Science.gov

Sample records for sparticle cascade decays

  1. NMHDECAY 2.1: An updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM

    NASA Astrophysics Data System (ADS)

    Ellwanger, Ulrich; Hugonie, Cyril

    2006-08-01

    We describe the improved properties of the NMHDECAY program, that is designed to compute Higgs and sparticle masses and Higgs decay widths in the NMSSM. In the version 2.0, Higgs decays into squarks and sleptons are included, accompanied by a calculation of the squark, gluino and slepton spectrum and tests against constraints from LEP and the Tevatron. Further radiative corrections are included in the Higgs mass calculation. A link to MicrOMEGAs allows to compute the dark matter relic density, and a rough (lowest order) calculation of BR (b→sγ) is performed. Finally, version 2.1 allows to integrate the RGEs for the soft terms up to the GUT scale. Program summaryTitle of program:NMHDECAY_SCAN, NMHDECAY_SLHA Catalogue identifier:ADXW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXW_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Programming language used:Fortran Computer:Mac, PC, Sun, Dec, Alpha Operating system:Mac OSX, Linux, Unix, Windows No. of lines in distributed program, including test data, etc.:20 060 No. of bytes in distributed program, including test data, etc.:133 644 RAM:2M bytes Distribution format:tar.gz Number of processors used:1 Classification:11.6 Journal reference of previous version:JHEP 0502:066, 2005 Does the new version supersede the previous version?:Yes Nature of problem:Computation of the Higgs and sparticle spectrum in the NMSSM and check of theoretical and experimental constraints. Solution method:Mass matrices including up to 2 loop radiative corrections for the Higgs bosons and all sparticles are computed and diagonalized. All Higgs decay widths are computed and branching ratios are compared to experimental bounds. Renormalisation group equations are integrated up to the GUT scale using a modified Runge-Kutta method, in order to check for the absence of a Landau pole. A modified version of MicrOmegas_1.3 can be called in order to compute the relic

  2. Constrained invariant mass distributions in cascade decays. The shape of the “mqll-threshold” and similar distributions

    NASA Astrophysics Data System (ADS)

    Lester, Christopher G.

    2007-10-01

    Considering the cascade decay D → cC → cbB → cbaA in which D, C, B, A are massive particles and c, b, a are massless particles, we determine for the shape of the distribution of the invariant mass of the three massless particles mabc for the sub-set of decays in which the invariant mass mab of the last two particles in the chain is (optionally) constrained to lie inside an arbitrary interval, mab ∈ [mabcut min, mabcut max]. An example of an experimentally important distribution of this kind is the “mqll threshold”—which is the distribution of the combined invariant mass of the visible Standard Model particles radiated from the hypothesised decay of a squark to the lightest neutralino via successive two body decay: q˜ → qχ˜20 → qll˜ → qllχ˜10, in which the experimenter requires additionally that mll be greater than mllmax /√{ 2}. The location of the “foot” of this distribution is often used to constrain sparticle mass scales. The new results presented here permit the location of this foot to be better understood as the shape of the distribution is derived. The effects of varying the position of the mll cut(s) may now be seen more easily.

  3. Ordered kinematic endpoints for 5-body cascade decays

    NASA Astrophysics Data System (ADS)

    Klimek, Matthew D.

    2016-12-01

    We present expressions for the kinematic endpoints of 5-body cascade decay chains proceeding through all possible combinations of 2-body and 3-body decays, with one stable invisible particle in the final decay stage. When an invariant mass can be formed in multiple ways by choosing different final state particles from a common vertex, we introduce techniques for finding the sub-leading endpoints for all indistinguishable versions of the invariant mass. In contrast to short decay chains, where sub-leading endpoints are linearly related to the leading endpoints, we find that in 5-body decays, they provide additional independent constraints on the mass spectrum.

  4. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  5. Probing supersymmetry with third-generation cascade decays

    SciTech Connect

    Graesser, Michael; Shelton, Jessie

    2008-01-01

    The chiral structure of supersymmetric particle couplings involving third generation Standard Model fermions depends on left-right squark and slepton mixings as well as gaugino-higgsino mixings. The shapes and intercorrelations of invariant mass distributions of a first or second generation lepton with bottoms and taus arising from adjacent branches of SUSY cascade decays are shown to be a sensitive probe of this chiral structure. All possible cascade decays that can give rise to such correlations within the MSSM are considered. For bottom-lepton correlations the distinctive structure of the invariant mass distributions distinguishes between decays originating from stop or sbottom squarks through either an intermediate chargino or neutralino. For decay through a chargino the spins of the stop and chargino are established by the form of the distribution. When the bottom charge is signed through soft muon tagging, the structure of the same-sign and opposite-sign invariant mass distributions depends on a set function of left-right and gaugino-higgsino mixings, as well as establishes the spins of all the superpartners in the sequential two-body cascade decay. Tau-lepton and tau-tau invariant mass distributions arising from MSSM cascade decays are likewise systematically considered with particular attention to their dependence on tau polarization. All possible tau-lepton and tau-tau distributions are plotted using a semi-analytic model for hadronic one-prong taus. Algorithms for fitting tau-tau and tau-lepton distributions to data are suggested.

  6. Inverse cascades and the evolution of decaying magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Berera, Arjun

    2014-11-01

    Ensemble averaged high resolution direct numerical simulations of inverse cascade are presented, extending on the many single realization numerical studies done up to now. This identifies inverse cascade as a statistical property of magnetohydrodynamic turbulence and thus permits reliable numerical exploration of its dynamics. Our results show that at early times during the decay the properties of the ensemble average are represented by one realization, as the deviations between realizations are small. In contrast, at late times we measure significant deviations between realizations, thus the ensemble average cannot be avoided in this time frame. This is important for measurements of the magnetic energy decay exponent, which has been determined from these ensemble runs to be nE = (0 . 47 +/- 0 . 03) + (13 . 9 +/- 0 . 8) /Rλ for initially helical magnetic fields. We show for the first time that even after removing the Lorentz force term in the momentum equation, thus decoupling it from the induction equation, inverse cascade persists. The induction equation is now a linear partial differential equation with an externally imposed velocity field, thus amenable to numerous analysis techniques. A new door has opened for analyzing inverse cascade, with various ideas discussed. This work has made use of the resources provided by the UK supercomputing services HECToR and ARCHER, made available through ECDF. AB acknowledges funding from STFC, and ML is supported by EPSRC.

  7. Metastable charged sparticles and the cosmological {sup 7}Li problem

    SciTech Connect

    Cyburt, Richard H.; Ellis, John; Luo, Feng; Fields, Brian D.; Olive, Keith A.; Spanos, Vassilis C. E-mail: John.Ellis@cern.ch E-mail: feng.luo@kcl.ac.uk E-mail: spanos@inp.demokritos.gr

    2012-12-01

    We consider the effects of metastable charged sparticles on Big-Bang Nucleosynthesis (BBN), including bound-state reaction rates and chemical effects. We make a new analysis of the bound states of negatively-charged massive particles with the light nuclei most prominent in BBN, and present a new code to track their abundances, paying particular attention to that of {sup 7}Li. Assuming, as an example, that the gravitino is the lightest supersymmetric particle (LSP), and that the lighter stau slepton, τ-tilde {sub 1}, is the metastable next-to-lightest sparticle within the constrained minimal supersymmetric extension of the Standard Model (CMSSM), we analyze the possible effects on the standard BBN abundances of τ-tilde {sub 1} bound states and decays for representative values of the gravitino mass. Taking into account the constraint on the CMSSM parameter space imposed by the discovery of the Higgs boson at the LHC, we delineate regions in which the fit to the measured light-element abundances is as good as in standard BBN. We also identify regions of the CMSSM parameter space in which the bound state properties, chemistry and decays of metastable charged sparticles can solve the cosmological {sup 7}Li problem.

  8. Discerning supersymmetry in adjacent branch cascade decay correlations

    SciTech Connect

    Graesser, Michael; Shelton, Jessie; Thomas, Scott

    2008-01-01

    Many models of new physics have mass spectra that lead to production of new coloured particles which decay through long decay chains into a number of quarks and leptons. It is known that invariant mass distributions formed from the visible fermion four-momenta depend on the physical properties of intermediate particles, such as their spin, mass, chiral couplings and other interactions. Here it is emphasized that correlations between these distributions provides useful checks and tests on the underlying model and its theoretical assumptions. This is illustrated in supersymmetric models having cascade decays producing leptons, including taus. Moreover, such correlations can provide evidence on whether the symmetry stabilizing the lightest superpartner is discrete, continuous or approximately continuous. The richer phenomenology of third generation superpartners, and their interactions with neutralinos and charginos, can with sufficient luminosity be investigated with di-fermion distributions involving taus and/or signed b-quarks.

  9. Interatomic Coulombic decay cascades in multiply excited neon clusters

    PubMed Central

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-01-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867

  10. Interatomic Coulombic decay cascades in multiply excited neon clusters.

    PubMed

    Nagaya, K; Iablonskyi, D; Golubev, N V; Matsunami, K; Fukuzawa, H; Motomura, K; Nishiyama, T; Sakai, T; Tachibana, T; Mondal, S; Wada, S; Prince, K C; Callegari, C; Miron, C; Saito, N; Yabashi, M; Demekhin, Ph V; Cederbaum, L S; Kuleff, A I; Yao, M; Ueda, K

    2016-12-05

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation.

  11. Interatomic Coulombic decay cascades in multiply excited neon clusters

    NASA Astrophysics Data System (ADS)

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-12-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation.

  12. Visible Cascade Higgs Decays to Four Photons at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Chang, Spencer; Fox, Patrick J.; Weiner, Neal

    2007-03-01

    The presence of a new singlet scalar particle a can open up new decay channels for the Higgs boson, through cascades of the form h→2a→X, possibly making discovery through standard model channels impossible. If a is CP odd, its decays are particularly sensitive to new physics. Quantum effects from heavy fields can naturally make h→4g the dominant decay which is difficult to observe at hadron colliders, and is allowed by CERN LEP for mh>82GeV. However, there are usually associated decays, either h→2g2γ or h→4γ, which are more promising. The decay h→4γ is a clean channel that can discover both a and h. At the CERN LHC with 300fb-1 of luminosity, a branching ratio of order 10-4 is sufficient for discovery for a large range of Higgs boson masses. With total luminosity of ˜8fb-1, discovery at the Fermilab Tevatron requires more than 5×10-3 in branching ratio.

  13. Visible cascade Higgs decays to four photons at hadron colliders.

    PubMed

    Chang, Spencer; Fox, Patrick J; Weiner, Neal

    2007-03-16

    The presence of a new singlet scalar particle a can open up new decay channels for the Higgs boson, through cascades of the form h --> 2a --> X, possibly making discovery through standard model channels impossible. If a is CP odd, its decays are particularly sensitive to new physics. Quantum effects from heavy fields can naturally make h --> 4 g the dominant decay which is difficult to observe at hadron colliders, and is allowed by CERN LEP for m(h) > 82 GeV. However, there are usually associated decays, either h --> 2g2gamma or h --> 4gamma, which are more promising. The decay h-->4gamma is a clean channel that can discover both a and h. At the CERN LHC with 300 fb(-1) of luminosity, a branching ratio of order 10(-4) is sufficient for discovery for a large range of Higgs boson masses. With total luminosity of approximately 8 fb(-1), discovery at the Fermilab Tevatron requires more than 5 x 10(-3) in branching ratio.

  14. LHC signals from cascade decays of warped vector resonances

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh S.; Collins, Jack H.; Du, Peizhi; Hong, Sungwoo; Kim, Doojin; Mishra, Rashmish K.

    2017-05-01

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with "bulk" standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel — decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a "double" resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively.

  15. Squark cascade decays to charginos/neutralinos: Gluon radiation

    SciTech Connect

    Horsky, R.; Kraemer, M.; Mueck, A.; Zerwas, P. M.

    2008-08-01

    The momentum spectrum and the polarization of charginos and neutralinos in squark decays are affected by gluon radiation in the decay process q-tilde{yields}q{chi}-tilde(g). We determine these corrections and study their impact on the [ql] invariant mass distributions for leptonic {chi}-tilde decays. The higher-order corrections, though small in general, can be sizeable near pronounced edges of the final-state distribution000.

  16. Sparticle spectra from Large-Volume String Compactifications

    SciTech Connect

    Conlon, Joseph P.

    2007-11-20

    Large-volume models are a promising approach to stabilising moduli and generating the weak hierarchy through TeV-supersymmetry. I describe the pattern of sparticle mass spectra that arises in these models.

  17. Using sorted invariant mass variables to evade combinatorial ambiguities in cascade decays

    DOE PAGES

    Kim, Doojin; Matchev, Konstantin T.; Park, Myeonghun

    2016-02-19

    The classic method for mass determination in a SUSY-like cascade decay chain relies on measurements of the kinematic endpoints in the invariant mass distributions of suitable collections of visible decay products. However, the procedure is complicated by combinatorial ambiguities: e.g., the visible final state particles may be indistinguishable (as in the case of QCD jets), or one may not know the exact order in which they are emitted along the decay chain. In order to avoid such combinatorial ambiguities, we propose to treat the nal state particles fully democratically and consider the sorted set of the invariant masses of allmore » possible partitions of the visible particles in the decay chain. In particular, for a decay to N visible particles, one considers the sorted sets of all possible n-body invariant mass combinations (2≤ n≤ N) and determines the kinematic endpoint m(n,r)max of the distribution of the r-th largest n-body invariant mass m(n,r) for each possible value of n and r. For the classic example of a squark decay in supersymmetry, we provide analytical formulas for the interpretation of these endpoints in terms of the underlying physical masses. We point out that these measurements can be used to determine the structure of the decay topology, e.g., the number and position of intermediate on-shell resonances.« less

  18. Using sorted invariant mass variables to evade combinatorial ambiguities in cascade decays

    SciTech Connect

    Kim, Doojin; Matchev, Konstantin T.; Park, Myeonghun

    2016-02-19

    The classic method for mass determination in a SUSY-like cascade decay chain relies on measurements of the kinematic endpoints in the invariant mass distributions of suitable collections of visible decay products. However, the procedure is complicated by combinatorial ambiguities: e.g., the visible final state particles may be indistinguishable (as in the case of QCD jets), or one may not know the exact order in which they are emitted along the decay chain. In order to avoid such combinatorial ambiguities, we propose to treat the nal state particles fully democratically and consider the sorted set of the invariant masses of all possible partitions of the visible particles in the decay chain. In particular, for a decay to N visible particles, one considers the sorted sets of all possible n-body invariant mass combinations (2≤ n≤ N) and determines the kinematic endpoint m(n,r)max of the distribution of the r-th largest n-body invariant mass m(n,r) for each possible value of n and r. For the classic example of a squark decay in supersymmetry, we provide analytical formulas for the interpretation of these endpoints in terms of the underlying physical masses. We point out that these measurements can be used to determine the structure of the decay topology, e.g., the number and position of intermediate on-shell resonances.

  19. Using sorted invariant mass variables to evade combinatorial ambiguities in cascade decays

    NASA Astrophysics Data System (ADS)

    Kim, Doojin; Matchev, Konstantin T.; Park, Myeonghun

    2016-02-01

    The classic method for mass determination in a SUSY-like cascade decay chain relies on measurements of the kinematic endpoints in the invariant mass distributions of suitable collections of visible decay products. However, the procedure is complicated by combinatorial ambiguities: e.g., the visible final state particles may be indistinguishable (as in the case of QCD jets), or one may not know the exact order in which they are emitted along the decay chain. In order to avoid such combinatorial ambiguities, we propose to treat the final state particles fully democratically and consider the sorted set of the invariant masses of all possible partitions of the visible particles in the decay chain. In particular, for a decay to N visible particles, one considers the sorted sets of all possible n-body invariant mass combinations (2 ≤ n ≤ N) and determines the kinematic endpoint m ( n, r) max of the distribution of the r-th largest n-body invariant mass m ( n, r) for each possible value of n and r. For the classic example of a squark decay in supersymmetry, we provide analytical formulas for the interpretation of these endpoints in terms of the underlying physical masses. We point out that these measurements can be used to determine the structure of the decay topology, e.g., the number and position of intermediate on-shell resonances.

  20. Sparticles in motion: Analyzing compressed SUSY scenarios with a new method of event reconstruction

    NASA Astrophysics Data System (ADS)

    Jackson, Paul; Rogan, Christopher; Santoni, Marco

    2017-02-01

    The observation of light superpartners from a supersymmetric extension to the Standard Model is an intensely sought-after experimental outcome, providing an explanation for the stabilization of the electroweak scale and indicating the existence of new particles which could be consistent with dark matter phenomenology. For compressed scenarios, where sparticle spectra mass splittings are small and decay products carry low momenta, dedicated techniques are required in all searches for supersymmetry. In this paper we suggest an approach for these analyses based on the concept of recursive jigsaw reconstruction, decomposing each event into a basis of complementary observables, for cases where strong initial state radiation has sufficient transverse momentum to elicit the recoil of any final state sparticles. We introduce a collection of kinematic observables which can be used to probe compressed scenarios, in particular exploiting the correlation between missing momentum and that of radiative jets. As an example, we study squark and gluino production, focusing on mass-splittings between parent superparticles and their lightest decay products between 25 and 200 GeV, in hadronic final states where there is an ambiguity in the provenance of reconstructed jets.

  1. Precision Measurement of the Lifetime and Decay Asymmetry of the Cascade-Zero Baryon

    SciTech Connect

    Thorne, Keith Alan

    1990-01-01

    The non-leptonic decays of strange baryons such as the cascade-zero ($\\Xi^0$ ) are a sensitive probe of long-range strong interaction effects on electro-weak interaction physics. Recent improvements in the accuracy of the theoretical predictions of the decay amplitudes will soon require improved precision in the experimental measurements of the decay rates and asymmetry parameters. fu an experiment at Fermilab, a multi-wire chamber magnetic spectrometer and a lead glass electromagnetic calorimeter were used to reconstruct the $\\Lambda \\to p \\pi^-$ and $\\Xi^0 \\to \\Lambda \\pi^0$ hyperon decays in a high-energy neutral beam. The measured lifetime of the $\\Lambda$ , based on 724,000 events, was 2.62 ± 0.01 ( statistical + systematic error) x$10^{-10}$s. This data, together with previous results, demonstrated the Lorentz invariance of the A lifetime for momentum from 1 to 400 Ge V / c. The lifetime of the s0 , from 88,000 events, was found to be 2.98± 0.04(stat.) ± 0.02(syst.) X 10-10 s. This measurement had an uncertainty almost three times smaller than any previous determination. The same $\\Xi^0$ data was used to measure a value for the decay asymmetry product $\\alpha_{\\Lambda} \\alpha _{\\Xi}$ of -0.242 ± 0.006(stat.) ± 0.006(syst.).

  2. Moduli stabilization and the pattern of sparticle spectra

    SciTech Connect

    Choi, Kiwoon

    2008-11-23

    We discuss the pattern of low energy sparticle spectra which appears in some class of moduli stabilization scenario. In case that light moduli are stabilized by non-perturbative effects encoded in the superpotential and a phenomenologically viable de Sitter vacuum is obtained by a sequestered supersymmetry breaking sector, the anomaly-mediated soft terms become comparable to the moduli-mediated ones, leading to a quite distinctive pattern of low energy spacticle masses dubbed the mirage mediation pattern. We also discuss low energy sparticle masses in more general mixed-mediation scenario which includes a comparable size of gauge mediation in addition to the moduli and anomaly mediations.

  3. Dispersion in the enstrophy cascade of two-dimensional decaying grid turbulence

    NASA Astrophysics Data System (ADS)

    Kellay, H.

    2004-03-01

    The use of vertically flowing soap films allows one to obtain decaying two-dimensional turbulence with an enstrophy cascade range. Here we use this property to study the dispersion of a fine column of slightly heated liquid entering the turbulent flow. The width of this column increases with time in an exponential manner consistent with theoretical predictions for the average dispersion of particle pairs despite the multiparticle nature of the dispersion studied. Other features such as Gaussian mean profiles of the temperature across the channel width are also evidenced.

  4. Overall picture of the cascade gamma decay of neutron resonances within a modified practical model

    NASA Astrophysics Data System (ADS)

    Sukhovoj, A. M.; Mitsyna, L. V.; Jovancevic, N.

    2016-05-01

    The intensities of two-step cascades in 43 nuclei of mass number in the range of 28 ≤ A ≤ 200 were approximated to a high degree of precision within a modified version of the practical cascade-gammadecay model introduced earlier. In this version, the rate of the decrease in the model-dependent density of vibrational levels has the same value for any Cooper pair undergoing breakdown. The most probable values of radiative strength functions both for E1 and for M1 transitions are determined by using one or two peaks against a smooth model dependence on the gamma-transition energy. The statement that the thresholds for the breaking of Cooper pairs are higher for spherical than for deformed nuclei is a basic result of the respective analysis. The parameters of the cascade-decay process are now determined to a precision that makes it possible to observe the systematic distinctions between them for nuclei characterized by different parities of neutrons and protons.

  5. Overall picture of the cascade gamma decay of neutron resonances within a modified practical model

    SciTech Connect

    Sukhovoj, A. M. Mitsyna, L. V.; Jovancevic, N.

    2016-05-15

    The intensities of two-step cascades in 43 nuclei of mass number in the range of 28 ≤ A ≤ 200 were approximated to a high degree of precision within a modified version of the practical cascade-gammadecay model introduced earlier. In this version, the rate of the decrease in the model-dependent density of vibrational levels has the same value for any Cooper pair undergoing breakdown. The most probable values of radiative strength functions both for E1 and for M1 transitions are determined by using one or two peaks against a smooth model dependence on the gamma-transition energy. The statement that the thresholds for the breaking of Cooper pairs are higher for spherical than for deformed nuclei is a basic result of the respective analysis. The parameters of the cascade-decay process are now determined to a precision that makes it possible to observe the systematic distinctions between them for nuclei characterized by different parities of neutrons and protons.

  6. NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions

    NASA Astrophysics Data System (ADS)

    Ellwanger, Ulrich; Hugonie, Cyril

    2007-08-01

    NMSPEC is a Fortran code that computes the sparticle and Higgs masses, as well as Higgs decay widths and couplings in the NMSSM, with soft SUSY breaking terms specified at M. Exceptions are the soft singlet mass ms2 and the singlet self-coupling κ, that are both determined in terms of the other parameters through the minimization equations of the Higgs potential. We present a first analysis of the NMSSM parameter space with universal SUSY breaking terms at M—except for m and A—that passes present experimental constraints on sparticle and Higgs masses. We discuss in some detail a region in parameter space where a SM-like Higgs boson decays dominantly into two CP odd singlet-like Higgs states. Program summaryManuscript title: NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions Authors: Ulrich Ellwanger, Cyril Hugonie Program title: NMSPEC Catalogue identifier: ADZD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 121 539 No. of bytes in distributed program, including test data, etc.: 1 560 340 Distribution format: tar.gz Programming language: FORTRAN Computer: Mac, PC, Sun, Dec, Alpha Operating system: Mac OSC, Linux, Unix, Windows RAM: 2M bytes Keywords: Supersymmetry, Higgs masses, sparticle masses, NMSSM PACS: 12.60.Jv, 14.80.Cp, 14.80.Ly Classification: 11.6 Nature of problem: Computation of the Higgs and Sparticle spectrum in the NMSSM with GUT scale boundary conditions, check of theoretical and experimental constraints. Solution method: Integration of the RGEs for all couplings and mass terms from the GUT scale to the Susy scale using a modified Runge-Kutta method; computation and diagonalization of all mass matrices including up to two loop

  7. Entangled photon pairs from a quantum-dot cascade decay: The effect of time reordering

    NASA Astrophysics Data System (ADS)

    Troiani, Filippo; Tejedor, Carlos

    2008-10-01

    Coulomb interactions between confined carriers remove degeneracies in the excitation spectra of quantum dots. This provides a which-path information in the cascade decay of biexcitons, thus spoiling the energy-polarization entanglement of the emitted photon pairs. We theoretically analyze a strategy of color coincidence across generation (AG), recently proposed as an alternative to the previous within generation approach. We simulate the system dynamics and compute the correlation functions within the density-matrix formalism. This allows estimations of quantities that are accessible by a polarization-tomography experiment and that enter the expression of the two-photon concurrence. We identify the optimum parameters within the AG approach and the corresponding maximum values of the concurrence.

  8. Measuring Sparticles with the Matrix Element

    SciTech Connect

    Alwall, Johan; Freitas, Ayres; Mattelaer, Olivier; /INFN, Rome3 /Rome III U. /Louvain U.

    2012-04-10

    We apply the Matrix Element Method (MEM) to mass determination of squark pair production with direct decay to quarks and LSP at the LHC, showing that simultaneous mass determination of squarks and LSP is possible. We furthermore propose methods for inclusion of QCD radiation effects in the MEM. The goal of the LHC at CERN, scheduled to start this year, is to discover new physics through deviations from the Standard Model (SM) predictions. After discovery of deviations from the SM, the next step will be classification of the new physics. An important first goal in this process will be establishing a mass spectrum of the new particles. One of the most challenging scenarios is pair-production of new particles which decay to invisible massive particles, giving missing energy signals. Many methods have been proposed for mass determination in such scenarios (for a recent list of references, see e.g. [1]). In this proceeding, we report the first steps in applying the Matrix Element Method (MEM) in the context of supersymmetric scenarios giving missing energy signals. After a quick review of the MEM, we will focus on squark pair production, a process where other mass determination techniques have difficulties to simultaneously determine the LSP and squark masses. Finally, we will introduce methods to extend the range of validity of the MEM, by taking into account initial state radiation (ISR) in the method.

  9. Prompt signals and displaced vertices in sparticle searches for next-to-minimal gauge-mediated supersymmetric models

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Badziak, Marcin; Cottin, Giovanna; Desai, Nishita; Hugonie, Cyril; Ziegler, Robert

    2016-09-01

    We study the LHC phenomenology of the next-to-minimal model of gauge-mediated supersymmetry breaking, both for Run I and Run II. The Higgs phenomenology of the model is consistent with observations: a 125 GeV standard model-like Higgs which mixes with singlet-like state of mass around 90 GeV that provides a 2σ excess at LEP II. The model possesses regions of parameter space where a longer-lived lightest neutralino decays in the detector into a gravitino and a b-jet pair or a tau pair resulting in potential displaced vertex signatures. We investigate current bounds on sparticle masses and the discovery potential of the model, both via conventional searches and via searches for displaced vertices. The searches based on promptly decaying sparticles currently give a lower limit on the gluino mass 1080 GeV and could be sensitive up to 1900 GeV with 100 fb^{-1}, whereas the current displaced vertex searches cannot probe this model due to b-quarks in the final state. We show how the displaced vertex cuts might be relaxed in order to improve signal efficiency, while simultaneously applied prompt cuts reduce background, resulting in a much better sensitivity than either strategy alone and motivating a fully fledged experimental study.

  10. Simple 5D SO(10) GUT and sparticle masses

    NASA Astrophysics Data System (ADS)

    Fukuyama, Takeshi; Okada, Nobuchika

    2008-12-01

    Simple supersymmetric SO(10) grand unified theory in five dimensions is proposed, in which the fifth dimension is compactified on the S1/(Z2×Z2') orbifold with two inequivalent branes at the orbifold fixed points. In this model, all matter and Higgs multiplets reside on one brane (PS brane) where the Pati-Salam (PS) symmetry is manifest, while only the SO(10) gauge multiplet resides on the bulk. The supersymmetry breaking on the other brane [SO(10) brane] is transmitted to the PS brane through the gaugino mediation with the bulk gauge multiplet. We examine sparticle mass spectrum in this setup and show that the neutralino LSP as the dark matter candidate can be realized when the compactification scale of the fifth dimension is higher than the PS symmetry breaking scale, keeping the successful gauge coupling unification after incorporating threshold corrections of Kaluza-Klein modes of the bulk gauge multiplets.

  11. Persistent currents from the decay of quantum turbulence: signatures of an inverse energy cascade in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Anderson, Brian P.; Neely, Tyler W.; Carlo Samson, E.; Wright, Ewan M.; Rooney, Sam J.; Bradley, Ashton S.; Davis, Matthew J.; Law, Kody J. H.; Carretero-Gonzalez, Ricardo; Kevrekidis, Panayotis G.

    2011-05-01

    We report the formation of persistent currents from the decay of turbulence in Bose- Einstein condensates (BECs). In our experiments, a BEC is pierced with a blue-detuned laser beam. By moving the trap center relative to the beam's position, vortices are stirred into the BEC, creating a quantum turbulent state. At finite temperatures, the turbulent state can decay to a persistent current about the blue-detuned laser beam that can last for up to 50 seconds; winding numbers up to 8 have been observed. Our experimental observations correspond well with numerical simulations of the non-equilibrium dynamics and calculations of vortex pinning by a laser beam. We interpret our results as evidence for an inverse energy cascade in dilute-gas BECs. This work is supported by the US National Science Foundation, the Army Research Office, and the New Zealand Foundation for Research, Science, and Technology.

  12. Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard

    2013-04-01

    The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.

  13. Two-photon decay of excited levels in hydrogen: The ambiguity of the separation of cascades and pure two-photon emission

    SciTech Connect

    Labzowsky, L.; Solovyev, D.; Plunien, G.

    2009-12-15

    The problem of the evaluation of the two-photon decay width of excited states in hydrogen is considered. Two different approaches to the evaluation of the width including cascades channels are employed: the summation of the transition probabilities for various decay channels and the evaluation of the imaginary part of the Lamb shift. As application, the two-photon decay channels for the 3s level of the hydrogen atom are evaluated, including the cascade transition probability 3s-2p-1s. An important role is assigned to the two-photon decays in astrophysics context, since processes of this kind provide a possibility for the decoupling of radiation and matter in the early universe. We demonstrate the ambiguity of separation of the 'pure' two-photon contribution and criticize the existing methods for such a separation.

  14. First measurement of the degree of fragmentation of the decay out cascade from the superdeformed yrast band in {sup 192}Hg

    SciTech Connect

    Lopez-Martens, A.; Hannachi, F.; Schueck, C.

    1996-12-01

    The decay spectrum of the yrast superdeformed band in {sup 192}Hg comprises a quasicontinuum with discrete lines ranging from 1 to 3.2 MeV. The intensity fluctuations of this quasicontinuum give information on the degree of fragmentation of the decay cascades and on the effect of pairing correlations on the level density {rho}(U) in the normal deformed well (0 < U < U{sub SD}).

  15. Search for Higgs bosons in supersymmetric cascade decays and neutralino dark matter

    NASA Astrophysics Data System (ADS)

    Gori, Stefania; Schwaller, Pedro; Wagner, Carlos E. M.

    2011-06-01

    The minimal supersymmetric extension of the standard model (MSSM) is a well-motivated theoretical framework, which contains an extended Higgs sector, including a light Higgs with standard model-like properties in most of the parameter space. Because of the large QCD background, searches for such a Higgs, decaying into a pair of bottom quarks, are very challenging at the LHC. It has been long realized that the situation may be ameliorated by searching for Higgs bosons in supersymmetric decay chains. Moreover, it has been recently suggested that the bb¯ decay channel may be observed in standard production channels by selecting boosted Higgs bosons, which may be easily identified from the QCD background. Such boosted Higgs bosons are frequent in the MSSM, since they are produced from decays of heavy colored supersymmetric particles. Previous works have emphasized the possibility of observing boosted Higgs bosons in the light Higgsino region. In this work, we study the same question in the regions of parameter space consistent with a neutralino dark matter relic density, analyzing its dependence on the nonstandard Higgs boson, slepton, and squark masses, as well as on the condition of gaugino mass unification. In general, we conclude that, provided sleptons are heavier than the second lightest neutralinos, the presence of boosted Higgs is a common MSSM feature, implying excellent prospects for observation of the light MSSM Higgs boson in the near future.

  16. Yields of multiply charged ions in cascading decays of hollow argon and krypton with two initial vacancies in their K and/or L shells.

    PubMed

    Kochur, A

    2001-03-01

    The yields of multiply charged ions produced by the cascading decay of doubly-inner-shell-ionized argon and krypton atoms are calculated via straightforward construction of de-excitation trees. The final-ion-charge spectra are found to be sensitive to the distribution of initial vacancies within K and L shells.

  17. SParticle, an algorithm for the analysis of filamentous microorganisms in submerged cultures.

    PubMed

    Willemse, Joost; Büke, Ferhat; van Dissel, Dino; Grevink, Sanne; Claessen, Dennis; van Wezel, Gilles P

    2017-09-15

    Streptomycetes are filamentous bacteria that produce a plethora of bioactive natural products and industrial enzymes. Their mycelial lifestyle typically results in high heterogeneity in bioreactors, with morphologies ranging from fragments and open mycelial mats to dense pellets. There is a strong correlation between morphology and production in submerged cultures, with small and open mycelia favouring enzyme production, while most antibiotics are produced mainly in pellets. Here we describe SParticle, a Streptomyces Particle analysis method that combines whole slide imaging with automated image analysis to characterize the morphology of submerged grown Streptomyces cultures. SParticle allows the analysis of over a thousand particles per hour, offering a high throughput method for the imaging and statistical analysis of mycelial morphologies. The software is available as a plugin for the open source software ImageJ and allows users to create custom filters for other microbes. Therefore, SParticle is a widely applicable tool for the analysis of filamentous microorganisms in submerged cultures.

  18. The energy cascade in grid-generated non-equilibrium decaying turbulence

    NASA Astrophysics Data System (ADS)

    Valente, P. C.; Vassilicos, J. C.

    2015-04-01

    We investigate non-equilibrium turbulence where the non-dimensionalised dissipation coefficient Cɛ scales as C ɛ ˜ R eM m / R eℓ n with m ≈ 1 ≈ n (ReM and Reℓ are global/inlet and local Reynolds numbers, respectively) by measuring the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production, and transport in the lee of a square-mesh grid, and compare with a region where Cɛ ≈ constant. These are the main terms of the inhomogeneous, anisotropic version of the von Kármán-Howarth-Monin equation. It is shown in the grid-generated turbulence studied here that, even in the presence of non-negligible turbulence production and transport, production and transport are large-scale phenomena that do not contribute to the scale-by-scale balance for scales smaller than about a third of the integral-length scale, ℓ, and therefore do not affect the energy transfer to the small-scales. In both the non-equilibrium region where C ɛ ˜ R eM m / R eℓ n and further downstream where Cɛ ≈ constant, the peak of the scale-by-scale energy transfer scales as ( u2 ¯ ) 3 / 2 / ℓ ( u 2 ¯ is the variance of the longitudinal fluctuating velocity). In the non-equilibrium case, this scaling implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the further downstream region where Cɛ ≈ constant even though Reℓ is lower.

  19. An Investigation of the Neutral Cascade Muon Semileptonic Decay and its Observation at KTeV, Fermilab

    SciTech Connect

    Gomes, Ricardo Avelino

    2005-07-01

    The authors report an investigation of the semileptonic decay Ξ0 → Σ+ μ-$\\bar{v}$μ. This decay was observed for the first time with nine identified events using the KTeV beam line and detector at Fermilab. The decay is normalized to the Ξ0 beta decay mode and yields a value for the ratio of decay rates Γ(Ξ0 → Σ0 μ-$\\bar{v}$μ)/Γ(Ξ0 → Σ+e-$\\bar{v}$e) of (1.8$+0.7\\atop{-0.5}$(stat.) ± 0.2(syst.)) x 10-0 at the 68.27% confidence level, being the official measurement of KTeV Collaboration. They also used the dominant decay Ξ0 → Γπ0(Γ → pπ-) as normalization mode in an independent analysis which corroborated with the main result. In addition, a new measurement of the Ξ0 → Σ+ e-$\\bar{v}$e branching ratio is presented, based on 1139 events and normalized to the Ξ0 → Γπ0(Γ → pπ-) decay mode. The results are in agreement with the SU(3) flavor symmetric quark model.

  20. Sub-Doppler spectra of infrared hyperfine transitions of nitric oxide using a pulse modulated quantum cascade laser: rapid passage, free induction decay, and the ac Stark effect.

    PubMed

    Duxbury, Geoffrey; Kelly, James F; Blake, Thomas A; Langford, Nigel

    2012-05-07

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 μm spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with pulse-modulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both Λ-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two Λ-doublet components can induce a large ac Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 μm QC laser.

  1. Sub-Doppler Spectra of Infrared Hyperfine Transitions of Nitric Oxide Using a Pulse Modulated Quantum Cascade Laser: Rapid Passage, Free Induction Decay and the AC Stark Effect

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 {micro}m spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with ulsemodulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both {Lambda}-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two {Lambda}-doublet components can induce a large AC Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 {micro}m QC laser.

  2. Sub-Doppler spectra of infrared hyperfine transitions of nitric oxide using a pulse modulated quantum cascade laser: Rapid passage, free induction decay, and the ac Stark effect

    NASA Astrophysics Data System (ADS)

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-01

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 μm spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with pulse-modulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both Λ-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two Λ-doublet components can induce a large ac Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 μm QC laser.

  3. Nuclear cascades in Saturn's rings - Cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.

    1983-05-01

    The nearly equatorial trajectory of the Pioneer 11 spacecraft through Saturn's high energy proton radiation belts and under the main A-B-C rings provided a unique opportunity to study the radial dependence of the greater than 30 MeV proton intensities in the belts in terms of models for secondary nucleon production by cosmic ray interactions in the rings, in situ proton injection in the radiation belts by neutron beta decay, magnetospheric diffusion, and absorption by planetary rings and satellites. Maximum trapped proton intensities measured by Pioneer 11 in the radiation belts are compared with calculated intensities and found consistent with trapping times of roughly 40 years and a radial diffusion coefficient of about 10 to the -15th L to the 9th Rs squared/s. Differential energy spectra proportional to E to the -2 estimated from integral measurements of trapped photons with E greater than 100 MeV are consistent with the beta decay model, but an inferred turndown of the spectra toward lower energies and reported integral proton anisotropies of a specified form both indicate the need for more realistic calculations of the neutron source from the rings and the radiation belt loss processes.

  4. Nuclear cascades in Saturn's rings - Cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.

    1983-01-01

    The nearly equatorial trajectory of the Pioneer 11 spacecraft through Saturn's high energy proton radiation belts and under the main A-B-C rings provided a unique opportunity to study the radial dependence of the greater than 30 MeV proton intensities in the belts in terms of models for secondary nucleon production by cosmic ray interactions in the rings, in situ proton injection in the radiation belts by neutron beta decay, magnetospheric diffusion, and absorption by planetary rings and satellites. Maximum trapped proton intensities measured by Pioneer 11 in the radiation belts are compared with calculated intensities and found consistent with trapping times of roughly 40 years and a radial diffusion coefficient of about 10 to the -15th L to the 9th R sub s squared/s. Differential energy spectra proportional to E to the -2 estimated from integral measurements of trapped photons with E greater than 100 MeV are consistent with the beta decay model, but an inferred turndown of the spectra toward lower energies and reported integral proton anisotropies of a specified form both indicate the need for more realistic calculations of the neutron source from the rings and the radiation belt loss processes.

  5. Observation of Infrared Free-Induction Decay and Optical Nutation Signals from Nitrous Oxide Using a Current Modulated Quantum Cascade Laser

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    Free induction decay (FID), optical nutation and rapid passage induced (RP) signals in nitrous oxide, under both optically thin and optically thick conditions, have been observed using a rapid current pulse modulation, or chirp, applied to the slow current ramp of a quantum cascade (QC) laser. The variation in optical depth was achieved by increasing the pressure of nitrous oxide in a long pathlength multipass absorption cell. This allows the variation of optical depth to be achieved over a range of low gas pressures. Since, even at the highest gas pressure used in the cell, the chirp rate of the QC laser is faster than the collisional reorientation time of the molecules, there is minimal collisional damping, allowing a large macroscopic polarization of the molecular dipoles to develop. This is referred to as rapid passage induced gain. The resultant FID signals are enhanced due to the constructive interference between the field within the gas generated by the slow ramp of the laser (pump), and the fast chirp of the laser (probe) signal generated by pulse modulation of the continuously operating QC laser. The FID signals obtained at large 2 optical depth have not been observed previously in the mid-infrared regions, and unusual oscillatory signals have been observed at the highest gas pressures used.

  6. Sparticle spectroscopy with neutralino dark matter from t-b-{tau} quasi-Yukawa unification

    SciTech Connect

    Dar, Shahida; Gogoladze, Ilia; Shafi, Qaisar; Uen, Cem Salih

    2011-10-15

    We consider two classes of t-b-{tau} quasi-Yukawa unification scenarios which can arise from realistic supersymmetric SO(10) and SU(4){sub C}xSU(2){sub L}xSU(2){sub R} models. We show that these scenarios can be successfully implemented in the nonuniversal Higgs model with m{sub H{sub u}}=m{sub H{sub d}}{ne}m{sub 0} and the constrained minimal sumersymmetric model frameworks, and they yield a variety of sparticle spectra with Wilkinson Microwave Anisotropy Probe compatible neutralino dark matter. In the nonuniversal Higgs model with m{sub H{sub u}}=m{sub H{sub d}}{ne}m{sub 0}, we find bino-Higgsino dark matter as well as the stau coannihilation and A-funnel solutions. The constrained minimal sumersymmetric model case yields the stau coannihilation and A-funnel solutions. The gluino and squark masses are found to lie in the TeV range.

  7. Predicting the sparticle spectrum from GUTs via SUSY threshold corrections with SusyTC

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Sluka, Constantin

    2016-07-01

    Grand Unified Theories (GUTs) can feature predictions for the ratios of quark and lepton Yukawa couplings at high energy, which can be tested with the increasingly precise results for the fermion masses, given at low energies. To perform such tests, the renormalization group (RG) running has to be performed with sufficient accuracy. In su-persymmetric (SUSY) theories, the one-loop threshold corrections (TC) are of particular importance and, since they affect the quark-lepton mass relations, link a given GUT flavour model to the sparticle spectrum. To accurately study such predictions, we extend and generalize various formulas in the literature which are needed for a precision analysis of SUSY flavour GUT models. We introduce the new software tool SusyTC, a major extension to the Mathematica package REAP [1], where these formulas are implemented. SusyTC extends the functionality of REAP by a full inclusion of the (complex) MSSM SUSY sector and a careful calculation of the one-loop SUSY threshold corrections for the full down-type quark, up-type quark and charged lepton Yukawa coupling matrices in the electroweak-unbroken phase. Among other useful features, SusyTC calculates the one-loop corrected pole mass of the charged (or the CP-odd) Higgs boson as well as provides output in SLHA conventions, i.e. the necessary input for external software, e.g. for performing a two-loop Higgs mass calculation. We apply SusyTC to study the predictions for the parameters of the CMSSM (mSUGRA) SUSY scenario from the set of GUT scale Yukawa relations y_e/y_d=-1/2{-}^2,y_{μ }/y_s = 6 , and y_{τ }/y_b=-3/2 , which has been proposed recently in the context of SUSY GUT flavour models.

  8. Combined effect of cascade through circular orbits and Stark quenching on the decay of n=2→n=1 transition of H-like Fe in beam-foil excitation

    NASA Astrophysics Data System (ADS)

    Kumar, Yogesh; Mishra, Adya P.; Nandi, T.

    2014-11-01

    Recently Mishra et al. (Mishra AP, et al. J Quant Spectrosc Radiat Transf 2013;120:114-9), while analyzing the effects of cascading through circular orbits (l=n-1)on the decay of unresolved 2p,2s→1s transitions of H-like Fe, neglected the effect of electric field at the exit surface of foil on the lifetime of the 2s state. In the present work we have considered the combined effect of cascading through circular orbits and the Stark mixing on the decay of the 2p,2s→1s transitions of H-like Fe in beam-foil excitation. It is observed that the natural lifetime of the 2s state (350.6 ps) is reduced to 221.8±22.4 ps due to Stark mixing of the long-lived 2s2S1/2 state with the very close and short-lived 2p P1/2o2 state. The strength of the electric field responsible for such mixing comes out to be 7.09±0.37×106 V/cm. The results of the present work for cascading of circular orbits through the 2p state are in good agreement (within the error bars) with those obtained earlier by Mishra et al.

  9. Dark radiation from particle decay: cosmological constraints and opportunities

    SciTech Connect

    Hasenkamp, Jasper; Kersten, Jörn E-mail: Joern.Kersten@desy.de

    2013-08-01

    We study particle decay as the origin of dark radiation. After elaborating general properties and useful parametrisations we provide model-independent and easy-to-use constraints from nucleosynthesis, the cosmic microwave background and structure formation. Bounds on branching ratios and mass hierarchies depend in a unique way on the time of decay. We demonstrate their power to exclude well-motivated scenarios taking the example of the lightest ordinary sparticle decaying into the gravitino. We point out signatures and opportunities in cosmological observations and structure formation. For example, if there are two dark decay modes, dark radiation and the observed dark matter with adjustable free-streaming can originate from the same decaying particle, solving small-scale problems of structure formation. Hot dark matter mimicking a neutrino mass scale as deduced from cosmological observations can arise and possibly be distinguished after a discovery. Our results can be used as a guideline for model building.

  10. Exploring the di-photon decay of a light Higgs boson in the MSSM with explicit CP violation

    NASA Astrophysics Data System (ADS)

    Hesselbach, S.; Moretti, S.; Munir, S.; Poulose, P.

    2008-03-01

    The di-photon decay channel of the lightest Higgs boson is considered as a probe to explore CP violation in the minimal supersymmetric standard model (MSSM). The scalar/pseudo-scalar mixing is considered along with CP violation entering through the Higgs sfermion sfermion couplings, with and without light sparticles. The impact of a light stop on the decay width and branching ratio (BR) is established through a detailed study of the amplitude of the process H1→γγ. The other sparticles have little influence even when they are light. With a suitable combination of other MSSM parameters, a light stop can change the BR by more than 50% with a CP-violating phase φμ˜90°, while the change is almost nil with a heavy stop.

  11. Inflation from flux cascades

    NASA Astrophysics Data System (ADS)

    D'Amico, Guido; Gobbetti, Roberto; Kleban, Matthew; Schillo, Marjorie L.

    2013-10-01

    When electric-type flux threads compact extra dimensions, a quantum nucleation event can break a flux line and initiate a cascade that unwinds many units of flux. Here, we present a novel mechanism for inflation based on this phenomenon. From the 4D point of view, the cascade begins with the formation of a bubble containing an open Friedmann-Robertson-Walker cosmology, but the vacuum energy inside the bubble is initially only slightly reduced, and subsequently decreases gradually throughout the cascade. If the initial flux number Q0 ≳ O (100), during the cascade the universe can undergo N ≳ 60 efolds of inflationary expansion with gradually decreasing Hubble constant, producing a nearly scale-invariant spectrum of adiabatic density perturbations with amplitude and tilt consistent with observation, and a potentially observable level of non-Gaussianity and tensor modes. The power spectrum has a small oscillatory component that does not decay away during inflation, with a period set approximately by the light-crossing time of the compact dimension(s). Since the ingredients are fluxes threading compact dimensions, this mechanism fits naturally into the string landscape, but does not appear to suffer from the eta problem or require fine-tuning (beyond the usual anthropic requirement of small vacuum energy after reheating).

  12. WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    SciTech Connect

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph E-mail: pgary@lanl.gov

    2015-02-20

    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  13. Unsteady turbulence cascades

    NASA Astrophysics Data System (ADS)

    Goto, Susumu; Vassilicos, J. C.

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5 /3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935), 10.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  14. Unsteady turbulence cascades.

    PubMed

    Goto, Susumu; Vassilicos, J C

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5/3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935)1364-502110.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  15. Inverse energy cascade in rotational turbulence

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Rou; Wang, Hengjie

    2012-11-01

    Rotation influences large-scale motions in the Earth's atmosphere and oceans and it is also important in many industrial applications such as turbo machinery, rotor-craft, and rotating channel etc. We study rotation effects on decaying isotropic turbulence through direct numerical simulation using lattice Boltzmann method. A Coriolis force characterized by the angular velocity of the frame of reference Ω is included in the lattice Boltzmann equations. The effects of rotation on fundamental turbulence features such as kinetic energy and enstrophy decay, energy spectrum, etc. are studied. The decay laws are quantitatively captured. Inverse energy cascade are observed in the 3D turbulence with and without rotation. The scaling of the inverse energy cascade and its relation to initial energy spectrum are explored. Indiana University-Purdue University Indianapolis (IUPUI).

  16. Cascading failures in ac electricity grids.

    PubMed

    Rohden, Martin; Jung, Daniel; Tamrakar, Samyak; Kettemann, Stefan

    2016-09-01

    Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current (AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold above which a transmission line fails does not seem to change the power-law exponent q≈1.6. Furthermore, we study the influence of the placement of generators and consumers on the number of affected consumers and demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model and considering a random placement of consumers, we find that the probability to disconnect more than a certain number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential, while for small ones the decay is slow, indicating a power-law decay.

  17. Cascading failures in ac electricity grids

    NASA Astrophysics Data System (ADS)

    Rohden, Martin; Jung, Daniel; Tamrakar, Samyak; Kettemann, Stefan

    2016-09-01

    Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current (AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold above which a transmission line fails does not seem to change the power-law exponent q ≈1.6 . Furthermore, we study the influence of the placement of generators and consumers on the number of affected consumers and demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model and considering a random placement of consumers, we find that the probability to disconnect more than a certain number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential, while for small ones the decay is slow, indicating a power-law decay.

  18. Cascades frog conservation assessment

    Treesearch

    Karen Pope; Catherine Brown; Marc Hayes; Gregory Green; Diane Macfarlane

    2014-01-01

    The Cascades frog (Rana cascadae) is a montane, lentic-breeding amphibian that has become rare in the southern Cascade Range and remains relatively widespread in the Klamath Mountains of northern California. In the southern Cascades, remaining populations occur primarily in meadow habitats where the fungal disease, chytridiomycosis, and habitat...

  19. Southern cascades bioregion

    Treesearch

    Carl N. Skinner; Alan H. Taylor

    2006-01-01

    The Cascade Range extends from British Columbia, Canada, south to northern California where it meets the Sierra Nevada. The Southern Cascades bioregion in California is bounded on the west by the Sacramento Valley and the Klamath Mountains, and on the east by the Modoc Plateau and Great Basin. The bioregion encompasses the Southern Cascades section of Miles and Goudey...

  20. Radioactive Decay

    EPA Pesticide Factsheets

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  1. Tooth Decay

    MedlinePlus

    You call it a cavity. Your dentist calls it tooth decay or dental caries. They're all names for a hole in your tooth. The cause of tooth decay is plaque, a sticky substance in your mouth made up mostly of germs. Tooth decay starts in the outer layer, called the enamel. Without ...

  2. Trunk decays

    Treesearch

    Alex L. Shigo

    1989-01-01

    Trunk decays are major causes of low quality wood-wood with little or no economic value. As a forest practitioner you should be able to recognize trees at high risk for decay and remove them if timber production is your primary objective. Remember, however, that decayed trees often develop into den trees or nesting sites and provide essential habitat for wildlife....

  3. NMSDECAY: A Fortran code for supersymmetric particle decays in the Next-to-Minimal Supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Das, Debottam; Ellwanger, Ulrich; Teixeira, Ana M.

    2012-03-01

    The code NMSDECAY allows to compute widths and branching ratios of sparticle decays in the Next-to-Minimal Supersymmetric Standard Model. It is based on a generalization of SDECAY, to include the extended Higgs and neutralino sectors of the NMSSM. Slepton 3-body decays, possibly relevant in the case of a singlino-like lightest supersymmetric particle, have been added. NMSDECAY will be part of the NMSSMTools package, which computes Higgs, sparticle masses and Higgs decays in the NMSSM. Program summaryProgram title: NMSDECAY Catalogue identifier: AELC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 188 177 No. of bytes in distributed program, including test data, etc.: 1 896 478 Distribution format: tar.gz Programming language: FORTRAN77 Computer: All supporting g77, gfortran, ifort Operating system: All supporting g77, gfortran, ifort Classification: 11.1 External routines: Routines in the NMSSMTools package: At least one of the routines in the directory main (e.g. nmhdecay.f), all routines in the directory sources. (All software is included in the distribution package.) Nature of problem: Calculation of all decay widths and decay branching fractions of all particles in the Next-to-Minimal Supersymmetric Standard Model. Solution method: Suitable generalization of the code SDECAY [1] including the extended Higgs and neutralino sector of the Next-to-Minimal Supersymmetric Standard Model, and slepton 3-body decays. Additional comments: NMSDECAY is interfaced with NMSSMTools, available on the web page http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html. Running time: On an Intel Core i7 with 2.8 GHZ: about 2 seconds per point in parameter space, if all flags flagqcd, flagmulti and flagloop are switched on.

  4. South Cascade Glacier bibliography

    SciTech Connect

    Fountain, A.G.; Fulk, M.A.

    1984-01-01

    South Cascade Glacier, in Washington State, resides in a well-defined basin with mainly unglacierized divides making it ideal for most glaciological and hydrological studies. This bibliography is divided into three cateogories: (1) studies done about South Cascade Glacier specifically; (2) studies that use data from South Cascade Glacier but do not focus on or give insight to the glacier itself; and (3) instrumentation studies and non-glacier projects including snow studies done in the basin. (ACR)

  5. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  6. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  7. Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations

    DOE PAGES

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph

    2015-02-12

    In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in themore » inverse cascade regime is much weaker than that in the forward cascade regime.« less

  8. Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations

    SciTech Connect

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph

    2015-02-12

    In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  9. Radioactive decay.

    PubMed

    Groch, M W

    1998-01-01

    When a parent radionuclide decays to its daughter radionuclide by means of alpha, beta, or isomeric transition, the decay follows an exponential form, which is characterized by the decay constant lambda. The decay constant represents the probability per unit time that a single radioatom will decay. The decay equation can be used to provide a useful expression for radionuclide decay, the half-life, the time when 50% of the radioatoms present will have decayed. Radiotracer half-life has direct implications in nuclear imaging, radiation therapy, and radiation safety because radionuclide half-life affects the ability to evaluate tracer kinetics and create appropriate nuclear images and also affects organ, tumor, and whole-body radiation dose. The number of radioatoms present in a sample is equal to the activity, defined as the number of transitions per unit time, divided by the decay constant; the mass of radioatoms present in a sample can be calculated to determine the specific activity (activity per unit mass). The dynamic relationship between the number of parent and daughter atoms present over time may lead to radioactive equilibrium, which takes two forms--secular and transient--and has direct relevance to generator-produced radionuclides.

  10. Excitation and diagnosis of cascading Langmuir waves in ionospheric plasmas at Gakona, Alaska

    NASA Astrophysics Data System (ADS)

    Burton, L. M.; Cohen, J. A.; Pradipta, R.; Labno, A.; Lee, M. C.; Batishchev, O.; Rokusek, D. L.; Kuo, S. P.; Watkins, B. J.; Oyama, S.

    2008-12-01

    Ionospheric plasma heating experiments were conducted at Gakona, Alaska to investigate cascading spectra of Langmuir wave turbulence, excited by parametric instabilities diagnosed by Modular UHF Ionospheric Radar (MUIR). This work is aimed at testing the recent theory of Kuo and Lee (2005 J. Geophys. Res. 110 A01309) that addresses how the cascade of Langmuir waves can distribute spatially via the resonant and non-resonant decay processes. The non-resonant cascade proceeds at the location where parametric decay instability (PDI) or oscillating two-stream instability (OTSI) is excited and severely hampered by the frequency mismatch effect. By contrast, the resonant cascade, which takes place at lower matching heights, has to overcome the propagation loss of the Langmuir pump waves in each cascade step. Our experimental results have corroborated these predictions about the generation of cascading Langmuir waves by the HAARP heater.

  11. 5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE CREEK FROM 100 YARDS WEST OF THE ROSTRUM (ROCK FORMATION ON SOUTH SIDE OF MERCED RIVER). HIGHWAY 140 IS AT BOTTOM OF FRAME. HIGHWAY 120, THE BIG OAK FLAT ROAD CROSSES FRAME JUST ABOVE CENTER. - Cascade Creek Bridge, Spanning Cascade Creek on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  12. Biocatalysis: Chiral cascades

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Bo; Reetz, Manfred T.

    2015-12-01

    Racemic or enantiomerically pure alcohols can be converted with high yield into enantiopure chiral amines in a one-pot redox-neutral cascade process by the clever combination of an alcohol dehydrogenase and an appropriate amine dehydrogenase.

  13. A coarse wood dynamics model for the Western Cascades.

    Treesearch

    K. Mellen; A. Ager

    2002-01-01

    The Coarse Wood Dynamics Model (CWDM) analyzes the dynamics (fall, fragmentation, and decomposition) of Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) snags and down logs in forested ecosystems of the western Cascades of Oregon and Washington. The model predicts snag fall, height loss and decay,...

  14. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  15. Tracking Earthquake Cascades

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2011-12-01

    In assessing their risk to society, earthquakes are best characterized as cascades that can propagate from the natural environment into the socio-economic (built) environment. Strong earthquakes rarely occur as isolated events; they usually cluster in foreshock-mainshock-aftershock sequences, seismic swarms, and extended sequences of large earthquakes that propagate along major fault systems. These cascades are regulated by stress-mediated interactions among faults driven by tectonic loading. Within these cascades, each large event can itself cause a chain reaction in which the primary effects of faulting and ground shaking induce secondary effects, including tsunami, landslides, liquefaction, and set off destructive processes within the built environment, such as fires and radiation leakage from nuclear plants. Recent earthquakes have demonstrated how the socio-economic effects of large earthquakes can reverberate for many years. To reduce earthquake risk and improve the resiliency of communities to earthquake damage, society depends on five geotechnologies for tracking earthquake cascades: long-term probabilistic seismic hazard analysis (PSHA), short-term (operational) earthquake forecasting, earthquake early warning, tsunami warning, and the rapid production of post-event information for response and recovery (see figure). In this presentation, I describe how recent advances in earthquake system science are leading to improvements in this geotechnology pipeline. In particular, I will highlight the role of earthquake simulations in predicting strong ground motions and their secondary effects before and during earthquake cascades

  16. Calculations of physical and chemical reactions with DNA in aqueous solution from Auger cascades

    SciTech Connect

    Wright, H.A.; Hamm, R.N.; Turner, J.E.; Howell, R.W.; Rao, D.V.; Sastry, K.S.R.

    1989-01-01

    Monte Carlo calculations are performed of the physical and chemical interactions in liquid water by electrons produced during Auger cascades resulting from the decay of various radionuclides. Estimates are also made of the number of direct physical and indirect chemical interactions that would be produced on DNA located near the decay site. 13 refs., 8 figs.

  17. Hadron cascades produced by electromagnetic cascades

    SciTech Connect

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps.

  18. Resonant Cascaded Downconversion

    SciTech Connect

    Weedbrook, Christian; Parrett, Ben; Kheruntsyan, Karen; Drummond, Peter; Pooser, Raphael C; Pfister, Olivier

    2012-01-01

    We analyze an optical parametric oscillator (OPO) in which cascaded down-conversion occurs inside a cavity resonant for all modes but the initial pump. Due to the resonant cascade design, the OPO presents two {chi}{sup (2)}-level oscillation thresholds that are therefore much lower than for a {chi}{sup (3)} OPO. This is promising for reaching the regime of an effective third-order nonlinearity well above both thresholds. Such a {chi}{sup (2)} cascaded device also has potential applications in frequency conversion to far-infrared regimes. But, most importantly, it can generate novel multipartite quantum correlations in the output radiation, which represent a step beyond squeezed or entangled light. The output can be highly non-Gaussian and therefore not describable by any semiclassical model. In this paper, we derive quantum stochastic equations in the positive-P representation and undertake an analysis of steady-state and dynamical properties of this system.

  19. Critical Mandelbrot Cascades

    NASA Astrophysics Data System (ADS)

    Barral, Julien; Kupiainen, Antti; Nikula, Miika; Saksman, Eero; Webb, Christian

    2014-01-01

    We study Mandelbrot's multiplicative cascade measures at the critical temperature. As has been recently shown by Barral et al. (C R Acad Sci Paris Ser I 350:535-538, 2012), an appropriately normalized sequence of cascade measures converges weakly in probability to a nontrivial limit measure. We prove that these limit measures have no atoms and give bounds for the modulus of continuity of the cumulative distribution function of the measure. Using the earlier work of Barral and Seuret (Adv Math 214:437-468, 2007), we compute the multifractal spectrum of the measures. We also extend the result of Benjamini and Schramm (Commun Math Phys 289:653-662, 2009), in which the KPZ formula from quantum gravity is validated for the high temperature cascade measures, to the critical and low temperature cases.

  20. Collisional Cascades Revisited

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke; Pan, M.

    2013-01-01

    Collisional cascades are believed to be the primary mechanism operating in circumstellar dusty debris disks, and are thought to be important in the Kuiper and Asteroid belt. Collisional cascades transfer mass via destructive collisions from larger bodies to smaller ones. Their widespread occurrence and potential importance in understanding planet formation and planet-disk interactions have motivated detailed studies of collisional cascades. The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. We relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan & Sari (2005) can steepen to values as large as q = 3.26. These differences in the size distribution power law index are very important when estimating the total disk mass, including larger bodies, by extrapolating from the observed dust masses. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies in, for example, extrasolar debris disks may constrain the total mass in large bodies stirring the cascade as well as the colliding bodies

  1. Triangular rogue wave cascades.

    PubMed

    Kedziora, David J; Ankiewicz, Adrian; Akhmediev, Nail

    2012-11-01

    By numerically applying the recursive Darboux transformation technique, we study high-order rational solutions of the nonlinear Schrödinger equation that appear spatiotemporally as triangular arrays of Peregrine solitons. These can be considered as rogue wave cascades and complement previously discovered circular cluster forms. In this analysis, we reveal a general parametric restriction for their existence and investigate the interplay between cascade and cluster forms. As a result, we demonstrate how to generate many more hybrid rogue wave solutions, including semicircular clusters that resemble claws.

  2. Cascades Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Driedger, Carolyn; Pallister, John

    2008-01-01

    Washington's Mount St. Helens volcano reawakens explosively on October 1, 2004, after 18 years of quiescence. Scientists at the U.S. Geological Survey's Cascades Volcano Observatory (CVO) study and observe Mount St. Helens and other volcanoes of the Cascade Range in Washington, Oregon, and northern California that hold potential for future eruptions. CVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Mount St. Helens and CVO at http://vulcan.wr.usgs.gov/.

  3. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  4. Quantum Cascade Lasers

    DTIC Science & Technology

    2007-11-02

    predicted small linewidth enhancement factor of QC lasers was measured in outside collaboration ( Prof . Shun-Lien Chuang at UIUC) and confirmed to be...Gmachl, Michael C. Wanke, Federico Capasso, Albert L. Hutchinson, Deborah L. Sivco, Sung- Nee G. Chu, and Alfred Y. Cho “Surface plasmon quantum cascade

  5. 'Cascade Gold' raspberry

    USDA-ARS?s Scientific Manuscript database

    Cascade Gold’ is a new gold fruited, floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). It has been evaluated at Puyallup, Wash. in plantings from 1988 to 2008. ...

  6. Cascaded thermoacoustic devices

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  7. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  8. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  9. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers.

    PubMed

    Trinter, F; Schöffler, M S; Kim, H-K; Sturm, F P; Cole, K; Neumann, N; Vredenborg, A; Williams, J; Bocharova, I; Guillemin, R; Simon, M; Belkacem, A; Landers, A L; Weber, Th; Schmidt-Böcking, H; Dörner, R; Jahnke, T

    2014-01-30

    In 1997, it was predicted that an electronically excited atom or molecule placed in a loosely bound chemical system (such as a hydrogen-bonded or van-der-Waals-bonded cluster) could efficiently decay by transferring its excess energy to a neighbouring species that would then emit a low-energy electron. This intermolecular Coulombic decay (ICD) process has since been shown to be a common phenomenon, raising questions about its role in DNA damage induced by ionizing radiation, in which low-energy electrons are known to play an important part. It was recently suggested that ICD can be triggered efficiently and site-selectively by resonantly core-exciting a target atom, which then transforms through Auger decay into an ionic species with sufficiently high excitation energy to permit ICD to occur. Here we show experimentally that resonant Auger decay can indeed trigger ICD in dimers of both molecular nitrogen and carbon monoxide. By using ion and electron momentum spectroscopy to measure simultaneously the charged species created in the resonant-Auger-driven ICD cascade, we find that ICD occurs in less time than the 20 femtoseconds it would take for individual molecules to undergo dissociation. Our experimental confirmation of this process and its efficiency may trigger renewed efforts to develop resonant X-ray excitation schemes for more localized and targeted cancer radiation therapy.

  10. A cascade thermoacoustic engine.

    PubMed

    Gardner, D L; Swift, G W

    2003-10-01

    A cascade thermoacoustic engine is described, consisting of one standing-wave stage plus two traveling-wave stages in series. Most of the acoustic power is produced in the efficient traveling-wave stages. The straight-line series configuration is easy to build and allows no Gedeon streaming. The engine delivers up to 2 kW of acoustic power, with an efficiency (the ratio of acoustic power to heater power) of up to 20%. An understanding of the pressure and volume-velocity waves is very good. The agreement between measured and calculated powers and temperatures is reasonable. Some of the measured thermal power that cannot be accounted for by calculation can be attributed to Rayleigh streaming in the two thermal buffer tubes with the largest aspect ratios. A straightforward extension of this work should yield cascade thermoacoustic engines with efficiencies of around 35-40% of the Carnot efficiency.

  11. Electromagnetic cascades in pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1981-01-01

    The development of pair photon cascades initiated by high energy electrons above a pulsar polar cap is simulated numerically. The calculation uses the energy of the primary electron, the magnetic field strength, and the period of rotation as parameters and follows the curvature radiation emitted by the primary, the conversion of this radiation e(+) - e(-) pairs in the intense fields, and the quantized synchrotron radiation by the secondary pairs. A recursive technique allows the tracing of an indefinite number of generations using a Monte Carlo method. Gamma ray and pair spectra are calculated for cascades in different parts of the polar cap and with different acceleration models. It is found that synchrotron radiation from secondary pairs makes an important contribution to the gamma ray spectrum above 25 MeV, and that the final gamma ray and pair spectra are insensitive to the height of the accelerating region, as long as the acceleration of the primary electrons is not limited by radiation reaction.

  12. Multistep cascade annihilations of dark matter and the Galactic Center excess

    SciTech Connect

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.

    2015-05-26

    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect of multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current paper, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.

  13. Multistep cascade annihilations of dark matter and the Galactic Center excess

    DOE PAGES

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.

    2015-05-26

    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect ofmore » multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current paper, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.« less

  14. Superconducting cascade electron refrigerator

    SciTech Connect

    Camarasa-Gómez, M.; Giazotto, F.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.

    2014-05-12

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  15. Information cascade on networks

    NASA Astrophysics Data System (ADS)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  16. Maxwellian cascade model

    SciTech Connect

    Macklin, R.L.

    1989-11-01

    A model for gamma-ray cascade de-excitation of a nucleus derived from the Maxwellian energy distribution function but imposing energy conservation was investigated. Energy distributions and multiplicities and their averages were found over a range of nuclear temperatures and excitation energies appropriate to neutron capture. The model was compared to existing measurements for tantalum, a case where the level density was high and thus a good approximation to the model. 7 refs., 13 figs.

  17. Cascade ICF power reactor

    SciTech Connect

    Hogan, W.J.; Pitts, J.H.

    1986-05-20

    The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO/sub 2/. The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor.

  18. Selected ARGUS results on B meson decays

    NASA Astrophysics Data System (ADS)

    Zaitsev, Yuri

    1992-02-01

    Semileptonic B meson decays have been studied using the ARGUS detector at DORIS II. The branching ratio for the decay B¯0→D*+l-ν¯ has been measured. A significant rate for the decay B¯→D**l-ν¯ has been observed. From an angular analysis of the cascade B¯0→D*+(→D0π+)l+ν¯, the forward-backward asymmetry AFB and the D*+ polarization parameter α have been determined. The decay B¯0→D*+l-ν¯ have been also measured with partial reconstruction of the D*+ meson, and for the first time the inclusive primary electron spectrum in the whole momentum interval has been analyzed.

  19. Auger decay of 3p-ionized krypton

    SciTech Connect

    Jonauskas, V.; Kucas, S.; Karazija, R.

    2011-11-15

    A theoretical study of Auger cascades during the decay of 3p{sub 1/2} and 3p{sub 3/2} vacancies in krypton has been performed by level-by-level calculations using a wide configuration interaction basis. Auger spectra for all steps of the cascades are presented and are compared with the existing experimental data. Good agreement of our results with the branching ratios of ions measured by a coincidence technique is obtained.

  20. Cascade modeling of single and two-phase turbulence

    NASA Astrophysics Data System (ADS)

    Bolotnov, Igor A.

    The analysis of turbulent two-phase flows requires closure models in order to perform reliable computational multiphase fluid dynamics (CFMD) analyses. A turbulence cascade model, which tracks the evolution of the turbulent kinetic energy between the various eddy sizes, has been developed for the analysis of the single and bubbly two-phase turbulence. Various flows are considered including the decay of isotropic grid-induced turbulence, uniform shear flow and turbulent channel flow. The model has been developed using a "building block" approach by moving from modeling of simpler turbulent flows (i.e., homogeneous, isotropic decay) to more involved turbulent flows (i.e., non-homogeneous channel flow). The spectral cascade-transport model's performance has been assessed against a number of experimental and direct numerical simulation (DNS) results.

  1. Resonantly excited cascade x-ray emission from La

    SciTech Connect

    Moewes, A.; Wilks, R.G.; Kochur, A.G.; Kurmaev, E.Z.

    2005-08-15

    We are monitoring the intensity of the La 5p-4d emission for La metal while scanning across the deeper lying 3d-4f photoexcitation resonances of the same atom. A strong resonant enhancement in the integral intensity of the La 5p-4d fluorescence emission is observed, which is due to cascading decay of the resonantly excited 3d{sup 9}4f{sup +1} configuration. The corresponding emission spectrum features a complex satellite structure reflecting the multitude of transitions taking place in a variety of multi-vacancy configurations created by the cascade. We calculate the probability of 5p{yields}4d emission produced by the cascading decay and then take into account self-absorption of the emitted photons. This model provides good agreement with the experimental results. The number of 4d vacancies increases immensely due to electronic cascades. We also observe an enhanced integral intensity in the 5p-4d fluorescence compared to our calculations, which we attribute to intra-atomic resonance processes.

  2. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  3. The Ufm1 Cascade

    PubMed Central

    Daniel, Jens; Liebau, Eva

    2014-01-01

    The ubiquitin-fold modifier 1 (Ufm1) is a posttranslational modifier that belongs to the ubiquitin-like protein (UBL) family. Ufm1 is present in nearly all eukaryotic organisms, with the exception of fungi. It resembles ubiquitin in its ability to be ligated to other proteins, as well as in the mechanism of ligation. While the Ufm1 cascade has been implicated in endoplasmic reticulum functions and cell cycle control, its biological role still remains poorly understood. In this short review, we summarize the current state of Ufm1 research and its potential role in human diseases, like diabetes, ischemic heart disease and cancer. PMID:24921187

  4. Crossover behavior in driven cascades.

    PubMed

    Burridge, James

    2013-09-01

    We propose a model which explains how power-law crossover behavior can arise in a system which is capable of experiencing cascading failure. In our model the susceptibility of the system to cascades is described by a single number, the propagation power, which measures the ease with which cascades propagate. Physically, such a number could represent the density of unstable material in a system, its internal connectivity, or the mean susceptibility of its component parts to failure. We assume that the propagation power follows an upward drifting Brownian motion between cascades, and drops discontinuously each time a cascade occurs. Cascades are described by a continuous state branching process with distributional properties determined by the value of the propagation power when they occur. In common with many cascading models, pure power-law behavior is exhibited at a critical level of propagation power, and the mean cascade size diverges. This divergence constrains large systems to the subcritical region. We show that as a result, crossover behavior appears in the cascade distribution when an average is performed over the distribution of propagation power. We are able to analytically determine the exponents before and after the crossover.

  5. Cascade Mtns. Oregon

    NASA Image and Video Library

    2002-04-19

    The ground near one of the long-dormant Three Sisters volcanoes in the Cascade Mountains of west-central Oregon has risen approximately 10centimeters in a 10-by-20-km parcel since 1996, meaning that magma or underground lava is slowly flowing into the area, according to a research team from the U.S. Geological Survey. The Three Sisters area -- which contains five volcanoes -- is only about 170 miles from Mount St. Helens, which erupted in 1980. Both are part of the Cascades Range, a line of 27volcanoes stretching from British Columbia in Canada to northern California. This perspective view was created by draping a simulated natural color ASTER image over digital topography from the U.S. Geological Survey National Elevation Dataset. This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03492

  6. Quantum dot cascade laser

    PubMed Central

    2014-01-01

    We demonstrated an unambiguous quantum dot cascade laser based on InGaAs/GaAs/InAs/InAlAs heterostructure by making use of self-assembled quantum dots in the Stranski-Krastanow growth mode and two-step strain compensation active region design. The prototype generates stimulated emission at λ ~ 6.15 μm and a broad electroluminescence band with full width at half maximum over 3 μm. The characteristic temperature for the threshold current density within the temperature range of 82 to 162 K is up to 400 K. Moreover, our materials show the strong perpendicular mid-infrared response at about 1,900 cm-1. These results are very promising for extending the present laser concept to terahertz quantum cascade laser, which would lead to room temperature operation. PACS 42.55.Px; 78.55.Cr; 78.67.Hc PMID:24666965

  7. Particle energy cascade in the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Valdés, M.; Evoli, C.; Ferrara, A.

    2010-05-01

    We study the development of high-energy (Ein <= 1 TeV) cascades produced by a primary electron of energy Ein injected into the intergalactic medium (IGM). To this aim we have developed the new code MEDEA (Monte Carlo Energy Deposition Analysis) which includes Bremsstrahlung and inverse Compton (IC) processes, along with H/He collisional ionizations and excitations, and electron-electron collisions. The cascade energy partition into heating, excitations and ionizations depends primarily not only on the IGM ionized fraction, xe, but also on redshift, z, due to IC on cosmic microwave background (CMB) photons. While Bremsstrahlung is unimportant under most conditions, IC becomes largely dominant at energies Ein >= 1 MeV. The main effect of IC at injection energies Ein <= 100 MeV is a significant boost of the fraction of energy converted into low-energy photons (hν < 10.2 eV) which do not further interact with the IGM. For energies Ein >= 1 GeV CMB photons are preferentially upscattered within the X-ray spectrum (hν > 104 eV) and can free stream to the observer. Complete tables of the fractional energy depositions as a function of redshift, Ein and ionized fraction are given. Our results can be used in many astrophysical contexts, with an obvious application related to the study of decaying/annihilating dark matter (DM) candidates in the high-z Universe.

  8. Chemical Consequences of Radioactive Decay and their Biological Implications.

    PubMed

    DeJesus, Onofre T

    2017-07-14

    The chemical effects of radioactive decay arise from (1) transmutation, (2) formation of charged daughter nuclei, (3) recoil of the daughter nuclei, (4) electron "shakeoff" phenomenon and (5) vacancy cascade in decays via electron capture and internal conversion. This review aims to reiterate what has been known for a long time regarding the chemical consequences of radioactive decay and gives a historical perspective to the observations that led to their elucidation. The energetics of the recoil process in each decay mode is discussed in relation to the chemical bond between the decaying nucleus and the parent molecule. Special attention is given to the biological effects of the Auger process following decay by electron capture and internal conversion because of their possible utility in internal radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. The Cascade Forestry Service Nursery

    Treesearch

    Don Westefer

    2002-01-01

    Cascade Forestry Service, Inc., is a private reforestation nursery and service company that has grown from a shoestring operation into an employee-owned company that both produces reforestation trees and assists landowners with forestry development and management. The Northeastern Forest and Conservation Nursery Association has proven instrumental in Cascade Forestry...

  10. Cascade sample matrix inversion arrays

    NASA Astrophysics Data System (ADS)

    Hanson, Timothy; Essman, Joseph

    It is shown that if a narrowband adaptive array is partitioned and processed as a cascade of adaptive arrays, computational complexity is reduced and performance is only slightly degraded. The sample matrix inversion (SMI) and covariance matrix estimation are discussed. Cascade SMI complexity is examined. Simulation results are presented.

  11. Cascade Distillation System Development

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  12. Dynamics of cavitating cascades

    NASA Technical Reports Server (NTRS)

    Acosta, A. J.; Brennen, C.; Kim, J. H.

    1972-01-01

    Brief accounts of the theoretical research conducted on the unsteady cavitation characteristics of liquid rocket engine turbopumps are reported. The objective is to produce estimates of the cavitation compliance and other unsteady characteristics which could then be used in analysis of the pogo instability. Blade cavitation is the particular pheonomenon which is investigated and line arized free streamline methods were employed in both quasistatic and complete dynamic cascade analyses of the unsteady flow. The simpler quasistatic analysis was applied to particular turbopumps but yielded values of compliances significantly smaller than those indirectly obtained from experiments. Reasons for this discrepancy are discussed. The complete dynamic analysis presents a new problem in fundamental hydrodynamics and, though the basic solution is presented, numerical results have not as yet been obtained.

  13. Semileptonic Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  14. Particle physics: CP violation in hyperon decays

    SciTech Connect

    Longo, Michael J.

    2000-10-31

    The primary research activities under this grant were in E871 (HyperCP) at Fermilab, a search for CP violation in hyperon decays which completed data taking in January, 2000. HyperCP is an experiment designed to perform a sensitive search for direct CP violation in the decays of cascade ({Xi}) and {Lambda} hyperons by looking for an asymmetry between particle and antiparticle decay parameters. The experiment is expected to achieve a sensitivity {approx}10{sup -4} in the decay parameters. Standard model predictions for this CP-violating asymmetry range from 0.3 to 5 x 10{sup -4}. A difference between the decay parameters for particle and antiparticle is direct evidence that CP symmetry is violated. A non-zero asymmetry would be the first evidence for CP violation outside of the K{sup o} system. Recent results from KTeV indicate a direct CP violation in K{sup o} decays, which suggests that CP violation will appear in other decays. In addition, we will look at a number of rare hyperon decays involving muons. These probe important new physics topics such as Majorana neutrinos and lepton number violating processes. The latter are of great current interest because new evidence for neutrino oscillations indicate lepton flavor violation does occur. Our data will lead to an improvement in the limits on branching ratios for these processes typically by three to four orders-of-magnitude. The muon detector construction and data resulting from it have been the responsibility of the Michigan group. We are now leading the analysis of the rare muon-related decay modes, and were responsible for the muon system and beam monitor upgrades for the 1999 run.

  15. Stochastic signaling in biochemical cascades and genetic systems in genetically engineered living cells.

    PubMed

    Daniel, Ramiz; Almog, Ronen; Shacham-Diamand, Yosi

    2010-04-01

    Living cells, either prokaryote or eukaryote, can be integrated within whole-cell biochips (WCBCs) for various applications. We investigate WCBCs where information is extracted from the cells via a cascade of biochemical reactions that involve gene expression. The overall biological signal is weak due to small sample volume, low intrinsic cell response, and extrinsic signal loss mechanisms. The low signal-to-noise ratio problem is aggravated during initial detection stages and limits the minimum detectable signal or, alternatively, the minimum detection time. Taking into account the stochastic nature of biochemical process, we find that the signal is accompanied by relatively large noise disturbances. In this work, we use genetically engineered microbe sensors as a model to study the biochips output signal stochastic behavior. In our model, the microbes are designed to express detectable reporter proteins under external induction. We present analytical approximated expressions and numerical simulations evaluating the fluctuations of the synthesized reporter proteins population based on a set of equations modeling a cascade of biochemical and genetic reactions. We assume that the reporter proteins decay more slowly than messenger RNA molecules. We calculate the relation between the noise of the input signal (extrinsic noise) and biochemical reaction statistics (intrinsic noise). We discuss in further details two cases: (1) a cascade with large decay rates of all biochemical reactions compared to the protein decay rate. We show that in this case, the noise amplitude has a positive linear correlation with the number of stages in the cascade. (2) A cascade which includes a stable enzymatic-binding reaction with slow decay rate. We show that in this case, the noise strongly depends on the protein decay rate. Finally, a general observation is presented stating that the noise in whole-cell biochip sensors is determined mainly by the first reactions in the genetic system

  16. Stochastic signaling in biochemical cascades and genetic systems in genetically engineered living cells

    NASA Astrophysics Data System (ADS)

    Daniel, Ramiz; Almog, Ronen; Shacham-Diamand, Yosi

    2010-04-01

    Living cells, either prokaryote or eukaryote, can be integrated within whole-cell biochips (WCBCs) for various applications. We investigate WCBCs where information is extracted from the cells via a cascade of biochemical reactions that involve gene expression. The overall biological signal is weak due to small sample volume, low intrinsic cell response, and extrinsic signal loss mechanisms. The low signal-to-noise ratio problem is aggravated during initial detection stages and limits the minimum detectable signal or, alternatively, the minimum detection time. Taking into account the stochastic nature of biochemical process, we find that the signal is accompanied by relatively large noise disturbances. In this work, we use genetically engineered microbe sensors as a model to study the biochips output signal stochastic behavior. In our model, the microbes are designed to express detectable reporter proteins under external induction. We present analytical approximated expressions and numerical simulations evaluating the fluctuations of the synthesized reporter proteins population based on a set of equations modeling a cascade of biochemical and genetic reactions. We assume that the reporter proteins decay more slowly than messenger RNA molecules. We calculate the relation between the noise of the input signal (extrinsic noise) and biochemical reaction statistics (intrinsic noise). We discuss in further details two cases: (1) a cascade with large decay rates of all biochemical reactions compared to the protein decay rate. We show that in this case, the noise amplitude has a positive linear correlation with the number of stages in the cascade. (2) A cascade which includes a stable enzymatic-binding reaction with slow decay rate. We show that in this case, the noise strongly depends on the protein decay rate. Finally, a general observation is presented stating that the noise in whole-cell biochip sensors is determined mainly by the first reactions in the genetic system

  17. Cascade Mtns. Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The ground near one of the long-dormant Three Sisters volcanoes in the Cascade Mountains of west-central Oregon has risen approximately 10centimeters in a 10-by-20-km parcel since 1996, meaning that magma or underground lava is slowly flowing into the area, according to a research team from the U.S. Geological Survey. The Three Sisters area -- which contains five volcanoes -- is only about 170 miles from Mount St. Helens, which erupted in 1980. Both are part of the Cascades Range, a line of 27volcanoes stretching from British Columbia in Canada to northern California. This perspective view was created by draping a simulated natural color ASTER image over digital topography from the U.S. Geological Survey National Elevation Dataset.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical

  18. Proposed experimental test of Bell's inequality in nuclear beta decay

    SciTech Connect

    Skalsey, M.

    1986-04-15

    A ..beta.. decay experiment is proposed for testing Bell's inequality, related to hidden-variables alternatives to quantum mechanics. The experiment uses Mott scattering for spin polarization analysis of internal conversion electrons. Beta-decay electrons, in cascade with the conversion electrons, are longitudinally polarized due to parity violation in the weak interaction. So simply detecting the ..beta.. electron direction effectively measures the spin. A two-particle spin-spin correlation can thus be investigated and related, within certain assumptions, to Bell's inequality. The example of /sup 203/Hg decay is used for a calculation of expected results. Specific problems related to nuclear structure and experimental inconsistencies are also discussed.

  19. Error bounds in cascading regressions

    USGS Publications Warehouse

    Karlinger, M.R.; Troutman, B.M.

    1985-01-01

    Cascading regressions is a technique for predicting a value of a dependent variable when no paired measurements exist to perform a standard regression analysis. Biases in coefficients of a cascaded-regression line as well as error variance of points about the line are functions of the correlation coefficient between dependent and independent variables. Although this correlation cannot be computed because of the lack of paired data, bounds can be placed on errors through the required properties of the correlation coefficient. The potential meansquared error of a cascaded-regression prediction can be large, as illustrated through an example using geomorphologic data. ?? 1985 Plenum Publishing Corporation.

  20. Inferring network structure from cascades

    NASA Astrophysics Data System (ADS)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  1. Trophic cascades across ecosystems.

    PubMed

    Knight, Tiffany M; McCoy, Michael W; Chase, Jonathan M; McCoy, Krista A; Holt, Robert D

    2005-10-06

    Predation can be intense, creating strong direct and indirect effects throughout food webs. In addition, ecologists increasingly recognize that fluxes of organisms across ecosystem boundaries can have major consequences for community dynamics. Species with complex life histories often shift habitats during their life cycles and provide potent conduits coupling ecosystems. Thus, local interactions that affect predator abundance in one ecosystem (for example a larval habitat) may have reverberating effects in another (for example an adult habitat). Here we show that fish indirectly facilitate terrestrial plant reproduction through cascading trophic interactions across ecosystem boundaries. Fish reduce larval dragonfly abundances in ponds, leading to fewer adult dragonflies nearby. Adult dragonflies consume insect pollinators and alter their foraging behaviour. As a result, plants near ponds with fish receive more pollinator visits and are less pollen limited than plants near fish-free ponds. Our results confirm that strong species interactions can reverberate across ecosystems, and emphasize the importance of landscape-level processes in driving local species interactions.

  2. Terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Koehler, Ruedeger; Tredicucci, Alessandro; Beltram, Fabio; Beere, Harvey E.; Linfield, Edmund H.; Davies, A. G.; Ritchie, David A.

    2003-07-01

    The terahertz region (1-10 THz) of the electromagnetic spectrum offers ample opportunities in spectroscopy, free space communications, remote sensing and medical imaging. Yet, the use of THz radiation in all these fields has been hampered by the lack of appropriate, convenient sources. We here report on unipolar semiconductor injection lasers that emit at THz frequencies (4.3 THz, λ ~ 69μm and 3.5 THz, λ ~ 85μm) and possess the potential for device-like implementation. They are based on the quantum cascade scheme employing interminiband transitions in the technologically mature AlGaAs/GaAs material system and feature a novel kind of waveguide loosely relying on the surface plasmon concpt. Continuous-wave laser emission is achieved with low thresholds of a few hundred A/cm2 up to 45 K heat sink temperature and maximum output powers of more than 4mW. Under pulsed excitation, peak output powers of 4.5mW at low temperatures and still 1 mW at 65 K are measured. The amximum operating temperature is 67 K.

  3. Cascading Effects Following Intervention

    PubMed Central

    Patterson, Gerald R.; Forgatch, Marion S.; DeGarmo, David S.

    2010-01-01

    Four different sources for cascade effects were examined using 9-year process and outcome data from a randomized controlled trial (RCT) of a preventive intervention using Parent Management Training – Oregon Model (PMTO™). The social interaction learning (SIL) model of child antisocial behavior serves as one basis for predicting change. A second source addresses the issue of comorbid relationships among clinical diagnoses. The third source, collateral changes, describes events in which changes in one family member correlate with changes in another. The fourth component is based on the long-term effects of reducing coercion and increasing positive interpersonal processes within the family. New findings from the 9-year follow-up show that mothers experienced benefits as measured by standard of living (i.e., income, occupation, education, and financial stress) and frequency of police arrests. It is assumed that PMTO reduces the level of coercion, which sets the stage for a massive increase in positive social interaction. In effect, PMTO alters the family environment and thereby opens doors to healthy new social environments. PMID:20883592

  4. Proton decay theory

    SciTech Connect

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay. (WHK)

  5. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  6. What is a Trophic Cascade?

    PubMed

    Ripple, William J; Estes, James A; Schmitz, Oswald J; Constant, Vanessa; Kaylor, Matthew J; Lenz, Adam; Motley, Jennifer L; Self, Katharine E; Taylor, David S; Wolf, Christopher

    2016-11-01

    Few concepts in ecology have been so influential as that of the trophic cascade. Since the 1980s, the term has been a central or major theme of more than 2000 scientific articles. Despite this importance and widespread usage, basic questions remain about what constitutes a trophic cascade. Inconsistent usage of language impedes scientific progress and the utility of scientific concepts in management and conservation. Herein, we offer a definition of trophic cascade that is designed to be both widely applicable yet explicit enough to exclude extraneous interactions. We discuss our proposed definition and its implications, and define important related terms, thereby providing a common language for scientists, policy makers, conservationists, and other stakeholders with an interest in trophic cascades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Ultrarelativistic cascades and strangeness production

    SciTech Connect

    Kahana, D.E.; Kahana, S.H.

    1998-02-01

    A two phase cascade, LUCIFER II, developed for the treatment of ultra high energy Ion-Ion collisions is applied to the production of strangeness at SPS energies. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy ion experiments at the CERN SPS.

  8. New decay modes of heavy Higgs bosons in a two Higgs doublet model with vectorlike leptons

    SciTech Connect

    Dermíšek, Radovan; Lunghi, Enrico; Shin, Seodong

    2016-05-25

    In models with extended Higgs sector and additional matter fields, the decay modes of heavy Higgs bosons can be dominated by cascade decays through the new fermions rendering present search strategies ineffective. Here, we investigate new decay topologies of heavy neutral Higgses in two Higgs doublet model with vectorlike leptons. We also discus constraints from existing searches and discovery prospects. Among the most interesting signatures are monojet, mono Z, mono Higgs, and Z and Higgs bosons produced with a pair of charged leptons.

  9. The cascade high productivity language

    NASA Technical Reports Server (NTRS)

    Callahan, David; Chamberlain, Branford L.; Zima, Hans P.

    2004-01-01

    This paper describes the design of Chapel, the Cascade High Productivity Language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface.

  10. Aeroelasticity in Turbomachine-Cascades.

    DTIC Science & Technology

    1982-11-10

    STABLE -180 UNSTABLE -360 ’ - ’ - -180 0. 󈧖O DIAGRAM 3 AERODYNAMIC LIFT (OENT)COEFFICIENTI AND PHASE LEADS IN DEPENDANCE OF FLOM GUANTATIES AND CASCADE...ABL -0.8 0.0 -5 0. -5 DIAGRAM ’. AERODYNAMIC NORK AND DAMPING COEFFICIENTS (FOR A RIGID NOTION) IN DEPENDANCE OF FLOW OURNTATIES AND CASCADE GEOMETRY...coefficients on blades + blade vibration + vizualization in the transonic flow domain (Schlieren) + instability dependance on flow conditions, blade

  11. Computation of inverse magnetic cascades

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1981-01-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  12. The cascade high productivity language

    NASA Technical Reports Server (NTRS)

    Callahan, David; Chamberlain, Branford L.; Zima, Hans P.

    2004-01-01

    This paper describes the design of Chapel, the Cascade High Productivity Language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface.

  13. Stochastic background of atmospheric cascades

    SciTech Connect

    Wilk, G. ); Wlodarczyk, Z. )

    1993-06-15

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.

  14. Cascading gravity is ghost free

    SciTech Connect

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.

    2010-06-15

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  15. Production and Searches for Cascade Baryons with Clas

    NASA Astrophysics Data System (ADS)

    Smith, Elton S.

    We present the results of photoproduction cross sections of the ground state cascade Ξ- and the first excited state Ξ*-(1530) measured with the CLAS detector. The photoproduction of the cascade resonances has been investigated in the reactions γp → K+K+(X) and γp → K+K+π-(X). The differential and total cross sections of the Ξ- were determined for photon beam energies from 2.75 to 4.75 GeV and are consistent with a production mechanism of Y* → K+Ξ- through a t-channel process. The cross-section of the Ξ*-(1530) has been determined for photon beam energies from 3.35 to 4.75 GeV. The reaction γp → K+K+π-(Ξ0) has also been investigated in the search for excited cascade resonances decaying to π-Ξ0. No significant signal of excited cascade states other than the well-known Ξ*-(1530) is observed. We also present the latest results of a search for the Φ--(1862) exotic pentaquark state in a photoproduction experiment on a deuterium target. A high-statistics sample of π-Ξ- events have been collected and analyzed. A preliminary invariant mass spectrum of the π-Ξ- system is presented, which is used to set upper limits on the photoproduction of the Φ-- pentaquark state.

  16. Production and Searches for Cascade Baryons with CLAS

    SciTech Connect

    Smith, Elton

    2010-01-01

    We present the results of photoproduction cross sections of the ground state cascade $\\Xi^-$ and the first excited state $\\Xi^{*-}(1530)$ measured with the CLAS detector. The photoproduction of the cascade resonances has been investigated in the reactions $\\gamma p \\rightarrow K^+K^+(X)$ and $\\gamma p \\rightarrow K^+K^+\\pi^-(X)$. The differential and total cross sections of the $\\Xi^{-}$ were determined for photon beam energies from 2.75 to 4.75 GeV and are consistent with a production mechanism of $Y^* \\rightarrow K^+ \\Xi^-$ through a t-channel process. The cross-section of the $\\Xi^{*-}(1530)$ has been determined for photon beam energies from 3.35 to 4.75 GeV. The reaction $\\gamma p \\rightarrow K^+K^+ \\pi^- (\\Xi^0)$ has also been investigated to search for excited cascade resonances decaying to $\\pi^- \\Xi^0$. No significant signal of excited cascade states other than the well-known $\\Xi^{*-}(1530)$ is observed. We also present the latest results of a search for the $\\Phi^{--}$(1862) exotic pentaquark state in a photoproduction experiment on a deuterium target. A high-statistics sample of $\\pi^-\\Xi^-$ events have been collected and analyzed. A preliminary invariant mass spectrum of the $\\pi^-\\Xi^-$ system is presented, which is used to set upper limits on the photoproduction of the $\\Phi^{--}$ pentaquark state.

  17. Production and Searches for Cascade Baryons with Clas

    NASA Astrophysics Data System (ADS)

    Smith, Elton S.

    2010-10-01

    We present the results of photoproduction cross sections of the ground state cascade Ξ- and the first excited state Ξ*-(1530) measured with the CLAS detector. The photoproduction of the cascade resonances has been investigated in the reactions γp → K+K+(X) and γp → K+K+π-(X). The differential and total cross sections of the Ξ- were determined for photon beam energies from 2.75 to 4.75 GeV and are consistent with a production mechanism of Y* → K+Ξ- through a t-channel process. The cross-section of the Ξ*-(1530) has been determined for photon beam energies from 3.35 to 4.75 GeV. The reaction γp → K+K+π-(Ξ0) has also been investigated in the search for excited cascade resonances decaying to π-Ξ0. No significant signal of excited cascade states other than the well-known Ξ*-(1530) is observed. We also present the latest results of a search for the Φ--(1862) exotic pentaquark state in a photoproduction experiment on a deuterium target. A high-statistics sample of π-Ξ- events have been collected and analyzed. A preliminary invariant mass spectrum of the π-Ξ- system is presented, which is used to set upper limits on the photoproduction of the Φ-- pentaquark state.

  18. 2s photoionization and subsequent Auger cascade in atomic Si

    SciTech Connect

    Partanen, L.; Fritzsche, S.; Jaenkaelae, K.; Huttula, M.; Osmekhin, S.; Aksela, H.; Aksela, S.; Urpelainen, S.

    2010-06-15

    The 2s photoionization and subsequent Auger transition cascade in atomic Si were studied by means of synchrotron-radiation-induced electron spectroscopy. After the 2s photoionization, the core hole states decay predominantly by a two-step Auger transition cascade into the triply ionized [Ne]nl states. The ionization channels of the 2s core-ionized Si{sup +} atoms to Si{sup 3+} ions were observed by measuring the conventional Auger electron spectra of the L{sub 1}-L{sub 2,3}M Coster-Kronig transitions and the L{sub 2,3}M-MMM Auger transitions. The observed L{sub 1}-L{sub 2,3}M and L{sub 2,3}M-MMM Auger spectra were analyzed by means of extensive multiconfiguration Dirac-Fock computations. We found that the electron correlation plays a prominent role in the Auger cascade, especially for the final-step Auger L{sub 2,3}M-MMM spectrum. Additionally, it was seen that the L{sub 2,3}M-MMM Auger spectrum of Si includes more Auger groups than the isoelectronic L{sub 2,3}-MM Auger spectrum of Al. Thus, more information on the intermediate ionic states is obtained if they are produced by Auger cascade rather than by direct photoionization.

  19. Interband Cascade Photovoltaic Cells

    SciTech Connect

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  20. Molecular dynamics simulation of radiation damage cascades in diamond

    SciTech Connect

    Buchan, J. T.; Robinson, M.; Christie, H. J.; Roach, D. L.; Ross, D. K.; Marks, N. A.

    2015-06-28

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  1. Spatial correlation analysis of cascading failures: Congestions and Blackouts

    PubMed Central

    Daqing, Li; Yinan, Jiang; Rui, Kang; Havlin, Shlomo

    2014-01-01

    Cascading failures have become major threats to network robustness due to their potential catastrophic consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading via direct contacts due to structural interdependencies, overload failures usually propagate through collective interactions among system components. Despite the critical need in developing protection or mitigation strategies in networks such as power grids and transportation, the propagation behavior of cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards improving actively system resilience ranging from evaluation of design schemes, development of protection strategies to implementation of mitigation programs. PMID:24946927

  2. Spatial correlation analysis of cascading failures: Congestions and Blackouts

    NASA Astrophysics Data System (ADS)

    Daqing, Li; Yinan, Jiang; Rui, Kang; Havlin, Shlomo

    2014-06-01

    Cascading failures have become major threats to network robustness due to their potential catastrophic consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading via direct contacts due to structural interdependencies, overload failures usually propagate through collective interactions among system components. Despite the critical need in developing protection or mitigation strategies in networks such as power grids and transportation, the propagation behavior of cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards improving actively system resilience ranging from evaluation of design schemes, development of protection strategies to implementation of mitigation programs.

  3. Spatial correlation analysis of cascading failures: congestions and blackouts.

    PubMed

    Daqing, Li; Yinan, Jiang; Rui, Kang; Havlin, Shlomo

    2014-06-20

    Cascading failures have become major threats to network robustness due to their potential catastrophic consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading via direct contacts due to structural interdependencies, overload failures usually propagate through collective interactions among system components. Despite the critical need in developing protection or mitigation strategies in networks such as power grids and transportation, the propagation behavior of cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards improving actively system resilience ranging from evaluation of design schemes, development of protection strategies to implementation of mitigation programs.

  4. Messenger RNA Decay.

    PubMed

    Kushner, Sidney R

    2007-04-01

    This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.

  5. A Time Domain Analysis of Gust-Cascade Interaction Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Hixon, R.; Sawyer, S. D.; Dyson, R. W.

    2003-01-01

    The gust response of a 2 D cascade is studied by solving the full nonlinear Euler equations employing higher order accurate spatial differencing and time stepping techniques. The solutions exhibit the exponential decay of the two circumferential mode orders of the cutoff blade passing frequency (BPF) tone and propagation of one circumferential mode order at 2BPF, as would be expected for the flow configuration considered. Two frequency excitations indicate that the interaction between the frequencies and the self interaction contribute to the amplitude of the propagating mode.

  6. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  7. Determining Pentaquark Quantum Numbers from Strong Decays

    SciTech Connect

    Thomas Mehen; Carlos Schat

    2004-05-01

    Assuming that the recently observed {Theta}{sup +} and {Xi}{sup --} are members of an anti-decuplet of SU(3), decays to ground state baryons and mesons are calculated using an effective Lagrangian which incorporates chiral and SU(3) symmetry. We consider the possible quantum number assignments J{sup {Pi}} = 1/2 {sup {+-}} {center_dot} 3/2 {sup {+-}} and calculate ratios of partial widths. The branching ratios of exotic cascades can be used to discriminate between even and odd parity pentaquarks.

  8. Autoregressive cascades on random networks

    NASA Astrophysics Data System (ADS)

    Iyer, Srikanth K.; Vaze, Rahul; Narasimha, Dheeraj

    2016-04-01

    A network cascade model that captures many real-life correlated node failures in large networks via load redistribution is studied. The considered model is well suited for networks where physical quantities are transmitted, e.g., studying large scale outages in electrical power grids, gridlocks in road networks, and connectivity breakdown in communication networks, etc. For this model, a phase transition is established, i.e., existence of critical thresholds above or below which a small number of node failures lead to a global cascade of network failures or not. Theoretical bounds are obtained for the phase transition on the critical capacity parameter that determines the threshold above and below which cascade appears or disappears, respectively, that are shown to closely follow numerical simulation results.

  9. Cascade Reservoirs Floodwater Resources Utilization

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    A reasonable floodwater resources utilization method is put forward by dynamic controlling of cascade reservoirs flood control limited level in this paper. According to the probability distribution of the beginning time of the first flood and the ending time of the final flood from July to September, the Fuzzy Statistic Analysis was used to divide the main flood season. By fitting the flood season membership functions of each period, the cascade reservoirs flood control limited water level for each period were computed according to the characteristic data of reservoirs. In terms of the benefit maximization and risk minimum principle, the reasonable combination of flood control limited water level of cascade reservoirs was put forward.

  10. Baryonic B Decays

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.

  11. Bosonic cascades of indirect excitons

    NASA Astrophysics Data System (ADS)

    Nalitov, A. V.; De Liberato, S.; Lagoudakis, P.; Savvidis, P. G.; Kavokin, A. V.

    2017-08-01

    Recently, the concept of the terahertz bosonic cascade laser (BCL) based on a parabolic quantum well (PQW) embedded in a microcavity was proposed. We refine this proposal by suggesting transitions between indirect exciton (IX) states as a source of terahertz emission. We explicitly propose a structure containing a narrow-square QW and a wide-parabolic QW for the realisation of a bosonic cascade. Advantages of this type of structures are in large dipole matrix elements for terahertz transitions and in long exciton radiative lifetimes which are crucial for realisation of threshold and quantum efficiency BCLs.

  12. Cascading dynamics in modular networks

    NASA Astrophysics Data System (ADS)

    Galstyan, Aram; Cohen, Paul

    2007-03-01

    In this paper we study a simple cascading process in a structured heterogeneous population, namely, a network composed of two loosely coupled communities. We demonstrate that under certain conditions the cascading dynamics in such a network has a two-tiered structure that characterizes activity spreading at different rates in the communities. We study the dynamics of the model using both simulations and an analytical approach based on annealed approximation and obtain good agreement between the two. Our results suggest that network modularity might have implications in various applications, such as epidemiology and viral marketing.

  13. Nanowire terahertz quantum cascade lasers

    SciTech Connect

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  14. Yukawa unified supersymmetric SO(10) model: Cosmology, rare decays, and collider searches

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Brhlik, Michal; Díaz, Marco A.; Ferrandis, Javier; Mercadante, Pedro; Quintana, Pamela; Tata, Xerxes

    2001-01-01

    It has recently been pointed out that viable sparticle mass spectra can be generated in Yukawa unified SO(10) supersymmetric grand unified models consistent with radiative breaking of electroweak symmetry. Model solutions are obtained only if tan β~50, μ<0 and positive D-term contributions to scalar masses from SO(10) gauge symmetry breaking are used. In this paper, we attempt to systematize the parameter space regions where solutions are obtained. We go on to calculate the relic density of neutralinos as a function of parameter space. No regions of the parameter space explored were actually cosmologically excluded, and very reasonable relic densities were found in much of parameter space. Direct neutralino detection rates could exceed 1 event/kg/day for a 73Ge detector, for low values of GUT scale gaugino mass m1/2. We also calculate the branching fraction for b-->sγ decays, and find that it is beyond the 95% C.L. experimental limits in much, but not all, of the parameter space regions explored. For the Fermilab Tevatron collider, significant regions of parameter space can be explored via bb¯A and bb¯H searches. There also exist some limited regions of parameter space where a trilepton signal can be seen at TeV33. Finally, there exist significant regions of parameter space where direct detection of bottom squark pair production can be made, especially for large negative values of the GUT parameter A0.

  15. Beyond the CMSSM without an accelerator: Proton decay and direct dark matter detection

    DOE PAGES

    Ellis, John; Evans, Jason L.; Luo, Feng; ...

    2016-01-05

    Here, we consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale Minbelow the grand unification (GUT) scale MGUT, a scenario referred to as ‘sub-GUT’. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale. Because ofmore » these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if Min is close to MGUT, but it may lie within its reach if Min≲1011 GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.« less

  16. Beyond the CMSSM without an accelerator: proton decay and direct dark matter detection.

    PubMed

    Ellis, John; Evans, Jason L; Luo, Feng; Nagata, Natsumi; Olive, Keith A; Sandick, Pearl

    We consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale [Formula: see text]below the grand unification (GUT) scale [Formula: see text], a scenario referred to as 'sub-GUT'. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale. Because of these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if [Formula: see text] is close to [Formula: see text], but it may lie within its reach if [Formula: see text] GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.

  17. Inverse turbulent cascade in swarming sperm

    NASA Astrophysics Data System (ADS)

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa; Plouraboue, Franck; Inra, Cnrs, Umr, F-37380 Nouzilly, France Team; Université de Toulouse, Inpt, Ups, Imft, Umr 5502, France Team

    2014-11-01

    Collective motion of self-sustained swarming flows has recently provided examples of small scale turbulence arising where viscosity effects are dominant. We report the first observation of an universal inverse enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of velocity field power-spectrum and relative dispersion of small beads consistent with theoretical predictions in two-dimensional turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures the size of which provides turbulence's integral scale. We propose a consistent explanation for this quasi-two-dimensional turbulence based on self-structured laminated flow forced by steric interaction and alignment, a state of active matter that we call ``swarming liquid crystal.'' We develop scaling arguments consistent with this interpretation. The implication of multi-scale collective dynamics of sperm's collective motility for fertility assessment is discussed. This work has been supported by the French Agence Nationale pour la Recherche (ANR) in the frame of the Contract MOTIMO (ANR-11-MONU-009-01). We thank Pierre Degond, Eric Climent, Laurent Lacaze and Frédéric Moulin for interesting discussions.

  18. Engineering Light: Quantum Cascade Lasers

    ScienceCinema

    Claire Gmachl

    2016-07-12

    Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.

  19. Applications of cascade multilevel inverters.

    PubMed

    Peng, Fang-zen; Qian, Zhao-ming

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters.

  20. Engineering Light: Quantum Cascade Lasers

    SciTech Connect

    Claire Gmachl

    2010-03-17

    Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.

  1. CASCADE: Introducing AI into CBT.

    ERIC Educational Resources Information Center

    Hendley, R. J.; Jurascheck, N.

    1992-01-01

    Discusses changes in training requirements of commerce and industry in the United Kingdom and describes a project, CASCADE, that was developed to investigate and implement the introduction of artificial intelligence (AI) techniques into computer-based training (CBT). An overview of pilot projects in higher education settings is provided. (eight…

  2. Activation Cascading in Sign Production

    ERIC Educational Resources Information Center

    Navarrete, Eduardo; Peressotti, Francesca; Lerose, Luigi; Miozzo, Michele

    2017-01-01

    In this study, we investigated how activation unfolds in sign production by examining whether signs that are not produced have their representations activated by semantics (cascading of activation). Deaf signers were tested with a picture-picture interference task. Participants were presented with pairs of overlapping pictures and named the green…

  3. Unsteady transonic flow in cascades

    NASA Technical Reports Server (NTRS)

    Surampudi, S. P.; Adamczyk, J. J.

    1984-01-01

    There is a need for methods to predict the unsteady air loads associated with flutter of turbomachinery blading at transonic speeds. The results of such an analysis in which the steady relative flow approaching a cascade of thin airfoils is assumed to be transonic, irrotational, and isentropic is presented. The blades in the cascade are allowed to undergo a small amplitude harmonic oscillation which generates a small unsteady flow superimposed on the existing steady flow. The blades are assumed to oscillate with a prescribed motion of constant amplitude and interblade phase angle. The equations of motion are obtained by linearizing about a uniform flow the inviscid nonheat conducting continuity and momentum equations. The resulting equations are solved by employing the Weiner Hopf technique. The solution yields the unsteady aerodynamic forces acting on the cascade at Mach number equal to 1. Making use of an unsteady transonic similarity law, these results are compared with the results obtained from linear unsteady subsonic and supersonic cascade theories. A parametric study is conducted to find the effects of reduced frequency, solidity, stagger angle, and position of pitching axis on the flutter.

  4. Activation Cascading in Sign Production

    ERIC Educational Resources Information Center

    Navarrete, Eduardo; Peressotti, Francesca; Lerose, Luigi; Miozzo, Michele

    2017-01-01

    In this study, we investigated how activation unfolds in sign production by examining whether signs that are not produced have their representations activated by semantics (cascading of activation). Deaf signers were tested with a picture-picture interference task. Participants were presented with pairs of overlapping pictures and named the green…

  5. Dynamics robustness of cascading systems.

    PubMed

    Young, Jonathan T; Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko

    2017-03-01

    A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a

  6. PANEL CODE FOR PLANAR CASCADES

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1994-01-01

    The Panel Code for Planar Cascades was developed as an aid for the designer of turbomachinery blade rows. The effective design of turbomachinery blade rows relies on the use of computer codes to model the flow on blade-to-blade surfaces. Most of the currently used codes model the flow as inviscid, irrotational, and compressible with solutions being obtained by finite difference or finite element numerical techniques. While these codes can yield very accurate solutions, they usually require an experienced user to manipulate input data and control parameters. Also, they often limit a designer in the types of blade geometries, cascade configurations, and flow conditions that can be considered. The Panel Code for Planar Cascades accelerates the design process and gives the designer more freedom in developing blade shapes by offering a simple blade-to-blade flow code. Panel, or integral equation, solution techniques have been used for several years by external aerodynamicists who have developed and refined them into a primary design tool of the aircraft industry. The Panel Code for Planar Cascades adapts these same techniques to provide a versatile, stable, and efficient calculation scheme for internal flow. The code calculates the compressible, inviscid, irrotational flow through a planar cascade of arbitrary blade shapes. Since the panel solution technique is for incompressible flow, a compressibility correction is introduced to account for compressible flow effects. The analysis is limited to flow conditions in the subsonic and shock-free transonic range. Input to the code consists of inlet flow conditions, blade geometry data, and simple control parameters. Output includes flow parameters at selected control points. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 590K of 8 bit bytes. This program was developed in 1982.

  7. Quantized supercurrent decay in an annular Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Moulder, Stuart; Beattie, Scott; Smith, Robert P.; Tammuz, Naaman; Hadzibabic, Zoran

    2012-07-01

    We study the metastability and decay of multiply charged superflow in a ring-shaped atomic Bose-Einstein condensate. Supercurrent corresponding to a giant vortex with topological charge up to q=10 is phase imprinted optically and detected both interferometrically and kinematically. We observe q=3 superflow persisting for up to a minute and clearly resolve a cascade of quantized steps in its decay. These stochastic decay events, associated with vortex-induced 2π phase slips, correspond to collective jumps of atoms between discrete q values. We demonstrate the ability to detect quantized rotational states with >99% fidelity, which allows a detailed quantitative study of time-resolved phase-slip dynamics. We find that the supercurrent decays rapidly if the superflow speed exceeds a critical velocity in good agreement with numerical simulations, and we also observe rare stochastic phase slips for superflow speeds below the critical velocity.

  8. Cascaded Bragg scattering in fiber optics.

    PubMed

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  9. Cascade aeroacoustics including steady loading effects

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiao-Wei D.; Fleeter, Sanford

    A mathematical model is developed to analyze the effects of airfoil and cascade geometry, steady aerodynamic loading, and the characteristics of the unsteady flow field on the discrete frequency noise generation of a blade row in an incompressible flow. The unsteady lift which generates the noise is predicted with a complex first-order cascade convected gust analysis. This model was then applied to the Gostelow airfoil cascade and variations, demonstrating that steady loading, cascade solidity, and the gust direction are significant. Also, even at zero incidence, the classical flat plate cascade predictions are unacceptable.

  10. Limits of Predictability of Cascading Overload Failures in Spatially-Embedded Networks with Distributed Flows.

    PubMed

    Moussawi, A; Derzsy, N; Lin, X; Szymanski, B K; Korniss, G

    2017-09-15

    Cascading failures are a critical vulnerability of complex information or infrastructure networks. Here we investigate the properties of load-based cascading failures in real and synthetic spatially-embedded network structures, and propose mitigation strategies to reduce the severity of damages caused by such failures. We introduce a stochastic method for optimal heterogeneous distribution of resources (node capacities) subject to a fixed total cost. Additionally, we design and compare the performance of networks with N-stable and (N-1)-stable network-capacity allocations by triggering cascades using various real-world node-attack and node-failure scenarios. We show that failure mitigation through increased node protection can be effectively achieved against single-node failures. However, mitigating against multiple node failures is much more difficult due to the combinatorial increase in possible sets of initially failing nodes. We analyze the robustness of the system with increasing protection, and find that a critical tolerance exists at which the system undergoes a phase transition, and above which the network almost completely survives an attack. Moreover, we show that cascade-size distributions measured in this region exhibit a power-law decay. Finally, we find a strong correlation between cascade sizes induced by individual nodes and sets of nodes. We also show that network topology alone is a weak predictor in determining the progression of cascading failures.

  11. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    PubMed Central

    Słomka, Jonasz; Dunkel, Jörn

    2017-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853

  12. Cascade Mountain Range in Oregon

    USGS Publications Warehouse

    Sherrod, David R.

    2016-01-01

    Along its Oregon segment, the Cascade Range is almost entirely volcanic in origin. The volcanoes and their eroded remnants are the visible magmatic expression of the Cascadia subduction zone, where the offshore Juan de Fuca tectonic plate is subducted beneath North America. Subduction occurs as two lithospheric plates collide, and an underthrusted oceanic plate is commonly dragged into the mantle by the pull of gravity, carrying ocean-bottom rock and sediment down to where heat and pressure expel water. As this water rises, it lowers the melting temperature in the overlying hot mantle rocks, thereby promoting melting. The molten rock supplies the volcanic arcs with heat and magma. Cascade Range volcanoes are part of the Ring of Fire, a popular term for the numerous volcanic arcs that encircle the Pacific Ocean.

  13. Bankruptcy Cascades in Interbank Markets

    PubMed Central

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank’s liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  14. Cascade Chaotic System With Applications.

    PubMed

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.

  15. Cascade model of coronal heating

    NASA Technical Reports Server (NTRS)

    Vanballegooijen, A. A.

    1986-01-01

    It is suggested that the quasi-static evolution of coronal magnetic structures is characterized by a cascade of magnetic energy to smaller length scales. This cascade process takes place on a time scale t sub b determined entirely by the photospheric motions. The Ohmic heating rate E sub H in the statistically stationary state was estimated using observational data on the diffusivity of photospheric motions; E sub H turned out to be too small by a factor of 40 when compared with observed coronal energy losses. However, given the fact that the theoretical estimate is based on a rather uncertain extrapolation to the diffusive regime, current heating cannot be ruled out as a viable mechanism of coronal heating.

  16. Bankruptcy cascades in interbank markets.

    PubMed

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.

  17. Radiative decays at LHCb

    NASA Astrophysics Data System (ADS)

    Giubega, L. E.

    2016-12-01

    Precise measurements on rare radiative B decays are performed with the LHCb experiment at LHC. The LHCb results regarding the ratio of branching fractions for two radiative decays, B 0 → K *0 γ and B s → ϕ γ, the direct CP asymmetry in B 0 → K *0 γ decay channel and the observation of the photon polarization in the B ± → K ±π∓π± γ decay, are included. The first two measurements were performed in 1 fb-1 of pp collisions data and the third one in 3 fb-1 of data, respectively.

  18. Is decay constant?

    PubMed

    Pommé, S; Stroh, H; Altzitzoglou, T; Paepen, J; Van Ammel, R; Kossert, K; Nähle, O; Keightley, J D; Ferreira, K M; Verheyen, L; Bruggeman, M

    2017-09-07

    Some authors have raised doubt about the invariability of decay constants, which would invalidate the exponential-decay law and the foundation on which the common measurement system for radioactivity is based. Claims were made about a new interaction - the fifth force - by which neutrinos could affect decay constants, thus predicting changes in decay rates in correlation with the variations of the solar neutrino flux. Their argument is based on the observation of permille-sized annual modulations in particular decay rate measurements, as well as transient oscillations at frequencies near 11 year(-1) and 12.7 year(-1) which they speculatively associate with dynamics of the solar interior. In this work, 12 data sets of precise long-term decay rate measurements have been investigated for the presence of systematic modulations at frequencies between 0.08 and 20 year(-1). Besides small annual effects, no common oscillations could be observed among α, β(-), β(+) or EC decaying nuclides. The amplitudes of fitted oscillations to residuals from exponential decay do not exceed 3 times their standard uncertainty, which varies from 0.00023 % to 0.023 %. This contradicts the assertion that 'neutrino-induced' beta decay provides information about the deep solar interior. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Can 'Cascades' make guidelines global?

    PubMed

    Fried, Michael; Krabshuis, Justus

    2008-10-01

    Why are guidelines in medicine so important today? What role do they have? Why and how did the World Gastroenterology Organization (WGO) choose a global focus? What does this mean for guidelines? These are the underlying questions addressed by our article. We argue that the addition of 'Cascades' to guidelines will increase their impact in large parts of the world. By so doing, we hope to add a new dimension to the 'knowledge into action' debate. A number of illustrations shows how raised expectations and resource restrictions pose - or should pose - an enormous challenge for guideline makers. Furthermore, the emphasis on evidence also creates problems for guideline making. If resources are limited it is unlikely gold-standard technologies are available. We believe Cascades can help. A Cascade is a selection of two or more hierarchical diagnostic or therapeutic options, based on proven medical procedures, methods, tools or products for the same disease, condition or diagnosis, aiming to achieve the same outcome and ranked by available resources. The construction of such a cascade is a hazardous intellectual journey that goes, to some extent, against established practice. But lives can be saved by matching options for diagnosis and treatment to available resources. While the optimal strategy, defined through an evidence-based approach, should always be the goal, one must be aware of the resource limitations that confront our colleagues in certain parts of the world and we should endeavour to work with them in the guideline development process to develop strategies that are clinically sound yet economically feasible and dacceptable to their populace.

  20. Lens Coupled Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  1. Dynamics robustness of cascading systems

    PubMed Central

    Kaneko, Kunihiko

    2017-01-01

    A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade’s kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a

  2. Enantioselective organo-cascade catalysis.

    PubMed

    Huang, Yong; Walji, Abbas M; Larsen, Catharine H; MacMillan, David W C

    2005-11-02

    A new strategy for organocatalysis based on the biochemical blueprints of biosynthesis has enabled a new laboratory approach to cascade catalysis. Imidazolidinone-based catalytic cycles, involving iminium and enamine activation, have been successfully combined to allow a large diversity of nucleophiles (furans, thiophenes, indoles, butenolides, hydride sources, tertiary amino lactone equivalents) and electrophiles (fluorinating and chlorinating reagents) to undergo sequential addition with a wide array of alpha,beta-unsaturated aldehydes. These new cascade catalysis protocols allow the invention of enantioselective transformations that were previously unknown, including the asymmetric catalytic addition of the elements of HF across a trisubstituted olefin. Importantly, these domino catalysis protocols can be mediated by a single imidazolidinone catalyst or using cycle-specific amine catalysts. In the latter case, cascade catalysis pathways can be readily modulated to provide a required diastereo- and enantioselective outcome via the judicious selection of the enantiomeric series of the amine catalysts. A central benefit of combining multiple asymmetric organocatalytic events into one sequence is the intrinsic requirement for enantioenrichment in the second induction cycle, as demonstrated by the enantioselectivities obtained throughout this study (>/=99% ee in all cases).

  3. Turbulence: Does Energy Cascade Exist?

    NASA Astrophysics Data System (ADS)

    Josserand, Christophe; Le Berre, Martine; Lehner, Thierry; Pomeau, Yves

    2017-05-01

    To answer the question whether a cascade of energy exists or not in turbulence, we propose a set of correlation functions able to test if there is an irreversible transfert of energy, step by step, from large to small structures. These tests are applied to real Eulerian data of a turbulent velocity flow, taken in the wind grid tunnel of Modane, and also to a prototype model equation for wave turbulence. First we demonstrate the irreversible character of the flow by using multi-time correlation function at a given point of space. Moreover the unexpected behavior of the test function leads us to connect irreversibility and finite time singularities (intermittency). Secondly we show that turbulent cascade exists, and is a dynamical process, by using a test function depending on time and frequency. The cascade shows up only in the inertial domain where the kinetic energy is transferred more rapidly (on average) from the wavenumber k1 to k2 than from k1 to k'2 larger than k2.

  4. Demixing cascades in cluster crystals.

    PubMed

    Wilding, Nigel B; Sollich, Peter

    2014-09-07

    In a cluster crystal, each lattice site is occupied by multiple soft-core particles. As the number density is increased at zero temperature, a "cascade" of isostructural phase transitions can occur between states whose site occupancy differs by unity. For low but finite temperature, each of these transitions terminates in a critical point. Using tailored Monte Carlo simulation techniques, we have studied such demixing cascades in systems of soft particles interacting via potentials of the generalized exponential form u(r) = ε exp [-(r/σ)(n)]. We have estimated the critical parameters of the first few transitions in the cascade as a function of the softness parameter n. The critical temperature and pressure exhibit non-monotonic behavior as n is varied, although the critical chemical potential remains monotonic. The trends for the pressure and chemical potential are confirmed by cell model calculations at zero temperature. As n → 2(+), all the transitions that we have observed are preempted by melting although we cannot rule out that clustering transitions survive at high density.

  5. Snag dynamics in chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington state, USA.

    Treesearch

    Richard L. Everett; John Lehmkuhl; Richard Schellhaas; [and others].

    1999-01-01

    Sang numbers and decay class were measured on a chronosequence of 26 wildfires (ages 1-81 years) on the east slope of the Cascade Range in Washington. Snag longevity and resultant snag densities varied spatially across burns in relation to micro-topographic position. Longevity of snags Picea...

  6. Design and characterization of a compact multi-detector gamma array for studies of induced gamma emission: spontaneous decay of 178m2Hf as a test case

    NASA Astrophysics Data System (ADS)

    Ugorowski, P.; Propri, R.; Karamian, S. A.; Gohlke, D.; Lazich, J.; Caldwell, N.; Chakrawarthy, R. S.; Helba, M.; Roberts, H.; Carroll, J. J.

    2007-03-01

    Recent scientific attention has focused on the m2 isomeric state of Hafnium, 178m2Hf. The spontaneous decay of 178m2Hf takes the form of a cascade of gamma photons, totaling 2.4 MeV of energy per nucleus, or approximately 1.3 GigaJoules/gram. If all the decays were simultaneous, exawatt (10^18) energy outputs could be realized. A class of isomers called ``K-isomers'' has been studied to determine the possibility of xray-induced decay of the excited isomeric state. The purpose of the ``miniball'' detector system was to separate out possible induced cascades from the spontaneous decay cascades using nuclear calorimetry, in order to settle a recent scientific controversy involving claims of induced decay and counter-claims of null results.

  7. Measurement of ion cascade energies through resolution degradation of alpha particle microcalorimeters

    SciTech Connect

    Horansky, Robert D.; Stiehl, Gregory M.; Beall, James A.; Irwin, Kent D.; Ullom, Joel N.; Plionis, Alexander A.; Rabin, Michael W.

    2010-02-15

    Atomic cascades caused by ions impinging on bulk materials have remained of interest to the scientific community since their discovery by Goldstein in 1902. While considerable effort has been spent describing and, more recently, simulating these cascades, tools that can study individual events are lacking and several aspects of cascade behavior remain poorly known. These aspects include the material energies that determine cascade magnitude and the variation between cascades produced by monoenergetic ions. We have recently developed an alpha particle detector with a thermodynamic resolution near 100 eV full-width-at-half-maximum (FWHM) and an achieved resolution of 1.06 keV FWHM for 5.3 MeV particles. The detector relies on the absorption of particles by a bulk material and a thermal change in a superconducting thermometer. The achieved resolution of this detector provides the highest resolving power of any energy dispersive technique and a factor of 8 improvement over semiconductor detectors. The exquisite resolution can be directly applied to improved measurements of fundamental nuclear decays and nuclear forensics. In addition, we propose that the discrepancy between the thermodynamic and achieved resolution is due to fluctuations in lattice damage caused by ion-induced cascades in the absorber. Hence, this new detector is capable of measuring the kinetic energy converted to lattice damage in individual atomic cascades. This capability allows new measurements of cascade dynamics; for example, we find that the ubiquitous modeling program, SRIM, significantly underestimates the lattice damage caused in bulk tin by 5.3 MeV alpha particles.

  8. Measurement of ion cascade energies through resolution degradation of alpha particle microcalorimeters

    NASA Astrophysics Data System (ADS)

    Horansky, Robert D.; Stiehl, Gregory M.; Beall, James A.; Irwin, Kent D.; Plionis, Alexander A.; Rabin, Michael W.; Ullom, Joel N.

    2010-02-01

    Atomic cascades caused by ions impinging on bulk materials have remained of interest to the scientific community since their discovery by Goldstein in 1902. While considerable effort has been spent describing and, more recently, simulating these cascades, tools that can study individual events are lacking and several aspects of cascade behavior remain poorly known. These aspects include the material energies that determine cascade magnitude and the variation between cascades produced by monoenergetic ions. We have recently developed an alpha particle detector with a thermodynamic resolution near 100 eV full-width-at-half-maximum (FWHM) and an achieved resolution of 1.06 keV FWHM for 5.3 MeV particles. The detector relies on the absorption of particles by a bulk material and a thermal change in a superconducting thermometer. The achieved resolution of this detector provides the highest resolving power of any energy dispersive technique and a factor of 8 improvement over semiconductor detectors. The exquisite resolution can be directly applied to improved measurements of fundamental nuclear decays and nuclear forensics. In addition, we propose that the discrepancy between the thermodynamic and achieved resolution is due to fluctuations in lattice damage caused by ion-induced cascades in the absorber. Hence, this new detector is capable of measuring the kinetic energy converted to lattice damage in individual atomic cascades. This capability allows new measurements of cascade dynamics; for example, we find that the ubiquitous modeling program, SRIM, significantly underestimates the lattice damage caused in bulk tin by 5.3 MeV alpha particles.

  9. The fate of long-lived superparticles with hadronic decays after LHC Run 1

    SciTech Connect

    Liu, Zhen; Tweedie, Brock

    2015-06-08

    Supersymmetry searches at the LHC are both highly varied and highly constraining, but the vast majority are focused on cases where the final-stage visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches for collider-stable and displaced new particles facilitates recastings into powerful long-lived superparticle searches, even for models for which those searches are highly non-optimized. In this paper, we assess the status of such models in the context of baryonic R-parity violation, gauge mediation, and mini-split SUSY. We then explore a number of common simplified spectra where hadronic decays can be important, employing recasts of LHC searches that utilize different detector systems and final-state objects. The LSP/NLSP possibilities considered here include generic colored superparticles such as the gluino and light-flavor squarks, as well as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness. We find that complementary coverage over large swaths of mass and lifetime is achievable by superimposing limits, particularly from CMS’s tracker-based displaced dijet search and heavy stable charged particle searches. By adding in prompt searches, we find many cases where a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.

  10. The fate of long-lived superparticles with hadronic decays after LHC Run 1

    DOE PAGES

    Liu, Zhen; Tweedie, Brock

    2015-06-08

    Supersymmetry searches at the LHC are both highly varied and highly constraining, but the vast majority are focused on cases where the final-stage visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches for collider-stable and displaced new particles facilitates recastings into powerful long-lived superparticle searches, even for models for which those searches are highly non-optimized. In this paper, we assess the status of such models in the context of baryonic R-parity violation, gauge mediation,more » and mini-split SUSY. We then explore a number of common simplified spectra where hadronic decays can be important, employing recasts of LHC searches that utilize different detector systems and final-state objects. The LSP/NLSP possibilities considered here include generic colored superparticles such as the gluino and light-flavor squarks, as well as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness. We find that complementary coverage over large swaths of mass and lifetime is achievable by superimposing limits, particularly from CMS’s tracker-based displaced dijet search and heavy stable charged particle searches. By adding in prompt searches, we find many cases where a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.« less

  11. The blue light indicator in rubidium 5S-5P-5D cascade excitation

    NASA Astrophysics Data System (ADS)

    Raja, Waseem; Ali, Md. Sabir; Chakrabarti, Alok; Ray, Ayan

    2017-07-01

    The cascade system has played an important role in contemporary research areas related to fields like Rydberg excitation, four wave mixing and non-classical light generation, etc. Depending on the specific objective, co or counter propagating pump-probe laser experimental geometry is followed. However, the stepwise excitation of atoms to states higher than the first excited state deals with increasingly much fewer number of atoms even compared to the population at first excited level. Hence, one needs a practical indicator to study the complex photon-atom interaction of the cascade system. Here, we experimentally analyze the case of rubidium 5S → 5P → 5D as a specimen of two-step excitation and highlight the efficacy of monitoring one branch, which emits 420 nm, of associated cascade decay route 5D → 6P → 5S, as an effective monitor of the coherence in the system.

  12. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  13. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  14. Chapter 3: Wood Decay

    Treesearch

    Dan Cullen

    2014-01-01

    A significant portion of global carbon is sequestered in forest systems. Specialized fungi have evolved to efficiently deconstruct woody plant cell walls. These important decay processes generate litter, soil bound humic substances, or carbon dioxide and water. This chapter reviews the enzymology and molecular genetics of wood decay fungi, most of which are members of...

  15. Study of inner-shell vacancy cascades by coincidence techniques

    SciTech Connect

    LeBrun, T.; Arp, U.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    An inner-shell vacancy in an atom decays by an intricate combination of Auger and fluorescence processes. The interrelation between these processes is not well understood because traditional studies of core-excited atoms focus on only one of the many particles that participate in the relaxation - largely ignoring the other components and the correlations between them. To understand these correlations we developed a coincidence technique that uses coincident detection of X-rays and electrons to select decay pathways that involve emission of both an X-ray photon and electrons. In the first application of this technique, the Ar 1s photoelectron spectrum was recorded selectively in coincidence with X-ray fluorescence to eliminate the asymmetric broadening and shifting of the energy distribution which results due to post-collision interaction with K-Auger electrons. This allowed the direct observation of the interaction between the photoelectron and the decay of core holes created after the initial photoionization event. We have also applied this technique to the much more complex problem of understanding Auger-electron spectra produced by vacancy cascades following inner-shell excitation. For example, we previously recorded non-coincident electron spectra of L{sub 2,3}MM Auger transitions following K-shell excitation of argon. Interpretation of these spectra is difficult because they are complicated and consist of many overlapping or unresolved Auger transitions between different ionic states.

  16. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  17. Effects of quantum interference in spectra of cascade spontaneous emission from multilevel systems

    NASA Astrophysics Data System (ADS)

    Makarov, A. A.; Yudson, V. I.

    2016-12-01

    A general expression for the spectrum of cascade spontaneous emission from an arbitrary multilevel system is presented. Effects of the quantum interference of photons emitted in different transitions are analyzed. These effects are especially essential when the transition frequencies are close. Several examples are considered: (i) Three-level system; (ii) Harmonic oscillator; (iii) System with equidistant levels and equal rates of the spontaneous decay for all the transitions; (iv) Dicke superradiance model.

  18. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    SciTech Connect

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J

    2008-10-09

    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  19. B Decay Charm Counting via Topological Vertexing

    SciTech Connect

    Chou, Aaron S

    2001-10-15

    We present a new and unique measurement of the branching fractions of b hadrons to states with 0, 1, and 2 open charm hadrons, using a sample of 350,000 hadronic Z{sup 0} decays collected during the SLD/SLC 97-98 run. The method takes advantage of the excellent vertexing resolution of the VXD3, a pixel-based CCD vertex detector, which allows the separation of B and cascade D decay vertices. A fit of the vertex count and the decay length distributions to distribution shapes predicted by Monte Carlo simulation allows the extraction of the inclusive branching fractions. We measure: BR(B {yields} (0D)X) = (3.7{+-}1.1(stat) {+-} 2.1(syst))%; and BR(B {yields} (2D)X) = (17.9{+-}1.4(stat) {+-} 3.3(syst))% where B and D represent mixtures of open b and open c hadrons. The corresponding charm count, N{sub c} = 1.188 {+-} 0.010 {+-} 0.040 {+-} 0.006 is consistent with previous measurement averages but slightly closer to theoretical expectations.

  20. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  1. Cascade photo production at CLAS

    SciTech Connect

    Goetz, John; Hicks, Kenneth H.

    2014-09-01

    The famous discovery of the Omega in 1964 put the quark model on firm ground and since then a lot of effort has been spent on mapping out the baryonic and mesonic states. Over the following decades, many excited baryons with light quarks (up, down and strange) have been measured, but by most predictions, only a small percentage of those expected have been found. In this talk, I will discuss a newly developing technique using an (unflavored) photon beam to excite protons to doubly-strange "Cascade" (Xi) states. Advantages of such an experiment and associated difficulties will be presented, along with recent results from the CLAS detector at Jefferson Lab in Virginia.

  2. Flat Plate Cascades at Supersonic Speed

    NASA Technical Reports Server (NTRS)

    El Badrawy, Rashad M

    1956-01-01

    A brief review of exact two-dimensional supersonic flow theory and Ackeret's linearized theory are first presented. The lift and drag coefficients of a cascade of flat plates are calculated exactly and compared to those obtained using the linearized theory. The forces on the cascade are determined for unsteady inlet flow. The flat plate cascade theory is extended to compute the efficiency of a supersonic propeller with friction and finite blade thickness.

  3. Cascades on clique-based graphs.

    PubMed

    Hackett, Adam; Gleeson, James P

    2013-06-01

    We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of highly clustered random graphs introduced by Gleeson [J. P. Gleeson, Phys. Rev. E 80, 036107 (2009)]. A condition for the existence of global cascades is also derived. Applications of this approach include analyses of percolation, and Watts's model. We show how our techniques can be used to study the effects of in-group bias in cascades on social networks.

  4. Hydraulic machine with non-uniform cascade

    NASA Astrophysics Data System (ADS)

    Haluza, M.; Pochylý, F.; Habán, V.

    2012-11-01

    In this article is introduced the sentence of an extension of operational zone of hydraulic machines. The problems of its extending is based on the design of non-uniform cascade. The non-uniform cascade is connected with other factors. The change of own frequency of the runner of a hydraulic machine and pressure pulsations. The suitable construction of non-uniform cascade is introduced on the results of computational simulation and experiment.

  5. Contingency Analysis of Cascading Line Outage Events

    SciTech Connect

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  6. Tri-bimaximal Mixing from Cascades

    SciTech Connect

    Takahashi, Ryo

    2008-11-23

    We investigate fermion mass matrices of the cascade form which lead to the tri-bimaximal mixing in the lepton sector. The cascade neutrino matrix predicts a parameter-independent relation among the observables, which are the neutrino mixing angles and mass squared differences. The relation predicts that the atmospheric neutrino mixing angle is close to maximal. We also study phenomenological aspect of the cascade form in supersymmetric theory, which are lepton flavor violation and thermal leptogenesis. A dynamical realivation of the cascade mass matrix are also presented in U(1) flavor theory.

  7. Dynamics of cavitating cascades and inducer pumps

    NASA Technical Reports Server (NTRS)

    Brennen, C. E.; Acosta, A. J.

    1981-01-01

    Report chronicles advances in understanding and predicting unsteady dynamic characteristics of cavitating cascades and inducer pumps. It includes bibliography of 19 papers authored between 1972 and 1980.

  8. Combinedatomic–nuclear decay

    SciTech Connect

    Dzyublik, A. Ya.

    2016-05-15

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2{sup +} level of {sub 63}{sup 153}Eu and K hole, formed in the K capture by {sup 153}Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10{sup −13}, that is much less than the recent experimental findings.

  9. Beta Decay of 101Sn

    SciTech Connect

    Kavatsyuk, O.; Mazzocchi, C.; Janas, Z.; Banu, A.; Batist, L.; Becker, F.; Blazhev, A.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Jungclaus, A.; Karny, M.; Kavatsyuk, M.; Klepper, O.; Kirchner, R.; La Commara, M.; Miernik, K.; Mukha, I.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Rykaczewski, Krzysztof Piotr; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2007-01-01

    The {beta} decay of the very neutron-deficient isotope 101Sn was studied at the GSI on-line mass separator using silicon detectors for recording charged particles and germanium detectors for {gamma}-ray spectroscopy. Based on the {beta}-delayed proton data the production cross-section of 101Sn in the 50Cr + 58Ni fusion-evaporation reaction was determined to be about 60nb. The half-life of 101Sn was measured to be 1.9(3)s. For the first time {beta}-delayed {gamma}-rays of 101Sn were tentatively identified, yielding weak evidence for a cascade of 352 and 1065keV transitions in 101In. The results for the 101Sn decay as well as those from previous work on the 103Sn decay are discussed by comparing them to predictions obtained from shell model calculations employing a new interaction in the 88Sr to 132Sn model space.

  10. Quantum cascade lasers on silicon

    NASA Astrophysics Data System (ADS)

    Spott, Alexander; Peters, Jon; Davenport, Michael L.; Stanton, Eric J.; Zhang, Chong; Bewley, William W.; Merritt, Charles D.; Vurgaftman, Igor; Kim, Chul Soo; Meyer, Jerry R.; Kirch, Jeremy; Mawst, Luke J.; Botez, Dan; Bowers, John E.

    2017-02-01

    Silicon integration of mid-infrared (MIR) photonic devices promises to enable low-cost, compact sensing and detection capabilities that are compatible with existing silicon photonic and silicon electronic technologies. Heterogeneous integration by bonding III-V wafers to silicon waveguides has been employed previously to build integrated diode lasers for wavelengths from 1310 to 2010 nm. Recently, Fabry-Perot Quantum Cascade Lasers integrated on silicon provided a 4800 nm light source for MIR silicon photonic applications. Distributed feedback (DFB) lasers are appealing for many high-sensitivity chemical spectroscopic sensing applications that require a single frequency, narrow-linewidth MIR source. While heterogeneously integrated 1550 nm DFB lasers have been demonstrated by introducing a shallow surface grating on a silicon waveguide within the active region, no mid-infrared DFB laser on silicon had previously been reported. Here we demonstrate quantum cascade DFB lasers heterogeneously integrated with silicon-on-nitride-oninsulator (SONOI) waveguides. These lasers emit over 200 mW of pulsed power at room temperature and operate up to 100 °C. Although the output is not single mode, the DFB grating nonetheless imposes wavelength selectivity with 22 nm of thermal tuning.

  11. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  12. Radiative B Decays

    SciTech Connect

    Bard, D.; /Imperial Coll., London

    2011-11-23

    I discuss recent results in radiative B decays from the Belle and BaBar collaborations. I report new measurements of the decay rate and CP asymmetries in b {yields} s{gamma} and b {yields} d{gamma} decays, and measurements of the photon spectrum in b {yields} s{gamma}. Radiative penguin decays are flavour changing neutral currents which do not occur at tree level in the standard model (SM), but must proceed via one loop or higher order diagrams. These transitions are therefore suppressed in the SM, but offer access to poorlyknown SM parameters and are also a sensitive probe of new physics. In the SM, the rate is dominated by the top quark contribution to the loop, but non-SM particles could also contribute with a size comparable to leading SM contributions. The new physics effects are potentially large which makes them theoretically very interesting, but due to their small branching fractions they are typically experimentally challenging.

  13. Charmless B Decays

    SciTech Connect

    Gradl, Wolfgang; /Edinburgh U.

    2007-03-06

    Rare charmless hadronic B decays are a good testing ground for the standard model. The dominant amplitudes contributing to this class of B decays are CKM suppressed tree diagrams and b {yields} s or b {yields} d loop diagrams (''penguins''). These decays can be used to study interfering standard model (SM) amplitudes and CP violation. They are sensitive to the presence of new particles in the loops, and they provide valuable information to constrain theoretical models of B decays. The B factories BABAR at SLAC and Belle at KEK produce B mesons in the reaction e{sup +}e{sup -} {yields} {Upsilon}(4S) {yields} B{bar B}. So far they have collected integrated luminosities of about 406 fb{sup -1} and 600 fb{sup -1}, respectively. The results presented here are based on subsets of about 200-500 fb{sup -1} and are preliminary unless a journal reference is given.

  14. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  15. Radiative decays at LHCb

    SciTech Connect

    Giubega, L. E.; Collaboration: LHCb Collaboration

    2016-12-15

    Precise measurements on rare radiative B decays are performed with the LHCb experiment at LHC. The LHCb results regarding the ratio of branching fractions for two radiative decays, B{sup 0} → K{sup *0}γ and B{sub s} → ϕγ, the direct CP asymmetry in B{sup 0} → K{sup *0}γ decay channel and the observation of the photon polarization in the B{sup ±} → K{sup ±}π{sup ∓}π{sup ±}γ decay, are included. The first two measurements were performed in 1 fb{sup –1} of pp collisions data and the third one in 3 fb{sup –1} of data, respectively.

  16. MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: THE NUMERICAL METHOD

    SciTech Connect

    Gaspar, Andras; Psaltis, Dimitrios; Oezel, Feryal; Rieke, George H.; Cooney, Alan E-mail: dpsaltis@as.arizona.edu E-mail: grieke@as.arizona.edu

    2012-04-10

    We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.

  17. Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence.

    PubMed

    Müller, Wolf-Christian; Malapaka, Shiva Kumar; Busse, Angela

    2012-01-01

    The nonlinear dynamics of magnetic helicity HM, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media, is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high-resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of HM is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fluid Mech. 77, 321 (1976)]. By revisiting this theory, a universal dynamical balance relation is found that includes the effects of kinetic helicity as well as kinetic and magnetic energies on the inverse cascade of HM and explains the above-mentioned discrepancy. Consideration of the result in the context of mean-field dynamo theory suggests a nonlinear modification of the α-dynamo effect, which is important in the context of magnetic-field excitation in turbulent plasmas.

  18. INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID

    SciTech Connect

    Zrake, Jonathan

    2014-10-20

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  19. Multi-electron spectroscopy: Auger decays of the argon 2s hole.

    PubMed

    Lablanquie, Pascal; Huttula, Saana-Maija; Huttula, Marko; Andric, Lidija; Palaudoux, Jérôme; Eland, John H D; Hikosaka, Yasumasa; Shigemasa, Eiji; Ito, Kenji; Penent, Francis

    2011-11-07

    Auger decay of an inner shell hole is an efficient way to create multiply charged ions in the gas phase. We illustrate this with the example of the argon 2s decay, and show that multi-electron coincidence spectroscopy between the 2s photoelectron and all released Auger electrons leads to a complete reconstruction of the Ar 2s decay cascade. Spectra of the intermediate and final Ar(n+) states are obtained and are compared with a theoretical model. This journal is © the Owner Societies 2011

  20. Geothermal Resources of the Cascades: USGS Workshop

    NASA Astrophysics Data System (ADS)

    Guffanti, Marianne; Muffler, Patrick

    Since 1979, the Geothermal Research Program of the U.S. Geological Survey (USGS) has carried out a multidisciplinary research effort in the Cascade Range. The goal of this effort is to understand the tectonics, geology, and hydrology of the Cascades as a framework for characterizing and quantifying its geothermal resources. In May 1985, 5 years after an initial USGS-sponsored Cascades conference [Bacon, 1980], the Geothermal Research Program again sponsored a workshop on geothermal resources of the Cascade Range. Motivation for the workshop came primarily from the conviction within the Geothermal Research Program that the Cascade effort had advanced sufficiently that a forum with an explicitly geothermal focus was needed to promote the synthesis of ideas from diverse research projects. In addition, it was thought that research drilling plans in the Cascades that were being formulated by various other agencies also could benefit from the examination and evaluation that a workshop would foster. Accordingly, the workshop was designed to develop a common understanding of the status of various investigations among USGS and other scientists working in the Cascades, to stimulate renewed interest in understanding the geothermal regime of this volcanic chain, and to encourage the tectonic, geologic, and hydrologic synthesis necessary for a quantitative assessment of geothermal resources of the Cascades, a major objective of the USGS Geothermal Research Program.

  1. Cascading disaster models in postburn flash flood

    Treesearch

    Fred May

    2007-01-01

    A useful method of modeling threats from hazards and documenting their disaster causation sequences is called “cascading threat modeling.” This type of modeling enables emergency planners to address hazard and risk assessments systematically. This paper describes a cascading threat modeling and analysis process. Wildfire and an associated postburn flash flood disaster...

  2. Cascading costs: an economic nitrogen cycle.

    PubMed

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  3. Cascading costs: an economic nitrogen cycle.

    PubMed

    Moomaw, William R; Birch, Melissa B L

    2005-12-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N2. We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single tonne of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a tonne of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that tonne would cascade. The analysis reveals that it is most cost effective to remove a tonne of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  4. Cascade Harvest’ red raspberry

    USDA-ARS?s Scientific Manuscript database

    Cascade Harvest’ is a new floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). ‘Cascade Harvest’ produces a high yield of large, firm fruit suited to machine harves...

  5. Cascades in interdependent flow networks

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio

    2016-06-01

    In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  6. Weak Interactions and Instability Cascades.

    PubMed

    Kadoya, Taku; McCann, Kevin S

    2015-07-29

    Food web theory states that a weak interactor which is positioned in the food web such that it tends to deflect, or mute, energy away from a potentially oscillating consumer-resource interaction often enhances community persistence and stability. Here we examine how adding other weak interactions (predation/harvesting) on the stabilizing weak interactor alters the stability of food web using a set of well-established food web models/modules. We show that such "weak on weak" interaction chains drive an indirect dynamic cascade that can rapidly ignite a distant consumer-resource oscillator. Nonetheless, we also show that the "weak on weak" interactions are still more stable than the food web without them, and so weak interactions still generally act to stabilize food webs. Rather, these results are best interpreted to say that the degree of the stabilizing effect of a given important weak interaction can be severely compromised by other weak interactions (including weak harvesting).

  7. Cascade Joule-Thomson refrigerators

    NASA Technical Reports Server (NTRS)

    Tward, E.; Steyert, W. A.

    1983-01-01

    The design criteria for cascade Joule-Thomson refrigerators for cooling in the temperature range from 300 K to 4.2 K were studied. The systems considered use three or four refrigeration stages with various working gases to achieve the low temperatures. Each stage results in cooling to a progressively lower temperature and provides cooling at intermediate temperatures to remove the substantial amount of parasitic heat load encountered in a typical dewar. With careful dewar design considerable cooling can be achieved with moderate gas flows. For many applications, e.g., in the cooling of sensitive sensors, the fact that the refrigerator contains no moving parts and may be remotely located from the gas source is of considerable advantage. A small compressor suitable for providing the gas flows required was constructed.

  8. The Geant4 Bertini Cascade

    SciTech Connect

    Wright, D. H.; Kelsey, M. H.

    2015-12-01

    One of the medium energy hadron–nucleus interaction models in the Geant4 simulation toolkit is based partly on the Bertini intranuclear cascade model. Since its initial appearance in the toolkit, this model has been largely re-written in order to extend its physics capabilities and to reduce its memory footprint. Physics improvements include extensions in applicable energy range and incident particle types, and improved hadron–nucleon cross-sections and angular distributions. Interfaces have also been developed which allow the model to be coupled with other Geant4 models at lower and higher energies. The inevitable speed reductions due to enhanced physics have been mitigated by memory and CPU efficiency improvements. Details of these improvements, along with selected comparisons of the model to data, are discussed.

  9. Cascade replication of dissipative solitons

    NASA Astrophysics Data System (ADS)

    Kochetov, Bogdan A.; Tuz, Vladimir R.

    2017-07-01

    We report a new effect of a cascade replication of dissipative solitons from a single one. It is discussed in the framework of a common model based on the one-dimensional cubic-quintic complex Ginzburg-Landau equation in which an additional linear term is introduced to account the perturbation from a particular potential of externally applied force. The effect is demonstrated on the light beams propagating through a planar waveguide. The waveguide consists of a nonlinear layer able to guide dissipative solitons and a magneto-optic substrate. In the waveguide an externally applied force is considered to be an inhomogeneous magnetic field which is induced by modulated electric currents flowing along a set of conducting wires adjusted on the top of the waveguide.

  10. Strength loss in decayed wood

    Treesearch

    Rebecca E. Ibach; Patricia K. Lebow

    2014-01-01

    Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...

  11. Physics of cosmological cascades and observable properties

    NASA Astrophysics Data System (ADS)

    Fitoussi, T.; Belmont, R.; Malzac, J.; Marcowith, A.; Cohen-Tanugi, J.; Jean, P.

    2017-04-01

    TeV photons from extragalactic sources are absorbed in the intergalactic medium and initiate electromagnetic cascades. These cascades offer a unique tool to probe the properties of the universe at cosmological scales. We present a new Monte Carlo code dedicated to the physics of such cascades. This code has been tested against both published results and analytical approximations, and is made publicly available. Using this numerical tool, we investigate the main cascade properties (spectrum, halo extension and time delays), and study in detail their dependence on the physical parameters (extragalactic magnetic field, extragalactic background light, source redshift, source spectrum and beaming emission). The limitations of analytical solutions are emphasized. In particular, analytical approximations account only for the first generation of photons and higher branches of the cascade tree are neglected.

  12. Stochastic annealing simulation of cascades in metals

    SciTech Connect

    Heinisch, H.L.

    1996-04-01

    The stochastic annealing simulation code ALSOME is used to investigate quantitatively the differential production of mobile vacancy and SIA defects as a function of temperature for isolated 25 KeV cascades in copper generated by MD simulations. The ALSOME code and cascade annealing simulations are described. The annealing simulations indicate that the above Stage V, where the cascade vacancy clusters are unstable,m nearly 80% of the post-quench vacancies escape the cascade volume, while about half of the post-quench SIAs remain in clusters. The results are sensitive to the relative fractions of SIAs that occur in small, highly mobile clusters and large stable clusters, respectively, which may be dependent on the cascade energy.

  13. Cascade model for fluvial geomorphology

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Turcotte, D. L.

    1990-01-01

    Erosional landscapes are generally scale invariant and fractal. Spectral studies provide quantitative confirmation of this statement. Linear theories of erosion will not generate scale-invariant topography. In order to explain the fractal behavior of landscapes a modified Fourier series has been introduced that is the basis for a renormalization approach. A nonlinear dynamical model has been introduced for the decay of the modified Fourier series coefficients that yield a fractal spectra. It is argued that a physical basis for this approach is that a fractal (or nearly fractal) distribution of storms (floods) continually renews erosional features on all scales.

  14. CASCADER: An M-chain gas-phase radionuclide transport and fate model. Volume 4 -- Users guide to CASCADR9

    SciTech Connect

    Cawlfield, D.E.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-09-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or dispersion. Additionally during the transport of parent and daughter radionuclides in soil, radionuclide decay may occur. This version of CASCADER called CASCADR9 starts with the concepts presented in volumes one and three of this series. For a proper understanding of how the model works, the reader should read volume one first. Also presented in this volume is a set of realistic scenarios for buried sources of radon gas, and the input and output file structure for CASCADER9.

  15. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  16. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  17. The body size dependence of trophic cascades.

    PubMed

    DeLong, John P; Gilbert, Benjamin; Shurin, Jonathan B; Savage, Van M; Barton, Brandon T; Clements, Christopher F; Dell, Anthony I; Greig, Hamish S; Harley, Christopher D G; Kratina, Pavel; McCann, Kevin S; Tunney, Tyler D; Vasseur, David A; O'Connor, Mary I

    2015-03-01

    Trophic cascades are indirect positive effects of predators on resources via control of intermediate consumers. Larger-bodied predators appear to induce stronger trophic cascades (a greater rebound of resource density toward carrying capacity), but how this happens is unknown because we lack a clear depiction of how the strength of trophic cascades is determined. Using consumer resource models, we first show that the strength of a trophic cascade has an upper limit set by the interaction strength between the basal trophic group and its consumer and that this limit is approached as the interaction strength between the consumer and its predator increases. We then express the strength of a trophic cascade explicitly in terms of predator body size and use two independent parameter sets to calculate how the strength of a trophic cascade depends on predator size. Both parameter sets predict a positive effect of predator size on the strength of a trophic cascade, driven mostly by the body size dependence of the interaction strength between the first two trophic levels. Our results support previous empirical findings and suggest that the loss of larger predators will have greater consequences on trophic control and biomass structure in food webs than the loss of smaller predators.

  18. Beyond the CMSSM without an accelerator: Proton decay and direct dark matter detection

    SciTech Connect

    Ellis, John; Evans, Jason L.; Luo, Feng; Nagata, Natsumi; Olive, Keith A.; Sandick, Pearl

    2016-01-05

    Here, we consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale Minbelow the grand unification (GUT) scale MGUT, a scenario referred to as ‘sub-GUT’. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale. Because of these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if Min is close to MGUT, but it may lie within its reach if Min≲1011 GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.

  19. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    SciTech Connect

    Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V.

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  20. Langmuir Wave Decay in Inhomogeneous Solar Wind Plasmas: Simulation Results

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V.

    2015-08-01

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  1. Observation of quantum decay of homogeneous, isotropic (grid) turbulence

    NASA Astrophysics Data System (ADS)

    Ihas, Gary; Munday, Lydia; Yang, Jihee; Thompson, Kyle; Guo, Wei; Chapurin, Roman; Fisher, Shaun; McClintock, Peter; Vinen, W. F.

    2014-03-01

    In classical grid turbulence fluid is forced through a stationary grid. In the quantum case a grid moves through an initially stationary superfluid driven by a linear motor. We have developed a motor using superconducting drive coils and bearings, moving a grid at constant speed (0 and 15 cm/s). Stalp et al[2] report the decay of vortex-line density L in the grid's wake measured by 2nd sound attenuation. L decayed at large times as t - 3 / 2, interpreted as a quasi-classical Richardson cascade of energy-containing eddies size limited by channel width, associated with a Kolmogorov energy spectrum. It is assumed eddies produced on a scale of the grid mesh grow through the classical fluids mechanism.[3] We can now test a semi-quantitative theory with different mesh grids or channel sizes, relating to the possible existence of inverse turbulent cascades. Our 2nd sound system is conventional, but with a novel phase and amplitude feedback loop making stringent constant temperature unnecessary. Both t - 3 / 2 and non-t - 3 / 2 decays have been observed with 2 mesh sizes. US NSF DMR#0602778 and #1007937 and EPSRC EP/H04762X/1.

  2. Exotic Higgs decays

    NASA Astrophysics Data System (ADS)

    Kling, Felix

    Many models of physics beyond the Standard Model include an extended Higgs sector, responsible for electroweak symmetry breaking, and predict the existence of additional Higgs bosons. The Type II Two-Higgs-Doublet Model (2HDM) is a particularly well motivated scenario and a suitable framework for phenomenological studies of extended Higgs sectors. Its low energy spectrum includes two CP-even Higgses h and H, one CP-odd Higgs A, and a pair of charged Higgses H +/-. We study the implication of the LHC Higgs search re- sults on the Type II 2HDM and identify regions of parameter space which are consistent with all experimental and theoretical constraints and can accommo- date the observed 125 GeV Higgs signal. This includes parameter space with a distinctive mass hierarchy which permit a sizable mass splitting between the undiscovered non-Standard Model Higgs states. If this mass splitting is large enough, exotic Higgs decay channels into either a Higgs plus a Standard Model gauge boson or two lighter Higgses open up. This can significantly weaken the reach of the conventional Higgs decay channels into Standard Model particles but also provide the additional opportunity to search for exotic Higgs decay channels. We provide benchmark planes to explore exotic Higgs decay scenar- ios and perform detailed collider analyses to study the exotic decay channels H/A → AZ/HZ and H+/- → AW/HW. We find that these exotic decays offer complementary discovery channels to the conventional modes for both neutral and charged Higgs searches and permit exclusion and discovery in large regions of parameter space.

  3. Flavor changing nucleon decay

    NASA Astrophysics Data System (ADS)

    Maekawa, Nobuhiro; Muramatsu, Yu

    2017-04-01

    Recent discovery of neutrino large mixings implies the large mixings in the diagonalizing matrices of 5 bar fields in SU (5) grand unified theory (GUT), while the diagonalizing matrices of 10 fields of SU (5) are expected to have small mixings like Cabibbo-Kobayashi-Maskawa matrix. We calculate the predictions of flavor changing nucleon decays (FCND) in SU (5), SO (10), and E6 GUT models which have the above features for mixings. We found that FCND can be the main decay mode and play an important role to test GUT models.

  4. Search for the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-08-01

    A search for decays is performed using 3 .0 fb1- of pp collision data recorded by the LHCb experiment during 2011 and 2012. The f 0(980) meson is reconstructed through its decay to the π + π - final state in the mass window 900 MeV /c 2 < m( π + π -) < 1080 MeV /c 2. No significant signal is observed. The first upper limits on the branching fraction of are set at 90 % (95 %) confidence level. [Figure not available: see fulltext.

  5. Cascade Screening in Familial Hypercholesterolemia: Advancing Forward.

    PubMed

    Santos, Raul D; Frauches, Thiago S; Chacra, Ana P M

    2015-01-01

    Familial hypercholesterolemia is a genetic disorder associated with elevated LDL-cholesterol and high lifetime cardiovascular risk. Both clinical and molecular cascade screening programs have been implemented to increase early definition and treatment. In this systematic review, we discuss the main issues found in 65 different articles related to cascade screening and familial hypercholesterolemia, covering a range of topics including different types/strategies, considerations both positive and negative regarding cascade screening in general and associated with the different strategies, cost and coverage consideration, direct and indirect contact with patients, public policy around life insurance and doctor-patient confidentiality, the "right to know," and public health concerns regarding familial hypercholesterolemia.

  6. Living With Volcanic Risk in the Cascades

    USGS Publications Warehouse

    Dzurisin, Daniel; Stauffer, Peter H.; Hendley, James W.

    1997-01-01

    The Cascade Range of the Pacific Northwest has more than a dozen potentially active volcanoes. Cascade volcanoes tend to erupt explosively, and on average two eruptions occur per century?the most recent were at Mount St. Helens, Washington (1980?86 and 2004?8), and Lassen Peak, California (1914?17). To help protect the Pacific Northwest?s rapidly expanding population, USGS scientists at the Cascades Volcano Observatory in Vancouver, Washington, monitor and assess the hazards posed by the region?s volcanoes.

  7. Nonlocal effects and countermeasures in cascading failures.

    PubMed

    Witthaut, Dirk; Timme, Marc

    2015-09-01

    We study the propagation of cascading failures in complex supply networks with a focus on nonlocal effects occurring far away from the initial failure. It is shown that a high clustering and a small average path length of a network generally suppress nonlocal overloads. These properties are typical for many real-world networks, often called small-world networks, such that cascades propagate mostly locally in these networks. Furthermore, we analyze the spatial aspects of countermeasures based on the intentional removal of additional edges. Nonlocal actions are generally required in networks that have a low redundancy and are thus especially vulnerable to cascades.

  8. Gust Response Analysis of a Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Gorla, R. S. R.; Reddy, T. S. R.; Reddy, D. R.; Kurkov, A. P.

    2001-01-01

    A study was made of the gust response of an annular turbine cascade using a two-dimensional Navier Stokes code. The time-marching CFD code, NPARC, was used to calculate the unsteady forces due to the fluid flow. The computational results were compared with a previously published experimental data for the annular cascade reported in the literature. Reduced frequency, Mach number and angle of incidence were varied independently and the gust velocity was sinusoidal. For the high inlet velocity case, the cascade was nearly choked.

  9. Cascades on clique-based graphs

    NASA Astrophysics Data System (ADS)

    Hackett, Adam; Gleeson, James P.

    2013-06-01

    We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of highly clustered random graphs introduced by Gleeson [J. P. Gleeson, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.036107 80, 036107 (2009)]. A condition for the existence of global cascades is also derived. Applications of this approach include analyses of percolation, and Watts's model. We show how our techniques can be used to study the effects of in-group bias in cascades on social networks.

  10. Cascading blockages in channel bundles

    NASA Astrophysics Data System (ADS)

    Barré, C.; Talbot, J.

    2015-11-01

    Flow in channel networks may involve a redistribution of flux following the blockage or failure of an individual link. Here we consider a simplified model consisting of Nc parallel channels conveying a particulate flux. Particles enter these channels according to a homogeneous Poisson process and an individual channel blocks if more than N particles are simultaneously present. The behavior of the composite system depends strongly on how the flux of entering particles is redistributed following a blockage. We consider two cases. In the first, the intensity on each open channel remains constant while in the second the total intensity is evenly redistributed over the open channels. We obtain exact results for arbitrary Nc and N for a system of independent channels and for arbitrary Nc and N =1 for coupled channels. For N >1 we present approximate analytical as well as numerical results. Independent channels block at a decreasing rate due to a simple combinatorial effect, while for coupled channels the interval between successive blockages remains constant for N =1 but decreases for N >1 . This accelerating cascade is due to the nonlinear dependence of the mean blocking time of a single channel on the entering particle flux that more than compensates for the decrease in the number of active channels.

  11. Cascading blockages in channel bundles.

    PubMed

    Barré, C; Talbot, J

    2015-11-01

    Flow in channel networks may involve a redistribution of flux following the blockage or failure of an individual link. Here we consider a simplified model consisting of N(c) parallel channels conveying a particulate flux. Particles enter these channels according to a homogeneous Poisson process and an individual channel blocks if more than N particles are simultaneously present. The behavior of the composite system depends strongly on how the flux of entering particles is redistributed following a blockage. We consider two cases. In the first, the intensity on each open channel remains constant while in the second the total intensity is evenly redistributed over the open channels. We obtain exact results for arbitrary N(c) and N for a system of independent channels and for arbitrary N(c) and N=1 for coupled channels. For N>1 we present approximate analytical as well as numerical results. Independent channels block at a decreasing rate due to a simple combinatorial effect, while for coupled channels the interval between successive blockages remains constant for N=1 but decreases for N>1. This accelerating cascade is due to the nonlinear dependence of the mean blocking time of a single channel on the entering particle flux that more than compensates for the decrease in the number of active channels.

  12. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  13. Mount Rainier active cascade volcano

    NASA Astrophysics Data System (ADS)

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  14. Quantum Cascade Laser Frequency Combs

    NASA Astrophysics Data System (ADS)

    Faist, Jérôme; Villares, Gustavo; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2016-06-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100mW and frequency coverage of 100 cm-1 in the mid-infrared region. In the THz range, 10mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four-wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the first dual-comb spectroscopy measurements. The capability of the structure to integrate monothically nonlinear optical elements as well as to operate as a detector shows great promise for future chip integration of dual-comb systems.

  15. Cascade-able spin torque logic gates with input-output isolation

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2015-06-01

    Spin torque majority gate (STMG) is one of the promising options for beyond-complementary metal-oxide-semiconductor non-volatile logic circuits for normally-off computing. Modeling of prior schemes demonstrated logic completeness using majority operation and nonlinear transfer characteristics. However significant problems arose with cascade-ability and input output isolation manifesting as domain walls (DWs) stopping, reflecting off ends of wires or propagating back to the inputs. We introduce a new scheme to enable cascade-ability and isolation based on (a) in-plane DW automotion in interconnects, (b) exchange coupling of magnetization between two FM layers, and (c) ‘round-about’ topology for the majority gate. We performed micro-magnetic simulations that demonstrate switching operation of this STMG scheme. These circuits were verified to enable isolation of inputs from output signals and to be cascade-able without limitations.

  16. Neutrinoless Double Beta Decay:

    NASA Astrophysics Data System (ADS)

    Miramonti, Lino

    0ν2β decay is a very powerful tool for probing the physics beyond the particle Standard Model. After the recent discovery of neutrino flavor oscillation, we know that neutrinos must have a mass (at least two of them). The 0ν2β decay discovery could fix the neutrino mass scale and its nature (Majorana particle). The unique characteristics of the Borexino detector and its Counting Test Facility (CTF) can be employed for high sensitivity studies of 116Cd 0ν2β decay: the CAMEO project. A first step foresees 24 enriched 116CdWO4 crystals for a total mass of 65 kg in the Counting Test Facility; then, 370 enriched 116CdWO4 crystals, for a total mass of 1 ton in the Borexino detector. Measurements of 116CdWO4 crystals and Monte Carlo simulations have shown that the CAMEO experiment sensitivity will be T1/20ν > 1026 y, for the 65 kg phase, and T1/20ν > 1027 y for the 1 ton phase; consequently the limit on the effective neutrino mass will be ≤ 60 meV, and ≤ 20 meV, respectively. This work is based upon the experiments performed by the INR (Kiev) (and from 1998 also by the University of Florence) at the Solotvina Underground Laboratory (Ukraine). The current status of 0ν2β, and future projects of 0ν2β decay research are also briefly reviewed.

  17. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  18. Discoloration & decay in oak

    Treesearch

    Alex L. Shigo

    1971-01-01

    Diseases that result in discoloration and decay of wood are major problems affecting all species of oak. Wounds often start the processes that can lead to these diseases. The type and severity of the wound, the vigor of the tree, the environment, and the aggressiveness of microorganisms that infect are some of the most important factors that determine the nature of the...

  19. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  20. Network effects, cascades and CCP interoperability

    NASA Astrophysics Data System (ADS)

    Feng, Xiaobing; Hu, Haibo; Pritsker, Matthew

    2014-03-01

    To control counterparty risk, financial regulations such as the Dodd Frank Act are increasingly requiring standardized derivatives trades to be cleared by central counterparties (CCPs). It is anticipated that in the near-term future, CCPs across the world will be linked through interoperability agreements that facilitate risk-sharing but also serve as a conduit for transmitting shocks. This paper theoretically studies a network with CCPs that are linked through interoperability arrangements, and studies the properties of the network that contribute to cascading failures. The magnitude of the cascading is theoretically related to the strength of network linkages, the size of the network, the logistic mapping coefficient, a stochastic effect and CCP's defense lines. Simulations indicate that larger network effects increase systemic risk from cascading failures. The size of the network N raises the threshold value of shock sizes that are required to generate cascades. Hence, the larger the network, the more robust it will be.

  1. Spatial filtering by using cascading plasmonic gratings.

    PubMed

    Wang, Chih-Ming; Chang, Yia-Chung; Tsai, Din Ping

    2009-04-13

    In this study, the optical properties of a plasmonic multilayer structure, consisting of two longitudinally cascaded gratings with a half pitch off-set, are investigated. The proposed structure, which is a system mixing extended and localized surface plasmon, forms transversely cascaded metal/insulator/metal cavities. The angle dependent reflection spectrum of the proposed structure displays a resonance peak at a specific angle. The full-width at half maximum (FWHM) of the resonant peak is smaller than 3 degrees. The angular dispersion of the cascading plasmonic gratings is about d theta/d lambda =0.15 degrees/nm. The cascading plasmonic gratings can be used as a spatial filter to improve the spatial coherence of a light source.

  2. Determining the direction of a turbulent cascade

    NASA Astrophysics Data System (ADS)

    Goldburg, Walter; Cerbus, Rory

    2015-11-01

    In two-dimensional (2D) turbulence, one expects a cascade of energy to larger spatial scales, while the enstrophy cascade is to smaller ones. Here we present a new tool to study cascades using simple ideas borrowed from information theory. It is entirely unrelated to the Navier-Stoke's equations or any scaling arguments. We use the conditional entropy (conditioned uncertainty) of velocity fluctuations on one scale conditioned on another larger or smaller scale. If the entropy is larger after conditioning on larger scales rather than smaller ones, then the cascade is to smaller scales. By varying the scale of the velocity fluctuations used in the conditioning, we can test both direction and locality. We use these tools on experimental data taken from a flowing soap film, an approximately 2D turbulent flow. The Reynolds number is varied over a wide range to determine the entropy's scaling with Reynolds number OIST.

  3. Displacement Cascade Damage Production in Metals

    SciTech Connect

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    2015-01-01

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.

  4. Modeling and analysis of cascade solar cells

    NASA Technical Reports Server (NTRS)

    Ho, F. D.

    1986-01-01

    A brief review is given of the present status of the development of cascade solar cells. It is known that photovoltaic efficiencies can be improved through this development. The designs and calculations of the multijunction cells, however, are quite complicated. The main goal is to find a method which is a compromise between accuracy and simplicity for modeling a cascade solar cell. Three approaches are presently under way, among them (1) equivalent circuit approach, (2) numerical approach, and (3) analytical approach. Here, the first and the second approaches are discussed. The equivalent circuit approach using SPICE (Simulation Program, Integrated Circuit Emphasis) to the cascade cells and the cascade-cell array is highlighted. The methods of extracting parameters for modeling are discussed.

  5. On Asymmetric Classifier Training for Detector Cascades

    SciTech Connect

    Gee, Timothy Felix

    2006-01-01

    This paper examines the Asymmetric AdaBoost algorithm introduced by Viola and Jones for cascaded face detection. The Viola and Jones face detector uses cascaded classifiers to successively filter, or reject, non-faces. In this approach most non-faces are easily rejected by the earlier classifiers in the cascade, thus reducing the overall number of computations. This requires earlier cascade classifiers to very seldomly reject true instances of faces. To reflect this training goal, Viola and Jones introduce a weighting parameter for AdaBoost iterations and show it enforces a desirable bound. During their implementation, a modification to the proposed weighting was introduced, while enforcing the same bound. The goal of this paper is to examine their asymmetric weighting by putting AdaBoost in the form of Additive Regression as was done by Friedman, Hastie, and Tibshirani. The author believes this helps to explain the approach and adds another connection between AdaBoost and Additive Regression.

  6. Quantum cascade driving: Dissipatively mediated coherences

    NASA Astrophysics Data System (ADS)

    Azizabadi, Shahabedin C.; Naumann, Nicolas L.; Katzer, Manuel; Knorr, Andreas; Carmele, Alexander

    2017-08-01

    Quantum cascaded systems offer the possibility to manipulate a target system with the quantum state of a source system. Here, we study in detail the differences between a direct quantum cascade and coherent or incoherent driving for the case of two coupled cavity-QED systems. We discuss qualitative differences between these excitations scenarios, which are particularly strong for higher-order photon-photon correlations: g(n )(0 ) with n >2 . Quantum cascaded systems show a behavior differing from the idealized cases of individual coherent or incoherent driving and allow one to produce qualitatively different quantum statistics. Furthermore, the quantum cascaded driving exhibits an interesting mixture of quantum coherent and incoherent excitation dynamics. We develop a measure where the two regimes intermix and quantify these differences via experimentally accessible higher-order photon correlations.

  7. Cascaded coal dryer for a coking plant

    SciTech Connect

    Petrovic, V.; Heinz, R.; Jokisch, F.; Schmid, K.

    1984-02-07

    In a coking process, coal to be coked is preheated in a cascaded whirling bed dryer into which the coal is charged from above and exposed to an indirect heat transfer while whirling in a coal-steam mixture. Hot gas applied to the heating pipes in respective cascades of the dryer is branched off from the total amount of hot gases discharged from a dry cooler in which hot coke from the coke oven is cooled by recirculating cooler gas constituted by a partial gas stream discharged from the cascades of the dryer and reunited with the other partial stream subject to a heat exchange for generating steam. Steam from the whirling beds is discharged from the cascaded dryer, separated from the entrained dust particles, and then the excessive steam is drained in a branch conduit and the remaining steam is compressed and reintroduced into the lowermost whirling bed in the dryer.

  8. Anatomy of decays

    NASA Astrophysics Data System (ADS)

    Bel, Lennaert; De Bruyn, Kristof; Fleischer, Robert; Mulder, Mick; Tuning, Niels

    2015-07-01

    The decays B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} probe the CP-violating mixing phases ϕ d and ϕ s , respectively. The theoretical uncertainty of the corresponding determinations is limited by contributions from penguin topologies, which can be included with the help of the U-spin symmetry of the strong interaction. We analyse the currently available data for B {/d, s 0} → D {/d, s -} D {/d, s +} decays and those with similar dynamics to constrain the involved non-perturbative parameters. Using further information from semileptonic B {/d 0} → D {/d -} ℓ + ν ℓ decays, we perform a test of the factorisation approximation and take non-factorisable SU(3)-breaking corrections into account. The branching ratios of the B {/d 0} → D {/d -} D {/d +}, B {/s 0} → D {/s -} D {/d +} and B {/s 0} → D {/s -} D {/s +}, B {/d 0} → D {/d -} D {/s +} decays show an interesting pattern which can be accommodated through significantly enhanced exchange and penguin annihilation topologies. This feature is also supported by data for the B {/s 0} → D {/d -} D {/d +} channel. Moreover, there are indications of potentially enhanced penguin contributions in the B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} decays, which would make it mandatory to control these effects in the future measurements of ϕ d and ϕ s . We discuss scenarios for high-precision measurements in the era of Belle II and the LHCb upgrade.

  9. Innovation cascades: artefacts, organization and attributions.

    PubMed

    Lane, David A

    2016-03-19

    Innovation cascades inextricably link the introduction of new artefacts, transformations in social organization, and the emergence of new functionalities and new needs. This paper describes a positive feedback dynamic, exaptive bootstrapping, through which these cascades proceed, and the characteristics of the relationships in which the new attributions that drive this dynamic are generated. It concludes by arguing that the exaptive bootstrapping dynamic is the principal driver of our current Innovation Society. © 2016 The Author(s).

  10. Supersonic Chordwise Bending Flutter in Cascades

    DTIC Science & Technology

    1975-05-31

    such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD

  11. Cascaded Second-Order Nonlinearities in Waveguides.

    NASA Astrophysics Data System (ADS)

    Sundheimer, Michael Lee

    The cascaded second-order nonlinearity arising from the second-harmonic generation process in noncentrosymmetric media is a novel approach to achieving the nonlinear phase shifts required for all-optical signal processing. The research presented in this dissertation demonstrated and measured the cascaded second-order nonlinearity for the first time in viable integrated optical waveguide formats. Cascaded self-phase modulation was measured in potassium titanyl phosphate (KTiOPO_4 or KTP) segmented quasi-phasematched waveguides at wavelengths near 855 nm and in the optical fiber telecommunications window near 1.585 μm using picosecond and femtosecond pulses, respectively. Spectral modulation and broadening were observed on the output fundamental spectrum and compared to predictions from pulsed second -harmonic generation theory under conditions of group-velocity mismatch (temporal walk-off) and group-velocity dispersion. Peak cascaded phase shifts of the fundamental of approximately pi at 855 nm were inferred with 690 W of peak guided power. Peak cascaded phase shifts of approximately pi/2 were inferred at 1.585 μm with 760 W of peak power in the guide. Direct interferometric measurements of the magnitude and sign of the cascaded nonlinear phase shift of the fundamental were performed in temperature-tuned lithium niobate (LiNbO _3) channel waveguides at 1.32 mum. The cascaded phase shift was shown to change sign upon passing through the phasematching condition, as required by theory. Peak cascaded phase shifts of +0.53 pi and -0.13 pi were measured for 86 W peak power in these waveguides. A non-uniform temperature profile along the waveguide led to a non-uniform wavevector-mismatch along the guide, resulting in an enhanced positive phase shift and an increased temperature bandwidth for the phase shift. The phase shifts achieved in this research are large enough to be suitable for some all-optical signal processing functions.

  12. Recent biocatalytic oxidation–reduction cascades

    PubMed Central

    Schrittwieser, Joerg H; Sattler, Johann; Resch, Verena; Mutti, Francesco G; Kroutil, Wolfgang

    2011-01-01

    The combination of an oxidation and a reduction in a cascade allows performing transformations in a very economic and efficient fashion. The challenge is how to combine an oxidation with a reduction in one pot, either by running the two reactions simultaneously or in a stepwise fashion without isolation of intermediates. The broader availability of various redox enzymes nowadays has triggered the recent investigation of various oxidation–reduction cascades. PMID:21130024

  13. Recent biocatalytic oxidation-reduction cascades.

    PubMed

    Schrittwieser, Joerg H; Sattler, Johann; Resch, Verena; Mutti, Francesco G; Kroutil, Wolfgang

    2011-04-01

    The combination of an oxidation and a reduction in a cascade allows performing transformations in a very economic and efficient fashion. The challenge is how to combine an oxidation with a reduction in one pot, either by running the two reactions simultaneously or in a stepwise fashion without isolation of intermediates. The broader availability of various redox enzymes nowadays has triggered the recent investigation of various oxidation-reduction cascades. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Innovation cascades: artefacts, organization and attributions

    PubMed Central

    2016-01-01

    Innovation cascades inextricably link the introduction of new artefacts, transformations in social organization, and the emergence of new functionalities and new needs. This paper describes a positive feedback dynamic, exaptive bootstrapping, through which these cascades proceed, and the characteristics of the relationships in which the new attributions that drive this dynamic are generated. It concludes by arguing that the exaptive bootstrapping dynamic is the principal driver of our current Innovation Society. PMID:26926284

  15. Spectral imbalance in the inertial range dynamics of decaying rotating turbulence

    NASA Astrophysics Data System (ADS)

    Valente, P. C.; Dallas, V.

    2017-02-01

    Direct numerical simulations of homogeneous decaying turbulence with background rotation show the existence of a systematic and significant imbalance between the non-linear energy cascade to small scales and its dissipation. By starting the decay from a statistically stationary and weakly rotating turbulent state, where the dissipation and the energy flux are approximately equal, the data show a growing imbalance between the two until a maximum is reached when the dissipation is about twice the energy flux. This dichotomy of behaviors during decay is reminiscent of the nonequilibrium and the equilibrium regions previously reported for nonrotating turbulence [Valente and Vassilicos, Phys. Rev. Lett. 108, 214503 (2012), 10.1103/PhysRevLett.108.214503]. Note, however, that for decaying rotating turbulence the classical scaling of the dissipation rate ɛ ∝u'3/L (where u' and L are the root mean square fluctuating velocity and the integral length scale, respectively) does not appear to hold during decay, which may be attributed to the effect of the background rotation on the energy cascade. On the other hand, the maximum energy flux holds the scaling Πmax∝u'3/L in the initial stage of the decay until the maximum imbalance is reached.

  16. Experimental determination of unsteady blade element aerodynamics in cascades. Volume 2: Translation mode cascade

    NASA Technical Reports Server (NTRS)

    Riffel, R. E.; Rothrock, M. D.

    1980-01-01

    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.

  17. Emergence of event cascades in inhomogeneous networks

    PubMed Central

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-01-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network. PMID:27625183

  18. Emergence of event cascades in inhomogeneous networks

    NASA Astrophysics Data System (ADS)

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-09-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network.

  19. Multielectron spectroscopy: the xenon 4d hole double auger decay.

    PubMed

    Penent, F; Palaudoux, J; Lablanquie, P; Andric, L; Feifel, R; Eland, J H D

    2005-08-19

    A magnetic bottle spectrometer of the type recently developed by Eland et al. [Phys. Rev. Lett. 90, 053003 (2003).] has been implemented for use with synchrotron radiation, allowing multidimensional electron spectroscopy. Its application to the Xe 4d double Auger decay reveals all the energy pathways involved. The dominant path is a cascade process with a rapid (6 fs) ejection of a first Auger electron followed by the slower (>23 fs) emission of a second Auger electron. Weaker processes implying 3 electron processes are also revealed, namely, direct double Auger and associated Rydberg series.

  20. Symmetry relations in nucleon decay

    NASA Astrophysics Data System (ADS)

    Hurlbert, Anya; Wilczek, Frank

    1980-05-01

    Some experimental consequences of the structure of the effective hamiltonian for nucleon decay are presented. New results concern relations among inclusive decay rates, a striking test of the kinship hypothesis involving μ+ polarization, and soft π theorems.

  1. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  2. Duality cascade in brane inflation

    SciTech Connect

    Bean, Rachel; Chen Xingang; Hailu, Girma; Henry Tye, S-H; Xu Jiajun E-mail: xgchen@mit.edu E-mail: tye@lepp.cornell.edu

    2008-03-15

    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario, where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude compared to that in previously studied large field models. In the IR DBI scenario, where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.

  3. Neutrino decays over cosmological distances and the implications for neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter

    2012-10-01

    We discuss decays of ultra-relativistic neutrinos over cosmological distances by solving the decay equation in terms of its redshift dependence. We demonstrate that there are significant conceptual differences compared to more simplified treatments of neutrino decay. For instance, the maximum distance the neutrinos have traveled is limited by the Hubble length, which means that the common belief that longer neutrino lifetimes can be probed by longer distances does not apply. As a consequence, the neutrino lifetime limit from supernova 1987A cannot be exceeded by high-energy astrophysical neutrinos. We discuss the implications for neutrino spectra and flavor ratios from gamma-ray bursts as one example of extragalactic sources, using up-to-date neutrino flux predictions. If the observation of SN 1987A implies that ν1 is stable and the other mass eigenstates decay with rates much smaller than their current bounds, the muon track rate can be substantially suppressed compared to the cascade rate in the region IceCube is most sensitive to. In this scenario, no gamma-ray burst neutrinos may be found using muon tracks even with the full scale experiment, whereas reliable information on high-energy astrophysical sources can only be obtained from cascade measurements. As another consequence, the recently observed two cascade event candidates at PeV energies will not be accompanied by corresponding muon tracks.

  4. Theory of weak hypernuclear decay

    SciTech Connect

    Dubach, J.F.; Feldman, G.B.; Holstein, B.R. |; de la Torre, L.

    1996-07-01

    The weak nomesonic decay of {Lambda}-hypernuclei is studied in the context of a one-meson-exchange model. Predictions are made for the decay rate, the {ital p}/{ital n} stimulation ratio and the asymmetry in polarized hypernuclear decay. Copyright {copyright} 1996 Academic Press, Inc.

  5. Protecting log cabins from decay

    Treesearch

    R. M. Rowell; J. M. Black; L. R. Gjovik; W. C. Feist

    1977-01-01

    This report answers the questions most often asked of the Forest Service on the protection of log cabins from decay, and on practices for the exterior finishing and maintenance of existing cabins. Causes of stain and decay are discussed, as are some basic techniques for building a cabin that will minimize decay. Selection and handling of logs, their preservative...

  6. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  7. Multielectron spectroscopy: Auger decays of the krypton 3d hole

    SciTech Connect

    Palaudoux, J.; Lablanquie, P.; Penent, F.; Andric, L.; Ito, K.; Shigemasa, E.; Eland, J. H. D.; Jonauskas, V.; Kucas, S.; Karazija, R.

    2010-10-15

    The emission of one or two Auger electrons, following Kr 3d inner-shell ionization by synchrotron light, has been investigated both experimentally and theoretically. All electrons emitted in the process are detected in coincidence and analyzed in energy thanks to a magnetic-bottle electron time-of-flight spectrometer. In addition, noncoincident high-resolution electron spectra have been measured to characterize the cascade double-Auger paths more fully. Combination of the two experimental approaches and of our calculations allows a full determination of the decay pathways and branching ratios in the case of Kr 3d single- and double-Auger decays. The Kr{sup 3+} threshold is found at 74.197{+-}0.020 eV.

  8. Computational Model of Alpha-Decay Damage Accumulation in Zircon

    SciTech Connect

    Heinisch, Howard L.; Weber, William J.

    2005-01-01

    Atomic-scale computer simulations are used to study defect accumulation and amorphization due to alpha decay in zircon (ZrSiO4). The displacement cascades, which represent 234U recoil nuclei from alpha-decay of 238Pu in zircon, are generated using a crystalline binary collision model, and the stochastic production of defects in the crystal lattice, recombination of defects, and the identification of amorphous regions are followed within the framework of a kinetic Monte Carlo simulation. Within the model, amorphous regions are identified as those having a critical density of Zr vacancies. The simulation predicts the interstitial content and amorphous fraction as functions of dose that are consistent with experimental data at 300 K for 238Pu-doped zircon, which indicate that the kinetic Monte Carlo model for behavior in zircon at 300 K is reasonable.

  9. Ultra-high energy cosmic rays from decaying relic particles.

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.; Kachelriess, M.; Vilenkin, A.

    1999-01-01

    The authors report on a recent proposal that particles produced by the decays of ultraheavy and quasistable X-particles constitute the ultra high energy cosmic rays (UHECR). These X-particles are assumed to constitute a tiny fraction ξx of cold dark matter in the Universe, with ξx being the same in the halo of our Galaxy and in the intergalactic space. The UHECR fluxes produced at the decays of X-particles are dominated by photons and nucleons from the halo of our Galaxy. Thus they do not exihibit the Greisen-Zatsepin-Kuz'min cutoff and the cascade limit is relaxed. The authors discuss the spectrum of produced extensive air showers and a signal from the Virgo cluster as signatures of this model.

  10. Superallowed Fermi beta decay

    SciTech Connect

    Hardy, J. C.; Towner, I. S.

    1998-12-21

    Superallowed 0{sup +}{yields}0{sup +} nuclear beta decay provides a direct measure of the weak vector coupling constant, G{sub V}. We survey current world data on the nine accurately determined transitions of this type, which range from the decay of {sup 10}C to that of {sup 54}Co, and demonstrate that the results confirm conservation of the weak vector current (CVC) but differ at the 98% confidence level from the unitarity condition for the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and assess the likelihood of even higher quality nuclear data becoming available to confirm or deny the discrepancy. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible today.

  11. Decay Dynamics of Tumors

    PubMed Central

    2016-01-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. We investigate the mathematical function that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic lymphocytes. We do it in the context of enzyme kinetics, using geometrical and analytical arguments. We derive the equations governing the decay of a tumor in the limit in which it is plainly surrounded by immune cells. A cellular automaton is used to test such decay, confirming its validity. Finally, we introduce a modification in the fractional cell kill so that the expected dynamics is attained in the mentioned limit. We also discuss the potential of this new function for non-solid and solid tumors which are infiltrated with lymphocytes. PMID:27310010

  12. Radioactive decay data tables

    SciTech Connect

    Kocher, D.C.

    1981-01-01

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

  13. RADIATIVE PENGUIN DECAYS FROM BABAR

    SciTech Connect

    Eigen, Gerald

    2003-08-28

    Electroweak penguin decays provide a promising hunting ground for Physics beyond the Standard Model (SM). The decay B {yields} X{sub s}{gamma}, which proceeds through an electromagnetic penguin loop, already provides stringent constraints on the supersymmetric (SUSY) parameter space. The present data samples of {approx}1 x 10{sup 8} B{bar B} events allow to explore radiative penguin decays with branching fractions of the order of 10{sup -6} or less. In this brief report they discuss a study of B {yields} K*{ell}{sup +}{ell}{sup -} decay modes and a search for B {yields} {rho}({omega}){gamma} decays.

  14. Charmless b decays at CDF

    SciTech Connect

    Donega, Mauro; /Geneva U.

    2005-07-01

    The authors report on the charmless B decays measurements performed on 180 pb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron collider. This paper describes: the first observation of the decay mode B{sub s} {yields} K{sup +}K{sup -} and the measurement of the direct Cp asymmetry in the ({bar B}){sub d} {yields} K{sup {+-}}{pi}{sup {-+}} decay; the first evidence of the decay mode B{sub s} {yields} {phi}{phi} and the branching ratio and Cp asymmetry for the B{sup {+-}} {yields} {phi}K{sup {+-}} decay.

  15. Evidence for the Scissors Mode in {sup 160}Tb from the Two-Step Gamma Cascades Measurement

    SciTech Connect

    Kroll, J.; Becvar, F.; Krticka, M.; Tomandl, I.

    2011-10-28

    Spectra of two-step {gamma} cascades (TSCs) following the neutron capture in {sup 159}Tb were measured by the sum-coincidence technique with a two-HPGe-detector facility [1] installed at a pure sub-thermal neutron beam of the 15 MW light-water research reactor at Rez near Prague. In order to obtain information about the quantities governing the {gamma} decay of {sup 160}Tb levels--the photon strength functions (PSFs) and the level density (LD)--experimental TSC spectra were compared with the output of simulations of the {gamma} cascade decay based on the validity of extreme statistical model. These simulations were performed with the aid of the DICEBOX algorithm [2] assuming various combinations of the PSFs and LD. The results obtained lead to an inescapable conclusion that the Scissors Mode (SM) plays a crucial role in the cascade {gamma} decay of the product nucleus {sup 160}Tb. This finding represents the first evidence for the existence of the SM in an odd-odd nucleus.

  16. Cascade reactions catalyzed by metal organic frameworks.

    PubMed

    Dhakshinamoorthy, Amarajothi; Garcia, Hermenegildo

    2014-09-01

    Cascade or tandem reactions where two or more individual reactions are carried out in one pot constitute a clear example of process intensification, targeting the maximization of spatial and temporal productivity with mobilization of minimum resources. In the case of catalytic reactions, cascade processes require bi-/multifunctional catalysts that contain different classes of active sites. Herein, we show that the features and properties of metal-organic frameworks (MOFs) make these solids very appropriate materials for the development of catalysts for cascade reactions. Due to composition and structure, MOFs can incorporate different types of sites at the metal nodes, organic linkers, or at the empty internal pores, allowing the flexible design and synthesis of multifunctional catalysts. After some introductory sections on the relevance of cascade reactions from the point of view of competitiveness, sustainability, and environmental friendliness, the main part of the text provides a comprehensive review of the literature reporting the use of MOFs as heterogeneous catalysts for cascade reactions including those that combine in different ways acid/base, oxidation/reduction, and metal-organic centers. The final section summarizes the current state of the art, indicating that the development of a first commercial synthesis of a high-added-value fine chemical will be a crucial milestone in this area.

  17. The boundary layer on compressor cascade blades

    NASA Technical Reports Server (NTRS)

    Deutsch, S.; Zierke, W. C.

    1986-01-01

    The purpose of NASA Research Grant NSG-3264 is to characterize the flowfield about an airfoil in a cascade at chord Reynolds number(R sub C)near 5 x 10 to the 5th power. The program is experimental and combines laser Doppler velocimeter (LDV) measurements with flow visualization techniques in order to obtain detailed flow data, e.g., boundary layer profiles, points of separation and the transition zone, on a cascade of highly-loaded compressor blades. The information provided by this study is to serve as benchmark data for the evaluation of current and future compressor cascade predictive models, in this way aiding in the compressor design process. Summarized is the research activity for the period 1 December 1985 through 1 June 1986. Progress made from 1 June 1979 through 1 December 1985 is presented. Detailed measurements have been completed at the initial cascade angle of 53 deg. (incidence angle 5 degrees). A three part study, based on that data, has been accepted as part of the 1986 Gas Turbine Conference and will be submitted for subsequent journal publication. Also presented are data for a second cascade angle of 45 deg (an incidence angle of 3 degrees).

  18. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  19. Janus spectra: cascades without local isotropy

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Chakraborty, Pinaki

    2016-11-01

    Two-dimensional turbulent flows host two disparate cascades: of enstrophy and of energy. The phenomenological theory of turbulence, which provides the theoretical underpinning of these cascades, assumes local isotropy. This assumption has been amply verified via computational, experimental and field data amassed to date. Local isotropy mandates that the streamwise (u) and transverse (v) velocity fluctuations partake in the same cascade; consequently, the attendant spectral exponents (αu and αv) of the turbulent energy spectra are the same, αu =αv . Here we report experiments in soap-film flows where αu corresponds to the energy cascade, but concurrently αv corresponds to the enstrophy cascade, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Remarkably, the tools of phenomenological theory can be invoked to elucidate this manifestly anisotropic flow. Okinawa Institute of Science and Technology.

  20. Collapse of defect cascades to dislocation loops

    SciTech Connect

    Kirk, M.A.; Robertson, I.M.; Jenkins, M.L.; English, C.A.; Black, T.J.; Vetrano, J.S.

    1986-04-01

    We review a number of experiments that we have recently performed to investigate the collapse of defect cascades to dislocation loops. This important ion and neutron irradiation phenomenon has been studied with in situ ion bombardment in the Argonne National Laboratory High Voltage Electron Microscope-Ion Accelerator Facility at temperatures of 30 and 300/sup 0/K in Cu/sub 3/Au, Cu, and Fe, and 30, 300 and 600/sup 0/K in Ni. These experiments have demonstrated that individual defect cascades collapse to dislocation loops athermally at 30/sup 0/K in some materials (Ni, Cu and Cu/sub 3/Au), while in another material (Fe) only overlapped cascades produced dislocation loops. A slight sensitivity to the irradiation temperature is demonstrated in Cu/sub 3/Au and Fe, and a strong dependence on the irradiation temperature is seen in Ni. This phenomenon of cascade collapse to dislocation loops in metals at 30/sup 0/K provides an understanding for previous neutron irradiation data. The more detailed dependencies of the collapse probability on material, temperature, bombarding ion dose, ion energy and ion mass contribute much information to a thermal spike model of the collision cascade which we will describe.

  1. Inlet Turbulence and Length Scale Measurements in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Flegel, Ashlie; Giel, Paul

    2014-01-01

    Constant temperature hotwire anemometry data were acquired to determine the inlet turbulence conditions of a transonic turbine blade linear cascade. Flow conditions and angles were investigated that corresponded to the take-off and cruise conditions of the Variable Speed Power Turbine (VSPT) project and to an Energy Efficient Engine (EEE) scaled rotor blade tip section. Mean and turbulent flowfield measurements including intensity, length scale, turbulence decay, and power spectra were determined for high and low turbulence intensity flows at various Reynolds numbers and spanwise locations. The experimental data will be useful for establishing the inlet boundary conditions needed to validate turbulence models in CFD codes.

  2. Beta decay studies with total absorption spectroscopy and the Lucrecia spectrometer at ISOLDE

    NASA Astrophysics Data System (ADS)

    Rubio, B.; Gelletly, W.; Algora, A.; Nacher, E.; Tain, J. L.

    2017-08-01

    Here we present the experimental activities carried out at ISOLDE with the total absorption spectrometer Lucrecia, a large 4π scintillator detector designed to absorb a full gamma cascade following beta decay. This spectrometer is designed to measure β-feeding to excited states without the systematic error called Pandemonium. The set up allows the measurement of decays of very short half life. Experimental results from several campaigns, that focus on the determination of the shapes of β-decaying nuclei by measuring their β decay strength distributions as a function of excitation energy in the daughter nucleus, are presented. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.

  3. Cascade enzymatic reactions for efficient carbon sequestration.

    PubMed

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Sample Selection for Training Cascade Detectors.

    PubMed

    Vállez, Noelia; Deniz, Oscar; Bueno, Gloria

    2015-01-01

    Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  5. Seeded QED cascades in counterpropagating laser pulses.

    PubMed

    Grismayer, T; Vranic, M; Martins, J L; Fonseca, R A; Silva, L O

    2017-02-01

    The growth rates of seeded QED cascades in counterpropagating lasers are calculated with first-principles two- and three-dimensional QED-PIC (particle-in-cell) simulations. The dependence of the growth rate on the laser polarization and intensity is compared with analytical models that support the findings of the simulations. The models provide insight regarding the qualitative trend of the cascade growth when the intensity of the laser field is varied. A discussion about the cascade's threshold is included, based on the analytical and numerical results. These results show that relativistic pair plasmas and efficient conversion from laser photons to γ rays can be observed with the typical intensities planned to operate on future ultraintense laser facilities such as ELI or Vulcan.

  6. Sample Selection for Training Cascade Detectors

    PubMed Central

    Vállez, Noelia; Deniz, Oscar; Bueno, Gloria

    2015-01-01

    Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors. PMID:26197221

  7. Cascade collapse in copper and nickel

    SciTech Connect

    Vetrano, J.S.; Robertson, I.M.; Averback, R.S. . Dept. of Materials Science and Engineering); Kirk, M.A. )

    1990-04-01

    In-situ TEM studies of the development of the damage structure produced by heavy ion irradiations have been performed in copper and nickel to investigate the possibility that melting occurs in local regions within displacement cascades. These experiments reveal that as the ion dose increases additional loops form from isolated displacement cascades, but more surprisingly some fo the pre-existing loops are annihilated, change position, size and/or Burgers vector. It was also found that the probability for loop formation and the defect image size are greater in copper than in nickel even at temperatures well below stage 3. It will be demonstrated that these observations provide supporting evidence, albeit indirect, that local melting occurs within the cascade core. These results will be compared to the molecular dynamic computer simulations of the damage created by low energy self-ions in copper and nickel. 15 refs., 4 figs.

  8. Aeroelastic stability of cascades in turbomachinery

    NASA Astrophysics Data System (ADS)

    Försching, H.

    State-of-the-art prediction of the aeroelastic stability of cascades in axial-flow turbomachines is reviewed. The first main chapter of the article presents a comprehensive formulation of the two- and three-dimensional classical (unstalled) flutter problem of tuned and mistuned rotor blade rows and bladed disc assemblies. Within the framework of linearized analysis, a complete and generalized theory in modal form is outlined, comprising the various formulations of the cascade flutter problem distributed in fragments throughout the literature. Brief outlines are also made of recent advances in unsteady aero-dynamic methods for turbomachinery aeroelastic applications. The second main chapter contains a parametric study of the classical flutter stability characteristics of compressor and turbine cascades in subsonic and supersonic flow. Stability boundaries and dominant trends in flutter behaviour are outlined, and the significant effects of blade mistuning on the aeroelastic stability of turbomachine bladings are highlighted.

  9. Seeded QED cascades in counterpropagating laser pulses

    NASA Astrophysics Data System (ADS)

    Grismayer, T.; Vranic, M.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.

    2017-02-01

    The growth rates of seeded QED cascades in counterpropagating lasers are calculated with first-principles two- and three-dimensional QED-PIC (particle-in-cell) simulations. The dependence of the growth rate on the laser polarization and intensity is compared with analytical models that support the findings of the simulations. The models provide insight regarding the qualitative trend of the cascade growth when the intensity of the laser field is varied. A discussion about the cascade's threshold is included, based on the analytical and numerical results. These results show that relativistic pair plasmas and efficient conversion from laser photons to γ rays can be observed with the typical intensities planned to operate on future ultraintense laser facilities such as ELI or Vulcan.

  10. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  11. Bifurcations analysis of turbulent energy cascade

    SciTech Connect

    Divitiis, Nicola de

    2015-03-15

    This note studies the mechanism of turbulent energy cascade through an opportune bifurcations analysis of the Navier–Stokes equations, and furnishes explanations on the more significant characteristics of the turbulence. A statistical bifurcations property of the Navier–Stokes equations in fully developed turbulence is proposed, and a spatial representation of the bifurcations is presented, which is based on a proper definition of the fixed points of the velocity field. The analysis first shows that the local deformation can be much more rapid than the fluid state variables, then explains the mechanism of energy cascade through the aforementioned property of the bifurcations, and gives reasonable argumentation of the fact that the bifurcations cascade can be expressed in terms of length scales. Furthermore, the study analyzes the characteristic length scales at the transition through global properties of the bifurcations, and estimates the order of magnitude of the critical Taylor-scale Reynolds number and the number of bifurcations at the onset of turbulence.

  12. An experimental study on 3-D flow in an annular cascade of high turning angle turbine blades

    NASA Astrophysics Data System (ADS)

    Wang, Wensheng; Liang, Xizhi; Chen, Naixing

    1994-06-01

    This paper presents an experimental study of the three-dimensional turbulent flow fields in a low-speed annular cascade of high turning angle turbine blades. Detailed measurements were performed on the blade surfaces and mid-streamsurface in the passage and at three axial planes downstream of the cascade by using wall static pressure taps, a five-hole probe and a hot-wire anemometer. The test data include static pressure distribution on blade surfaces, total pressure loss coefficient, mean flow velocity components, radial flow angle, turbulence intensity and Reynolds shear stress. Analyses of the three-dimensional cascade flow characteristics were made on the onset location of high loss vortices, the variation of pressure gradient inside the cascade passage and the properties of endwall boundary layers, total pressure loss distributions, secondary vortex turbulent dissipation and wake decay downstream of the cascade. These experimental results are valuable for revealing the details of the complex vortex flow structure in modern highly loaded axial turbomachines and validating the three-dimensional flow numerical computation codes.

  13. Is radioactive decay really exponential?

    NASA Astrophysics Data System (ADS)

    Aston, P. J.

    2012-03-01

    Radioactive decay of an unstable isotope is widely believed to be exponential. This view is supported by experiments on rapidly decaying isotopes but is more difficult to verify for slowly decaying isotopes. The decay of 14C can be calibrated over a period of 12550 years by comparing radiocarbon dates with dates obtained from dendrochronology. It is well known that this approach shows that radiocarbon dates of over 3000 years are in error, which is generally attributed to past variation in atmospheric levels of 14C. We note that predicted atmospheric variation (assuming exponential decay) does not agree with results from modelling, and that theoretical quantum mechanics does not predict exact exponential decay. We give mathematical arguments that non-exponential decay should be expected for slowly decaying isotopes and explore the consequences of non-exponential decay. We propose an experimental test of this prediction of non-exponential decay for 14C. If confirmed, a foundation stone of current dating methods will have been removed, requiring a radical reappraisal both of radioisotope dating methods and of currently predicted dates obtained using these methods.

  14. Tandem Mass Spectrum Identification via Cascaded Search

    PubMed Central

    2016-01-01

    Accurate assignment of peptide sequences to observed fragmentation spectra is hindered by the large number of hypotheses that must be considered for each observed spectrum. A high score assigned to a particular peptide–spectrum match (PSM) may not end up being statistically significant after multiple testing correction. Researchers can mitigate this problem by controlling the hypothesis space in various ways: considering only peptides resulting from enzymatic cleavages, ignoring possible post-translational modifications or single nucleotide variants, etc. However, these strategies sacrifice identifications of spectra generated by rarer types of peptides. In this work, we introduce a statistical testing framework, cascade search, that directly addresses this problem. The method requires that the user specify a priori a statistical confidence threshold as well as a series of peptide databases. For instance, such a cascade of databases could include fully tryptic, semitryptic, and nonenzymatic peptides or peptides with increasing numbers of modifications. Cascaded search then gradually expands the list of candidate peptides from more likely peptides toward rare peptides, sequestering at each stage any spectrum that is identified with a specified statistical confidence. We compare cascade search to a standard procedure that lumps all of the peptides into a single database, as well as to a previously described group FDR procedure that computes the FDR separately within each database. We demonstrate, using simulated and real data, that cascade search identifies more spectra at a fixed FDR threshold than with either the ungrouped or grouped approach. Cascade search thus provides a general method for maximizing the number of identified spectra in a statistically rigorous fashion. PMID:26084232

  15. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  16. Rare B Decays

    SciTech Connect

    Jackson, P.D.; /Victoria U.

    2006-02-24

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  17. The observation of decay

    NASA Astrophysics Data System (ADS)

    Sudbery, A.

    1984-10-01

    It is argued that the usual formulation of quantum mechanics does not satisfactorily describe physical change: the standard formula for a transition probability does not follow from the postulates. Instead, these yield the paradox that a watched pot never bolls (sometimes called "Zeno's paradox"). The paradox is reviewed and the possibility of avoiding it is discussed. A simple model of a decaying system is analysed; the system is then considered in continuous interaction with an apparatus designed to observe the time development of the system. In the light of this analysis, the possibility is considered of replacing the usual (diserete) projection postulate by a continuous projection postulate.

  18. Rare decays and CP asymmetries in charged B decays

    SciTech Connect

    Deshpande, N.G.

    1991-01-01

    The theory of loop induced rare decays and the rate asymmetry due to CP violation in charged B Decays in reviewed. After considering b {yields} s{gamma} and b {yields} se{sup +}e{sup {minus}} decays, the asymmetries for pure penguin process are estimated first. A larger asymmetry can result in those modes where a tree diagram and a penguin diagram interfere, however these estimates are necessarily model dependent. Estimates of Cabbibo suppressed penguins are also considered.

  19. Decay {B to K^ast(to Kπ)ℓ+ ℓ-} in Covariant Quark Model

    NASA Astrophysics Data System (ADS)

    Dubnička, S.; Dubničková, A. Z.; Habyl, N.; Ivanov, M. A.; Liptaj, A.; Nurbakova, G. S.

    2016-03-01

    Our article is devoted to the study of the rare {B to K^ast ℓ^+ℓ^-} decay where {ℓ=e,μ,τ}. We compute the relevant form factors in the framework of the covariant quark model with infrared confinement in the full kinematical momentum transfer region. The calculated form factors are used to evaluate branching fractions and polarization observables in the cascade decay {B to K^ast(to Kπ)ℓ^+ℓ^-}. We compare the obtained results with available experimental data and the results from other theoretical approaches.

  20. Development of the NPL gamma-ray spectrometer NANA for traceable nuclear decay and structure studies.

    PubMed

    Lorusso, G; Shearman, R; Regan, P H; Judge, S M; Bell, S; Collins, S M; Larijani, C; Ivanov, P; Jerome, S M; Keightley, J D; Lalkovski, S; Pearce, A K; Podolyak, Zs

    2016-03-01

    We present a brief report on the progress towards the construction of the National Nuclear Array (NANA), a gamma-ray coincidence spectrometer for discrete-line nuclear structure and decay measurements. The proposed spectrometer will combine a gamma-ray energy resolution of approximately 3% at 1MeV with sub-nanosecond timing discrimination between successive gamma rays in mutually coincident decay cascades. We also review a number of recent measurements using coincidence fast-timing gamma-ray spectroscopy for nuclear structure studies, which have helped to inform the design criteria for the NANA spectrometer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Post-collision-interaction distortion of low-energy photoelectron spectra associated with double Auger decay

    SciTech Connect

    Gerchikov, L.; Sheinerman, S.

    2011-08-15

    Atomic inner-shell photoionization followed by double Auger decay is investigated. The focus of our study is the effect of post-collision interaction (PCI) on the photoelectron energy distribution. A semi-classical approach is employed to describe the PCI distortion of the photoelectron line shapes associated with both direct and cascade double Auger decays. This approach is shown to be valid at low photoelectron energies, whereas for large incident photon energies it reduces to the eikonal approximation. The theory is applied to the case of Ar 2p photoionization spectra and good agreement with available experimental data is achieved.

  2. Fragmentation of the decay from the superdeformed yrast band in Hg-192.

    SciTech Connect

    Lopez-Martens, A.; Hannachi, F.; Dossing, T.; Schuck, C.; Collatz, R.; Khoo, T. L.; Lauritsen, T.; Ahmad, I.; Blumenthal, D. J.; Carpenter, M. P.; Gassmann, D.; Janssens, R. V. F.; Nisius, D.; Physics; CSNSM; Niels Bohr Inst.

    1996-08-26

    The decay-out spectrum of the superdeformed yrast band in {sup 192}Hg comprises a quasicontinuum, from which about 50 weak discrete transitions of energy between 1 and 3.2 MeV are resolved. The fluctuations of the one-dimensional quasicontinuum spectrum are studied with the fluctuation analysis method, which shows that of the order of a few thousand different transitions are available in the first step of the decay-out cascades. The experimental effective number of transitions is compared to schematic theoretical calculations.

  3. Fragmentation of the Decay from the Superdeformed Yrast Band in {sup 192}Hg

    SciTech Connect

    Lopez-Martens, A.; Hannachi, F.; Dossing, T.; Schueck, C.; Collatz, R.; Gueorguieva, E.; Vieu, C.; Leoni, S.; Herskind, B.; Khoo, T.L.; Lauritsen, T.; Ahmad, I.; Blumenthal, D.J.; Carpenter, M.P.; Gassmann, D.; Janssens, R.V.; Nisius, D.; Korichi, A.; Bourgeois, C.; Astier, A.; Ducroux, L.; Le Coz, Y.; Meyer, M.; Redon, N.; Sharpey-Schafer, J.F.; Wilson, A.N.; Korten, W.; Bracco, A.; Lucas, R. ||||||||

    1996-08-01

    The decay-out spectrum of the superdeformed yrast band in {sup 192}Hg comprises a quasicontinuum, from which about 50 weak discrete transitions of energy between 1 and 3.2MeV are resolved. The fluctuations of the one-dimensional quasicontinuum spectrum are studied with the fluctuation analysis method, which shows that of the order of a few thousand different transitions are available in the first step of the decay-out cascades. The experimental effective number of transitions is compared to schematic theoretical calculations. {copyright} {ital 1996 The American Physical Society.}

  4. Heat transfer in turbulent decaying swirl flow in a circular pipe

    NASA Astrophysics Data System (ADS)

    Algifri, A. H.; Bhardwaj, R. K.; Rao, Y. V. N.

    1988-08-01

    Heat transfer coefficients for air are measured along a heated pipe for decaying swirl flow, generated by radial blade cascade. The results are compared with an expression proposed for predicting the heat transfer coefficients in swirling flow. The theoretical predictions are in good agreement with the experimental data, with average and maximum deviations of 7 and 11 percent, respectively. The application of the theoretical approach to the experimental results obtained by other investigators for heat transfer in a decaying swirl flow generated by short-twisted tapes and tangential slots at inlet also give rise to encouraging agreement.

  5. Reverse Energy Cascade in Turbulent Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Williams, Kyron; Appartaim, R.; Belay, K.; Johnson, J. A., III

    1998-01-01

    For systems far from equilibrium, the neglect of a role for viscous effects in turbulence may be generally inappropriate when the relaxation time for the molecular process approaches the local flow time (Orou et al. (1996)). Furthermore, for stationary collisional plasmas, the conventional Reynolds number is irrelevant under circumstances where the standard features of turbulence in ordinary gases are observed in the plasma (Johnson et al. (1987)). The current theoretical understanding of these turbulent phenomenon is particularly inadequate for turbulence associated with ionizing shock waves; generally speaking, thermodynamic, acoustic and pressure fluctuations are all seen as amplified across the shock wave followed by a dramatic decay (relaminarization) usually attributed to a lack of importance of viscosity in the turbulent regions. This decay would be accelerated when the flow speed is also reduced due to the importance usually given to the conventional Reynolds number (which is directly proportional to velocity) as a quality of turbulence index. However, evidence supporting this consensus is lacking. By contrast, recent evidence of vanishing triple correlations form De Silva et al. (1996) provides strong support for early theoretical speculation of inherently molecular effects in macroscopic turbulence in Tsuge (1974). This specifically suggests that the role of compressive effects ordinarily associated with the shock wave could be significantly muted by the existence of a strongly turbulent local environment. There is also more recent theoretical speculation (Frisch et al. (1984)) of an inherently and previously unsuspected non-dissipative nature to turbulence, with energy conservation being nurtured by reverse energy cascades in the turbulent fluctuation spectra. Furthermore, the role which might be played by fluctuations on quantum mechanical phenomena and variations in molecular parameters is completely unknown, especially of the sort which might be found

  6. Reverse Energy Cascade in Turbulent Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Williams, Kyron; Appartaim, R.; Belay, K.; Johnson, J. A., III

    1998-01-01

    For systems far from equilibrium, the neglect of a role for viscous effects in turbulence may be generally inappropriate when the relaxation time for the molecular process approaches the local flow time (Orou et al. (1996)). Furthermore, for stationary collisional plasmas, the conventional Reynolds number is irrelevant under circumstances where the standard features of turbulence in ordinary gases are observed in the plasma (Johnson et al. (1987)). The current theoretical understanding of these turbulent phenomenon is particularly inadequate for turbulence associated with ionizing shock waves; generally speaking, thermodynamic, acoustic and pressure fluctuations are all seen as amplified across the shock wave followed by a dramatic decay (relaminarization) usually attributed to a lack of importance of viscosity in the turbulent regions. This decay would be accelerated when the flow speed is also reduced due to the importance usually given to the conventional Reynolds number (which is directly proportional to velocity) as a quality of turbulence index. However, evidence supporting this consensus is lacking. By contrast, recent evidence of vanishing triple correlations form De Silva et al. (1996) provides strong support for early theoretical speculation of inherently molecular effects in macroscopic turbulence in Tsuge (1974). This specifically suggests that the role of compressive effects ordinarily associated with the shock wave could be significantly muted by the existence of a strongly turbulent local environment. There is also more recent theoretical speculation (Frisch et al. (1984)) of an inherently and previously unsuspected non-dissipative nature to turbulence, with energy conservation being nurtured by reverse energy cascades in the turbulent fluctuation spectra. Furthermore, the role which might be played by fluctuations on quantum mechanical phenomena and variations in molecular parameters is completely unknown, especially of the sort which might be found

  7. Volcano geodesy in the Cascade arc, USA

    USGS Publications Warehouse

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  8. Cascading failure and robustness in metabolic networks.

    PubMed

    Smart, Ashley G; Amaral, Luis A N; Ottino, Julio M

    2008-09-09

    We investigate the relationship between structure and robustness in the metabolic networks of Escherichia coli, Methanosarcina barkeri, Staphylococcus aureus, and Saccharomyces cerevisiae, using a cascading failure model based on a topological flux balance criterion. We find that, compared to appropriate null models, the metabolic networks are exceptionally robust. Furthermore, by decomposing each network into rigid clusters and branched metabolites, we demonstrate that the enhanced robustness is related to the organization of branched metabolites, as rigid cluster formations in the metabolic networks appear to be consistent with null model behavior. Finally, we show that cascading in the metabolic networks can be described as a percolation process.

  9. Design of supercritical cascades with high solidity

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1982-01-01

    The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.

  10. Design of supercritical cascades with high solidity

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1982-01-01

    The method of complex characteristics of Garabedian and Korn has been successfully used to design shockless cascades with solidities of up to one. A new code has been developed using this method and a new hodograph transformation of the flow onto an ellipse. This new code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph-like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.

  11. GRAVITY STUDIES IN THE CASCADE RANGE.

    USGS Publications Warehouse

    Finn, Carol; Williams, David

    1983-01-01

    A compatible set of gravity data has been compiled for the entire Cascade Range. From this data set a series of interpretive color gravity maps have been prepared, including a free air anomaly map, Bouguer anomaly map at a principle, and an alternate reduction density, and filtered and derivative versions of the Bouguer anomaly map. The regional anomaly pattern and gradients outline the various geological provinces adjacent to the Cascade Range and delineate major structural elements in the range. The more local anomalies and gradients may delineate low density basin and caldera fill, faults, and shallow plutons. Refs.

  12. Optically Pumped Carbon Monoxide Cascade Laser

    DTIC Science & Technology

    2005-07-01

    absorption problems it poses. Instead, a 2.3 gtm GaSb diode laser could be used as a 1st overtone optically pumped source. The absorption cross section at...OPTICALLY PUMPED CARBON MONOXIDE CASCADE LASER BY NICHOLAS W. SAWRUK B.S., PHYSICS, US AIR FORCE ACADEMY, 2001 B.S., MATHEMATICS, US AIR FORCE...SUBTITLE 5. FUNDING NUMBERS OPTICALLY PUMPED CARBON MONOXIDE CASCADE LASER 6. AUTHOR(S) 1ST LT SAWRUK NICHOLAS W 7. PERFORMING ORGANIZATION NAME(S) AND

  13. Self-organized model of cascade spreading

    NASA Astrophysics Data System (ADS)

    Gualdi, S.; Medo, M.; Zhang, Y.-C.

    2011-01-01

    We study simultaneous price drops of real stocks and show that for high drop thresholds they follow a power-law distribution. To reproduce these collective downturns, we propose a minimal self-organized model of cascade spreading based on a probabilistic response of the system elements to stress conditions. This model is solvable using the theory of branching processes and the mean-field approximation. For a wide range of parameters, the system is in a critical state and displays a power-law cascade-size distribution similar to the empirically observed one. We further generalize the model to reproduce volatility clustering and other observed properties of real stocks.

  14. Cascade morphology transition in bcc metals.

    PubMed

    Setyawan, Wahyu; Selby, Aaron P; Juslin, Niklas; Stoller, Roger E; Wirth, Brian D; Kurtz, Richard J

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N(F) ~ E(MD)(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, μ, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of μ as a function of displacement threshold energy, E(d), is presented for bcc metals.

  15. Experimental studies of cascade phenomena in metals

    SciTech Connect

    Jenkins, M.L. . Dept. of Materials); Kirk, M.A. ); Phythian, W.J. . Harwell Lab.)

    1992-06-01

    We review recent ion-irradiation experiments which have been performed to investigate the collapse of displacement cascades to dislocation loops in a range of metals and alloys. Many of the results including the dependencies of the collapse probabilities on irradiation temperature, and ion dose, energy and mass, can be explained within the framework of a thermal spike/cascade melting model which has been suggested by computer molecular dynamics simulations. Other aspects, such as the dependence of collapse propabilities on the crystal structure and the effects of alloying and impurities, are less well understood.

  16. Volcano geodesy in the Cascade arc, USA

    NASA Astrophysics Data System (ADS)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  17. Robustness of network controllability in cascading failure

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Ming; Xu, Yun-Fei; Nie, Sen

    2017-04-01

    It is demonstrated that controlling complex networks in practice needs more inputs than that predicted by the structural controllability framework. Besides, considering the networks usually faces to the external or internal failure, we define parameters to evaluate the control cost and the variation of controllability after cascades, exploring the effect of number of control inputs on the controllability for random networks and scale-free networks in the process of cascading failure. For different topological networks, the results show that the robustness of controllability will be stronger through allocating different control inputs and edge capacity.

  18. Cascading failure and robustness in metabolic networks

    PubMed Central

    Smart, Ashley G.; Amaral, Luis A. N.; Ottino, Julio M.

    2008-01-01

    We investigate the relationship between structure and robustness in the metabolic networks of Escherichia coli, Methanosarcina barkeri, Staphylococcus aureus, and Saccharomyces cerevisiae, using a cascading failure model based on a topological flux balance criterion. We find that, compared to appropriate null models, the metabolic networks are exceptionally robust. Furthermore, by decomposing each network into rigid clusters and branched metabolites, we demonstrate that the enhanced robustness is related to the organization of branched metabolites, as rigid cluster formations in the metabolic networks appear to be consistent with null model behavior. Finally, we show that cascading in the metabolic networks can be described as a percolation process. PMID:18765805

  19. Optimal digital redesign of cascaded analogue controllers

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Decrocq, B. B.; Zhang, J. L.

    1991-01-01

    This paper presents a new, optimal digital redesign technique for finding an optimal cascaded digital controller from the given continuous-time counterpart by minimizing a quadratic performance index. The control gains can be obtained by solving a set of Liapunov equations. The developed optimal cascaded digital controller enables the state and/or outputs of the digitally controlled closed-loop sampled-data system to optimally match those of the original continuous-time closed-loop system at any instant between sampling periods. The developed control law can be implemented using inexpensive and reliable digital electronics with a relatively long sampling period.

  20. Damped coalescence cascade of liquid drops

    NASA Astrophysics Data System (ADS)

    Shim, Suin; Stone, Howard A.

    2017-04-01

    We introduce a regime of the coalescence cascade of a liquid drop—the damped coalescence cascade (DCC)—where the rebound of daughter drops is suppressed. DCC typically occurs when the surface tension difference between the bath and the drop is larger than a critical value. A local Marangoni flow generated in the bath at every pinch-off is expected to accelerate air drainage in the gap between the daughter drop and the bath, and thus leads to suppression of the rebound of the daughter drop. Both scaling arguments and lubrication calculations demonstrate faster air drainage in the presence of local Marangoni flow.

  1. Decay time of hollow argon atoms formed below metal and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Briand, J. P.; Phaneuf, R.; Aryal, N. B.; Baral, K. K.; Thomas, C. M.; Esteves, D. A.

    2013-09-01

    Slow highly charged ions penetrating surfaces quickly capture many electrons in highly excited states, leaving empty the innermost shells, forming hollow atoms. These hollow atoms then fill their innermost shells in a stepwise manner through a long cascade of Auger and x-ray transitions. We have measured the mean emission depths of the series of x rays emitted during the decay cascade of Ar hollow atoms formed below the surface of metal and dielectric materials. It has been found that the decay times of these hollow atoms are much longer in dielectrics than in metals, and at keV/q kinetic energies, at depths of the order of 10-20 nm, considerably deeper than any expected value. These findings have been tentatively explained by the different responses of metals and dielectrics to the slow penetration of a highly charged ion.

  2. Internal Pair Decay of Giant Resonances in Hot LEAD-200.

    NASA Astrophysics Data System (ADS)

    Adami, Susan

    Electron-positron pairs emitted during the de -excitation of the hot ^{200}Pb were detected with the Stony Brook pair detector, a phoswich array, in order to observe the internal pair decay of giant resonances (GR) built on excited states. These collective excitations are particularly well defined in heavy nuclei, and the full GR sum rule had been found in the ground state excitations of both the giant dipole resonance and the isoscalar monopole resonance. The excited compound nucleus was formed by bombarding a ^{181} Ta target with a 95 MeV pulsed ^ {19}F beam. While the gamma-decay from giant resonances of multipolarities L >=q 1 results in cross-sections 3-4 orders of magnitudes bigger than the internal pair decay, the decay of giant monopole resonances via a collective E0 transition can only be observed in the e^+ - e^ --decay channel. Another advantage of investigating electro-magnetic transitions via the pair decay channel is the fact that the correlation angle (and also the energy sharing) between the electron and the positron provides insight in the multipolarity of the observed transition. Especially the angular correlation distribution of an L = 0 transition is easily distinguished from the L >=q 1 cases. In the data analysis, the pair spectra were compared to calculations using the statistical model code CASCADE, which was modified to include the internal pair decay of giant resonances from the compound nucleus as well as from the fission fragments. In addition, gamma measurements from the same reaction at a comparable excitation energy (93 MeV) were available. The extracted pair spectra confirmed the CASCADE prediction that the giant dipole resonance dominates the pair decay from a hot, heavy nucleus. Superior statistics would be necessary in order to extract weaker modes like the monopole or quadrupole resonances and due to the lack in statistics this work can only offer a rough estimate for the width and position of the isoscalar giant monopole

  3. Two-Neutrino Double-Beta Decay.

    NASA Astrophysics Data System (ADS)

    Guerard Ortego, Carlos-Kjell

    1992-01-01

    Two previous independent reports of 2 nubetabeta-decay by the ITEP-YPI collaboration, rm T_sp{1/2} {2nu}=(9+/- 1) times 10^ {20} yr (1sigma), and PNL-USC group, rm T_sp{1/2 }{2nu}=(1.12_sp{-0.26} {+0.48}) times 10^{21} yr (2sigma), were confirmed using a 0.25 Kg Ge(Li) detector isotopically enriched to 86% in ^{76}Ge. The detector was operated in the PNL-USC ultralow background facility in the Homestake gold mine for 168 days. Following a single correction to the data, a spectrum resembling that of the earlier PNL-USC experiment, with about the same intensity per ^{76}Ge atom, per year, was observed with a measured half life of rm T_sp{1/2}{2nu}=(9.2 _sp{-0.4}{+0.7} times 10 ^{20} y (2sigma). This experiment is one of two presented in this dissertation as original work. The half-life of the 2nubeta beta-decay of ^{100} Mo to the 1130 keV level of ^{100 }Ru has been measured to be rm T_{1/2}=(1.1_sp{-0.2} {+0.3}) times 10^{21} y (90% C.L.), by observing the 590.76 and 539.53 keV gamma rays emitted in the 0_sp{1}{+ }to 2^+to 0^+ de -excitation cascade. A review of the most relevant nuclear structure calculations is given, and their predictions are compared to the measurements from our two experiments.

  4. Wood decay at sea

    NASA Astrophysics Data System (ADS)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  5. Decay Accelerating Factor (CD55) Protects Neuronal Cells from Chemical Hypoxia-Induced Injury

    DTIC Science & Technology

    2010-04-09

    blockers of AMPA and NMDA receptors , CNQX (50 μM) and D-AP5 (50 μM) (Fig. 2c). Spontaneous plateau potential with burst firing was used as an index to...cells. Physiol Rev 2005, 85:883-941. 32. Fiala JC, Spacek J, Harris KM: Dendritic spine pathology: cause or consequence of neurological disorders ...complement activation cascade may represent a potential therapeutic strategy for the management of ischemic brain injury. Decay-accelerating factor (DAF

  6. Fully analytical O( α s ) results for on-shell and off-shell polarized W-boson decays into massive quark pairs

    NASA Astrophysics Data System (ADS)

    Groote, S.; Körner, J. G.; Tuvike, P.

    2013-05-01

    We provide analytical O( α s ) results for the three polarized decay structure functions H ++, H 00 and H - that describe the decay of a polarized W boson into massive quark-antiquark pairs. As an application we consider the decay t→ b+ W + involving the helicity fractions ρ mm of the W + boson followed by the polarized decay W+(\\uparrow)to q1bar{q}2 described by the polarized decay structure functions H mm . We thereby determine the O( α s ) polar angle decay distribution of the cascade decay process tto b+W+(to q1bar{q}2). As a second example we analyze quark mass and off-shell effects in the cascade decays Hto W-+W^{ast+}(to q1bar{q}2) and Hto Z+Z^{ast}(to qbar{q}). For the decays Hto W-+W^{ast+}(to cbar{b}) and Hto Z+Z^{ast}(to bbar{b}) we find substantial deviations from the mass-zero approximation in particular in the vicinity of the threshold region.

  7. Search for rare B decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Reßing, D.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Frankl, C.; Graf, J.; Schmidtler, M.; Schramm, M.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Barsuk, S.; Belyaev, I.; Chistov, R.; Danilov, M.; Gershtein, L.; Gershtein, Yu.; Golutyin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration

    1995-02-01

    Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, we have searched for decays b → sgluon through full reconstruction of a whole event. Two B overlineB decays were found with one of B meson decaying into a final state without charmed particles. We also obtained an upper limit of Br(B + → τ+ντ) of 1.04% at 90% CL.

  8. Rare beauty and charm decays

    NASA Astrophysics Data System (ADS)

    Blake, T.; LHCb Collaboration

    2017-07-01

    Rare beauty and charm decays can provide powerful probes of physics beyond the Standard Model. These proceedings summarise the latest measurements of rare beauty and charm decays from the LHCb experiment at the end of Run 1 of the LHC. Whilst the majority of the measurements are consistent with SM predictions, small differences are seen in the rate and angular distribution of ℓ- decay processes.

  9. Rare B Decays at Babar

    SciTech Connect

    Palombo, Fernando; Collaboration, for the BABAR

    2009-01-12

    The author presents some of the most recent BABAR measurements for rare B decays. These include rate asymmetries in the B decays to K{sup (*)}l{sup +}l{sup -} and K{sup +}{pi}{sup -} and branching fractions in the B decays to l{sup +}{nu}{sub l}, K{sub 1}(1270){sup +}{pi}{sup -} and K{sub 1}(1400){sup +}{pi}{sup -}. The author also reports a search for the B{sup +} decay to K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup +}.

  10. IceCube PeV cascade events initiated by electron-antineutrinos at Glashow resonance

    NASA Astrophysics Data System (ADS)

    Barger, Vernon; Learned, John; Pakvasa, Sandip

    2013-02-01

    We propose an interpretation of the two neutrino initiated cascade events with PeV energies observed by IceCube: Ultrahigh energy cosmic ray protons (or Fe nuclei) scatter on cosmic microwave background photons through the Delta-resonance (the Berezinsky-Zatsepin process) yielding charged pions and neutrons. The neutron decays give electron-antineutrinos which undergo neutrino oscillations to populate all antineutrino flavors, but the electron-antineutrino flux remains dominant. At 6.3 PeV electron-antineutrino energy their annihilation on electrons in the IceCube detector is enhanced by the Glashow resonance (the W-boson) whose decays can give the PeV showers observed in the IceCube detector. The two observed showers with ˜1PeV energies would need to be from W leptonic decays to electrons and taus. An order of magnitude higher event rate of showers at 6.3 PeV is predicted from W to hadron decays. This interpretation can be tested in the near term. It has significant physics implications on the origin of the highest energy cosmic rays, since neutrino events and cosmic ray events likely share a common origin.

  11. Pump and probe spectroscopy with continuous wave quantum cascade lasers

    SciTech Connect

    Kirkbride, James M. R.; Causier, Sarah K.; Dalton, Andrew R.; Ritchie, Grant A. D.; Weidmann, Damien

    2014-02-07

    This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.

  12. Wall-resolved spectral cascade-transport turbulence model

    DOE PAGES

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.; ...

    2017-07-08

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  13. Electromagnetic cascades and the depletion of intense fields

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Seipt, Daniel; Heinzl, Thomas; Marklund, Mattias; Ji, Qing; Steinke, Sven; Schroeder, Carl; Esarey, Eric; Leemans, Wim P.

    2016-10-01

    The interaction of electrons, positrons, and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution. Moreover the multi-photon nature of Compton and Breit-Wheeler processes implies the absorption of a significant number of photons. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to a significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. The relevance of these results to the proposed BELLA-i beamline at BELLA center at LBNL is discussed. We acknowledge support from the Office of Science of the US DOE under Contract No. DE-AC02-05CH11231.

  14. Geothermal research, Oregon Cascades: Final technical report

    SciTech Connect

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  15. Nested Canalyzing, Unate Cascade, and Polynomial Functions.

    PubMed

    Jarrah, Abdul Salam; Raposa, Blessilda; Laubenbacher, Reinhard

    2007-09-15

    This paper focuses on the study of certain classes of Boolean functions that have appeared in several different contexts. Nested canalyzing functions have been studied recently in the context of Boolean network models of gene regulatory networks. In the same context, polynomial functions over finite fields have been used to develop network inference methods for gene regulatory networks. Finally, unate cascade functions have been studied in the design of logic circuits and binary decision diagrams. This paper shows that the class of nested canalyzing functions is equal to that of unate cascade functions. Furthermore, it provides a description of nested canalyzing functions as a certain type of Boolean polynomial function. Using the polynomial framework one can show that the class of nested canalyzing functions, or, equivalently, the class of unate cascade functions, forms an algebraic variety which makes their analysis amenable to the use of techniques from algebraic geometry and computational algebra. As a corollary of the functional equivalence derived here, a formula in the literature for the number of unate cascade functions provides such a formula for the number of nested canalyzing functions.

  16. Cascade enzyme-linked immunosorbent assay (CELISA).

    PubMed

    Lee, Young-mi; Jeong, Yujin; Kang, Hyo Jin; Chung, Sang J; Chung, Bong Hyun

    2009-10-15

    Immunoassays are representative biochemical detection methods. Among them, sandwich-type immunoassays, typified by sandwich ELISA, have used in disease diagnosis or biochemical detection with high target selectivity. Horseradish peroxidase and alkaline phosphatase have been typically used for signal amplification in ELISA. Recently developed sandwich-type immunoassays such as biobarcode immunoassays, immuno-PCR, and immuno-RCA have improved sensitivity by changing mainly the signal amplification method. To develop a novel amplification method in ELISA, an enzyme-cascading system was incorporated into an ELISA, and the new assay is termed a cascading enzyme-linked immunosorbent assay (CELISA). This CELISA includes a trypsinogen-enterokinase combination as the cascading enzyme system, and was used to detect alpha-fetoprotein (AFP), which is a liver cancer marker, and prostate-specific antigen (PSA). Using a colorimetric reagent for signal generation, CELISA had 0.1-10pM limits-of-detection for AFP and PSA in whole human serum and assay buffers, depending on the platform, well plate, or microbead type used. This study represents the first example that incorporated an enzyme cascading step in an ELISA system, resulting in successful signal amplification with sensitive detection of pathogenic antigens in serum.

  17. Catastrophic cascade of failures in interdependent networks.

    PubMed

    Buldyrev, Sergey V; Parshani, Roni; Paul, Gerald; Stanley, H Eugene; Havlin, Shlomo

    2010-04-15

    Complex networks have been studied intensively for a decade, but research still focuses on the limited case of a single, non-interacting network. Modern systems are coupled together and therefore should be modelled as interdependent networks. A fundamental property of interdependent networks is that failure of nodes in one network may lead to failure of dependent nodes in other networks. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of several interdependent networks. A dramatic real-world example of a cascade of failures ('concurrent malfunction') is the electrical blackout that affected much of Italy on 28 September 2003: the shutdown of power stations directly led to the failure of nodes in the Internet communication network, which in turn caused further breakdown of power stations. Here we develop a framework for understanding the robustness of interacting networks subject to such cascading failures. We present exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks. Surprisingly, a broader degree distribution increases the vulnerability of interdependent networks to random failure, which is opposite to how a single network behaves. Our findings highlight the need to consider interdependent network properties in designing robust networks.

  18. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  19. Cascaded frequency doublers for broadband laser radiation

    SciTech Connect

    Andreev, N F; Vlasova, K V; Davydov, V S; Kulikov, S M; Makarov, A I; Sukharev, Stanislav A; Freidman, Gennadii I; Shubin, S V

    2012-10-31

    A new scheme of a cascaded converter of the first harmonic of broadband cw laser radiation into the second harmonic (SH) with compensation for the group walk-off in cascades is proposed and investigated. The conditions under which high conversion coefficients of broadband ({approx}33 cm{sup -1}) single-mode fibre laser radiation with low peak power ({approx}300 W) into the SH are determined for frequency doublers based on the most promising LBO crystal. Conversion of cw radiation with an average power of 300 W and efficiency {eta} = 4.5 % into the SH is obtained in a single LBO crystal. Effect of coherent addition of SH radiation excited in different cascades is demonstrated for two- and three-stage schemes. The expected conversion efficiencies, calculated disregarding loss but taking into account real aberrations of elements, are 18 % and 38 %, respectively. The effect of pumping depletion begins to manifest itself in the third cascade of a three-stage converter; it may reduce the latter value to {approx}30 %. (nonlinear optical phenomena)

  20. Forecasting Social Unrest Using Activity Cascades

    PubMed Central

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J.; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen “on the ground.” Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach. PMID:26091012

  1. Modeling and simulation of cascading contingencies

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng

    This dissertation proposes a new approach to model and study cascading contingencies in large power systems. The most important contribution of the work involves the development and validation of a heuristic analytic model to assess the likelihood of cascading contingencies, and the development and validation of a uniform search strategy. We model the probability of cascading contingencies as a function of power flow and power flow changes. Utilizing logistic regression, the proposed model is calibrated using real industry data. This dissertation analyzes random search strategies for Monte Carlo simulations and proposes a new uniform search strategy based on the Metropolis-Hastings Algorithm. The proposed search strategy is capable of selecting the most significant cascading contingencies, and it is capable of constructing an unbiased estimator to provide a measure of system security. This dissertation makes it possible to reasonably quantify system security and justify security operations when economic concerns conflict with reliability concerns in the new competitive power market environment. It can also provide guidance to system operators about actions that may be taken to reduce the risk of major system blackouts. Various applications can be developed to take advantage of the quantitative security measures provided in this dissertation.

  2. Cascading Crater Detection with Active Learning

    NASA Astrophysics Data System (ADS)

    Miller, W. I.; Stepinski, T. F.; Mu, Y.; Ding, W.

    2011-03-01

    Our strategy for automatic crater detection consists of employing a cascading AdaBoost classifier for identification of craters in images, and using the SOM as an active learning tool to minimize the number of image examples that need to be labeled by an analyst.

  3. Design and Evaluation of Cascade Test Facility.

    DTIC Science & Technology

    1982-06-01

    New York: McGraw-Hill Book Company, 1979. 6. Erwin, John R., and James C. Emery. NACA TR 1016: Effect of Tunnel Configuration and Testing Technique on... Dgt .,opid 1 4 FEB 1983 S Force laut* 01 clbtebo legy (ATC) 19. KEY WORDS (Continue on ceverse side it necessary and identify by block number) Cascade

  4. Oregon Cascades Play Fairway Analysis: Maps

    DOE Data Explorer

    Trimble, John

    2015-12-15

    The maps in this submission include: heat flow, alkalinity, Cl, Mg, SiO2, Quaternary volcanic rocks, faults, and land ownership. All of the Oregon Cascade region. The work was done by John Trimble, in 2015, at Oregon State University.

  5. The Attention Cascade Model and Attentional Blink

    ERIC Educational Resources Information Center

    Shih, Shui-I

    2008-01-01

    An attention cascade model is proposed to account for attentional blinks in rapid serial visual presentation (RSVP) of stimuli. Data were collected using single characters in a single RSVP stream at 10 Hz [Shih, S., & Reeves, A. (2007). "Attentional capture in rapid serial visual presentation." "Spatial Vision", 20(4), 301-315], and single words,…

  6. Forecasting Social Unrest Using Activity Cascades.

    PubMed

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach.

  7. Electrically Tunable Terahertz Quantum-Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Soidel, Alexander; Mansour, Kamjou

    2006-01-01

    Improved quantum-cascade lasers (QCLs) are being developed as electrically tunable sources of radiation in the far infrared spectral region, especially in the frequency range of 2 to 5 THz. The structures of QCLs and the processes used to fabricate them have much in common with those of multiple- quantum-well infrared photodetectors.

  8. Cascade Training and Teachers' Professional Development.

    ERIC Educational Resources Information Center

    Hayes, David

    2000-01-01

    Examines the experience of a nationwide inservice teacher development project in Sri Lanka that aims to remedy the potential deficiencies of cascade models of teacher development. Shows how project training and development strategies that are context sensitive, collaborative, and reflexive seek to involve teachers in managing their own…

  9. Staged energy cascades for the LUX FEL

    SciTech Connect

    Penn, G.

    2004-07-27

    Designs and simulation studies for harmonic cascades, consisting of multiple stages of harmonic generation in free electron lasers (FELs), are presented as part of the LUX R&D project to design ultrafast, high photon energy light sources for basic science. Beam energies of 1.1, 2.1, and 3.1 GeV, corresponding to each pass through a recirculating linac, have independent designs for the harmonic cascade. Simulations were performed using the GENESIS FEL code, to obtain predictions for the performance of these cascades over a wide range of photon energies in terms of the peak power and laser profile. The output laser beam consists of photon energies of up to 1 keV, with durations of the order of 200 fs or shorter. The contribution of shot noise to the laser output is minimal, however fluctuations in the laser and electron beam properties can lead to variations in the FEL output. The sensitivity of the cascade to electron beam properties and misalignments is studied, taking advantage of the fact that GENESIS is a fully 3-dimensional code.

  10. The Attention Cascade Model and Attentional Blink

    ERIC Educational Resources Information Center

    Shih, Shui-I

    2008-01-01

    An attention cascade model is proposed to account for attentional blinks in rapid serial visual presentation (RSVP) of stimuli. Data were collected using single characters in a single RSVP stream at 10 Hz [Shih, S., & Reeves, A. (2007). "Attentional capture in rapid serial visual presentation." "Spatial Vision", 20(4), 301-315], and single words,…

  11. OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM FROM DIRECTION OF KACHESS DAM. VIEW TO NORTH - Kachess Dam, 1904 Cascade Canal Company Crib Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  12. Cluster decay in the superallowed α decay region

    NASA Astrophysics Data System (ADS)

    Bhagwat, A.; Liotta, R. J.

    2017-09-01

    The emissions of α particles and protons are the dominant decay channels in the neutron-deficient nuclei corresponding to the s d g major shell. The possibility of cluster emission is explored here. It is shown that the cluster decay mode has a small yet sizable branching ratio.

  13. CP violation in K decays and rare decays

    SciTech Connect

    Buchalla, G.

    1996-12-01

    The present status of CP violation in decays of neutral kaons is reviewed. In addition selected rare decays of both K and B mesons are discussed. The emphasis is in particular on observables that can be reliably calculated and thus offer the possibility of clean tests of standard model flavor physics. 105 refs.

  14. Experimental determination of unsteady blade element aerodynamics in cascades. Volume 1: Torsion mode cascade

    NASA Technical Reports Server (NTRS)

    Riffel, R. E.; Rothrock, M. D.

    1980-01-01

    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.

  15. Component criticality in failure cascade processes of network systems.

    PubMed

    Zio, Enrico; Sansavini, Giovanni

    2011-08-01

    In this work, specific indicators are used to characterize the criticality of components in a network system with respect to their contribution to failure cascade processes. A realistic-size network is considered as reference case study. Three different models of cascading failures are analyzed, differing both on the failure load distribution logic and on the cascade triggering event. The criticality indicators are compared to classical measures of topological centrality to identify the one most characteristic of the cascade processes considered.

  16. DETAILED COMPARISON BETWEEN PARTON CASCADE AND HADRONIC CASCADE AT SPS AND RHIC.

    SciTech Connect

    NARA,Y.

    1998-10-23

    The authors study the importance of the partonic phase produced in relativistic heavy ion collision by comparing the parton cascade model and the hadronic cascade model. Hadron yield, baryon stopping and transverse momentum distribution are calculated with JAM and discussions are given comparing with VNI. Both of these models give good description of experimental data. They also discuss the strangeness production mechanism and the directed transverse flow.

  17. Accelerated Decay of Radioisotopes

    DTIC Science & Technology

    2013-01-01

    00-01 -2013 Technical June20 l l-June 2012 4 . TITLE AND SUBTITLE Sa. CONTRACT NUMBER DTRA MIPR 11-2362M Accelerated Decay of Radioisotopes Sb...268 x E +2 4.788 026 x E -2 6.894 757 4.535 924 x E -1 4.214 011 x E -2 1.601 846 x E +1 1.000 000 x E -2 2.579 760 x E - 4 1.000 000 x E -8...c a y o f R a d i o i s o t o p e s " P r o p o s a l # B R C A L L 0 7 - N - 2 - 0 0 4 7 I l l u s t r a t i o n o f \\ P F R P a s p o

  18. Double beta decay: Calorimeters

    NASA Astrophysics Data System (ADS)

    Brofferio, Chiara

    2008-11-01

    Calorimeters or, with a more specific definition, low temperature detectors, have been used by now for more than 15 years in Double Beta Decay (DBD) searches, with excellent results: they compete with Ge diodes for the rank of detectors with the highest sensitivity to the effective neutrino mass, which is defined as a linear combination of the neutrino mass eigenvalues. After a brief introduction to the argument, with some notes on DBD and on bolometers, an update on the now closed experiment CUORICINO and on its successor, CUORE, is given. The fundamental role of background is then revealed and commented, introducing in this way the importance of the specific experiment now under construction, CUORE-0, that will precede CUORE to help optimizing the struggle against surface background. The possible future of this technique is then commented, quoting important R&D studies that are going on, for active shielding bolometers and for scintillating bolometers coupled with light detecting bolometers.

  19. Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Fiorini, Ettore

    2007-06-01

    The recent results showing the presence of neutrino oscillations clearly indicate that the difference between the squared mass of neutrinos of different flavors is different from zero, but are unable to determine the nature and the absolute value of the neutrino mass. Neutrinoless double beta decay (DBD) is at present the most powerful tool to ascertain if the neutrino is a Majorana particle and to determine under this condition the absolute value of its mass. The results already obtained in this lepton violating process will be reported and the two presently running DBD experiments briefly discussed. The future second generation experiments will be reviewed with special emphasis to those already partially approved. In conclusion the peculiar and interdisciplinary nature of these searches will be stressed in their exciting aim to discover if neutrino is Dirac or Majorana particle.

  20. Decay of oscillating universes

    NASA Astrophysics Data System (ADS)

    Mithani, Audrey Todhunter

    2016-08-01

    It has been suggested by Ellis et al that the universe could be eternal in the past, without beginning. In their model, the "emergent universe'' exists forever in the past, in an "eternal'' phase before inflation begins. We will show that in general, such an "eternal'' phase is not possible, because of an instability due to quantum tunneling. One candidate model, the "simple harmonic universe'' has been shown by Graham et al to be perturbatively stable; we find that it is unstable with respect to quantum tunneling. We also investigate the stability of a distinct oscillating model in loop quantum cosmology with respect to small perturbations and to quantum collapse. We find that the model has perturbatively stable and unstable solutions, with both types of solutions occupying significant regions of the parameter space. All solutions are unstable with respect to collapse by quantum tunneling to zero size. In addition, we investigate the effect of vacuum corrections, due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. Finally, we determine the decay rate of the oscillating universe. Although the wave function of the universe lacks explicit time dependence in canonical quantum cosmology, time evolution may be present implicitly through the semiclassical superspace variables, which themselves depend on time in classical dynamics. Here, we apply this approach to the simple harmonic universe, by extending the model to include a massless, minimally coupled scalar field φ which has little effect on the dynamics but can play the role of a "clock''.

  1. Cascade L-shell soft-x-ray emission as incident x-ray photons are tuned across the 1s ionization threshold

    SciTech Connect

    Sokaras, D.; Andrianis, M.; Lagoyannis, A.; Kochur, A. G.; Mueller, M.; Kolbe, M.; Beckhoff, B.; Mantler, M.; Zarkadas, Ch.; Karydas, A. G.

    2011-05-15

    The cascade L-shell x-ray emission as an incident polarized and unpolarized monochromatic radiation overpass the 1s ionization threshold is investigated for the metallic Fe by means of moderate resolution, quantitative x-ray spectrometry. A full ab initio theoretical investigation of the L-shell x-ray emission processes is performed based on a detailed straightforward construction of the cascade decay trees within the Pauli-Fock approximation. The agreement obtained between experiments and the presented theory is indicated and discussed with respect to the accuracy of advanced atomic models as well as its significance for the characterization capabilities of x-ray fluorescence (XRF) analysis.

  2. Calculation of transonic flow in radial turbine blade cascade

    NASA Astrophysics Data System (ADS)

    Petr, Straka

    2017-09-01

    Numerical modeling of transonic centripetal turbulent flow in radial blade cascade is described in this paper. Attention is paid to effect of the outlet confusor on flow through the radial blade cascade. Parameters of presented radial blade cascade are compared with its linear representation

  3. Multiperiod quantum-cascade nanoheterostructures: Epitaxy and diagnostics

    SciTech Connect

    Egorov, A. Yu. Brunkov, P. N.; Nikitina, E. V.; Pirogov, E. V.; Sobolev, M. S.; Lazarenko, A. A.; Baidakova, M. V.; Kirilenko, D. A.; Konnikov, S. G.

    2014-12-15

    Advances in the production technology of multiperiod nanoheterostructures of quantum-cascade lasers with 60 cascades by molecular-beam epitaxy (MBE) on an industrial multiple-substrate MBE machine are discussed. The results obtained in studying the nanoheterostructures of quantum-cascade lasers by transmission electron microscopy, high-resolution X-ray diffraction analysis, and photoluminescence mapping are presented.

  4. Particle decay in inflationary cosmology

    SciTech Connect

    Boyanovsky, D.; Vega, H.J. de

    2004-09-15

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. For superhorizon modes we find that the decay is of the form {eta}{sup {gamma}{sub 1}} with {eta} being conformal time and we give an explicit expression for {gamma}{sub 1} to leading order in the coupling which has a noteworthy interpretation in terms of the Hawking temperature of de Sitter space-time. We show that if the mass M of the decaying field is <decay rate during inflation is enhanced over the Minkowski space-time result by a factor 2H/{pi}M. For wavelengths much smaller than the Hubble radius we find that the decay law is e with C({eta}) the scale factor and {alpha} determined by the strength of the trilinear coupling. In all cases we find a substantial enhancement in the decay law as compared to Minkowski space-time. These results suggest potential implications for the spectrum of scalar density fluctuations as well as non-Gaussianities.

  5. Tree Decay - An Expanded Concept

    Treesearch

    Alex L. Shigo

    1979-01-01

    The purpose of this publication is to clarify further the tree decay concept that expands the classical concept to include the orderly response of the tree to wounding and infection-compartmentalization-and the orderly infection of wounds by many microorganisms-successions. The heartrot concept must be abandoned because it deals only with decay-causing fungi and it...

  6. Tree decay an expanded concept

    Treesearch

    Alex L. Shigo

    1979-01-01

    This publication is the final one in a series on tree decay developed in cooperation with Harold G. Marx, Research Application Staff Assistant, U.S. Department of Agriculture, Forest Service, Washington, D.C. The purpose of this publication is to clarify further the tree decay concept that expands the classical concept to include the orderly response of the tree to...

  7. Theoretical understanding of charm decays

    SciTech Connect

    Bigi, I.I.

    1986-08-01

    A detailed description of charm decays has emerged. The various concepts involved are sketched. Although this description is quite successful in reproducing the data the chapter on heavy flavour decays is far from closed. Relevant questions like on th real strength of weak annihilation, Penguin operators, etc. are still unanswered. Important directions in future work, both on the experimental and theoretical side are identified.

  8. Soudan 2 nucleon decay experiment

    SciTech Connect

    Thron, J.L.

    1986-01-01

    The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage.

  9. Particle decay in inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.

    2004-09-01

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. For superhorizon modes we find that the decay is of the form ηΓ1 with η being conformal time and we give an explicit expression for Γ1 to leading order in the coupling which has a noteworthy interpretation in terms of the Hawking temperature of de Sitter space-time. We show that if the mass M of the decaying field is ≪H then the decay rate during inflation is enhanced over the Minkowski space-time result by a factor 2H/πM. For wavelengths much smaller than the Hubble radius we find that the decay law is e with C(η) the scale factor and α determined by the strength of the trilinear coupling. In all cases we find a substantial enhancement in the decay law as compared to Minkowski space-time. These results suggest potential implications for the spectrum of scalar density fluctuations as well as non-Gaussianities.

  10. Top decays in extended models

    SciTech Connect

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2009-04-20

    Top quark decays are interesting as a mean to test the Standard Model (SM) predictions. The Cabbibo-Kobayashi-Maskawa (CKM)-suppressed process t{yields}cWW, and the rare decays t{yields}cZ, t{yields}H{sup 0}+c, and t{yields}c{gamma} an excellent window to probe the predictions of theories beyond the SM. We evaluate the flavor changing neutral currents (FCNC) decay t{yields}H{sup 0}+c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t{yields}c+{gamma}, which involves radiative corrections.

  11. Charm and bottom semileptonic decays

    NASA Astrophysics Data System (ADS)

    O'donnell, Patrick J.; Turan, Gürsevil

    1997-07-01

    We review the present status of theoretical attempts to calculate the semileptonic charm and bottom decays and then present a calculation of these decays in the light-front frame at the kinematic point q2=0. This allows us to evaluate the form factors at the same value of q2, even though the allowed kinematic ranges for charm and bottom decays are very different. Also, at this kinematic point the decay is given in terms of only one form factor A0(0). For the ratio of the decay rates given by the E653 collaboration we show that the determination of the ratio of the Cabibbo-Kobayashi-Maskawa matrix elements is consistent with that obtained from the unitarity constraint, though a new measurement by the E687 Collaboration is about two standard deviations too high. At present, though, the unitarity method still has greater accuracy. Since comparisons of the semileptonic decays into ρ and either electrons or muons will be available soon from the E791 Fermilab experiment, we also look at the massive muon case. We show that for a range of q2 the SU(3)F symmetry breaking is small even though the contributions of the various helicity amplitudes becomes more complicated. For B decays, the decay B-->K*ll¯ at q2=0 involves an extra form factor coming from the photon contribution and so is not amenable to the same kind of analysis, leaving only the decay B-->K*νν¯ as a possibility. As the mass of the decaying particle increases we note that the SU(3) symmetry becomes badly broken at q2=0.

  12. Quantum Cascade Lasers Modulation and Applications

    NASA Astrophysics Data System (ADS)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  13. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  14. Moment method in the theory of cascade-process fluctuations

    SciTech Connect

    Vetoshkin, V.V.; Uchaikin, V.V.

    1987-09-01

    A method for calculating the fluctuations and correlations in cascade processes is outlined, on the basis of deriving random cascade curves from their spatial (longitudinal) moment. The method reduces the problem of calculating cascade fluctuations in a homogeneous medium to calculating the covariational matrix of random moments, depending only on the energy variable. The set of elements of this matrix allows the fluctuations and core correlations of any track characteristics of the cascade to be calculated. The method is intended for calculations of high-energy cascades, when the influence of fluctuations of high-order longitudinal moments (n greater than or equal to 5) may be neglected.

  15. Scaling laws of wave-cascading superfluid turbulence

    NASA Astrophysics Data System (ADS)

    Narita, Y.

    2017-06-01

    Phenomenological model is constructed for superfluid turbulence for two distinct energy cascade scenarios, sound wave cascade and critically-balanced Kelvin wave cascade, using the method for magneto-fluid turbulence theory. Excitations along dispersion relations are used as the primary energy reservoir. The spectral indices in the inertial range are estimated as -3/2 for the long-wavelength sound wave cascade, -3 in the direction to the mean filaments for the Kelvin wave cascade, and -5/3 perpendicular to the filament direction.

  16. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays...

  17. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays...

  18. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays...

  19. Semileptonic and leptonic B decays, circa 2016

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giulia

    2017-02-01

    We summarize the status of semileptonic and leptonic B decays, including |Vcb| and |Vub| exclusive and inclusive determinations, decays to excited states of the charm meson spectrum and decays into τ leptons.

  20. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  1. Quantum-cascade lasers enable infrared sensors

    SciTech Connect

    Schultz, John F. )

    2003-05-01

    Quantum-cascade lasers (QCLs) are semiconductor-injection lasers based on intersubband transitions in a multiple-quantum-well heterostructure. They are designed using band-structure engineering and grown by molecular beam epitaxy. The emission wavelength of a QCL is primarily a function of quantum-well thickness--thinner quantum wells lead to shorter wavelengths--and is essentially independent of the material bandgap. Quantum-cascade lasers can be designed to operate at any wavelength from 3.5 m (infrared) to 67 m (terahertz region) and are continuously tunable through ranges of a few inverse centimeters.1, 2, 3 This capability makes them well suited for spectroscopy in the infrared (see Laser Focus World, August 1999, p. 40).

  2. Single mode terahertz quantum cascade amplifier

    SciTech Connect

    Ren, Y. Wallis, R.; Shah, Y. D.; Jessop, D. S.; Degl'Innocenti, R.; Klimont, A.; Kamboj, V.; Beere, H. E.; Ritchie, D. A.

    2014-10-06

    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-mode radiation output is demonstrated.

  3. [Infrared spectroscopy based on quantum cascade lasers].

    PubMed

    Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing

    2013-04-01

    Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.

  4. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  5. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  6. Very long wave infrared quantum cascade detectors

    NASA Astrophysics Data System (ADS)

    Liu, Jun-qi; Zhai, Shen-qiang; Liu, Feng-qi; Wang, Zhan-guo

    2014-11-01

    Quantum cascade detectors (QCDs) are photovoltaic devices: they have a built in asymmetric conduction band potential formed by energy band engineering design, which allows for biasless operation. In this work, we focus on the very long wave infrared (VLWIR) quantum cascade photodectors involving energy band engineering, material technology, and devices physics. Targeting the common applications, we demonstrate a series of VLWIR QCDs from 14 to 20μm. The dark current density under 1.1×10-11 Acm-2 and the detectivity above 1×1011 cmHz1/2W-1 is achieved. Many of them exhibit high performance and give a cheerful prospect for the practical application in the near future.

  7. Multiplicative-cascade dynamics in pole balancing.

    PubMed

    Harrison, Henry S; Kelty-Stephen, Damian G; Vaz, Daniela V; Michaels, Claire F

    2014-06-01

    Pole balancing is a key task for probing the prospective control that organisms must engage in for purposeful action. The temporal structure of pole-balancing behaviors will reflect the on-line operation of control mechanisms needed to maintain an upright posture. In this study, signatures of multifractality are sought and found in time series of the vertical angle of a pole balanced on the fingertip. Comparisons to surrogate time series reveal multiplicative-cascade dynamics and interactivity across scales. In addition, simulations of a pole-balancing model generating on-off intermittency [J. L. Cabrera and J. G. Milton, Phys. Rev. Lett. 89, 158702 (2002)] were analyzed. Evidence of multifractality is also evident in simulations, though comparing simulated and participant series reveals a significantly greater contribution of cross-scale interactivity for the latter. These findings suggest that multiplicative-cascade dynamics are an extension of on-off intermittency and play a role in prospective coordination.

  8. Cascade morphology transition in bcc metals

    DOE PAGES

    Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; ...

    2015-01-01

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N-F similar to E-MD(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, mu, between the high-and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of mu as a function of displacement threshold energy, E-d,more » is presented for bcc metals.« less

  9. Cascade morphology transition in bcc metals

    SciTech Connect

    Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.

    2015-01-01

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N-F similar to E-MD(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, mu, between the high-and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of mu as a function of displacement threshold energy, E-d, is presented for bcc metals.

  10. Cascade morphology transition in bcc metals

    SciTech Connect

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, $b$, in the defect production curve as a function of cascade energy ($N_F$$ \\sim$$E_{MD}^b$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $\\mu$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $\\mu$ as a function of displacement threshold energy, $E_d$, is presented for bcc metals.

  11. Overflow cascades on liquid-infused surfaces

    NASA Astrophysics Data System (ADS)

    Jacobi, Ian; Wexler, Jason; Stone, Howard

    2014-11-01

    The shear-driven dewetting of liquid-infused, micro-patterned surfaces is shown to exhibit a complex cascade of overflow, droplet generation and liquid displacement behaviors. Because liquid-infused surfaces are important in systems as varied as free-surface microfluidic devices and high Reynolds number drag-reducing coatings, understanding the dewetting mechanism is crucial to designing substrates capable of retaining infused liquid or, alternatively, dispensing it in a controlled way. Shear flow experiments on a variety of liquid-infused surface architectures are performed and the interfacial dynamics are characterized at macro- and microscopic scales. Analysis of the different stages of the dewetting cascade is then used to develop substrate design criteria for enhanced liquid control under a variety of shear flow conditions.

  12. Cascade models of synaptically stored memories.

    PubMed

    Fusi, Stefano; Drew, Patrick J; Abbott, L F

    2005-02-17

    Storing memories of ongoing, everyday experiences requires a high degree of plasticity, but retaining these memories demands protection against changes induced by further activity and experience. Models in which memories are stored through switch-like transitions in synaptic efficacy are good at storing but bad at retaining memories if these transitions are likely, and they are poor at storage but good at retention if they are unlikely. We construct and study a model in which each synapse has a cascade of states with different levels of plasticity, connected by metaplastic transitions. This cascade model combines high levels of memory storage with long retention times and significantly outperforms alternative models. As a result, we suggest that memory storage requires synapses with multiple states exhibiting dynamics over a wide range of timescales, and we suggest experimental tests of this hypothesis.

  13. Numerical calculation of turbomachinery cascade flows

    NASA Astrophysics Data System (ADS)

    Liu, Feng

    A numerical method for solving both the Euler and the Reynolds-averaged Navier-Stokes equations for flows in turbomachinery cascades is presented and verified. The method is based on a finite volume method with an explicit multi-stage time-stepping scheme originally developed by Jameson for the Euler equations. Modified discretization schemes, based on Martinelli's work for the second order derivatives in the Navier-Stokes equations, are proposed for both the cell-vertex and the cell-centered schemes. The new schemes avoid a potential discretization problem with kinked meshes. Use of artificial dissipation to stabilize a central difference scheme and capture shocks is discussed. Local time stepping and residual smoothing are used to increase the allowable time steps for stability. A multigrid method is employed to accelerate convergence to steady state. For steady inviscid flows enthalpy damping is also used. The method is capable of handling flows of low Mach number (lower than 0.3), and transonic and supersonic flows. Both laminar and turbulent flows are calculated in solving the Reynolds-averaged equations. The Reynolds number may range from order 1 to 10(exp 7) or even higher as long as enough mesh resolution and a proper turbulence model are provided. The Baldwin-Lomax algebraic turbulence model is used in the current work. An elliptic mesh generator is used to generate H-type meshes for cascades. The cell-centered scheme is programmed in both two- and three-dimensions for the Euler equations. Numerical results included a two-dimensional Hobson cascade, a supersonic wedge cascade and the VKI turbine cascade. The three-dimensional code is used to calculate the flow in a low pressure turbine cascade. Results compare well with experimental data at design conditions. At off-design conditions, the Euler method fails in regions of large separations.

  14. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  15. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  16. Electrophilic and nucleophilic enzymatic cascade reactions in biosynthesis.

    PubMed

    Ueberbacher, Barbara T; Hall, Mélanie; Faber, Kurt

    2012-03-01

    The biosynthesis of cyclic terpenoids and polyethers involves enzyme-initiated cascade reactions for ring formation. While the former are obtained by electrophilic cascades through carbenium ions as intermediates, cyclic polyethers are formed by nucleophilic cascade reactions of (poly)epoxide precursors. These mechanistically complementary pathways follow common principles via (i) triggering of the cascade by forming a reactive intermediate ('initiation'), (ii) sequential 'proliferation' of the cyclization and finally (iii) 'termination' of the cascade. As analyzed in this concept paper, the multiplicity of precursors, combined with various initiation and termination routes and kinetically favored or disfavored cyclization modes accounts for the enormous diversity in cyclic terpenoid and polyether scaffolds. Although the essential role of enzymes in the triggering of these cascades is reasonably well understood, remarkably little is known about their influence in proliferation reactions, especially those implying kinetically disfavored (anti-Markovnikov and anti-Baldwin) routes. Mechanistic analysis of enzymatic cascade reactions provides biomimetic strategies for natural product synthesis.

  17. Environmental solid particle effects on compressor cascade performance

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Balan, C.

    1982-01-01

    The effect of suspended solid particles on the performance of the compressor cascade was investigated experimentally in a specially built cascade tunnel, using quartz sand particles. The cascades were made of NACA 65(10)10 airfoils. Three cascades were tested, one accelerating cascade and two diffusing cascades. The theoretical analysis assumes inviscid and incompressible two dimensional flow. The momentum exchange between the fluid and the particle is accounted for by the interphase force terms in the fluid momentum equation. The modified fluid phase momentum equations and the continuity equation are reduced to the conventional stream function vorticity formulation. The method treats the fluid phase in the Eulerian system and the particle phase in Lagrangian system. The experimental results indicate a small increase in the blade surface static pressures, while the theoretical results indicate a small decrease. The theoretical analysis, also predicts the loss in total pressure associated with the particulate flow through the cascade.

  18. Cascading failure in the wireless sensor scale-free networks

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li

    2015-05-01

    In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).

  19. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  20. A cascaded coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Lin, S.

    1985-01-01

    A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.

  1. Cascading Effects of Fuel Network Interdiction

    DTIC Science & Technology

    2015-03-26

    114  Table 11: Cascading Effects of Supply Interdiction in Select Industries ....................... 118  Table 12: Randomized Factor Settings for...there is an improvement in model stability to variations in stock, product, and demand factors that affect profit that is scaled by the risk attitude...system caused by a direct disruption in an interconnected industry . Likewise, resource availability and supply are quantified by the risk of

  2. A cascaded coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Shu, L.; Kasami, T.

    1985-01-01

    A cascade coding scheme for error control is investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are evaluated. They seem to be quite suitable for satellite down-link error control.

  3. Transonic Cascade Measurements to Support Analytical Modeling

    DTIC Science & Technology

    2007-11-02

    RECEIVED JUL 0 12005 FINAL REPORT FOR: AFOSR GRANT F49260-02-1-0284 TRANSONIC CASCADE MEASUREMENTS TO SUPPORT ANALYTICAL MODELING Paul A. Durbin ...PAD); 650-723-1971 (JKE) durbin @vk.stanford.edu; eaton@vk.stanford.edu submitted to: Attn: Dr. John Schmisseur Air Force Office of Scientific Research...both spline and control points for subsequent wall shape definitions. An algebraic grid generator was used to generate the grid for the blade-wall

  4. Evolution of Vertebrate Phototransduction: Cascade Activation

    PubMed Central

    Lamb, Trevor D.; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C.; Davies, Wayne I. L.; Hart, Nathan S.; Collin, Shaun P.; Hunt, David M.

    2016-01-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  5. Unsteady Pressure Distributions on Airfoils in Cascade.

    DTIC Science & Technology

    1980-04-01

    of thin airfoil theory has been used by Henderson (-ftj’ and Bruce (1-7-)’to derive expressions for the unsteady response which includes the cascade...model in conjunction with the assumptions of thin airfoil theory has been used by Henderson (16) and Bruce (17) to derive expressions for the unsteady...effect, that is, a sharp change in the unsteady lift when the disturbance wavelength equals the blade spacing. Bruce (19) further extends this theory to

  6. Sustained oscillations in the MAP kinase cascade.

    PubMed

    Hell, Juliette; Rendall, Alan D

    2016-10-29

    The MAP kinase cascade is a network of enzymatic reactions arranged in layers. In each layer occurs a multiple futile cycle of phosphorylations. The fully phosphorylated substrate then serves as an enzyme for the layer below. This paper focusses on the existence of parameters for which Hopf bifurcations occur and generate periodic orbits. Furthermore it is explained how geometric singular perturbation theory allows to generalize results from simple models to more complex ones. Copyright © 2016. Published by Elsevier Inc.

  7. Absorption spectroscopy with quantum cascade lasers

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2001-01-01

    Novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers operating near lambda=8 micrometers were used for detection and quantification of trace gases in ambient air by means of sensitive absorption spectroscopy. N2O, 12CH4, 13CH4, and different isotopic species of H2O were detected. Also, a highly selective detection of ethanol vapor in air with a sensitivity of 125 parts per billion by volume (ppb) was demonstrated.

  8. Microsensors based on quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Wu, Sheng; Deev, Andrei; Tang, Yongchun

    2011-06-01

    We present our results on efficient coupling of Quantum Cascade Lasers (QCLs) into Whispering Gallery Resonators, Hollow Waveguide. We also present results of micro sensors using the unique properties of QCLs, e.g. online sensors for Gas Chromatography (GC). We show that because of the unique brightness properties of QCLs, we could improve GC-Infrared sensors' sensitivity to the same level as Mass Spectrometry, and with different dimension of chemical information.

  9. Gasdynamic Evaluation of Choking Cascade Turns

    DTIC Science & Technology

    1984-12-01

    often volume limited, requiring extensive integration of components. One such component is the air intake systems which are needed for environmental...GASDYNANqIC EVALUATION OF CHOKING CASCADE TURNS THESIS Dennis R. Perez Capt, USAF E T~ AFIT/GAE/AA/84D-21 SELECTE Approved for public release; distribution...Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirements for the Degree of Master of Science in

  10. Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Fiorini, Ettore

    2010-12-01

    Almost exactly seventy years ago and only one year before his tragic disappearance the ingenious idea of Ettore Majorana is becoming one of the most important step in the development of fundamental physics. The problem of the nature of the neutrino, namely if it is a massless Dirac particle different from its antineutrino or a Majorana particle with finite mass, is discussed. In fact the recent results showing the presence of neutrino oscillations clearly indicates that the difference between the squared mass of neutrinos of different flavours is finite. Neutrinoless double beta decay (DBD) is at present the most powerful tool to determine the effective value of the mass of a Majorana neutrino. The results already obtained in this lepton violating process will be reported and the two presently running DBD experiments briefly discussed. The future second generation experiments will be reviewed with special emphasis to those already at least partially approved. In conclusion the peculiar and interdisciplinary nature of these searches will be stressed in their exciting aim to discover if neutrino is indeed a Majorana particle.

  11. Nonleptonic Bc→VV decays

    NASA Astrophysics Data System (ADS)

    Kar, Susmita; Dash, P. C.; Priyadarsini, M.; Naimuddin, Sk.; Barik, N.

    2013-11-01

    We study the exclusive nonleptonic Bc→VV decays, within the factorization approximation, in the framework of the relativistic independent quark model, based on a confining potential in the scalar-vector harmonic form. The weak form factors are extracted from the overlap integral of meson wave functions derived in the relativistic independent quark model. The predicted branching ratios for different Bc-meson decays are obtained in a wide range, from a tiny value of O(10-6) for Bc→D*D(s)* to a large value of 24.32% for Bc→Bs*ρ-, in general agreement with other dynamical-quark-model predictions. The decay modes Bc→Bs*ρ- and Bc→B*ρ- with high branching ratios of 24.32% and 1.73%, respectively, obtained in this model should be detectable at the LHC and Tevatron in the near future. The b→c, u induced decays are predicted predominantly in the longitudinal mode, whereas the c¯→s¯, d¯ induced decays are obtained in a slightly higher transverse mode. The CP-odd fractions (R⊥) for different decay modes are predicted and those for color-favored Bc→D*D*, D*Ds* decays indicate significant CP violation in this sector.

  12. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  13. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  14. Prediction of Cascading Failures in Spatial Networks.

    PubMed

    Shunkun, Yang; Jiaquan, Zhang; Dan, Lu

    2016-01-01

    Cascading overload failures are widely found in large-scale parallel systems and remain a major threat to system reliability; therefore, they are of great concern to maintainers and managers of different systems. Accurate cascading failure prediction can provide useful information to help control networks. However, for a large, gradually growing network with increasing complexity, it is often impractical to explore the behavior of a single node from the perspective of failure propagation. Fortunately, overload failures that propagate through a network exhibit certain spatial-temporal correlations, which allows the study of a group of nodes that share common spatial and temporal characteristics. Therefore, in this study, we seek to predict the failure rates of nodes in a given group using machine-learning methods. We simulated overload failure propagations in a weighted lattice network that start with a center attack and predicted the failure percentages of different groups of nodes that are separated by a given distance. The experimental results of a feedforward neural network (FNN), a recurrent neural network (RNN) and support vector regression (SVR) all show that these different models can accurately predict the similar behavior of nodes in a given group during cascading overload propagation.

  15. Analysis of cascading failure in gene networks.

    PubMed

    Sun, Longxiao; Wang, Shudong; Li, Kaikai; Meng, Dazhi

    2012-01-01

    It is an important subject to research the functional mechanism of cancer-related genes make in formation and development of cancers. The modern methodology of data analysis plays a very important role for deducing the relationship between cancers and cancer-related genes and analyzing functional mechanism of genome. In this research, we construct mutual information networks using gene expression profiles of glioblast and renal in normal condition and cancer conditions. We investigate the relationship between structure and robustness in gene networks of the two tissues using a cascading failure model based on betweenness centrality. Define some important parameters such as the percentage of failure nodes of the network, the average size-ratio of cascading failure, and the cumulative probability of size-ratio of cascading failure to measure the robustness of the networks. By comparing control group and experiment groups, we find that the networks of experiment groups are more robust than that of control group. The gene that can cause large scale failure is called structural key gene. Some of them have been confirmed to be closely related to the formation and development of glioma and renal cancer respectively. Most of them are predicted to play important roles during the formation of glioma and renal cancer, maybe the oncogenes, suppressor genes, and other cancer candidate genes in the glioma and renal cancer cells. However, these studies provide little information about the detailed roles of identified cancer genes.

  16. Catastrophic cascade of failures in interdependent networks

    NASA Astrophysics Data System (ADS)

    Buldyrev, Sergey V.; Havlin, Shlomo; Parshani, Roni; Paul, Gerald; Stanley, H. Eugene

    2010-03-01

    Many complex systems are coupled together and therefore should be modeled by multiple interdependent networks. For example, a power network in which the nodes are power stations and a communication network in which the nodes are computers, are interdependent. In interdependent networks, failure of nodes in one network, cause failure of dependent nodes in another network. This may happen recursively and can lead to a cascade of failures: a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system. We provide a framework for understanding the robustness of interacting networks subject to such cascading failures and provide a basic analytic approach that may be useful in future work. We present exact analytical solutions for the critical fraction of nodes that upon removal will lead to a failure cascade and to a complete fragmentation of two randomly connected interdependent networks in terms of the generating functions of their degree distributions. Surprisingly, networks with broad degree distributions are more vulnerable to random failures than networks with narrow degree distributions.

  17. Quantifying and Tracing Information Cascades in Swarms

    PubMed Central

    Wang, X. Rosalind; Miller, Jennifer M.; Lizier, Joseph T.; Prokopenko, Mikhail; Rossi, Louis F.

    2012-01-01

    We propose a novel, information-theoretic, characterisation of cascades within the spatiotemporal dynamics of swarms, explicitly measuring the extent of collective communications. This is complemented by dynamic tracing of collective memory, as another element of distributed computation, which represents capacity for swarm coherence. The approach deals with both global and local information dynamics, ultimately discovering diverse ways in which an individual’s spatial position is related to its information processing role. It also allows us to contrast cascades that propagate conflicting information with waves of coordinated motion. Most importantly, our simulation experiments provide the first direct information-theoretic evidence (verified in a simulation setting) for the long-held conjecture that the information cascades occur in waves rippling through the swarm. Our experiments also exemplify how features of swarm dynamics, such as cascades’ wavefronts, can be filtered and predicted. We observed that maximal information transfer tends to follow the stage with maximal collective memory, and principles like this may be generalised in wider biological and social contexts. PMID:22808095

  18. A cascade feedback control approach for hypnosis.

    PubMed

    Puebla, Hector; Alvarez-Ramírez, José

    2005-10-01

    This article studies the problem of controlling the drug administration during an anesthesia process, where muscle relaxation, analgesia, and hypnosis are regulated by means of monitored administration of specific drugs. On the basis of a seventh-order nonlinear pharmacokinetic-pharmacodynamic representation of the hypnosis process dynamics, a cascade (master/slave) feedback control structure for controlling the bispectral index (BIS) is proposed. The master controller compares the measured BIS with its reference value to provide the expired isoflurane concentration reference to the slave controller. In turn, the slave controller manipulates the anesthetic isoflurane concentration entering the anesthetic system to achieve the reference from the master controller. The advantage of the proposed cascade control structure with respect to its noncascade counterpart is that the former provides operation protection against BIS measurement failures. In fact, under a BIS measurement fault, the master control feedback is broken and the slave controller operates under a safe reference value. Extensive numerical simulations are used to illustrate the functioning of the proposed cascade control structure.

  19. High power, electrically tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Slivken, Steven; Razeghi, Manijeh

    2016-02-01

    Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.

  20. Cascade laser applications: trends and challenges

    NASA Astrophysics Data System (ADS)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  1. HIV treatment cascade in tuberculosis patients

    PubMed Central

    Lessells, Richard J.; Swaminathan, Soumya; Godfrey-Faussett, Peter

    2015-01-01

    Purpose of review Globally, the number of deaths associated with tuberculosis (TB) and HIV coinfection remains unacceptably high. We review the evidence around the impact of strengthening the HIV treatment cascade in TB patients and explore recent findings about how best to deliver integrated TB/HIV services. Recent findings There is clear evidence that the timely provision of antiretroviral therapy (ART) reduces mortality in TB/HIV coinfected adults. Despite this, globally in 2013, only around a third of known HIV-positive TB cases were treated with ART. Although there is some recent evidence exploring the barriers to achieve high coverage of HIV testing and ART initiation in TB patients, our understanding of which factors are most important and how best to address these within different health systems remains incomplete. There are some examples of good practice in the delivery of integrated TB/HIV services to improve the HIV treatment cascade. However, evidence of the impact of such strategies is of relatively low quality for informing integrated TB/HIV programming more broadly. In most settings, there remain barriers to higher-level organizational and functional integration. Summary There remains a need for commitment to patient-centred integrated TB/HIV care in countries affected by the dual epidemic. There is a need for better quality evidence around how best to deliver integrated services to strengthen the HIV treatment cascade in TB patients, both at primary healthcare level and within community settings. PMID:26352390

  2. Trophic cascade alters ecosystem carbon exchange.

    PubMed

    Strickland, Michael S; Hawlena, Dror; Reese, Aspen; Bradford, Mark A; Schmitz, Oswald J

    2013-07-02

    Trophic cascades--the indirect effects of carnivores on plants mediated by herbivores--are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a (13)C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems.

  3. Towards automated design of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Mirčetić, Aleksandra; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Milanović, Vitomir; Kelsall, Robert W.

    2005-04-01

    We present an advanced technique for the design and optimization of GaAs /AlGaAs quantum cascade laser structures. It is based on the implementation of the simulated annealing algorithm with the purpose of determining a set of design parameters that satisfy predefined conditions, leading to an enhancement of the device output characteristics. Two important design aspects have been addressed: improved thermal behavior, achieved by the use of higher conduction band offset materials, and a more efficient extraction mechanism, realized via a ladder of three lower laser states, with subsequent pairs separated by the optical phonon energy. A detailed analysis of performance of the obtained structures is carried out within a full self-consistent rate equations model of the carrier dynamics. The latter uses wave functions calculated by the transfer matrix method, and evaluates all relevant carrier-phonon and carrier-carrier scattering rates from each quantized state to all others within the same and neighboring periods of the cascade. These values are then used to form a set of rate equations for the carrier density in each state, enabling further calculation of the current density and gain as a function of the applied field and temperature. This paper addresses the application of the described procedure to the design of λ ˜9μm GaAs-based mid-infrared quantum cascade lasers and presents the output characteristics of some of the designed optimized structures.

  4. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.

  5. (Higgs) vacuum decay during inflation

    NASA Astrophysics Data System (ADS)

    Joti, Aris; Katsis, Aris; Loupas, Dimitris; Salvio, Alberto; Strumia, Alessandro; Tetradis, Nikolaos; Urbano, Alfredo

    2017-07-01

    We develop the formalism for computing gravitational corrections to vacuum decay from de Sitter space as a sub-Planckian perturbative expansion. Non-minimal coupling to gravity can be encoded in an effective potential. The Coleman bounce continuously deforms into the Hawking-Moss bounce, until they coincide for a critical value of the Hubble constant. As an application, we reconsider the decay of the electroweak Higgs vacuum during inflation. Our vacuum decay computation reproduces and improves bounds on the maximal inflationary Hubble scale previously computed through statistical techniques.

  6. Decays of the b quark

    NASA Astrophysics Data System (ADS)

    Thorndike, Edward H.; Poling, Ronald A.

    1988-01-01

    Recent experimental results on the decay of b-flavored hadrons are reviewed. Substantial progress has been made in the study of exclusive and inclusive B-meson decays, as well as in the theoretical understanding of these processes. The two most prominent developments are the continuing failure to observe evidence of decays of the b quark to a u quark rather than a c quark, and the surprisingly high level of B 0- overlineB0 mi xing which has recently been reported by the ARGUS collaboration. Notwithstanding these results, we conclude that the health of the Standard Model is excellent.

  7. Tensor interactions and τ decays

    NASA Astrophysics Data System (ADS)

    Godina Nava, J. J.; López Castro, G.

    1995-09-01

    We study the effects of charged tensor weak currents on the strangeness-changing decays of the τ lepton. First, we use the available information on the K+e3 form factors to obtain B(τ--->K-π0ντ)~10-4 when the Kπ system is produced in an antisymmetric tensor configuration. Then we propose a mechanism for the direct production of the K*2(1430) in τ decays. Using the current upper limit on this decay we set a bound on the symmetric tensor interactions.

  8. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  9. Intramolecular effects of /sup 125/I decay in o-iodotyrosine

    SciTech Connect

    Berridge, M.S.; Jiang, V.W.; Welch, M.J.

    1980-06-01

    As a model for iodinated proteins, 3-(/sup 125/I)iodo(U-/sup 14/C)tyrosine was synthesized by the chloramine-T method from (U-/sup 14/C)tyrosine. The products remaining after the iodine had decayed were characterized chromatographically. A reference system was used to correct for hydrolysis and secondary radiolytic effects. All products due to /sup 125/I decay were small polar molecules. The results demonstrate that after the Auger cascade accompanying /sup 125/I decay, a distribution of charge throughout the molecule occurs before disruption of the molecule. A coulombic explosion mechanism with some contributions due to internal radiolysis and charge neutralization is proposed for the destruction of the aromatic ring. Implications of these results for proteins labeled with /sup 125/I are also discussed.

  10. RARE DECAYS INCLUDING PENGUINS

    SciTech Connect

    Eigen, G

    2003-12-04

    The authors present a preliminary measurement of the exclusive charmless semileptonic B decays, B {yields} {rho}{ell}{nu}, and the extraction of the CKM parameters V{sub ub}. IN a data sample of 55 x 10{sup 6} B{bar B} events they measure a branching fraction of {Beta}(B {yields} {rho}{ell}{nu}) = (3.39 {+-} 0.44{sub stat} {+-} 0.52{sub sys} {+-} 0.60{sub th}) x 10{sup -4} yielding |V{sub ub}| = (3.69 {+-} 0.23{sub stat} {+-} 0.27{sub sys -0.59th}{sup +0.40}) x 10{sup -3}. Next, they report on a preliminary study of the radiative penguin modes B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -}. In a data sample of 84 x 10{sup 6} B{bar B} events they observe a significant signal (4.4{sigma}) in B {yields} K{ell}{sup +}{ell}{sup -}, yielding a branching fraction of {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) = (0.78{sub -0.20-0.18}{sup +0.24+0.11}) x 10{sup -6}. In B {yields} K*{ell}{sup +}{ell}{sup -} the observed yield is not yet significant (2.8{sigma}), yielding an upper limit of the branching fraction of {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) 3.0 x 10{sup -6} {at} 90% confidence level. Finally, they summarize preliminary results of searches for B {yields} {rho}({omega}){gamma}, B{sup +} {yields} K{sup +} {nu}{bar {nu}} and B{sup 0} {yields} {ell}{sup +}{ell}{sup -}.

  11. Radiative Leptonic B Decays

    SciTech Connect

    Chen, Edward Tann

    2007-01-01

    We present the results of a search for B+ meson decays into γℓ+v, where ℓ = e,μ. We use a sample of 232 million B$\\bar{B}$ meson pairs recorded at the Υ(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction Δβ in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the Υ(4S) center-of-mass frame. We find Δβ(B+ → γℓ+v) = (-0.31.5+1.3(statistical) -0.6+0.6(systematic) ± 0.1(theoretical)) x 10-6, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10-6 for a prior at in amplitude, and 2.3 x 10-6 for a prior at in branching fraction.

  12. Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region

    NASA Astrophysics Data System (ADS)

    Ducasse, Q.; Jurado, B.; Mathieu, L.; Marini, P.; Morillon, B.; Aiche, M.; Tsekhanovich, I.

    2016-08-01

    The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In Boutoux et al. (2013) [10] we developed the EXtrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the 238U(d,p)239U and 238U(3He,d)239Np reactions. We have performed Hauser-Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of 239Np below the neutron separation energy allowed us to validate the EXEM.

  13. CP violation in K decays

    SciTech Connect

    Gilman, F.J.

    1989-05-01

    Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs.

  14. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  15. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  16. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  17. Decoherence delays false vacuum decay

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.

    2013-05-01

    We show that gravitational interactions between massless thermal modes and a nucleating Coleman-de Luccia bubble may lead to efficient decoherence and strongly suppress metastable vacuum decay for bubbles that are small compared to the Hubble radius. The vacuum decay rate including gravity and thermal photon interactions has the exponential scaling \\Gamma \\sim \\Gamma _{CDL}^{2}, where ΓCDL is the Coleman-de Luccia decay rate neglecting photon interactions. For the lowest metastable initial state an efficient quantum Zeno effect occurs due to thermal radiation of temperatures as low as the de Sitter temperature. This strong decoherence effect is a consequence of gravitational interactions with light external mode. We argue that efficient decoherence does not occur for the case of Hawking-Moss decay. This observation is consistent with requirements set by Poincaré recurrence in de Sitter space.

  18. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  19. Survey of tools for risk assessment of cascading outages

    SciTech Connect

    Papic, Milorad; Bell, Keith; Chen, Yousu; Dobson, Ian; Fonte, Louis; Haq, Enamul; Hines, Paul; Kirschen, Daniel; Luo, Xiaochuan; Miller, Stephen; Samaan, Nader A.; Vaiman, Marianna; Varghese, Matthew; Zhang, Pei

    2011-10-01

    Abstract-This paper is a result of ongoing activity carried out by Understanding, Prediction, Mitigation and Restoration of Cascading Failures Task Force under IEEE Computer Analytical Methods Subcommittee (CAMS). The task force's previous papers [1, 2] are focused on general aspects of cascading outages such as understanding, prediction, prevention and restoration from cascading failures. This is the second of two new papers, which extend this previous work to summarize the state of the art in cascading failure risk analysis methodologies and modeling tools. The first paper reviews the state of the art in methodologies for performing risk assessment of potential cascading outages [3]. This paper describes the state of the art in cascading failure modeling tools, documenting the view of experts representing utilities, universities and consulting companies. The paper is intended to constitute a valid source of information and references about presently available tools that deal with prediction of cascading failure events. This effort involves reviewing published literature and other documentation from vendors, universities and research institutions. The assessment of cascading outages risk evaluation is in continuous evolution. Investigations to gain even better understanding and identification of cascading events are the subject of several research programs underway aimed at solving the complexity of these events that electrical utilities face today. Assessing the risk of cascading failure events in planning and operation for power transmission systems require adequate mathematical tools/software.

  20. Energy flow along the medium-induced parton cascade

    SciTech Connect

    Blaizot, J.-P.

    2016-05-15

    We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs. The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.

  1. CP violation in sbottom decays

    NASA Astrophysics Data System (ADS)

    Deppisch, Frank F.; Kittel, Olaf

    2010-06-01

    We study CP asymmetries in two-body decays of bottom squarks into charginos and top quarks. These asymmetries probe the SUSY CP phases of the sbottom and the chargino sector in the Minimal Supersymmetric Standard Model (MSSM). We identify the MSSM parameter space where the CP asymmetries are sizeable. As a result, potentially detectable CP asymmetries in sbottom decays are found, which motivates further detailed experimental studies for probing the SUSY CP phases at the LHC.

  2. An E5 transition in the 137Cs decay

    NASA Astrophysics Data System (ADS)

    Moran, K.; McCutchan, E. A.; Zhu, S.; Lister, C. J.; Merchan, E.; Shearman, R.

    2013-10-01

    The beta decay of 137Cs is mainly to the Jπ = 11/2- 661.66 keV isomeric excited state in 137Ba and is usually followed by emission of a single gamma ray as the nucleus relaxes to the Jπ = 3/2+ ground state. It is a well-known standard γ-ray calibration reference. There is only one intermediate state, with Jπ = 1/2+ at 283.50 keV. The γ-ray decay branch to this level has never been observed. The transition must be of E5 or M6 multipolarity. The phase space limitation hinders this decay and a ~10-8 branch can be anticipated from the few known E5 decay matrix elements. The use of the Gammasphere detector array at Argonne National Lab allows a search for these rare events by selection of an optimal detector opening angle for coincidences, chosen to minimize the effects of Compton cross-scattering in the array. In this manner the E5 cascade transition was observed and the branching ratio measured. Rigorous E5 transitions are only known in four other cases to date, so this measurement adds significantly to the body of knowledge surrounding E5 matrix elements. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Grant No. DE-FG02-94ER40848 and Contracts No. DE-AC02-98CH10946 and DE-AC02-06CH11357.

  3. α-decay under pressure

    NASA Astrophysics Data System (ADS)

    Nissim, N.

    2016-12-01

    The physical phenomenon of α-decay is a key feature in several geophysical models describing the structure and formation of Earth and our galaxy. Two of the most prominent characteristics of Earth determined from the α-decay phenomenon are 1) the Earth's age, determined by the relative abundance of α-decaying elements such as Th and U in meteorites and on Earth, and 2) the Earth's source of heat, with roughly 70% of the radioactive heat production attributed to α-decay of U and Th. Textbooks on nuclear phenomenon proclaim that the α-decay lifetime of elements is a constant of nature; however, if it is affected by environmental conditions, the models mentioned above must be refined. In this work [1] we suggest that a change in the lifetime of the α-decay process in 241Am may be detected at high pressures achievable in the laboratory [2], essentially, due to the extraordinary high compression of Am at megabar pressures. The Thomas-Fermi model [3] was used to calculate the effect of pressure on the atomic electron density, and the corresponding change in the atomic potential of 241Am. It was found that at pressures of about 0.5 Mbar the relative change in the lifetime of 241Am is about -2 × 10-4. Detailed experimental procedures to measure this effect by compressing the 241Am metal in a diamond-anvil cell are presented, with diagnostics based on counting the 60-keV γ rays accompanying α decay and/or mass spectrometry on the 237Np/241Am isotope ratio of samples recovered after compression for an extended period of time. [1] N. Nissim, F. Belloni, S. Eliezer, D. Delle Side, J. M. Martinez Val, "Toward a measurement of α-decay lifetime change at high pressure: The case of 241Am", Phys. Rev. C., 94, 014601 (2016).[2] S. Eliezer, J.M. Martinez Val, M. Piera, "Alpha decay perturbations by atomic effects at extreme conditions", Phys. Lett. B, 672, 372(2009).[3] F. Belloni," Alpha decay in electron environments of increasing density: From the bare nucleus to

  4. Heat cascading regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  5. Few body hypernuclear systems: Weak decays

    SciTech Connect

    Dover, C.B.

    1987-01-01

    The experimental and theoretical situation regarding mesonic and non-mesonic decays of light hypernuclei is reviewed. Although some models give reasonable results for pionic decays as well as the total weak decay rate, no existing approach explains, even qualitatively, the observed spin-isospin dependence of ..lambda..N ..-->.. NN non-mesonic weak decays. 31 refs., 2 figs.

  6. A stochastic model of cascades in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Peter D.

    2012-10-01

    The dual cascade of energy and enstrophy in 2D turbulence cannot easily be understood in terms of an analog to the Richardson-Kolmogorov scenario describing the energy cascade in 3D turbulence. The coherent upscale and downscale fluxes point to non-locality of interactions in spectral space, and thus the specific spatial structure of the flow could be important. Shell models, which lack spatial structure and have only local interactions in spectral space, indeed fail in reproducing the correct scaling for the inverse cascade of energy. In order to exclude the possibility that non-locality of interactions in spectral space is crucial for the dual cascade, we introduce a stochastic spectral model of the cascades which is local in spectral space and which shows the correct scaling for both the direct enstrophy and the inverse energy cascade.

  7. Free Energy Cascade in Gyrokinetic Turbulence

    SciTech Connect

    Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-02-04

    In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a (strongly) local, forward (from large to small scales) cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large-eddy-simulation techniques for gyrokinetics.

  8. Optically Pumped Carbon Monoxide Cascade Laser

    DTIC Science & Technology

    2005-06-30

    bother with the small absorption cross-sections of 2nd overtone pumping and the absorption problems it poses. Instead, a 2.3 µm GaSb diode laser ...could be used as a 1 st overtone optically pumped source. The absorption cross section at 2.3 µm is over 100 times larger. The 2.3 µm diode laser is...AFRL-DE-PS- AFRL-DE-PS- TR-2005-1093 TR-2005-1093 OPTICALLY PUMPED CARBON MONOXIDE CASCADE LASER NICHOLAS W. SAWRUK 30 June 2005 Final Report

  9. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  10. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  11. Cascade impactor and jet plate for same

    DOEpatents

    Dahlin, Robert S.; Farthing, William E.; Landham Jr., Edward C.

    2004-02-03

    A sampling system and method for sampling particulate matter from a high-temperature, high-pressure gas stream. A cyclone sampler for use at high temperatures and pressures, and having threadless sacrificial connectors is disclosed. Also disclosed is an improved cascade impactor including jet plates with integral spacers, and alignment features provided for aligning the jet plates with their associated collection substrates. An activated bauxite alkali collector is disclosed, and includes an alumina liner. The sampling system can be operated remotely or locally, and can be permanently installed or configured as a portable system.

  12. Chronic traumatic encephalopathy and the availability cascade.

    PubMed

    Solomon, Gary S; Sills, Allen

    2014-09-01

    Chronic traumatic encephalopathy (CTE) in sports has been known for > 85 years, and has experienced a resurgence of interest over the past decade, both in the media and in the scientific community. However, there appears to be a disconnection between the public's perception of CTE and the currently available scientific data. The cognitive bias known as the "availability cascade" has been suggested as a reason to explain this rift in knowledge. This review summarizes and updates the history of CTE in sports, discusses recent epidemiological and autopsy studies, summarizes the evidence base related to CTE in sports, and offers recommendations for future directions.

  13. Beam combining of quantum cascade laser arrays.

    PubMed

    Lee, Benjamin G; Kansky, Jan; Goyal, Anish K; Pflügl, Christian; Diehl, Laurent; Belkin, Mikhail A; Sanchez, Antonio; Capasso, Federico A

    2009-08-31

    Wavelength beam combining was used to co-propagate beams from 28 elements in an array of distributed-feedback quantum cascade lasers (DFB-QCLs). The beam-quality product of the array, defined as the product of near-field spot size and far-field divergence for the entire array, was improved by a factor of 21 by using wavelength beam combining. To demonstrate the applicability of wavelength beam combined DFB-QCL arrays for remote sensing, we obtained the absorption spectrum of isopropanol at a distance of 6 m from the laser array.

  14. Atomistic Simulation of Displacement Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Weber, William J.; Corrales, Louis R.; BP McGrail and GA Cragnolino

    2002-05-06

    Low energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements were found to occur mainly in the O sublattice, and O replacements by a ring mechanism were predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects were found to occur. This Si-O-Si bridging is considerable in quenched liquid ZrSiO4.

  15. Photonic crystal slab quantum cascade detector

    NASA Astrophysics Data System (ADS)

    Reininger, Peter; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-01

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  16. Performance and Reliability of Quantum Cascade Lasers

    SciTech Connect

    Myers, Tanya L.; Cannon, Bret D.; Taubman, Matthew S.; Bernacki, Bruce E.

    2013-05-01

    We present the burn-in behavior and power stability of multiple quantum cascade lasers (QCLs) that were measured to investigate their long-term performance. For these experiments, the current to the QCL was cycled every ten minutes, and the output power was monitored over time for durations as long as two months. A small increase in power for a given injection current is observed for almost all of the QCLs tested during the burn-in period. The data from these experiments will be presented along with the effects of packaging the QCLs to determine the impact on performance and reliability.

  17. The Cascade of Non-Stationarity

    NASA Astrophysics Data System (ADS)

    Belmont, P.; Kumarasamy, K.; Kelly, S. A.; Schaffrath, K. R.; Beach, T. J.

    2014-12-01

    Landscapes and channel networks are dynamic systems, often characterized by immense variability in time and space. Systematic shifts in hydrologic, geomorphic, or ecologic drivers can cause a cascade of changes within the system, which may fundamentally alter the way the system itself functions. Due to variability in resilience and resisting forces throughout the landscape, this cascade of changes may manifest in different ways within any given system. Humans may also exert considerable influence, often amplifying or damping system response. We illustrate the cascading effects of non-stationary hydrology and geomorphology in the Minnesota River Basin (MRB), a 44,000 km2 natural laboratory in which pervasive landscape disturbance has been triggered by several well-documented events. Rapid base-level lowering 13,400 YBP along the mainstem Minnesota River created a wave of incision, which continues to propagate up tributary channel networks. Temperature and precipitation have changed significantly in the MRB over the past century with rising temperatures, shifting precipitation patterns and an increase in heavy rainfall events. Streamflow has changed drastically and variably throughout the basin with 5% exceedance flows increasing 60-100% in recent decades, as increases in precipitation have been amplified by land management and artificial drainage. Increases in channel width and depth have occurred variably in the mainstem Minnesota River, the actively incising lower (knick zone) reaches of tributaries, and the low gradient, passively meandering reaches above the knick zones. Altered hydrologic regimes and channel morphologies, combined with increased sedimentation and nutrient loading have adversely affected aquatic biota via disruption of life cycles and habitat degradation. Existing landscape, water quality, and flood risk models are poorly equipped to deal with the cascading effects of non-stationarity and therefore may grossly over- or under

  18. Auto-tuning of cascade control systems.

    PubMed

    Song, Sihai; Cai, Wenjian; Wang, Ya-Gang

    2003-01-01

    In this paper, a novel auto-tuning method for a cascade control system is proposed. By employing a simple relay feedback test, both inner and outer loop model parameters can be simultaneously identified. Consequently, well-established proportional-integral-derivative (PID) tuning rules can be applied to tune both loops. Compared with existing methods, the new method is simpler and yet more effective. It can be directly integrated into commercially available industrial auto-tuning systems. Some examples are given to illustrate the effectiveness and robustness of the proposed method.

  19. Dynamics of cavitating cascades. [transfer functions

    NASA Technical Reports Server (NTRS)

    Brennen, C. E.; Acosta, A. J.

    1980-01-01

    The unsteady dynamics of cavitating cascades and inducer pumps were studied with a view to understanding (and possibly predicting) the dynamic characteristics of these devices. The chronology of the research is summarized as well as the final conculsions for each task. The construction of a dynamic pump test facility and its use in making experimental measurements of the transfer function is described as well as tests conducted using a scale model of the low pressure liquid oxygen turbopump inducer in the shuttle main engine. Auto-oscillation and unsteady inlet flow characteristics are discussed in addition to blade cavity influence and bubbly cavitation.

  20. Power Grid Defense Against Malicious Cascading Failure

    DTIC Science & Technology

    2014-05-01

    proprietary computer hardware and software [26]. In this paper , we extend the work on cascading failure models to a two-player game where an attacker...information. However, in this paper , we use the following proxy (similar to [8]). cij(G0) = (1 + α)loadG0(ij) where α is a non-negative real that...NetworkX library2 as well as the PuLP library for linear programming3. All statistics presented in this section were calculated using the R statistics

  1. Kaons in flavour tagged B decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M. G.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Seeger, M.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Cronström, H. I.; Jönsson, L.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Snizhko, A.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.

    1994-09-01

    Using the ARGUS detector at the e + e - storage ring DORIS II, flavour-dependent kaon production in B meson decays has been studied. Using the leptons as flavour tags, it has been possible to separately measure the multiplicities of K +, K - and K {/s 0} in inclusive B decays and in semileptonic B decays. The kaon production in semileptonic B decays was further used to estimate the ratio of charmed decays over all decays, and thus also the fraction of charmless B decays.

  2. Large phase shift via polarization-coupling cascading.

    PubMed

    Huo, Juan; Chen, Xianfeng

    2012-06-04

    Herein, we propose a phenomenon of "polarization-coupling (PC) cascading" generated in MgO doped periodically poled lithium niobate crystal (PPMgLN). PC cascading contributes to the effective electro-optical (EO) Kerr effect that is several orders of magnitude stronger than the classical ones. Experiment of Newton's rings demonstrates the large phase accumulation during the PC cascaded processes, and the experimental data is identical with the theoretical simulation.

  3. Estimating Failure Propagation in Models of Cascading Blackouts

    SciTech Connect

    Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Nkei, Bertrand; Newman, David E

    2005-09-01

    We compare and test statistical estimates of failure propagation in data from versions of a probabilistic model of loading-dependent cascading failure and a power systems blackout model of cascading transmission line overloads. The comparisons suggest mechanisms affecting failure propagation and are an initial step towards monitoring failure propagation from practical system data. Approximations to the probabilistic model describe the forms of probability distributions of cascade sizes.

  4. Stopping pions in high-energy nuclear cascades.

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Johnson, D. P.; Thompson, J. A.

    1973-01-01

    Results of Monte Carlo calculations for the number and energy spectra of charged pions from nuclear-electromagnetic cascades developing in rock are presented for primary hadron energies ranging from 3 to 3000 GeV. These spectra are given as functions of the longitudinal depth in the absorber and the lateral distance from the cascade axis. The number of charged pions which stop in the absorber increases with the primary energy of the hadron initiating the cascade.

  5. Diffraction Limited 3.15 Microns Cascade Diode Lasers

    DTIC Science & Technology

    2014-06-01

    carriers recycling by the cascade pumping . The narrow ridge 6- m-wide waveguides were defined by inductively coupled plasma (ICP) reactive ion etching...diffraction limited, diode lasers, cascade pumping REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S...of GaSb-based type-I QW diode lasers by utilizing cascade pumping scheme4. The carriers were recycled with 100% efficiency between two gain stages

  6. Independent Stage Control of a Cascade Injector (Postprint)

    DTIC Science & Technology

    2006-10-01

    AFRL-PR-WP-TP-2006-264 INDEPENDENT STAGE CONTROL OF A CASCADE INJECTOR (POSTPRINT) H.L. Meicenheimer, E.J. Gutmark, M.R. Gruber, D.R...SUBTITLE INDEPENDENT STAGE CONTROL OF A CASCADE INJECTOR (POSTPRINT) 5c. PROGRAM ELEMENT NUMBER 61102F 5d. PROJECT NUMBER 2308 5e. TASK NUMBER AI...whether the number of active stages in the cascade injector could be used to control penetration and mixing characteristics. The injector was tested at

  7. Independent Stage Control of a Cascade Injector (Postprint)

    DTIC Science & Technology

    2005-07-01

    AFRL-PR-WP-TP-2006-250 INDEPENDENT STAGE CONTROL OF A CASCADE INJECTOR (POSTPRINT) Heidi L. Meicenheimer, Ephraim J. Gutmark, Campbell D...house 5b. GRANT NUMBER 4. TITLE AND SUBTITLE INDEPENDENT STAGE CONTROL OF A CASCADE INJECTOR (POSTPRINT) 5c. PROGRAM ELEMENT NUMBER 62203F 5d...investigation was to determine whether the number of active stages in the cascade injector could be used to control penetration and mixing characteristics

  8. Geographical effects on cascading breakdowns of scale-free networks.

    PubMed

    Huang, Liang; Yang, Lei; Yang, Kongqing

    2006-03-01

    Cascading breakdowns of real networks have resulted in severe accidents in recent years. In this paper, we study the effects of geographical structure on the cascading phenomena of load-carrying scale-free networks. Our essential finding is that when networks are more geographically constrained, i.e., more locally interconnected, they tend to have larger cascading breakdowns. Explanations are provided in terms of the effects of cycles and the distributions of betweenness over degrees.

  9. Stopping pions in high-energy nuclear cascades.

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Johnson, D. P.; Thompson, J. A.

    1973-01-01

    Results of Monte Carlo calculations for the number and energy spectra of charged pions from nuclear-electromagnetic cascades developing in rock are presented for primary hadron energies ranging from 3 to 3000 GeV. These spectra are given as functions of the longitudinal depth in the absorber and the lateral distance from the cascade axis. The number of charged pions which stop in the absorber increases with the primary energy of the hadron initiating the cascade.

  10. The comparison of extraction of energy in two-cascade and one-cascade targets

    SciTech Connect

    Dolgoleva, G. V.; Ponomarev, I. V.

    2016-01-15

    The paper is devoted to numerical designing of cylindrical microtargets on the basis of shock-free compression. When designing microtargets for the controlled thermonuclear fusion, the core tasks are to select geometry and make-up of layers, and the law of energy embedding as well, which allow receiving of “burning” of deuterium- tritium mix, that is, the existence of thermonuclear reactions of working area. Yet, the energy yield as a result of thermonuclear reactions has to be more than the embedded energy (the coefficient of amplification is more than a unit). So, an important issue is the value of the embedded energy. The purpose of the present paper is to study the extraction of energy by working DT area in one-cascade and two-cascade targets. A bigger extraction of energy will contribute to a better burning of DT mix and a bigger energy yield as a result of thermonuclear reactions. The comparison of analytical results to numerical calculations is carried out. The received results show advantages of a two-cascade target compared to a one-cascade one.

  11. Boise Cascade Mill Energy Assessment (Boise Cascade Mill, International Falls, MN)

    SciTech Connect

    2000-12-01

    An integrated effluent heat reduction and water conservation study was performed at the Boise Cascade plant in International Falls, MN. The implementation of 4 projects and 2 process modifications are projected to remove 45.6 Btu/hr from the effluent.

  12. Survey of Tools for Risk Assessment of Cascading Outages

    SciTech Connect

    Papic, Milorad; Bell, Keith; Chen, Yousu; Dobson, Ian; Fonte, Louis; Haq, Enamul; Hines, Paul; Kirschen, Daniel; Luo, Xiaochuan; Miller, Stephen; Samaan, Nader A.; Vaiman, Marianna; Varghese, Matthew; Zhang, Pei

    2011-10-17

    Cascading failure can cause large blackouts, and a variety of methods are emerging to study this challenging topic. In parts 1 and 2 of this paper, the IEEE task force on cascading failure seeks to consolidate and review the progress of the field towards methods and tools of assessing the risk of cascading failure. Part 2 summarizes and discusses the state of the art in the available cascading failure modeling tools. The discussion integrates industry and research perspectives from a variety of institutions. Strengths, weaknesses, and gaps in current approaches are indicated.

  13. Production of defects in metals by collision cascades: TEM experiments

    SciTech Connect

    Kirk, M.A.

    1996-01-01

    This paper reviews experimental TEM data on production of dislocation loops by low energy ion bombardment to low doses, as simulations of similar collision cascades produced by fast neutrons, in various metals and alloys. Dependence of vacancy dislocation loop formation on recoil energy, temperature and metal/alloy is examined. Emphasis is placed on effects on dilute alloy additions. A model for cascade melting is used to understand these effects; this will require an examination of the role of electron-phonon coupling in cascade cooling and recrystallization. Formation of interstitial dislocation loops as cascade defects and the effect of nearby surfaces are briefly discussed.

  14. Large-scale separation and hysteresis in cascades

    NASA Technical Reports Server (NTRS)

    Rothmayer, A. P.; Smith, F. T.

    1985-01-01

    An approach using a two-dimensional thin aerofoil, allied with the theory of viscous bluff-body separation, is used to study the initial cross-over from massive separation to an attached flow in a single-row unstaggered cascade. Analytic solutions are developed for the limit of small cascade-spacing. From the analytic solutions several interesting features of the cascade are examined, including multiple-solution branches and multiple regions of hysteresis. In addition, numerical results are presented for several selected aerofoils. Some of the aerofoils are found to contain markedly enlarged regions of hysteresis for certain critical cascade spacings.

  15. Decay curve study in a standard electron capture decay

    SciTech Connect

    Nishimura, D.; Fukuda, M.; Kisamori, K.; Kuwada, Y.; Makisaka, K.; Matsumiya, R.; Matsuta, K.; Mihara, M.; Takagi, A.; Yokoyama, R.; Izumikawa, T.; Ohtsubo, T.; Suzuki, T.; Yamaguchi, T.

    2010-05-12

    We have searched for a time-modulated decay in a standard electron capture experiment for {sup 140}Pr, in order to confirm a report from GSI, where an oscillatory decay has been observed for hydrogen-like {sup 140}Pr and {sup 142}Pm ions in the cooler storage ring. {sup 140}Pr has been produced with the {sup 140}Ce(p, n) reaction by a pulsed proton beam accelerated from the Van de Graaff accelerator at Osaka University. Resultant time dependence of the K{sub a}lpha and K{sub b}eta X-ray intensities from the daughter shows no oscillatory behavior.

  16. Photo induced three body decay

    NASA Astrophysics Data System (ADS)

    Maul, Christof; Gericke, Karl-Heinz

    The photo induced three body decay : ABC hnu A B C, where a molecule ABC decays into three fragments A, B and C upon irradiation, is reviewed. Various experimental and theoretical techniques for the investigation of this reaction and their application to a wide range of molecular species are discussed. Emphasis is laid on the distinction between concerted and stepwise processes, consisting of one single or two consecutive kinetic events, respectively. The concerted fragmentation scheme is further classified as being of either synchronous or asynchronous character, depending on whether or not the bond breaking processes take place in unison. The three body decays of acetone, azomethane and s-tetrazine are discussed in detail as prototypes for these mechanisms. A novel kinematic analysis approach, based on the evaluation of fragment kinetic energy distributions, is presented and applied to the ultraviolet photodissociation of phosgene. Competing pathways are found to be operative, dominated by the asynchronous concerted mechanism with preferential forward scattering of the carbon monoxide fragment. The synchronous concerted decay plays a minor role under significant excitation of the in-plane and out-of-plane bending modes of the parent molecule. Finally the power of the newly developed method for the analysis of the three body decay of a small polyatomic molecule is highlighted.

  17. Sparticle spectroscopy of the minimal SO(10) model

    NASA Astrophysics Data System (ADS)

    Fukuyama, Takeshi; Okada, Nobuchika; Tran, Hieu Minh

    2017-04-01

    The supersymmetric (SUSY) minimal SO(10) model is a well-motivated grand unified theory, where the Standard Model (SM) fermions have Yukawa couplings with only one 10-plet and one 126 ‾-plet Higgs fields and it is highly non-trivial if the realistic quark and lepton mass matrices can be reproduced in this context. It has been known that the best fit for all the SM fermion mass matrices is achieved by a vacuum expectation value of the 126 ‾-plet Higgs field being at the intermediate scale of around O (1013) GeV. Under the presence of the SO(10) symmetry breaking at the intermediate scale, the successful SM gauge coupling unification is at risk and likely to be spoiled. Recently, it has been shown that the low-energy fermion mass matrices, except for the down-quark mass predicted to be too low, are very well-fitted without the intermediate scale. In order to resolve the too-low down quark mass while keeping the other fittings intact, we consider SUSY threshold corrections to reproduce the right down quark mass. It turns out that this requires flavor-dependent soft parameters. Motivated by this fact, we calculate particle mass spectra at low energies with flavor-dependent sfermion masses at the grand unification scale. We present a benchmark particle mass spectrum which satisfies a variety of phenomenological constraints, in particular, the observed SM-like Higgs boson mass of around 125 GeV and the relic abundance of the neutralino dark matter as well as the experimental result of the muon anomalous magnetic moment. In the resultant mass spectrum, sleptons in the first and second generations, bino and winos are all light, and this scenario can be tested at the LHC Run-2 in the near future.

  18. Sparticle spectroscopy of the minimal SO(10) model

    DOE PAGES

    Fukuyama, Takeshi; Okada, Nobuchika; Tran, Hieu Minh

    2017-02-14

    Here, the supersymmetric (SUSY) minimal SO(10) model is a well-motivated grand unified theory, where the Standard Model (SM) fermions have Yukawa couplings with only one 10-plet and onemore » $$\\overline{126}$$-plet Higgs fields and it is highly non-trivial if the realistic quark and lepton mass matrices can be reproduced in this context. It has been known that the best fit for all the SM fermion mass matrices is achieved by a vacuum expectation value of the $$\\overline{126}$$-plet Higgs field being at the intermediate scale of around O(1013) GeV. Under the presence of the SO(10) symmetry breaking at the intermediate scale, the successful SM gauge coupling unification is at risk and likely to be spoiled. Recently, it has been shown that the low-energy fermion mass matrices, except for the down-quark mass predicted to be too low, are very well-fitted without the intermediate scale. In order to resolve the too-low down quark mass while keeping the other fittings intact, we consider SUSY threshold corrections to reproduce the right down quark mass. It turns out that this requires flavor-dependent soft parameters. Motivated by this fact, we calculate particle mass spectra at low energies with flavor-dependent sfermion masses at the grand unification scale. We present a benchmark particle mass spectrum which satisfies a variety of phenomenological constraints, in particular, the observed SM-like Higgs boson mass of around 125 GeV and the relic abundance of the neutralino dark matter as well as the experimental result of the muon anomalous magnetic moment. In the resultant mass spectrum, sleptons in the first and second generations, bino and winos are all light, and this scenario can be tested at the LHC Run-2 in the near future.« less

  19. Nonlinear modeling of thermoacoustically driven energy cascade

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek; Scalo, Carlo; Lodato, Guido

    2016-11-01

    We present an investigation of nonlinear energy cascade in thermoacoustically driven high-amplitude oscillations, from the initial weakly nonlinear regime to the shock wave dominated limit cycle. We develop a first principle based quasi-1D model for nonlinear wave propagation in a canonical minimal unit thermoacoustic device inspired by the experimental setup of Biwa et al.. Retaining up to quadratic nonlinear terms in the governing equations, we develop model equations for nonlinear wave propagation in the proximity of differentially heated no-slip boundaries. Furthermore, we discard the effects of acoustic streaming in the present study and focus on nonlinear energy cascade due to high amplitude wave propagation. Our model correctly predicts the observed exponential growth of the thermoacoustically amplified second harmonic, as well as the energy transfer rate to higher harmonics causing wave steepening. Moreover, we note that nonlinear coupling of local pressure with heat transfer reduces thermoacoustic amplification gradually thus causing the system to reach limit cycle exhibiting shock waves. Throughout, we verify the results from the quasi-1D model with fully compressible Navier-Stokes simulations.

  20. Regimes of turbulence without an energy cascade

    NASA Astrophysics Data System (ADS)

    Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.

    2016-10-01

    Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics.