NASA Technical Reports Server (NTRS)
Rogers, David
1988-01-01
The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.
Feminism, Neoliberalism, and Social Studies
ERIC Educational Resources Information Center
Schmeichel, Mardi
2011-01-01
The purpose of this article is to analyze the sparse presence of women in social studies education and to consider the possibility of a confluence of feminism and neoliberalism within the most widely distributed National Council for the Social Studies (NCSS) publication, "Social Education." Using poststructural conceptions of discourse, the author…
Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; ...
2015-07-14
In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important featuresmore » of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.« less
Sparse distributed memory overview
NASA Technical Reports Server (NTRS)
Raugh, Mike
1990-01-01
The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.
Scenario generation for stochastic optimization problems via the sparse grid method
Chen, Michael; Mehrotra, Sanjay; Papp, David
2015-04-19
We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid methodmore » can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.« less
Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin
2014-01-01
In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150
A performance study of sparse Cholesky factorization on INTEL iPSC/860
NASA Technical Reports Server (NTRS)
Zubair, M.; Ghose, M.
1992-01-01
The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices. However, there is a lack of such efficient codes on parallel machines in general, and distributed machines in particular. Some of the issues that are critical to the implementation of sparse Cholesky factorization on a distributed memory parallel machine are ordering, partitioning and mapping, load balancing, and ordering of various tasks within a processor. Here, we focus on the effect of various partitioning schemes on the performance of sparse Cholesky factorization on the Intel iPSC/860. Also, a new partitioning heuristic for structured as well as unstructured sparse matrices is proposed, and its performance is compared with other schemes.
N-mixture models for estimating population size from spatially replicated counts
Royle, J. Andrew
2004-01-01
Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, i describe a class of models (n-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, n, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for n. Carroll and lombard (1985, journal of american statistical association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on n that is exploited by the n-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the n-mixture estimator compared to the caroll and lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Huiqiao; Yang, Yi; Tang, Xiangyang
2015-06-15
Purpose: Optimization-based reconstruction has been proposed and investigated for reconstructing CT images from sparse views, as such the radiation dose can be substantially reduced while maintaining acceptable image quality. The investigation has so far focused on reconstruction from evenly distributed sparse views. Recognizing the clinical situations wherein only unevenly sparse views are available, e.g., image guided radiation therapy, CT perfusion and multi-cycle cardiovascular imaging, we investigate the performance of optimization-based image reconstruction from unevenly sparse projection views in this work. Methods: The investigation is carried out using the FORBILD and an anthropomorphic head phantoms. In the study, 82 views, whichmore » are evenly sorted out from a full (360°) axial CT scan consisting of 984 views, form sub-scan I. Another 82 views are sorted out in a similar manner to form sub-scan II. As such, a CT scan with sparse (164) views at 1:6 ratio are formed. By shifting the two sub-scans relatively in view angulation, a CT scan with unevenly distributed sparse (164) views at 1:6 ratio are formed. An optimization-based method is implemented to reconstruct images from the unevenly distributed views. By taking the FBP reconstruction from the full scan (984 views) as the reference, the root mean square (RMS) between the reference and the optimization-based reconstruction is used to evaluate the performance quantitatively. Results: In visual inspection, the optimization-based method outperforms the FBP substantially in the reconstruction from unevenly distributed, which are quantitatively verified by the RMS gauged globally and in ROIs in both the FORBILD and anthropomorphic head phantoms. The RMS increases with increasing severity in the uneven angular distribution, especially in the case of anthropomorphic head phantom. Conclusion: The optimization-based image reconstruction can save radiation dose up to 12-fold while providing acceptable image quality for advanced clinical applications wherein only unevenly distributed sparse views are available. Research Grants: W81XWH-12-1-0138 (DoD), Sinovision Technologies.« less
DOT National Transportation Integrated Search
2018-02-02
Traffic congestion at arterial intersections and freeway bottlenecks degrades the air quality and threatens the public health. Conventionally, air pollutants are monitored by sparsely-distributed Quality Assurance Air Monitoring Sites. Sparse mobile ...
2014-09-30
underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand
BIRD: A general interface for sparse distributed memory simulators
NASA Technical Reports Server (NTRS)
Rogers, David
1990-01-01
Kanerva's sparse distributed memory (SDM) has now been implemented for at least six different computers, including SUN3 workstations, the Apple Macintosh, and the Connection Machine. A common interface for input of commands would both aid testing of programs on a broad range of computer architectures and assist users in transferring results from research environments to applications. A common interface also allows secondary programs to generate command sequences for a sparse distributed memory, which may then be executed on the appropriate hardware. The BIRD program is an attempt to create such an interface. Simplifying access to different simulators should assist developers in finding appropriate uses for SDM.
Hierarchical Bayesian sparse image reconstruction with application to MRFM.
Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves
2009-09-01
This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Quresh S. Latif; Martha M. Ellis; Victoria A. Saab; Kim Mellen-McLean
2017-01-01
Sparsely distributed species attract conservation concern, but insufficient information on population trends challenges conservation and funding prioritization. Occupancy-based monitoring is attractive for these species, but appropriate sampling design and inference depend on particulars of the study system. We employed spatially explicit simulations to identify...
Sparsely sampling the sky: Regular vs. random sampling
NASA Astrophysics Data System (ADS)
Paykari, P.; Pires, S.; Starck, J.-L.; Jaffe, A. H.
2015-09-01
Aims: The next generation of galaxy surveys, aiming to observe millions of galaxies, are expensive both in time and money. This raises questions regarding the optimal investment of this time and money for future surveys. In a previous work, we have shown that a sparse sampling strategy could be a powerful substitute for the - usually favoured - contiguous observation of the sky. In our previous paper, regular sparse sampling was investigated, where the sparse observed patches were regularly distributed on the sky. The regularity of the mask introduces a periodic pattern in the window function, which induces periodic correlations at specific scales. Methods: In this paper, we use a Bayesian experimental design to investigate a "random" sparse sampling approach, where the observed patches are randomly distributed over the total sparsely sampled area. Results: We find that in this setting, the induced correlation is evenly distributed amongst all scales as there is no preferred scale in the window function. Conclusions: This is desirable when we are interested in any specific scale in the galaxy power spectrum, such as the matter-radiation equality scale. As the figure of merit shows, however, there is no preference between regular and random sampling to constrain the overall galaxy power spectrum and the cosmological parameters.
Statistical prediction with Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Rogers, David
1989-01-01
A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near- or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with genetic algorithms, and a method for improving the capacity of SDM even when used as an associative memory.
Immunological memory is associative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.J.; Forrest, S.; Perelson, A.S.
1996-12-31
The purpose of this paper is to show that immunological memory is an associative and robust memory that belongs to the class of sparse distributed memories. This class of memories derives its associative and robust nature by sparsely sampling the input space and distributing the data among many independent agents. Other members of this class include a model of the cerebellar cortex and Sparse Distributed Memory (SDM). First we present a simplified account of the immune response and immunological memory. Next we present SDM, and then we show the correlations between immunological memory and SDM. Finally, we show how associativemore » recall in the immune response can be both beneficial and detrimental to the fitness of an individual.« less
Learning to read aloud: A neural network approach using sparse distributed memory
NASA Technical Reports Server (NTRS)
Joglekar, Umesh Dwarkanath
1989-01-01
An attempt to solve a problem of text-to-phoneme mapping is described which does not appear amenable to solution by use of standard algorithmic procedures. Experiments based on a model of distributed processing are also described. This model (sparse distributed memory (SDM)) can be used in an iterative supervised learning mode to solve the problem. Additional improvements aimed at obtaining better performance are suggested.
1982-10-27
are buried within * a much larger, special purpose package. We regret such omissions, but to have reached the practi- tioners in each of the diverse...sparse matrix (form PAQ ) 4. Method of solution: Distribution count sort 5. Programming language: FORTRAN g Precision: Single and double precision 7
Precession missile feature extraction using sparse component analysis of radar measurements
NASA Astrophysics Data System (ADS)
Liu, Lihua; Du, Xiaoyong; Ghogho, Mounir; Hu, Weidong; McLernon, Des
2012-12-01
According to the working mode of the ballistic missile warning radar (BMWR), the radar return from the BMWR is usually sparse. To recognize and identify the warhead, it is necessary to extract the precession frequency and the locations of the scattering centers of the missile. This article first analyzes the radar signal model of the precessing conical missile during flight and develops the sparse dictionary which is parameterized by the unknown precession frequency. Based on the sparse dictionary, the sparse signal model is then established. A nonlinear least square estimation is first applied to roughly extract the precession frequency in the sparse dictionary. Based on the time segmented radar signal, a sparse component analysis method using the orthogonal matching pursuit algorithm is then proposed to jointly estimate the precession frequency and the scattering centers of the missile. Simulation results illustrate the validity of the proposed method.
Kim, Hyunsoo; Park, Haesun
2007-06-15
Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approximating high-dimensional data in a lower dimensional space. In this article, we introduce a novel formulation of sparse NMF and show how the new formulation leads to a convergent sparse NMF algorithm via alternating non-negativity-constrained least squares. We apply our sparse NMF algorithm to cancer-class discovery and gene expression data analysis and offer biological analysis of the results obtained. Our experimental results illustrate that the proposed sparse NMF algorithm often achieves better clustering performance with shorter computing time compared to other existing NMF algorithms. The software is available as supplementary material.
Investigation of wall-bounded turbulence over sparsely distributed roughness
NASA Astrophysics Data System (ADS)
Placidi, Marco; Ganapathisubramani, Bharath
2011-11-01
The effects of sparsely distributed roughness elements on the structure of a turbulent boundary layer are examined by performing a series of Particle Image Velocimetry (PIV) experiments in a wind tunnel. From the literature, the best way to characterise a rough wall, especially one where the density of roughness elements is sparse, is unclear. In this study, rough surfaces consisting of sparsely and uniformly distributed LEGO® blocks are used. Five different patterns are adopted in order to examine the effects of frontal solidity (λf, frontal area of the roughness elements per unit wall-parallel area), plan solidity (λp, plan area of roughness elements per unit wall-parallel area) and the geometry of the roughness element (square and cylindrical elements), on the turbulence structure. The Karman number, Reτ , has been matched, at the value of approximately 2300, in order to compare across the different cases. In the talk, we will present detailed analysis of mean and rms velocity profiles, Reynolds stresses and quadrant decomposition.
Two demonstrators and a simulator for a sparse, distributed memory
NASA Technical Reports Server (NTRS)
Brown, Robert L.
1987-01-01
Described are two programs demonstrating different aspects of Kanerva's Sparse, Distributed Memory (SDM). These programs run on Sun 3 workstations, one using color, and have straightforward graphically oriented user interfaces and graphical output. Presented are descriptions of the programs, how to use them, and what they show. Additionally, this paper describes the software simulator behind each program.
An empirical investigation of sparse distributed memory using discrete speech recognition
NASA Technical Reports Server (NTRS)
Danforth, Douglas G.
1990-01-01
Presented here is a step by step analysis of how the basic Sparse Distributed Memory (SDM) model can be modified to enhance its generalization capabilities for classification tasks. Data is taken from speech generated by a single talker. Experiments are used to investigate the theory of associative memories and the question of generalization from specific instances.
Communication requirements of sparse Cholesky factorization with nested dissection ordering
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1989-01-01
Load distribution schemes for minimizing the communication requirements of the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems are presented. The total data traffic in factoring an n x n sparse symmetric positive definite matrix representing an n-vertex regular two-dimensional grid graph using n exp alpha, alpha not greater than 1, processors are shown to be O(n exp 1 + alpha/2). It is O(n), when n exp alpha, alpha not smaller than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal.
Distributed memory compiler design for sparse problems
NASA Technical Reports Server (NTRS)
Wu, Janet; Saltz, Joel; Berryman, Harry; Hiranandani, Seema
1991-01-01
A compiler and runtime support mechanism is described and demonstrated. The methods presented are capable of solving a wide range of sparse and unstructured problems in scientific computing. The compiler takes as input a FORTRAN 77 program enhanced with specifications for distributing data, and the compiler outputs a message passing program that runs on a distributed memory computer. The runtime support for this compiler is a library of primitives designed to efficiently support irregular patterns of distributed array accesses and irregular distributed array partitions. A variety of Intel iPSC/860 performance results obtained through the use of this compiler are presented.
NASA Technical Reports Server (NTRS)
Kanerva, P.
1986-01-01
To determine the relation of the sparse, distributed memory to other architectures, a broad review of the literature was made. The memory is called a pattern memory because they work with large patterns of features (high-dimensional vectors). A pattern is stored in a pattern memory by distributing it over a large number of storage elements and by superimposing it over other stored patterns. A pattern is retrieved by mathematical or statistical reconstruction from the distributed elements. Three pattern memories are discussed.
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
Fierce, Laura; McGraw, Robert L.
2017-07-26
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fierce, Laura; McGraw, Robert L.
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
New shape models of asteroids reconstructed from sparse-in-time photometry
NASA Astrophysics Data System (ADS)
Durech, Josef; Hanus, Josef; Vanco, Radim; Oszkiewicz, Dagmara Anna
2015-08-01
Asteroid physical parameters - the shape, the sidereal rotation period, and the spin axis orientation - can be reconstructed from the disk-integrated photometry either dense (classical lightcurves) or sparse in time by the lightcurve inversion method. We will review our recent progress in asteroid shape reconstruction from sparse photometry. The problem of finding a unique solution of the inverse problem is time consuming because the sidereal rotation period has to be found by scanning a wide interval of possible periods. This can be efficiently solved by splitting the period parameter space into small parts that are sent to computers of volunteers and processed in parallel. We will show how this approach of distributed computing works with currently available sparse photometry processed in the framework of project Asteroids@home. In particular, we will show the results based on the Lowell Photometric Database. The method produce reliable asteroid models with very low rate of false solutions and the pipelines and codes can be directly used also to other sources of sparse photometry - Gaia data, for example. We will present the distribution of spin axis of hundreds of asteroids, discuss the dependence of the spin obliquity on the size of an asteroid,and show examples of spin-axis distribution in asteroid families that confirm the Yarkovsky/YORP evolution scenario.
Kanerva's sparse distributed memory with multiple hamming thresholds
NASA Technical Reports Server (NTRS)
Pohja, Seppo; Kaski, Kimmo
1992-01-01
If the stored input patterns of Kanerva's Sparse Distributed Memory (SDM) are highly correlated, utilization of the storage capacity is very low compared to the case of uniformly distributed random input patterns. We consider a variation of SDM that has a better storage capacity utilization for correlated input patterns. This approach uses a separate selection threshold for each physical storage address or hard location. The selection of the hard locations for reading or writing can be done in parallel of which SDM implementations can benefit.
NELasso: Group-Sparse Modeling for Characterizing Relations Among Named Entities in News Articles.
Tariq, Amara; Karim, Asim; Foroosh, Hassan
2017-10-01
Named entities such as people, locations, and organizations play a vital role in characterizing online content. They often reflect information of interest and are frequently used in search queries. Although named entities can be detected reliably from textual content, extracting relations among them is more challenging, yet useful in various applications (e.g., news recommending systems). In this paper, we present a novel model and system for learning semantic relations among named entities from collections of news articles. We model each named entity occurrence with sparse structured logistic regression, and consider the words (predictors) to be grouped based on background semantics. This sparse group LASSO approach forces the weights of word groups that do not influence the prediction towards zero. The resulting sparse structure is utilized for defining the type and strength of relations. Our unsupervised system yields a named entities' network where each relation is typed, quantified, and characterized in context. These relations are the key to understanding news material over time and customizing newsfeeds for readers. Extensive evaluation of our system on articles from TIME magazine and BBC News shows that the learned relations correlate with static semantic relatedness measures like WLM, and capture the evolving relationships among named entities over time.
Representation-Independent Iteration of Sparse Data Arrays
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
An approach is defined that describes a method of iterating over massively large arrays containing sparse data using an approach that is implementation independent of how the contents of the sparse arrays are laid out in memory. What is unique and important here is the decoupling of the iteration over the sparse set of array elements from how they are internally represented in memory. This enables this approach to be backward compatible with existing schemes for representing sparse arrays as well as new approaches. What is novel here is a new approach for efficiently iterating over sparse arrays that is independent of the underlying memory layout representation of the array. A functional interface is defined for implementing sparse arrays in any modern programming language with a particular focus for the Chapel programming language. Examples are provided that show the translation of a loop that computes a matrix vector product into this representation for both the distributed and not-distributed cases. This work is directly applicable to NASA and its High Productivity Computing Systems (HPCS) program that JPL and our current program are engaged in. The goal of this program is to create powerful, scalable, and economically viable high-powered computer systems suitable for use in national security and industry by 2010. This is important to NASA for its computationally intensive requirements for analyzing and understanding the volumes of science data from our returned missions.
Return probabilities and hitting times of random walks on sparse Erdös-Rényi graphs.
Martin, O C; Sulc, P
2010-03-01
We consider random walks on random graphs, focusing on return probabilities and hitting times for sparse Erdös-Rényi graphs. Using the tree approach, which is expected to be exact in the large graph limit, we show how to solve for the distribution of these quantities and we find that these distributions exhibit a form of self-similarity.
Distributed Compressive Sensing
2009-01-01
example, smooth signals are sparse in the Fourier basis, and piecewise smooth signals are sparse in a wavelet basis [8]; the commercial coding standards MP3...including wavelets [8], Gabor bases [8], curvelets [35], etc., are widely used for representation and compression of natural signals, images, and...spikes and the sine waves of a Fourier basis, or the Fourier basis and wavelets . Signals that are sparsely represented in frames or unions of bases can
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1988-01-01
In Kanerva's Sparse Distributed Memory, writing to and reading from the memory are done in relation to spheres in an n-dimensional binary vector space. Thus it is important to know how many points are in the intersection of two spheres in this space. Two proofs are given of Wang's formula for spheres of unequal radii, and an integral approximation for the intersection in this case.
Approximate method of variational Bayesian matrix factorization/completion with sparse prior
NASA Astrophysics Data System (ADS)
Kawasumi, Ryota; Takeda, Koujin
2018-05-01
We derive the analytical expression of a matrix factorization/completion solution by the variational Bayes method, under the assumption that the observed matrix is originally the product of low-rank, dense and sparse matrices with additive noise. We assume the prior of a sparse matrix is a Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for the derivation of a matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of a sparse matrix reconstruction in matrix factorization, and completion of a missing matrix element in matrix completion.
2015-03-26
DEMANDED PARTS DISSERTATION Gregory H. Gehret AFIT-ENS-DS-15-M- 256 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE...protection in the United States. AFIT-ENS-DS-15-M- 256 ADVANCING COST-EFFECTIVE READINESS BY IMPROVING THE SUPPLY CHAIN MANAGEMENT OF SPARSE...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENS-DS-15-M- 256 ADVANCING COST-EFFECTIVE READINESS BY IMPROVING THE SUPPLY CHAIN MANAGEMENT OF SPARSE
Corrected confidence bands for functional data using principal components.
Goldsmith, J; Greven, S; Crainiceanu, C
2013-03-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.
Corrected Confidence Bands for Functional Data Using Principal Components
Goldsmith, J.; Greven, S.; Crainiceanu, C.
2014-01-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003
Zheng, Yuanjie; Grossman, Murray; Awate, Suyash P; Gee, James C
2009-01-01
We propose to use the sparseness property of the gradient probability distribution to estimate the intensity nonuniformity in medical images, resulting in two novel automatic methods: a non-parametric method and a parametric method. Our methods are easy to implement because they both solve an iteratively re-weighted least squares problem. They are remarkably accurate as shown by our experiments on images of different imaged objects and from different imaging modalities.
Zheng, Yuanjie; Grossman, Murray; Awate, Suyash P.; Gee, James C.
2013-01-01
We propose to use the sparseness property of the gradient probability distribution to estimate the intensity nonuniformity in medical images, resulting in two novel automatic methods: a non-parametric method and a parametric method. Our methods are easy to implement because they both solve an iteratively re-weighted least squares problem. They are remarkably accurate as shown by our experiments on images of different imaged objects and from different imaging modalities. PMID:20426191
Generative models for discovering sparse distributed representations.
Hinton, G E; Ghahramani, Z
1997-01-01
We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations. PMID:9304685
2016-09-01
is to fit empirical Beta distributions to observed data, and then to use a randomization approach to make inferences on the difference between...a Ridit analysis on the often sparse data sets in many Flying Qualities applicationsi. The method of this paper is to fit empirical Beta ...One such measure is the discrete- probability-distribution version of the (squared) ‘Hellinger Distance’ (Yang & Le Cam , 2000) 2(, ) = 1
A Sparse Bayesian Approach for Forward-Looking Superresolution Radar Imaging
Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu
2017-01-01
This paper presents a sparse superresolution approach for high cross-range resolution imaging of forward-looking scanning radar based on the Bayesian criterion. First, a novel forward-looking signal model is established as the product of the measurement matrix and the cross-range target distribution, which is more accurate than the conventional convolution model. Then, based on the Bayesian criterion, the widely-used sparse regularization is considered as the penalty term to recover the target distribution. The derivation of the cost function is described, and finally, an iterative expression for minimizing this function is presented. Alternatively, this paper discusses how to estimate the single parameter of Gaussian noise. With the advantage of a more accurate model, the proposed sparse Bayesian approach enjoys a lower model error. Meanwhile, when compared with the conventional superresolution methods, the proposed approach shows high cross-range resolution and small location error. The superresolution results for the simulated point target, scene data, and real measured data are presented to demonstrate the superior performance of the proposed approach. PMID:28604583
Dimension-Factorized Range Migration Algorithm for Regularly Distributed Array Imaging
Guo, Qijia; Wang, Jie; Chang, Tianying
2017-01-01
The two-dimensional planar MIMO array is a popular approach for millimeter wave imaging applications. As a promising practical alternative, sparse MIMO arrays have been devised to reduce the number of antenna elements and transmitting/receiving channels with predictable and acceptable loss in image quality. In this paper, a high precision three-dimensional imaging algorithm is proposed for MIMO arrays of the regularly distributed type, especially the sparse varieties. Termed the Dimension-Factorized Range Migration Algorithm, the new imaging approach factorizes the conventional MIMO Range Migration Algorithm into multiple operations across the sparse dimensions. The thinner the sparse dimensions of the array, the more efficient the new algorithm will be. Advantages of the proposed approach are demonstrated by comparison with the conventional MIMO Range Migration Algorithm and its non-uniform fast Fourier transform based variant in terms of all the important characteristics of the approaches, especially the anti-noise capability. The computation cost is analyzed as well to evaluate the efficiency quantitatively. PMID:29113083
Cross-domain expression recognition based on sparse coding and transfer learning
NASA Astrophysics Data System (ADS)
Yang, Yong; Zhang, Weiyi; Huang, Yong
2017-05-01
Traditional facial expression recognition methods usually assume that the training set and the test set are independent and identically distributed. However, in actual expression recognition applications, the conditions of independent and identical distribution are hardly satisfied for the training set and test set because of the difference of light, shade, race and so on. In order to solve this problem and improve the performance of expression recognition in the actual applications, a novel method based on transfer learning and sparse coding is applied to facial expression recognition. First of all, a common primitive model, that is, the dictionary is learnt. Then, based on the idea of transfer learning, the learned primitive pattern is transferred to facial expression and the corresponding feature representation is obtained by sparse coding. The experimental results in CK +, JAFFE and NVIE database shows that the transfer learning based on sparse coding method can effectively improve the expression recognition rate in the cross-domain expression recognition task and is suitable for the practical facial expression recognition applications.
Greedy Sparse Approaches for Homological Coverage in Location Unaware Sensor Networks
2017-12-08
GlobalSIP); 2013 Dec; Austin , TX . p. 595– 598. 33. Farah C, Schwaner F, Abedi A, Worboys M. Distributed homology algorithm to detect topological events...ARL-TR-8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence...8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence J Moore
Sparse spikes super-resolution on thin grids II: the continuous basis pursuit
NASA Astrophysics Data System (ADS)
Duval, Vincent; Peyré, Gabriel
2017-09-01
This article analyzes the performance of the continuous basis pursuit (C-BP) method for sparse super-resolution. The C-BP has been recently proposed by Ekanadham, Tranchina and Simoncelli as a refined discretization scheme for the recovery of spikes in inverse problems regularization. One of the most well known discretization scheme, the basis pursuit (BP, also known as \
A view of Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Denning, P. J.
1986-01-01
Pentti Kanerva is working on a new class of computers, which are called pattern computers. Pattern computers may close the gap between capabilities of biological organisms to recognize and act on patterns (visual, auditory, tactile, or olfactory) and capabilities of modern computers. Combinations of numeric, symbolic, and pattern computers may one day be capable of sustaining robots. The overview of the requirements for a pattern computer, a summary of Kanerva's Sparse Distributed Memory (SDM), and examples of tasks this computer can be expected to perform well are given.
Augmented l1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm. Revision 1
2012-10-17
nonzero and sampled from the standard Gaussian distribution (for Figure 2) or the Bernoulli distribution (for Figure 3). Both tests had the same sensing...dual variable y(k) Figure 3: Convergence of primal and dual variables of three algorithms on Bernoulli sparse x0 was the slowest. Besides the obvious...slower convergence than the final stage. Comparing the results of two tests, the convergence was faster on the Bernoulli sparse signal than the
Notes on implementation of sparsely distributed memory
NASA Technical Reports Server (NTRS)
Keeler, J. D.; Denning, P. J.
1986-01-01
The Sparsely Distributed Memory (SDM) developed by Kanerva is an unconventional memory design with very interesting and desirable properties. The memory works in a manner that is closely related to modern theories of human memory. The SDM model is discussed in terms of its implementation in hardware. Two appendices discuss the unconventional approaches of the SDM: Appendix A treats a resistive circuit for fast, parallel address decoding; and Appendix B treats a systolic array for high throughput read and write operations.
Li, Ziyi; Safo, Sandra E; Long, Qi
2017-07-11
Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks that are often represented by graphs. Recent work has shown that incorporating such biological information improves feature selection and prediction performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article, we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior biological information in variable selection. Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are suggested in the literature to be related with glioblastoma. The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior biological information in variable selection, leading to improved feature selection and more interpretable principal component loadings and potentially providing insights on molecular underpinnings of complex diseases.
Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners
Li, Ruipeng; Saad, Yousef
2017-08-01
This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less
Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ruipeng; Saad, Yousef
This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less
A Methodological Review of Structural Equation Modelling in Higher Education Research
ERIC Educational Resources Information Center
Green, Teegan
2016-01-01
Despite increases in the number of articles published in higher education journals using structural equation modelling (SEM), research addressing their statistical sufficiency, methodological appropriateness and quantitative rigour is sparse. In response, this article provides a census of all covariance-based SEM articles published up until 2013…
Objective sea level pressure analysis for sparse data areas
NASA Technical Reports Server (NTRS)
Druyan, L. M.
1972-01-01
A computer procedure was used to analyze the pressure distribution over the North Pacific Ocean for eleven synoptic times in February, 1967. Independent knowledge of the central pressures of lows is shown to reduce the analysis errors for very sparse data coverage. The application of planned remote sensing of sea-level wind speeds is shown to make a significant contribution to the quality of the analysis especially in the high gradient mid-latitudes and for sparse coverage of conventional observations (such as over Southern Hemisphere oceans). Uniform distribution of the available observations of sea-level pressure and wind velocity yields results far superior to those derived from a random distribution. A generalization of the results indicates that the average lower limit for analysis errors is between 2 and 2.5 mb based on the perfect specification of the magnitude of the sea-level pressure gradient from a known verification analysis. A less than perfect specification will derive from wind-pressure relationships applied to satellite observed wind speeds.
BI-sparsity pursuit for robust subspace recovery
Bian, Xiao; Krim, Hamid
2015-09-01
Here, the success of sparse models in computer vision and machine learning in many real-world applications, may be attributed in large part, to the fact that many high dimensional data are distributed in a union of low dimensional subspaces. The underlying structure may, however, be adversely affected by sparse errors, thus inducing additional complexity in recovering it. In this paper, we propose a bi-sparse model as a framework to investigate and analyze this problem, and provide as a result , a novel algorithm to recover the union of subspaces in presence of sparse corruptions. We additionally demonstrate the effectiveness ofmore » our method by experiments on real-world vision data.« less
Application of a sparseness constraint in multivariate curve resolution - Alternating least squares.
Hugelier, Siewert; Piqueras, Sara; Bedia, Carmen; de Juan, Anna; Ruckebusch, Cyril
2018-02-13
The use of sparseness in chemometrics is a concept that has increased in popularity. The advantage is, above all, a better interpretability of the results obtained. In this work, sparseness is implemented as a constraint in multivariate curve resolution - alternating least squares (MCR-ALS), which aims at reproducing raw (mixed) data by a bilinear model of chemically meaningful profiles. In many cases, the mixed raw data analyzed are not sparse by nature, but their decomposition profiles can be, as it is the case in some instrumental responses, such as mass spectra, or in concentration profiles linked to scattered distribution maps of powdered samples in hyperspectral images. To induce sparseness in the constrained profiles, one-dimensional and/or two-dimensional numerical arrays can be fitted using a basis of Gaussian functions with a penalty on the coefficients. In this work, a least squares regression framework with L 0 -norm penalty is applied. This L 0 -norm penalty constrains the number of non-null coefficients in the fit of the array constrained without having an a priori on the number and their positions. It has been shown that the sparseness constraint induces the suppression of values linked to uninformative channels and noise in MS spectra and improves the location of scattered compounds in distribution maps, resulting in a better interpretability of the constrained profiles. An additional benefit of the sparseness constraint is a lower ambiguity in the bilinear model, since the major presence of null coefficients in the constrained profiles also helps to limit the solutions for the profiles in the counterpart matrix of the MCR bilinear model. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, L; Liu, X J
2016-06-03
With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.
Perceptually controlled doping for audio source separation
NASA Astrophysics Data System (ADS)
Mahé, Gaël; Nadalin, Everton Z.; Suyama, Ricardo; Romano, João MT
2014-12-01
The separation of an underdetermined audio mixture can be performed through sparse component analysis (SCA) that relies however on the strong hypothesis that source signals are sparse in some domain. To overcome this difficulty in the case where the original sources are available before the mixing process, the informed source separation (ISS) embeds in the mixture a watermark, which information can help a further separation. Though powerful, this technique is generally specific to a particular mixing setup and may be compromised by an additional bitrate compression stage. Thus, instead of watermarking, we propose a `doping' method that makes the time-frequency representation of each source more sparse, while preserving its audio quality. This method is based on an iterative decrease of the distance between the distribution of the signal and a target sparse distribution, under a perceptual constraint. We aim to show that the proposed approach is robust to audio coding and that the use of the sparsified signals improves the source separation, in comparison with the original sources. In this work, the analysis is made only in instantaneous mixtures and focused on voice sources.
EIT Imaging Regularization Based on Spectral Graph Wavelets.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut
2017-09-01
The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.
The HTM Spatial Pooler-A Neocortical Algorithm for Online Sparse Distributed Coding.
Cui, Yuwei; Ahmad, Subutai; Hawkins, Jeff
2017-01-01
Hierarchical temporal memory (HTM) provides a theoretical framework that models several key computational principles of the neocortex. In this paper, we analyze an important component of HTM, the HTM spatial pooler (SP). The SP models how neurons learn feedforward connections and form efficient representations of the input. It converts arbitrary binary input patterns into sparse distributed representations (SDRs) using a combination of competitive Hebbian learning rules and homeostatic excitability control. We describe a number of key properties of the SP, including fast adaptation to changing input statistics, improved noise robustness through learning, efficient use of cells, and robustness to cell death. In order to quantify these properties we develop a set of metrics that can be directly computed from the SP outputs. We show how the properties are met using these metrics and targeted artificial simulations. We then demonstrate the value of the SP in a complete end-to-end real-world HTM system. We discuss the relationship with neuroscience and previous studies of sparse coding. The HTM spatial pooler represents a neurally inspired algorithm for learning sparse representations from noisy data streams in an online fashion.
EPR oximetry in three spatial dimensions using sparse spin distribution
NASA Astrophysics Data System (ADS)
Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Vikram, Deepti S.; Kuppusamy, Periannan
2008-08-01
A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa- n-butoxy naphthalocyanine (LiNc-BuO) probe using an L-band EPR spectrometer.
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...Utilizing Sparse Array Data to Develop and Implement a New Method for Estimating Blue and Fin Whale Density Len Thomas & Danielle Harris Centre...to develop and implement a new method for estimating blue and fin whale density that is effective over large spatial scales and is designed to cope
A new scheduling algorithm for parallel sparse LU factorization with static pivoting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigori, Laura; Li, Xiaoye S.
2002-08-20
In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.
The dark matter of galaxy voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.
2014-03-01
How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.
NASA Astrophysics Data System (ADS)
Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.
2011-12-01
Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently than traditional MCMC.
Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods
Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev
2013-01-01
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72–88, 2013. PMID:23847452
Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods.
Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev
2013-05-01
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L 2 -norm regularization. However, sparse representation methods via L 1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L 1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72-88, 2013.
Kim, Steve M; Ganguli, Surya; Frank, Loren M
2012-08-22
Hippocampal place cells convey spatial information through a combination of spatially selective firing and theta phase precession. The way in which this information influences regions like the subiculum that receive input from the hippocampus remains unclear. The subiculum receives direct inputs from area CA1 of the hippocampus and sends divergent output projections to many other parts of the brain, so we examined the firing patterns of rat subicular neurons. We found a substantial transformation in the subicular code for space from sparse to dense firing rate representations along a proximal-distal anatomical gradient: neurons in the proximal subiculum are more similar to canonical, sparsely firing hippocampal place cells, whereas neurons in the distal subiculum have higher firing rates and more distributed spatial firing patterns. Using information theory, we found that the more distributed spatial representation in the subiculum carries, on average, more information about spatial location and context than the sparse spatial representation in CA1. Remarkably, despite the disparate firing rate properties of subicular neurons, we found that neurons at all proximal-distal locations exhibit robust theta phase precession, with similar spiking oscillation frequencies as neurons in area CA1. Our findings suggest that the subiculum is specialized to compress sparse hippocampal spatial codes into highly informative distributed codes suitable for efficient communication to other brain regions. Moreover, despite this substantial compression, the subiculum maintains finer scale temporal properties that may allow it to participate in oscillatory phase coding and spike timing-dependent plasticity in coordination with other regions of the hippocampal circuit.
Analysis, tuning and comparison of two general sparse solvers for distributed memory computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amestoy, P.R.; Duff, I.S.; L'Excellent, J.-Y.
2000-06-30
We describe the work performed in the context of a Franco-Berkeley funded project between NERSC-LBNL located in Berkeley (USA) and CERFACS-ENSEEIHT located in Toulouse (France). We discuss both the tuning and performance analysis of two distributed memory sparse solvers (superlu from Berkeley and mumps from Toulouse) on the 512 processor Cray T3E from NERSC (Lawrence Berkeley National Laboratory). This project gave us the opportunity to improve the algorithms and add new features to the codes. We then quite extensively analyze and compare the two approaches on a set of large problems from real applications. We further explain the main differencesmore » in the behavior of the approaches on artificial regular grid problems. As a conclusion to this activity report, we mention a set of parallel sparse solvers on which this type of study should be extended.« less
Szyda, Joanna; Liu, Zengting; Zatoń-Dobrowolska, Magdalena; Wierzbicki, Heliodor; Rzasa, Anna
2008-01-01
We analysed data from a selective DNA pooling experiment with 130 individuals of the arctic fox (Alopex lagopus), which originated from 2 different types regarding body size. The association between alleles of 6 selected unlinked molecular markers and body size was tested by using univariate and multinomial logistic regression models, applying odds ratio and test statistics from the power divergence family. Due to the small sample size and the resulting sparseness of the data table, in hypothesis testing we could not rely on the asymptotic distributions of the tests. Instead, we tried to account for data sparseness by (i) modifying confidence intervals of odds ratio; (ii) using a normal approximation of the asymptotic distribution of the power divergence tests with different approaches for calculating moments of the statistics; and (iii) assessing P values empirically, based on bootstrap samples. As a result, a significant association was observed for 3 markers. Furthermore, we used simulations to assess the validity of the normal approximation of the asymptotic distribution of the test statistics under the conditions of small and sparse samples.
Discriminative Bayesian Dictionary Learning for Classification.
Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal
2016-12-01
We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.
Computer Sciences and Data Systems, volume 1
NASA Technical Reports Server (NTRS)
1987-01-01
Topics addressed include: software engineering; university grants; institutes; concurrent processing; sparse distributed memory; distributed operating systems; intelligent data management processes; expert system for image analysis; fault tolerant software; and architecture research.
Effects of partitioning and scheduling sparse matrix factorization on communication and load balance
NASA Technical Reports Server (NTRS)
Venugopal, Sesh; Naik, Vijay K.
1991-01-01
A block based, automatic partitioning and scheduling methodology is presented for sparse matrix factorization on distributed memory systems. Using experimental results, this technique is analyzed for communication and load imbalance overhead. To study the performance effects, these overheads were compared with those obtained from a straightforward 'wrap mapped' column assignment scheme. All experimental results were obtained using test sparse matrices from the Harwell-Boeing data set. The results show that there is a communication and load balance tradeoff. The block based method results in lower communication cost whereas the wrap mapped scheme gives better load balance.
Power Enhancement in High Dimensional Cross-Sectional Tests
Fan, Jianqing; Liao, Yuan; Yao, Jiawei
2016-01-01
We propose a novel technique to boost the power of testing a high-dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated only by a couple of components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme-value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component”, which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. As specific applications, the proposed methods are applied to testing the factor pricing models and validating the cross-sectional independence in panel data models. PMID:26778846
Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study
Brownstone, Robert M.
