moreover, significant decreases of Hes1, Cbln4, and VGAT immunoreactivities and messenger RNA expression were found in the hippocampus of a mouse model of AD. We also found that either the overexpression of Cbln4 in cultured hippocampal neurons or the application of recombinant Cbln4 to the cultures increased the number of GABAergic varicosities, rescuing neurons from Aß-induced death. In contrast, knockdown of Cbln4 gene in cultured neurons was followed by a large reduction of GABAergic connections. Such an effect was reverted by exogenously added Cbln4. These findings suggest a therapeutic potential for Cbln4 in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The effects of neuron morphology on graph theoretic measures of network connectivity: the analysis of a two-level statistical model.

    PubMed

    Aćimović, Jugoslava; Mäki-Marttunen, Tuomo; Linne, Marja-Leena

    2015-01-01

    We developed a two-level statistical model that addresses the question of how properties of neurite morphology shape the large-scale network connectivity. We adopted a low-dimensional statistical description of neurites. From the neurite model description we derived the expected number of synapses, node degree, and the effective radius, the maximal distance between two neurons expected to form at least one synapse. We related these quantities to the network connectivity described using standard measures from graph theory, such as motif counts, clustering coefficient, minimal path length, and small-world coefficient. These measures are used in a neuroscience context to study phenomena from synaptic connectivity in the small neuronal networks to large scale functional connectivity in the cortex. For these measures we provide analytical solutions that clearly relate different model properties. Neurites that sparsely cover space lead to a small effective radius. If the effective radius is small compared to the overall neuron size the obtained networks share similarities with the uniform random networks as each neuron connects to a small number of distant neurons. Large neurites with densely packed branches lead to a large effective radius. If this effective radius is large compared to the neuron size, the obtained networks have many local connections. In between these extremes, the networks maximize the variability of connection repertoires. The presented approach connects the properties of neuron morphology with large scale network properties without requiring heavy simulations with many model parameters. The two-steps procedure provides an easier interpretation of the role of each modeled parameter. The model is flexible and each of its components can be further expanded. We identified a range of model parameters that maximizes variability in network connectivity, the property that might affect network capacity to exhibit different dynamical regimes.

  11. Coherence and phase synchrony analyses of EEG signals in Mild Cognitive Impairment (MCI): A study of functional brain connectivity

    NASA Astrophysics Data System (ADS)

    Handayani, Nita; Haryanto, Freddy; Khotimah, Siti Nurul; Arif, Idam; Taruno, Warsito Purwo

    2018-03-01

    This paper presents an EEG study for coherence and phase synchrony in mild cognitive impairment (MCI) subjects. MCI is characterized by cognitive decline, which is an early stage of Alzheimer's disease (AD). AD is a neurodegenerative disorder with symptoms such as memory loss and cognitive impairment. EEG coherence is a statistical measure of correlation between signals from electrodes spatially separated on the scalp. The magnitude of phase synchrony is expressed in the phase locking value (PLV), a statistical measure of neuronal connectivity in the human brain. Brain signals were recorded using an Emotiv Epoc 14-channel wireless EEG at a sampling frequency of 128 Hz. In this study, we used 22 elderly subjects consisted of 10 MCI subjects and 12 healthy subjects as control group. The coherence between each electrode pair was measured for all frequency bands (delta, theta, alpha and beta). In the MCI subjects, the value of coherence and phase synchrony was generally lower than in the healthy subjects especially in the beta frequency. A decline of intrahemisphere coherence in the MCI subjects occurred in the left temporo-parietal-occipital region. The pattern of decline in MCI coherence is associated with decreased cholinergic connectivity along the path that connects the temporal, occipital, and parietal areas of the brain to the frontal area of the brain. EEG coherence and phase synchrony are able to distinguish persons who suffer AD in the early stages from healthy elderly subjects.

  12. Compressed modes for variational problems in mathematics and physics.

    PubMed

    Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley

    2013-11-12

    This article describes a general formalism for obtaining spatially localized ("sparse") solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an regularization term to the variational principle, which is shown to yield solutions with compact support ("compressed modes"). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size.

  13. Sinking and fit of abutment of locking taper implant system

    PubMed Central

    Moon, Seung-Jin; Kim, Hee-Jung; Son, Mee-Kyoung

    2009-01-01

    STATEMENT OF PROBLEM Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE In this study, Bicon® Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS 10 Bicon® implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS It was evident, that the amount of abutment sinking in Bicon® Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at 0.45 ± 0.09 mm. CONCLUSION Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location. PMID:21165262

  14. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    NASA Astrophysics Data System (ADS)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  15. Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis

    PubMed Central

    Wilmanns, Matthias; Gräter, Frauke

    2009-01-01

    The role of mechanical force in cellular processes is increasingly revealed by single molecule experiments and simulations of force-induced transitions in proteins. How the applied force propagates within proteins determines their mechanical behavior yet remains largely unknown. We present a new method based on molecular dynamics simulations to disclose the distribution of strain in protein structures, here for the newly determined high-resolution crystal structure of I27, a titin immunoglobulin (IG) domain. We obtain a sparse, spatially connected, and highly anisotropic mechanical network. This allows us to detect load-bearing motifs composed of interstrand hydrogen bonds and hydrophobic core interactions, including parts distal to the site to which force was applied. The role of the force distribution pattern for mechanical stability is tested by in silico unfolding of I27 mutants. We then compare the observed force pattern to the sparse network of coevolved residues found in this family. We find a remarkable overlap, suggesting the force distribution to reflect constraints for the evolutionary design of mechanical resistance in the IG family. The force distribution analysis provides a molecular interpretation of coevolution and opens the road to the study of the mechanism of signal propagation in proteins in general. PMID:19282960

  16. Explosive percolation on directed networks due to monotonic flow of activity

    NASA Astrophysics Data System (ADS)

    Waagen, Alex; D'Souza, Raissa M.; Lu, Tsai-Ching

    2017-07-01

    An important class of real-world networks has directed edges, and in addition, some rank ordering on the nodes, for instance the popularity of users in online social networks. Yet, nearly all research related to explosive percolation has been restricted to undirected networks. Furthermore, information on such rank-ordered networks typically flows from higher-ranked to lower-ranked individuals, such as follower relations, replies, and retweets on Twitter. Here we introduce a simple percolation process on an ordered, directed network where edges are added monotonically with respect to the rank ordering. We show with a numerical approach that the emergence of a dominant strongly connected component appears to be discontinuous. Large-scale connectivity occurs at very high density compared with most percolation processes, and this holds not just for the strongly connected component structure but for the weakly connected component structure as well. We present analysis with branching processes, which explains this unusual behavior and gives basic intuition for the underlying mechanisms. We also show that before the emergence of a dominant strongly connected component, multiple giant strongly connected components may exist simultaneously. By adding a competitive percolation rule with a small bias to link uses of similar rank, we show this leads to formation of two distinct components, one of high-ranked users, and one of low-ranked users, with little flow between the two components.

  17. Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.

    PubMed

    Song, Jie; Nair, Veena A; Gaggl, Wolfgang; Prabhakaran, Vivek

    2015-06-01

    The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.

  18. The RD-Connect Registry & Biobank Finder: a tool for sharing aggregated data and metadata among rare disease researchers.

    PubMed

    Gainotti, Sabina; Torreri, Paola; Wang, Chiuhui Mary; Reihs, Robert; Mueller, Heimo; Heslop, Emma; Roos, Marco; Badowska, Dorota Mazena; de Paulis, Federico; Kodra, Yllka; Carta, Claudio; Martìn, Estrella Lopez; Miller, Vanessa Rangel; Filocamo, Mirella; Mora, Marina; Thompson, Mark; Rubinstein, Yaffa; Posada de la Paz, Manuel; Monaco, Lucia; Lochmüller, Hanns; Taruscio, Domenica

    2018-05-01

    In rare disease (RD) research, there is a huge need to systematically collect biomaterials, phenotypic, and genomic data in a standardized way and to make them findable, accessible, interoperable and reusable (FAIR). RD-Connect is a 6 years global infrastructure project initiated in November 2012 that links genomic data with patient registries, biobanks, and clinical bioinformatics tools to create a central research resource for RDs. Here, we present RD-Connect Registry & Biobank Finder, a tool that helps RD researchers to find RD biobanks and registries and provide information on the availability and accessibility of content in each database. The finder concentrates information that is currently sparse on different repositories (inventories, websites, scientific journals, technical reports, etc.), including aggregated data and metadata from participating databases. Aggregated data provided by the finder, if appropriately checked, can be used by researchers who are trying to estimate the prevalence of a RD, to organize a clinical trial on a RD, or to estimate the volume of patients seen by different clinical centers. The finder is also a portal to other RD-Connect tools, providing a link to the RD-Connect Sample Catalogue, a large inventory of RD biological samples available in participating biobanks for RD research. There are several kinds of users and potential uses for the RD-Connect Registry & Biobank Finder, including researchers collaborating with academia and the industry, dealing with the questions of basic, translational, and/or clinical research. As of November 2017, the finder is populated with aggregated data for 222 registries and 21 biobanks.

  19. Universal consistent truncation for 6d/7d gauge/gravity duals

    NASA Astrophysics Data System (ADS)

    Passias, Achilleas; Rota, Andrea; Tomasiello, Alessandro

    2015-10-01

    Recently, AdS7 solutions of IIA supergravity have been classified; there are infinitely many of them, whose expression is known analytically, and with internal space of S 3 topology. Their field theory duals are six-dimensional (1,0) SCFT's. In this paper we show that for each of these AdS7 solutions there exists a consistent truncation from massive IIA supergravity to minimal gauged supergravity in seven dimensions. This theory has an SU(2) gauge group, and a single scalar, whose value is related to a certain distortion of the internal S 3. This explains the universality observed in recent work on AdS5 and AdS4 solutions dual to compactifications of the (1, 0) SCFT6's. Thanks to previous work on the minimal gauged supergravity, the truncation also implies the existence of holographic RG-flows connecting those solutions to the AdS7 vacuum, as well as new classes of IIA AdS3 solutions.

  20. Inferior parietal lobule projections to anterior inferotemporal cortex (area TE) in macaque monkey.

    PubMed

    Zhong, Yong-Mei; Rockland, Kathleen S

    2003-05-01

    Parietal cortical areas have generally been considered as part of the dorsal stream and, as such, only indirectly connected with inferotemporal cortex. In this report we demonstrate, by using the anterograde tracer BDA, that much of the inferior parietal lobule (IPL) has direct connections to anterior-ventral TE (TEav) around the anterior middle temporal sulcus (amts). Connections from area PG terminate in layers 1 and 5 as well as 4; and those from area PF, target layer 6 of TEav, with a small secondary focus in layer 4 of anterior-dorsal TE. Connections from areas PG and PF are relatively sparse; but those from the mid-IPL region (approximately area PFG), which terminate in layer 4, are light to moderate. In confirmation of these results, injections of retrograde tracers in TEav produce labeled neurons in the IPL. These are most numerous in layer 3 at the border of areas PG and PFG, but also occur in layer 5/6. These laminar patterns are more complex than the classical 'feedforward' or 'feedback' patterns associated with early sensory areas. Branched collaterals are common; and three of seven reconstructed axons branched to both TEav and to the lateral bank of the occipito-temporal sulcus, itself a major source of inputs to TEav. The existence of connections from the IPL preferentially to TEav and the amts provides another example where direct 'bypass' connections operate in parallel with multiple indirect routes. It provides further evidence for the differential connectivity of subdivisions within anterior TE and is consistent with recent evidence from functional magnetic resonance imaging studies that the region around the amts may be part of a network involved in three- dimensional shape, which is distributed across both 'what' and 'where' processing streams.

  1. Position space analysis of the AdS (in)stability problem

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Fotios V.; Freivogel, Ben; Lippert, Matthew; Yang, I.-Sheng

    2015-08-01

    We investigate whether arbitrarily small perturbations in global AdS space are generically unstable and collapse into black holes on the time scale set by gravitational interactions. We argue that current evidence, combined with our analysis, strongly suggests that a set of nonzero measure in the space of initial conditions does not collapse on this time scale. We perform an analysis in position space to study this puzzle, and our formalism allows us to directly study the vanishing-amplitude limit. We show that gravitational self-interaction leads to tidal deformations which are equally likely to focus or defocus energy, and we sketch the phase diagram accordingly. We also clarify the connection between gravitational evolution in global AdS and holographic thermalization.

  2. Bounding the space of holographic CFTs with chaos

    DOE PAGES

    Perlmutter, Eric

    2016-10-13

    In this study, thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ L ≤ 2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ L = 2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge andmore » a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS 3 higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W ∞[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ L = 0. Independently, we show that such theories violate unitarity for |λ| > 2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.« less

  3. Morphometry Based on Effective and Accurate Correspondences of Localized Patterns (MEACOLP)

    PubMed Central

    Wang, Hu; Ren, Yanshuang; Bai, Lijun; Zhang, Wensheng; Tian, Jie

    2012-01-01

    Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures, making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP) based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze brain images of Alzheimer's disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects from NC confirm that the morphological differences are reliably related to the groups of interest. PMID:22540000

  4. Accessibility of general practitioners and selected specialist physicians by car and by public transport in a rural region of Germany.

    PubMed

    Stentzel, Ulrike; Piegsa, Jens; Fredrich, Daniel; Hoffmann, Wolfgang; van den Berg, Neeltje

    2016-10-19

    The accessibility of medical care facilities in sparsely populated rural regions is relevant especially for elderly people which often represent a large segment of the population in such regions. Elderly people have higher morbidity risks and a higher demand for medical care. Although travelling with private cars is the dominating traffic mode in rural regions, accessibility by public transport is increasingly important especially because of limited mobility of elderly people. The aim of this study was to determine accessibility both by car and public transport to general practitioners (GP) and selected specialist physicians for a whole region and to detect areas with poor to no access in the county Vorpommern-Greifswald, which is a rural and sparsely populated region in the very northeast of Germany. Accessibility of medical care facilities by car was calculated on the basis of a network analysis within a geographic information system (GIS) with routable street data. Accessibility by public transport was calculated using GIS and a network analysis based on the implementation of Dijkstra's algorithm. The travelling time to general practitioners (GP) by car in the study region ranges from 0.1 to 22.9 min. This is a significant difference compared to other physician groups. Traveling times to specialist physicians are 0.4 to 42.9 min. A minority of 80 % of the inhabitants reach the specialist physicians within 20 min. The accessibility of specialist physicians by public transport is poor. The travel time (round trip) to GPs averages 99.3 min, to internists 143.0, to ophthalmologists 129.3 and to urologists 159.9 min. These differences were significant. Assumed was a one hour appointment on a Tuesday at 11 am. 8,973 inhabitants (3.8 %) have no connection to a GP by public transport. 15,455 inhabitants (6.5 %) have no connection to specialist internists. Good accessibility by public transport is not a question of distance but of transport connections. GIS analyses can detect areas with imminent or manifest deficits in the accessibility of health care providers. Accessibility analyses should be established instruments in planning issues.

  5. Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning.

    PubMed

    Zu, Chen; Gao, Yue; Munsell, Brent; Kim, Minjeong; Peng, Ziwen; Cohen, Jessica R; Zhang, Daoqiang; Wu, Guorong

    2018-06-14

    The functional brain network has gained increased attention in the neuroscience community because of its ability to reveal the underlying architecture of human brain. In general, majority work of functional network connectivity is built based on the correlations between discrete-time-series signals that link only two different brain regions. However, these simple region-to-region connectivity models do not capture complex connectivity patterns between three or more brain regions that form a connectivity subnetwork, or subnetwork for short. To overcome this current limitation, a hypergraph learning-based method is proposed to identify subnetwork differences between two different cohorts. To achieve our goal, a hypergraph is constructed, where each vertex represents a subject and also a hyperedge encodes a subnetwork with similar functional connectivity patterns between different subjects. Unlike previous learning-based methods, our approach is designed to jointly optimize the weights for all hyperedges such that the learned representation is in consensus with the distribution of phenotype data, i.e. clinical labels. In order to suppress the spurious subnetwork biomarkers, we further enforce a sparsity constraint on the hyperedge weights, where a larger hyperedge weight indicates the subnetwork with the capability of identifying the disorder condition. We apply our hypergraph learning-based method to identify subnetwork biomarkers in Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). A comprehensive quantitative and qualitative analysis is performed, and the results show that our approach can correctly classify ASD and ADHD subjects from normal controls with 87.65 and 65.08% accuracies, respectively.

  6. A Topological Criterion for Filtering Information in Complex Brain Networks

    PubMed Central

    Latora, Vito; Chavez, Mario

    2017-01-01

    In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way. PMID:28076353

  7. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.

  8. Exploring Vietnamese co-authorship patterns in social sciences with basic network measures of 2008-2017 Scopus data.

    PubMed

    Ho, Tung Manh; Nguyen, Ha Viet; Vuong, Thu-Trang; Dam, Quang-Minh; Pham, Hiep-Hung; Vuong, Quan-Hoang

    2017-01-01

    Background: Collaboration is a common occurrence among Vietnamese scientists; however, insights into Vietnamese scientific collaborations have been scarce. On the other hand, the application of social network analysis in studying science collaboration has gained much attention all over the world. The technique could be employed to explore Vietnam's scientific community. Methods: This paper employs network theory to explore characteristics of a network of 412 Vietnamese social scientists whose papers can be found indexed in the Scopus database. Two basic network measures, density and clustering coefficient, were taken, and the entire network was studied in comparison with two of its largest components. Results: The networks connections are very sparse, with a density of only 0.47%, while the clustering coefficient is very high (58.64%). This suggests an inefficient dissemination of information, knowledge, and expertise in the network. Secondly, the disparity in levels of connection among individuals indicates that the network would easily fall apart if a few highly-connected nodes are removed. Finally, the two largest components of the network were found to differ from the entire networks in terms of measures and were both led by the most productive and well-connected researchers. Conclusions: High clustering and low density seems to be tied to inefficient dissemination of expertise among Vietnamese social scientists, and consequently low scientific output. Also low in robustness, the network shows the potential of an intellectual elite composed of well-connected, productive, and socially significant individuals.

  9. Exploring Vietnamese co-authorship patterns in social sciences with basic network measures of 2008-2017 Scopus data

    PubMed Central

    Ho, Tung Manh; Nguyen, Ha Viet; Vuong, Thu-Trang; Dam, Quang-Minh; Pham, Hiep-Hung; Vuong, Quan-Hoang

    2017-01-01

    Background: Collaboration is a common occurrence among Vietnamese scientists; however, insights into Vietnamese scientific collaborations have been scarce. On the other hand, the application of social network analysis in studying science collaboration has gained much attention all over the world. The technique could be employed to explore Vietnam’s scientific community. Methods: This paper employs network theory to explore characteristics of a network of 412 Vietnamese social scientists whose papers can be found indexed in the Scopus database. Two basic network measures, density and clustering coefficient, were taken, and the entire network was studied in comparison with two of its largest components. Results: The networks connections are very sparse, with a density of only 0.47%, while the clustering coefficient is very high (58.64%). This suggests an inefficient dissemination of information, knowledge, and expertise in the network. Secondly, the disparity in levels of connection among individuals indicates that the network would easily fall apart if a few highly-connected nodes are removed. Finally, the two largest components of the network were found to differ from the entire networks in terms of measures and were both led by the most productive and well-connected researchers. Conclusions: High clustering and low density seems to be tied to inefficient dissemination of expertise among Vietnamese social scientists, and consequently low scientific output. Also low in robustness, the network shows the potential of an intellectual elite composed of well-connected, productive, and socially significant individuals. PMID:28928958

  10. Monitoring and diagnosis of Alzheimer's disease using noninvasive compressive sensing EEG

    NASA Astrophysics Data System (ADS)

    Morabito, F. C.; Labate, D.; Morabito, G.; Palamara, I.; Szu, H.

    2013-05-01

    The majority of elderly with Alzheimer's Disease (AD) receive care at home from caregivers. In contrast to standard tethered clinical settings, a wireless, real-time, body-area smartphone-based remote monitoring of electroencephalogram (EEG) can be extremely advantageous for home care of those patients. Such wearable tools pave the way to personalized medicine, for example giving the opportunity to control the progression of the disease and the effect of drugs. By applying Compressive Sensing (CS) techniques it is in principle possible to overcome the difficulty raised by smartphones spatial-temporal throughput rate bottleneck. Unfortunately, EEG and other physiological signals are often non-sparse. In this paper, it is instead shown that the EEG of AD patients becomes actually more compressible with the progression of the disease. EEG of Mild Cognitive Impaired (MCI) subjects is also showing clear tendency to enhanced compressibility. This feature favor the use of CS techniques and ultimately the use of telemonitoring with wearable sensors.

  11. Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression

    NASA Astrophysics Data System (ADS)

    Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang

    2018-02-01

    Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.

  12. Selection of Polynomial Chaos Bases via Bayesian Model Uncertainty Methods with Applications to Sparse Approximation of PDEs with Stochastic Inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagiannis, Georgios; Lin, Guang

    2014-02-15

    Generalized polynomial chaos (gPC) expansions allow the representation of the solution of a stochastic system as a series of polynomial terms. The number of gPC terms increases dramatically with the dimension of the random input variables. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs if the evaluations of the system are expensive, the evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solution, both in spacial and random domains, by coupling Bayesianmore » model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spacial points via (1) Bayesian model average or (2) medial probability model, and their construction as functions on the spacial domain via spline interpolation. The former accounts the model uncertainty and provides Bayes-optimal predictions; while the latter, additionally, provides a sparse representation of the solution by evaluating the expansion on a subset of dominating gPC bases when represented as a gPC expansion. Moreover, the method quantifies the importance of the gPC bases through inclusion probabilities. We design an MCMC sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed method is suitable for, but not restricted to, problems whose stochastic solution is sparse at the stochastic level with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the good performance of the proposed method and make comparisons with others on 1D, 14D and 40D in random space elliptic stochastic partial differential equations.« less

  13. Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression

    NASA Astrophysics Data System (ADS)

    Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang

    2018-05-01

    Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.

  14. Active learning of cortical connectivity from two-photon imaging data.

    PubMed

    Bertrán, Martín A; Martínez, Natalia L; Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario

    2018-01-01

    Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this "active learning" method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model.

  15. DANoC: An Efficient Algorithm and Hardware Codesign of Deep Neural Networks on Chip.

    PubMed

    Zhou, Xichuan; Li, Shengli; Tang, Fang; Hu, Shengdong; Lin, Zhi; Zhang, Lei

    2017-07-18

    Deep neural networks (NNs) are the state-of-the-art models for understanding the content of images and videos. However, implementing deep NNs in embedded systems is a challenging task, e.g., a typical deep belief network could exhaust gigabytes of memory and result in bandwidth and computational bottlenecks. To address this challenge, this paper presents an algorithm and hardware codesign for efficient deep neural computation. A hardware-oriented deep learning algorithm, named the deep adaptive network, is proposed to explore the sparsity of neural connections. By adaptively removing the majority of neural connections and robustly representing the reserved connections using binary integers, the proposed algorithm could save up to 99.9% memory utility and computational resources without undermining classification accuracy. An efficient sparse-mapping-memory-based hardware architecture is proposed to fully take advantage of the algorithmic optimization. Different from traditional Von Neumann architecture, the deep-adaptive network on chip (DANoC) brings communication and computation in close proximity to avoid power-hungry parameter transfers between on-board memory and on-chip computational units. Experiments over different image classification benchmarks show that the DANoC system achieves competitively high accuracy and efficiency comparing with the state-of-the-art approaches.

  16. Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.

    2013-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.

  17. Active learning of cortical connectivity from two-photon imaging data

    PubMed Central

    Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario

    2018-01-01

    Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this “active learning” method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model. PMID:29718955

  18. Secure Ad Hoc Networking on an Android Platform

    DTIC Science & Technology

    2014-05-01

    Once the device is provisioned, connections can be initiated by tapping two devices together, this uses NFC to bootstrap a Bluetooth connection. Once...4 2.2 Residual Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Device Provisioning 5 3.1...the inclusion of SE Android’s Install-time Mandatory Access Control (MAC) feature. Some knowledge of Android is required to understand the system

  19. Simple modification of Oja rule limits L1-norm of weight vector and leads to sparse connectivity.

    PubMed

    Aparin, Vladimir

    2012-03-01

    This letter describes a simple modification of the Oja learning rule, which asymptotically constrains the L1-norm of an input weight vector instead of the L2-norm as in the original rule. This constraining is local as opposed to commonly used instant normalizations, which require the knowledge of all input weights of a neuron to update each one of them individually. The proposed rule converges to a weight vector that is sparser (has more zero weights) than the vector learned by the original Oja rule with or without the zero bound, which could explain the developmental synaptic pruning.

  20. Empirical study of the role of the topology in spreading on communication networks

    NASA Astrophysics Data System (ADS)

    Medvedev, Alexey; Kertesz, Janos

    2017-03-01

    Topological aspects, like community structure, and temporal activity patterns, like burstiness, have been shown to severely influence the speed of spreading in temporal networks. We study the influence of the topology on the susceptible-infected (SI) spreading on time stamped communication networks, as obtained from a dataset of mobile phone records. We consider city level networks with intra- and inter-city connections. The networks using only intra-city links are usually sparse, where the spreading depends mainly on the average degree. The inter-city links serve as bridges in spreading, speeding up considerably the process. We demonstrate the effect also on model simulations.

  1. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice

    PubMed Central

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M.; Heerschap, Arend

    2016-01-01

    APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10–12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16–18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging. PMID:27034849

  2. [Population density, age distribution and urbanisation as factors influencing the frequency of home visits--an analysis for Mecklenburg-West Pomerania].

    PubMed

    Heymann, R; Weitmann, K; Weiss, S; Thierfelder, D; Flessa, S; Hoffmann, W

    2009-07-01

    This study examines and compares the frequency of home visits by general practitioners in regions with a lower population density and regions with a higher population density. The discussion centres on the hypothesis whether the number of home visits in rural and remote areas with a low population density is, in fact, higher than in urbanised areas with a higher population density. The average age of the population has been considered in both cases. The communities of Mecklenburg West-Pomerania were aggregated into postal code regions. The analysis is based on these postal code regions. The average frequency of home visits per 100 inhabitants/km2 has been calculated via a bivariate, linear regression model with the population density and the average age for the postal code region as independent variables. The results are based on billing data of the year 2006 as provided by the Association of Statutory Health Insurance Physicians of Mecklenburg-Western Pomerania. In a second step a variable which clustered the postal codes of urbanised areas was added to a multivariate model. The hypothesis of a negative correlation between the frequency of home visits and the population density of the areas examined cannot be confirmed for Mecklenburg-Western Pomerania. Following the dichotomisation of the postal code regions into sparsely and densely populated areas, only the very sparsely populated postal code regions (less than 100 inhabitants/km2) show a tendency towards a higher frequency of home visits. Overall, the frequency of home visits in sparsely populated postal code regions is 28.9% higher than in the densely populated postal code regions (more than 100 inhabitants/km2), although the number of general practitioners is approximately the same in both groups. In part this association seems to be confirmed by a positive correlation between the average age in the individual postal code regions and the number of home visits carried out in the area. As calculated on the basis of the data at hand, only the very sparsely populated areas with a still gradually decreasing population show a tendency towards a higher frequency of home visits. According to the data of 2006, the number of home visits remains high in sparsely populated areas. It may increase in the near future as the number of general practitioners in these areas will gradually decrease while the number of immobile and older inhabitants will increase.

  3. From Mimicry to Language: A Neuroanatomically Based Evolutionary Model of the Emergence of Vocal Language

    PubMed Central

    Poliva, Oren

    2016-01-01

    The auditory cortex communicates with the frontal lobe via the middle temporal gyrus (auditory ventral stream; AVS) or the inferior parietal lobule (auditory dorsal stream; ADS). Whereas the AVS is ascribed only with sound recognition, the ADS is ascribed with sound localization, voice detection, prosodic perception/production, lip-speech integration, phoneme discrimination, articulation, repetition, phonological long-term memory and working memory. Previously, I interpreted the juxtaposition of sound localization, voice detection, audio-visual integration and prosodic analysis, as evidence that the behavioral precursor to human speech is the exchange of contact calls in non-human primates. Herein, I interpret the remaining ADS functions as evidence of additional stages in language evolution. According to this model, the role of the ADS in vocal control enabled early Homo (Hominans) to name objects using monosyllabic calls, and allowed children to learn their parents' calls by imitating their lip movements. Initially, the calls were forgotten quickly but gradually were remembered for longer periods. Once the representations of the calls became permanent, mimicry was limited to infancy, and older individuals encoded in the ADS a lexicon for the names of objects (phonological lexicon). Consequently, sound recognition in the AVS was sufficient for activating the phonological representations in the ADS and mimicry became independent of lip-reading. Later, by developing inhibitory connections between acoustic-syllabic representations in the AVS and phonological representations of subsequent syllables in the ADS, Hominans became capable of concatenating the monosyllabic calls for repeating polysyllabic words (i.e., developed working memory). Finally, due to strengthening of connections between phonological representations in the ADS, Hominans became capable of encoding several syllables as a single representation (chunking). Consequently, Hominans began vocalizing and mimicking/rehearsing lists of words (sentences). PMID:27445676

  4. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.

    PubMed

    Tanaka, Takuma; Aoyagi, Toshio; Kaneko, Takeshi

    2012-10-01

    We propose a new principle for replicating receptive field properties of neurons in the primary visual cortex. We derive a learning rule for a feedforward network, which maintains a low firing rate for the output neurons (resulting in temporal sparseness) and allows only a small subset of the neurons in the network to fire at any given time (resulting in population sparseness). Our learning rule also sets the firing rates of the output neurons at each time step to near-maximum or near-minimum levels, resulting in neuronal reliability. The learning rule is simple enough to be written in spatially and temporally local forms. After the learning stage is performed using input image patches of natural scenes, output neurons in the model network are found to exhibit simple-cell-like receptive field properties. When the output of these simple-cell-like neurons are input to another model layer using the same learning rule, the second-layer output neurons after learning become less sensitive to the phase of gratings than the simple-cell-like input neurons. In particular, some of the second-layer output neurons become completely phase invariant, owing to the convergence of the connections from first-layer neurons with similar orientation selectivity to second-layer neurons in the model network. We examine the parameter dependencies of the receptive field properties of the model neurons after learning and discuss their biological implications. We also show that the localized learning rule is consistent with experimental results concerning neuronal plasticity and can replicate the receptive fields of simple and complex cells.

  5. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi

    2016-06-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  6. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity

    PubMed Central

    Hussain, Shaista; Basu, Arindam

    2016-01-01

    The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best “k” out of “d” inputs to make connections on every dendritic branch (k < < d). Because learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other spike classifiers. We show that our system can achieve classification accuracy within 1 − 2% of other reported spike-based classifiers while using much less synaptic resources (only 7%) compared to that used by other methods. Further, an ensemble classifier created with adaptively learned sizes can attain accuracy of 96.4% which is at par with the best reported performance of spike-based classifiers. Moreover, the proposed method achieves this by using about 20% of the synapses used by other spike algorithms. We also present results of applying our algorithm to classify the MNIST-DVS dataset collected from a real spike-based image sensor and show results comparable to the best reported ones (88.1% accuracy). For VLSI implementations, we show that the reduced synaptic memory can save upto 4X area compared to conventional crossbar topologies. Finally, we also present a biologically realistic spike-based version for calculating the correlations required by the structural learning rule and demonstrate the correspondence between the rate-based and spike-based methods of learning. PMID:27065782

  7. Development of brain-wide connectivity architecture in awake rats.

    PubMed

    Ma, Zilu; Ma, Yuncong; Zhang, Nanyin

    2018-08-01

    Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Functional network inference of the suprachiasmatic nucleus

    PubMed Central

    Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.

    2016-01-01

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure. PMID:27044085

  9. Towards cortex sized artificial neural systems.

    PubMed

    Johansson, Christopher; Lansner, Anders

    2007-01-01

    We propose, implement, and discuss an abstract model of the mammalian neocortex. This model is instantiated with a sparse recurrently connected neural network that has spiking leaky integrator units and continuous Hebbian learning. First we study the structure, modularization, and size of neocortex, and then we describe a generic computational model of the cortical circuitry. A characterizing feature of the model is that it is based on the modularization of neocortex into hypercolumns and minicolumns. Both a floating- and fixed-point arithmetic implementation of the model are presented along with simulation results. We conclude that an implementation on a cluster computer is not communication but computation bounded. A mouse and rat cortex sized version of our model executes in 44% and 23% of real-time respectively. Further, an instance of the model with 1.6 x 10(6) units and 2 x 10(11) connections performed noise reduction and pattern completion. These implementations represent the current frontier of large-scale abstract neural network simulations in terms of network size and running speed.

  10. Reconstruction and Simulation of Neocortical Microcircuitry.

    PubMed

    Markram, Henry; Muller, Eilif; Ramaswamy, Srikanth; Reimann, Michael W; Abdellah, Marwan; Sanchez, Carlos Aguado; Ailamaki, Anastasia; Alonso-Nanclares, Lidia; Antille, Nicolas; Arsever, Selim; Kahou, Guy Antoine Atenekeng; Berger, Thomas K; Bilgili, Ahmet; Buncic, Nenad; Chalimourda, Athanassia; Chindemi, Giuseppe; Courcol, Jean-Denis; Delalondre, Fabien; Delattre, Vincent; Druckmann, Shaul; Dumusc, Raphael; Dynes, James; Eilemann, Stefan; Gal, Eyal; Gevaert, Michael Emiel; Ghobril, Jean-Pierre; Gidon, Albert; Graham, Joe W; Gupta, Anirudh; Haenel, Valentin; Hay, Etay; Heinis, Thomas; Hernando, Juan B; Hines, Michael; Kanari, Lida; Keller, Daniel; Kenyon, John; Khazen, Georges; Kim, Yihwa; King, James G; Kisvarday, Zoltan; Kumbhar, Pramod; Lasserre, Sébastien; Le Bé, Jean-Vincent; Magalhães, Bruno R C; Merchán-Pérez, Angel; Meystre, Julie; Morrice, Benjamin Roy; Muller, Jeffrey; Muñoz-Céspedes, Alberto; Muralidhar, Shruti; Muthurasa, Keerthan; Nachbaur, Daniel; Newton, Taylor H; Nolte, Max; Ovcharenko, Aleksandr; Palacios, Juan; Pastor, Luis; Perin, Rodrigo; Ranjan, Rajnish; Riachi, Imad; Rodríguez, José-Rodrigo; Riquelme, Juan Luis; Rössert, Christian; Sfyrakis, Konstantinos; Shi, Ying; Shillcock, Julian C; Silberberg, Gilad; Silva, Ricardo; Tauheed, Farhan; Telefont, Martin; Toledo-Rodriguez, Maria; Tränkler, Thomas; Van Geit, Werner; Díaz, Jafet Villafranca; Walker, Richard; Wang, Yun; Zaninetta, Stefano M; DeFelipe, Javier; Hill, Sean L; Segev, Idan; Schürmann, Felix

    2015-10-08

    We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Noise-induced polarization switching in complex networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Díaz-Guilera, Albert; Serrano, M. Ángeles

    2017-04-01

    The combination of bistability and noise is ubiquitous in complex systems, from biology to social interactions, and has important implications for their functioning and resilience. Here we use a simple three-state dynamical process, in which nodes go from one pole to another through an intermediate state, to show that noise can induce polarization switching in bistable systems if dynamical correlations are significant. In large, fully connected networks, where dynamical correlations can be neglected, increasing noise yields a collapse of bistability to an unpolarized configuration where the three possible states of the nodes are equally likely. In contrast, increased noise induces abrupt and irreversible polarization switching in sparsely connected networks. In multiplexes, where each layer can have a different polarization tendency, one layer is dominant and progressively imposes its polarization state on the other, offsetting or promoting the ability of noise to switch its polarization. Overall, we show that the interplay of noise and dynamical correlations can yield discontinuous transitions between extremes, which cannot be explained by a simple mean-field description.

  12. OT2_wlanger_7: Dynamics of Giant Magnetic Gas Loops and Their Connection to the CMZ in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Langer, W.

    2011-09-01

    Understanding the mass transfer and dynamics among the Galactic Center, the disk, and the halo of the Milky Way is fundamental to the study of the evolution of galaxies and star formation. Recently several giant loops of molecular gas (GML) have been found in the Galactic Center from CO maps, which are likely the result of the magnetic Parker instability. There is new evidence of a possible connection between these loops and the Central Molecular Zone as shown in a sparse [CII] sampling made by the Herschel Key Project GOT C+. Here we propose to map various features of the GMLs and the interface region in [CII] with HIFI. We will also map the foot points of the loop, which are thought to be highly shocked regions, in the ortho 110-101 line of water, which is a known shock tracer. With this data we will characterize different ISM components and their flow among these Galactic Center features.

  13. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Mechanism for propagation of rate signals through a 10-layer feedforward neuronal network

    NASA Astrophysics Data System (ADS)

    Li, Jie; Yu, Wan-Qing; Xu, Ding; Liu, Feng; Wang, Wei

    2009-12-01

    Using numerical simulations, we explore the mechanism for propagation of rate signals through a 10-layer feedforward network composed of Hodgkin-Huxley (HH) neurons with sparse connectivity. When white noise is afferent to the input layer, neuronal firing becomes progressively more synchronous in successive layers and synchrony is well developed in deeper layers owing to the feedforward connections between neighboring layers. The synchrony ensures the successful propagation of rate signals through the network when the synaptic conductance is weak. As the synaptic time constant τsyn varies, coherence resonance is observed in the network activity due to the intrinsic property of HH neurons. This makes the output firing rate single-peaked as a function of τsyn, suggesting that the signal propagation can be modulated by the synaptic time constant. These results are consistent with experimental results and advance our understanding of how information is processed in feedforward networks.

  14. Connecting the Astrophysics Data System and Planetary Data System

    NASA Astrophysics Data System (ADS)

    Eichhorn, G.; Kurtz, M. J.; Accomazzi, A.; Grant, C. S.; Murray, S. S.; Hughes, J. S.; Mortellaro, J.; McMahon, S. K.

    1997-07-01

    The Astrophysics Data System (ADS) provides access to astronomical literature through a sophisticated search engine. Over 10,000 users retrieve almost 5 million references and read more than 25,000 full text articles per month. ADS cooperates closely with all the main astronomical journals and data centers to create and maintain a state-of-the-art digital library. The Planetary Data System (PDS) publishes high quality peer reviewed planetary science data products, defines planetary archiving standards to make products usable, and provides science expertise to users in data product preparation and use. Data products are available to users on CD media, with more than 600 CD-ROM titles in the inventory from past missions as well as the recent releases from active planetary missions and observations. The ADS and PDS serve overlapping communities and offer complementary functions. The ADS and PDS are both part of the NASA Space Science Data System, sponsored by the Office of Space Science, which curates science data products for researchers and the general public. We are in the process of connecting these two data systems. As a first step we have included entries for PDS data sets in the ADS abstract service. This allows ADS users to find PDS data sets by searching for their descriptions through the ADS search system. The information returned from the ADS links directly to the data set's entry in the PDS data set catalog. After linking to this catalog, the user will have access to more comprehensive data set information, related ancillary information, and on-line data products. The PDS on the other hand will use the ADS to provide access to bibliographic information. This includes links from PDS data set catalog bibliographic citations to ADS abstracts and on-line articles. The cross-linking between these data systems allows each system to concentrate on its main objectives and utilize the other system to provide more and improved services to the users of both systems.

  15. Support for an hypothesis linking Alzheimer`s disease and Down syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, L.N.; Benjamin, M.B.; Dressler, D.

    1994-09-01

    A connection between Alzheimer`s disease (AD) and Down syndrome (trisomy 21) is indicated by the fact that Down syndrome individuals develop AD neuropathology by the third or fourth decade of life. One explanation for the connection between AD and Down syndrome would be that the overexpression of a gene or genes on chromosome 21 results in Alzheimer`s disease, the most likely candidate being the amyloid precursor protein (APP) gene. However, mutations in the APP gene have been found to be associated with only a very small percentage of familial AD cases. An alternative cause of some Alzheimer`s disease cases maymore » be sporadic trisomy of chromosome 21, resulting from mutations or toxins that cause chromosome nondisjunction. Several predictions can be made based on this hypothesis. One prediction is that there should be more trisomy 21 in cells from AD individuals than from unaffected controls. Using quantitative fluorescence in situ hybridization to compare the number of trisomy chromosome 21 cells in cultured fibroblasts from AD and unaffected individuals, we have shown that there are a significantly larger number of trisomy 21 cells from AD individuals. Another prediction is that a defect in the mitotic spindle apparatus could be the underlying cause of the aneuploidy. Cultured lymphoblasts from AD and unaffected individuals were briefly exposed to the microtubule-disrupting agent colchicine. As assayed by the subsequent appearance of metaphase chromosomes showing centromere separation, cells from AD patients were significantly more sensitive to colchicine treatment compared to cells from unaffected individuals, supporting the prediction of an altered spindle apparatus. Finally, we would predict that both types of patients should share some physical symptoms. We have also found that AD, like Down`s patients, are hypersensitive to the effect of the cholinergic antagonist, tropicamide, on pupil dilation, which may serve as a diagnostic test for Alzheimer`s disease.« less

  16. Early classification of Alzheimer's disease using hippocampal texture from structural MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong

    2017-03-01

    Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.

  17. On supersymmetric AdS6 solutions in 10 and 11 dimensions

    NASA Astrophysics Data System (ADS)

    Gutowski, J.; Papadopoulos, G.

    2017-12-01

    We prove a non-existence theorem for smooth, supersymmetric, warped AdS 6 solutions with connected, compact without boundary internal space in D = 11 and (massive) IIA supergravities. In IIB supergravity we show that if such AdS 6 solutions exist, then the NSNS and RR 3-form fluxes must be linearly independent and certain spinor bilinears must be appropriately restricted. Moreover we demonstrate that the internal space admits an so(3) action which leaves all the fields invariant and for smooth solutions the principal orbits must have co-dimension two. We also describe the topology and geometry of internal spaces that admit such a so(3) action and show that there are no solutions for which the internal space has topology F × S 2, where F is an oriented surface.

  18. Resting-state global functional connectivity as a biomarker of cognitive reserve in mild cognitive impairment.

    PubMed

    Franzmeier, N; Caballero, M Á Araque; Taylor, A N W; Simon-Vermot, L; Buerger, K; Ertl-Wagner, B; Mueller, C; Catak, C; Janowitz, D; Baykara, E; Gesierich, B; Duering, M; Ewers, M

    2017-04-01

    Cognitive reserve (CR) shows protective effects in Alzheimer's disease (AD) and reduces the risk of dementia. Despite the clinical significance of CR, a clinically useful diagnostic biomarker of brain changes underlying CR in AD is not available yet. Our aim was to develop a fully-automated approach applied to fMRI to produce a biomarker associated with CR in subjects at increased risk of AD. We computed resting-state global functional connectivity (GFC), i.e. the average connectivity strength, for each voxel within the cognitive control network, which may sustain CR due to its central role in higher cognitive function. In a training sample including 43 mild cognitive impairment (MCI) subjects and 24 healthy controls (HC), we found that MCI subjects with high CR (> median of years of education, CR+) showed increased frequency of high GFC values compared to MCI-CR- and HC. A summary index capturing such a surplus frequency of high GFC was computed (called GFC reserve (GFC-R) index). GFC-R discriminated MCI-CR+ vs. MCI-CR-, with the area under the ROC = 0.84. Cross-validation in an independently recruited test sample of 23 MCI subjects showed that higher levels of the GFC-R index predicted higher years of education and an alternative questionnaire-based proxy of CR, controlled for memory performance, gray matter of the cognitive control network, white matter hyperintensities, age, and gender. In conclusion, the GFC-R index that captures GFC changes within the cognitive control network provides a biomarker candidate of functional brain changes of CR in patients at increased risk of AD.

  19. Sparse and Specific Coding during Information Transmission between Co-cultured Dentate Gyrus and CA3 Hippocampal Networks

    PubMed Central

    Poli, Daniele; Thiagarajan, Srikanth; DeMarse, Thomas B.; Wheeler, Bruce C.; Brewer, Gregory J.

    2017-01-01

    To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 μm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the trials, significantly higher than the reverse, i.e., how well-recording in DG could predict the stimulation site in CA3. In conclusion, our co-cultured model for the in vivo DG-CA3 hippocampal network showed sparse and specific responses in CA3, selectively evoked by each stimulation site in DG. PMID:28321182

  20. Destruction of white matter integrity in patients with mild cognitive impairment and Alzheimer disease.

    PubMed

    Sun, Xiaoyan; Salat, David; Upchurch, Kristen; Deason, Rebecca; Kowall, Neil; Budson, Andrew

    2014-10-01

    Accumulating evidence shows that gradual loss of white matter integrity plays an important role in the development of Alzheimer disease (AD). The aim of this research was to study the microstructural integrity of white matter in AD in vivo. Global fractional anisotropy, global axial diffusivity (AxD), and global radial diffusivity (RD) were analyzed in subjects with normal controls (NC), mild cognitive impairment (MCI), and AD using Alzheimer's Disease Neuroimaging Initiative data (total N = 210). We further compared specific white matter tracts among the 3 groups. Compared with the NC group, the MCI group had significantly increased global AxD and global RD. Compared with the NC and MCI groups, the AD group had significantly decreased global fractional anisotropy, increased global AxD, and increased global RD. With regard to specific white matter tracts, in the MCI group, we found increased AxD and increased RD in the external capsule, part of the lateral cholinergic pathway, in addition to the tracts connecting the limbic regions, predominantly in the left hemisphere. In the AD group, white matter abnormalities were widespread, including in the external capsule (cholinergic pathway) and limbic region tracts as well as tracts connecting anterior to posterior regions bilaterally. The radiographic manifestation of damaged white matter microstructural integrity in the cholinergic pathway in MCI patients may provide a rational basis for the use of cholinesterase inhibitor drugs in the MCI stage of AD.

  1. Functional network integrity presages cognitive decline in preclinical Alzheimer disease.

    PubMed

    Buckley, Rachel F; Schultz, Aaron P; Hedden, Trey; Papp, Kathryn V; Hanseeuw, Bernard J; Marshall, Gad; Sepulcre, Jorge; Smith, Emily E; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Chhatwal, Jasmeer P

    2017-07-04

    To examine the utility of resting-state functional connectivity MRI (rs-fcMRI) measurements of network integrity as a predictor of future cognitive decline in preclinical Alzheimer disease (AD). A total of 237 clinically normal older adults (aged 63-90 years, Clinical Dementia Rating 0) underwent baseline β-amyloid (Aβ) imaging with Pittsburgh compound B PET and structural and rs-fcMRI. We identified 7 networks for analysis, including 4 cognitive networks (default, salience, dorsal attention, and frontoparietal control) and 3 noncognitive networks (primary visual, extrastriate visual, motor). Using linear and curvilinear mixed models, we used baseline connectivity in these networks to predict longitudinal changes in preclinical Alzheimer cognitive composite (PACC) performance, both alone and interacting with Aβ burden. Median neuropsychological follow-up was 3 years. Baseline connectivity in the default, salience, and control networks predicted longitudinal PACC decline, unlike connectivity in the dorsal attention and all noncognitive networks. Default, salience, and control network connectivity was also synergistic with Aβ burden in predicting decline, with combined higher Aβ and lower connectivity predicting the steepest curvilinear decline in PACC performance. In clinically normal older adults, lower functional connectivity predicted more rapid decline in PACC scores over time, particularly when coupled with increased Aβ burden. Among examined networks, default, salience, and control networks were the strongest predictors of rate of change in PACC scores, with the inflection point of greatest decline beyond the fourth year of follow-up. These results suggest that rs-fcMRI may be a useful predictor of early, AD-related cognitive decline in clinical research settings. © 2017 American Academy of Neurology.

  2. Influence of Time-Series Normalization, Number of Nodes, Connectivity and Graph Measure Selection on Seizure-Onset Zone Localization from Intracranial EEG.

    PubMed

    van Mierlo, Pieter; Lie, Octavian; Staljanssens, Willeke; Coito, Ana; Vulliémoz, Serge

    2018-04-26

    We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.

  3. Thermofield duality for higher spin Rindler Gravity

    DOE PAGES

    Jevicki, Antal; Suzuki, Kenta

    2016-02-15

    In this paper, we study the Thermo-field realization of the duality between the Rindler-AdS higher spin theory and O(N) vector theory. The CFT represents a decoupled pair of free O(N) vector field theories. It is shown how this decoupled domain CFT is capable of generating the connected Rindler-AdS background with the full set of Higher Spin fields.

  4. Functional network connectivity analysis based on partial correlation in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Guan, Xiaoting; Zhang, Yumei; Li, Jingjing; Chen, Hongyan; Chen, Kewei; Fleisher, Adam; Yao, Li; Wu, Xia

    2009-02-01

    Functional network connectivity (FNC) measures the temporal dependency among the time courses of functional networks. However, the marginal correlation between two networks used in the classic FNC analysis approach doesn't separate the FNC from the direct/indirect effects of other networks. In this study, we proposed an alternative approach based on partial correlation to evaluate the FNC, since partial correlation based FNC can reveal the direct interaction between a pair of networks, removing dependencies or influences from others. Previous studies have demonstrated less task-specific activation and less rest-state activity in Alzheimer's disease (AD). We applied present approach to contrast FNC differences of resting state network (RSN) between AD and normal controls (NC). The fMRI data under resting condition were collected from 15 AD and 16 NC. FNC was calculated for each pair of six RSNs identified using Group ICA, thus resulting in 15 (2 out of 6) pairs for each subject. Partial correlation based FNC analysis indicated 6 pairs significant differences between groups, while marginal correlation only revealed 2 pairs (involved in the partial correlation results). Additionally, patients showed lower correlation than controls among most of the FNC differences. Our results provide new evidences for the disconnection hypothesis in AD.

  5. Valley-fill alluviation during the Little Ice Age (ca. A.D. 1400-1880), Paria River basin and southern Colorado Plateau, United States

    USGS Publications Warehouse

    Hereford, R.

    2002-01-01

    Valley-fill alluvium deposited from ca. A.D. 1400 to 1880 is widespread in tributaries of the Paria River and is largely coincident with the Little Ice Age epoch of global climate variability. Previous work showed that alluvium of this age is a mappable stratigraphic unit in many of the larger alluvial valleys of the southern Colorado Plateau. The alluvium is bounded by two disconformities resulting from prehistoric and historic arroyo cutting at ca. A.D. 1200-1400 and 1860-1910, respectively. The fill forms a terrace in the axial valleys of major through-flowing streams. This terrace and underlying deposits are continuous and interfinger with sediment in numerous small tributary valleys that head at the base of hillslopes of sparsely vegetated, weakly consolidated bedrock, suggesting that eroded bedrock was an important source of alluvium along with in-channel and other sources. Paleoclimatic and high-resolution paleoflood studies indicate that valley-fill alluviation occured during a long-term decrease in the frequency of large, destructive floods. Aggradation of the valleys ended about A.D. 1880, if not two decades earlier, with the beginning of historic arroyo cutting. This shift from deposition to valley entrenchment near the close of the Little Ice Age generally coincided with the beginning of an episode of the largest floods in the preceding 400-500 yr, which was probably caused by an increased recurrence and intensity of flood-producing El Nin??o events beginning at ca. A.D. 1870.

  6. Supporting Dynamic Ad hoc Collaboration Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Deborah A.; Berket, Karlo

    2003-07-14

    Modern HENP experiments such as CMS and Atlas involve as many as 2000 collaborators around the world. Collaborations this large will be unable to meet often enough to support working closely together. Many of the tools currently available for collaboration focus on heavy-weight applications such as videoconferencing tools. While these are important, there is a more basic need for tools that support connecting physicists to work together on an ad hoc or continuous basis. Tools that support the day-to-day connectivity and underlying needs of a group of collaborators are important for providing light-weight, non-intrusive, and flexible ways to work collaboratively.more » Some example tools include messaging, file-sharing, and shared plot viewers. An important component of the environment is a scalable underlying communication framework. In this paper we will describe our current progress on building a dynamic and ad hoc collaboration environment and our vision for its evolution into a HENP collaboration environment.« less

  7. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks

    PubMed Central

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627

  8. Three-Channeled Aortic Dissection in a Patient without Marfan Syndrome

    PubMed Central

    Arita, Yoshie Inoue; Yamamoto, Takeshi; Hosokawa, Yusuke; Fujii, Masahiro; Nitta, Takashi; Shimizu, Wataru

    2017-01-01

    A 64-year-old man was admitted for evaluation of back pain. He did not have a Marfan syndrome (MFS)-like appearance, and had a history of a type B aortic dissection and total arch replacement. A connective tissue disorder had been suspected because of the histologic findings of the resected aortic wall. On admission, a computed tomography (CT) scan demonstrated a three-channeled aortic dissection (3ch-AD) measuring 63 mm in diameter. We planned to perform elective surgery during his hospitalization. On the fourth hospital day, he complained of severe back pain, and enhanced CT scan revealed an aortic rupture. The patients with 3ch-AD often have MFS. However, even if they do not have an MFS-like appearance, clinicians should consider fragility of the aortic wall in patients with 3ch-AD. If the aortic diameter is enlarged, early surgery is recommended. In particular, if a connective tissue disorder is obvious or suspected, emergent surgery is warranted. PMID:29187676

  9. On Trust Evaluation in Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Dang Quan; Lamont, Louise; Mason, Peter C.

    Trust has been considered as a social relationship between two individuals in human society. But, as computer science and networking have succeeded in using computers to automate many tasks, the concept of trust can be generalized to cover the reliability and relationships of non-human interaction, such as, for example, information gathering and data routing. This paper investigates the evaluation of trust in the context of ad hoc networks. Nodes evaluate each other’s behaviour based on observables. A node then decides whether to trust another node to have certain innate abilities. We show how accurate such an evaluation could be. We also provide the minimum number of observations required to obtain an accurate evaluation, a result that indicates that observation-based trust in ad hoc networks will remain a challenging problem. The impact of making networking decisions using trust evaluation on the network connectivity is also examined. In this manner, quantitative decisions can be made concerning trust-based routing with the knowledge of the potential impact on connectivity.

  10. Systemic klotho is associated with KLOTHO variation and predicts intrinsic cortical connectivity in healthy human aging.

    PubMed

    Yokoyama, Jennifer S; Marx, Gabe; Brown, Jesse A; Bonham, Luke W; Wang, Dan; Coppola, Giovanni; Seeley, William W; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H; Dubal, Dena B

    2017-04-01

    Cognitive decline is a major biomedical challenge as the global population ages. Elevated levels of the longevity factor klotho suppress aging, enhance cognition, and promote synaptic plasticity and neural resilience against aging and Alzheimer's disease (AD)-related pathogenic proteins. Here, we examined the relationship between human genetic variants of KLOTHO and systemic klotho levels - and assessed neuroanatomic correlates of serum klotho in a cohort of healthy older adults. Serum klotho levels were increased with KL-VS heterozygosity, as anticipated. We report, for the first time, that serum klotho levels were paradoxically decreased with KL-VS homozygosity. Further, we found that higher serum klotho levels were associated with measures of greater intrinsic connectivity in key functional networks of the brain vulnerable to aging and AD such as the fronto-parietal and default mode networks. Our findings suggest that elevated klotho promotes a resilient brain, possibly through increased network connectivity of critical brain regions.

  11. Inter-Vehicular Ad Hoc Networks: From the Ground Truth to Algorithm Design and Testbed Architecture

    ERIC Educational Resources Information Center

    Giordano, Eugenio

    2011-01-01

    Many of the devices we interact with on a daily basis are currently equipped with wireless connectivity. Soon this will be extended to the vehicles we drive/ride every day. Wirelessly connected vehicles will form a new kind of network that will enable a wide set of innovative applications ranging from enhanced safety to entertainment. To…

  12. Aberrant functional connectivity in Papez circuit correlates with memory performance in cognitively intact middle-aged APOE4 carriers.

    PubMed

    Li, Wenjun; Antuono, Piero G; Xie, Chunming; Chen, Gang; Jones, Jennifer L; Ward, B Douglas; Singh, Suraj P; Franczak, Malgorzata B; Goveas, Joseph S; Li, Shi-Jiang

    2014-08-01

    The main objective of this study is to detect the early changes in resting-state Papez circuit functional connectivity using the hippocampus as the seed, and to determine the associations between altered functional connectivity (FC) and the episodic memory performance in cognitively intact middle-aged apolipoprotein E4 (APOE4) carriers who are at risk of Alzheimer's disease (AD). Forty-six cognitively intact, middle-aged participants, including 20 APOE4 carriers and 26 age-, sex-, and education-matched noncarriers were studied. The resting-state FC of the hippocampus (HFC) was compared between APOE4 carriers and noncarriers. APOE4 carriers showed significantly decreased FC in brain areas that involve learning and memory functions, including the frontal, cingulate, thalamus and basal ganglia regions. Multiple linear regression analysis showed significant correlations between HFC and the episodic memory performance. Conjunction analysis between neural correlates of memory and altered HFC showed the overlapping regions, especially the subcortical regions such as thalamus, caudate nucleus, and cingulate cortices involved in the Papez circuit. Thus, changes in connectivity in the Papez circuit may be used as an early risk detection for AD. Copyright © 2014. Published by Elsevier Ltd.

  13. Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions

    NASA Astrophysics Data System (ADS)

    Günther, U.; Moniz, P.; Zhuk, A.

    2002-08-01

    We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges, the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative. As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection between the D-dimensional and the four-dimensional fundamental mass scales sets a restriction on the parameters of the considered nonlinear models.

  14. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  15. Storage of sparse files using parallel log-structured file system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    A sparse file is stored without holes by storing a data portion of the sparse file using a parallel log-structured file system; and generating an index entry for the data portion, the index entry comprising a logical offset, physical offset and length of the data portion. The holes can be restored to the sparse file upon a reading of the sparse file. The data portion can be stored at a logical end of the sparse file. Additional storage efficiency can optionally be achieved by (i) detecting a write pattern for a plurality of the data portions and generating a singlemore » patterned index entry for the plurality of the patterned data portions; and/or (ii) storing the patterned index entries for a plurality of the sparse files in a single directory, wherein each entry in the single directory comprises an identifier of a corresponding sparse file.« less

  16. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    PubMed

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals. Copyright © 2015 the authors 0270-6474/15/3516259-13$15.00/0.

  17. Vitamin D and Atopic Dermatitis in Childhood

    PubMed Central

    Vestita, Michelangelo; Filoni, Angela; Congedo, Maurizio; Foti, Caterina

    2015-01-01

    Vitamin D features immunomodulatory effects on both the innate and adaptive immune systems, which may explain the growing evidence connecting vitamin D to allergic diseases. A wealth of studies describing a beneficial effect of vitamin D on atopic dermatitis (AD) prevalence and severity are known. However, observations linking high vitamin D levels to an increased risk of developing AD have also been published, effectively creating a controversy. In this paper, we review the existing literature on the association between AD and vitamin D levels, focusing on childhood. As of today, the role of vitamin D in AD is far from clear; additional studies are particularly needed in order to confirm the promising therapeutic role of vitamin D supplementation in childhood AD. PMID:25973433

  18. Learning Sparse Feature Representations using Probabilistic Quadtrees and Deep Belief Nets

    DTIC Science & Technology

    2015-04-24

    Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Learning sparse feature representations is a useful instru- ment for solving an...novel framework for the classifi cation of handwritten digits that learns sparse representations using probabilistic quadtrees and Deep Belief Nets... Learning Sparse Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Report Title Learning sparse feature representations is a useful

  19. Boundary stress tensor and asymptotically AdS3 non-Einstein spaces at the chiral point

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Goya, Andrés; Leston, Mauricio

    2011-09-01

    Chiral gravity admits asymptotically AdS3 solutions that are not locally equivalent to AdS3; meaning that solutions do exist which, while obeying the strong boundary conditions usually imposed in general relativity, happen not to be Einstein spaces. In topologically massive gravity (TMG), the existence of non-Einstein solutions is particularly connected to the question about the role played by complex saddle points in the Euclidean path integral. Consequently, studying (the existence of) nonlocally AdS3 solutions to chiral gravity is relevant to understanding the quantum theory. Here, we discuss a special family of nonlocally AdS3 solutions to chiral gravity. In particular, we show that such solutions persist when one deforms the theory by adding the higher-curvature terms of the so-called new massive gravity. Moreover, the addition of higher-curvature terms to the gravity action introduces new nonlocally AdS3 solutions that have no analogues in TMG. Both stationary and time-dependent, axially symmetric solutions that asymptote AdS3 space without being locally equivalent to it appear. Defining the boundary stress tensor for the full theory, we show that these non-Einstein geometries have associated vanishing conserved charges.

  20. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  1. Static electricity: A literature review

    NASA Astrophysics Data System (ADS)

    Crow, Rita M.

    1991-11-01

    The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.

  2. Open string fluctuations in AdS space with and without torsion

    NASA Astrophysics Data System (ADS)

    Larsen, A. L.; Lomholt, M. A.

    2003-09-01

    The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in anti de Sitter space with and without torsion are investigated in detail. By carefully analyzing the tangential fluctuations at the boundary, we show explicitly that the physical fluctuations (which at the boundary are combinations of normal and tangential fluctuations) are finite, even though the world-sheet is singular there. The divergent 2-curvature thus seems less dangerous than expected in these cases. The general formalism can be straightforwardly used also to study the (bosonic part of the) fluctuations around the closed strings, recently considered in connection with the AdS/conformal field theory duality, on AdS5×S5 and AdS3×S3×T4.

  3. A Computational Network Biology Approach to Uncover Novel Genes Related to Alzheimer's Disease.

    PubMed

    Zanzoni, Andreas

    2016-01-01

    Recent advances in the fields of genetics and genomics have enabled the identification of numerous Alzheimer's disease (AD) candidate genes, although for many of them the role in AD pathophysiology has not been uncovered yet. Concomitantly, network biology studies have shown a strong link between protein network connectivity and disease. In this chapter I describe a computational approach that, by combining local and global network analysis strategies, allows the formulation of novel hypotheses on the molecular mechanisms involved in AD and prioritizes candidate genes for further functional studies.

  4. Process and apparatus for adding and removing particles from pressurized reactors

    DOEpatents

    Milligan, John D.

    1983-01-01

    A method for adding and removing fine particles from a pressurized reactor is provided, which comprises connecting the reactor to a container, sealing the container from the reactor, filling the container with particles and a liquid material compatible with the reactants, pressurizing the container to substantially the reactor pressure, removing the seal between the reactor and the container, permitting particles to fall into or out of the reactor, and resealing the container from the reactor. An apparatus for adding and removing particles is also disclosed.

  5. Making the most of sparse clinical data by using a predictive-model-based analysis, illustrated with a stavudine pharmacokinetic study.

    PubMed

    Zhang, L; Price, R; Aweeka, F; Bellibas, S E; Sheiner, L B

    2001-02-01

    A small-scale clinical investigation was done to quantify the penetration of stavudine (D4T) into cerebrospinal fluid (CSF). A model-based analysis estimates the steady-state ratio of AUCs of CSF and plasma concentrations (R(AUC)) to be 0.270, and the mean residence time of drug in the CSF to be 7.04 h. The analysis illustrates the advantages of a causal (scientific, predictive) model-based approach to analysis over a noncausal (empirical, descriptive) approach when the data, as here, demonstrate certain problematic features commonly encountered in clinical data, namely (i) few subjects, (ii) sparse sampling, (iii) repeated measures, (iv) imbalance, and (v) individual design variation. These features generally require special attention in data analysis. The causal-model-based analysis deals with features (i) and (ii), both of which reduce efficiency, by combining data from different studies and adding subject-matter prior information. It deals with features (iii)--(v), all of which prevent 'averaging' individual data points directly, first, by adjusting in the model for interindividual data differences due to design differences, secondly, by explicitly differentiating between interpatient, interoccasion, and measurement error variation, and lastly, by defining a scientifically meaningful estimand (R(AUC)) that is independent of design.

  6. Potential of Pest and Host Phenological Data in the Attribution of Regional Forest Disturbance Detection Maps According to Causal Agent

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Norman Steve; Christie, William

    2014-01-01

    Near real time forest disturbance detection maps from MODIS NDVI phenology data have been produced since 2010 for the conterminous U.S., as part of the on-line ForWarn national forest threat early warning system. The latter has been used by the forest health community to identify and track many regional forest disturbances caused by multiple biotic and abiotic damage agents. Attribution of causal agents for detected disturbances has been a goal since project initiation in 2006. Combined with detailed cover type maps, geospatial pest phenology data offer a potential means for narrowing the candidate causal agents responsible for a given biotic disturbance. U.S. Aerial Detection Surveys (ADS) employ such phenology data. Historic ADS products provide general locational data on recent insect-induced forest type specific disturbances that may help in determining candidate causal agents for MODIS-based disturbance maps, especially when combined with other historic geospatial disturbance data (e.g., wildfire burn scars and drought maps). Historic ADS disturbance detection polygons can show severe and extensive regional forest disturbances, though they also can show polygons with sparsely scattered or infrequent disturbances. Examples will be discussed that use various historic disturbance data to help determine potential causes of MODIS-detected regional forest disturbance anomalies.

  7. Variable is better than invariable: sparse VSS-NLMS algorithms with application to adaptive MIMO channel estimation.

    PubMed

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.

  8. Variable Is Better Than Invariable: Sparse VSS-NLMS Algorithms with Application to Adaptive MIMO Channel Estimation

    PubMed Central

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  9. Bayesian network analysis reveals alterations to default mode network connectivity in individuals at risk for Alzheimer's disease.

    PubMed

    Li, Rui; Yu, Jing; Zhang, Shouzi; Bao, Feng; Wang, Pengyun; Huang, Xin; Li, Juan

    2013-01-01

    Alzheimer's disease (AD) is associated with abnormal functioning of the default mode network (DMN). Functional connectivity (FC) changes to the DMN have been found in patients with amnestic mild cognitive impairment (aMCI), which is the prodromal stage of AD. However, whether or not aMCI also alters the effective connectivity (EC) of the DMN remains unknown. We employed a combined group independent component analysis (ICA) and Bayesian network (BN) learning approach to resting-state functional MRI (fMRI) data from 17 aMCI patients and 17 controls, in order to establish the EC pattern of DMN, and to evaluate changes occurring in aMCI. BN analysis demonstrated heterogeneous regional convergence degree across DMN regions, which were organized into two closely interacting subsystems. Compared to controls, the aMCI group showed altered directed connectivity weights between DMN regions in the fronto-parietal, temporo-frontal, and temporo-parietal pathways. The aMCI group also exhibited altered regional convergence degree in the right inferior parietal lobule. Moreover, we found EC changes in DMN regions in aMCI were correlated with regional FC levels, and the connectivity metrics were associated with patients' cognitive performance. This study provides novel sights into our understanding of the functional architecture of the DMN and adds to a growing body of work demonstrating the importance of the DMN as a mechanism of aMCI.

  10. Home | STScI

    Science.gov Websites

    Work Our Culture Community Connections Space Astronomy Summer Program Program Details Application Logo Expanding the Frontiers of Space Astronomy Mission Ad Boxes Collage of artist illustrations of

  11. Marketing Trends to Watch

    ERIC Educational Resources Information Center

    Circle, Alison

    2009-01-01

    This article identifies 13 cultural trends that libraries can turn into opportunites to reach patrons. These trends include: Twitter, online reputation management, value added content, mobile marketing, and emotional connection.

  12. A Compatible Hardware/Software Reliability Prediction Model.

    DTIC Science & Technology

    1981-07-22

    machines. In particular, he was interested in the following problem: assu me that one has a collection of connected elements computing and transmitting...software reliability prediction model is desirable, the findings about the Weibull distribution are intriguing. After collecting failure data from several...capacitor, some of the added charge carriers are collected by the capacitor. If the added charge is sufficiently large, the information stored is changed

  13. The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer's disease.

    PubMed

    Shah, Raj C; Kamphuis, Patrick J; Leurgans, Sue; Swinkels, Sophie H; Sadowsky, Carl H; Bongers, Anke; Rappaport, Stephen A; Quinn, Joseph F; Wieggers, Rico L; Scheltens, Philip; Bennett, David A

    2013-01-01

    Souvenaid® containing Fortasyn® Connect is a medical food designed to support synapse synthesis in persons with Alzheimer's disease (AD). Fortasyn Connect includes precursors (uridine monophosphate; choline; phospholipids; eicosapentaenoic acid; docosahexaenoic acid) and cofactors (vitamins E, C, B12, and B6; folic acid; selenium) for the formation of neuronal membranes. Whether Souvenaid slows cognitive decline in treated persons with mild-to-moderate AD has not been addressed. In a 24-week, double-masked clinical trial at 48 clinical centers, 527 participants taking AD medications [52% women, mean age 76.7 years (Standard Deviation, SD = 8.2), and mean Mini-Mental State Examination score 19.5 (SD = 3.1, range 14-24)] were randomized 1:1 to daily, 125-mL (125 kcal), oral intake of the active product (Souvenaid) or an iso-caloric control. The primary outcome of cognition was assessed by the 11-item Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog). Compliance was calculated from daily diary recordings of product intake. Statistical analyses were performed using mixed models for repeated measures. Cognitive performance as assessed by ADAS-cog showed decline over time in both control and active study groups, with no significant difference between study groups (difference =0.37 points, Standard Error, SE = 0.57, p = 0.513). No group differences in adverse event rates were found and no clinically relevant differences in blood safety parameters were noted. Overall compliance was high (94.1% [active] and 94.5% [control]), which was confirmed by significant changes in blood (nutritional) biomarkers. Add-on intake of Souvenaid during 24 weeks did not slow cognitive decline in persons treated for mild-to-moderate AD. Souvenaid was well tolerated in combination with standard care AD medications. DUTCH TRIAL REGISTER NUMBER: NTR1683.

  14. The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer’s disease

    PubMed Central

    2013-01-01

    Introduction Souvenaid® containing Fortasyn® Connect is a medical food designed to support synapse synthesis in persons with Alzheimer’s disease (AD). Fortasyn Connect includes precursors (uridine monophosphate; choline; phospholipids; eicosapentaenoic acid; docosahexaenoic acid) and cofactors (vitamins E, C, B12, and B6; folic acid; selenium) for the formation of neuronal membranes. Whether Souvenaid slows cognitive decline in treated persons with mild-to-moderate AD has not been addressed. Methods In a 24-week, double-masked clinical trial at 48 clinical centers, 527 participants taking AD medications [52% women, mean age 76.7 years (Standard Deviation, SD = 8.2), and mean Mini-Mental State Examination score 19.5 (SD = 3.1, range 14–24)] were randomized 1:1 to daily, 125-mL (125 kcal), oral intake of the active product (Souvenaid) or an iso-caloric control. The primary outcome of cognition was assessed by the 11-item Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog). Compliance was calculated from daily diary recordings of product intake. Statistical analyses were performed using mixed models for repeated measures. Results Cognitive performance as assessed by ADAS-cog showed decline over time in both control and active study groups, with no significant difference between study groups (difference =0.37 points, Standard Error, SE = 0.57, p = 0.513). No group differences in adverse event rates were found and no clinically relevant differences in blood safety parameters were noted. Overall compliance was high (94.1% [active] and 94.5% [control]), which was confirmed by significant changes in blood (nutritional) biomarkers. Conclusions Add-on intake of Souvenaid during 24 weeks did not slow cognitive decline in persons treated for mild-to-moderate AD. Souvenaid was well tolerated in combination with standard care AD medications. Trial registration Dutch Trial Register number: NTR1683. PMID:24280255

  15. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    NASA Astrophysics Data System (ADS)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  16. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  17. Stochastic Modeling of Sediment Connectivity for Reconstructing Sand Fluxes and Origins in the Unmonitored Se Kong, Se San, and Sre Pok Tributaries of the Mekong River

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Bizzi, S.; Castelletti, A. F.; Kondolf, G. M.

    2018-01-01

    Sediment supply to rivers, subsequent fluvial transport, and the resulting sediment connectivity on network scales are often sparsely monitored and subject to major uncertainty. We propose to approach that uncertainty by adopting a stochastic method for modeling network sediment connectivity, which we present for the Se Kong, Se San, and Sre Pok (3S) tributaries of the Mekong. We quantify how unknown properties of sand sources translate into uncertainty regarding network connectivity by running the CASCADE (CAtchment Sediment Connectivity And DElivery) modeling framework in a Monte Carlo approach for 7,500 random realizations. Only a small ensemble of realizations reproduces downstream observations of sand transport. This ensemble presents an inverse stochastic approximation of the magnitude and variability of transport capacity, sediment flux, and grain size distribution of the sediment transported in the network (i.e., upscaling point observations to the entire network). The approximated magnitude of sand delivered from each tributary to the Mekong is controlled by reaches of low transport capacity ("bottlenecks"). These bottlenecks limit the ability to predict transport in the upper parts of the catchment through inverse stochastic approximation, a limitation that could be addressed by targeted monitoring upstream of identified bottlenecks. Nonetheless, bottlenecks also allow a clear partitioning of natural sand deliveries from the 3S to the Mekong, with the Se Kong delivering less (1.9 Mt/yr) and coarser (median grain size: 0.4 mm) sand than the Se San (5.3 Mt/yr, 0.22 mm) and Sre Pok (11 Mt/yr, 0.19 mm).

  18. Discrete Regularization for Calibration of Geologic Facies Against Dynamic Flow Data

    NASA Astrophysics Data System (ADS)

    Khaninezhad, Mohammad-Reza; Golmohammadi, Azarang; Jafarpour, Behnam

    2018-04-01

    Subsurface flow model calibration involves many more unknowns than measurements, leading to ill-posed problems with nonunique solutions. To alleviate nonuniqueness, the problem is regularized by constraining the solution space using prior knowledge. In certain sedimentary environments, such as fluvial systems, the contrast in hydraulic properties of different facies types tends to dominate the flow and transport behavior, making the effect of within facies heterogeneity less significant. Hence, flow model calibration in those formations reduces to delineating the spatial structure and connectivity of different lithofacies types and their boundaries. A major difficulty in calibrating such models is honoring the discrete, or piecewise constant, nature of facies distribution. The problem becomes more challenging when complex spatial connectivity patterns with higher-order statistics are involved. This paper introduces a novel formulation for calibration of complex geologic facies by imposing appropriate constraints to recover plausible solutions that honor the spatial connectivity and discreteness of facies models. To incorporate prior connectivity patterns, plausible geologic features are learned from available training models. This is achieved by learning spatial patterns from training data, e.g., k-SVD sparse learning or the traditional Principal Component Analysis. Discrete regularization is introduced as a penalty functions to impose solution discreteness while minimizing the mismatch between observed and predicted data. An efficient gradient-based alternating directions algorithm is combined with variable splitting to minimize the resulting regularized nonlinear least squares objective function. Numerical results show that imposing learned facies connectivity and discreteness as regularization functions leads to geologically consistent solutions that improve facies calibration quality.

  19. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.

    PubMed

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2016-09-01

    The study of brain networks by resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for identifying patients with dementia from healthy controls (HC). Using graph theory, different aspects of the brain network can be efficiently characterized by calculating measures of integration and segregation. In this study, we combined a graph theoretical approach with advanced machine learning methods to study the brain network in 89 patients with mild cognitive impairment (MCI), 34 patients with Alzheimer's disease (AD), and 45 age-matched HC. The rs-fMRI connectivity matrix was constructed using a brain parcellation based on a 264 putative functional areas. Using the optimal features extracted from the graph measures, we were able to accurately classify three groups (i.e., HC, MCI, and AD) with accuracy of 88.4 %. We also investigated performance of our proposed method for a binary classification of a group (e.g., MCI) from two other groups (e.g., HC and AD). The classification accuracies for identifying HC from AD and MCI, AD from HC and MCI, and MCI from HC and AD, were 87.3, 97.5, and 72.0 %, respectively. In addition, results based on the parcellation of 264 regions were compared to that of the automated anatomical labeling atlas (AAL), consisted of 90 regions. The accuracy of classification of three groups using AAL was degraded to 83.2 %. Our results show that combining the graph measures with the machine learning approach, on the basis of the rs-fMRI connectivity analysis, may assist in diagnosis of AD and MCI.

  20. Alzheimer's disease: neuroprogesterone, epoxycholesterol, and ABC transporters as determinants of neurodesmosterol tissue levels and its role in amyloid protein processing.

    PubMed

    Javitt, Norman B

    2013-01-01

    Evidence is emerging that during the development of Alzheimer's disease (AD), changes in the synthesis and metabolism of cholesterol and progesterone are occurring that may or may not affect the progression of the disease. The concept arose from the recognition that dehydrocholesterol 24-reductase (DHCR24/Seladin-1), one of the nine enzymes in the endoplasmic reticulum that determines the transformation of lanosterol to cholesterol, is selectively reduced in late AD. As a consequence, the tissue level of desmosterol increases, affecting the expression of ABC transporters and the structure of lipid rafts, both determinants of amyloid-β processing. However, the former effect is considered beneficial and the latter detrimental to processing. Other determinants of desmosterol tissue levels are 24,25 epoxycholesterol and the ABCG1 and ABCG4 transporters. Progesterone and its metabolites are determinants of tissue levels of desmosterol and several other sterol intermediates in cholesterol synthesis. Animal models indicate marked elevations in the tissue levels of these sterols at early time frames in the progression of neurodegenerative diseases. The low level of neuroprogesterone and metabolites in AD are consonant with the low level of desmosterol and may have a role in amyloid-β processing. The sparse data that has accumulated appears to be a sufficient basis for proposing a systematic evaluation of the biologic roles of sterol intermediates in the slowly progressive neurodegeneration characteristic of AD.

  1. Measurement, Ratios, and Graphing: Who Added the "Micro" to Gravity? An Educator Guide with Activities in Mathematics, Science, and Technology. NASA CONNECT[TM].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    The NASA CONNECT series features 30-minute, instructional videos for students in grades 5-8 and teacher's guides that use aeronautics and space technology as the organizing theme. In this guide and videotape, National Aeronautics and Space Administration (NASA) researchers and scientists use measurement, ratios, and graphing to demonstrate the…

  2. Effects of Beta-Amyloid on Resting State Functional Connectivity Within and Between Networks Reflect Known Patterns of Regional Vulnerability

    DOE PAGES

    Elman, Jeremy A.; Madison, Cindee M.; Baker, Suzanne L.; ...

    2014-11-07

    In Alzheimer's disease (AD), Beta-amyloid (Aβ) deposition is one of the hallmarks. However, it is also present in some cognitively normal elderly adults and may represent a preclinical disease state. While AD patients exhibit disrupted functional connectivity (FC) both within and between resting-state networks, studies of preclinical cases have focused primarily on the default mode network (DMN). The extent to which Aβ-related effects occur outside of the DMN and between networks remains unclear. In the present study, we examine how within- and between-network FC are related to both global and regional Aβ deposition as measured by [ 11 C]PIB-PET inmore » 92 cognitively normal older people. We found that within-network FC changes occurred in multiple networks, including the DMN. Changes of between-network FC were also apparent, suggesting that regions maintaining connections to multiple networks may be particularly susceptible to Aβ-induced alterations. Cortical regions showing altered FC clustered in parietal and temporal cortex, areas known to be susceptible to AD pathology. These results likely represent a mix of local network disruption, compensatory reorganization, and impaired control network function. They indicate the presence of Aβ-related dysfunction of neural systems in cognitively normal people well before these areas become hypometabolic with the onset of cognitive decline.« less

  3. Sparse Reconstruction Techniques in MRI: Methods, Applications, and Challenges to Clinical Adoption

    PubMed Central

    Yang, Alice Chieh-Yu; Kretzler, Madison; Sudarski, Sonja; Gulani, Vikas; Seiberlich, Nicole

    2016-01-01

    The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance Imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be employed to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR imaging, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold-standards, are discussed. PMID:27003227

  4. Twin Neurons for Efficient Real-World Data Distribution in Networks of Neural Cliques: Applications in Power Management in Electronic Circuits.

    PubMed

    Boguslawski, Bartosz; Gripon, Vincent; Seguin, Fabrice; Heitzmann, Frédéric

    2016-02-01

    Associative memories are data structures that allow retrieval of previously stored messages given part of their content. They, thus, behave similarly to the human brain's memory that is capable, for instance, of retrieving the end of a song, given its beginning. Among different families of associative memories, sparse ones are known to provide the best efficiency (ratio of the number of bits stored to that of the bits used). Recently, a new family of sparse associative memories achieving almost optimal efficiency has been proposed. Their structure, relying on binary connections and neurons, induces a direct mapping between input messages and stored patterns. Nevertheless, it is well known that nonuniformity of the stored messages can lead to a dramatic decrease in performance. In this paper, we show the impact of nonuniformity on the performance of this recent model, and we exploit the structure of the model to improve its performance in practical applications, where data are not necessarily uniform. In order to approach the performance of networks with uniformly distributed messages presented in theoretical studies, twin neurons are introduced. To assess the adapted model, twin neurons are used with the real-world data to optimize power consumption of electronic circuits in practical test cases.

  5. Finite-size analysis of the detectability limit of the stochastic block model

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Desrosiers, Patrick; Hébert-Dufresne, Laurent; Laurence, Edward; Dubé, Louis J.

    2017-06-01

    It has been shown in recent years that the stochastic block model is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general SBM. We then distinguish the concept of average detectability from the concept of instance-by-instance detectability and give explicit formulas for both definitions. Using these formulas, we prove that there exist large equivalence classes of parameters, where widely different network ensembles are equally detectable with respect to our definitions of detectability. In an extensive case study, we investigate the finite-size detectability of a simplified variant of the SBM, which encompasses a number of important models as special cases. These models include the symmetric SBM, the planted coloring model, and more exotic SBMs not previously studied. We conclude with three appendices, where we study the interplay of noise and detectability, establish a connection between our information-theoretic approach and random matrix theory, and provide proofs of some of the more technical results.

  6. Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data.

    PubMed

    Basu, Sumanta; Duren, William; Evans, Charles R; Burant, Charles F; Michailidis, George; Karnovsky, Alla

    2017-05-15

    Recent technological advances in mass spectrometry, development of richer mass spectral libraries and data processing tools have enabled large scale metabolic profiling. Biological interpretation of metabolomics studies heavily relies on knowledge-based tools that contain information about metabolic pathways. Incomplete coverage of different areas of metabolism and lack of information about non-canonical connections between metabolites limits the scope of applications of such tools. Furthermore, the presence of a large number of unknown features, which cannot be readily identified, but nonetheless can represent bona fide compounds, also considerably complicates biological interpretation of the data. Leveraging recent developments in the statistical analysis of high-dimensional data, we developed a new Debiased Sparse Partial Correlation algorithm (DSPC) for estimating partial correlation networks and implemented it as a Java-based CorrelationCalculator program. We also introduce a new version of our previously developed tool Metscape that enables building and visualization of correlation networks. We demonstrate the utility of these tools by constructing biologically relevant networks and in aiding identification of unknown compounds. http://metscape.med.umich.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Graph cuts via l1 norm minimization.

    PubMed

    Bhusnurmath, Arvind; Taylor, Camillo J

    2008-10-01

    Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.

  8. A sparse matrix algorithm on the Boolean vector machine

    NASA Technical Reports Server (NTRS)

    Wagner, Robert A.; Patrick, Merrell L.

    1988-01-01

    VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.

  9. Adaptive windowing and windowless approaches to estimate dynamic functional brain connectivity

    NASA Astrophysics Data System (ADS)

    Yaesoubi, Maziar; Calhoun, Vince D.

    2017-08-01

    In this work, we discuss estimation of dynamic dependence of a multi-variate signal. Commonly used approaches are often based on a locality assumption (e.g. sliding-window) which can miss spontaneous changes due to blurring with local but unrelated changes. We discuss recent approaches to overcome this limitation including 1) a wavelet-space approach, essentially adapting the window to the underlying frequency content and 2) a sparse signal-representation which removes any locality assumption. The latter is especially useful when there is no prior knowledge of the validity of such assumption as in brain-analysis. Results on several large resting-fMRI data sets highlight the potential of these approaches.

  10. Facilitation of amphibious habit by physiological integration in the clonal, perennial, climbing herb Ipomoea aquatica.

    PubMed

    Lin, Hui-Feng; Alpert, Peter; Zhang, Qian; Yu, Fei-Hai

    2018-03-15

    Physiological integration of connected ramets of clonal plants can increase clonal performance when ramets grow in contrasting microenvironments within a habitat. In amphibious clonal species, integration of ramets in different habitats, terrestrial and aquatic, is possible. This may increase performance of amphibious clones, especially under eutrophic conditions. To test this, clonal fragments consisting of two ramets of the amphibious, perennial, climbing herb Ipomoea aquatica connected by a stem were placed such that the proximal ramet was rooted in a simulated riparian community of four other species, while the distal ramet extended into a simulated aquatic habitat with open water and sediment. The connection between ramets was either left intact or severed, and 0, 5, or 25mg N L -1 was added to the aquatic habitat to simulate different degrees of eutrophication. Without added N, fragments in which the original ramets were left connected accumulated two times more total mass than fragments in which the ramets were disconnected from one another. The positive effect of connection increased two-fold with increasing N. These results were consistent with the hypotheses that physiological integration between connected terrestrial and aquatic ramets can increase clonal performance in plants and that this effect can be greater when the aquatic ramet is richer in nutrients. Connection reduced root to shoot ratio in terrestrial ramets, but increased it in aquatic ones, suggesting that physiological integration induced a division of labor in which terrestrial ramets specialized for light acquisition and aquatic ramets specialized for acquisition of nutrients. This provides the first report of increase in clonal performance and induction of division of labor due to physiological integration between ramets in different habitats. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Comparison of Structurally Connected and Multiple Spacecraft Interferometers

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Crawley, Edward F.

    1996-01-01

    Structurally connected and multiple spacecraft interferometers are compared in an attempt to establish the maximum baseline (referred to as the "cross-over baseline") for which it is preferable to operate a single-structure interferometer in space rather than an interferometer composed of numerous, smaller spacecraft. This comparison is made using the total launched mass of each configuration as the comparison metric. A framework of study within which structurally connected and multiple spacecraft interferometers can be compared is presented in block diagram form. This methodology is then applied to twenty-two different combinations of trade space parameters to investigate the effects of different orbits, orientations, truss materials, propellants, attitude control actuators, onboard disturbance sources, and performance requirements on the cross-over baseline. Rotating interferometers and the potential advantages of adding active structural control to the connected truss of the structurally connected interferometer are also examined. The minimum mass design of the structurally connected interferometer that meets all performance-requirements and satisfies all imposed constraints is determined as a function of baseline. This minimum mass design is then compared to the design of the multiple spacecraft interferometer. It is discovered that the design of the minimum mass structurally connected interferometer that meets all performance requirements and constraints in solar orbit is limited by the minimum allowable aspect ratio, areal density, and gage of the struts. In the formulation of the problem used in this study, there is no advantage to adding active structural control to the truss for interferometers in solar orbit. The cross-over baseline for missions of practical duration (ranging from one week to thirty years) in solar orbit is approximately 400 m for non-rotating interferometers and 650 m for rotating interferometers.

  12. Efficacy of Souvenaid in mild Alzheimer's disease: results from a randomized, controlled trial.

    PubMed

    Scheltens, Philip; Twisk, Jos W R; Blesa, Rafael; Scarpini, Elio; von Arnim, Christine A F; Bongers, Anke; Harrison, John; Swinkels, Sophie H N; Stam, Cornelis J; de Waal, Hanneke; Wurtman, Richard J; Wieggers, Rico L; Vellas, Bruno; Kamphuis, Patrick J G H

    2012-01-01

    Souvenaid aims to improve synapse formation and function. An earlier study in patients with Alzheimer's disease (AD) showed that Souvenaid increased memory performance after 12 weeks in drug-naïve patients with mild AD. The Souvenir II study was a 24-week, randomized, controlled, double-blind, parallel-group, multi-country trial to confirm and extend previous findings in drug-naïve patients with mild AD. Patients were randomized 1:1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. The primary outcome was the memory function domain Z-score of the Neuropsychological Test Battery (NTB) over 24 weeks. Electroencephalography (EEG) measures served as secondary outcomes as marker for synaptic connectivity. Assessments were done at baseline, 12, and 24 weeks. The NTB memory domain Z-score was significantly increased in the active versus the control group over the 24-week intervention period (p = 0.023; Cohen's d = 0.21; 95% confidence interval [-0.06]-[0.49]). A trend for an effect was observed on the NTB total composite z-score (p = 0.053). EEG measures of functional connectivity in the delta band were significantly different between study groups during 24 weeks in favor of the active group. Compliance was very high (96.6% [control] and 97.1% [active]). No difference between study groups in the occurrence of (serious) adverse events. This study demonstrates that Souvenaid is well tolerated and improves memory performance in drug-naïve patients with mild AD. EEG outcomes suggest that Souvenaid has an effect on brain functional connectivity, supporting the underlying hypothesis of changed synaptic activity.

  13. Floquet scalar dynamics in global AdS

    NASA Astrophysics Data System (ADS)

    Biasi, Anxo; Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre

    2018-04-01

    We study periodically driven scalar fields and the resulting geometries with global AdS asymptotics. These solutions describe the strongly coupled dynamics of dual finite-size quantum systems under a periodic driving which we interpret as Floquet condensates. They span a continuous two-parameter space that extends the linearized solutions on AdS. We map the regions of stability in the solution space. In a significant portion of the unstable subspace, two very different endpoints are reached depending upon the sign of the perturbation. Collapse into a black hole occurs for one sign. For the opposite sign instead one attains a regular solution with periodic modulation. We also construct quenches where the driving frequency and amplitude are continuously varied. Quasistatic quenches can interpolate between pure AdS and sourced solutions with time periodic vev. By suitably choosing the quasistatic path one can obtain boson stars dual to Floquet condensates at zero driving field. We characterize the adiabaticity of the quenching processes. Besides, we speculate on the possible connections of this framework with time crystals.

  14. Sparse gammatone signal model optimized for English speech does not match the human auditory filters.

    PubMed

    Strahl, Stefan; Mertins, Alfred

    2008-07-18

    Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.

  15. String in AdS black hole: A thermo field dynamic approach

    NASA Astrophysics Data System (ADS)

    Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz

    2012-10-01

    Based on Maldacena’s description of an eternal anti-de Sitter (AdS) black hole, we reassess the thermo field dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (noninteracting) copies of the conformal field theory (CFT) associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary state which is identified with the TFD thermal vacuum, globally defined in the Kruskal extension of the AdS black hole. We emphasize the connection of this picture with unitary SU(1,1) TFD formulation, and we show that information about the bulk and the conformal boundary is present in the SU(1,1) parameters. Using the unitary SU(1,1) TFD formulation, a canonical prescription for calculating the world sheet real time thermal Green’s function is made, and the entropy associated with the entanglement of the two CFT’s is calculated.

  16. Entanglement entropy of AdS5 × S5 with massless flavors at nonzero temperature

    NASA Astrophysics Data System (ADS)

    Hu, Sen; Wu, Guozhen

    2018-03-01

    We consider backreacted AdS5 × S5 coupled with Nf massless flavors introduced by D7-branes at nonzero temperature. The backreacted geometry is in the Veneziano limit. The temperature of this system is related to the event horizon at rh. Dividing one of the spatial directions into a line segment with length l, we will calculate the holographic entanglement entropy (HEE) between the two subspaces. We study the behavior near the event horizon, and finally find that there exists confinement/deconfinement phase transition phenomenon near the horizon since the difference between the entanglement entropy of the connected minimal surface and the disconnected one changes sign.

  17. Classification of multispectral or hyperspectral satellite imagery using clustering of sparse approximations on sparse representations in learned dictionaries obtained using efficient convolutional sparse coding

    DOEpatents

    Moody, Daniela; Wohlberg, Brendt

    2018-01-02

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  18. Home | STScI

    Science.gov Websites

    Work Our Culture Community Connections Space Astronomy Summer Program Program Details Application Ophiuchi Dark Cloud STScI Logo Expanding the Frontiers of Space Astronomy Mission Ad Boxes Collage of

  19. Research of Ad Hoc Networks Access Algorithm

    NASA Astrophysics Data System (ADS)

    Xiang, Ma

    With the continuous development of mobile communication technology, Ad Hoc access network has become a hot research, Ad Hoc access network nodes can be used to expand capacity of multi-hop communication range of mobile communication system, even business adjacent to the community, improve edge data rates. When the ad hoc network is the access network of the internet, the gateway discovery protocol is very important to choose the most appropriate gateway to guarantee the connectivity between ad hoc network and IP based fixed networks. The paper proposes a QoS gateway discovery protocol which uses the time delay and stable route to the gateway selection conditions. And according to the gateway discovery protocol, it also proposes a fast handover scheme which can decrease the handover time and improve the handover efficiency.

  20. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.

    PubMed

    Minati, Ludovico; Cercignani, Mara; Chan, Dennis

    2013-10-01

    Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Design and Implementation of Secure Area Expansion Scheme for Public Wireless LAN Services

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryu; Tanaka, Toshiaki

    Recently, wireless LAN (WLAN) technology has become a major wireless communication method. The communication bandwidth is increasing and speeds have attained rates exceeding 100 Mbps. Therefore, WLAN technology is regarded as one of the promising communication methods for future networks. In addition, public WLAN connection services can be used in many locations. However, the number of the access points (AP) is insufficient for seamless communication and it cannot be said that users can use the service ubiquitously. An ad-hoc network style connection can be used to expand the coverage area of a public WLAN service. By relaying the user messages among the user nodes, a node can obtain an Internet connection via an AP, even though the node is located outside the AP's direct wireless connection area. Such a coverage area extending technology has many advantages thanks to the feature that no additional infrastructure is required. Therefore, there is a strong demand for this technology as it allows the cost-effective construction of future networks. When a secure ad-hoc routing protocol is used for message exchange in the WLAN service, the message routes are protected from malicious behavior such as route forging and can be maintained appropriately. To do this, however, a new node that wants to join the WLAN service has to obtain information such as the public key certificate and IP address in order to start secure ad-hoc routing. In other words, an initial setup is required for every network node to join the WLAN service properly. Ordinarily, such information should be assigned from the AP. However, new nodes cannot always contact an AP directly. Therefore, there are problems about information delivery in the initial setup of a network node. These problems originate in the multi hop connection based on the ad-hoc routing protocols. In order to realize an expanded area WLAN service, in this paper, the authors propose a secure public key certificate and address provision scheme during the initial setup phase on mobile nodes for the service. The proposed scheme also considers the protection of user privacy. Accordingly, none of the user nodes has to reveal their unique and persistent information to other nodes. Instead of using such information, temporary values are sent by an AP to mobile nodes and used for secure ad-hoc routing operations. Therefore, our proposed scheme prevents tracking by malicious parties by avoiding the use of unique information. Moreover, a test bed was also implemented based on the proposal and an evaluation was carried out in order to confirm performance. In addition, the authors describe a countermeasure against denial of service (DoS) attacks based on the approach to privacy protection described in our proposal.

  2. A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology

    NASA Astrophysics Data System (ADS)

    Tan, Mian; Yang, Tinghong; Chen, Xing; Yang, Gang; Zhu, Guoqing; Holme, Petter; Zhao, Jing

    2018-03-01

    Nodes in ad hoc networks are connected in a self-organized manner. Limited communication radius makes information transmit in multi-hop mode, and each forwarding needs to consume the energy of nodes. Insufficient communication radius or exhaustion of energy may cause the absence of some relay nodes and links, further breaking network connectivity. On the other hand, nodes in the network may refuse to cooperate due to objective faulty or personal selfish, hindering regular communication in the network. This paper proposes a model called Repeated Game in Small World Networks (RGSWN). In this model, we first construct ad hoc networks with small-world feature by forming "communication shortcuts" between multiple-radio nodes. Small characteristic path length reduces average forwarding times in networks; meanwhile high clustering coefficient enhances network robustness. Such networks still maintain relative low global power consumption, which is beneficial to extend the network survival time. Then we use MTTFT strategy (Mend-Tolerance Tit-for-Tat) for repeated game as a rule for the interactions between neighbors in the small-world networks. Compared with other five strategies of repeated game, this strategy not only punishes the nodes' selfishness more reasonably, but also has the best tolerance to the network failure. This work is insightful for designing an efficient and robust ad hoc network.

  3. Geochemistry of glass and olivine from Keanakako`i Tephra at Kilauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Mucek, A. E.; Swanson, D.

    2011-12-01

    Kilauea Volcano is well known for its frequent quiescent eruptions. However, it also has an underappreciated explosive past. Recent field work has documented many details of the Keanakako`i Tephra, which was generated during a period of explosive activity when few lava flows were erupted. The dominantly phreatomagmatic eruptions, which produced the Keanakako`i Tephra, began late in, or completely after, the formation of Kilauea Caldera (ca. 1500 CE) and continued sporadically until 1823. Thereafter, effusive eruptions outside the caldera resumed and have continued to the present.The Keanakako`i deposits provide an opportunity to examine the restoration of Kilauea's magmatic plumbing following caldera formation. Glassy products with variable amounts of olivine dominate from ca. 1500 A.D. to the late 1600 A.D., whereas lithic-rich deposits with sparse glass are common in the 1700 A.D. deposits, which include the deadly explosive activity of A.D. 1790. Glass compositions from tephra and basalt flows show remarkable MgO variations (4-11 wt percent), larger than those observed in glasses from subsequent eruptions. Some units have variable MgO indicating a zoned magma reservoir, whereas some others have variable incompatible element ratios suggesting magma mixing. The highest MgO values (>10 wt percent) are from 1500 A.D. and 1823 deposits. The range of parental magma compositions based on tephra glasses erupted over a 300 year period is comparable to those observed for the first 15 years of the Pu`u `O`o eruption and about half of the variation observed for summit eruptions from 1832 to 1982. The limited range in tephra parental magma compositions may be related to a lower magma production rate during the period the tephra was erupted.

  4. Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience

    PubMed Central

    Toepper, Max

    2017-01-01

    Both normal aging and Alzheimer’s disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity. PMID:28269778

  5. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  6. Precession missile feature extraction using sparse component analysis of radar measurements

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Du, Xiaoyong; Ghogho, Mounir; Hu, Weidong; McLernon, Des

    2012-12-01

    According to the working mode of the ballistic missile warning radar (BMWR), the radar return from the BMWR is usually sparse. To recognize and identify the warhead, it is necessary to extract the precession frequency and the locations of the scattering centers of the missile. This article first analyzes the radar signal model of the precessing conical missile during flight and develops the sparse dictionary which is parameterized by the unknown precession frequency. Based on the sparse dictionary, the sparse signal model is then established. A nonlinear least square estimation is first applied to roughly extract the precession frequency in the sparse dictionary. Based on the time segmented radar signal, a sparse component analysis method using the orthogonal matching pursuit algorithm is then proposed to jointly estimate the precession frequency and the scattering centers of the missile. Simulation results illustrate the validity of the proposed method.

  7. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis.

    PubMed

    Kim, Hyunsoo; Park, Haesun

    2007-06-15

    Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approximating high-dimensional data in a lower dimensional space. In this article, we introduce a novel formulation of sparse NMF and show how the new formulation leads to a convergent sparse NMF algorithm via alternating non-negativity-constrained least squares. We apply our sparse NMF algorithm to cancer-class discovery and gene expression data analysis and offer biological analysis of the results obtained. Our experimental results illustrate that the proposed sparse NMF algorithm often achieves better clustering performance with shorter computing time compared to other existing NMF algorithms. The software is available as supplementary material.

  8. Structural Synaptic Plasticity Has High Memory Capacity and Can Explain Graded Amnesia, Catastrophic Forgetting, and the Spacing Effect

    PubMed Central

    Knoblauch, Andreas; Körner, Edgar; Körner, Ursula; Sommer, Friedrich T.

    2014-01-01

    Although already William James and, more explicitly, Donald Hebb's theory of cell assemblies have suggested that activity-dependent rewiring of neuronal networks is the substrate of learning and memory, over the last six decades most theoretical work on memory has focused on plasticity of existing synapses in prewired networks. Research in the last decade has emphasized that structural modification of synaptic connectivity is common in the adult brain and tightly correlated with learning and memory. Here we present a parsimonious computational model for learning by structural plasticity. The basic modeling units are “potential synapses” defined as locations in the network where synapses can potentially grow to connect two neurons. This model generalizes well-known previous models for associative learning based on weight plasticity. Therefore, existing theory can be applied to analyze how many memories and how much information structural plasticity can store in a synapse. Surprisingly, we find that structural plasticity largely outperforms weight plasticity and can achieve a much higher storage capacity per synapse. The effect of structural plasticity on the structure of sparsely connected networks is quite intuitive: Structural plasticity increases the “effectual network connectivity”, that is, the network wiring that specifically supports storage and recall of the memories. Further, this model of structural plasticity produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena including graded amnesia, catastrophic forgetting, and the spacing effect. PMID:24858841

  9. Dimension reduction of frequency-based direct Granger causality measures on short time series.

    PubMed

    Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris

    2017-09-01

    The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia

    NASA Astrophysics Data System (ADS)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.

  11. Aß Facilitates LTD at Schaffer Collateral Synapses Preferentially in the Left Hippocampus.

    PubMed

    O'Riordan, Kenneth J; Hu, Neng-Wei; Rowan, Michael J

    2018-02-20

    Promotion of long-term depression (LTD) mechanisms by synaptotoxic soluble oligomers of amyloid-β (Aß) has been proposed to underlie synaptic dysfunction in Alzheimer's disease (AD). Previously, LTD was induced by relatively non-specific electrical stimulation. Exploiting optogenetics, we studied LTD using a more physiologically diffuse spatial pattern of selective pathway activation in the rat hippocampus in vivo. This relatively sparse synaptic LTD requires both the ion channel function and GluN2B subunit of the NMDA receptor but, in contrast to electrically induced LTD, is not facilitated by boosting endogenous muscarinic acetylcholine or metabotropic glutamate 5 receptor activation. Although in the absence of Aß, there is no evidence of hippocampal LTD asymmetry, in the presence of Aß, the induction of LTD is preferentially enhanced in the left hippocampus in an mGluR5-dependent manner. This circuit-selective disruption of synaptic plasticity by Aß provides a route to understanding the development of aberrant brain lateralization in AD. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Compact FPGA-based beamformer using oversampled 1-bit A/D converters.

    PubMed

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2005-05-01

    A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in-phase and quadrature components. That information is sufficient for presenting a B-mode image and creating a color flow map. The high sampling rate provides the necessary delay resolution for the focusing. The low channel data width (1-bit) makes it possible to construct a compact beamformer logic. The signal reconstruction is done using finite impulse reponse (FIR) filters, applied on selected bit sequences of the delta-sigma modulator output stream. The approach allows for a multichannel beamformer to fit in a single field programmable gate array (FPGA) device. A 32-channel beamformer is estimated to occupy 50% of the available logic resources in a commercially available mid-range FPGA, and to be able to operate at 129 MHz. Simulation of the architecture at 140 MHz provides images with a dynamic range approaching 60 dB for an excitation frequency of 3 MHz.

  13. Feasibility of Very Large Sparse Aperture Deployable Antennas

    DTIC Science & Technology

    2014-03-27

    FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Jason C. Heller, Captain...States. AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Presented to the Faculty...UNLIMITED AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS Jason C. Heller, B.S., Aerospace

  14. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  15. Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM).

    PubMed

    Wang, Xuehu; Zheng, Yongchang; Gan, Lan; Wang, Xuan; Sang, Xinting; Kong, Xiangfeng; Zhao, Jie

    2017-01-01

    This study proposes a new liver segmentation method based on a sparse a priori statistical shape model (SP-SSM). First, mark points are selected in the liver a priori model and the original image. Then, the a priori shape and its mark points are used to obtain a dictionary for the liver boundary information. Second, the sparse coefficient is calculated based on the correspondence between mark points in the original image and those in the a priori model, and then the sparse statistical model is established by combining the sparse coefficients and the dictionary. Finally, the intensity energy and boundary energy models are built based on the intensity information and the specific boundary information of the original image. Then, the sparse matching constraint model is established based on the sparse coding theory. These models jointly drive the iterative deformation of the sparse statistical model to approximate and accurately extract the liver boundaries. This method can solve the problems of deformation model initialization and a priori method accuracy using the sparse dictionary. The SP-SSM can achieve a mean overlap error of 4.8% and a mean volume difference of 1.8%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 0.8 mm and 1.4 mm, respectively.

  16. Effects of sulphate addition and sulphide inhibition on microbial fuel cells.

    PubMed

    Ieropoulos, I; Gálvez, A; Greenman, J

    2013-01-10

    The effects of adding sulphate in: (i) standard activated sludge microbial fuel cells (MFCs) and (ii) larger-scale leachate-treating columns - both as individual units and as a system connected in cascade - are reported. S-replete power output was ∼2-fold higher than that of the S-deplete MFC. Furthermore, the effects of evolved sulphide (S(2-)) inhibition were investigated. The overall decrease in power output from the sulphide inhibitor (Na(2)MoO(4)) additions was 83% for the S-replete and 90% for the S-deplete. The second phase with the leachate treating units shows an improvement of 32-86% (depended on leachate strength) in current output as a result of adding sulphate. When leachate column MFCs were connected fluidically in series, the amount of Na(2)SO(4) made available downstream was decreasing (increase in power was 99%, 40% and 12% for columns in cascade). Results demonstrated the beneficial effects of added sulphur sources to both activated sludge and leachate-treating MFCs. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Feature Selection and Pedestrian Detection Based on Sparse Representation.

    PubMed

    Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei

    2015-01-01

    Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony.

  18. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates.

    PubMed

    Vargas, D M; De Bastiani, M A; Zimmer, E R; Klamt, F

    2018-06-23

    Alzheimer's disease (AD) is a multifactorial and complex neuropathology that involves impairment of many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master regulator analyses exemplify promising new approaches to study complex diseases and may help in the identification of potential pharmacological targets. In this study, we used transcription regulatory network and master regulator analyses on transcriptomic data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect new potential therapeutic interventions by drug repurposing. We identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione, and Vorinostat). Using a transcription factor-centered regulatory network reconstruction we were able to identify several potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the use of bioinformatics tools as exploratory strategies in neurodegenerative diseases research, and also provides new perspectives on molecular targets and drug therapies for future investigation and validation in AD.

  19. Predictive protocol of flocks with small-world connection pattern.

    PubMed

    Zhang, Hai-Tao; Chen, Michael Z Q; Zhou, Tao

    2009-01-01

    By introducing a predictive mechanism with small-world connections, we propose a new motion protocol for self-driven flocks. The small-world connections are implemented by randomly adding long-range interactions from the leader to a few distant agents, namely, pseudoleaders. The leader can directly affect the pseudoleaders, thereby influencing all the other agents through them efficiently. Moreover, these pseudoleaders are able to predict the leader's motion several steps ahead and use this information in decision making towards coherent flocking with more stable formation. It is shown that drastic improvement can be achieved in terms of both the consensus performance and the communication cost. From the engineering point of view, the current protocol allows for a significant improvement in the cohesion and rigidity of the formation at a fairly low cost of adding a few long-range links embedded with predictive capabilities. Significantly, this work uncovers an important feature of flocks that predictive capability and long-range links can compensate for the insufficiency of each other. These conclusions are valid for both the attractive and repulsive swarm model and the Vicsek model.

  20. "The ladder of the law has no top and no bottom": how therapeutic jurisprudence can give life to international human rights.

    PubMed

    Perlin, Michael L

    2014-01-01

    In the past two decades, therapeutic jurisprudence (TJ) has become one of the most important theoretical approaches to the law. But, there has, as of yet, been puzzlingly little written about the relationship between TJ and international human rights law. To be sure, there has been some preliminary and exploratory work on the relationship between TJ and international law in general, but virtually nothing on its relationship to international human rights law in a mental disability law context. This paper seeks to focus on this lack of consideration, to speculate as to why that might be, and to offer some suggestions as to how to infuse some new vitality and vigor into this important area of law and social policy. In this article, first, I offer a brief explanation of TJ. Next, I discuss, also briefly, the impact (and the potential future greater impact) of the recently-ratified United Nations Convention on the Rights of Persons with Disabilities (CRPD) on this area. Then, I consider the sparse commentary currently available on the intersection between TJ and international law in general, and will speculate as to why this is so sparse. Then, I offer some thoughts as to the TJ/international human rights law connection, looking specifically at three questions that require far more attention from this perspective (access to counsel, the use of state-sanctioned psychiatry as a tool of political oppression, and the potential redemptive power of the CRPD), and describe a research agenda that scholars might turn to in furtherance of the investigation of the relationships between therapeutic jurisprudence, international human rights law and mental disability law. I conclude by calling on scholars, activists, advocates and practitioners to begin to take this connection seriously in their future work. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top