2015-01-01
Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740
Curricular Issues in Urban High School Physical Education
ERIC Educational Resources Information Center
Schmidlein, Robert; Vickers, Brad; Chepyator-Thomson, Rose
2014-01-01
Urban physical education curriculum articles are sparsely published in major educational journals (Chepyator-Thomson et al., 2008; Culp, 2005). This leaves urban physical educators the daunting task to modify and prepare curriculum based on formal class training and educational workshops and to interpret journal articles to be applied to the urban…
Nonlinear spike-and-slab sparse coding for interpretable image encoding.
Shelton, Jacquelyn A; Sheikh, Abdul-Saboor; Bornschein, Jörg; Sterne, Philip; Lücke, Jörg
2015-01-01
Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (non)linear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process.
Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding
Shelton, Jacquelyn A.; Sheikh, Abdul-Saboor; Bornschein, Jörg; Sterne, Philip; Lücke, Jörg
2015-01-01
Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (non)linear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process. PMID:25954947
DISTRIBUTIONAL CHANGES AND POPULATION STATUS FOR AMPHIBIANS IN THE EASTERN MOJAVE DESERT
A number of amphibian species historically inhabited sparsely distributed wetlands in the Mojave Desert of western North America, habitats that have been dramatically altered or eliminated as a result of human activities. The population status and distributional changes for amphi...
NASA Astrophysics Data System (ADS)
Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui
2018-01-01
Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.
AZTEC. Parallel Iterative method Software for Solving Linear Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.; Shadid, J.; Tuminaro, R.
1995-07-01
AZTEC is an interactive library that greatly simplifies the parrallelization process when solving the linear systems of equations Ax=b where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. AZTEC is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matricesmore » for parallel solutions.« less
On Edge Exchangeable Random Graphs
NASA Astrophysics Data System (ADS)
Janson, Svante
2017-06-01
We study a recent model for edge exchangeable random graphs introduced by Crane and Dempsey; in particular we study asymptotic properties of the random simple graph obtained by merging multiple edges. We study a number of examples, and show that the model can produce dense, sparse and extremely sparse random graphs. One example yields a power-law degree distribution. We give some examples where the random graph is dense and converges a.s. in the sense of graph limit theory, but also an example where a.s. every graph limit is the limit of some subsequence. Another example is sparse and yields convergence to a non-integrable generalized graphon defined on (0,∞).
NASA Astrophysics Data System (ADS)
Galiatsatos, P. G.; Tennyson, J.
2012-11-01
The most time consuming step within the framework of the UK R-matrix molecular codes is that of the diagonalization of the inner region Hamiltonian matrix (IRHM). Here we present the method that we follow to speed up this step. We use shared memory machines (SMM), distributed memory machines (DMM), the OpenMP directive based parallel language, the MPI function based parallel language, the sparse matrix diagonalizers ARPACK and PARPACK, a variation for real symmetric matrices of the official coordinate sparse matrix format and finally a parallel sparse matrix-vector product (PSMV). The efficient application of the previous techniques rely on two important facts: the sparsity of the matrix is large enough (more than 98%) and in order to get back converged results we need a small only part of the matrix spectrum.
Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.
Han, Changcai; Yang, Jinsheng
2017-10-30
The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.
Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network
Han, Changcai; Yang, Jinsheng
2017-01-01
The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes. PMID:29084155
The effects of missing data on global ozone estimates
NASA Technical Reports Server (NTRS)
Drewry, J. W.; Robbins, J. L.
1981-01-01
The effects of missing data and model truncation on estimates of the global mean, zonal distribution, and global distribution of ozone are considered. It is shown that missing data can introduce biased estimates with errors that are not accounted for in the accuracy calculations of empirical modeling techniques. Data-fill techniques are introduced and used for evaluating error bounds and constraining the estimate in areas of sparse and missing data. It is found that the accuracy of the global mean estimate is more dependent on data distribution than model size. Zonal features can be accurately described by 7th order models over regions of adequate data distribution. Data variance accounted for by higher order models appears to represent climatological features of columnar ozone rather than pure error. Data-fill techniques can prevent artificial feature generation in regions of sparse or missing data without degrading high order estimates over dense data regions.
ERIC Educational Resources Information Center
Brents, Barbara G.; Hausbeck, Kathryn
2005-01-01
This article examines violence in legalized brothels in Nevada. Debates over prostitution policies in the United States have long focused on questions of safety and risk. These discourses inevitably invoke the coupling of violence and prostitution, though systematic examinations of the relationship between the two are sparse. This article explores…
Pole-Like Road Furniture Detection in Sparse and Unevenly Distributed Mobile Laser Scanning Data
NASA Astrophysics Data System (ADS)
Li, F.; Lehtomäki, M.; Oude Elberink, S.; Vosselman, G.; Puttonen, E.; Kukko, A.; Hyyppä, J.
2018-05-01
Pole-like road furniture detection received much attention due to its traffic functionality in recent years. In this paper, we develop a framework to detect pole-like road furniture from sparse mobile laser scanning data. The framework is carried out in four steps. The unorganised point cloud is first partitioned. Then above ground points are clustered and roughly classified after removing ground points. A slicing check in combination with cylinder masking is proposed to extract pole-like road furniture candidates. Pole-like road furniture are obtained after occlusion analysis in the last stage. The average completeness and correctness of pole-like road furniture in sparse and unevenly distributed mobile laser scanning data was above 0.83. It is comparable to the state of art in the field of pole-like road furniture detection in mobile laser scanning data of good quality and is potentially of practical use in the processing of point clouds collected by autonomous driving platforms.
Data traffic reduction schemes for sparse Cholesky factorizations
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1988-01-01
Load distribution schemes are presented which minimize the total data traffic in the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems with local and shared memory. The total data traffic in factoring an n x n sparse, symmetric, positive definite matrix representing an n-vertex regular 2-D grid graph using n (sup alpha), alpha is equal to or less than 1, processors are shown to be O(n(sup 1 + alpha/2)). It is O(n(sup 3/2)), when n (sup alpha), alpha is equal to or greater than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal. The schemes allow efficient use of up to O(n) processors before the total data traffic reaches the maximum value of O(n(sup 3/2)). The partitioning employed within the scheme, allows a better utilization of the data accessed from shared memory than those of previously published methods.
Reconstructing cortical current density by exploring sparseness in the transform domain
NASA Astrophysics Data System (ADS)
Ding, Lei
2009-05-01
In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.
2016-05-01
large but correlated noise and signal interference (i.e., low -rank interference). Another contribution is the implementation of deep learning...representation, low rank, deep learning 52 Tung-Duong Tran-Luu 301-394-3082Unclassified Unclassified Unclassified UU ii Approved for public release; distribution...Classification of Acoustic Transients 6 3.2 Joint Sparse Representation with Low -Rank Interference 7 3.3 Simultaneous Group-and-Joint Sparse Representation
Biclustering sparse binary genomic data.
van Uitert, Miranda; Meuleman, Wouter; Wessels, Lodewyk
2008-12-01
Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two algorithms have been proposed that specifically deal with binary matrices. None of the gene expression biclustering algorithms can handle the large number of zeros in sparse binary matrices. The two proposed binary algorithms failed to produce meaningful results. In this article, we present a new algorithm that is able to extract biclusters from sparse, binary datasets. A powerful feature is that biclusters with different numbers of rows and columns can be detected, varying from many rows to few columns and few rows to many columns. It allows the user to guide the search towards biclusters of specific dimensions. When applying our algorithm to an input matrix derived from TRANSFAC, we find transcription factors with distinctly dissimilar binding motifs, but a clear set of common targets that are significantly enriched for GO categories.
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.
2012-06-15
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less
Application distribution model and related security attacks in VANET
NASA Astrophysics Data System (ADS)
Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian
2013-03-01
In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.
NASA Astrophysics Data System (ADS)
Hyman, J. D.; Aldrich, G.; Viswanathan, H.; Makedonska, N.; Karra, S.
2016-08-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.
NASA Astrophysics Data System (ADS)
Hyman, J.; Aldrich, G. A.; Viswanathan, H. S.; Makedonska, N.; Karra, S.
2016-12-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semi-correlation, and non-correlation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same.We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.
Massively parallel sparse matrix function calculations with NTPoly
NASA Astrophysics Data System (ADS)
Dawson, William; Nakajima, Takahito
2018-04-01
We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Xu, Richard Yi Da; Luo, Xiangfeng
2018-05-01
Sparse nonnegative matrix factorization (SNMF) aims to factorize a data matrix into two optimized nonnegative sparse factor matrices, which could benefit many tasks, such as document-word co-clustering. However, the traditional SNMF typically assumes the number of latent factors (i.e., dimensionality of the factor matrices) to be fixed. This assumption makes it inflexible in practice. In this paper, we propose a doubly sparse nonparametric NMF framework to mitigate this issue by using dependent Indian buffet processes (dIBP). We apply a correlation function for the generation of two stick weights associated with each column pair of factor matrices while still maintaining their respective marginal distribution specified by IBP. As a consequence, the generation of two factor matrices will be columnwise correlated. Under this framework, two classes of correlation function are proposed: 1) using bivariate Beta distribution and 2) using Copula function. Compared with the single IBP-based NMF, this paper jointly makes two factor matrices nonparametric and sparse, which could be applied to broader scenarios, such as co-clustering. This paper is seen to be much more flexible than Gaussian process-based and hierarchial Beta process-based dIBPs in terms of allowing the two corresponding binary matrix columns to have greater variations in their nonzero entries. Our experiments on synthetic data show the merits of this paper compared with the state-of-the-art models in respect of factorization efficiency, sparsity, and flexibility. Experiments on real-world data sets demonstrate the efficiency of this paper in document-word co-clustering tasks.
Margin based ontology sparse vector learning algorithm and applied in biology science.
Gao, Wei; Qudair Baig, Abdul; Ali, Haidar; Sajjad, Wasim; Reza Farahani, Mohammad
2017-01-01
In biology field, the ontology application relates to a large amount of genetic information and chemical information of molecular structure, which makes knowledge of ontology concepts convey much information. Therefore, in mathematical notation, the dimension of vector which corresponds to the ontology concept is often very large, and thus improves the higher requirements of ontology algorithm. Under this background, we consider the designing of ontology sparse vector algorithm and application in biology. In this paper, using knowledge of marginal likelihood and marginal distribution, the optimized strategy of marginal based ontology sparse vector learning algorithm is presented. Finally, the new algorithm is applied to gene ontology and plant ontology to verify its efficiency.
The Discipline's Escalating Whisper: Social Work and Black Men's Mental Health
ERIC Educational Resources Information Center
Watkins, Daphne C.; Hawkins, Jaclynn; Mitchell, Jamie A.
2015-01-01
Objective: Though sparse in previous years, research on the mental health of Black men has recently experienced a gradual increase in social work journals. This article systematically organizes and critically examines peer-reviewed, social work evidence on the mental health of Black men. Methods: Twenty-two peer-reviewed articles from social work…
Bi Sparsity Pursuit: A Paradigm for Robust Subspace Recovery
2016-09-27
16. SECURITY CLASSIFICATION OF: The success of sparse models in computer vision and machine learning is due to the fact that, high dimensional data...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Signal recovery, Sparse learning , Subspace modeling REPORT DOCUMENTATION PAGE 11...vision and machine learning is due to the fact that, high dimensional data is distributed in a union of low dimensional subspaces in many real-world
NASA Astrophysics Data System (ADS)
Orović, Irena; Stanković, Srdjan; Amin, Moeness
2013-05-01
A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.
The Cortex Transform as an image preprocessor for sparse distributed memory: An initial study
NASA Technical Reports Server (NTRS)
Olshausen, Bruno; Watson, Andrew
1990-01-01
An experiment is described which was designed to evaluate the use of the Cortex Transform as an image processor for Sparse Distributed Memory (SDM). In the experiment, a set of images were injected with Gaussian noise, preprocessed with the Cortex Transform, and then encoded into bit patterns. The various spatial frequency bands of the Cortex Transform were encoded separately so that they could be evaluated based on their ability to properly cluster patterns belonging to the same class. The results of this study indicate that by simply encoding the low pass band of the Cortex Transform, a very suitable input representation for the SDM can be achieved.
ROPE: Recoverable Order-Preserving Embedding of Natural Language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widemann, David P.; Wang, Eric X.; Thiagarajan, Jayaraman J.
We present a novel Recoverable Order-Preserving Embedding (ROPE) of natural language. ROPE maps natural language passages from sparse concatenated one-hot representations to distributed vector representations of predetermined fixed length. We use Euclidean distance to return search results that are both grammatically and semantically similar. ROPE is based on a series of random projections of distributed word embeddings. We show that our technique typically forms a dictionary with sufficient incoherence such that sparse recovery of the original text is possible. We then show how our embedding allows for efficient and meaningful natural search and retrieval on Microsoft’s COCO dataset and themore » IMDB Movie Review dataset.« less
Automatic Management of Parallel and Distributed System Resources
NASA Technical Reports Server (NTRS)
Yan, Jerry; Ngai, Tin Fook; Lundstrom, Stephen F.
1990-01-01
Viewgraphs on automatic management of parallel and distributed system resources are presented. Topics covered include: parallel applications; intelligent management of multiprocessing systems; performance evaluation of parallel architecture; dynamic concurrent programs; compiler-directed system approach; lattice gaseous cellular automata; and sparse matrix Cholesky factorization.
AMPHIBIAN DECLINES AND ENVIRONMENTAL CHANGE IN THE EASTERN "MOJAVE DESERT"
A number of amphibian species historically inhabited sparsely distributed wetlands in the Mojave Desert, USA, habitats that have been dramatically altered or eliminated as a result of human activities. The population status and distribution of amphibians were investigated in a 20...
A Distributed Learning Method for ℓ1-Regularized Kernel Machine over Wireless Sensor Networks
Ji, Xinrong; Hou, Cuiqin; Hou, Yibin; Gao, Fang; Wang, Shulong
2016-01-01
In wireless sensor networks, centralized learning methods have very high communication costs and energy consumption. These are caused by the need to transmit scattered training examples from various sensor nodes to the central fusion center where a classifier or a regression machine is trained. To reduce the communication cost, a distributed learning method for a kernel machine that incorporates ℓ1 norm regularization (ℓ1-regularized) is investigated, and a novel distributed learning algorithm for the ℓ1-regularized kernel minimum mean squared error (KMSE) machine is proposed. The proposed algorithm relies on in-network processing and a collaboration that transmits the sparse model only between single-hop neighboring nodes. This paper evaluates the proposed algorithm with respect to the prediction accuracy, the sparse rate of model, the communication cost and the number of iterations on synthetic and real datasets. The simulation results show that the proposed algorithm can obtain approximately the same prediction accuracy as that obtained by the batch learning method. Moreover, it is significantly superior in terms of the sparse rate of model and communication cost, and it can converge with fewer iterations. Finally, an experiment conducted on a wireless sensor network (WSN) test platform further shows the advantages of the proposed algorithm with respect to communication cost. PMID:27376298
NASA Astrophysics Data System (ADS)
Tamamitsu, Miu; Zhang, Yibo; Wang, Hongda; Wu, Yichen; Ozcan, Aydogan
2018-02-01
The Sparsity of the Gradient (SoG) is a robust autofocusing criterion for holography, where the gradient modulus of the complex refocused hologram is calculated, on which a sparsity metric is applied. Here, we compare two different choices of sparsity metrics used in SoG, specifically, the Gini index (GI) and the Tamura coefficient (TC), for holographic autofocusing on dense/connected or sparse samples. We provide a theoretical analysis predicting that for uniformly distributed image data, TC and GI exhibit similar behavior, while for naturally sparse images containing few high-valued signal entries and many low-valued noisy background pixels, TC is more sensitive to distribution changes in the signal and more resistive to background noise. These predictions are also confirmed by experimental results using SoG-based holographic autofocusing on dense and connected samples (such as stained breast tissue sections) as well as highly sparse samples (such as isolated Giardia lamblia cysts). Through these experiments, we found that ToG and GoG offer almost identical autofocusing performance on dense and connected samples, whereas for naturally sparse samples, GoG should be calculated on a relatively small region of interest (ROI) closely surrounding the object, while ToG offers more flexibility in choosing a larger ROI containing more background pixels.
NASA Astrophysics Data System (ADS)
Magyar, Andrew
The recent discovery of cells that respond to purely conceptual features of the environment (particular people, landmarks, objects, etc) in the human medial temporal lobe (MTL), has raised many questions about the nature of the neural code in humans. The goal of this dissertation is to develop a novel statistical method based upon maximum likelihood regression which will then be applied to these experiments in order to produce a quantitative description of the coding properties of the human MTL. In general, the method is applicable to any experiments in which a sequence of stimuli are presented to an organism while the binary responses of a large number of cells are recorded in parallel. The central concept underlying the approach is the total probability that a neuron responds to a random stimulus, called the neuronal sparsity. The model then estimates the distribution of response probabilities across the population of cells. Applying the method to single-unit recordings from the human medial temporal lobe, estimates of the sparsity distributions are acquired in four regions: the hippocampus, the entorhinal cortex, the amygdala, and the parahippocampal cortex. The resulting distributions are found to be sparse (large fraction of cells with a low response probability) and highly non-uniform, with a large proportion of ultra-sparse neurons that possess a very low response probability, and a smaller population of cells which respond much more frequently. Rammifications of the results are discussed in relation to the sparse coding hypothesis, and comparisons are made between the statistics of the human medial temporal lobe cells and place cells observed in the rodent hippocampus.
Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD
NASA Astrophysics Data System (ADS)
Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun
2017-12-01
This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.
Structured networks support sparse traveling waves in rodent somatosensory cortex.
Moldakarimov, Samat; Bazhenov, Maxim; Feldman, Daniel E; Sejnowski, Terrence J
2018-05-15
Neurons responding to different whiskers are spatially intermixed in the superficial layer 2/3 (L2/3) of the rodent barrel cortex, where a single whisker deflection activates a sparse, distributed neuronal population that spans multiple cortical columns. How the superficial layer of the rodent barrel cortex is organized to support such distributed sensory representations is not clear. In a computer model, we tested the hypothesis that sensory representations in L2/3 of the rodent barrel cortex are formed by activity propagation horizontally within L2/3 from a site of initial activation. The model explained the observed properties of L2/3 neurons, including the low average response probability in the majority of responding L2/3 neurons, and the existence of a small subset of reliably responding L2/3 neurons. Sparsely propagating traveling waves similar to those observed in L2/3 of the rodent barrel cortex occurred in the model only when a subnetwork of strongly connected neurons was immersed in a much larger network of weakly connected neurons.
Neural networks and MIMD-multiprocessors
NASA Technical Reports Server (NTRS)
Vanhala, Jukka; Kaski, Kimmo
1990-01-01
Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.
Sparse principal component analysis in medical shape modeling
NASA Astrophysics Data System (ADS)
Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus
2006-03-01
Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.
Safo, Sandra E; Li, Shuzhao; Long, Qi
2018-03-01
Integrative analysis of high dimensional omics data is becoming increasingly popular. At the same time, incorporating known functional relationships among variables in analysis of omics data has been shown to help elucidate underlying mechanisms for complex diseases. In this article, our goal is to assess association between transcriptomic and metabolomic data from a Predictive Health Institute (PHI) study that includes healthy adults at a high risk of developing cardiovascular diseases. Adopting a strategy that is both data-driven and knowledge-based, we develop statistical methods for sparse canonical correlation analysis (CCA) with incorporation of known biological information. Our proposed methods use prior network structural information among genes and among metabolites to guide selection of relevant genes and metabolites in sparse CCA, providing insight on the molecular underpinning of cardiovascular disease. Our simulations demonstrate that the structured sparse CCA methods outperform several existing sparse CCA methods in selecting relevant genes and metabolites when structural information is informative and are robust to mis-specified structural information. Our analysis of the PHI study reveals that a number of gene and metabolic pathways including some known to be associated with cardiovascular diseases are enriched in the set of genes and metabolites selected by our proposed approach. © 2017, The International Biometric Society.
Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...
2016-08-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less
Gay fathers: a review of the literature.
Bozett, F W
1989-01-01
This article reviews the research literature on gay fathers, and includes brief historical perspectives and statistical data. The major portion of the article compares studies of gay fathers with other groups such as lesbian mothers and nongay fathers. Because the literature is sparse, and the research has severe limitations such as small sample size, few definitive statements about these men can be made with certainty. Even so, tentative generalizations are proposed. The article concludes with some suggestions for future research.
NASA Technical Reports Server (NTRS)
Keeler, James D.
1988-01-01
The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.
[Gender perspective can result in better research on sex differences and revascularization].
Löfmark, U; Hammarström, A
2001-07-25
This article focuses on how sex differences in revascularization, PTCA and CABG, are discussed in medical research. We selected and analyzed 10 articles identified through Medline, for the purpose of studying such discussions. Three explanatory models were identified by qualitative analysis: biological, psychosocial and discriminatory. Although the articles focused on sex differences in revascularization, the discussions in the articles on this issue were sparse. We demonstrate how a gender perspective can generate new questions and theories and contribute to a better prognosis for women and men with heart disease.
2011-09-01
strain data provided by in-situ strain sensors. The application focus is on the stain data obtained from FBG (Fiber Bragg Grating) sensor arrays...sparsely distributed lines to simulate strain data from FBG (Fiber Bragg Grating) arrays that provide either single-core (axial) or rosette (tri...when the measured strain data are sparse, as it is often the case when FBG sensors are used. For an inverse element without strain-sensor data, the
DEM generation from contours and a low-resolution DEM
NASA Astrophysics Data System (ADS)
Li, Xinghua; Shen, Huanfeng; Feng, Ruitao; Li, Jie; Zhang, Liangpei
2017-12-01
A digital elevation model (DEM) is a virtual representation of topography, where the terrain is established by the three-dimensional co-ordinates. In the framework of sparse representation, this paper investigates DEM generation from contours. Since contours are usually sparsely distributed and closely related in space, sparse spatial regularization (SSR) is enforced on them. In order to make up for the lack of spatial information, another lower spatial resolution DEM from the same geographical area is introduced. In this way, the sparse representation implements the spatial constraints in the contours and extracts the complementary information from the auxiliary DEM. Furthermore, the proposed method integrates the advantage of the unbiased estimation of kriging. For brevity, the proposed method is called the kriging and sparse spatial regularization (KSSR) method. The performance of the proposed KSSR method is demonstrated by experiments in Shuttle Radar Topography Mission (SRTM) 30 m DEM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m global digital elevation model (GDEM) generation from the corresponding contours and a 90 m DEM. The experiments confirm that the proposed KSSR method outperforms the traditional kriging and SSR methods, and it can be successfully used for DEM generation from contours.
Rangelov, Dragan; Müller, Hermann J; Zehetleitner, Michael
2017-05-01
Pop-out search implies that the target is always the first item selected, no matter how many distractors are presented. However, increasing evidence indicates that search is not entirely independent of display density even for pop-out targets: search is slower with sparse (few distractors) than with dense displays (many distractors). Despite its significance, the cause of this anomaly remains unclear. We investigated several mechanisms that could slow down search for pop-out targets. Consistent with the assumption that pop-out targets frequently fail to pop out in sparse displays, we observed greater variability of search duration for sparse displays relative to dense. Computational modeling of the response time distributions also supported the view that pop-out targets fail to pop out in sparse displays. Our findings strongly question the classical assumption that early processing of pop-out targets is independent of the distractors. Rather, the density of distractors critically influences whether or not a stimulus pops out. These results call for new, more reliable measures of pop-out search and potentially a reinterpretation of studies that used relatively sparse displays. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youzuo; Huang, Lianjie
2015-01-28
Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less
NASA Astrophysics Data System (ADS)
Lin, H.; Zhang, X.; Wu, X.; Tarnas, J. D.; Mustard, J. F.
2018-04-01
Quantitative analysis of hydrated minerals from hyperspectral remote sensing data is fundamental for understanding Martian geologic process. Because of the difficulties for selecting endmembers from hyperspectral images, a sparse unmixing algorithm has been proposed to be applied to CRISM data on Mars. However, it's challenge when the endmember library increases dramatically. Here, we proposed a new methodology termed Target Transformation Constrained Sparse Unmixing (TTCSU) to accurately detect hydrous minerals on Mars. A new version of target transformation technique proposed in our recent work was used to obtain the potential detections from CRISM data. Sparse unmixing constrained with these detections as prior information was applied to CRISM single-scattering albedo images, which were calculated using a Hapke radiative transfer model. This methodology increases success rate of the automatic endmember selection of sparse unmixing and could get more accurate abundances. CRISM images with well analyzed in Southwest Melas Chasma was used to validate our methodology in this study. The sulfates jarosite was detected from Southwest Melas Chasma, the distribution is consistent with previous work and the abundance is comparable. More validations will be done in our future work.
Medical Image Fusion Based on Feature Extraction and Sparse Representation
Wei, Gao; Zongxi, Song
2017-01-01
As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246
Highly parallel sparse Cholesky factorization
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Schreiber, Robert
1990-01-01
Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.
2012-09-30
Estimation Methods for Underwater OFDM 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. 6) Asynchronous Multiuser...multi-input multi-output ( MIMO ) OFDM is also pursued, where it is shown that the proposed hybrid initialization enables drastically improved receiver...are investigated. 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. This work studies a distributed system with
Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.
Sajda, Paul
2010-01-01
In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.
Measuring Sparseness in the Brain: Comment on Bowers (2009)
ERIC Educational Resources Information Center
Quian Quiroga, Rodrigo; Kreiman, Gabriel
2010-01-01
Bowers challenged the common view in favor of distributed representations in psychological modeling and the main arguments given against localist and grandmother cell coding schemes. He revisited the results of several single-cell studies, arguing that they do not support distributed representations. We praise the contribution of Bowers (2009) for…
Bayesian sparse channel estimation
NASA Astrophysics Data System (ADS)
Chen, Chulong; Zoltowski, Michael D.
2012-05-01
In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.
Evaluation of the MODIS Albedo Product over a Heterogeneous Agricultural Area
NASA Technical Reports Server (NTRS)
Sobrino, Jose Antonio; Franch, B.; Oltra-Carrio, R.; Vermote, E. F.; Fedele, E.
2013-01-01
In this article, the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/Albedo product (MCD43) is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction (EODIX) project campaign, which was developed in Barrax (Spain) in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal (RTLSR) (which corresponds to the MODIS BRDF algorithm) and the RossThick-Maignan-LiSparse-Reciprocal (RTLSR-HS), were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner (AHS) sensor. During the campaign, airborne images were retrieved with different view zenith angles along the principal and orthogonal planes. Comparing the results of applying the models to the airborne data with ground measurements, we obtained a root mean square error (RMSE) of 0.018 with both RTLSR and RTLSR-HS models. The evaluation of the MODIS BRDF/Albedo product (MCD43) was performed by comparing satellite images with AHS estimations. The results reported an RMSE of 0.04 with both models. Additionally, taking advantage of a homogeneous barley pixel, we compared in situ albedo data to satellite albedo data. In this case, the MODIS albedo estimation was (0.210 +/- 0.003), while the in situ measurement was (0.204 +/- 0.003). This result shows good agreement in regard to a homogeneous pixel.
Sparsely-distributed organization of face and limb activations in human ventral temporal cortex
Weiner, Kevin S.; Grill-Spector, Kalanit
2011-01-01
Functional magnetic resonance imaging (fMRI) has identified face- and body part-selective regions, as well as distributed activation patterns for object categories across human ventral temporal cortex (VTC), eliciting a debate regarding functional organization in VTC and neural coding of object categories. Using high-resolution fMRI, we illustrate that face- and limb-selective activations alternate in a series of largely nonoverlapping clusters in lateral VTC along the inferior occipital gyrus (IOG), fusiform gyrus (FG), and occipitotemporal sulcus (OTS). Both general linear model (GLM) and multivoxel pattern (MVP) analyses show that face- and limb-selective activations minimally overlap and that this organization is consistent across experiments and days. We provide a reliable method to separate two face-selective clusters on the middle and posterior FG (mFus and pFus), and another on the IOG using their spatial relation to limb-selective activations and retinotopic areas hV4, VO-1/2, and hMT+. Furthermore, these activations show a gradient of increasing face selectivity and decreasing limb selectivity from the IOG to the mFus. Finally, MVP analyses indicate that there is differential information for faces in lateral VTC (containing weakly- and highly-selective voxels) relative to non-selective voxels in medial VTC. These findings suggest a sparsely-distributed organization where sparseness refers to the presence of several face- and limb-selective clusters in VTC, and distributed refers to the presence of different amounts of information in highly-, weakly-, and non-selective voxels. Consequently, theories of object recognition should consider the functional and spatial constraints of neural coding across a series of nonoverlapping category-selective clusters that are themselves distributed. PMID:20457261
Harada, Ryuhei; Nakamura, Tomotake; Shigeta, Yasuteru
2016-03-30
As an extension of the Outlier FLOODing (OFLOOD) method [Harada et al., J. Comput. Chem. 2015, 36, 763], the sparsity of the outliers defined by a hierarchical clustering algorithm, FlexDice, was considered to achieve an efficient conformational search as sparsity-weighted "OFLOOD." In OFLOOD, FlexDice detects areas of sparse distribution as outliers. The outliers are regarded as candidates that have high potential to promote conformational transitions and are employed as initial structures for conformational resampling by restarting molecular dynamics simulations. When detecting outliers, FlexDice defines a rank in the hierarchy for each outlier, which relates to sparsity in the distribution. In this study, we define a lower rank (first ranked), a medium rank (second ranked), and the highest rank (third ranked) outliers, respectively. For instance, the first-ranked outliers are located in a given conformational space away from the clusters (highly sparse distribution), whereas those with the third-ranked outliers are nearby the clusters (a moderately sparse distribution). To achieve the conformational search efficiently, resampling from the outliers with a given rank is performed. As demonstrations, this method was applied to several model systems: Alanine dipeptide, Met-enkephalin, Trp-cage, T4 lysozyme, and glutamine binding protein. In each demonstration, the present method successfully reproduced transitions among metastable states. In particular, the first-ranked OFLOOD highly accelerated the exploration of conformational space by expanding the edges. In contrast, the third-ranked OFLOOD reproduced local transitions among neighboring metastable states intensively. For quantitatively evaluations of sampled snapshots, free energy calculations were performed with a combination of umbrella samplings, providing rigorous landscapes of the biomolecules. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Chen, W.; Li, J.
2013-12-01
Climate change may alter the spatial distribution, composition, structure, and functions of plant communities. Transitional zones between biomes, or ecotones, are particularly sensitive to climate change. Ecotones are usually heterogeneous with sparse trees. The dynamics of ecotones are mainly determined by the growth and competition of individual plants in the communities. Therefore it is necessary to calculate solar radiation absorbed by individual plants for understanding and predicting their responses to climate change. In this study, we developed an individual plant radiation model, IPR (version 1.0), to calculate solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities. The model is developed based on geometrical optical relationships assuming crowns of woody plants are rectangular boxes with uniform leaf area density. The model calculates the fractions of sunlit and shaded leaf classes and the solar radiation absorbed by each class, including direct radiation from the sun, diffuse radiation from the sky, and scattered radiation from the plant community. The solar radiation received on the ground is also calculated. We tested the model by comparing with the analytical solutions of random distributions of plants. The tests show that the model results are very close to the averages of the random distributions. This model is efficient in computation, and is suitable for ecological models to simulate long-term transient responses of plant communities to climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergen, Benjamin Karl
2016-08-03
These are slides which are part of the ASC L2 Milestone Review. The following topics are covered: Legion Backend, Distributed-Memory Partitioning, Sparse Data Representations, and MPI-Legion Interoperability.
Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2017-09-01
We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-shell data is represented in a dictionary form using a non-monoexponential decay model of diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with predefined orientations, which are the unknown parameters, form the dictionary weights. These unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian learning algorithm. A localized learning of hyperparameters at each voxel and for each possible fiber orientations improves the parameter estimation. Our experiments using synthetic data from the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome Project demonstrate the improvements.
Using data tagging to improve the performance of Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Rogers, David
1988-01-01
The standard formulation of Kanerva's sparse distributed memory (SDM) involves the selection of a large number of data storage locations, followed by averaging the data contained in those locations to reconstruct the stored data. A variant of this model is discussed, in which the predominant pattern is the focus of reconstruction. First, one architecture is proposed which returns the predominant pattern rather than the average pattern. However, this model will require too much storage for most uses. Next, a hybrid model is proposed, called tagged SDM, which approximates the results of the predominant pattern machine, but is nearly as efficient as Kanerva's original formulation. Finally, some experimental results are shown which confirm that significant improvements in the recall capability of SDM can be achieved using the tagged architecture.
NASA Astrophysics Data System (ADS)
Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard
2016-10-01
A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.
Total recall in distributive associative memories
NASA Technical Reports Server (NTRS)
Danforth, Douglas G.
1991-01-01
Iterative error correction of asymptotically large associative memories is equivalent to a one-step learning rule. This rule is the inverse of the activation function of the memory. Spectral representations of nonlinear activation functions are used to obtain the inverse in closed form for Sparse Distributed Memory, Selected-Coordinate Design, and Radial Basis Functions.
Parallel pivoting combined with parallel reduction
NASA Technical Reports Server (NTRS)
Alaghband, Gita
1987-01-01
Parallel algorithms for triangularization of large, sparse, and unsymmetric matrices are presented. The method combines the parallel reduction with a new parallel pivoting technique, control over generations of fill-ins and a check for numerical stability, all done in parallel with the work being distributed over the active processes. The parallel technique uses the compatibility relation between pivots to identify parallel pivot candidates and uses the Markowitz number of pivots to minimize fill-in. This technique is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds.
Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis
Wilmanns, Matthias; Gräter, Frauke
2009-01-01
The role of mechanical force in cellular processes is increasingly revealed by single molecule experiments and simulations of force-induced transitions in proteins. How the applied force propagates within proteins determines their mechanical behavior yet remains largely unknown. We present a new method based on molecular dynamics simulations to disclose the distribution of strain in protein structures, here for the newly determined high-resolution crystal structure of I27, a titin immunoglobulin (IG) domain. We obtain a sparse, spatially connected, and highly anisotropic mechanical network. This allows us to detect load-bearing motifs composed of interstrand hydrogen bonds and hydrophobic core interactions, including parts distal to the site to which force was applied. The role of the force distribution pattern for mechanical stability is tested by in silico unfolding of I27 mutants. We then compare the observed force pattern to the sparse network of coevolved residues found in this family. We find a remarkable overlap, suggesting the force distribution to reflect constraints for the evolutionary design of mechanical resistance in the IG family. The force distribution analysis provides a molecular interpretation of coevolution and opens the road to the study of the mechanism of signal propagation in proteins in general. PMID:19282960
Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.
Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen
2017-08-29
In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.
A range-based predictive localization algorithm for WSID networks
NASA Astrophysics Data System (ADS)
Liu, Yuan; Chen, Junjie; Li, Gang
2017-11-01
Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.
Non-convex Statistical Optimization for Sparse Tensor Graphical Model
Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang
2016-01-01
We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies. PMID:28316459
Particle Size Distributions in Atmospheric Clouds
NASA Technical Reports Server (NTRS)
Paoli, Roberto; Shariff, Karim
2003-01-01
In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.
Montoro, Pedro R; Luna, Dolores
2009-10-01
Previous studies on the processing of hierarchical patterns (Luna & Montoro, 2008) have shown that altering the spatial relationships between the local elements affected processing dominance by decreasing global advantage. In the present article, the authors examine whether heterogeneity or a sparse distribution of the local elements was the responsible factor for this effect. In Experiments 1 and 2, the distance between the local elements was increased in a similar way, but between-element distance was homogeneous in Experiment 1 and heterogeneous in Experiment 2. In Experiment 3, local elements' size was varied by presenting global patterns composed of similar large or small local elements and of different large and small sizes. The results of the present research showed that, instead of element sparsity, spatial heterogeneity that could change the appearance of the global form as well as the salience of the local elements was the main determiner of impairing global processing.
Sensor Network Localization by Eigenvector Synchronization Over the Euclidean Group
CUCURINGU, MIHAI; LIPMAN, YARON; SINGER, AMIT
2013-01-01
We present a new approach to localization of sensors from noisy measurements of a subset of their Euclidean distances. Our algorithm starts by finding, embedding, and aligning uniquely realizable subsets of neighboring sensors called patches. In the noise-free case, each patch agrees with its global positioning up to an unknown rigid motion of translation, rotation, and possibly reflection. The reflections and rotations are estimated using the recently developed eigenvector synchronization algorithm, while the translations are estimated by solving an overdetermined linear system. The algorithm is scalable as the number of nodes increases and can be implemented in a distributed fashion. Extensive numerical experiments show that it compares favorably to other existing algorithms in terms of robustness to noise, sparse connectivity, and running time. While our approach is applicable to higher dimensions, in the current article, we focus on the two-dimensional case. PMID:23946700
Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carleton, James Brian; Parks, Michael L.
Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less
Optical fringe-reflection deflectometry with sparse representation
NASA Astrophysics Data System (ADS)
Xiao, Yong-Liang; Li, Sikun; Zhang, Qican; Zhong, Jianxin; Su, Xianyu; You, Zhisheng
2018-05-01
Optical fringe-reflection deflectometry is a surprisingly attractive scratch detection technique for specular surfaces owing to its unparalleled local sensibility. Full-field surface topography is obtained from a measured normal field using gradient integration. However, there may not be an ideal measured gradient field for deflectometry reconstruction in practice. Both the non-integrability condition and various kinds of image noise distributions, which are present in the indirect measured gradient field, may lead to ambiguity about the scratches on specular surfaces. In order to reduce misjudgment of scratches, sparse representation is introduced into the Southwell curl equation for deflectometry. The curl can be represented as a linear combination of the given redundant dictionary for curl and the sparsest solution for gradient refinement. The non-integrability condition and noise permutation can be overcome with sparse representation for gradient refinement. Numerical simulations demonstrate that the accuracy rate of judgment of scratches can be enhanced with sparse representation compared to the standard least-squares integration. Preliminary experiments are performed with the application of practical measured deflectometric data to verify the validity of the algorithm.
Comparison between sparsely distributed memory and Hopfield-type neural network models
NASA Technical Reports Server (NTRS)
Keeler, James D.
1986-01-01
The Sparsely Distributed Memory (SDM) model (Kanerva, 1984) is compared to Hopfield-type neural-network models. A mathematical framework for comparing the two is developed, and the capacity of each model is investigated. The capacity of the SDM can be increased independently of the dimension of the stored vectors, whereas the Hopfield capacity is limited to a fraction of this dimension. However, the total number of stored bits per matrix element is the same in the two models, as well as for extended models with higher order interactions. The models are also compared in their ability to store sequences of patterns. The SDM is extended to include time delays so that contextual information can be used to cover sequences. Finally, it is shown how a generalization of the SDM allows storage of correlated input pattern vectors.
Sparse distributed memory: understanding the speed and robustness of expert memory
Brogliato, Marcelo S.; Chada, Daniel M.; Linhares, Alexandre
2014-01-01
How can experts, sometimes in exacting detail, almost immediately and very precisely recall memory items from a vast repertoire? The problem in which we will be interested concerns models of theoretical neuroscience that could explain the speed and robustness of an expert's recollection. The approach is based on Sparse Distributed Memory, which has been shown to be plausible, both in a neuroscientific and in a psychological manner, in a number of ways. A crucial characteristic concerns the limits of human recollection, the “tip-of-tongue” memory event—which is found at a non-linearity in the model. We expand the theoretical framework, deriving an optimization formula to solve this non-linearity. Numerical results demonstrate how the higher frequency of rehearsal, through work or study, immediately increases the robustness and speed associated with expert memory. PMID:24808842
Lindsey, Delwin T.; Brainard, David H.; Apicella, Coren L.
2016-01-01
In our empirical and theoretical study of color naming among the Hadza, a Tanzanian hunter-gatherer group, we show that Hadza color naming is sparse (the color appearance of many stimulus tiles was not named), diverse (there was little consensus in the terms for the color appearance of most tiles), and distributed (the universal color categories of world languages are revealed in nascent form within the Hadza language community, when we analyze the patterns of how individual Hadza deploy color terms). Using our Hadza data set, Witzel shows an association between two measures of color naming performance and the chroma of the stimuli. His prediction of which colored tiles will be named with what level of consensus, while interesting, does not alter the validity of our conclusions. PMID:28781734
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Chen, W.; Li, J.
2014-07-01
Climate change may alter the spatial distribution, composition, structure and functions of plant communities. Transitional zones between biomes, or ecotones, are particularly sensitive to climate change. Ecotones are usually heterogeneous with sparse trees. The dynamics of ecotones are mainly determined by the growth and competition of individual plants in the communities. Therefore it is necessary to calculate the solar radiation absorbed by individual plants in order to understand and predict their responses to climate change. In this study, we developed an individual plant radiation model, IPR (version 1.0), to calculate solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities. The model is developed based on geometrical optical relationships assuming that crowns of woody plants are rectangular boxes with uniform leaf area density. The model calculates the fractions of sunlit and shaded leaf classes and the solar radiation absorbed by each class, including direct radiation from the sun, diffuse radiation from the sky, and scattered radiation from the plant community. The solar radiation received on the ground is also calculated. We tested the model by comparing with the results of random distribution of plants. The tests show that the model results are very close to the averages of the random distributions. This model is efficient in computation, and can be included in vegetation models to simulate long-term transient responses of plant communities to climate change. The code and a user's manual are provided as Supplement of the paper.
Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter
Zhao, Qiang; Du, Qizhen; Gong, Xufei; ...
2018-04-06
Sparse domain thresholding filters operating in a sparse domain are highly effective in removing Gaussian random noise under Gaussian distribution assumption. Erratic noise, which designates non-Gaussian noise that consists of large isolated events with known or unknown distribution, also needs to be explicitly taken into account. However, conventional sparse domain thresholding filters based on the least-squares (LS) criterion are severely sensitive to data with high-amplitude and non-Gaussian noise, i.e., the erratic noise, which makes the suppression of this type of noise extremely challenging. Here, in this paper, we present a robust sparsity-promoting denoising model, in which the LS criterion ismore » replaced by the Huber criterion to weaken the effects of erratic noise. The random and erratic noise is distinguished by using a data-adaptive parameter in the presented method, where random noise is described by mean square, while the erratic noise is downweighted through a damped weight. Different from conventional sparse domain thresholding filters, definition of the misfit between noisy data and recovered signal via the Huber criterion results in a nonlinear optimization problem. With the help of theoretical pseudoseismic data, an iterative robust sparsity-promoting filter is proposed to transform the nonlinear optimization problem into a linear LS problem through an iterative procedure. The main advantage of this transformation is that the nonlinear denoising filter can be solved by conventional LS solvers. Lastly, tests with several data sets demonstrate that the proposed denoising filter can successfully attenuate the erratic noise without damaging useful signal when compared with conventional denoising approaches based on the LS criterion.« less
Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Qiang; Du, Qizhen; Gong, Xufei
Sparse domain thresholding filters operating in a sparse domain are highly effective in removing Gaussian random noise under Gaussian distribution assumption. Erratic noise, which designates non-Gaussian noise that consists of large isolated events with known or unknown distribution, also needs to be explicitly taken into account. However, conventional sparse domain thresholding filters based on the least-squares (LS) criterion are severely sensitive to data with high-amplitude and non-Gaussian noise, i.e., the erratic noise, which makes the suppression of this type of noise extremely challenging. Here, in this paper, we present a robust sparsity-promoting denoising model, in which the LS criterion ismore » replaced by the Huber criterion to weaken the effects of erratic noise. The random and erratic noise is distinguished by using a data-adaptive parameter in the presented method, where random noise is described by mean square, while the erratic noise is downweighted through a damped weight. Different from conventional sparse domain thresholding filters, definition of the misfit between noisy data and recovered signal via the Huber criterion results in a nonlinear optimization problem. With the help of theoretical pseudoseismic data, an iterative robust sparsity-promoting filter is proposed to transform the nonlinear optimization problem into a linear LS problem through an iterative procedure. The main advantage of this transformation is that the nonlinear denoising filter can be solved by conventional LS solvers. Lastly, tests with several data sets demonstrate that the proposed denoising filter can successfully attenuate the erratic noise without damaging useful signal when compared with conventional denoising approaches based on the LS criterion.« less
2015-06-01
of uniform- versus nonuniform -pattern reconstruction, of transform function used, and of minimum randomly distributed measurements needed to...the radiation-frequency pattern’s reconstruction using uniform and nonuniform randomly distributed samples even though the pattern error manifests...5 Fig. 3 The nonuniform compressive-sensing reconstruction of the radiation
A manual for PARTI runtime primitives
NASA Technical Reports Server (NTRS)
Berryman, Harry; Saltz, Joel
1990-01-01
Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Vicente; Bonney, Matthew; Schroeder, Benjamin
When very few samples of a random quantity are available from a source distribution of unknown shape, it is usually not possible to accurately infer the exact distribution from which the data samples come. Under-estimation of important quantities such as response variance and failure probabilities can result. For many engineering purposes, including design and risk analysis, we attempt to avoid under-estimation with a strategy to conservatively estimate (bound) these types of quantities -- without being overly conservative -- when only a few samples of a random quantity are available from model predictions or replicate experiments. This report examines a classmore » of related sparse-data uncertainty representation and inference approaches that are relatively simple, inexpensive, and effective. Tradeoffs between the methods' conservatism, reliability, and risk versus number of data samples (cost) are quantified with multi-attribute metrics use d to assess method performance for conservative estimation of two representative quantities: central 95% of response; and 10 -4 probability of exceeding a response threshold in a tail of the distribution. Each method's performance is characterized with 10,000 random trials on a large number of diverse and challenging distributions. The best method and number of samples to use in a given circumstance depends on the uncertainty quantity to be estimated, the PDF character, and the desired reliability of bounding the true value. On the basis of this large data base and study, a strategy is proposed for selecting the method and number of samples for attaining reasonable credibility levels in bounding these types of quantities when sparse samples of random variables or functions are available from experiments or simulations.« less
Design and evaluation of sparse quantization index modulation watermarking schemes
NASA Astrophysics Data System (ADS)
Cornelis, Bruno; Barbarien, Joeri; Dooms, Ann; Munteanu, Adrian; Cornelis, Jan; Schelkens, Peter
2008-08-01
In the past decade the use of digital data has increased significantly. The advantages of digital data are, amongst others, easy editing, fast, cheap and cross-platform distribution and compact storage. The most crucial disadvantages are the unauthorized copying and copyright issues, by which authors and license holders can suffer considerable financial losses. Many inexpensive methods are readily available for editing digital data and, unlike analog information, the reproduction in the digital case is simple and robust. Hence, there is great interest in developing technology that helps to protect the integrity of a digital work and the copyrights of its owners. Watermarking, which is the embedding of a signal (known as the watermark) into the original digital data, is one method that has been proposed for the protection of digital media elements such as audio, video and images. In this article, we examine watermarking schemes for still images, based on selective quantization of the coefficients of a wavelet transformed image, i.e. sparse quantization-index modulation (QIM) watermarking. Different grouping schemes for the wavelet coefficients are evaluated and experimentally verified for robustness against several attacks. Wavelet tree-based grouping schemes yield a slightly improved performance over block-based grouping schemes. Additionally, the impact of the deployment of error correction codes on the most promising configurations is examined. The utilization of BCH-codes (Bose, Ray-Chaudhuri, Hocquenghem) results in an improved robustness as long as the capacity of the error codes is not exceeded (cliff-effect).
Sparse matrix methods research using the CSM testbed software system
NASA Technical Reports Server (NTRS)
Chu, Eleanor; George, J. Alan
1989-01-01
Research is described on sparse matrix techniques for the Computational Structural Mechanics (CSM) Testbed. The primary objective was to compare the performance of state-of-the-art techniques for solving sparse systems with those that are currently available in the CSM Testbed. Thus, one of the first tasks was to become familiar with the structure of the testbed, and to install some or all of the SPARSPAK package in the testbed. A suite of subroutines to extract from the data base the relevant structural and numerical information about the matrix equations was written, and all the demonstration problems distributed with the testbed were successfully solved. These codes were documented, and performance studies comparing the SPARSPAK technology to the methods currently in the testbed were completed. In addition, some preliminary studies were done comparing some recently developed out-of-core techniques with the performance of the testbed processor INV.
Distribution of model uncertainty across multiple data streams
NASA Astrophysics Data System (ADS)
Wutzler, Thomas
2014-05-01
When confronting biogeochemical models with a diversity of observational data streams, we are faced with the problem of weighing the data streams. Without weighing or multiple blocked cost functions, model uncertainty is allocated to the sparse data streams and possible bias in processes that are strongly constraint is exported to processes that are constrained by sparse data streams only. In this study we propose an approach that aims at making model uncertainty a factor of observations uncertainty, that is constant over all data streams. Further we propose an implementation based on Monte-Carlo Markov chain sampling combined with simulated annealing that is able to determine this variance factor. The method is exemplified both with very simple models, artificial data and with an inversion of the DALEC ecosystem carbon model against multiple observations of Howland forest. We argue that the presented approach is able to help and maybe resolve the problem of bias export to sparse data streams.
Inference of the sparse kinetic Ising model using the decimation method
NASA Astrophysics Data System (ADS)
Decelle, Aurélien; Zhang, Pan
2015-05-01
In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method. The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603 (2014), 10.1103/PhysRevLett.112.070603] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the remaining couplings. Unlike the ℓ1-optimization-based methods, the decimation method does not use the Laplace distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical inference problems. Our results illustrate that, on various topologies and with different distribution of couplings, the decimation method outperforms the widely used ℓ1-optimization-based methods.
A manual for PARTI runtime primitives, revision 1
NASA Technical Reports Server (NTRS)
Das, Raja; Saltz, Joel; Berryman, Harry
1991-01-01
Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.
Soil carbon distribution in Alaska in relation to soil-forming factors
Kristofer D. Johnson; Jennifer Harden; A. David McGuire; Norman B. Bliss; James G. Bockheim; Mark Clark; Teresa Nettleton-Hollingsworth; M. Torre Jorgenson; Evan S. Kane; Michelle Mack; Johathan ODonnell; Chien-Lu Ping; Edward A.G. Schuur; Merritt R. Turetsky; David W. Valentine
2011-01-01
The direction and magnitude of soil organic carbon (SOC) changes in response to climate change remain unclear and depend on the spatial distribution of SOC across landscapes. Uncertainties regarding the fate of SOC are greater in high-latitude systems where data are sparse and the soils are affected by sub-zero temperatures. To address these issues in Alaska, a first-...
An alternative design for a sparse distributed memory
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1989-01-01
A new design for a Sparse Distributed Memory, called the selected-coordinate design, is described. As in the original design, there are a large number of memory locations, each of which may be activated by many different addresses (binary vectors) in a very large address space. Each memory location is defined by specifying ten selected coordinates (bit positions in the address vectors) and a set of corresponding assigned values, consisting of one bit for each selected coordinate. A memory location is activated by an address if, for all ten of the locations's selected coordinates, the corresponding bits in the address vector match the respective assigned value bits, regardless of the other bits in the address vector. Some comparative memory capacity and signal-to-noise ratio estimates for the both the new and original designs are given. A few possible hardware embodiments of the new design are described.
Nefedieva, Julia S.; Nefediev, Pavel S.; Sakhnevich, Miroslava B.; Dyachkov, Yuri V.
2015-01-01
Abstract The distribution of millipedes along an altitudinal gradient in the south of Lake Teletskoye, Altai, Russia based on new samples from the Kyga Profile sites, as well as on partly published and freshly revised material (Mikhaljova et al. 2007, 2008, 2014, Nefedieva and Nefediev 2008, Nefediev and Nefedieva 2013, Nefedieva et al. 2014), is established. The millipede diversity is estimated to be at least 15 species and subspecies from 10 genera, 6 families and three orders. The bulk of species diversity is confined both to low- and mid-mountain chern taiga forests and high-mountain shrub tundras, whereas the highest numbers, reaching up to 130 ind./m², is shown in subalpine Pinus sibirica sparse growths. Based on clustering studied localities on species diversity similarity two groups of sites are defined: low-mountain sites and subalpine sparse growths of Pinus sibirica ones. PMID:26257540
Sparse Bayesian Inference and the Temperature Structure of the Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Harry P.; Byers, Jeff M.; Crump, Nicholas A.
Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of themore » solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.« less
Sparse distributed memory and related models
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1992-01-01
Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.
Label-free optical imaging of membrane patches for atomic force microscopy
Churnside, Allison B.; King, Gavin M.; Perkins, Thomas T.
2010-01-01
In atomic force microscopy (AFM), finding sparsely distributed regions of interest can be difficult and time-consuming. Typically, the tip is scanned until the desired object is located. This process can mechanically or chemically degrade the tip, as well as damage fragile biological samples. Protein assemblies can be detected using the back-scattered light from a focused laser beam. We previously used back-scattered light from a pair of laser foci to stabilize an AFM. In the present work, we integrate these techniques to optically image patches of purple membranes prior to AFM investigation. These rapidly acquired optical images were aligned to the subsequent AFM images to ~40 nm, since the tip position was aligned to the optical axis of the imaging laser. Thus, this label-free imaging efficiently locates sparsely distributed protein assemblies for subsequent AFM study while simultaneously minimizing degradation of the tip and the sample. PMID:21164738
Evoking the World of Poetic Nonfiction Picture Books
ERIC Educational Resources Information Center
Kesler, Ted
2012-01-01
An increasingly prevalent and accessible form of hybrid nonfiction picture books blends factual information with poetry or poetic devices to create literary nonfiction. This important form of hybrid text has been sparsely examined. This article addresses three questions about poetic nonfiction picture books: first, how might we categorize picture…
ERIC Educational Resources Information Center
Tivener, Kristin Ann; Gloe, Donna Sue
2015-01-01
Context: While multidisciplinary team approaches to education and practice have been promoted for decades, literature on collaborative efforts in athletic training and nursing remains sparse. Objective: The goal of this article is to provide an example of an interprofessional teaching collaboration in which a simulation scenario was developed…
Information Literacy in Mathematics Undergraduate Education: Where Does It Stand Today?
ERIC Educational Resources Information Center
Bussmann, Jeffra Diane; Bond, Jeffrey D.
2015-01-01
The published literature on information literacy in mathematics is relatively sparse. This article explores the current state of information literacy initiatives in undergraduate mathematics. The authors survey academic librarians (n = 118) who liaise with mathematics departments in order to gain an understanding of their practices and attitudes…
Evidence-Based Advances in Avian Medicine.
Summa, Noémie M; Guzman, David Sanchez-Migallon
2017-09-01
This article presents relevant advances in avian medicine and surgery over the past 5 years. New information has been published to improve clinical diagnosis in avian diseases. This article also describes new pharmacokinetic studies. Advances in the understanding and treatment of common avian disorders are presented in this article, as well. Although important progress has been made over the past years, there is still much research that needs to be done regarding the etiology, pathophysiology, diagnosis, and treatment of avian diseases and evidence-based information is still sparse in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Sparse orthogonal population representation of spatial context in the retrosplenial cortex.
Mao, Dun; Kandler, Steffen; McNaughton, Bruce L; Bonin, Vincent
2017-08-15
Sparse orthogonal coding is a key feature of hippocampal neural activity, which is believed to increase episodic memory capacity and to assist in navigation. Some retrosplenial cortex (RSC) neurons convey distributed spatial and navigational signals, but place-field representations such as observed in the hippocampus have not been reported. Combining cellular Ca 2+ imaging in RSC of mice with a head-fixed locomotion assay, we identified a population of RSC neurons, located predominantly in superficial layers, whose ensemble activity closely resembles that of hippocampal CA1 place cells during the same task. Like CA1 place cells, these RSC neurons fire in sequences during movement, and show narrowly tuned firing fields that form a sparse, orthogonal code correlated with location. RSC 'place' cell activity is robust to environmental manipulations, showing partial remapping similar to that observed in CA1. This population code for spatial context may assist the RSC in its role in memory and/or navigation.Neurons in the retrosplenial cortex (RSC) encode spatial and navigational signals. Here the authors use calcium imaging to show that, similar to the hippocampus, RSC neurons also encode place cell-like activity in a sparse orthogonal representation, partially anchored to the allocentric cues on the linear track.
NASA Astrophysics Data System (ADS)
Doss, Derek J.; Heiselman, Jon S.; Collins, Jarrod A.; Weis, Jared A.; Clements, Logan W.; Geevarghese, Sunil K.; Miga, Michael I.
2017-03-01
Sparse surface digitization with an optically tracked stylus for use in an organ surface-based image-to-physical registration is an established approach for image-guided open liver surgery procedures. However, variability in sparse data collections during open hepatic procedures can produce disparity in registration alignments. In part, this variability arises from inconsistencies with the patterns and fidelity of collected intraoperative data. The liver lacks distinct landmarks and experiences considerable soft tissue deformation. Furthermore, data coverage of the organ is often incomplete or unevenly distributed. While more robust feature-based registration methodologies have been developed for image-guided liver surgery, it is still unclear how variation in sparse intraoperative data affects registration. In this work, we have developed an application to allow surgeons to study the performance of surface digitization patterns on registration. Given the intrinsic nature of soft-tissue, we incorporate realistic organ deformation when assessing fidelity of a rigid registration methodology. We report the construction of our application and preliminary registration results using four participants. Our preliminary results indicate that registration quality improves as users acquire more experience selecting patterns of sparse intraoperative surface data.
A coarse-to-fine approach for medical hyperspectral image classification with sparse representation
NASA Astrophysics Data System (ADS)
Chang, Lan; Zhang, Mengmeng; Li, Wei
2017-10-01
A coarse-to-fine approach with sparse representation is proposed for medical hyperspectral image classification in this work. Segmentation technique with different scales is employed to exploit edges of the input image, where coarse super-pixel patches provide global classification information while fine ones further provide detail information. Different from common RGB image, hyperspectral image has multi bands to adjust the cluster center with more high precision. After segmentation, each super pixel is classified by recently-developed sparse representation-based classification (SRC), which assigns label for testing samples in one local patch by means of sparse linear combination of all the training samples. Furthermore, segmentation with multiple scales is employed because single scale is not suitable for complicate distribution of medical hyperspectral imagery. Finally, classification results for different sizes of super pixel are fused by some fusion strategy, offering at least two benefits: (1) the final result is obviously superior to that of segmentation with single scale, and (2) the fusion process significantly simplifies the choice of scales. Experimental results using real medical hyperspectral images demonstrate that the proposed method outperforms the state-of-the-art SRC.
Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost
NASA Astrophysics Data System (ADS)
Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.
2017-11-01
A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.
NASA Astrophysics Data System (ADS)
Rana, Parvez; Vauhkonen, Jari; Junttila, Virpi; Hou, Zhengyang; Gautam, Basanta; Cawkwell, Fiona; Tokola, Timo
2017-12-01
Large-diameter trees (taking DBH > 30 cm to define large trees) dominate the dynamics, function and structure of a forest ecosystem. The aim here was to employ sparse airborne laser scanning (ALS) data with a mean point density of 0.8 m-2 and the non-parametric k-most similar neighbour (k-MSN) to predict tree diameter at breast height (DBH) distributions in a subtropical forest in southern Nepal. The specific objectives were: (1) to evaluate the accuracy of the large-tree fraction of the diameter distribution; and (2) to assess the effect of the number of training areas (sample size, n) on the accuracy of the predicted tree diameter distribution. Comparison of the predicted distributions with empirical ones indicated that the large tree diameter distribution can be derived in a mixed species forest with a RMSE% of 66% and a bias% of -1.33%. It was also feasible to downsize the sample size without losing the interpretability capacity of the model. For large-diameter trees, even a reduction of half of the training plots (n = 250), giving a marginal increase in the RMSE% (1.12-1.97%) was reported compared with the original training plots (n = 500). To be consistent with these outcomes, the sample areas should capture the entire range of spatial and feature variability in order to reduce the occurrence of error.
Galaxy redshift surveys with sparse sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro
2013-12-01
Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V{sub survey} ∼ 10Gpc{sup 3}) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V{sub survey}, we observe only a fraction of the volume. The distribution of observed regions should bemore » chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V{sub survey} (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V{sub survey} (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.« less
Loxley, P N
2017-10-01
The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.
Shape models of asteroids reconstructed from WISE data and sparse photometry
NASA Astrophysics Data System (ADS)
Durech, Josef; Hanus, Josef; Ali-Lagoa, Victor
2017-10-01
By combining sparse-in-time photometry from the Lowell Observatory photometry database with WISE observations, we reconstructed convex shape models for about 700 new asteroids and for other ~850 we derived 'partial' models with unconstrained ecliptic longitude of the spin axis direction. In our approach, the WISE data were treated as reflected light, which enabled us to directly join them with sparse photometry into one dataset that was processed by the lightcurve inversion method. This simplified treatment of thermal infrared data turned out to provide correct results, because in most cases the phase offset between optical and thermal lightcurves was small and the correct sidereal rotation period was determined. The spin and shape parameters derived from only optical data and from a combination of optical and WISE data were very similar. The new models together with those already available in the Database of Asteroid Models from Inversion Techniques (DAMIT) represent a sample of ~1650 asteroids. When including also partial models, the total sample is about 2500 asteroids, which significantly increases the number of models with respect to those that have been available so far. We will show the distribution of spin axes for different size groups and also for several collisional families. These observed distributions in general agree with theoretical expectations proving that smaller asteroids are more affected by YORP/Yarkovsky evolution. In asteroid families, we see a clear bimodal distribution of prograde/retrograde rotation that correlates with the position to the right/left from the center of the family measured by the semimajor axis.
Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield.
Rime, Thomas; Hartmann, Martin; Brunner, Ivano; Widmer, Franco; Zeyer, Josef; Frey, Beat
2015-03-01
Spatial patterns of microbial communities have been extensively surveyed in well-developed soils, but few studies investigated the vertical distribution of micro-organisms in newly developed soils after glacier retreat. We used 454-pyrosequencing to assess whether bacterial and fungal community structures differed between stages of soil development (SSD) characterized by an increasing vegetation cover from barren (vegetation cover: 0%/age: 10 years), sparsely vegetated (13%/60 years), transient (60%/80 years) to vegetated (95%/110 years) and depths (surface, 5 and 20 cm) along the Damma glacier forefield (Switzerland). The SSD significantly influenced the bacterial and fungal communities. Based on indicator species analyses, metabolically versatile bacteria (e.g. Geobacter) and psychrophilic yeasts (e.g. Mrakia) characterized the barren soils. Vegetated soils with higher C, N and root biomass consisted of bacteria able to degrade complex organic compounds (e.g. Candidatus Solibacter), lignocellulolytic Ascomycota (e.g. Geoglossum) and ectomycorrhizal Basidiomycota (e.g. Laccaria). Soil depth only influenced bacterial and fungal communities in barren and sparsely vegetated soils. These changes were partly due to more silt and higher soil moisture in the surface. In both soil ages, the surface was characterized by OTUs affiliated to Phormidium and Sphingobacteriales. In lower depths, however, bacterial and fungal communities differed between SSD. Lower depths of sparsely vegetated soils consisted of OTUs affiliated to Acidobacteria and Geoglossum, whereas depths of barren soils were characterized by OTUs related to Gemmatimonadetes. Overall, plant establishment drives the soil microbiota along the successional gradient but does not influence the vertical distribution of microbiota in recently deglaciated soils. © 2014 John Wiley & Sons Ltd.
Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix Computations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Li, Xiaoye; Husbands, Parry; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2002-01-01
The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. For systems that are ill-conditioned, it is often necessary to use a preconditioning technique. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and ILU(O) preconditioned CG (PCG) using different programming paradigms and architectures. Results show that for this class of applications: ordering significantly improves overall performance on both distributed and distributed shared-memory systems, that cache reuse may be more important than reducing communication, that it is possible to achieve message-passing performance using shared-memory constructs through careful data ordering and distribution, and that a hybrid MPI+OpenMP paradigm increases programming complexity with little performance gains. A implementation of CG on the Cray MTA does not require special ordering or partitioning to obtain high efficiency and scalability, giving it a distinct advantage for adaptive applications; however, it shows limited scalability for PCG due to a lack of thread level parallelism.
Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2016-09-07
This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.
Exarchakis, Georgios; Lücke, Jörg
2017-11-01
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Chen, Guowei; Itoh, Kenichi; Sato, Takuro
Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.
2011-01-01
and G. Armitage. Dening and evaluating greynets (sparse darknets ). In LCN: Proceedings of the IEEE Conference on Local Computer Networks 30th...analysis of distributed darknet trac. In IMC: Proceedings of the USENIX/ACM Internet Measurement Conference, 2005. Indexing Full Packet Capture Data
Particle Filter Based Tracking in a Detection Sparse Discrete Event Simulation Environment
2007-03-01
obtained by disqualifying a large number of particles. 52 (a) (b) ( c ) Figure 31. Particle Disqualification via Sanitization b...1 B. RESEARCH APPROACH..............................................................................5 C . THESIS ORGANIZATION...38 b. Detection Distribution Sampling............................................43 c . Estimated Position Calculation
Removal of nuisance signals from limited and sparse 1H MRSI data using a union-of-subspaces model.
Ma, Chao; Lam, Fan; Johnson, Curtis L; Liang, Zhi-Pei
2016-02-01
To remove nuisance signals (e.g., water and lipid signals) for (1) H MRSI data collected from the brain with limited and/or sparse (k, t)-space coverage. A union-of-subspace model is proposed for removing nuisance signals. The model exploits the partial separability of both the nuisance signals and the metabolite signal, and decomposes an MRSI dataset into several sets of generalized voxels that share the same spectral distributions. This model enables the estimation of the nuisance signals from an MRSI dataset that has limited and/or sparse (k, t)-space coverage. The proposed method has been evaluated using in vivo MRSI data. For conventional chemical shift imaging data with limited k-space coverage, the proposed method produced "lipid-free" spectra without lipid suppression during data acquisition at 130 ms echo time. For sparse (k, t)-space data acquired with conventional pulses for water and lipid suppression, the proposed method was also able to remove the remaining water and lipid signals with negligible residuals. Nuisance signals in (1) H MRSI data reside in low-dimensional subspaces. This property can be utilized for estimation and removal of nuisance signals from (1) H MRSI data even when they have limited and/or sparse coverage of (k, t)-space. The proposed method should prove useful especially for accelerated high-resolution (1) H MRSI of the brain. © 2015 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Cho, Hyesun
2014-01-01
Despite the proliferation of research in heritage language (HL) education, pedagogically based research that examines teacher education practice for promoting critical reflection of HL teachers is sparse. This article describes how preservice teachers working in community-based HL schools changed their views of HL identity during their…
Does Model Matter? Examining Change across Time for Youth in Group Homes
ERIC Educational Resources Information Center
Farmer, Elizabeth M. Z.; Seifert, Heather; Wagner, H. Ryan; Burns, Barbara J.; Murray, Maureen
2017-01-01
Group homes are a frequently used but controversial treatment setting for youth with mental health problems. Within the relatively sparse literature on group homes, there is some evidence that some models of treatment may be associated with more positive outcomes for youth. This article explores this possibility by examining differences across…
Entrepreneurship Education for Executive MBAs: The Case of a Caribbean Business School
ERIC Educational Resources Information Center
Allahar, Haven; Brathwaite, Candace
2017-01-01
Entrepreneurship courses are now a feature of the curricula of many tertiary-level business schools. While there is a growing body of research on the subject of entrepreneurship education and learning, studies of the executive master of business administration (EMBA) are relatively sparse. This article offers an example of an entrepreneurship…
Literacy and Workplace Change: Evaluation Findings from Eighteen Workplace Literacy Programs
ERIC Educational Resources Information Center
Benseman, John
2012-01-01
Many Western governments are looking to workplace literacy, language, and numeracy programs to address general skill improvement with a longterm aim of improving labor productivity. Rigorous research on these programs' effectiveness for both of these agendas, however, remains sparse and limited in scope. This article reports the findings of an…
Family Involvement in Creative Teaching Practices for All in Small Rural Schools
ERIC Educational Resources Information Center
Vigo Arrazola, Begoña; Soriano Bozalongo, Juana
2015-01-01
Parental involvement is interpreted as a key form of support that can contribute to the establishment of inclusive practices in schools, but this can be difficult in sparsely populated areas. Using ethnographic methods of participant observation, informal conversations and document analysis, this article therefore focuses on family involvement…
Attitudes toward, and Use of, Textbooks among Marketing Undergraduates: An Exploratory Study
ERIC Educational Resources Information Center
Vafeas, Mario
2013-01-01
While textbooks remain a key part of the teaching and learning process, evidence suggests that student completion of reading assignments is lower than teacher expectations. Although there is a small body of literature examining textbook use, studies relating specifically to marketing textbooks are sparse. This article seeks to explore how…
Rural Schools: Off the Beaten Path
ERIC Educational Resources Information Center
Gordon, Dan
2011-01-01
This article is the second of a two-part series on how schools in different types of communities meet the challenge of implementing technology. The emergence of technology as a critical component of education has presented rural districts with an invaluable tool for overcoming the problems created by sparse and remote populations. But rural…
Sentürk, Damla; Dalrymple, Lorien S; Nguyen, Danh V
2014-11-30
We propose functional linear models for zero-inflated count data with a focus on the functional hurdle and functional zero-inflated Poisson (ZIP) models. Although the hurdle model assumes the counts come from a mixture of a degenerate distribution at zero and a zero-truncated Poisson distribution, the ZIP model considers a mixture of a degenerate distribution at zero and a standard Poisson distribution. We extend the generalized functional linear model framework with a functional predictor and multiple cross-sectional predictors to model counts generated by a mixture distribution. We propose an estimation procedure for functional hurdle and ZIP models, called penalized reconstruction, geared towards error-prone and sparsely observed longitudinal functional predictors. The approach relies on dimension reduction and pooling of information across subjects involving basis expansions and penalized maximum likelihood techniques. The developed functional hurdle model is applied to modeling hospitalizations within the first 2 years from initiation of dialysis, with a high percentage of zeros, in the Comprehensive Dialysis Study participants. Hospitalization counts are modeled as a function of sparse longitudinal measurements of serum albumin concentrations, patient demographics, and comorbidities. Simulation studies are used to study finite sample properties of the proposed method and include comparisons with an adaptation of standard principal components regression. Copyright © 2014 John Wiley & Sons, Ltd.
A general parallel sparse-blocked matrix multiply for linear scaling SCF theory
NASA Astrophysics Data System (ADS)
Challacombe, Matt
2000-06-01
A general approach to the parallel sparse-blocked matrix-matrix multiply is developed in the context of linear scaling self-consistent-field (SCF) theory. The data-parallel message passing method uses non-blocking communication to overlap computation and communication. The space filling curve heuristic is used to achieve data locality for sparse matrix elements that decay with “separation”. Load balance is achieved by solving the bin packing problem for blocks with variable size.With this new method as the kernel, parallel performance of the simplified density matrix minimization (SDMM) for solution of the SCF equations is investigated for RHF/6-31G ∗∗ water clusters and RHF/3-21G estane globules. Sustained rates above 5.7 GFLOPS for the SDMM have been achieved for (H 2 O) 200 with 95 Origin 2000 processors. Scalability is found to be limited by load imbalance, which increases with decreasing granularity, due primarily to the inhomogeneous distribution of variable block sizes.
Large Scale Density Estimation of Blue and Fin Whales (LSD)
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...sensors, or both. The goal of this research is to develop and implement a new method for estimating blue and fin whale density that is effective over...develop and implement a density estimation methodology for quantifying blue and fin whale abundance from passive acoustic data recorded on sparse
2013-09-30
underwater acoustic communication technologies for autonomous distributed underwater networks, through innovative signal processing, coding, and navigation...in real enviroments , an offshore testbed has been developed to conduct field experimetns. The testbed consists of four nodes and has been deployed...Leadership by the Connecticut Technology Council. Dr. Zhaohui Wang joined the faculty of the Department of Electrical and Computer Engineering at
Selection and Presentation of Imaging Figures in the Medical Literature
Siontis, George C. M.; Patsopoulos, Nikolaos A.; Vlahos, Antonios P.; Ioannidis, John P. A.
2010-01-01
Background Images are important for conveying information, but there is no empirical evidence on whether imaging figures are properly selected and presented in the published medical literature. We therefore evaluated the selection and presentation of radiological imaging figures in major medical journals. Methodology/Principal Findings We analyzed articles published in 2005 in 12 major general and specialty medical journals that had radiological imaging figures. For each figure, we recorded information on selection, study population, provision of quantitative measurements, color scales and contrast use. Overall, 417 images from 212 articles were analyzed. Any comment/hint on image selection was made in 44 (11%) images (range 0–50% across the 12 journals) and another 37 (9%) (range 0–60%) showed both a normal and abnormal appearance. In 108 images (26%) (range 0–43%) it was unclear whether the image came from the presented study population. Eighty-three images (20%) (range 0–60%) had any quantitative or ordered categorical value on a measure of interest. Information on the distribution of the measure of interest in the study population was given in 59 cases. For 43 images (range 0–40%), a quantitative measurement was provided for the depicted case and the distribution of values in the study population was also available; in those 43 cases there was no over-representation of extreme than average cases (p = 0.37). Significance The selection and presentation of images in the medical literature is often insufficiently documented; quantitative data are sparse and difficult to place in context. PMID:20526360
NASA Astrophysics Data System (ADS)
Ruthven, R. C.; Ketcham, R. A.; Kelly, E. D.
2015-12-01
Three-dimensional textural analysis of garnet porphyroblasts and electron microprobe analyses can, in concert, be used to pose novel tests that challenge and ultimately increase our understanding of metamorphic crystallization mechanisms. Statistical analysis of high-resolution X-ray computed tomography (CT) data of garnet porphyroblasts tells us the degree of ordering or randomness of garnets, which can be used to distinguish the rate-limiting factors behind their nucleation and growth. Electron microprobe data for cores, rims, and core-to-rim traverses are used as proxies to ascertain porphyroblast nucleation and growth rates, and the evolution of sample composition during crystallization. MnO concentrations in garnet cores serve as a proxy for the relative timing of nucleation, and rim concentrations test the hypothesis that MnO is in equilibrium sample-wide during the final stages of crystallization, and that concentrations have not been greatly altered by intracrystalline diffusion. Crystal size distributions combined with compositional data can be used to quantify the evolution of nucleation rates and sample composition during crystallization. This study focuses on quartzite schists from the Picuris Mountains with heterogeneous garnet distributions consisting of dense and sparse layers. 3D data shows that the sparse layers have smaller, less euhedral garnets, and petrographic observations show that sparse layers have more quartz and less mica than dense layers. Previous studies on rocks with homogeneously distributed garnet have shown that crystallization rates are diffusion-controlled, meaning that they are limited by diffusion of nutrients to growth and nucleation sites. This research extends this analysis to heterogeneous rocks to determine nucleation and growth rates, and test the assumption of rock-wide equilibrium for some major elements, among a set of compositionally distinct domains evolving in mm- to cm-scale proximity under identical P-T conditions.
Carroll, Rachel; Lawson, Andrew B; Kirby, Russell S; Faes, Christel; Aregay, Mehreteab; Watjou, Kevin
2017-01-01
Many types of cancer have an underlying spatiotemporal distribution. Spatiotemporal mixture modeling can offer a flexible approach to risk estimation via the inclusion of latent variables. In this article, we examine the application and benefits of using four different spatiotemporal mixture modeling methods in the modeling of cancer of the lung and bronchus as well as "other" respiratory cancer incidences in the state of South Carolina. Of the methods tested, no single method outperforms the other methods; which method is best depends on the cancer under consideration. The lung and bronchus cancer incidence outcome is best described by the univariate modeling formulation, whereas the "other" respiratory cancer incidence outcome is best described by the multivariate modeling formulation. Spatiotemporal multivariate mixture methods can aid in the modeling of cancers with small and sparse incidences when including information from a related, more common type of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Memory Allocation: Mechanisms and Function.
Josselyn, Sheena A; Frankland, Paul W
2018-04-25
Memories for events are thought to be represented in sparse, distributed neuronal ensembles (or engrams). In this article, we review how neurons are chosen to become part of a particular engram, via a process of neuronal allocation. Experiments in rodents indicate that eligible neurons compete for allocation to a given engram, with more excitable neurons winning this competition. Moreover, fluctuations in neuronal excitability determine how engrams interact, promoting either memory integration (via coallocation to overlapping engrams) or separation (via disallocation to nonoverlapping engrams). In parallel with rodent studies, recent findings in humans verify the importance of this memory integration process for linking memories that occur close in time or share related content. A deeper understanding of allocation promises to provide insights into the logic underlying how knowledge is normally organized in the brain and the disorders in which this process has gone awry. Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Mueller-Lisse, Ullrich; Moeller, Knut
2016-06-01
Electrical impedance tomography (EIT) reconstructs the conductivity distribution of a domain using electrical data on its boundary. This is an ill-posed inverse problem usually solved on a finite element mesh. For this article, a special regularization method incorporating structural information of the targeted domain is proposed and evaluated. Structural information was obtained either from computed tomography images or from preliminary EIT reconstructions by a modified k-means clustering. The proposed regularization method integrates this structural information into the reconstruction as a soft constraint preferring sparsity in group level. A first evaluation with Monte Carlo simulations indicated that the proposed solver is more robust to noise and the resulting images show fewer artifacts. This finding is supported by real data analysis. The structure based regularization has the potential to balance structural a priori information with data driven reconstruction. It is robust to noise, reduces artifacts and produces images that reflect anatomy and are thus easier to interpret for physicians.
Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines
NASA Astrophysics Data System (ADS)
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-04-01
A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.
Jiang, Geng-Ming; Li, Zhao-Liang
2008-11-10
This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended.
The importance of littoral elevation to the distribution of intertidal species has long been a cornerstone of estuarine ecology and its historical importance to navigation cannot be understated. However, historically, intertidal elevation measurements have been sparse likely due ...
ERIC Educational Resources Information Center
Lum, Lydia
2007-01-01
Around the country, disabled sports are often treated like second-class siblings to their able-bodied counterparts, largely because the latter bring in prestigious tournaments and bowl games, lucrative TV contracts and national exposure for top athletes and coaches. Because disabled people are so sparsely distributed in the general population, it…
Colorism as a Salient Space for Understanding in Teacher Preparation
ERIC Educational Resources Information Center
McGee, Ebony O.; Alvarez, Adam; Milner, H. Richard
2016-01-01
In this article, we posit the salience of colorism as an important aspect of race in the knowledge construction and preparation of teachers. Although many more teacher education programs across the United States have begun to infuse aspects of race into their curricula, there is sparse literature about the role of colorism in teacher preparation…
Web 2.0 and Marketing Education: Explanations and Experiential Applications
ERIC Educational Resources Information Center
Granitz, Neil; Koernig, Stephen K.
2011-01-01
Although both experiential learning and Web 2.0 tools focus on creativity, sharing, and collaboration, sparse research has been published integrating a Web 2.0 paradigm with experiential learning in marketing. In this article, Web 2.0 concepts are explained. Web 2.0 is then positioned as a philosophy that can advance experiential learning through…
ERIC Educational Resources Information Center
Tang, Mei; Russ, Kathryn
2007-01-01
The literature on career development for people of Appalachian culture is sparse. This article reviews cultural values of Appalachians and proposes an innovative career intervention model to best serve people of this culture. The model integrates the concepts of the social cognitive career development approach (R. W. Lent, S. D. Brown, & G.…
Cardone, A.; Bornstein, A.; Pant, H. C.; Brady, M.; Sriram, R.; Hassan, S. A.
2015-01-01
A method is proposed to study protein-ligand binding in a system governed by specific and non-specific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultra-weak associations lead instead to broader distributions, a manifestation of non-specific, sparsely-populated binding modes with multiple interfaces. The method is based on the notion that a discrete set of preferential first-encounter modes are metastable states from which stable (pre-relaxation) complexes at equilibrium evolve. The method can be used to explore alternative pathways of complexation with statistical significance and can be integrated into a general algorithm to study protein interaction networks. The method is applied to a peptide-protein complex. The peptide adopts several low-population conformers and binds in a variety of modes with a broad range of affinities. The system is thus well suited to analyze general features of binding, including conformational selection, multiplicity of binding modes, and nonspecific interactions, and to illustrate how the method can be applied to study these problems systematically. The equilibrium distributions can be used to generate biasing functions for simulations of multiprotein systems from which bulk thermodynamic quantities can be calculated. PMID:25782918
Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2016-01-01
This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
2016-01-01
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986
Bayesian X-ray computed tomography using a three-level hierarchical prior model
NASA Astrophysics Data System (ADS)
Wang, Li; Mohammad-Djafari, Ali; Gac, Nicolas
2017-06-01
In recent decades X-ray Computed Tomography (CT) image reconstruction has been largely developed in both medical and industrial domain. In this paper, we propose using the Bayesian inference approach with a new hierarchical prior model. In the proposed model, a generalised Student-t distribution is used to enforce the Haar transformation of images to be sparse. Comparisons with some state of the art methods are presented. It is shown that by using the proposed model, the sparsity of sparse representation of images is enforced, so that edges of images are preserved. Simulation results are also provided to demonstrate the effectiveness of the new hierarchical model for reconstruction with fewer projections.
Weiss, Christian; Zoubir, Abdelhak M
2017-05-01
We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a preprocessing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.
Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.
Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua
2014-04-02
The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.
Time-Frequency Signal Representations Using Interpolations in Joint-Variable Domains
2016-06-14
distribution kernels,” IEEE Trans. Signal Process., vol. 42, no. 5, pp. 1156–1165, May 1994. [25] G. S. Cunningham and W. J. Williams , “Kernel...interpolated data. For comparison, we include sparse reconstruction and WVD and Choi– Williams distribution (CWD) [23], which are directly applied to...Prentice-Hall, 1995. [23] H. I. Choi and W. J. Williams , “Improved time-frequency representa- tion of multicomponent signals using exponential kernels
Liao, Ke; Zhu, Min; Ding, Lei
2013-08-01
The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Digital Correlation In Laser-Speckle Velocimetry
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Mathys, Donald R.
1992-01-01
Periodic recording helps to eliminate spurious results. Improved digital-correlation process extracts velocity field of two-dimensional flow from laser-speckle images of seed particles distributed sparsely in flow. Method which involves digital correlation of images recorded at unequal intervals, completely automated and has potential to be fastest yet.
Bayesian Semiparametric Structural Equation Models with Latent Variables
ERIC Educational Resources Information Center
Yang, Mingan; Dunson, David B.
2010-01-01
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
Siauve, N; Nicolas, L; Vollaire, C; Marchal, C
2004-12-01
This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-01-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l1-norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a “connectivity strength-weighted sparse group constraint.” In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. PMID:28150897
Ponzi, Adam; Wickens, Jeff
2010-04-28
The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.
Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.
Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen
2016-07-27
Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.
Video games: a route to large-scale STEM education?
Mayo, Merrilea J
2009-01-02
Video games have enormous mass appeal, reaching audiences in the hundreds of thousands to millions. They also embed many pedagogical practices known to be effective in other environments. This article reviews the sparse but encouraging data on learning outcomes for video games in science, technology, engineering, and math (STEM) disciplines, then reviews the infrastructural obstacles to wider adoption of this new medium.
ERIC Educational Resources Information Center
Staihr, Brian
This first article in a series on telecommunications in rural America provides an overview of several key telecommunication issues facing rural regions. High speed data services known as broadband have the potential to make rural areas less isolated and improve the rural quality of life, but physical barriers, sparse population density, and few…
Law School: A Multicultural Curriculum Design for Living in the 21st Century
ERIC Educational Resources Information Center
Christie, Christie A. Linskens
2009-01-01
Most of the literature on multicultural education deals with students in grade and high school, or at the college or university level. The literature is sparse as to how one could implement multicultural education at the professional level, and most of the articles that address "multicultural education" and "law school" merely analyze the "Bakke"…
More than Just Music: Reconsidering the Educational Value of Music in School Rituals
ERIC Educational Resources Information Center
Nikkanen, Hanna M.; Westerlund, Heidi
2017-01-01
Although rituals are considered central to human life, scholarship on rituals in music education is sparse. This may be due to a more general emphasis on the individual and private at the expense of the social and public aspects of music in education. This article highlights the educational value of school rituals in festivities and celebrations,…
ERIC Educational Resources Information Center
Vista, Alvin; Care, Esther
2011-01-01
Background: Research on gender differences in intelligence has focused mostly on samples from Western countries and empirical evidence on gender differences from Southeast Asia is relatively sparse. Aims: This article presents results on gender differences in variance and means on a non-verbal intelligence test using a national sample of public…
Das, Kiranmoy; Daniels, Michael J.
2014-01-01
Summary Estimation of the covariance structure for irregular sparse longitudinal data has been studied by many authors in recent years but typically using fully parametric specifications. In addition, when data are collected from several groups over time, it is known that assuming the same or completely different covariance matrices over groups can lead to loss of efficiency and/or bias. Nonparametric approaches have been proposed for estimating the covariance matrix for regular univariate longitudinal data by sharing information across the groups under study. For the irregular case, with longitudinal measurements that are bivariate or multivariate, modeling becomes more difficult. In this article, to model bivariate sparse longitudinal data from several groups, we propose a flexible covariance structure via a novel matrix stick-breaking process for the residual covariance structure and a Dirichlet process mixture of normals for the random effects. Simulation studies are performed to investigate the effectiveness of the proposed approach over more traditional approaches. We also analyze a subset of Framingham Heart Study data to examine how the blood pressure trajectories and covariance structures differ for the patients from different BMI groups (high, medium and low) at baseline. PMID:24400941
Populations of Bactrocera oleae (Diptera: Tephritidae) and Its Parasitoids in Himalayan Asia
USDA-ARS?s Scientific Manuscript database
For a biological control program against olive fruit fly, Bactrocera oleae Rossi, olives were collected in the Himalayan foothills (China, Nepal, India, and Pakistan) to discover new natural enemies. Wild olives, Olea europaea ssp. cuspidata (Wall ex. G. Don), were sparsely distributed and fly-infes...
Populations of Bactrocera oleae (Diptera: Tephritidae) and Its Parasitoids in Himalayan Asia
USDA-ARS?s Scientific Manuscript database
For a biological control program against olive fruit fly, Bactrocera oleae Rossi, olives were collected in the Himalayan foothills (China, Nepal, India, and Pakistan) to discover new natural enemies. Wild olives, Olea europaea ssp. cuspidata (Wall ex. G. Don), were sparsely distributed and fly-infe...
Sparse Distributed Representation and Hierarchy: Keys to Scalable Machine Intelligence
2016-04-01
Lesher, Jasmin Leveille, and Oliver Layton Neurithmic Systems, LLC APRIL 2016 Final Report Approved for public release...61101E 6. AUTHOR(S) Gerard (Rod) Rinkus, Greg Lesher, Jasmin Leveille, and Oliver Layton 5d. PROJECT NUMBER 1000 5e. TASK NUMBER N/A 5f. WORK
Geographic Mobility of Manpower in the USSR.
ERIC Educational Resources Information Center
Kossov, V. V.; Tatevosoc, R. V.
1984-01-01
The Soviet Union is experiencing substantial reduction in the growth of the working-age population, accompanied by a shift in the distribution of population growth. The government is using various means to encourage workers to move to the sparsely populated developing regions and away from the large cities. (SK)
45 CFR 303.20 - Minimum organizational and staffing requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... payments or social services functions under title IV-A or XX of the Act. In the case of a sparsely... social worker. (2) The assistance payments function means activities related to determination of... financial and medical assistance and commodities distribution or food stamps. (3) The social services...
Monitoring NEON terrestrial sites phenology with daily MODIS BRDF/albedo product and landsat data
USDA-ARS?s Scientific Manuscript database
The MODerate resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and albedo products (MCD43) have already been in production for more than a decade. The standard product makes use of a linear “kernel-driven” RossThick-LiSparse Reciprocal (RTLSR) BRDF m...
Irvine, Kathryn M.; Thornton, Jamie; Backus, Vickie M.; Hohmann, Matthew G.; Lehnhoff, Erik A.; Maxwell, Bruce D.; Michels, Kurt; Rew, Lisa
2013-01-01
Commonly in environmental and ecological studies, species distribution data are recorded as presence or absence throughout a spatial domain of interest. Field based studies typically collect observations by sampling a subset of the spatial domain. We consider the effects of six different adaptive and two non-adaptive sampling designs and choice of three binary models on both predictions to unsampled locations and parameter estimation of the regression coefficients (species–environment relationships). Our simulation study is unique compared to others to date in that we virtually sample a true known spatial distribution of a nonindigenous plant species, Bromus inermis. The census of B. inermis provides a good example of a species distribution that is both sparsely (1.9 % prevalence) and patchily distributed. We find that modeling the spatial correlation using a random effect with an intrinsic Gaussian conditionally autoregressive prior distribution was equivalent or superior to Bayesian autologistic regression in terms of predicting to un-sampled areas when strip adaptive cluster sampling was used to survey B. inermis. However, inferences about the relationships between B. inermis presence and environmental predictors differed between the two spatial binary models. The strip adaptive cluster designs we investigate provided a significant advantage in terms of Markov chain Monte Carlo chain convergence when trying to model a sparsely distributed species across a large area. In general, there was little difference in the choice of neighborhood, although the adaptive king was preferred when transects were randomly placed throughout the spatial domain.
Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations
Chaspari, Theodora; Tsiartas, Andreas; Tsilifis, Panagiotis; Narayanan, Shrikanth
2016-01-01
Parametric dictionaries can increase the ability of sparse representations to meaningfully capture and interpret the underlying signal information, such as encountered in biomedical problems. Given a mapping function from the atom parameter space to the actual atoms, we propose a sparse Bayesian framework for learning the atom parameters, because of its ability to provide full posterior estimates, take uncertainty into account and generalize on unseen data. Inference is performed with Markov Chain Monte Carlo, that uses block sampling to generate the variables of the Bayesian problem. Since the parameterization of dictionary atoms results in posteriors that cannot be analytically computed, we use a Metropolis-Hastings-within-Gibbs framework, according to which variables with closed-form posteriors are generated with the Gibbs sampler, while the remaining ones with the Metropolis Hastings from appropriate candidate-generating densities. We further show that the corresponding Markov Chain is uniformly ergodic ensuring its convergence to a stationary distribution independently of the initial state. Results on synthetic data and real biomedical signals indicate that our approach offers advantages in terms of signal reconstruction compared to previously proposed Steepest Descent and Equiangular Tight Frame methods. This paper demonstrates the ability of Bayesian learning to generate parametric dictionaries that can reliably represent the exemplar data and provides the foundation towards inferring the entire variable set of the sparse approximation problem for signal denoising, adaptation and other applications. PMID:28649173
Robustness-Based Design Optimization Under Data Uncertainty
NASA Technical Reports Server (NTRS)
Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran; Green, Lawrence
2010-01-01
This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables.
Microbial ecology of extreme environments: Antarctic yeasts and growth in substrate-limited habitats
NASA Technical Reports Server (NTRS)
Vishniac, H. S.
1984-01-01
An extreme environment is by definition one with a depauperate biota. While the Ross Desert is by no means homogeneous, the most exposed and arid habitats, soils in the unglaciated high valleys, do indeed contain a very sparse biota of low diversity. So sparse that the natives could easily be outnumbered by airborne exogenous microbes. Native biota must be capable of overwintering as well as growing in the high valley summer. Tourists may undergo a few divisions before contributing their enzymes and, ultimately, elements to the soil - or may die before landing. The simplest way to demonstrate the indigenicity of a particular microbe is therefore to establish unique distribution; occurrence only in the habitat in question precludes foreign origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Pouransari, Hadi; Rajamanickam, Sivasankaran
We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by everymore » processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.« less
Vista, Alvin; Care, Esther
2011-06-01
Research on gender differences in intelligence has focused mostly on samples from Western countries and empirical evidence on gender differences from Southeast Asia is relatively sparse. This article presents results on gender differences in variance and means on a non-verbal intelligence test using a national sample of public school students from the Philippines. More than 2,700 sixth graders from public schools across the country were tested with the Naglieri Non-verbal Ability Test (NNAT). Variance ratios (VRs) and log-transformed VRs were computed. Proportion ratios for each of the ability levels were also calculated and a chi-square goodness-of-fit test was performed. An analysis of variance was performed to determine the overall gender difference in mean scores as well as within each of three age subgroups. Our data show non-existent or trivial gender difference in mean scores. However, the tails of the distributions show differences between the males and females, with greater variability among males in the upper half of the distribution and greater variability among females in the lower half of the distribution. Descriptions of the results and their implications are discussed. Results on mean score differences support the hypothesis that there are no significant gender differences in cognitive ability. The unusual results regarding differences in variance and the male-female proportion in the tails require more complex investigations. ©2010 The British Psychological Society.
Clinical Challenges in the Growing Medical Marijuana Field.
Barker, Jonathan
2018-03-01
Unique clinical challenges arise with the growing number of patients who possess medical marijuana cards. Medical marijuana patients with mental disorders can have worsening symptoms with marijuana use. Often there is sparse continuity of care between the patient and the medical marijuana practitioner. Lack of communication between the patient's treating practitioners and the practitioner who has authorized the medical marijuana can be problematic. This article is a discussion of the new clinical challenges practitioners are likely to encounter with the growing number of medical marijuana patients. [Full article available at http://rimed.org/rimedicaljournal-2018-03.asp].
Clinical Challenges in the Growing Medical Marijuana Field.
Barker, Jonathan
2018-02-02
Unique clinical challenges arise with the growing number of patients who possess medical marijuana cards. Medical marijuana patients with mental disorders can have worsening symptoms with marijuana use. Often there is sparse continuity of care between the patient and the medical marijuana practitioner. Lack of communication between the patient's treating practitioners and the practitioner who has authorized the medical marijuana can be problematic. This article is a discussion of the new clinical challenges practitioners are likely to encounter with the growing number of medical marijuana patients. [Full article available at http://rimed.org/rimedicaljournal-2018-02.asp].
Statistical regularities of art images and natural scenes: spectra, sparseness and nonlinearities.
Graham, Daniel J; Field, David J
2007-01-01
Paintings are the product of a process that begins with ordinary vision in the natural world and ends with manipulation of pigments on canvas. Because artists must produce images that can be seen by a visual system that is thought to take advantage of statistical regularities in natural scenes, artists are likely to replicate many of these regularities in their painted art. We have tested this notion by computing basic statistical properties and modeled cell response properties for a large set of digitized paintings and natural scenes. We find that both representational and non-representational (abstract) paintings from our sample (124 images) show basic similarities to a sample of natural scenes in terms of their spatial frequency amplitude spectra, but the paintings and natural scenes show significantly different mean amplitude spectrum slopes. We also find that the intensity distributions of paintings show a lower skewness and sparseness than natural scenes. We account for this by considering the range of luminances found in the environment compared to the range available in the medium of paint. A painting's range is limited by the reflective properties of its materials. We argue that artists do not simply scale the intensity range down but use a compressive nonlinearity. In our studies, modeled retinal and cortical filter responses to the images were less sparse for the paintings than for the natural scenes. But when a compressive nonlinearity was applied to the images, both the paintings' sparseness and the modeled responses to the paintings showed the same or greater sparseness compared to the natural scenes. This suggests that artists achieve some degree of nonlinear compression in their paintings. Because paintings have captivated humans for millennia, finding basic statistical regularities in paintings' spatial structure could grant insights into the range of spatial patterns that humans find compelling.
NASA Astrophysics Data System (ADS)
Mohamad Noor, Faris; Adipta, Agra
2018-03-01
Coal Bed Methane (CBM) as a newly developed resource in Indonesia is one of the alternatives to relieve Indonesia’s dependencies on conventional energies. Coal resource of Muara Enim Formation is known as one of the prolific reservoirs in South Sumatra Basin. Seismic inversion and well analysis are done to determine the coal seam characteristics of Muara Enim Formation. This research uses three inversion methods, which are: model base hard- constrain, bandlimited, and sparse-spike inversion. Each type of seismic inversion has its own advantages to display the coal seam and its characteristic. Interpretation result from the analysis data shows that the Muara Enim coal seam has 20 (API) gamma ray value, 1 (gr/cc) – 1.4 (gr/cc) from density log, and low AI cutoff value range between 5000-6400 (m/s)*(g/cc). The distribution of coal seam is laterally thinning northwest to southeast. Coal seam is seen biasedly on model base hard constraint inversion and discontinued on band-limited inversion which isn’t similar to the geological model. The appropriate AI inversion is sparse spike inversion which has 0.884757 value from cross plot inversion as the best correlation value among the chosen inversion methods. Sparse Spike inversion its self-has high amplitude as a proper tool to identify coal seam continuity which commonly appears as a thin layer. Cross-sectional sparse spike inversion shows that there are possible new boreholes in CDP 3662-3722, CDP 3586-3622, and CDP 4004-4148 which is seen in seismic data as a thick coal seam.
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
Solving large tomographic linear systems: size reduction and error estimation
NASA Astrophysics Data System (ADS)
Voronin, Sergey; Mikesell, Dylan; Slezak, Inna; Nolet, Guust
2014-10-01
We present a new approach to reduce a sparse, linear system of equations associated with tomographic inverse problems. We begin by making a modification to the commonly used compressed sparse-row format, whereby our format is tailored to the sparse structure of finite-frequency (volume) sensitivity kernels in seismic tomography. Next, we cluster the sparse matrix rows to divide a large matrix into smaller subsets representing ray paths that are geographically close. Singular value decomposition of each subset allows us to project the data onto a subspace associated with the largest eigenvalues of the subset. After projection we reject those data that have a signal-to-noise ratio (SNR) below a chosen threshold. Clustering in this way assures that the sparse nature of the system is minimally affected by the projection. Moreover, our approach allows for a precise estimation of the noise affecting the data while also giving us the ability to identify outliers. We illustrate the method by reducing large matrices computed for global tomographic systems with cross-correlation body wave delays, as well as with surface wave phase velocity anomalies. For a massive matrix computed for 3.7 million Rayleigh wave phase velocity measurements, imposing a threshold of 1 for the SNR, we condensed the matrix size from 1103 to 63 Gbyte. For a global data set of multiple-frequency P wave delays from 60 well-distributed deep earthquakes we obtain a reduction to 5.9 per cent. This type of reduction allows one to avoid loss of information due to underparametrizing models. Alternatively, if data have to be rejected to fit the system into computer memory, it assures that the most important data are preserved.
Tan, Francisca M; Caballero-Gaudes, César; Mullinger, Karen J; Cho, Siu-Yeung; Zhang, Yaping; Dryden, Ian L; Francis, Susan T; Gowland, Penny A
2017-11-01
Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of activation likelihood estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)-fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778-5794, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
2013-01-01
Abstract Tettigettalna mariae Quartau & Boulard 1995 is recorded for the first time in Spain. Thought to be endemic to Portugal (occurring in the southern province of Algarve), the present paper adds its distribution to southern Spain, being an Iberian endemism. The acoustic signals of the new specimens collected were recorded in different localities of Huelva province, in Andalusia during August 2012. According to their present known distribution, specimens of Tettigettalna mariae tend to be sparsely distributed in small range populations in southern Iberian Peninsula, favouring wooded areas with Pinus pinea. PMID:24723772
Sparse and redundant representations for inverse problems and recognition
NASA Astrophysics Data System (ADS)
Patel, Vishal M.
Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented.
Random-access scanning microscopy for 3D imaging in awake behaving animals
Nadella, K. M. Naga Srinivas; Roš, Hana; Baragli, Chiara; Griffiths, Victoria A.; Konstantinou, George; Koimtzis, Theo; Evans, Geoffrey J.; Kirkby, Paul A.; Silver, R. Angus
2018-01-01
Understanding how neural circuits process information requires rapid measurements from identified neurons distributed in 3D space. Here we describe an acousto-optic lens two-photon microscope that performs high-speed focussing and line-scanning within a volume spanning hundreds of micrometres. We demonstrate its random access functionality by selectively imaging cerebellar interneurons sparsely distributed in 3D and by simultaneously recording from the soma, proximal and distal dendrites of neocortical pyramidal cells in behaving mice. PMID:27749836
2014-06-17
100 0 2 4 Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function 0 50 100 0 2 4 L- Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function ...bilinear or higher order autocorrelation functions will increase the number of missing samples, the analysis shows that accurate instantaneous...frequency estimation can be achieved even if we deal with only few samples, as long as the auto-correlation function is properly chosen to coincide with
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...
2016-06-30
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
ERIC Educational Resources Information Center
Diaz-Puente, Jose M.; Moreno, Francisco Jose Gallego; Zamorano, Ramon
2012-01-01
Training is a key tool for community development processes in rural areas. This training is made difficult by the characteristics of the rural areas and their population. Furthermore, the methods used by traditional training bodies are not adapted to the peculiarities of these areas. This article analyses the training methodology used by the…
ERIC Educational Resources Information Center
Wainwright, Elaine; Attridge, Nina; Wainwright, David; Alcock, Lara; Inglis, Matthew
2017-01-01
The Theory of Formal Discipline (TFD) suggests that studying mathematics improves general thinking skills. Empirical evidence for the TFD is sparse, yet it is cited in policy reports as a justification for the importance of mathematics in school curricula. The study reported in this article investigated the extent to which influential UK advocates…
Individual snag detection using neighborhood attribute filtered airborne lidar data
Brian M. Wing; Martin W. Ritchie; Kevin Boston; Warren B. Cohen; Michael J. Olsen
2015-01-01
The ability to estimate and monitor standing dead trees (snags) has been difficult due to their irregular and sparse distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study presents a new method for estimating and monitoring snags using neighborhood attribute filtered airborne discrete-return lidar data. The...
Matthew S. Lobdell; Patrick G. Thompson
2017-01-01
Quercus oglethorpensis (Oglethorpe oak) is an endangered species native to the southeastern United States. It is threatened by land use changes, competition, and chestnut blight disease caused by Cryphonectria parasitica. The species is distributed sparsely over a linear distance of ca. 950 km. Its range includes several...
A practical modification of horizontal line sampling for snag and cavity tree inventory
M. J. Ducey; G. J. Jordan; J. H. Gove; H. T. Valentine
2002-01-01
Snags and cavity trees are important structural features in forests, but they are often sparsely distributed, making efficient inventories problematic. We present a straightforward modification of horizontal line sampling designed to facilitate inventory of these features while remaining compatible with commonly employed sampling methods for the living overstory. The...
Sparse distributed memory prototype: Principles of operation
NASA Technical Reports Server (NTRS)
Flynn, Michael J.; Kanerva, Pentti; Ahanin, Bahram; Bhadkamkar, Neal; Flaherty, Paul; Hickey, Philip
1988-01-01
Sparse distributed memory is a generalized random access memory (RAM) for long binary words. Such words can be written into and read from the memory, and they can be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original right address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech and scene analysis, in signal detection and verification, and in adaptive control of automated equipment. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. The research is aimed at resolving major design issues that have to be faced in building the memories. The design of a prototype memory with 256-bit addresses and from 8K to 128K locations for 256-bit words is described. A key aspect of the design is extensive use of dynamic RAM and other standard components.
Huh, Yang Hoon; Noh, Minsoo; Burden, Frank R.; Chen, Jennifer C.; Winkler, David A.; Sherley, James L.
2015-01-01
There is a long-standing unmet clinical need for biomarkers with high specificity for distributed stem cells (DSCs) in tissues, or for use in diagnostic and therapeutic cell preparations (e.g., bone marrow). Although DSCs are essential for tissue maintenance and repair, accurate determination of their numbers for medical applications has been problematic. Previous searches for biomarkers expressed specifically in DSCs were hampered by difficulty obtaining pure DSCs and by the challenges in mining complex molecular expression data. To identify DSC such useful and specific biomarkers, we combined a novel sparse feature selection method with combinatorial molecular expression data focused on asymmetric self-renewal, a conspicuous property of DSCs. The analysis identified reduced expression of the histone H2A variant H2A.Z as a superior molecular discriminator for DSC asymmetric self-renewal. Subsequent molecular expression studies showed H2A.Z to be a novel “pattern-specific biomarker” for asymmetrically self-renewing cells with sufficient specificity to count asymmetrically self-renewing DSCs in vitro and potentially in situ. PMID:25636161
Coverage maximization under resource constraints using a nonuniform proliferating random walk.
Saha, Sudipta; Ganguly, Niloy
2013-02-01
Information management services on networks, such as search and dissemination, play a key role in any large-scale distributed system. One of the most desirable features of these services is the maximization of the coverage, i.e., the number of distinctly visited nodes under constraints of network resources as well as time. However, redundant visits of nodes by different message packets (modeled, e.g., as walkers) initiated by the underlying algorithms for these services cause wastage of network resources. In this work, using results from analytical studies done in the past on a K-random-walk-based algorithm, we identify that redundancy quickly increases with an increase in the density of the walkers. Based on this postulate, we design a very simple distributed algorithm which dynamically estimates the density of the walkers and thereby carefully proliferates walkers in sparse regions. We use extensive computer simulations to test our algorithm in various kinds of network topologies whereby we find it to be performing particularly well in networks that are highly clustered as well as sparse.
Two-dimensional shape recognition using sparse distributed memory
NASA Technical Reports Server (NTRS)
Kanerva, Pentti; Olshausen, Bruno
1990-01-01
Researchers propose a method for recognizing two-dimensional shapes (hand-drawn characters, for example) with an associative memory. The method consists of two stages: first, the image is preprocessed to extract tangents to the contour of the shape; second, the set of tangents is converted to a long bit string for recognition with sparse distributed memory (SDM). SDM provides a simple, massively parallel architecture for an associative memory. Long bit vectors (256 to 1000 bits, for example) serve as both data and addresses to the memory, and patterns are grouped or classified according to similarity in Hamming distance. At the moment, tangents are extracted in a simple manner by progressively blurring the image and then using a Canny-type edge detector (Canny, 1986) to find edges at each stage of blurring. This results in a grid of tangents. While the technique used for obtaining the tangents is at present rather ad hoc, researchers plan to adopt an existing framework for extracting edge orientation information over a variety of resolutions, such as suggested by Watson (1987, 1983), Marr and Hildreth (1980), or Canny (1986).
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1989-01-01
To study the problems of encoding visual images for use with a Sparse Distributed Memory (SDM), I consider a specific class of images- those that consist of several pieces, each of which is a line segment or an arc of a circle. This class includes line drawings of characters such as letters of the alphabet. I give a method of representing a segment of an arc by five numbers in a continuous way; that is, similar arcs have similar representations. I also give methods for encoding these numbers as bit strings in an approximately continuous way. The set of possible segments and arcs may be viewed as a five-dimensional manifold M, whose structure is like a Mobious strip. An image, considered to be an unordered set of segments and arcs, is therefore represented by a set of points in M - one for each piece. I then discuss the problem of constructing a preprocessor to find the segments and arcs in these images, although a preprocessor has not been developed. I also describe a possible extension of the representation.
Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China
NASA Astrophysics Data System (ADS)
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Zhuang, Dafang; Huang, Yaohuan
2014-07-01
Energy plants are the main source of bioenergy which will play an increasingly important role in future energy supplies. With limited cultivated land resources in China, the development of energy plants may primarily rely on the marginal land. In this study, based on the land use data from 1990 to 2010(every 5 years is a period) and other auxiliary data, the distribution of marginal land suitable for energy plants was determined using multi-factors integrated assessment method. The variation of land use type and spatial distribution of marginal land suitable for energy plants of different decades were analyzed. The results indicate that the total amount of marginal land suitable for energy plants decreased from 136.501 million ha to 114.225 million ha from 1990 to 2010. The reduced land use types are primarily shrub land, sparse forest land, moderate dense grassland and sparse grassland, and large variation areas are located in Guangxi, Tibet, Heilongjiang, Xinjiang and Inner Mongolia. The results of this study will provide more effective data reference and decision making support for the long-term planning of bioenergy resources.
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-05-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l 1 -norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a "connectivity strength-weighted sparse group constraint." In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. Hum Brain Mapp 38:2370-2383, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Dose-shaping using targeted sparse optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayre, George A.; Ruan, Dan
2013-07-15
Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, themore » authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot}{sup sparse} improves tradeoff between planning goals by 'sacrificing' voxels that have already been violated to improve PTV coverage, PTV homogeneity, and/or OAR-sparing. In doing so, overall plan quality is increased since these large violations only arise if a net reduction in E{sub tot}{sup sparse} occurs as a result. For example, large violations to dose prescription in the PTV in E{sub tot}{sup sparse}-optimized plans will naturally localize to voxels in and around PTV-OAR overlaps where OAR-sparing may be increased without compromising target coverage. The authors compared the results of our method and the corresponding clinical plans using analyses of DVH plots, dose maps, and two quantitative metrics that quantify PTV homogeneity and overdose. These metrics do not penalize underdose since E{sub tot}{sup sparse}-optimized plans were planned such that their target coverage was similar or better than that of the clinical plans. Finally, plan deliverability was assessed with the 2D modulation index.Results: The proposed method was implemented using IBM's CPLEX optimization package (ILOG CPLEX, Sunnyvale, CA) and required 1-4 min to solve with a 12-core Intel i7 processor. In the testing procedure, the authors optimized for several points on the Pareto surface of four 7-field 6MV prostate cases that were optimized for different levels of PTV homogeneity and OAR-sparing. The generated results were compared against each other and the clinical plan by analyzing their DVH plots and dose maps. After developing intuition by planning the four prostate cases, which had relatively few tradeoffs, the authors applied our method to a 7-field 6 MV pancreas case and a 9-field 6MV head-and-neck case to test the potential impact of our method on more challenging cases. The authors found that our formulation: (1) provided excellent flexibility for balancing OAR-sparing with PTV homogeneity; and (2) permitted the dose planner more control over the evolution of the PTV's spatial dose distribution than conventional objective functions. In particular, E{sub tot}{sup sparse}-optimized plans for the pancreas case and head-and-neck case exhibited substantially improved sparing of the spinal cord and parotid glands, respectively, while maintaining or improving sparing for other OARs and markedly improving PTV homogeneity. Plan deliverability for E{sub tot}{sup sparse}-optimized plans was shown to be better than their associated clinical plans, according to the two-dimensional modulation index.Conclusions: These results suggest that our formulation may be used to improve dose-shaping and OAR-sparing for complicated disease sites, such as the pancreas or head and neck. Furthermore, our objective function and constraints are linear and constitute a linear program, which converges to the global minimum quickly, and can be easily implemented in treatment planning software. Thus, the authors expect fast translation of our method to the clinic where it may have a positive impact on plan quality for challenging disease sites.« less
A morphological database for 606 colombian bird species.
Montoya, Paola; Gonzalez, Mailyn A; Tenorio, Elkin A; López-Ordóñez, Juan Pablo; Pinto Gómez, Alejandro; Cueva, Diego; Acevedo Rincón, Aldemar A; Angarita Yanes, Camilo; Arango Martínez, Héctor Manuel; Armesto, Orlando; Betancur, Jefry S; Caguazango Castro, Angela; Calderon Leyton, Jhon Jairo; Calpa-Anaguano, Edna Viviana; Cárdenas-Posada, Ghislaine; Castaño Díaz, Michael; Chaparro-Herrera, Sergio; Diago-Muñoz, Nicolás; Franco Espinosa, Laura; Gómez Bernal, Luis Germán; Gonzalez-Zapata, Fanny L; Gutiérrez Zamora, Eduardo Aquiles; Gutiérrez-Zuluaga, Ana M; Lizcano Jiménez, Robinson Stivel; Lopera-Salazar, Andrea; Martínez Alvarado, Dariel; Maya Girón, Ana María; Medina, Wilderson; Montealegre-Talero, Carolina; Parra, Juan L; Pérez-Peña, Sebastián; Ramírez Ramírez, Francis; Reyes, Julián; Rivera-Gutiérrez, Héctor Fabio; Rosero Mora, Yuri; Trujillo-Torres, Carlos M; Vidal-Maldonado, Cristian Camilo; Salgado-Negret, Beatriz
2018-04-27
Colombia is the country with the highest bird diversity in the world. Despite active research in ornithology, compelling morphological information of most bird species is still sparse. However, morphological information is the baseline to understand how species respond to environmental variation and how ecosystems respond to species loss. As part of a national initiative, the Instituto Alexander von Humboldt in collaboration with twelve Colombian institutions and seven biological collections, measured up to 15 morphological traits of 9892 individuals corresponding to 606 species: 3492 from individuals captured in field and 6400 from museum specimens. Species measured are mainly distributed in high Andean forest, páramo, and wetland ecosystems. Overall, seven ornithological collections in Colombia and 18 páramo complexes throughout Colombia were visited from 2013 to 2015. The morphological traits involved measurements from bill (total and exposed culmen, bill width and depth), wing (length, area, wingspan and the distance between longest primary and longest secondary), tail (length and shape), tarsus (length), hallux (length and claw hallux) and weight. The number of measured specimens per species was variable, ranging from 1 to 321 individuals with a median of 4 individuals per species. Overall, this database gathered morphological information for more than 30% of Colombian bird diversity. No copyright, proprietary, or cost restrictions apply; the data should be cited appropriately when used. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Molecular modeling of biomolecules by paramagnetic NMR and computational hybrid methods.
Pilla, Kala Bharath; Gaalswyk, Kari; MacCallum, Justin L
2017-11-01
The 3D atomic structures of biomolecules and their complexes are key to our understanding of biomolecular function, recognition, and mechanism. However, it is often difficult to obtain structures, particularly for systems that are complex, dynamic, disordered, or exist in environments like cell membranes. In such cases sparse data from a variety of paramagnetic NMR experiments offers one possible source of structural information. These restraints can be incorporated in computer modeling algorithms that can accurately translate the sparse experimental data into full 3D atomic structures. In this review, we discuss various types of paramagnetic NMR/computational hybrid modeling techniques that can be applied to successful modeling of not only the atomic structure of proteins but also their interacting partners. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Ligang; Fukumoto, Masahiro; Saiki, Sachio; Zhang, Shiyong
2009-12-01
Proportionate adaptive algorithms have been proposed recently to accelerate convergence for the identification of sparse impulse response. When the excitation signal is colored, especially the speech, the convergence performance of proportionate NLMS algorithms demonstrate slow convergence speed. The proportionate affine projection algorithm (PAPA) is expected to solve this problem by using more information in the input signals. However, its steady-state performance is limited by the constant step-size parameter. In this article we propose a variable step-size PAPA by canceling the a posteriori estimation error. This can result in high convergence speed using a large step size when the identification error is large, and can then considerably decrease the steady-state misalignment using a small step size after the adaptive filter has converged. Simulation results show that the proposed approach can greatly improve the steady-state misalignment without sacrificing the fast convergence of PAPA.
Dictionary learning and time sparsity in dynamic MRI.
Caballero, Jose; Rueckert, Daniel; Hajnal, Joseph V
2012-01-01
Sparse representation methods have been shown to tackle adequately the inherent speed limits of magnetic resonance imaging (MRI) acquisition. Recently, learning-based techniques have been used to further accelerate the acquisition of 2D MRI. The extension of such algorithms to dynamic MRI (dMRI) requires careful examination of the signal sparsity distribution among the different dimensions of the data. Notably, the potential of temporal gradient (TG) sparsity in dMRI has not yet been explored. In this paper, a novel method for the acceleration of cardiac dMRI is presented which investigates the potential benefits of enforcing sparsity constraints on patch-based learned dictionaries and TG at the same time. We show that an algorithm exploiting sparsity on these two domains can outperform previous sparse reconstruction techniques.
Fast generation of sparse random kernel graphs
Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo
2015-09-10
The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less
A reflection on faculty diversity in the 21st century.
Trejo, JoAnn
2017-11-01
The 21st century is nearly two decades old, and the faculty ranks at our educational institutions remain sparsely diverse. While educational institutions are continually being challenged to increase the diversity of their faculty, progress is slow. This essay offers a perspective on the importance of diversity in our educational institutions as well as on the traditional metrics that our institutions use to evaluate faculty in hiring, promotion, and tenure. I also reflect on how my life experiences as a person of color provided me with the skills needed to succeed as an academic in science and inspired me to dedicate myself to work to increase the representation of women and people of color in science and in our educational institutions to create an inclusive environment for all members of the scientific community. © 2017 Trejo. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Screening and clustering of sparse regressions with finite non-Gaussian mixtures.
Zhang, Jian
2017-06-01
This article proposes a method to address the problem that can arise when covariates in a regression setting are not Gaussian, which may give rise to approximately mixture-distributed errors, or when a true mixture of regressions produced the data. The method begins with non-Gaussian mixture-based marginal variable screening, followed by fitting a full but relatively smaller mixture regression model to the selected data with help of a new penalization scheme. Under certain regularity conditions, the new screening procedure is shown to possess a sure screening property even when the population is heterogeneous. We further prove that there exists an elbow point in the associated scree plot which results in a consistent estimator of the set of active covariates in the model. By simulations, we demonstrate that the new procedure can substantially improve the performance of the existing procedures in the content of variable screening and data clustering. By applying the proposed procedure to motif data analysis in molecular biology, we demonstrate that the new method holds promise in practice. © 2016, The International Biometric Society.
Redistribution population data across a regular spatial grid according to buildings characteristics
NASA Astrophysics Data System (ADS)
Calka, Beata; Bielecka, Elzbieta; Zdunkiewicz, Katarzyna
2016-12-01
Population data are generally provided by state census organisations at the predefined census enumeration units. However, these datasets very are often required at userdefined spatial units that differ from the census output levels. A number of population estimation techniques have been developed to address these problems. This article is one of those attempts aimed at improving county level population estimates by using spatial disaggregation models with support of buildings characteristic, derived from national topographic database, and average area of a flat. The experimental gridded population surface was created for Opatów county, sparsely populated rural region located in Central Poland. The method relies on geolocation of population counts in buildings, taking into account the building volume and structural building type and then aggregation the people total in 1 km quadrilateral grid. The overall quality of population distribution surface expressed by the mean of RMSE equals 9 persons, and the MAE equals 0.01. We also discovered that nearly 20% of total county area is unpopulated and 80% of people lived on 33% of the county territory.
NASA Technical Reports Server (NTRS)
Nessel, James A.; Acosta, Robert J.
2010-01-01
Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.
Using an index of habitat patch proximity for landscape design
Eric J. Gustafson; George R. Parker
1994-01-01
A proximity index (PX) inspired by island biogeography theory is described which quantifies the spatial context of a habitat patch in relation to its neighbors. The index distinguishes sparse distributions of small habitat patches from clusters of large patches. An evaluation of the relationship between PX and variation in the spatial characteristics of clusters of...
The legacy and continuity of forest disturbance, succession, and species at the MOFEP sites
Richard Guyette; John M. Kabrick
2002-01-01
Information about the scale, frequency, and legacy of disturbance regimes and their relation to the distribution of forest species is sparse in Ozark ecosystems. Knowledge of these relationships is valuable for understanding present-day forest ecosystem species composition and structure and for predicting how Missouri's forests will respond to management. Here, we...
Heather T. Root; Linda H. Geiser; Sarah Jovan; Peter Neitlich
2015-01-01
Biomonitoring can provide cost-effective and practical information about the distribution of nitrogen(N) deposition, particularly in regions with complex topography and sparse instrumented monitoring sites. Because of their unique biology, lichens are very sensitive bioindicators of air quality. Lichens lack acuticle to control absorption or leaching of nutrients and...
ERIC Educational Resources Information Center
Thompson, Sharon H.; Lougheed, Eric
2012-01-01
Although a majority of young adults are members of at least one social networking site, peer reviewed research examining gender differences in social networking communication is sparse. This study examined gender differences in social networking, particularly for Facebook use, among undergraduates. A survey was distributed to 268 college students…
USDA-ARS?s Scientific Manuscript database
Assimilation of remotely sensed soil moisture data (SM-DA) to correct soil water stores of rainfall-runoff models has shown skill in improving streamflow prediction. In the case of large and sparsely monitored catchments, SM-DA is a particularly attractive tool.Within this context, we assimilate act...
Amanda Parks; Michael Jenkins; Michael Ostry; Peng Zhao; Keith Woeste
2014-01-01
The abundance of butternut (Juglans cinerea L.) trees has severely declined rangewide over the past 50 years. An important factor in the decline is butternut canker, a disease caused by the fungus Ophiognomonia clavigigentijuglandacearum, which has left the remaining butternuts isolated and sparsely distributed. To manage the...
Wang, Li; Shi, Feng; Li, Gang; Lin, Weili; Gilmore, John H.; Shen, Dinggang
2014-01-01
Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination process. During the first year of life, the signal contrast between white matter (WM) and gray matter (GM) in MR images undergoes inverse changes. In particular, the inversion of WM/GM signal contrast appears around 6–8 months of age, where brain tissues appear isointense and hence exhibit extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a novel segmentation method to address the above-mentioned challenge based on the sparse representation of the complementary tissue distribution information from T1, T2 and diffusion-weighted images. Specifically, we first derive an initial segmentation from a library of aligned multi-modality images with ground-truth segmentations by using sparse representation in a patch-based fashion. The segmentation is further refined by the integration of the geometrical constraint information. The proposed method was evaluated on 22 6-month-old training subjects using leave-one-out cross-validation, as well as 10 additional infant testing subjects, showing superior results in comparison to other state-of-the-art methods. PMID:24505729
Wang, Li; Shi, Feng; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang
2013-01-01
Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination process. During the first year of life, the signal contrast between white matter (WM) and gray matter (GM) in MR images undergoes inverse changes. In particular, the inversion of WM/GM signal contrast appears around 6-8 months of age, where brain tissues appear isointense and hence exhibit extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a novel segmentation method to address the above-mentioned challenge based on the sparse representation of the complementary tissue distribution information from T1, T2 and diffusion-weighted images. Specifically, we first derive an initial segmentation from a library of aligned multi-modality images with ground-truth segmentations by using sparse representation in a patch-based fashion. The segmentation is further refined by the integration of the geometrical constraint information. The proposed method was evaluated on 22 6-month-old training subjects using leave-one-out cross-validation, as well as 10 additional infant testing subjects, showing superior results in comparison to other state-of-the-art methods.
Wang, Li-wen; Wei, Ya-xing; Niu, Zheng
2008-06-01
1 km MODIS NDVI time series data combining with decision tree classification, supervised classification and unsupervised classification was used to classify land cover type of Qinghai Province into 14 classes. In our classification system, sparse grassland and sparse shrub were emphasized, and their spatial distribution locations were labeled. From digital elevation model (DEM) of Qinghai Province, five elevation belts were achieved, and we utilized geographic information system (GIS) software to analyze vegetation cover variation on different elevation belts. Our research result shows that vegetation cover in Qinghai Province has been improved in recent five years. Vegetation cover area increases from 370047 km2 in 2001 to 374576 km2 in 2006, and vegetation cover rate increases by 0.63%. Among five grade elevation belts, vegetation cover ratio of high mountain belt is the highest (67.92%). The area of middle density grassland in high mountain belt is the largest, of which area is 94 003 km2. Increased area of dense grassland in high mountain belt is the greatest (1280 km2). During five years, the biggest variation is the conversion from sparse grassland to middle density grassland in high mountain belt, of which area is 15931 km2.
Task-based data-acquisition optimization for sparse image reconstruction systems
NASA Astrophysics Data System (ADS)
Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.
2017-03-01
Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.
Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering
Wright, Margaret J.; Thompson, Paul M.; Vidal, René
2015-01-01
We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748
Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection
NASA Astrophysics Data System (ADS)
Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang
2017-07-01
It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the wind turbine (WT) bearing fault detection and its effectiveness is sufficiently verified. Compared with the current popular bearing fault diagnosis techniques, wavelet analysis and spectral kurtosis, our model achieves a higher diagnostic accuracy.
NASA Astrophysics Data System (ADS)
Sloan, B.; Ebtehaj, A. M.; Guala, M.
2017-12-01
The understanding of heat and water vapor transfer from the land surface to the atmosphere by evapotranspiration (ET) is crucial for predicting the hydrologic water balance and climate forecasts used in water resources decision-making. However, the complex distribution of vegetation, soil and atmospheric conditions makes large-scale prognosis of evaporative fluxes difficult. Current ET models, such as Penman-Monteith and flux-gradient methods, are challenging to apply at the microscale due to ambiguity in determining resistance factors to momentum, heat and vapor transport for realistic landscapes. Recent research has made progress in modifying Monin-Obukhov similarity theory for dense plant canopies as well as providing clearer description of diffusive controls on evaporation at a smooth soil surface, which both aid in calculating more accurate resistance parameters. However, in nature, surfaces typically tend to be aerodynamically rough and vegetation is a mixture of sparse and dense canopies in non-uniform configurations. The goal of our work is to parameterize the resistances to evaporation based on spatial distributions of sparse plant canopies using novel wind tunnel experimentation at the St. Anthony Falls Laboratory (SAFL). The state-of-the-art SAFL wind tunnel was updated with a retractable soil box test section (shown in Figure 1), complete with a high-resolution scale and soil moisture/temperature sensors for recording evaporative fluxes and drying fronts. The existing capabilities of the tunnel were used to create incoming non-neutral stability conditions and measure 2-D velocity fields as well as momentum and heat flux profiles through PIV and hotwire anemometry, respectively. Model trees (h = 5 cm) were placed in structured and random configurations based on a probabilistic spacing that was derived from aerial imagery. The novel wind tunnel dataset provides the surface energy budget, turbulence statistics and spatial soil moisture data under varying atmospheric stability for each sparse canopy configuration. We will share initial data results and progress toward the development of new parametrizations that can account for the evolution of a canopy roughness sublayer on the momentum, heat and vapor resistance terms as a function of a stochastic representation of canopy spacing.
Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling
NASA Astrophysics Data System (ADS)
Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing
2018-05-01
The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Heber, Gerd; Biswas, Rupak
2000-01-01
The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. A sparse matrix-vector multiply (SPMV) usually accounts for most of the floating-point operations within a CG iteration. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and SPMV using different programming paradigms and architectures. Results show that for this class of applications, ordering significantly improves overall performance, that cache reuse may be more important than reducing communication, and that it is possible to achieve message passing performance using shared memory constructs through careful data ordering and distribution. However, a multi-threaded implementation of CG on the Tera MTA does not require special ordering or partitioning to obtain high efficiency and scalability.
Improved parallel data partitioning by nested dissection with applications to information retrieval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Michael M.; Chevalier, Cedric; Boman, Erik Gunnar
The computational work in many information retrieval and analysis algorithms is based on sparse linear algebra. Sparse matrix-vector multiplication is a common kernel in many of these computations. Thus, an important related combinatorial problem in parallel computing is how to distribute the matrix and the vectors among processors so as to minimize the communication cost. We focus on minimizing the total communication volume while keeping the computation balanced across processes. In [1], the first two authors presented a new 2D partitioning method, the nested dissection partitioning algorithm. In this paper, we improve on that algorithm and show that it ismore » a good option for data partitioning in information retrieval. We also show partitioning time can be substantially reduced by using the SCOTCH software, and quality improves in some cases, too.« less
NASA Astrophysics Data System (ADS)
Baish, A. S.; Vivoni, E. R.; Payan, J. G.; Robles-Morua, A.; Basile, G. M.
2011-12-01
A distributed hydrologic model can help bring consensus among diverse stakeholders in regional flood planning by producing quantifiable sets of alternative futures. This value is acute in areas with high uncertainties in hydrologic conditions and sparse observations. In this study, we conduct an application of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS) in the Santa Catarina basin of Nuevo Leon, Mexico, where Hurricane Alex in July 2010 led to catastrophic flooding of the capital city of Monterrey. Distributed model simulations utilize best-available information on the regional topography, land cover, and soils obtained from Mexican government agencies or analysis of remotely-sensed imagery from MODIS and ASTER. Furthermore, we developed meteorological forcing for the flood event based on multiple data sources, including three local gauge networks, satellite-based estimates from TRMM and PERSIANN, and the North American Land Data Assimilation System (NLDAS). Remotely-sensed data allowed us to quantify rainfall distributions in the upland, rural portions of the Santa Catarina that are sparsely populated and ungauged. Rural areas had significant contributions to the flood event and as a result were considered by stakeholders for flood control measures, including new reservoirs and upland vegetation management. Participatory modeling workshops with the stakeholders revealed a disconnect between urban and rural populations in regard to understanding the hydrologic conditions of the flood event and the effectiveness of existing and potential flood control measures. Despite these challenges, the use of the distributed flood forecasts developed within this participatory framework facilitated building consensus among diverse stakeholders and exploring alternative futures in the basin.
Dean P. Anderson; Monica G. Turner; Scott M. Pearson; Thomas P. Albright; Robert K. Peet; Ann Wieben
2012-01-01
Shade-tolerant non-native invasive plant species may make deep incursions into natural plant communities, but detecting such species is challenging because occurrences are often sparse. We developed Bayesian models of the distribution of Microstegium vimineum in natural plant communities of the southern Blue Ridge Mountains, USA to address three objectives: (1) to...
The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
ERIC Educational Resources Information Center
Steyvers, Mark; Tenenbaum, Joshua B.
2005-01-01
We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…
Sparse distributed memory: Principles and operation
NASA Technical Reports Server (NTRS)
Flynn, M. J.; Kanerva, P.; Bhadkamkar, N.
1989-01-01
Sparse distributed memory is a generalized random access memory (RAM) for long (1000 bit) binary words. Such words can be written into and read from the memory, and they can also be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original write address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech recognition and scene analysis, in signal detection and verification, and in adaptive control of automated equipment, in general, in dealing with real world information in real time. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. Major design issues were resolved which were faced in building the memories. The design is described of a prototype memory with 256 bit addresses and from 8 to 128 K locations for 256 bit words. A key aspect of the design is extensive use of dynamic RAM and other standard components.
Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Zhuang, Dafang; Huang, Yaohuan
2014-01-01
Energy plants are the main source of bioenergy which will play an increasingly important role in future energy supplies. With limited cultivated land resources in China, the development of energy plants may primarily rely on the marginal land. In this study, based on the land use data from 1990 to 2010(every 5 years is a period) and other auxiliary data, the distribution of marginal land suitable for energy plants was determined using multi-factors integrated assessment method. The variation of land use type and spatial distribution of marginal land suitable for energy plants of different decades were analyzed. The results indicate that the total amount of marginal land suitable for energy plants decreased from 136.501 million ha to 114.225 million ha from 1990 to 2010. The reduced land use types are primarily shrub land, sparse forest land, moderate dense grassland and sparse grassland, and large variation areas are located in Guangxi, Tibet, Heilongjiang, Xinjiang and Inner Mongolia. The results of this study will provide more effective data reference and decision making support for the long-term planning of bioenergy resources. PMID:25056520
NASA Astrophysics Data System (ADS)
Yu, Haiqing; Chen, Shuhang; Chen, Yunmei; Liu, Huafeng
2017-05-01
Dynamic positron emission tomography (PET) is capable of providing both spatial and temporal information of radio tracers in vivo. In this paper, we present a novel joint estimation framework to reconstruct temporal sequences of dynamic PET images and the coefficients characterizing the system impulse response function, from which the associated parametric images of the system macro parameters for tracer kinetics can be estimated. The proposed algorithm, which combines statistical data measurement and tracer kinetic models, integrates a dictionary sparse coding (DSC) into a total variational minimization based algorithm for simultaneous reconstruction of the activity distribution and parametric map from measured emission sinograms. DSC, based on the compartmental theory, provides biologically meaningful regularization, and total variation regularization is incorporated to provide edge-preserving guidance. We rely on techniques from minimization algorithms (the alternating direction method of multipliers) to first generate the estimated activity distributions with sub-optimal kinetic parameter estimates, and then recover the parametric maps given these activity estimates. These coupled iterative steps are repeated as necessary until convergence. Experiments with synthetic, Monte Carlo generated data, and real patient data have been conducted, and the results are very promising.
Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu
2016-01-01
This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method. PMID:27258271
SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.
Xu, Wenxuan; Zhang, Li; Lu, Yaping
2016-06-01
The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
Bansal, Ravi; Hao, Xuejun; Liu, Jun; Peterson, Bradley S.
2014-01-01
Many investigators have tried to apply machine learning techniques to magnetic resonance images (MRIs) of the brain in order to diagnose neuropsychiatric disorders. Usually the number of brain imaging measures (such as measures of cortical thickness and measures of local surface morphology) derived from the MRIs (i.e., their dimensionality) has been large (e.g. >10) relative to the number of participants who provide the MRI data (<100). Sparse data in a high dimensional space increases the variability of the classification rules that machine learning algorithms generate, thereby limiting the validity, reproducibility, and generalizability of those classifiers. The accuracy and stability of the classifiers can improve significantly if the multivariate distributions of the imaging measures can be estimated accurately. To accurately estimate the multivariate distributions using sparse data, we propose to estimate first the univariate distributions of imaging data and then combine them using a Copula to generate more accurate estimates of their multivariate distributions. We then sample the estimated Copula distributions to generate dense sets of imaging measures and use those measures to train classifiers. We hypothesize that the dense sets of brain imaging measures will generate classifiers that are stable to variations in brain imaging measures, thereby improving the reproducibility, validity, and generalizability of diagnostic classification algorithms in imaging datasets from clinical populations. In our experiments, we used both computer-generated and real-world brain imaging datasets to assess the accuracy of multivariate Copula distributions in estimating the corresponding multivariate distributions of real-world imaging data. Our experiments showed that diagnostic classifiers generated using imaging measures sampled from the Copula were significantly more accurate and more reproducible than were the classifiers generated using either the real-world imaging measures or their multivariate Gaussian distributions. Thus, our findings demonstrate that estimated multivariate Copula distributions can generate dense sets of brain imaging measures that can in turn be used to train classifiers, and those classifiers are significantly more accurate and more reproducible than are those generated using real-world imaging measures alone. PMID:25093634
NASA Astrophysics Data System (ADS)
Xue, Zhaohui; Du, Peijun; Li, Jun; Su, Hongjun
2017-02-01
The generally limited availability of training data relative to the usually high data dimension pose a great challenge to accurate classification of hyperspectral imagery, especially for identifying crops characterized with highly correlated spectra. However, traditional parametric classification models are problematic due to the need of non-singular class-specific covariance matrices. In this research, a novel sparse graph regularization (SGR) method is presented, aiming at robust crop mapping using hyperspectral imagery with very few in situ data. The core of SGR lies in propagating labels from known data to unknown, which is triggered by: (1) the fraction matrix generated for the large unknown data by using an effective sparse representation algorithm with respect to the few training data serving as the dictionary; (2) the prediction function estimated for the few training data by formulating a regularization model based on sparse graph. Then, the labels of large unknown data can be obtained by maximizing the posterior probability distribution based on the two ingredients. SGR is more discriminative, data-adaptive, robust to noise, and efficient, which is unique with regard to previously proposed approaches and has high potentials in discriminating crops, especially when facing insufficient training data and high-dimensional spectral space. The study area is located at Zhangye basin in the middle reaches of Heihe watershed, Gansu, China, where eight crop types were mapped with Compact Airborne Spectrographic Imager (CASI) and Shortwave Infrared Airborne Spectrogrpahic Imager (SASI) hyperspectral data. Experimental results demonstrate that the proposed method significantly outperforms other traditional and state-of-the-art methods.
Analysing Local Sparseness in the Macaque Brain Network
Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A.
2015-01-01
Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways. PMID:26437077
Deploying temporary networks for upscaling of sparse network stations
NASA Astrophysics Data System (ADS)
Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Kelly, Victoria; Hall, Mark; Palecki, Michael A.; Temimi, Marouane
2016-10-01
Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, business and consumer applications, or even human health issues. The installation of soil moisture sensors as sparse, national networks is necessitated by limited financial resources. However, this results in the incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, and the fine spatial distribution of precipitation events. To this end, temporary networks can be installed in the areas surrounding a permanent installation within a sparse network. The temporary networks deployed in this study provide a more representative average at the 3 km and 9 km scales, localized about the permanent gauge. The value of such temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor set to approximate the average of a temporary network at the 3 km and 9 km scales using a simple linear scaling function is tested. The capacity of a temporary network to provide reliable estimates with diminishing numbers of sensors, the temporal stability of those networks, and ultimately, the relationship of the variability of those networks to soil moisture conditions at the permanent sensor are investigated. In this manner, this work demonstrates the single-season installation of a temporary network as a mechanism to characterize the soil moisture variability at a permanent gauge within a sparse network.
LiDAR point classification based on sparse representation
NASA Astrophysics Data System (ADS)
Li, Nan; Pfeifer, Norbert; Liu, Chun
2017-04-01
In order to combine the initial spatial structure and features of LiDAR data for accurate classification. The LiDAR data is represented as a 4-order tensor. Sparse representation for classification(SRC) method is used for LiDAR tensor classification. It turns out SRC need only a few of training samples from each class, meanwhile can achieve good classification result. Multiple features are extracted from raw LiDAR points to generate a high-dimensional vector at each point. Then the LiDAR tensor is built by the spatial distribution and feature vectors of the point neighborhood. The entries of LiDAR tensor are accessed via four indexes. Each index is called mode: three spatial modes in direction X ,Y ,Z and one feature mode. Sparse representation for classification(SRC) method is proposed in this paper. The sparsity algorithm is to find the best represent the test sample by sparse linear combination of training samples from a dictionary. To explore the sparsity of LiDAR tensor, the tucker decomposition is used. It decomposes a tensor into a core tensor multiplied by a matrix along each mode. Those matrices could be considered as the principal components in each mode. The entries of core tensor show the level of interaction between the different components. Therefore, the LiDAR tensor can be approximately represented by a sparse tensor multiplied by a matrix selected from a dictionary along each mode. The matrices decomposed from training samples are arranged as initial elements in the dictionary. By dictionary learning, a reconstructive and discriminative structure dictionary along each mode is built. The overall structure dictionary composes of class-specified sub-dictionaries. Then the sparse core tensor is calculated by tensor OMP(Orthogonal Matching Pursuit) method based on dictionaries along each mode. It is expected that original tensor should be well recovered by sub-dictionary associated with relevant class, while entries in the sparse tensor associated with other classed should be nearly zero. Therefore, SRC use the reconstruction error associated with each class to do data classification. A section of airborne LiDAR points of Vienna city is used and classified into 6classes: ground, roofs, vegetation, covered ground, walls and other points. Only 6 training samples from each class are taken. For the final classification result, ground and covered ground are merged into one same class(ground). The classification accuracy for ground is 94.60%, roof is 95.47%, vegetation is 85.55%, wall is 76.17%, other object is 20.39%.
Inferring network structure in non-normal and mixed discrete-continuous genomic data.
Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran
2018-03-01
Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.
Inferring network structure in non-normal and mixed discrete-continuous genomic data
Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran
2017-01-01
Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. PMID:28437848
Neonatal Atlas Construction Using Sparse Representation
Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang
2014-01-01
Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases. PMID:24638883
Blind image deblurring based on trained dictionary and curvelet using sparse representation
NASA Astrophysics Data System (ADS)
Feng, Liang; Huang, Qian; Xu, Tingfa; Li, Shao
2015-04-01
Motion blur is one of the most significant and common artifacts causing poor image quality in digital photography, in which many factors resulted. In imaging process, if the objects are moving quickly in the scene or the camera moves in the exposure interval, the image of the scene would blur along the direction of relative motion between the camera and the scene, e.g. camera shake, atmospheric turbulence. Recently, sparse representation model has been widely used in signal and image processing, which is an effective method to describe the natural images. In this article, a new deblurring approach based on sparse representation is proposed. An overcomplete dictionary learned from the trained image samples via the KSVD algorithm is designed to represent the latent image. The motion-blur kernel can be treated as a piece-wise smooth function in image domain, whose support is approximately a thin smooth curve, so we employed curvelet to represent the blur kernel. Both of overcomplete dictionary and curvelet system have high sparsity, which improves the robustness to the noise and more satisfies the observer's visual demand. With the two priors, we constructed restoration model of blurred images and succeeded to solve the optimization problem with the help of alternating minimization technique. The experiment results prove the method can preserve the texture of original images and suppress the ring artifacts effectively.
An ultra-sparse code underliesthe generation of neural sequences in a songbird
NASA Astrophysics Data System (ADS)
Hahnloser, Richard H. R.; Kozhevnikov, Alexay A.; Fee, Michale S.
2002-09-01
Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the `grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.
Arrangement of the myenteric plexus throughout the gastrointestinal tract of the opossum.
Christensen, J; Rick, G A; Robison, B A; Stiles, M J; Wix, M A
1983-10-01
Silver impregnation of the myenteric plexus of the opossum gut was used to find differences among various regions. In the esophagus, the plexus was sparse and ganglia were spaced irregularly, many being parafascicular. Ganglia were sparse in the striated-muscle region, but more frequent in the smooth-muscle region. In the stomach, uniformly spaced ganglia were large and intrafascicular; ganglia were larger in the distal stomach than in the proximal stomach. The proximal stomach contained thick fascicles, called shunt fascicles, radiating from the lesser to the greater curvatures and bypassing ganglia. A thick nerve bundle encircled the pylorus. In the small intestine, the regularly spaced ganglia were large and intrafascicular. In the cecum, they were small and intrafascicular. In the colon, they were large and intrafascicular. Shunt fascicles, like those of the proximal stomach, extended from the rectum into the distal colon. In the rectum, the plexus was sparse, and ganglia were small and distributed irregularly. Many ganglia were parafascicular. Unique knots of tangled fascicles were frequent in the rectum; these were called labyrinthine nodes. The least densely innervated regions of the gut are the lower esophageal sphincter and the rectum. Major differences in the anatomy of the plexus characterize the different regions of the gut.
Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2016-08-01
Smartphones as vibration measurement instruments form a large-scale, citizen-induced, and mobile wireless sensor network (WSN) for system identification and structural health monitoring (SHM) applications. Crowdsourcing-based SHM is possible with a decentralized system granting citizens with operational responsibility and control. Yet, citizen initiatives introduce device mobility, drastically changing SHM results due to uncertainties in the time and the space domains. This paper proposes a modal identification strategy that fuses spatiotemporally sparse SHM data collected by smartphone-based WSNs. Multichannel data sampled with the time and the space independence is used to compose the modal identification parameters such as frequencies and mode shapes. Structural response time history can be gathered by smartphone accelerometers and converted into Fourier spectra by the processor units. Timestamp, data length, energy to power conversion address temporal variation, whereas spatial uncertainties are reduced by geolocation services or determining node identity via QR code labels. Then, parameters collected from each distributed network component can be extended to global behavior to deduce modal parameters without the need of a centralized and synchronous data acquisition system. The proposed method is tested on a pedestrian bridge and compared with a conventional reference monitoring system. The results show that the spatiotemporally sparse mobile WSN data can be used to infer modal parameters despite non-overlapping sensor operation schedule.
NASA Astrophysics Data System (ADS)
Santiago, Daniel; Corredor, Germán.; Romero, Eduardo
2017-11-01
During a diagnosis task, a Pathologist looks over a Whole Slide Image (WSI), aiming to find out relevant pathological patterns. Nonetheless, a virtual microscope captures these structures, but also other cellular patterns with different or none diagnostic meaning. Annotation of these images depends on manual delineation, which in practice becomes a hard task. This article contributes a new method for detecting relevant regions in WSI using the routine navigations in a virtual microscope. This method constructs a sparse representation or dictionary of each navigation path and determines the hidden relevance by maximizing the incoherence between several paths. The resulting dictionaries are then projected onto each other and relevant information is set to the dictionary atoms whose similarity is higher than a custom threshold. Evaluation was performed with 6 pathological images segmented from a skin biopsy already diagnosed with basal cell carcinoma (BCC). Results show that our proposal outperforms the baseline by more than 20%.
Vidyasagar, Mathukumalli
2015-01-01
This article reviews several techniques from machine learning that can be used to study the problem of identifying a small number of features, from among tens of thousands of measured features, that can accurately predict a drug response. Prediction problems are divided into two categories: sparse classification and sparse regression. In classification, the clinical parameter to be predicted is binary, whereas in regression, the parameter is a real number. Well-known methods for both classes of problems are briefly discussed. These include the SVM (support vector machine) for classification and various algorithms such as ridge regression, LASSO (least absolute shrinkage and selection operator), and EN (elastic net) for regression. In addition, several well-established methods that do not directly fall into machine learning theory are also reviewed, including neural networks, PAM (pattern analysis for microarrays), SAM (significance analysis for microarrays), GSEA (gene set enrichment analysis), and k-means clustering. Several references indicative of the application of these methods to cancer biology are discussed.
Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods
Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.
2013-01-01
Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822
ERIC Educational Resources Information Center
Kraenzel, Carl F.
Rural demographic characteristics, regional distribution, and their respective trends should constitute significant policy information for the nation, but the U.S. Population Census offers little aid to the researcher studying population on a minor civil division (MCD) basis. When some census data are based on a 15 percent sample, some on a 5…
Optimizing Sparse Representations of Kinetic Distributions via Information Theory
2017-07-31
for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...sources, gathering and maintaining the data needed, and completing and reviewing the collection of information . Send comments regarding this burden...estimate or any other aspect of this collection of information , including suggestions for reducing the burden, to Department of Defense, Washington
The topology of the federal funds market
NASA Astrophysics Data System (ADS)
Bech, Morten L.; Atalay, Enghin
2010-11-01
We explore the network topology of the federal funds market. This market is important for distributing liquidity throughout the financial system and for the implementation of monetary policy. The recent turmoil in global financial markets underscores its importance. We find that the network is sparse, exhibits the small-world phenomenon, and is disassortative. Centrality measures are useful predictors of the interest rate of a loan.
NASA Astrophysics Data System (ADS)
Streit, Kathrin; Bennett, Sarah A.; Van Dover, Cindy L.; Coleman, Max
2015-06-01
Hydrothermal vents harbor ecosystems mostly decoupled from organic carbon synthesized with the energy of sunlight (photosynthetic carbon source) but fueled instead by oxidation of reduced compounds to generate a chemosynthetic carbon source. Our study aimed to disentangle photosynthetic and chemosynthetic organic carbon sources for the shrimp species Rimicaris hybisae, a primary consumer presumed to obtain its organic carbon mainly from ectosymbiotic chemoautotrophic bacteria living on its gill cover membrane. To provide ectosymbionts with ideal conditions for chemosynthesis, these shrimp live in dense clusters around vent chimneys; they are, however, also found sparsely distributed adjacent to diffuse vent flows, where they might depend on alternative food sources. Densely and sparsely distributed shrimp were sampled and dissected into abdominal tissue and gill cover membrane, covered with ectosymbiotic bacteria, at two hydrothermal vent fields in the Mid-Cayman rise that differ in vent chemistry. Fatty acids (FA) were extracted from shrimp tissues and their carbon isotopic compositions assessed. The FA data indicate that adult R. hybisae predominantly rely on bacteria for their organic carbon needs. Their FA composition is dominated by common bacterial FA of the n7 family (~41%). Bacterial FA of the n4 FA family are also abundant and found to constitute good biomarkers for gill ectosymbionts. Sparsely distributed shrimp contain fractions of n4 FA in gill cover membranes ~4% lower than densely packed ones (~18%) and much higher fractions of photosynthetic FA in abdominal tissues, ~4% more (compared with 1.6%), suggesting replacement of ectosymbionts along with exoskeletons (molt), while they take up alternative diets of partly photosynthetic organic carbon. Abdominal tissues also contain photosynthetic FA from a second source taken up presumably during an early dispersal phase and still present to c. 3% in adult shrimp. The contribution of photosynthetic carbon to the FA pool of adult R. hybisae is, however, overall small (max. 8%). Significant differences in carbon isotopic values of chemosynthetically derived FA between vent fields suggest that different dominant C fixation pathways are being used.
A network of spiking neurons for computing sparse representations in an energy efficient way
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B.
2013-01-01
Computing sparse redundant representations is an important problem both in applied mathematics and neuroscience. In many applications, this problem must be solved in an energy efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, such operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We compare the numerical performance of HDA with existing algorithms and show that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show that HDA is stable against time-varying noise, specifically, the representation error decays as 1/t for Gaussian white noise. PMID:22920853
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.
2017-12-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari
2017-07-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Discover mouse gene coexpression landscapes using dictionary learning and sparse coding.
Li, Yujie; Chen, Hanbo; Jiang, Xi; Li, Xiang; Lv, Jinglei; Peng, Hanchuan; Tsien, Joe Z; Liu, Tianming
2017-12-01
Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as "coexpressed." For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.
Image statistics underlying natural texture selectivity of neurons in macaque V4
Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko
2015-01-01
Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362
NITPICK: peak identification for mass spectrometry data
Renard, Bernhard Y; Kirchner, Marc; Steen , Hanno; Steen, Judith AJ; Hamprecht , Fred A
2008-01-01
Background The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. Results This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averagine, a novel extension to Senko's well-known averagine model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Conclusion Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from . PMID:18755032
Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J.; French, Paul M. W.; McGinty, James
2015-01-01
We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound. PMID:25909009
A network of spiking neurons for computing sparse representations in an energy-efficient way.
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B
2012-11-01
Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.
Research on sparse feature matching of improved RANSAC algorithm
NASA Astrophysics Data System (ADS)
Kong, Xiangsi; Zhao, Xian
2018-04-01
In this paper, a sparse feature matching method based on modified RANSAC algorithm is proposed to improve the precision and speed. Firstly, the feature points of the images are extracted using the SIFT algorithm. Then, the image pair is matched roughly by generating SIFT feature descriptor. At last, the precision of image matching is optimized by the modified RANSAC algorithm,. The RANSAC algorithm is improved from three aspects: instead of the homography matrix, this paper uses the fundamental matrix generated by the 8 point algorithm as the model; the sample is selected by a random block selecting method, which ensures the uniform distribution and the accuracy; adds sequential probability ratio test(SPRT) on the basis of standard RANSAC, which cut down the overall running time of the algorithm. The experimental results show that this method can not only get higher matching accuracy, but also greatly reduce the computation and improve the matching speed.
Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.
García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G
2017-08-01
The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.
Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J; French, Paul M W; McGinty, James
2015-04-01
We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.
NASA Astrophysics Data System (ADS)
Fujita, K.; Osawa, Y.; Kayanne, H.; Ide, Y.; Yamano, H.
2009-03-01
The distributions and population densities of large benthic foraminifers (LBFs) were investigated on reef flats of the Majuro Atoll, Marshall Islands. Annual sediment production by foraminifers was estimated based on population density data. Predominant LBFs were Calcarina and Amphistegina, and the population densities of these foraminifers varied with location and substratum type on reef flats. Both foraminifers primarily attached to macrophytes, particularly turf-forming algae, and were most abundant on an ocean reef flat (ORF) and in an inter-island channel near windward, sparsely populated islands. Calcarina density was higher on windward compared to leeward sides of ORFs, whereas Amphistegina density was similar on both sides of ORFs. These foraminifers were more common on the ocean side relative to the lagoon side of reef flats around a windward reef island, and both were rare or absent in nearshore zones around reef islands and on an ORF near windward, densely populated islands. Foraminiferal production rates varied with the degree to which habitats were subject to water motion and human influences. Highly productive sites (>103 g CaCO3 m-2 year-1) included an ORF and an inter-island channel near windward, sparsely populated islands, and a seaward area of a reef flat with no reef islands. Low-productivity sites (<10 g CaCO3 m-2 year-1) included generally nearshore zones of lagoonal reef flats, leeward ORFs, and a windward ORF near densely populated islands. These results suggest that the distribution and production of LBFs were largely influenced by a combination of natural environmental factors, including water motion, water depth, elevation relative to the lowest tidal level at spring tide, and the distribution of suitable substratum. The presence of reef islands may limit the distribution and production of foraminifers by altering water circulation in nearshore environments. Furthermore, increased anthropogenic factors (population and activities) may adversely affect foraminiferal distribution and production.
Statistical Deconvolution for Superresolution Fluorescence Microscopy
Mukamel, Eran A.; Babcock, Hazen; Zhuang, Xiaowei
2012-01-01
Superresolution microscopy techniques based on the sequential activation of fluorophores can achieve image resolution of ∼10 nm but require a sparse distribution of simultaneously activated fluorophores in the field of view. Image analysis procedures for this approach typically discard data from crowded molecules with overlapping images, wasting valuable image information that is only partly degraded by overlap. A data analysis method that exploits all available fluorescence data, regardless of overlap, could increase the number of molecules processed per frame and thereby accelerate superresolution imaging speed, enabling the study of fast, dynamic biological processes. Here, we present a computational method, referred to as deconvolution-STORM (deconSTORM), which uses iterative image deconvolution in place of single- or multiemitter localization to estimate the sample. DeconSTORM approximates the maximum likelihood sample estimate under a realistic statistical model of fluorescence microscopy movies comprising numerous frames. The model incorporates Poisson-distributed photon-detection noise, the sparse spatial distribution of activated fluorophores, and temporal correlations between consecutive movie frames arising from intermittent fluorophore activation. We first quantitatively validated this approach with simulated fluorescence data and showed that deconSTORM accurately estimates superresolution images even at high densities of activated fluorophores where analysis by single- or multiemitter localization methods fails. We then applied the method to experimental data of cellular structures and demonstrated that deconSTORM enables an approximately fivefold or greater increase in imaging speed by allowing a higher density of activated fluorophores/frame. PMID:22677393
Efficient grid-based techniques for density functional theory
NASA Astrophysics Data System (ADS)
Rodriguez-Hernandez, Juan Ignacio
Understanding the chemical and physical properties of molecules and materials at a fundamental level often requires quantum-mechanical models for these substance's electronic structure. This type of many body quantum mechanics calculation is computationally demanding, hindering its application to substances with more than a few hundreds atoms. The supreme goal of many researches in quantum chemistry---and the topic of this dissertation---is to develop more efficient computational algorithms for electronic structure calculations. In particular, this dissertation develops two new numerical integration techniques for computing molecular and atomic properties within conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic structure. The first of these grid-based techniques is based on the transformed sparse grid construction. In this construction, a sparse grid is generated in the unit cube and then mapped to real space according to the pro-molecular density using the conditional distribution transformation. The transformed sparse grid was implemented in program deMon2k, where it is used as the numerical integrator for the exchange-correlation energy and potential in the KS-DFT procedure. We tested our grid by computing ground state energies, equilibrium geometries, and atomization energies. The accuracy on these test calculations shows that our grid is more efficient than some previous integration methods: our grids use fewer points to obtain the same accuracy. The transformed sparse grids were also tested for integrating, interpolating and differentiating in different dimensions (n = 1,2,3,6). The second technique is a grid-based method for computing atomic properties within QTAIM. It was also implemented in deMon2k. The performance of the method was tested by computing QTAIM atomic energies, charges, dipole moments, and quadrupole moments. For medium accuracy, our method is the fastest one we know of.
Generative inference for cultural evolution.
Kandler, Anne; Powell, Adam
2018-04-05
One of the major challenges in cultural evolution is to understand why and how various forms of social learning are used in human populations, both now and in the past. To date, much of the theoretical work on social learning has been done in isolation of data, and consequently many insights focus on revealing the learning processes or the distributions of cultural variants that are expected to have evolved in human populations. In population genetics, recent methodological advances have allowed a greater understanding of the explicit demographic and/or selection mechanisms that underlie observed allele frequency distributions across the globe, and their change through time. In particular, generative frameworks-often using coalescent-based simulation coupled with approximate Bayesian computation (ABC)-have provided robust inferences on the human past, with no reliance on a priori assumptions of equilibrium. Here, we demonstrate the applicability and utility of generative inference approaches to the field of cultural evolution. The framework advocated here uses observed population-level frequency data directly to establish the likely presence or absence of particular hypothesized learning strategies. In this context, we discuss the problem of equifinality and argue that, in the light of sparse cultural data and the multiplicity of possible social learning processes, the exclusion of those processes inconsistent with the observed data might be the most instructive outcome. Finally, we summarize the findings of generative inference approaches applied to a number of case studies.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).
Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi.
Sanders, Anna A W M; Chang, Kevin; Zhu, Xiaodong; Thoppil, Roslin J; Holmes, William R; Kaverina, Irina
2017-11-07
Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the "cooperativity" model, formation of a single GDMT promotes further nucleation at the same site. In the "heterogeneous Golgi" model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites. © 2017 Sanders et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A Heated Debate: Theoretical Perspectives of Sexual Exploitation and Sex Work
Gerassi, Lara
2015-01-01
The theoretical and often political framework of sexual exploitation and sex work among women is widely and enthusiastically debated among academic and legal scholars alike. The majority of theoretical literature in this area focuses on the macro perspective, while the micro-level perspective as to theory and causation remains sparse. This article provides a comprehensive overview of the philosophical, legal, and political perspectives pertaining to sexual exploitation of women and girls while addressing the subsequent controversies in the field. PMID:26834302
NASA Astrophysics Data System (ADS)
Hannaske, R.; Bemmerer, D.; Beyer, R.; Birgersson, E.; Ferrari, A.; Grosse, E.; Junghans, A. R.; Kempe, M.; Kögler, T.; Kosev, K.; Marta, M.; Massarczyk, R.; Matic, A.; Schilling, K. D.; Schramm, G.; Schwengner, R.; Wagner, A.; Yakorev, D.
2016-01-01
The photodissociation of the deuteron is a key reaction in Big Bang nucleosynthesis, but is only sparsely measured in the relevant energy range. To determine the cross section of the d(γ,n)p reaction we used pulsed bremsstrahlung and measured the time-of-flight of the neutrons. In this article, we describe how the efficiency of the neutron detectors was experimentally determined and how the modification of the neutron spectrum by parts of the experimental setup was simulated and corrected.
An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems
NASA Astrophysics Data System (ADS)
Kashkari, Bothayna S. H.; Syam, Muhammed I.
2018-06-01
This article is devoted to both theoretical and numerical study of the eigenvalues of nonsingular fractional second-order Sturm-Liouville problem. In this paper, we implement a fractional-order Legendre Tau method to approximate the eigenvalues. This method transforms the Sturm-Liouville problem to a sparse nonsingular linear system which is solved using the continuation method. Theoretical results for the considered problem are provided and proved. Numerical results are presented to show the efficiency of the proposed method.
Brents, Barbara G; Hausbeck, Kathryn
2005-03-01
This article examines violence in legalized brothels in Nevada. Debates over prostitution policies in the United States have long focused on questions of safety and risk. These discourses inevitably invoke the coupling of violence and prostitution, though systematic examinations of the relationship between the two are sparse. This article explores the issue of violence in the Nevada brothel industry. By drawing on interviews with prostitutes, managers, and policy makers, this article examines both prostitutes' perceptions of safety and risk and brothel managers' practices designed to mitigate violence. Discourses relate to three types of violence: interpersonal violence against prostitutes, violence against community order, and sexually transmitted diseases as violence. The authors conclude by arguing that the legalization of prostitution brings a level of public scrutiny, official regulation, and bureaucratization to brothels that decreases the risk of these 3 types of systematic violence.
Numerical methods in Markov chain modeling
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef; Stewart, William J.
1989-01-01
Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.
2011-09-30
channel interference mitigation for underwater acoustic MIMO - OFDM . 3) Turbo equalization for OFDM modulated physical layer network coding. 4) Blind CFO...Underwater Acoustic MIMO - OFDM . MIMO - OFDM has been actively studied for high data rate communications over the bandwidthlimited underwater acoustic...with the cochannel interference (CCI) due to parallel transmissions in MIMO - OFDM . Our proposed receiver has the following components: 1
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
NASA Technical Reports Server (NTRS)
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
Another Piece of the Antibody Puzzle: Observations from the HALT study\\.
Snyder, Laurie D; Tinckam, Kathryn J
2018-06-04
In the rapidly evolving domain of clinical transplantation immunobiology, the interrogation and interpretation of HLA antibodies and their associated clinical consequences are in the spotlight. In lung transplant, HLA antibodies, in particular donor specific antibodies (DSA), are a determining component of the lung transplant antibody mediated rejection (AMR) definition (1). DSA after lung transplant are widely regarded as poor prognosticator, though sparse data to date necessitate ongoing discourse and continued investigation into incidence, timing and treatment. Prior studies reported a wide range of DSA incidence with differing consequences on a background of highly variable timing, methods, antibody analytic strategies and clinical definitions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Pillsbury, R. W.; McGuire, M.
2005-05-01
A recent decline in wild rice wetlands is cause for concern due to its importance as a food source, refuge for wildlife, and cultural significance. Sixty wetlands in Wisconsin and Minnesota (USA) were sampled, with approximately equal numbers displaying dense, moderate and sparse wild rice production. Chemical, physical, and watershed parameters were measured as well as macrophyte densities. Data were analyzed using multivariate statistics (CCA). Moderate levels of phosphorus appear beneficial to the overall success of wild rice, while free-floating macrophytes show an overwhelming positive response to higher levels of P. The distribution of macrophytes bordering wild rice beds is correlated to pH,with Potamogeton robbinsii and filamentous green algae responding most strongly to its increase. Healthy stands of wild rice exhibit a narrow circum-neutral range of pH (6.1-8.0)which is significantly different from the greater range exhibited by sparse wild rice wetlands (6.5-8.5). This pattern was paralleled when considering depth which suggests that deeper wetlands may be more susceptible to wild rice loss. Management of existing wild rice wetlands should focus monitoring on pH, depth, phosphorus concentrations and shore development. We are currently using this data base to locate the best reintroduction sites for wild rice.
Boguslawski, Bartosz; Gripon, Vincent; Seguin, Fabrice; Heitzmann, Frédéric
2016-02-01
Associative memories are data structures that allow retrieval of previously stored messages given part of their content. They, thus, behave similarly to the human brain's memory that is capable, for instance, of retrieving the end of a song, given its beginning. Among different families of associative memories, sparse ones are known to provide the best efficiency (ratio of the number of bits stored to that of the bits used). Recently, a new family of sparse associative memories achieving almost optimal efficiency has been proposed. Their structure, relying on binary connections and neurons, induces a direct mapping between input messages and stored patterns. Nevertheless, it is well known that nonuniformity of the stored messages can lead to a dramatic decrease in performance. In this paper, we show the impact of nonuniformity on the performance of this recent model, and we exploit the structure of the model to improve its performance in practical applications, where data are not necessarily uniform. In order to approach the performance of networks with uniformly distributed messages presented in theoretical studies, twin neurons are introduced. To assess the adapted model, twin neurons are used with the real-world data to optimize power consumption of electronic circuits in practical test cases.
Distributed Bandpass Filtering and Signal Demodulation in Cortical Network Models
NASA Astrophysics Data System (ADS)
McDonnell, Mark D.
Experimental recordings of cortical activity often exhibit narrowband oscillations, at various center frequencies ranging in the order of 1-200 Hz. Many neuronal mechanisms are known to give rise to oscillations, but here we focus on a population effect known as sparsely synchronised oscillations. In this effect, individual neurons in a cortical network fire irregularly at slow average spike rates (1-10 Hz), but the population spike rate oscillates at gamma frequencies (greater than 40 Hz) in response to spike bombardment from the thalamus. These cortical networks form recurrent (feedback) synapses. Here we describe a model of sparsely synchronized population oscillations using the language of feedback control engineering, where we treat spiking as noisy feedback. We show, using a biologically realistic model of synaptic current that includes a delayed response to inputs, that the collective behavior of the neurons in the network is like a distributed bandpass filter acting on the network inputs. Consequently, the population response has the character of narrowband random noise, and therefore has an envelope and instantaneous frequency with lowpass characteristics. Given that there exist biologically plausible neuronal mechanisms for demodulating the envelope and instantaneous frequency, we suggest there is potential for similar effects to be exploited in nanoscale electronics implementations of engineered communications receivers.
Iteration and superposition encryption scheme for image sequences based on multi-dimensional keys
NASA Astrophysics Data System (ADS)
Han, Chao; Shen, Yuzhen; Ma, Wenlin
2017-12-01
An iteration and superposition encryption scheme for image sequences based on multi-dimensional keys is proposed for high security, big capacity and low noise information transmission. Multiple images to be encrypted are transformed into phase-only images with the iterative algorithm and then are encrypted by different random phase, respectively. The encrypted phase-only images are performed by inverse Fourier transform, respectively, thus new object functions are generated. The new functions are located in different blocks and padded zero for a sparse distribution, then they propagate to a specific region at different distances by angular spectrum diffraction, respectively and are superposed in order to form a single image. The single image is multiplied with a random phase in the frequency domain and then the phase part of the frequency spectrums is truncated and the amplitude information is reserved. The random phase, propagation distances, truncated phase information in frequency domain are employed as multiple dimensional keys. The iteration processing and sparse distribution greatly reduce the crosstalk among the multiple encryption images. The superposition of image sequences greatly improves the capacity of encrypted information. Several numerical experiments based on a designed optical system demonstrate that the proposed scheme can enhance encrypted information capacity and make image transmission at a highly desired security level.
Sparse source configurations in radio tomography of asteroids
NASA Astrophysics Data System (ADS)
Pursiainen, S.; Kaasalainen, M.
2014-07-01
Our research targets at progress in non-invasive imaging of asteroids to support future planetary research and extra-terrestrial mining activities. This presentation concerns principally radio tomography in which the permittivity distribution inside an asteroid is to be recovered based on the radio frequency signal transmitted from the asteroid's surface and gathered by an orbiter. The focus will be on a sparse distribution (Pursiainen and Kaasalainen, 2013) of signal sources that can be necessary in the challenging in situ environment and within tight payload limits. The general goal in our recent research has been to approximate the minimal number of source positions needed for robust localization of anomalies caused, for example, by an internal void. Characteristic to the localization problem are the large relative changes in signal speed caused by the high permittivity of typical asteroid minerals (e.g. basalt), meaning that a signal path can include strong refractions and reflections. This presentation introduces results of a laboratory experiment in which real travel time data was inverted using a hierarchical Bayesian approach combined with the iterative alternating sequential (IAS) posterior exploration algorithm. Special interest was paid to robustness of the inverse results regarding changes of the prior model and source positioning. According to our results, strongly refractive anomalies can be detected with three or four sources independently of their positioning.
Laser interference effect evaluation method based on character of laser-spot and image feature
NASA Astrophysics Data System (ADS)
Tang, Jianfeng; Luo, Xiaolin; Wu, Lingxia
2016-10-01
Evaluating the laser interference effect to CCD objectively and accurately has great research value. Starting from the change of the image's feature before and after interference, meanwhile, considering the influence of the laser-spot distribution character on the masking degree of the image feature information, a laser interference effect evaluation method based on character of laser-spot and image feature was proposed. It reflected the laser-spot distribution character using the distance between the center of the laser-spot and center of the target. It reflected the change of the global image feature using the changes of image's sparse coefficient matrix, which was obtained by the SSIM-inspired orthogonal matching pursuit (OMP) sparse coding algorithm. What's more, the assessment method reflected the change of the local image feature using the changes of the image's edge sharpness, which could be obtained by the change of the image's gradient magnitude. Taken together, the laser interference effect can be evaluated accurately. In terms of the laser interference experiment results, the proposed method shows good rationality and feasibility under the disturbing condition of different laser powers, and it can also overcome the inaccuracy caused by the change of the laser-spot position, realizing the evaluation of the laser interference effect objectively and accurately.
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Storage of sparse files using parallel log-structured file system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Grider, Gary
A sparse file is stored without holes by storing a data portion of the sparse file using a parallel log-structured file system; and generating an index entry for the data portion, the index entry comprising a logical offset, physical offset and length of the data portion. The holes can be restored to the sparse file upon a reading of the sparse file. The data portion can be stored at a logical end of the sparse file. Additional storage efficiency can optionally be achieved by (i) detecting a write pattern for a plurality of the data portions and generating a singlemore » patterned index entry for the plurality of the patterned data portions; and/or (ii) storing the patterned index entries for a plurality of the sparse files in a single directory, wherein each entry in the single directory comprises an identifier of a corresponding sparse file.« less
Learning Sparse Feature Representations using Probabilistic Quadtrees and Deep Belief Nets
2015-04-24
Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Learning sparse feature representations is a useful instru- ment for solving an...novel framework for the classifi cation of handwritten digits that learns sparse representations using probabilistic quadtrees and Deep Belief Nets... Learning Sparse Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Report Title Learning sparse feature representations is a useful
The w-effect in interferometric imaging: from a fast sparse measurement operator to superresolution
NASA Astrophysics Data System (ADS)
Dabbech, A.; Wolz, L.; Pratley, L.; McEwen, J. D.; Wiaux, Y.
2017-11-01
Modern radio telescopes, such as the Square Kilometre Array, will probe the radio sky over large fields of view, which results in large w-modulations of the sky image. This effect complicates the relationship between the measured visibilities and the image under scrutiny. In algorithmic terms, it gives rise to massive memory and computational time requirements. Yet, it can be a blessing in terms of reconstruction quality of the sky image. In recent years, several works have shown that large w-modulations promote the spread spectrum effect. Within the compressive sensing framework, this effect increases the incoherence between the sensing basis and the sparsity basis of the signal to be recovered, leading to better estimation of the sky image. In this article, we revisit the w-projection approach using convex optimization in realistic settings, where the measurement operator couples the w-terms in Fourier and the de-gridding kernels. We provide sparse, thus fast, models of the Fourier part of the measurement operator through adaptive sparsification procedures. Consequently, memory requirements and computational cost are significantly alleviated at the expense of introducing errors on the radio interferometric data model. We present a first investigation of the impact of the sparse variants of the measurement operator on the image reconstruction quality. We finally analyse the interesting superresolution potential associated with the spread spectrum effect of the w-modulation, and showcase it through simulations. Our c++ code is available online on GitHub.
Robust sparse image reconstruction of radio interferometric observations with PURIFY
NASA Astrophysics Data System (ADS)
Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves
2018-01-01
Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.
User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.
NASA Technical Reports Server (NTRS)
Reddy, C. J.
2000-01-01
PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.
NASA Astrophysics Data System (ADS)
Saadi, Sameh; Boulet, Gilles; Bahir, Malik; Brut, Aurore; Delogu, Émilie; Fanise, Pascal; Mougenot, Bernard; Simonneaux, Vincent; Lili Chabaane, Zohra
2018-04-01
In semiarid areas, agricultural production is restricted by water availability; hence, efficient agricultural water management is a major issue. The design of tools providing regional estimates of evapotranspiration (ET), one of the most relevant water balance fluxes, may help the sustainable management of water resources. Remote sensing provides periodic data about actual vegetation temporal dynamics (through the normalized difference vegetation index, NDVI) and water availability under water stress (through the surface temperature Tsurf), which are crucial factors controlling ET. In this study, spatially distributed estimates of ET (or its energy equivalent, the latent heat flux LE) in the Kairouan plain (central Tunisia) were computed by applying the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model fed by low-resolution remote sensing data (Terra and Aqua MODIS). The work's goal was to assess the operational use of the SPARSE model and the accuracy of the modeled (i) sensible heat flux (H) and (ii) daily ET over a heterogeneous semiarid landscape with complex land cover (i.e., trees, winter cereals, summer vegetables). SPARSE was run to compute instantaneous estimates of H and LE fluxes at the satellite overpass times. The good correspondence (R2 = 0.60 and 0.63 and RMSE = 57.89 and 53.85 W m-2 for Terra and Aqua, respectively) between instantaneous H estimates and large aperture scintillometer (XLAS) H measurements along a path length of 4 km over the study area showed that the SPARSE model presents satisfactory accuracy. Results showed that, despite the fairly large scatter, the instantaneous LE can be suitably estimated at large scales (RMSE = 47.20 and 43.20 W m-2 for Terra and Aqua, respectively, and R2 = 0.55 for both satellites). Additionally, water stress was investigated by comparing modeled (SPARSE) and observed (XLAS) water stress values; we found that most points were located within a 0.2 confidence interval, thus the general tendencies are well reproduced. Even though extrapolation of instantaneous latent heat flux values to daily totals was less obvious, daily ET estimates are deemed acceptable.
Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan
2016-05-01
To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.
Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan
2016-01-01
Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications. PMID:27147347
NASA Astrophysics Data System (ADS)
Switzman, Harris; Coulibaly, Paulin; Adeel, Zafar
2015-01-01
Demand for freshwater in many dryland environments is exerting negative impacts on the quality and availability of groundwater resources, particularly in areas where demand is high due to irrigation or industrial water requirements to support dryland agricultural reclamation. Often however, information available to diagnose the drivers of groundwater degradation and assess management options through modeling is sparse, particularly in low and middle-income countries. This study presents an approach for generating transient groundwater model inputs to assess the long-term impacts of dryland agricultural land reclamation on groundwater resources in a highly data-sparse context. The approach was applied to the area of Wadi El Natrun in Northern Egypt, where dryland reclamation and the associated water use has been aggressive since the 1960s. Statistical distributions of water use information were constructed from a variety of sparse field and literature estimates and then combined with remote sensing data in spatio-temporal infilling model to produce the groundwater model inputs of well-pumping and surface recharge. An ensemble of groundwater model inputs were generated and used in a 3D groundwater flow (MODFLOW) of Wadi El Natrun's multi-layer aquifer system to analyze trends in water levels and water budgets over time. Validation of results against monitoring records, and model performance statistics demonstrated that despite the extremely sparse data, the approach used in this study was capable of simulating the cumulative impacts of agricultural land reclamation reasonably well. The uncertainty associated with the groundwater model itself was greater than that associated with the ensemble of well-pumping and surface recharge estimates. Water budget analysis of the groundwater model output revealed that groundwater recharge has not changed significantly over time, while pumping has. As a result of these trends, groundwater was estimated to be in a deficit of approximately 24 billion m3 (±15%) in 2011, compared to 1957. A significant trend in water level declines beginning in the 1990s that has been observed in monitoring records was evident in the model results and is directly attributed to abstraction.
Local structure preserving sparse coding for infrared target recognition
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa
2017-01-01
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286
Efficient packing of patterns in sparse distributed memory by selective weighting of input bits
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1991-01-01
When a set of patterns is stored in a distributed memory, any given storage location participates in the storage of many patterns. From the perspective of any one stored pattern, the other patterns act as noise, and such noise limits the memory's storage capacity. The more similar the retrieval cues for two patterns are, the more the patterns interfere with each other in memory, and the harder it is to separate them on retrieval. A method is described of weighting the retrieval cues to reduce such interference and thus to improve the separability of patterns that have similar cues.
NASA Astrophysics Data System (ADS)
Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.
2018-04-01
The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.
Brain abnormality segmentation based on l1-norm minimization
NASA Astrophysics Data System (ADS)
Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos
2014-03-01
We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.
Guided wave localization of damage via sparse reconstruction
NASA Astrophysics Data System (ADS)
Levine, Ross M.; Michaels, Jennifer E.; Lee, Sang Jun
2012-05-01
Ultrasonic guided waves are frequently applied for structural health monitoring and nondestructive evaluation of plate-like metallic and composite structures. Spatially distributed arrays of fixed piezoelectric transducers can be used to detect damage by recording and analyzing all pairwise signal combinations. By subtracting pre-recorded baseline signals, the effects due to scatterer interactions can be isolated. Given these residual signals, techniques such as delay-and-sum imaging are capable of detecting flaws, but do not exploit the expected sparse nature of damage. It is desired to determine the location of a possible flaw by leveraging the anticipated sparsity of damage; i.e., most of the structure is assumed to be damage-free. Unlike least-squares methods, L1-norm minimization techniques favor sparse solutions to inverse problems such as the one considered here of locating damage. Using this type of method, it is possible to exploit sparsity of damage by formulating the imaging process as an optimization problem. A model-based damage localization method is presented that simultaneously decomposes all scattered signals into location-based signal components. The method is first applied to simulated data to investigate sensitivity to both model mismatch and additive noise, and then to experimental data recorded from an aluminum plate with artificial damage. Compared to delay-and-sum imaging, results exhibit a significant reduction in both spot size and imaging artifacts when the model is reasonably well-matched to the data.
Minimally Informative Prior Distributions for PSA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana L. Kelly; Robert W. Youngblood; Kurt G. Vedros
2010-06-01
A salient feature of Bayesian inference is its ability to incorporate information from a variety of sources into the inference model, via the prior distribution (hereafter simply “the prior”). However, over-reliance on old information can lead to priors that dominate new data. Some analysts seek to avoid this by trying to work with a minimally informative prior distribution. Another reason for choosing a minimally informative prior is to avoid the often-voiced criticism of subjectivity in the choice of prior. Minimally informative priors fall into two broad classes: 1) so-called noninformative priors, which attempt to be completely objective, in that themore » posterior distribution is determined as completely as possible by the observed data, the most well known example in this class being the Jeffreys prior, and 2) priors that are diffuse over the region where the likelihood function is nonnegligible, but that incorporate some information about the parameters being estimated, such as a mean value. In this paper, we compare four approaches in the second class, with respect to their practical implications for Bayesian inference in Probabilistic Safety Assessment (PSA). The most commonly used such prior, the so-called constrained noninformative prior, is a special case of the maximum entropy prior. This is formulated as a conjugate distribution for the most commonly encountered aleatory models in PSA, and is correspondingly mathematically convenient; however, it has a relatively light tail and this can cause the posterior mean to be overly influenced by the prior in updates with sparse data. A more informative prior that is capable, in principle, of dealing more effectively with sparse data is a mixture of conjugate priors. A particular diffuse nonconjugate prior, the logistic-normal, is shown to behave similarly for some purposes. Finally, we review the so-called robust prior. Rather than relying on the mathematical abstraction of entropy, as does the constrained noninformative prior, the robust prior places a heavy-tailed Cauchy prior on the canonical parameter of the aleatory model.« less
Ji, Jiadong; He, Di; Feng, Yang; He, Yong; Xue, Fuzhong; Xie, Lei
2017-10-01
A complex disease is usually driven by a number of genes interwoven into networks, rather than a single gene product. Network comparison or differential network analysis has become an important means of revealing the underlying mechanism of pathogenesis and identifying clinical biomarkers for disease classification. Most studies, however, are limited to network correlations that mainly capture the linear relationship among genes, or rely on the assumption of a parametric probability distribution of gene measurements. They are restrictive in real application. We propose a new Joint density based non-parametric Differential Interaction Network Analysis and Classification (JDINAC) method to identify differential interaction patterns of network activation between two groups. At the same time, JDINAC uses the network biomarkers to build a classification model. The novelty of JDINAC lies in its potential to capture non-linear relations between molecular interactions using high-dimensional sparse data as well as to adjust confounding factors, without the need of the assumption of a parametric probability distribution of gene measurements. Simulation studies demonstrate that JDINAC provides more accurate differential network estimation and lower classification error than that achieved by other state-of-the-art methods. We apply JDINAC to a Breast Invasive Carcinoma dataset, which includes 114 patients who have both tumor and matched normal samples. The hub genes and differential interaction patterns identified were consistent with existing experimental studies. Furthermore, JDINAC discriminated the tumor and normal sample with high accuracy by virtue of the identified biomarkers. JDINAC provides a general framework for feature selection and classification using high-dimensional sparse omics data. R scripts available at https://github.com/jijiadong/JDINAC. lxie@iscb.org. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrixmore » is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.« less
NASA Astrophysics Data System (ADS)
Napoli, V.; Yoo, S. H.; Russell, D. R.
2017-12-01
To improve discrimination of small explosions and earthquakes, we developed a new magnitude scale based on the standard Ms:mb discrimination method. In place of 20 second Ms measurements we developed a unified Rayleigh and Love wave magnitude scale (MsU) that is designed to maximize available information from single stations and then combine magnitude estimates into network averages. Additionally, in place of mb(P) measurements we developed an mb(P-Coda) magnitude scale as the properties of the coda make sparse network mb(P-Coda) more robust and less variable than network mb(P) estimates. A previous mb:MsU study conducted in 2013 in the Korean Peninsula shows that the use of MsU in place of standard 20 second Ms, leads to increased population separation and reduced scattering. The goals of a combined mb(P-coda):MsU scale are reducing scatter, ensuring applicability at small magnitudes with sparse networks, and improving the overall distribution for mb:Ms earthquake and explosion populations. To test this method we are calculating mb(P-coda)and MsU for a catalog earthquakes located in and near the Korean Peninsula, for the six North Korean nuclear tests (4.1 < mb < 6.3) and for the 3 aftershocks to date that occurred after the sixth test (2.6 < ML < 4.0). Compared to the previous 2013 study, we expect to see greater separation in the populations and less scattering with the inclusion of mb(P-coda) and with the implementation of additional filters for MsU to improve signal-to-noise levels; this includes S-transform filtering for polarization and off-azimuth signal reduction at regional distances. As we are expanding our database of mb(P-coda):MsU measurements in the Korean Peninsula to determine the earthquake and explosion distribution, this research will address the limitations and potential for discriminating small magnitude events using sparse networks.
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
NASA Astrophysics Data System (ADS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.
Sparse Reconstruction Techniques in MRI: Methods, Applications, and Challenges to Clinical Adoption
Yang, Alice Chieh-Yu; Kretzler, Madison; Sudarski, Sonja; Gulani, Vikas; Seiberlich, Nicole
2016-01-01
The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance Imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be employed to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR imaging, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold-standards, are discussed. PMID:27003227
1980-10-01
infestation or extent of open water was measured following the same procedures described for deter- fmination of transect percent cover. This value was...procedure where the last vegetation type ended along the transect (i.e. hydrilla, eelgrass, open water ), vegetation coverage was determined for the entire...ated open water , no measurements were made. Approximately 150 to 200 prediction stations were used per monthly sample. 61. For sparse and thick
ERIC Educational Resources Information Center
Hill, Jonathan
The Oregon Quality Education Model (QEM) was developed by the state to identify the fundamental requirements and costs for a quality education that meets Oregon's academic standards. It will determine the funding of Oregon schools. Among the assumptions upon which the QEM is built were that elementary school enrollment is 340 students, middle…
Nonconventional Remission of Miliaria rubra during Heat Acclimation: Case Report,
1987-01-01
folliculitis , furunculosis, or anhidrotic heat exhaustion (1,2). Severe cases involve diurnal irritation, discomfort and isamnia to a degree that causes a...L/hr) in the heat. A skin biopsy (right scapula) on day 8 was negative for miliaria rubra but was positive for chronic folliculitis , which was...sparsely distributed over the skin. This finding supported previous reports that miliaria rubra may be a precursor of folliculitis (1,2). Daily entering
Self-organization of globally continuous and locally distributed information representation.
Wada, Koji; Kurata, Koji; Okada, Masato
2004-01-01
A number of findings suggest that the preferences of neighboring neurons in the inferior temporal (IT) cortex of macaque monkeys tend to be similar. However, a recent study reports convincingly that the preferences of neighboring neurons actually differ. These findings seem contradictory. To explain this conflict, we propose a new view of information representation in the IT cortex. This view takes into account sparse and local neuronal excitation. Since the excitation is sparse, information regarding visual objects seems to be encoded in a distributed manner. The local excitation of neurons coincides with the classical notion of a column structure. Our model consists of input layer and output layer. The main difference from conventional models is that the output layer has local and random intra-layer connections. In this paper, we adopt two rings embedded in three-dimensional space as an input signal space, and examine how resultant information representation depends on the distance between two rings that is denoted as D. We show that there exists critical value for the distance Dc. When D > Dc the output layer becomes able to form the column structure, this model can obtain the distributed representation within the column. While the output layer acquires the conventional information representation observed in the V1 cortex when D < Dc. Moreover, we consider the origin of the difference between information representation of the V1 cortex and that of the IT cortex. Our finding suggests that the difference in the information representations between the V1 and the IT cortices could be caused by difference between the input space structures.
Strahl, Stefan; Mertins, Alfred
2008-07-18
Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.
Moody, Daniela; Wohlberg, Brendt
2018-01-02
An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.
Using sparse photometric data sets for asteroid lightcurve studies
NASA Astrophysics Data System (ADS)
Warner, Brian D.; Harris, Alan W.
2011-12-01
With the advent of wide-field imagers, it has become possible to conduct a photometric lightcurve survey of many asteroids simultaneously, either for that single purpose (e.g., Dermawan, B., Nakamura, T., Yoshida, F. [2011]. Publ. Astron. Soc. Japan 63, S555-S576; Masiero, J., Jedicke, R., Ďurech, J., Gwyn, S., Denneau, L., Larsen, J. [2009]. Icarus 204, 145-171), or as a part of a multipurpose survey (e.g., Pan-STARRS, LSST). Such surveys promise to yield photometric data for many thousands of asteroids, but these data sets will be “sparse” compared to most of those taken in a “targeted” mode directed to one asteroid at a time. We consider the potential limitations of sparse data sets using different sampling rates with respect to specific research questions that might be addressed with lightcurve data. For our study we created synthetic sparse data sets similar to those from wide-field surveys by generating more than 380,000 individual lightcurves that were combined into more than 47,000 composite lightcurves. The variables in generating the data included the number of observations per night, number of nights, noise, and the intervals between observations and nights, in addition to periods ranging from 0.1 to 400 h and amplitudes ranging from 0.1 to 2.0 mag. A Fourier analysis pipeline was used to find the period for each composite lightcurve and then review the derived period and period spectrum to gauge how well an automated analysis of sparse data sets would perform in finding the true period. For this part of the analysis, a normally distributed noise level of 0.03 mag was added to the data, regardless of amplitude, thus simulating a relatively high SNR for the observations. For the second part of the analysis, a smaller set of composite curves was generated with fixed core parameters of eight observations per night, 8 nights within a 14-day span, periods ranging from 2 to 6 h, and an amplitude of either 0.3 mag or 0.4 mag. Individual data sets using these fixed parameters added normally-distributed noise of 0.05, 0.1, or 0.2 mag. The analysis examined the success rates for finding the true period as the noise increased towards levels simulating data for objects close to sky background levels. After applying a filter to remove highly-ambiguous solution sets, the best chance for success was found to be when the true period was in the range of P ≈ 2-5 h and amplitudes were A ⩾ 0.5 mag. The solution sets for lightcurves with low amplitude, long periods, and/or those that were sampled too sparsely in comparison to the period were often too ambiguous to be considered reliable for statistical rotation studies. Analysis of slow rotators (P > 24 h) found that somewhat reasonable solutions of P < 6 h could be found for about 15-20% of those objects, even at higher amplitudes, indicating that the Fourier analysis had locked onto the noise in the data. Efforts to produce an automated pipeline to help determine an unambiguous (or nearly so) solution based on the period spectrum from the Fourier analysis were made. These proved unsuccessful because of the number of parameters that must be considered and the difficulties in assigning an objective weight to each one in finding a final result. Despite this initial failure, further attempts will be made to quantify the U rating system. Comparison of the synthetic data analysis results to those from two actual surveys shows a reasonable agreement between the two. A review of the pros and cons of sparse versus dense data sets shows that each has a significant role in future studies and that it will be critical to establish open lines of communications and data exchange between the deep wide-field sparse data surveys and dense data programs.
Distribution and character of naleds in northeastern Alaska
Harden, Deborah; Barnes, Peter W.; Reimnitz, Erk
1977-01-01
An examination of the distribution of river naleds seen in Landsat satellite imagery and high- and low-altitude aerial photography of Alaska's North Slope indicates that these features are widespread east of the Colville River and less abundant to the west. Where naleds occur, stream channels are wide and often form braided channels. Their distribution can be related to changes in stream gradient and to the occurrence of springs. Large naleds, such as on the Kongakut River, often remain through the summer melt season to form the nucleus of icing in the succeeding winter. Major naleds also are likely to significantly influence the nature of permafrost in their immediate vicinity. The map of naleds may serve as a guide to the occurrence of year-round flowing water, a sparse commodity in northern Alaska.
New machine-learning algorithms for prediction of Parkinson's disease
NASA Astrophysics Data System (ADS)
Mandal, Indrajit; Sairam, N.
2014-03-01
This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.
Groth, Katrina M.; Smith, Curtis L.; Swiler, Laura P.
2014-04-05
In the past several years, several international agencies have begun to collect data on human performance in nuclear power plant simulators [1]. This data provides a valuable opportunity to improve human reliability analysis (HRA), but there improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used in to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this article, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existingmore » HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.« less
Distributed memory compiler methods for irregular problems: Data copy reuse and runtime partitioning
NASA Technical Reports Server (NTRS)
Das, Raja; Ponnusamy, Ravi; Saltz, Joel; Mavriplis, Dimitri
1991-01-01
Outlined here are two methods which we believe will play an important role in any distributed memory compiler able to handle sparse and unstructured problems. We describe how to link runtime partitioners to distributed memory compilers. In our scheme, programmers can implicitly specify how data and loop iterations are to be distributed between processors. This insulates users from having to deal explicitly with potentially complex algorithms that carry out work and data partitioning. We also describe a viable mechanism for tracking and reusing copies of off-processor data. In many programs, several loops access the same off-processor memory locations. As long as it can be verified that the values assigned to off-processor memory locations remain unmodified, we show that we can effectively reuse stored off-processor data. We present experimental data from a 3-D unstructured Euler solver run on iPSC/860 to demonstrate the usefulness of our methods.
Alpha Matting with KL-Divergence Based Sparse Sampling.
Karacan, Levent; Erdem, Aykut; Erdem, Erkut
2017-06-22
In this paper, we present a new sampling-based alpha matting approach for the accurate estimation of foreground and background layers of an image. Previous sampling-based methods typically rely on certain heuristics in collecting representative samples from known regions, and thus their performance deteriorates if the underlying assumptions are not satisfied. To alleviate this, we take an entirely new approach and formulate sampling as a sparse subset selection problem where we propose to pick a small set of candidate samples that best explains the unknown pixels. Moreover, we describe a new dissimilarity measure for comparing two samples which is based on KLdivergence between the distributions of features extracted in the vicinity of the samples. The proposed framework is general and could be easily extended to video matting by additionally taking temporal information into account in the sampling process. Evaluation on standard benchmark datasets for image and video matting demonstrates that our approach provides more accurate results compared to the state-of-the-art methods.
A comparison of SuperLU solvers on the intel MIC architecture
NASA Astrophysics Data System (ADS)
Tuncel, Mehmet; Duran, Ahmet; Celebi, M. Serdar; Akaydin, Bora; Topkaya, Figen O.
2016-10-01
In many science and engineering applications, problems may result in solving a sparse linear system AX=B. For example, SuperLU_MCDT, a linear solver, was used for the large penta-diagonal matrices for 2D problems and hepta-diagonal matrices for 3D problems, coming from the incompressible blood flow simulation (see [1]). It is important to test the status and potential improvements of state-of-the-art solvers on new technologies. In this work, sequential, multithreaded and distributed versions of SuperLU solvers (see [2]) are examined on the Intel Xeon Phi coprocessors using offload programming model at the EURORA cluster of CINECA in Italy. We consider a portfolio of test matrices containing patterned matrices from UFMM ([3]) and randomly located matrices. This architecture can benefit from high parallelism and large vectors. We find that the sequential SuperLU benefited up to 45 % performance improvement from the offload programming depending on the sparse matrix type and the size of transferred and processed data.
This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms--theory and practice.
Harmany, Zachary T; Marcia, Roummel F; Willett, Rebecca M
2012-03-01
Observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f*) from Poisson data (y) cannot be effectively accomplished by minimizing a conventional penalized least-squares objective function. The problem addressed in this paper is the estimation of f* from y in an inverse problem setting, where the number of unknowns may potentially be larger than the number of observations and f* admits sparse approximation. The optimization formulation considered in this paper uses a penalized negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). In particular, the proposed approach incorporates key ideas of using separable quadratic approximations to the objective function at each iteration and penalization terms related to l1 norms of coefficient vectors, total variation seminorms, and partition-based multiscale estimation methods.
NITPICK: peak identification for mass spectrometry data.
Renard, Bernhard Y; Kirchner, Marc; Steen, Hanno; Steen, Judith A J; Hamprecht, Fred A
2008-08-28
The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averaging, a novel extension to Senko's well-known averaging model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from (http://hci.iwr.uni-heidelberg.de/mip/proteomics/).
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin
Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin; ...
2017-07-10
Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less
Complex noise suppression using a sparse representation and 3D filtering of images
NASA Astrophysics Data System (ADS)
Kravchenko, V. F.; Ponomaryov, V. I.; Pustovoit, V. I.; Palacios-Enriquez, A.
2017-08-01
A novel method for the filtering of images corrupted by complex noise composed of randomly distributed impulses and additive Gaussian noise has been substantiated for the first time. The method consists of three main stages: the detection and filtering of pixels corrupted by impulsive noise, the subsequent image processing to suppress the additive noise based on 3D filtering and a sparse representation of signals in a basis of wavelets, and the concluding image processing procedure to clean the final image of the errors emerged at the previous stages. A physical interpretation of the filtering method under complex noise conditions is given. A filtering block diagram has been developed in accordance with the novel approach. Simulations of the novel image filtering method have shown an advantage of the proposed filtering scheme in terms of generally recognized criteria, such as the structural similarity index measure and the peak signal-to-noise ratio, and when visually comparing the filtered images.
Competition in high dimensional spaces using a sparse approximation of neural fields.
Quinton, Jean-Charles; Girau, Bernard; Lefort, Mathieu
2011-01-01
The Continuum Neural Field Theory implements competition within topologically organized neural networks with lateral inhibitory connections. However, due to the polynomial complexity of matrix-based implementations, updating dense representations of the activity becomes computationally intractable when an adaptive resolution or an arbitrary number of input dimensions is required. This paper proposes an alternative to self-organizing maps with a sparse implementation based on Gaussian mixture models, promoting a trade-off in redundancy for higher computational efficiency and alleviating constraints on the underlying substrate.This version reproduces the emergent attentional properties of the original equations, by directly applying them within a continuous approximation of a high dimensional neural field. The model is compatible with preprocessed sensory flows but can also be interfaced with artificial systems. This is particularly important for sensorimotor systems, where decisions and motor actions must be taken and updated in real-time. Preliminary tests are performed on a reactive color tracking application, using spatially distributed color features.
Compressed digital holography: from micro towards macro
NASA Astrophysics Data System (ADS)
Schretter, Colas; Bettens, Stijn; Blinder, David; Pesquet-Popescu, Béatrice; Cagnazzo, Marco; Dufaux, Frédéric; Schelkens, Peter
2016-09-01
signal processing methods from software-driven computer engineering and applied mathematics. The compressed sensing theory in particular established a practical framework for reconstructing the scene content using few linear combinations of complex measurements and a sparse prior for regularizing the solution. Compressed sensing found direct applications in digital holography for microscopy. Indeed, the wave propagation phenomenon in free space mixes in a natural way the spatial distribution of point sources from the 3-dimensional scene. As the 3-dimensional scene is mapped to a 2-dimensional hologram, the hologram samples form a compressed representation of the scene as well. This overview paper discusses contributions in the field of compressed digital holography at the micro scale. Then, an outreach on future extensions towards the real-size macro scale is discussed. Thanks to advances in sensor technologies, increasing computing power and the recent improvements in sparse digital signal processing, holographic modalities are on the verge of practical high-quality visualization at a macroscopic scale where much higher resolution holograms must be acquired and processed on the computer.
Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG
Krishnaswamy, Pavitra; Obregon-Henao, Gabriel; Ahveninen, Jyrki; Khan, Sheraz; Iglesias, Juan Eugenio; Hämäläinen, Matti S.; Purdon, Patrick L.
2017-01-01
Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain. PMID:29138310
Duhalde, Denisse J; Arumí, José L; Oyarzún, Ricardo A; Rivera, Diego A
2018-06-11
A fuzzy logic approach has been proposed to face the uncertainty caused by sparse data in the assessment of the intrinsic vulnerability of a groundwater system with parametric methods in Las Trancas Valley, Andean Mountain, south-central Chile, a popular touristic place in Chile, but lacking of a centralized drinking and sewage water public systems; this situation is a potentially source of groundwater pollution. Based on DRASTIC, GOD, and EKv and the expert knowledge of the study area, the Mamdani fuzzy approach was generated and the spatial data were processed by ArcGIS. The groundwater system exhibited areas with high, medium, and low intrinsic vulnerability indices. The fuzzy approach results were compared with traditional methods results, which, in general, have shown a good spatial agreement even though significant changes were also identified in the spatial distribution of the indices. The Mamdani logic approach has shown to be a useful and practical tool to assess the intrinsic vulnerability of an aquifer under sparse data conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Feasibility of Very Large Sparse Aperture Deployable Antennas
2014-03-27
FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Jason C. Heller, Captain...States. AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Presented to the Faculty...UNLIMITED AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS Jason C. Heller, B.S., Aerospace
NASA Astrophysics Data System (ADS)
Stoykov, S.; Atanassov, E.; Margenov, S.
2016-10-01
Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.
Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM).
Wang, Xuehu; Zheng, Yongchang; Gan, Lan; Wang, Xuan; Sang, Xinting; Kong, Xiangfeng; Zhao, Jie
2017-01-01
This study proposes a new liver segmentation method based on a sparse a priori statistical shape model (SP-SSM). First, mark points are selected in the liver a priori model and the original image. Then, the a priori shape and its mark points are used to obtain a dictionary for the liver boundary information. Second, the sparse coefficient is calculated based on the correspondence between mark points in the original image and those in the a priori model, and then the sparse statistical model is established by combining the sparse coefficients and the dictionary. Finally, the intensity energy and boundary energy models are built based on the intensity information and the specific boundary information of the original image. Then, the sparse matching constraint model is established based on the sparse coding theory. These models jointly drive the iterative deformation of the sparse statistical model to approximate and accurately extract the liver boundaries. This method can solve the problems of deformation model initialization and a priori method accuracy using the sparse dictionary. The SP-SSM can achieve a mean overlap error of 4.8% and a mean volume difference of 1.8%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 0.8 mm and 1.4 mm, respectively.
Herwig, M C; Müller, A M; Holz, F G; Loeffler, K U
2010-11-01
Information on the evaluation of prenatal ocular findings is sparse. This article provides an overview of the morphology in a cohort of human fetal eyes, with particular emphasis on interesting findings. The study investigated 216 eyes from 115 human fetuses. The majority of fetal eyes presented with a regular phenotype. Rarely, unexpected findings were discovered in fetuses with or without systemic malformations. Routine evaluation of fetal eyes reveals-albeit rarely-new aspects providing further knowledge and occasionally enabling the exact classification of syndromes.
Sparse Covariance Matrix Estimation With Eigenvalue Constraints
LIU, Han; WANG, Lie; ZHAO, Tuo
2014-01-01
We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online. PMID:25620866
[Diagnostics and treatment of Wernicke-Korsakoff syndrome patients with an alcohol abuse].
Nilsson, Maria; Sonne, Charlotte
2013-04-01
Wernicke-Korsakoff syndrome is a condition with high morbidity and mortality and occurs as a consequence of thiamine deficiency. Clinical symptoms are often ambiguous and post-mortem examinations show that the syndrome is underdiagnosed and probably undertreated. There is sparse clinical evidence concerning optimal dosage and duration of treatment. This article reviews the current literature and concludes that all patients with a history of alcohol abuse should be treated with high dosage IV thiamine for an extended period of time, albeit further research is needed.
Feature Selection and Pedestrian Detection Based on Sparse Representation.
Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei
2015-01-01
Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony.
NASA Technical Reports Server (NTRS)
Reiter, E. R.; Vonderhaar, T. H.; Lovill, J. E.; Adler, R.; Srivatsangam, S.; Abbey, R.
1971-01-01
Findings are presented for IRIS data from NIMBUS 3 in mapping the global ozone distribution. The seasonal and regional variations of ozone, especially in the Southern Hemisphere, reveal features that were not evident from the sparse ground-based ozone observation network in this hemisphere. A regression analysis was undertaken for temperature and height fields on radiance data. Spectrum analyses of upper wind data from the North American section and Australia were completed.
Exploiting Sparsity in Hyperspectral Image Classification via Graphical Models
2013-05-01
distribution p by minimizing the Kullback – Leibler (KL) distance D(p‖p̂) = Ep[log(p/p̂)] using first- and second-order statistics, via a maximum-weight...Obtain sparse representations αl, l = 1, . . . , T , in RN from test image. 6: Inference: Classify based on the output of the resulting classifier using ...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.
1995-10-01
Aztec is an iterative library that greatly simplifies the parallelization process when solving the linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. Aztec is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparsemore » unstructured matrices for parallel solution. Once the distributed matrix is created, computation can be performed on any of the parallel machines running Aztec: nCUBE 2, IBM SP2 and Intel Paragon, MPI platforms as well as standard serial and vector platforms. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized biconjugate gradient (BICGSTAB) to solve systems of equations. These Krylov methods are used in conjunction with various preconditioners such as polynomial or domain decomposition methods using LU or incomplete LU factorizations within subdomains. Although the matrix A can be general, the package has been designed for matrices arising from the approximation of partial differential equations (PDEs). In particular, the Aztec package is oriented toward systems arising from PDE applications.« less
Cao, Huojun; Amendt, Brad A
2016-11-01
Developmental dental anomalies are common forms of congenital defects. The molecular mechanisms of dental anomalies are poorly understood. Systematic approaches such as clustering genes based on similar expression patterns could identify novel genes involved in dental anomalies and provide a framework for understanding molecular regulatory mechanisms of these genes during tooth development (odontogenesis). A python package (pySAPC) of sparse affinity propagation clustering algorithm for large datasets was developed. Whole genome pair-wise similarity was calculated based on expression pattern similarity based on 45 microarrays of several stages during odontogenesis. pySAPC identified 743 gene clusters based on expression pattern similarity during mouse tooth development. Three clusters are significantly enriched for genes associated with dental anomalies (with FDR <0.1). The three clusters of genes have distinct expression patterns during odontogenesis. Clustering genes based on similar expression profiles recovered several known regulatory relationships for genes involved in odontogenesis, as well as many novel genes that may be involved with the same genetic pathways as genes that have already been shown to contribute to dental defects. By using sparse similarity matrix, pySAPC use much less memory and CPU time compared with the original affinity propagation program that uses a full similarity matrix. This python package will be useful for many applications where dataset(s) are too large to use full similarity matrix. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Casson, David; Werner, Micha; Weerts, Albrecht; Schellekens, Jaap; Solomatine, Dimitri
2017-04-01
Hydrological modelling in the Canadian Sub-Arctic is hindered by the limited spatial and temporal coverage of local meteorological data. Local watershed modelling often relies on data from a sparse network of meteorological stations with a rough density of 3 active stations per 100,000 km2. Global datasets hold great promise for application due to more comprehensive spatial and extended temporal coverage. A key objective of this study is to demonstrate the application of global datasets and data assimilation techniques for hydrological modelling of a data sparse, Sub-Arctic watershed. Application of available datasets and modelling techniques is currently limited in practice due to a lack of local capacity and understanding of available tools. Due to the importance of snow processes in the region, this study also aims to evaluate the performance of global SWE products for snowpack modelling. The Snare Watershed is a 13,300 km2 snowmelt driven sub-basin of the Mackenzie River Basin, Northwest Territories, Canada. The Snare watershed is data sparse in terms of meteorological data, but is well gauged with consistent discharge records since the late 1970s. End of winter snowpack surveys have been conducted every year from 1978-present. The application of global re-analysis datasets from the EU FP7 eartH2Observe project are investigated in this study. Precipitation data are taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP) and temperature data from Watch Forcing Data applied to European Reanalysis (ERA)-Interim data (WFDEI). GlobSnow-2 is a global Snow Water Equivalent (SWE) measurement product funded by the European Space Agency (ESA) and is also evaluated over the local watershed. Downscaled precipitation, temperature and potential evaporation datasets are used as forcing data in a distributed version of the HBV model implemented in the WFLOW framework. Results demonstrate the successful application of global datasets in local watershed modelling, but that validation of actual frozen precipitation and snowpack conditions is very difficult. The distributed hydrological model shows good streamflow simulation performance based on statistical model evaluation techniques. Results are also promising for inter-annual variability, spring snowmelt onset and time to peak flows. It is expected that data assimilation of stream flow using an Ensemble Kalman Filter will further improve model performance. This study shows that global re-analysis datasets hold great potential for understanding the hydrology and snowpack dynamics of the expansive and data sparse sub-Arctic. However, global SWE products will require further validation and algorithm improvements, particularly over boreal forest and lake-rich regions.
Herman, Agnieszka
2010-06-01
Sea-ice floe-size distribution (FSD) in ice-pack covered seas influences many aspects of ocean-atmosphere interactions. However, data concerning FSD in the polar oceans are still sparse and processes shaping the observed FSD properties are poorly understood. Typically, power-law FSDs are assumed although no feasible explanation has been provided neither for this one nor for other properties of the observed distributions. Consequently, no model exists capable of predicting FSD parameters in any particular situation. Here I show that the observed FSDs can be well represented by a truncated Pareto distribution P(x)=x(-1-α) exp[(1-α)/x] , which is an emergent property of a certain group of multiplicative stochastic systems, described by the generalized Lotka-Volterra (GLV) equation. Building upon this recognition, a possibility of developing a simple agent-based GLV-type sea-ice model is considered. Contrary to simple power-law FSDs, GLV gives consistent estimates of the total floe perimeter, as well as floe-area distribution in agreement with observations.
Sea-ice floe-size distribution in the context of spontaneous scaling emergence in stochastic systems
NASA Astrophysics Data System (ADS)
Herman, Agnieszka
2010-06-01
Sea-ice floe-size distribution (FSD) in ice-pack covered seas influences many aspects of ocean-atmosphere interactions. However, data concerning FSD in the polar oceans are still sparse and processes shaping the observed FSD properties are poorly understood. Typically, power-law FSDs are assumed although no feasible explanation has been provided neither for this one nor for other properties of the observed distributions. Consequently, no model exists capable of predicting FSD parameters in any particular situation. Here I show that the observed FSDs can be well represented by a truncated Pareto distribution P(x)=x-1-αexp[(1-α)/x] , which is an emergent property of a certain group of multiplicative stochastic systems, described by the generalized Lotka-Volterra (GLV) equation. Building upon this recognition, a possibility of developing a simple agent-based GLV-type sea-ice model is considered. Contrary to simple power-law FSDs, GLV gives consistent estimates of the total floe perimeter, as well as floe-area distribution in agreement with observations.
Albers, D. J.; Hripcsak, George
2012-01-01
A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database. PMID:22536009
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
Zhang, Jie; Fan, Shangang; Xiong, Jian; Cheng, Xiefeng; Sari, Hikmet; Adachi, Fumiyuki
2017-01-01
Both L1/2 and L2/3 are two typical non-convex regularizations of Lp (0
Li, Yunyi; Zhang, Jie; Fan, Shangang; Yang, Jie; Xiong, Jian; Cheng, Xiefeng; Sari, Hikmet; Adachi, Fumiyuki; Gui, Guan
2017-12-15
Both L 1/2 and L 2/3 are two typical non-convex regularizations of L p (0
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.
Lin, Andrew C; Bygrave, Alexei M; de Calignon, Alix; Lee, Tzumin; Miesenböck, Gero
2014-04-01
Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories.
NASA Astrophysics Data System (ADS)
Yang, Z.; Hsu, K. L.; Sorooshian, S.; Xu, X.
2017-12-01
Precipitation in mountain regions generally occurs with high-frequency-intensity, whereas it is not well-captured by sparsely distributed rain-gauges imposing a great challenge on water management. Satellite-based Precipitation Estimation (SPE) provides global high-resolution alternative data for hydro-climatic studies, but are subject to considerable biases. In this study, a model named PDMMA-USESGO for Precipitation Data Merging over Mountainous Areas Using Satellite Estimates and Sparse Gauge Observations is developed to support precipitation mapping and hydrological modeling in mountainous catchments. The PDMMA-USESGO framework includes two calculating steps—adjusting SPE biases and merging satellite-gauge estimates—using the quantile mapping approach, a two-dimensional Gaussian weighting scheme (considering elevation effect), and an inverse root mean square error weighting method. The model is applied and evaluated over the Tibetan Plateau (TP) with the PERSIANN-CCS precipitation retrievals (daily, 0.04°×0.04°) and sparse observations from 89 gauges, for the 11-yr period of 2003-2013. To assess the data merging effects on streamflow modeling, a hydrological evaluation is conducted over a watershed in southeast TP based on the Soil and Water Assessment Tool (SWAT). Evaluation results indicate effectiveness of the model in generating high-resolution-accuracy precipitation estimates over mountainous terrain, with the merged estimates (Mer-SG) presenting consistently improved correlation coefficients, root mean square errors and absolute mean biases from original satellite estimates (Ori-CCS). It is found the Mer-SG forced streamflow simulations exhibit great improvements from those simulations using Ori-CCS, with coefficient of determination (R2) and Nash-Sutcliffe efficiency reach to 0.8 and 0.65, respectively. The presented model and case study serve as valuable references for the hydro-climatic applications using remote sensing-gauge information in other mountain areas of the world.
Neurogenesis and pattern separation: time for a divorce.
Becker, Suzanna
2017-05-01
The generation of new neurons in the adult mammalian brain has led to numerous theories as to their functional significance. One of the most widely held views is that adult neurogenesis promotes pattern separation, a process by which overlapping patterns of neural activation are mapped to less overlapping representations. While a large body of evidence supports a role for neurogenesis in high interference memory tasks, it does not support the proposed function of neurogenesis in mediating pattern separation. Instead, the adult-generated neurons seem to generate highly overlapping and yet distinct distributed representations for similar events. One way in which these immature, highly plastic, hyperactive neurons may contribute to novel memory formation while avoiding interference is by virtue of their extremely sparse connectivity with incoming perforant path fibers. Another intriguing proposal, awaiting empirical confirmation, is that the young neurons' recruitment into memory formation is gated by a novelty/mismatch mechanism mediated by CA3 or hilar back-projections. Ongoing research into the intriguing link between neurogenesis, stress-related mood disorders, and age-related neurodegeneration may lead to promising neurogenesis-based treatments for this wide range of clinical disorders. WIREs Cogn Sci 2017, 8:e1427. doi: 10.1002/wcs.1427 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Stoffenmanager exposure model: company-specific exposure assessments using a Bayesian methodology.
van de Ven, Peter; Fransman, Wouter; Schinkel, Jody; Rubingh, Carina; Warren, Nicholas; Tielemans, Erik
2010-04-01
The web-based tool "Stoffenmanager" was initially developed to assist small- and medium-sized enterprises in the Netherlands to make qualitative risk assessments and to provide advice on control at the workplace. The tool uses a mechanistic model to arrive at a "Stoffenmanager score" for exposure. In a recent study it was shown that variability in exposure measurements given a certain Stoffenmanager score is still substantial. This article discusses an extension to the tool that uses a Bayesian methodology for quantitative workplace/scenario-specific exposure assessment. This methodology allows for real exposure data observed in the company of interest to be combined with the prior estimate (based on the Stoffenmanager model). The output of the tool is a company-specific assessment of exposure levels for a scenario for which data is available. The Bayesian approach provides a transparent way of synthesizing different types of information and is especially preferred in situations where available data is sparse, as is often the case in small- and medium sized-enterprises. Real-world examples as well as simulation studies were used to assess how different parameters such as sample size, difference between prior and data, uncertainty in prior, and variance in the data affect the eventual posterior distribution of a Bayesian exposure assessment.
Neville, Timothy J; Salmon, Paul M
2016-07-01
As sport becomes more complex, there is potential for ergonomics concepts to help enhance the performance of sports officials. The concept of Situation Awareness (SA) appears pertinent given the requirement for officials to understand what is going on in order to make decisions. Although numerous models exist, none have been applied to examine officials, and only several recent examples have been applied to sport. This paper examines SA models and methods to identify if any have applicability to officials in sport (OiS). Evaluation of the models and methods identified potential applications of individual, team and systems models of SA. The paper further demonstrates that the Distributed Situation Awareness model is suitable for studying officials in fastball sports. It is concluded that the study of SA represents a key area of multidisciplinary research for both ergonomics and sports science in the context of OiS. Practitioner Summary: Despite obvious synergies, applications of cognitive ergonomics concepts in sport are sparse. This is especially so for Officials in Sport (OiS). This article presents an evaluation of Situation Awareness models and methods, providing practitioners with guidance on which are the most suitable for OiS system design and evaluation.
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Yanfei
2018-04-01
We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.
Data traffic reduction schemes for Cholesky factorization on asynchronous multiprocessor systems
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1989-01-01
Communication requirements of Cholesky factorization of dense and sparse symmetric, positive definite matrices are analyzed. The communication requirement is characterized by the data traffic generated on multiprocessor systems with local and shared memory. Lower bound proofs are given to show that when the load is uniformly distributed the data traffic associated with factoring an n x n dense matrix using n to the alpha power (alpha less than or equal 2) processors is omega(n to the 2 + alpha/2 power). For n x n sparse matrices representing a square root of n x square root of n regular grid graph the data traffic is shown to be omega(n to the 1 + alpha/2 power), alpha less than or equal 1. Partitioning schemes that are variations of block assignment scheme are described and it is shown that the data traffic generated by these schemes are asymptotically optimal. The schemes allow efficient use of up to O(n to the 2nd power) processors in the dense case and up to O(n) processors in the sparse case before the total data traffic reaches the maximum value of O(n to the 3rd power) and O(n to the 3/2 power), respectively. It is shown that the block based partitioning schemes allow a better utilization of the data accessed from shared memory and thus reduce the data traffic than those based on column-wise wrap around assignment schemes.
Rare-event statistics and modular invariance
NASA Astrophysics Data System (ADS)
Nechaev, S. K.; Polovnikov, K.
2018-01-01
Simple geometric arguments based on constructing the Euclid orchard are presented, which explain the equivalence of various types of distributions that result from rare-event statistics. In particular, the spectral density of the exponentially weighted ensemble of linear polymer chains is examined for its number-theoretic properties. It can be shown that the eigenvalue statistics of the corresponding adjacency matrices in the sparse regime show a peculiar hierarchical structure and are described by the popcorn (Thomae) function discontinuous in the dense set of rational numbers. Moreover, the spectral edge density distribution exhibits Lifshitz tails, reminiscent of 1D Anderson localization. Finally, a continuous approximation for the popcorn function is suggested based on the Dedekind η-function, and the hierarchical ultrametric structure of the popcorn-like distributions is demonstrated to be related to hidden SL(2,Z) modular symmetry.
Image fusion using sparse overcomplete feature dictionaries
Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt
2015-10-06
Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.
ERIC Educational Resources Information Center
Sadler, Peter G.
The Institute for the Study of Sparsely Populated Areas is a multidisciplinary research unit which acts to coordinate, further, and initiate studies of the economic and social conditions of sparsely populated areas. Short summaries of the eight studies completed in the session of 1977-78 indicate work in such areas as the study of political life…
Disentangling giant component and finite cluster contributions in sparse random matrix spectra.
Kühn, Reimer
2016-04-01
We describe a method for disentangling giant component and finite cluster contributions to sparse random matrix spectra, using sparse symmetric random matrices defined on Erdős-Rényi graphs as an example and test bed. Our methods apply to sparse matrices defined in terms of arbitrary graphs in the configuration model class, as long as they have finite mean degree.
NASA Astrophysics Data System (ADS)
Ma, Sangback
In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering ahd ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.
NASA Astrophysics Data System (ADS)
Durech, Josef; Hanus, J.; Vanco, R.
2012-10-01
We present a new project called Asteroids@home (http://asteroidsathome.net/boinc). It is a volunteer-computing project that uses an open-source BOINC (Berkeley Open Infrastructure for Network Computing) software to distribute tasks to volunteers, who provide their computing resources. The project was created at the Astronomical Institute, Charles University in Prague, in cooperation with the Czech National Team. The scientific aim of the project is to solve a time-consuming inverse problem of shape reconstruction of asteroids from sparse-in-time photometry. The time-demanding nature of the problem comes from the fact that with sparse-in-time photometry the rotation period of an asteroid is not apriori known and a huge parameter space must be densely scanned for the best solution. The nature of the problem makes it an ideal task to be solved by distributed computing - the period parameter space can be divided into small bins that can be scanned separately and then joined together to give the globally best solution. In the framework of the the project, we process asteroid photometric data from surveys together with asteroid lightcurves and we derive asteroid shapes and spin states. The algorithm is based on the lightcurve inversion method developed by Kaasalainen et al. (Icarus 153, 37, 2001). The enormous potential of distributed computing will enable us to effectively process also the data from future surveys (Large Synoptic Survey Telescope, Gaia mission, etc.). We also plan to process data of a synthetic asteroid population to reveal biases of the method. In our presentation, we will describe the project, show the first results (new models of asteroids), and discuss the possibilities of its further development. This work has been supported by the grant GACR P209/10/0537 of the Czech Science Foundation and by the Research Program MSM0021620860 of the Ministry of Education of the Czech Republic.
Obtaining sparse distributions in 2D inverse problems.
Reci, A; Sederman, A J; Gladden, L F
2017-08-01
The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L 1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L 1 regularization to a class of inverse problems; relaxation-relaxation, T 1 -T 2 , and diffusion-relaxation, D-T 2 , correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L 1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L 1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L 1 regularization algorithm stably recovers a distribution at a signal to noise ratio<20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as 10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental study shows that the approach enables discrimination between different chemical species when direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise. Copyright © 2017. Published by Elsevier Inc.
Obtaining sparse distributions in 2D inverse problems
NASA Astrophysics Data System (ADS)
Reci, A.; Sederman, A. J.; Gladden, L. F.
2017-08-01
The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxation-relaxation, T1-T2, and diffusion-relaxation, D-T2, correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L1 regularization algorithm stably recovers a distribution at a signal to noise ratio < 20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as 10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental study shows that the approach enables discrimination between different chemical species when direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise.
Thermal infrared remote sensing of water temperature in riverine landscapes
Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé
2012-01-01
Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.
Thermal infrared remote sensing of water temperature in riverine landscapes: Chapter 5
Carbonneau, Rebecca N.; Piégay, Hervé; Handcock, R.N; Torgersen, Christian E.; Cherkauer, K.A; Gillespie, A.R; Tockner, K; Faux, R. N.; Tan, Jing
2012-01-01
Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001). Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature (Cherkauer et al., 2005).
Igawa, Satomi; Kishibe, Mari; Honma, Masaru; Murakami, Masamoto; Mizuno, Yuki; Suga, Yasushi; Seishima, Mariko; Ohguchi, Yuka; Akiyama, Masashi; Hirose, Kenji; Ishida-Yamamoto, Akemi; Iizuka, Hajime
2013-10-01
Atopic dermatitis (AD), Netherton syndrome (NS) and peeling skin syndrome type B (PSS) may show some clinical phenotypic overlap. Corneodesmosomes are crucial for maintaining stratum corneum integrity and the components' localization can be visualized by immunostaining tape-stripped corneocytes. In normal skin, they are detected at the cell periphery. To determine whether AD, NS, PSS and ichthyosis vulgaris (IV) have differences in the corneodesmosomal components' distribution and corneocytes surface areas. Corneocytes were tape-stripped from a control group (n=12) and a disease group (37 AD cases, 3 IV cases, 4 NS cases, and 3 PSS cases), and analyzed with immunofluorescent microscopy. The distribution patterns of corneodesmosomal components: desmoglein 1, corneodesmosin, and desmocollin 1 were classified into four types: peripheral, sparse diffuse, dense diffuse and partial diffuse. Corneocyte surface areas were also measured. The corneodesmosome staining patterns were abnormal in the disease group. Other than in the 3 PSS cases, all three components showed similar patterns in each category. In lesional AD skin, the dense diffuse pattern was prominent. A high rate of the partial diffuse pattern, loss of linear cell-cell contacts, and irregular stripping manners were unique to NS. Only in PSS was corneodesmosin staining virtually absent. The corneocyte surface areas correlated significantly with the rate of combined sparse and dense diffuse patterns of desmoglein 1. This method may be used to assess abnormally differentiated corneocytes in AD and other diseases tested. In PSS samples, tape stripping analysis may serve as a non-invasive diagnostic test. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, X.; Zhang, G.
2013-12-01
Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.
Optimized Design and Analysis of Sparse-Sampling fMRI Experiments
Perrachione, Tyler K.; Ghosh, Satrajit S.
2013-01-01
Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power. PMID:23616742
Optimized design and analysis of sparse-sampling FMRI experiments.
Perrachione, Tyler K; Ghosh, Satrajit S
2013-01-01
Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power.
Autistic disorder: a review for the pediatric dentist.
Klein, U; Nowak, A J
1998-01-01
Dental publications on autism have been sparse since the first comprehensive article geared for the dental profession. New findings on the etiology of autistic disorder (AD) have been discovered, suggesting that it is an organic disorder characterized by abnormalities in the brain, especially the cerebellum and limbic system. This article summarizes the latest medical findings on the etiology, diagnosis, and treatment approaches of AD, and reviews the dental literature since 1969. The main dental topics reviewed are: oral health status and dental needs of patients with AD, characteristics of patients with AD, and self-injurious behavior (SIB) in the context of AD. Clinical behavior-management issues such as pharmacological and communicative techniques and physical restraint and desensitization are described. The affect of the dental office's environment and appointment structure on a patient with AD are presented.
QEEN Workshop: "Quantifying Exposure to Engineered Nano ...
The measurement and characterization of nanomaterials in biological tissues is complicated by a number of factors including: the sensitivity of the assay to small sized particles or low concentrations of materials; the ability to distinguish different forms and transformations of the materials related to the biological matrix; distinguishing exogenous nanomaterials, which may be composed of biologically common elements such as carbon,from normal biological tissues; differentiating particle from ionic phases for materials that dissolve; localization of sparsely distributed materials in a complex substrate (the
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Richard; Lange, Jacob; Healy, James; Carlos, Lousto; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark
2016-03-01
In this talk, we apply a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. We illustrate how to use only comparisons between synthetic data and these simulations to reconstruct properties of a synthetic candidate source. We demonstrate using selected examples that we can reconstruct posterior distributions obtained by other Bayesian methods with our sparse grid. We describe how followup simulations can corroborate and improve our understanding of a candidate signal.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhu, Linli; Wang, Kaiyun
2015-12-01
Ontology, a model of knowledge representation and storage, has had extensive applications in pharmaceutics, social science, chemistry and biology. In the age of “big data”, the constructed concepts are often represented as higher-dimensional data by scholars, and thus the sparse learning techniques are introduced into ontology algorithms. In this paper, based on the alternating direction augmented Lagrangian method, we present an ontology optimization algorithm for ontological sparse vector learning, and a fast version of such ontology technologies. The optimal sparse vector is obtained by an iterative procedure, and the ontology function is then obtained from the sparse vector. Four simulation experiments show that our ontological sparse vector learning model has a higher precision ratio on plant ontology, humanoid robotics ontology, biology ontology and physics education ontology data for similarity measuring and ontology mapping applications.
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
A Degree Distribution Optimization Algorithm for Image Transmission
NASA Astrophysics Data System (ADS)
Jiang, Wei; Yang, Junjie
2016-09-01
Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.
Practical Sub-Nyquist Sampling via Array-Based Compressed Sensing Receiver Architecture
2016-07-10
different array ele- ments at different sub-Nyquist sampling rates. Signal processing inspired by the sparse fast Fourier transform allows for signal...reconstruction algorithms can be computationally demanding (REF). The related sparse Fourier transform algorithms aim to reduce the processing time nec- essary to...compute the DFT of frequency-sparse signals [7]. In particular, the sparse fast Fourier transform (sFFT) achieves processing time better than the
Evidence for sparse synergies in grasping actions.
Prevete, Roberto; Donnarumma, Francesco; d'Avella, Andrea; Pezzulo, Giovanni
2018-01-12
Converging evidence shows that hand-actions are controlled at the level of synergies and not single muscles. One intriguing aspect of synergy-based action-representation is that it may be intrinsically sparse and the same synergies can be shared across several distinct types of hand-actions. Here, adopting a normative angle, we consider three hypotheses for hand-action optimal-control: sparse-combination hypothesis (SC) - sparsity in the mapping between synergies and actions - i.e., actions implemented using a sparse combination of synergies; sparse-elements hypothesis (SE) - sparsity in synergy representation - i.e., the mapping between degrees-of-freedom (DoF) and synergies is sparse; double-sparsity hypothesis (DS) - a novel view combining both SC and SE - i.e., both the mapping between DoF and synergies and between synergies and actions are sparse, each action implementing a sparse combination of synergies (as in SC), each using a limited set of DoFs (as in SE). We evaluate these hypotheses using hand kinematic data from six human subjects performing nine different types of reach-to-grasp actions. Our results support DS, suggesting that the best action representation is based on a relatively large set of synergies, each involving a reduced number of degrees-of-freedom, and that distinct sets of synergies may be involved in distinct tasks.
Turbulent flows over sparse canopies
NASA Astrophysics Data System (ADS)
Sharma, Akshath; García-Mayoral, Ricardo
2018-04-01
Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.
NASA Astrophysics Data System (ADS)
Abbasi, Ashkan; Monadjemi, Amirhassan; Fang, Leyuan; Rabbani, Hossein
2018-03-01
We present a nonlocal weighted sparse representation (NWSR) method for reconstruction of retinal optical coherence tomography (OCT) images. To reconstruct a high signal-to-noise ratio and high-resolution OCT images, utilization of efficient denoising and interpolation algorithms are necessary, especially when the original data were subsampled during acquisition. However, the OCT images suffer from the presence of a high level of noise, which makes the estimation of sparse representations a difficult task. Thus, the proposed NWSR method merges sparse representations of multiple similar noisy and denoised patches to better estimate a sparse representation for each patch. First, the sparse representation of each patch is independently computed over an overcomplete dictionary, and then a nonlocal weighted sparse coefficient is computed by averaging representations of similar patches. Since the sparsity can reveal relevant information from noisy patches, combining noisy and denoised patches' representations is beneficial to obtain a more robust estimate of the unknown sparse representation. The denoised patches are obtained by applying an off-the-shelf image denoising method and our method provides an efficient way to exploit information from noisy and denoised patches' representations. The experimental results on denoising and interpolation of spectral domain OCT images demonstrated the effectiveness of the proposed NWSR method over existing state-of-the-art methods.
Adaptive regulation of sparseness by feedforward inhibition
Assisi, Collins; Stopfer, Mark; Laurent, Gilles; Bazhenov, Maxim
2014-01-01
In the mushroom body of insects, odors are represented by very few spikes in a small number of neurons, a highly efficient strategy known as sparse coding. Physiological studies of these neurons have shown that sparseness is maintained across thousand-fold changes in odor concentration. Using a realistic computational model, we propose that sparseness in the olfactory system is regulated by adaptive feedforward inhibition. When odor concentration changes, feedforward inhibition modulates the duration of the temporal window over which the mushroom body neurons may integrate excitatory presynaptic input. This simple adaptive mechanism could maintain the sparseness of sensory representations across wide ranges of stimulus conditions. PMID:17660812
Land Cover Change in the Vicinity of MT. Qomolangma (everest), Central High Himalayas Since 1976
NASA Astrophysics Data System (ADS)
Zhang, Y.; Nie, Y.; Liu, L.; Wang, Z.; Ding, M.; Zhang, J.
2010-12-01
Under the background of global environmental change, the Mt. Qomolangma (Everest) region becomes the ideal place for the research of earth-atmosphere system, water and energy change, ecosystem patterns and processes change due to its sensitive and fragile natural environment. Land change science has emerged as a fundamental component of global environmental change and sustainability research. In this paper, geography, spatial information, climate science and other related theories and methods were applied, with the help of remote sensing, GIS, GPS, combining with a large number of RS data, field survey data and meteorological observation data to build 3 periods (1976, 1988 and 2006) of land cover, 30 periods (1970-2009) of major lakes data and long time-series NDVI change data from 1982 to 2009 in the Mt. Qomolangma region. The main results are as follows: 1. The land cover types in Mt. Qomolangma region are rich and with distinctive alpine features. The main land cover types include: closed to open grassland, alpine sparse vegetation, bare rock, closed grassland, forbs and glaciers (each percentage larger than 7%) with the area of 8274.27 km2, 7515.15 km2, 5450.82 km2, 5215.85 km2, 2782.66 km2 and 2710.17 km2 respectively in 2006. 2. The distribution of the main cover types are of obvious vertical zonallity. The transition of land cover types is forest→shrubland→grassland→meadow→sparse grassland→bare rock →glacier in order as the altitude arises with basically Gaussian distribution and assending peak in each elevation zone of types. The dominant natural zones distributed from bottom to top are: forest dominated zone (1500 ~ 3900 m), shrubland dominated zone (3900 ~ 4100 m), grassland dominated zone (4100 ~ 5000 m), sparse vegetation dominated zone (5000 ~ 5600 m), bare land dominated zone (5600 ~ 5900 m) and glacier (>5900 m). The altitude distribution of forest, shrubland and grassland in north and south slope are generally consistent. The range of vegetation at vertical distribution in the Sagamasha area located in the southern slope is slightly higer than than in the Mt. Qomolangma region due to its better regional water and heat conditions. 3. The distribution patterns of the main land cover types in the Mt. Qomolangma region during 1976-2006 don’t change greatly. The land cover changes during the two periods (1976-1988, 1988-2006) have shown a good consistency. The most prominent changing characteristics are: significant glacier retreat, more bare rock outcrops, rapid expansion of glacial lake covered bare rock, lakes shrinking and wetlands growth, wetlands being reclaimed as farmland in the prior period and significant reduce of cultivated land in the latter period. The research have been analyzed the glaciers, wetland and other cover types that are sensitive to climate change. The relationship between the land cover types and climate change, the impacts of human activities on land cover change and the effectiveness of protected area have been discussed. Foundation: The National Basic Research Program of China, Grant No.2005CB422006 & 2010CB951704; External Cooperation Program of the Chinese Academy of Sciences, No.GJHZ0954
Exhaustive Search for Sparse Variable Selection in Linear Regression
NASA Astrophysics Data System (ADS)
Igarashi, Yasuhiko; Takenaka, Hikaru; Nakanishi-Ohno, Yoshinori; Uemura, Makoto; Ikeda, Shiro; Okada, Masato
2018-04-01
We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.
Two conditions for equivalence of 0-norm solution and 1-norm solution in sparse representation.
Li, Yuanqing; Amari, Shun-Ichi
2010-07-01
In sparse representation, two important sparse solutions, the 0-norm and 1-norm solutions, have been receiving much of attention. The 0-norm solution is the sparsest, however it is not easy to obtain. Although the 1-norm solution may not be the sparsest, it can be easily obtained by the linear programming method. In many cases, the 0-norm solution can be obtained through finding the 1-norm solution. Many discussions exist on the equivalence of the two sparse solutions. This paper analyzes two conditions for the equivalence of the two sparse solutions. The first condition is necessary and sufficient, however, difficult to verify. Although the second is necessary but is not sufficient, it is easy to verify. In this paper, we analyze the second condition within the stochastic framework and propose a variant. We then prove that the equivalence of the two sparse solutions holds with high probability under the variant of the second condition. Furthermore, in the limit case where the 0-norm solution is extremely sparse, the second condition is also a sufficient condition with probability 1.
Sparse representation based SAR vehicle recognition along with aspect angle.
Xing, Xiangwei; Ji, Kefeng; Zou, Huanxin; Sun, Jixiang
2014-01-01
As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA), in which the correlation between the vehicle's aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle's aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.
Joshi, Dhaara; Meakin, Richard
2017-10-22
To explore the views and attitudes of Indians living in England on blood donation. In light of the predicted shortages in blood supply, it is vital to consider ways in which to maximise donation rates. These include addressing the issue of lower donation rates among ethnic minorities, including Indians. However research specifically among minority ethnicities in UK is sparse. General practice in North London. A convenience sample of 12 non-donor Indians living in England. This is a qualitative investigation involving semistructured interviews. Themes derived were analysed using thematic framework analysis. Five key themes emerged from the data, and these concerned participants' perspectives regarding attitudes towards blood, blood donation as a 'good thing', donation disincentives, the recipient matters and the donor matters. A variety of attitudes were presented, but were generally positive, and blood was conceptualised in a manner previously found to be consistent with donation. However, lack of awareness and accessibility were prominent barriers, indicating the need for improvement in these capacities. In contrast to this, blood was also greatly associated with family and acted as a symbol of kinship: this 'emotional charge' often acted to dissuade participants from separating with their blood through donation. Possibly due to this, there was also a strong preference for donated blood to be distributed within the family, as opposed to strangers. This presents a potential barrier to blood donation for some Indians within the current system in which donations are given to unknown recipients. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint.
Gao, Zhi; Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Ramesh, Bharath; Zhai, Ruifang
2018-05-06
Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.
Sensitivity analyses for sparse-data problems-using weakly informative bayesian priors.
Hamra, Ghassan B; MacLehose, Richard F; Cole, Stephen R
2013-03-01
Sparse-data problems are common, and approaches are needed to evaluate the sensitivity of parameter estimates based on sparse data. We propose a Bayesian approach that uses weakly informative priors to quantify sensitivity of parameters to sparse data. The weakly informative prior is based on accumulated evidence regarding the expected magnitude of relationships using relative measures of disease association. We illustrate the use of weakly informative priors with an example of the association of lifetime alcohol consumption and head and neck cancer. When data are sparse and the observed information is weak, a weakly informative prior will shrink parameter estimates toward the prior mean. Additionally, the example shows that when data are not sparse and the observed information is not weak, a weakly informative prior is not influential. Advancements in implementation of Markov Chain Monte Carlo simulation make this sensitivity analysis easily accessible to the practicing epidemiologist.
Sensitivity Analyses for Sparse-Data Problems—Using Weakly Informative Bayesian Priors
Hamra, Ghassan B.; MacLehose, Richard F.; Cole, Stephen R.
2013-01-01
Sparse-data problems are common, and approaches are needed to evaluate the sensitivity of parameter estimates based on sparse data. We propose a Bayesian approach that uses weakly informative priors to quantify sensitivity of parameters to sparse data. The weakly informative prior is based on accumulated evidence regarding the expected magnitude of relationships using relative measures of disease association. We illustrate the use of weakly informative priors with an example of the association of lifetime alcohol consumption and head and neck cancer. When data are sparse and the observed information is weak, a weakly informative prior will shrink parameter estimates toward the prior mean. Additionally, the example shows that when data are not sparse and the observed information is not weak, a weakly informative prior is not influential. Advancements in implementation of Markov Chain Monte Carlo simulation make this sensitivity analysis easily accessible to the practicing epidemiologist. PMID:23337241
Psychiatric and neuropsychological issues in Marfan syndrome: A critical review of the literature.
Gritti, Antonella; Pisano, Simone; Catone, Gennaro; Iuliano, Raffaella; Salvati, Tiziana; Gritti, Paolo
2015-01-01
The cooccurrence of Marfan syndrome and psychiatric disorders has been reported for many years. Furthermore, neuropsychological deficits have been shown to be associated with Marfan syndrome. The aim of the present article is to summarize findings from the sparse studies and case reports available. The results hold clinical and therapeutic implications and suggest that psychological and neuropsychological domains in Marfan syndrome patients should be carefully assessed. In particular, some patients may require specific rehabilitation programs. On this basis, a multidisciplinary approach to Marfan syndrome treatment seems mandatory. © The Author(s) 2015.
The Key Points of Maintenance Therapy for Dental Implants: A Literature Review.
Pirc, Miha; Dragan, Irina F
2017-04-01
Dental implants require lifelong maintenance and care. Success is defined by biologic factors (presence of inflamed soft tissues surrounding dental implants and radiographic changes in the crestal bone levels) and mechanical factors (stability of the implant fixture and implant supported restoration, etc). Most implant failures are initiated by incipient stages of inflammatory processes, which lead to peri-mucositis and peri-implantitis. The evidence regarding the value of maintenance protocol regarding implants is sparse compared with the one for teeth. This article addresses the existing literature on processes for oral hygiene for implant care.
Virtual screening of inorganic materials synthesis parameters with deep learning
NASA Astrophysics Data System (ADS)
Kim, Edward; Huang, Kevin; Jegelka, Stefanie; Olivetti, Elsa
2017-12-01
Virtual materials screening approaches have proliferated in the past decade, driven by rapid advances in first-principles computational techniques, and machine-learning algorithms. By comparison, computationally driven materials synthesis screening is still in its infancy, and is mired by the challenges of data sparsity and data scarcity: Synthesis routes exist in a sparse, high-dimensional parameter space that is difficult to optimize over directly, and, for some materials of interest, only scarce volumes of literature-reported syntheses are available. In this article, we present a framework for suggesting quantitative synthesis parameters and potential driving factors for synthesis outcomes. We use a variational autoencoder to compress sparse synthesis representations into a lower dimensional space, which is found to improve the performance of machine-learning tasks. To realize this screening framework even in cases where there are few literature data, we devise a novel data augmentation methodology that incorporates literature synthesis data from related materials systems. We apply this variational autoencoder framework to generate potential SrTiO3 synthesis parameter sets, propose driving factors for brookite TiO2 formation, and identify correlations between alkali-ion intercalation and MnO2 polymorph selection.
Electromagnetic backscattering from a random distribution of lossy dielectric scatterers
NASA Technical Reports Server (NTRS)
Lang, R. H.
1980-01-01
Electromagnetic backscattering from a sparse distribution of discrete lossy dielectric scatterers occupying a region 5 was studied. The scatterers are assumed to have random position and orientation. Scattered fields are calculated by first finding the mean field and then by using it to define an equivalent medium within the volume 5. The scatterers are then viewed as being embedded in the equivalent medium; the distorted Born approximation is then used to find the scattered fields. This technique represents an improvement over the standard Born approximation since it takes into account the attenuation of the incident and scattered waves in the equivalent medium. The method is used to model a leaf canopy when the leaves are modeled by lossy dielectric discs.
Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs
NASA Astrophysics Data System (ADS)
Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong
2018-02-01
The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.
1-norm support vector novelty detection and its sparseness.
Zhang, Li; Zhou, WeiDa
2013-12-01
This paper proposes a 1-norm support vector novelty detection (SVND) method and discusses its sparseness. 1-norm SVND is formulated as a linear programming problem and uses two techniques for inducing sparseness, or the 1-norm regularization and the hinge loss function. We also find two upper bounds on the sparseness of 1-norm SVND, or exact support vector (ESV) and kernel Gram matrix rank bounds. The ESV bound indicates that 1-norm SVND has a sparser representation model than SVND. The kernel Gram matrix rank bound can loosely estimate the sparseness of 1-norm SVND. Experimental results show that 1-norm SVND is feasible and effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
A denoising algorithm for CT image using low-rank sparse coding
NASA Astrophysics Data System (ADS)
Lei, Yang; Xu, Dong; Zhou, Zhengyang; Wang, Tonghe; Dong, Xue; Liu, Tian; Dhabaan, Anees; Curran, Walter J.; Yang, Xiaofeng
2018-03-01
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
Retrieving the hydrous minerals on Mars by sparse unmixing and the Hapke model using MRO/CRISM data
NASA Astrophysics Data System (ADS)
Lin, Honglei; Zhang, Xia
2017-05-01
The hydrous minerals on Mars preserve records of potential past aqueous activity. Quantitative information regarding mineralogical composition would enable a better understanding of the formation processes of these hydrous minerals, and provide unique insights into ancient habitable environments and the geological evolution of Mars. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has the advantage of both a high spatial and spectral resolution, which makes it suitable for the quantitative analysis of minerals on Mars. However, few studies have attempted to quantitatively retrieve the mineralogical composition of hydrous minerals on Mars using visible-infrared (VISIR) hyperspectral data due to their distribution characteristics (relatively low concentrations, located primarily in Noachian terrain, and unclear or unknown background minerals) and limitations of the spectral unmixing algorithms. In this study, we developed a modified sparse unmixing (MSU) method, combining the Hapke model with sparse unmixing. The MSU method considers the nonlinear mixed effects of minerals and avoids the difficulty of determining the spectra and number of endmembers from the image. The proposed method was tested successfully using laboratory mixture spectra and an Airborne Visible Infrared Imaging Spectrometer (AVIRIS) image of the Cuprite site (Nevada, USA). Then it was applied to CRISM hyperspectral images over Gale crater. Areas of hydrous mineral distribution were first identified by spectral features of water and hydroxyl absorption. The MSU method was performed on these areas, and the abundances were retrieved. The results indicated that the hydrous minerals consisted mostly of hydrous silicates, with abundances of up to 35%, as well as hydrous sulfates, with abundances ≤10%. Several main subclasses of hydrous minerals (e.g., Fe/Mg phyllosilicate, prehnite, and kieserite) were retrieved. Among these, Fe/Mg- phyllosilicate was the most abundant, with abundances ranging up to almost 30%, followed by prehnite and kieserite, with abundances lower than 15%. Our results are consistent with related research and in situ analyses of data from the rover Curiosity; thus, our method has the potential to be widely used for quantitative mineralogical mapping at the global scale of the surface of Mars.
Designing for Compressive Sensing: Compressive Art, Camouflage, Fonts, and Quick Response Codes
2018-01-01
an example where the signal is non-sparse in the standard basis, but sparse in the discrete cosine basis . The top plot shows the signal from the...previous example, now used as sparse discrete cosine transform (DCT) coefficients . The next plot shows the non-sparse signal in the standard...Romberg JK, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math . 2006;59(8):1207–1223. 3. Donoho DL
Visual saliency detection based on in-depth analysis of sparse representation
NASA Astrophysics Data System (ADS)
Wang, Xin; Shen, Siqiu; Ning, Chen
2018-03-01
Visual saliency detection has been receiving great attention in recent years since it can facilitate a wide range of applications in computer vision. A variety of saliency models have been proposed based on different assumptions within which saliency detection via sparse representation is one of the newly arisen approaches. However, most existing sparse representation-based saliency detection methods utilize partial characteristics of sparse representation, lacking of in-depth analysis. Thus, they may have limited detection performance. Motivated by this, this paper proposes an algorithm for detecting visual saliency based on in-depth analysis of sparse representation. A number of discriminative dictionaries are first learned with randomly sampled image patches by means of inner product-based dictionary atom classification. Then, the input image is partitioned into many image patches, and these patches are classified into salient and nonsalient ones based on the in-depth analysis of sparse coding coefficients. Afterward, sparse reconstruction errors are calculated for the salient and nonsalient patch sets. By investigating the sparse reconstruction errors, the most salient atoms, which tend to be from the most salient region, are screened out and taken away from the discriminative dictionaries. Finally, an effective method is exploited for saliency map generation with the reduced dictionaries. Comprehensive evaluations on publicly available datasets and comparisons with some state-of-the-art approaches demonstrate the effectiveness of the proposed algorithm.
Robust approaches to quantification of margin and uncertainty for sparse data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hund, Lauren; Schroeder, Benjamin B.; Rumsey, Kelin
Characterizing the tails of probability distributions plays a key role in quantification of margins and uncertainties (QMU), where the goal is characterization of low probability, high consequence events based on continuous measures of performance. When data are collected using physical experimentation, probability distributions are typically fit using statistical methods based on the collected data, and these parametric distributional assumptions are often used to extrapolate about the extreme tail behavior of the underlying probability distribution. In this project, we character- ize the risk associated with such tail extrapolation. Specifically, we conducted a scaling study to demonstrate the large magnitude of themore » risk; then, we developed new methods for communicat- ing risk associated with tail extrapolation from unvalidated statistical models; lastly, we proposed a Bayesian data-integration framework to mitigate tail extrapolation risk through integrating ad- ditional information. We conclude that decision-making using QMU is a complex process that cannot be achieved using statistical analyses alone.« less
A review of the non-bulimulid terrestrial Mollusca from the Region of Atacama, northern Chile.
Araya, Juan Francisco; Catalán, Ricardo
2014-01-01
Terrestrial mollusca are sparsely studied in Chile and, for the first time, a formal record of the diversity of land snails in northern Chile is reported. Coastal and desertic areas in the Region of Atacama, in the border of the Atacama desert and the Pacific Ocean, were surveyed with the aim to describe the presence and distribution of this poorly known fauna. Of the fourteen species recorded, the geographic distribution records for nine species are extended, and some taxa are recorded for the first time since their original descriptions. All, except one, of the fourteen terrestrial molluscan species occurring in the area are endemic to Chile; they are all terrestrial species, most of them have a restricted geographic distribution, and none of them is currently protected by law. The results reveal that the region of Atacama has one of the most diverse terrestrial snail biodiversity in Chile, ranking only after the Juan Fernandez Archipelago. Distribution records of all the studied species and a taxonomic key are also provided.
The Biogeography of Putative Microbial Antibiotic Production
Bryant, Jessica A.; Charkoudian, Louise K.; Docherty, Kathryn M.; Jones, Evan; Kembel, Steven W.; Green, Jessica L.; Bohannan, Brendan J. M.
2015-01-01
Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics. PMID:26102275
U.S. stock market interaction network as learned by the Boltzmann machine
Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.
2015-12-07
Here, we study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as themore » market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model’s parameters might be used as a precursor of financial instabilities.« less
Period Estimation for Sparsely-sampled Quasi-periodic Light Curves Applied to Miras
NASA Astrophysics Data System (ADS)
He, Shiyuan; Yuan, Wenlong; Huang, Jianhua Z.; Long, James; Macri, Lucas M.
2016-12-01
We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period-luminosity relations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry
Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less
NASA Astrophysics Data System (ADS)
Shi, R.; Sun, Z.
2018-04-01
GF-3 synthetic aperture radar (SAR) images are rich in information and have obvious sparse features. However, the speckle appears in the GF-3 SAR images due to the coherent imaging system and it hinders the interpretation of images seriously. Recently, Shearlet is applied to the image processing with its best sparse representation. A new Shearlet-transform-based method is proposed in this paper based on the improved non-local means. Firstly, the logarithmic operation and the non-subsampled Shearlet transformation are applied to the GF-3 SAR image. Secondly, in order to solve the problems that the image details are smoothed overly and the weight distribution is affected by the speckle, a new non-local means is used for the transformed high frequency coefficient. Thirdly, the Shearlet reconstruction is carried out. Finally, the final filtered image is obtained by an exponential operation. Experimental results demonstrate that, compared with other despeckling methods, the proposed method can suppress the speckle effectively in homogeneous regions and has better capability of edge preserving.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amestoy, Patrick R.; Duff, Iain S.; L'Excellent, Jean-Yves
2001-10-10
We examine the mechanics of the send and receive mechanism of MPI and in particular how we can implement message passing in a robust way so that our performance is not significantly affected by changes to the MPI system. This leads us to using the Isend/Irecv protocol which will entail sometimes significant algorithmic changes. We discuss this within the context of two different algorithms for sparse Gaussian elimination that we have parallelized. One is a multifrontal solver called MUMPS, the other is a supernodal solver called SuperLU. Both algorithms are difficult to parallelize on distributed memory machines. Our initial strategiesmore » were based on simple MPI point-to-point communication primitives. With such approaches, the parallel performance of both codes are very sensitive to the MPI implementation, the way MPI internal buffers are used in particular. We then modified our codes to use more sophisticated nonblocking versions of MPI communication. This significantly improved the performance robustness (independent of the MPI buffering mechanism) and scalability, but at the cost of increased code complexity.« less
Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry; ...
2016-10-27
Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less
Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection
Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem
2013-01-01
The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method. PMID:24351629
Performance of Point and Range Queries for In-memory Databases using Radix Trees on GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Maksudul; Yoginath, Srikanth B; Perumalla, Kalyan S
In in-memory database systems augmented by hardware accelerators, accelerating the index searching operations can greatly increase the runtime performance of database queries. Recently, adaptive radix trees (ART) have been shown to provide very fast index search implementation on the CPU. Here, we focus on an accelerator-based implementation of ART. We present a detailed performance study of our GPU-based adaptive radix tree (GRT) implementation over a variety of key distributions, synthetic benchmarks, and actual keys from music and book data sets. The performance is also compared with other index-searching schemes on the GPU. GRT on modern GPUs achieves some of themore » highest rates of index searches reported in the literature. For point queries, a throughput of up to 106 million and 130 million lookups per second is achieved for sparse and dense keys, respectively. For range queries, GRT yields 600 million and 1000 million lookups per second for sparse and dense keys, respectively, on a large dataset of 64 million 32-bit keys.« less
Meng, Yuguang; Lei, Hao
2010-06-01
An efficient iterative gridding reconstruction method with correction of off-resonance artifacts was developed, which is especially tailored for multiple-shot non-Cartesian imaging. The novelty of the method lies in that the transformation matrix for gridding (T) was constructed as the convolution of two sparse matrices, among which the former is determined by the sampling interval and the spatial distribution of the off-resonance frequencies and the latter by the sampling trajectory and the target grid in the Cartesian space. The resulting T matrix is also sparse and can be solved efficiently with the iterative conjugate gradient algorithm. It was shown that, with the proposed method, the reconstruction speed in multiple-shot non-Cartesian imaging can be improved significantly while retaining high reconstruction fidelity. More important, the method proposed allows tradeoff between the accuracy and the computation time of reconstruction, making customization of the use of such a method in different applications possible. The performance of the proposed method was demonstrated by numerical simulation and multiple-shot spiral imaging on rat brain at 4.7 T. (c) 2010 Wiley-Liss, Inc.
Online least squares one-class support vector machines-based abnormal visual event detection.
Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem
2013-12-12
The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.
Higgs, Megan D.; Link, William; White, Gary C.; Haroldson, Mark A.; Bjornlie, Daniel D.
2013-01-01
Mark-resight designs for estimation of population abundance are common and attractive to researchers. However, inference from such designs is very limited when faced with sparse data, either from a low number of marked animals, a low probability of detection, or both. In the Greater Yellowstone Ecosystem, yearly mark-resight data are collected for female grizzly bears with cubs-of-the-year (FCOY), and inference suffers from both limitations. To overcome difficulties due to sparseness, we assume homogeneity in sighting probabilities over 16 years of bi-annual aerial surveys. We model counts of marked and unmarked animals as multinomial random variables, using the capture frequencies of marked animals for inference about the latent multinomial frequencies for unmarked animals. We discuss undesirable behavior of the commonly used discrete uniform prior distribution on the population size parameter and provide OpenBUGS code for fitting such models. The application provides valuable insights into subtleties of implementing Bayesian inference for latent multinomial models. We tie the discussion to our application, though the insights are broadly useful for applications of the latent multinomial model.
Habitat selection by female swift foxes (Vulpes velox) during the pup-rearing season
Sasmal, Indrani; Jenks, Jonathan A.; Grovenburg, Troy W.; Datta, Shubham; Schroeder, Greg M.; Klaver, Robert W.; Honness, Kevin M.
2011-01-01
The swift fox (Vulpes velox) was historically distributed in western South Dakota including the region surrounding Badlands National Park (BNP). The species declined during the mid-1800s, largely due to habitat loss and poisoning targeted at wolves (Canis lupis) and coyotes (C. latrans). Only a small population of swift foxes near Ardmore, South Dakota persisted. In 2003, an introduction program was initiated at BNP with swift foxes translocated from Colorado and Wyoming. We report on habitat use by female swift foxes during the pup-rearing season (May–July) in 2009. Analyses of location data from 13 radiomarked female foxes indicated disproportional use (P Ŷ = 1.01), sparse vegetation (Ŷ = 1.43) and prairie dog towns (Ŷ = 1.18) in proportion to their availability, whereas they were less likely to use woodland (Ŷ = 0.00), shrubland (Ŷ = 0.14), pasture/agricultural-land (Ŷ = 0.25) and development (Ŷ = 0.16) relative to availability. Swift foxes typically are located in habitats that provide greater visibility, such as shortgrass prairie and areas with sparse vegetation; which allow detection of approaching coyotes (e.g., primary predator of swift foxes).
Sparsity-based fast CGH generation using layer-based approach for 3D point cloud model
NASA Astrophysics Data System (ADS)
Kim, Hak Gu; Jeong, Hyunwook; Ro, Yong Man
2017-03-01
Computer generated hologram (CGH) is becoming increasingly important for a 3-D display in various applications including virtual reality. In the CGH, holographic fringe patterns are generated by numerically calculating them on computer simulation systems. However, a heavy computational cost is required to calculate the complex amplitude on CGH plane for all points of 3D objects. This paper proposes a new fast CGH generation based on the sparsity of CGH for 3D point cloud model. The aim of the proposed method is to significantly reduce computational complexity while maintaining the quality of the holographic fringe patterns. To that end, we present a new layer-based approach for calculating the complex amplitude distribution on the CGH plane by using sparse FFT (sFFT). We observe the CGH of a layer of 3D objects is sparse so that dominant CGH is rapidly generated from a small set of signals by sFFT. Experimental results have shown that the proposed method is one order of magnitude faster than recently reported fast CGH generation.
Drive-by large-region acoustic noise-source mapping via sparse beamforming tomography.
Tuna, Cagdas; Zhao, Shengkui; Nguyen, Thi Ngoc Tho; Jones, Douglas L
2016-10-01
Environmental noise is a risk factor for human physical and mental health, demanding an efficient large-scale noise-monitoring scheme. The current technology, however, involves extensive sound pressure level (SPL) measurements at a dense grid of locations, making it impractical on a city-wide scale. This paper presents an alternative approach using a microphone array mounted on a moving vehicle to generate two-dimensional acoustic tomographic maps that yield the locations and SPLs of the noise-sources sparsely distributed in the neighborhood traveled by the vehicle. The far-field frequency-domain delay-and-sum beamforming output power values computed at multiple locations as the vehicle drives by are used as tomographic measurements. The proposed method is tested with acoustic data collected by driving an electric vehicle with a rooftop-mounted microphone array along a straight road next to a large open field, on which various pre-recorded noise-sources were produced by a loudspeaker at different locations. The accuracy of the tomographic imaging results demonstrates the promise of this approach for rapid, low-cost environmental noise-monitoring.
Ensemble models of proteins and protein domains based on distance distribution restraints.
Jeschke, Gunnar
2016-04-01
Conformational ensembles of intrinsically disordered peptide chains are not fully determined by experimental observations. Uncertainty due to lack of experimental restraints and due to intrinsic disorder can be distinguished if distance distributions restraints are available. Such restraints can be obtained from pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy applied to pairs of spin labels. Here, we introduce a Monte Carlo approach for generating conformational ensembles that are consistent with a set of distance distribution restraints, backbone dihedral angle statistics in known protein structures, and optionally, secondary structure propensities or membrane immersion depths. The approach is tested with simulated restraints for a terminal and an internal loop and for a protein with 69 residues by using sets of sparse restraints for underlying well-defined conformations and for published ensembles of a premolten globule-like and a coil-like intrinsically disordered protein. © 2016 Wiley Periodicals, Inc.
Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.
Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B
2014-03-19
Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior
Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.
2014-01-01
Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252
Retinal projections in the bowfin, Amia calva: cytoarchitectonic and experimental analysis.
Butler, A B; Northcutt, R G
1992-01-01
The retinofugal projections in the bowfin, a non-teleost actinopterygian, were studied by autoradiographic and horseradish peroxidase methods, and the cytoarchitecture of retinorecipient regions of the diencephalon was analyzed with serially sectioned, Bodian stained material. Nuclei were identified in the thalamus, the periventricular portion of the posterior tuberculum, synencephalon, and pretectum which are homologous to like-named nuclei in teleosts and other non-teleost actinopterygian fishes. Of particular note, a posterior pretectal nucleus and, possibly, a homologue of nucleus corticalis were found to be present in the pretectum. These nuclei have previously been identified only in teleosts. The posterior pretectal nucleus is relatively small in the bowfin, and the distribution of a small, versus a large, posterior pretectal nucleus in Teleostei and Halecomorphi suggests that this nucleus was small plesiomorphically. The pattern of retinofugal projections in the bowfin is similar to that in other non-teleost actinopterygian fishes and in teleosts in most regards. Contralaterally, the retina projects to nuclei in the dorsal and ventral thalamus, superficial and central pretectum, dorsal and ventral accessory optic nuclei, and to the optic tectum. Additionally, there are sparse projections to the suprachiasmatic nucleus in the preoptic area, the periventricular nucleus of the posterior tuberculum, and the dorsal and ventral periventricular pretectal nuclei. Ipsilateral projections are sparse and are derived from fibers which do not decussate in the optic chiasm. Undecussated ipsilateral retinal projections, as present in the bowfin, are a widely distributed character in vertebrates and appear to be plesiomorphic for vertebrates.
Mutha, Heena K; Lu, Yuan; Stein, Itai; Cho, H Jeremy; Suss, Matthew; Laoui, Tahar; Thompson, Carl; Wardle, Brian; Wang, Evelyn
2016-12-13
Vertically aligned one-dimensional nanostructure arrays are promising in many applications such as electrochemical systems, solar cells, and electronics, taking advantage of high surface area per unit volume, nanometer length scale packing, and alignment leading to high conductivity. However, many devices need to optimize arrays for device performance by selecting an appropriate morphology. Developing a simple, non-invasive tool for understanding the role of pore volume distribution and interspacing would aid in the optimization of nanostructure morphologies in electrodes. In this work, we combined electrochemical impedance spectroscopy (EIS) with capacitance measurements and porous electrode theory to conduct in situ porosimetry of vertically-aligned carbon nanotubes (VA-CNTs) non-destructively. We utilized the EIS measurements with a pore size distribution model to quantify the average and dispersion of inter-CNT spacing (Γ), stochastically, in carpets that were mechanically densified from 1.7 × 1010 tubes/cm2 to 4.5 × 1011 tubes/cm2. Our analysis predicts that the inter-CNT spacing ranges from over 100 ± 50 nm in sparse carpets to sub 10 ± 5 nm in packed carpets. Our results suggest that waviness of CNTs leads to variations in the inter-CNT spacing, which can be significant in sparse carpets. This methodology can be used to predict the performance of many nanostructured devices, including supercapacitors, batteries, solar cells, and semiconductor electronics. Copyright 2016 IOP Publishing Ltd.
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1990-01-01
Previously, a method was described of representing a class of simple visual images so that they could be used with a Sparse Distributed Memory (SDM). Herein, two possible implementations are described of a SDM, for which these images, suitably encoded, will serve both as addresses to the memory and as data to be stored in the memory. A key feature of both implementations is that a pattern that is represented as an unordered set with a variable number of members can be used as an address to the memory. In the 1st model, an image is encoded as a 9072 bit string to be used as a read or write address; the bit string may also be used as data to be stored in the memory. Another representation, in which an image is encoded as a 256 bit string, may be used with either model as data to be stored in the memory, but not as an address. In the 2nd model, an image is not represented as a vector of fixed length to be used as an address. Instead, a rule is given for determining which memory locations are to be activated in response to an encoded image. This activation rule treats the pieces of an image as an unordered set. With this model, the memory can be simulated, based on a method of computing the approximate result of a read operation.
Lü, Wei-Dong; Wang, An-Ping; Wu, Zhong-Shi; Zhang, Ming; Hu, Tie-Hui; Lei, Guang-Yan; Hu, Ye-Rong
2012-10-01
This study aimed to investigate the effect of decellularization plus photooxidative crosslinking and ethanol pretreatment on bioprosthetic tissue calcification. Photooxidatively crosslinked acellular (PCA) bovine jugular vein conduits (BJVCs) and their photooxidized controls (n = 5 each) were sterilized in a graded concentration of ethanol solutions for 4 h, and used to reconstruct dog right ventricular outflow tracts. At 1-year implantation, echocardiography showed similar hemodynamic performance, but obvious calcification for the photooxidized BJVC walls. Further histological examination showed intense calcium deposition colocalized with slightly degraded elastic fibers in the photooxidized BJVC walls, with sparsely distributed punctate calcification in the valves and other areas of walls. But PCA BJVCs had apparent degradation of elastic fibers in the walls, with only sparsely distributed punctate calcification in the walls and valves. Content assay demonstrated comparable calcium content for the two groups at preimplantation, whereas less calcium for the PCA group in the walls and similar calcium in the valvular leaflets compared with the photooxidized group at 1-year retrieval. Elastin content assay presented the conduit walls of PCA group had less elastin content at preimplantation, but similar content at 1-year retrieval compared with the photooxidized group. Phospholipid analysis showed phospholipid extraction by ethanol for the PCA group was more efficacious than the photooxidized group. These results indicate that PCA BJVCs resist calcification in right-side heart implantation owing to decellularization, further photooxidative crosslinking, and subsequent phospholipid extraction by ethanol at preimplantation. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jiao, Juying; Han, Luyan; Jia, Yanfeng; Wang, Ning; Lei, Dong; Li, Linyu
2011-09-01
Seed removal by water erosion may explain the sparse vegetation cover in systems like the Chinese Loess Plateau, which is characterized by severe soil erosion. The seeds from 16 species found on the plateau were examined in relation to the likelihood of their removal by erosion, as tested by rainfall simulation experiments. The experiments were performed over 1-m 2 plots with slopes of 10°, 15°, 20° and 25° for 60 min at intensities of 50 mm h -1, 100 mm h -1 and 150 mm h -1, respectively. Seed loss occurred at simulated rainfall intensities of 100 mm h -1 and 150 mm h -1, with total seed loss rates of 26-33% and 59-67%, respectively. Most seeds were displaced, even at 50 mm h -1. The degrees of seed loss and displacement varied among species. These data, in combination with data from our former research on propagule, seedling and population development in these species, indicate that the species with high seed loss rates either compensate by having a soil seed bank that produces seedlings during the growing season or reproduce by vegetative propagation; the species with no seed loss are still sparsely distributed. Seed germination and seedling survival seem to be more important than seed loss in determining establishment in these regions of the Loess Plateau. Seed translocation by water erosion, however, contributes to the observed distribution of vegetation in this geographic region.
Language Recognition via Sparse Coding
2016-09-08
a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector