ERIC Educational Resources Information Center
Park, Eun Sook; Sim, Eun Geol; Rha, Dong-wook
2011-01-01
The aims of this study were to investigate the nature and extent of upper limb deformities via the use of various classifications, and to analyze the relationship between upper limb deformities and gross motor or upper limb functionality levels. Upper extremity data were collected from 234 children with spastic cerebral palsy (CP) who were…
Buyukavci, Raikan; Akturk, Semra; Ersoy, Yüksel
2018-02-07
Ultrasound-guided botulinum toxin type A injection is an effective treatment for spasticity. Euro-musculus spasticity approach is a new method for administering injections to the correct point of the correct muscle. The clinical outcomes of this practical approach is not yet available in the literature. The purpose of this study was to evaluate the effects on spasticity and the functional outcomes of ultrasound guided botulinum toxin type A injections via the Euro-musculus spasticity approach to treat upper limb spasticity in post-stroke patients. An observational study. Inpatient post-stroke patients. Twenty five post-stroke patients with post-stroke upper limb spasticity were recruited. The ultrasound-guided botulinum toxin type A injections were administered into the spastic target muscles using the Euro-musculus spasticity approach, and all of the patients were enrolled in rehabilitation programmes after the injections. This research included the innervation zone and injection site figures and ultrasound images of each muscle in the upper limb. The degree of spasticity was assessed via the Modified Ashworth Scale and the upper limb motor function via the Fugl Meyer Upper Extremity Scale at the baseline and 4 and 12 weeks after the botulinum toxin type A injection. Significant decreases in the Modified Ashworth Scale scores of the upper limb flexor muscle tone measured 4 and 12 weeks after the botulinum toxin type A injection were found when compared to the baseline scores (p<0.025). When compared with the baseline Fugl Meyer Upper Extremity subgroup scores, the sitting position, wrist and total scores at 4 and 12 weeks were significantly improved (p<0.025). However, only the Fugl Meyer Upper Extremity hand scores were significantly improved 12 weeks after the injection (p<0.025). Ultrasound-guided botulinum toxin type A injection via the Euro- musculus spasticity approach is a practical and effective method for administering injections to the correct point of the correct muscle. Ultrasound-guided botulinum toxin type A injections combined with rehabilitation programmes decrease spasticity and improve the upper extremity motor functions in stroke patients. This new approach for ultrasound- guided botulinum toxin type A injection is very practical and effective method for upper extremity spasticity.
Lee, So Young; Jeon, Young Tae; Kim, Bo Ryun; Han, Eun Young
2017-01-01
Abstract Rationale: Spasticity is a major complication after stroke, and botulinumtoxin A (BoNT-A) injection is commonly used to manage focal spasticity. However, it is uncertain whether BoNT-A can improve voluntary motor control or activities of daily living function of paretic upper limbs. This study investigated whether BoNT-A injection combined with robot-assisted upper limb therapy improves voluntary motor control or functions of upper limbs after stroke. Patient concerns: Two subacute stroke patients were transferred to the Department of Rehabilitation. Diagnoses: Patients demonstrated spasticity in the upper extremity on the affected side. Interventions: BoNT-A was injected into the paretic muscles of the shoulder, arm, and forearm of the 2 patients at the subacute stage. Conventional rehabilitation therapy and robot-assisted upper limb training were performed during the rehabilitation period. Outcomes: Manual dexterity, grip strength, muscle tone, and activities of daily living function were improved after multidisciplinary rehabilitation treatment. Lessons: BoNT-A injection in combination with multidisciplinary rehabilitation treatment, including robot-assisted arm training, should be recommended for subacute spastic stroke patients to enhance appropriate motor recovery. PMID:29390585
Balneotherapy in treatment of spastic upper limb after stroke.
Erceg-Rukavina, Tatjana; Stefanovski, Mihajlo
2015-02-01
After stroke, spasticity is often the main problem that prevents functional recovery. Pain occurs in up to 70% of patients during the first year post-stroke. A total of 70 patients (30 female and 45 male) mean age (65.67) participated in prospective, controlled study. ischaemic stroke, developed spasticity of upper limb, post-stroke interval <6 months. contraindications for balneotherapy and inability to follow commands. Experimental group (Ex) (n=35) was treated with sulphurous baths (31°-33°C) and controlled group (Co) with taped water baths, during 21 days. All patients were additionally treated with kinesitherapy and cryotherapy. The outcome was evaluated using Modified Ashworth scale for spasticity and VAS scale for pain. The significance value was sat at p<0.05. To find out the effects of balneotherapy with sulphurous bath on spasticity and pain in affected upper limb. Reduction in tone of affected upper limb muscles was significant in Ex group (p<0.05). Pain decreased significantly in Ex-group (p<0.01). Our results show that balneotherapy with sulphurous water reduces spasticity and pain significantly and can help in treatment of post-stroke patients.
Balneotherapy in Treatment of Spastic Upper Limb after Stroke
Erceg-Rukavina, Tatjana; Stefanovski, Mihajlo
2015-01-01
Introduction: After stroke, spasticity is often the main problem that prevents functional recovery. Pain occurs in up to 70% of patients during the first year post-stroke. Materials and methods: A total of 70 patients (30 female and 45 male) mean age (65.67) participated in prospective, controlled study. Inclusion criteria: ischaemic stroke, developed spasticity of upper limb, post-stroke interval <6 months. Exclusion criteria: contraindications for balneotherapy and inability to follow commands. Experimental group (Ex) (n=35) was treated with sulphurous baths (31°-33°C) and controlled group (Co) with taped water baths, during 21 days. All patients were additionally treated with kinesitherapy and cryotherapy. The outcome was evaluated using Modified Ashworth scale for spasticity and VAS scale for pain. The significance value was sat at p<0.05. Goal: To find out the effects of balneotherapy with sulphurous bath on spasticity and pain in affected upper limb. Results: Reduction in tone of affected upper limb muscles was significant in Ex group (p<0.05). Pain decreased significantly in Ex-group (p<0.01). Conclusion: Our results show that balneotherapy with sulphurous water reduces spasticity and pain significantly and can help in treatment of post-stroke patients. PMID:25870474
Turner-Stokes, Lynne; Ashford, Stephen; Jacinto, Jorge; Maisonobe, Pascal; Balcaitiene, Jovita; Fheodoroff, Klemens
2016-01-01
Objectives Describe the rationale and protocol for the Upper Limb International Spasticity (ULIS)-III study, which aims to evaluate the impact of integrated spasticity management, involving multiple botulinum toxin A (BoNT-A) injection cycles and concomitant therapies, on patient-centred goal attainment. Outline novel outcome assessment methods for ULIS-III and report initial evaluation data from goal setting in early stages of the study. Design Large international longitudinal cohort study of integrated upper limb spasticity management, including BoNT-A. Participants and setting ULIS-III is a 2-year study expected to enrol >1000 participants at 58 study centres across 14 countries. Interventions The study design is non-interventional and intended to reflect real-life clinical practice. It will describe injection practices and additional treatment strategies, and record clinical decision-making in a serial approach to long-term spasticity management. Outcome measures ULIS-III will use a goal-directed approach to selection of targeted standardised measures to capture the diversity of presentation, goals and outcomes. ULIS-III will implement the Upper Limb Spasticity Index, a battery of assessments including a structured approach to goal attainment scaling (Goal Attainment Scaling—Evaluation of Outcomes for Upper Limb Spasticity tool), alongside a limited set of standardised measures, chosen according to patients' selected goal areas. Concomitant therapy inputs, patient satisfaction with engagement in goal setting, health economic end points and health-related quality of life data will also be captured. Results of initial evaluation of goal quality Recruitment started in January 2015. By June 2015, 58 sites had been identified and initial data collected for 79 patients across 13 sites in 3 countries. Goal setting data were quality-checked and centres rated on the basis of function-related and Specific, Measurable, Achievable, Realistic, Timed (SMART) characteristics of goal statements. Overall, 11/13 centres achieved the highest rating (A++). Conclusions ULIS-III will provide valuable information regarding treatment of and outcomes from real-life upper limb spasticity management worldwide. Trial registration number NCT02454803; Pre-results. PMID:27315835
ERIC Educational Resources Information Center
Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.
2011-01-01
This study examined the active joint-position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual feedback, of the non-moving limb, on the joint-position sense. Participants were asked to match the position of one upper limb with that of the contralateral limb. The task…
ERIC Educational Resources Information Center
Bakheit, Abdel Magid
2010-01-01
To document the current practice in relation with the treatment of patients with upper limb spasticity with botulinum toxin type A to inform future research in this area. We designed an international, cross-sectional, noninterventional survey of current practice. Nine hundred and seventy-four patients from 122 investigational centres in 31…
Use of botulinum toxin in stroke patients with severe upper limb spasticity.
Bhakta, B B; Cozens, J A; Bamford, J M; Chamberlain, M A
1996-07-01
Spasticity can contribute to poor recovery of upper limb function after stroke. This is a preliminary evaluation of the impact of botulinum toxin treatment on disability caused by upper limb spasticity after stroke. Seventeen patients with severe spasticity and a non-functioning arm were treated with intramuscular botulinum A neurotoxin (median age at treatment 54.5 years; median time between onset of stroke and treatment 1.5 years). Baseline and assessments two weeks after treatment were compared to assess efficacy. The duration of improvement in disability was documented. Outcome measures used were; passive range of movement at the shoulder, elbow, wrist, and fingers; modified Ashworth scale to assess spasticity of biceps and forearm finger flexors; an eight point scale to assess the degree of difficulty experienced by the patient or carer for each functional problem defined before treatment; the presence of upper limb pain. The biceps, forearm finger flexors, and flexor carpiulnaris were treated with intramuscular botulinum toxin. Up to a total dose of 400-1000 mouse units (MU) of Dysport (Speywood) or 100-200 MU of BOTOX (Allergan) was used in each patient. Functional problems reported by the patients before treatment were difficulty with cleaning the palm, cutting fingernails, putting the arm through a sleeve, standing and walking balance, putting on gloves, and rolling over in bed. Hand hygiene improved in 14 of 17 patients; difficulty with sleeves improved in four of 16; standing and walking balance improved in one of four; shoulder pain improved in six of nine; wrist pain improved in five of six. Passive range of movement at shoulder, elbow, and wrist improved after treatment. Benefit was noted within two weeks and lasted one to 11 months. No adverse effects occurred. This preliminary study suggests that intramuscular botulinum toxin is a safe and effective treatment for reducing disability in patients with severe upper limb spasticity.
D'Aquino, Daniel; Moussa, Ahmad A; Ammar, Amr; Ingale, Harshal; Vloeberghs, Michael
2018-04-01
Selective dorsal rhizotomy (SDR) has been established as an effective surgical treatment for spastic diplegia. The applicability of SDR to the full spectrum of spastic cerebral palsy and the durability of its therapeutic effects remain under investigation. There are currently limited data in the literature regarding efficacy and outcomes following SDR in Gross Motor Function Classification System (GMFCS) IV and V patients. Intrathecal baclofen has traditionally been the surgical treatment of choice for these patients. When utilised primarily as a treatment for the relief of spasticity, it is proposed that SDR represents a rational and effective treatment option for this patient group. We report our outcomes of SDR performed on children with severe cerebral palsy (GMFCS grade IV and V). The commensurate improvement in upper as well as lower limb spasticity is highlighted. Apparent benefit to urological function following SDR in this patient group is also discussed. A retrospective review of prospectively collected data for 54 paediatric patients with severe cerebral palsy (GMFCS IV-V) who received SDR plus specialised physiotherapy. Mean age was 10.2 years (range, 3.0-19.5). SDR guided by electrophysiological monitoring was performed by a single experienced neurosurgeon. All subjects received equivalent physiotherapy. The primary outcome measure was change to the degree of spasticity following SDR. Spasticity of upper and lower limb muscle groups were quantified and standardised using the Ashworth score. Measures were collected at baseline and at 2-, 8- and 14-month postoperative intervals. In addition, baseline and 6-month postoperative urological function was also evaluated as a secondary outcome measure. The mean lower limb Ashworth score at baseline was 3.2 (range, 0-4). Following SDR, significant reduction in lower limb spasticity scores was observed at 2 months and maintained at 8 and 14 months postoperatively (Wilcoxon rank, p < 0.001). The mean reduction at 2, 8 and 14 months was 3.0, 3.2 and 3.2 points respectively (range, 1-4), confirming a sustained improvement of spasticity over a 1-year period of follow-up. Significant reduction in upper limb spasticity scores following SDR was also observed (mean, 2.9; Wilcoxon rank, p < 0.001). Overall, the improvement to upper and lower limb tone following SDR-generally to post-treatment Ashworth scores of 0-was clinically and statistically significant in GMFCS IV and V patients. Urological assessment identified pre-existing bladder dysfunction in 70% and 90% of GMFCS IV and V patients respectively. Following SDR, improvement in urinary continence was observed in 71% of affected GMFCS IV and 42.8% of GMFCS V patients. No serious postoperative complications were identified. We conclude that SDR is safe and-in combination with physiotherapy-effectively reduces spasticity in GMFCS grade IV and V patients. Our series suggests that spastic quadriplegia is effectively managed with significant improvements in upper limb spasticity that are commensurate with those observed in lower limb muscle groups. These gains are furthermore sustained more than a year postoperatively. In light of these findings, we propose that SDR constitutes an effective treatment option for GMFCS IV and V patients and a rational alternative to intrathecal baclofen.
Use of botulinum toxin type A and type B for spasticity in upper and lower limbs.
Bell, Kathleen R; Williams, Faren
2003-11-01
BT is likely effective in controlling spasticity in the smaller muscles of the arm and hand, although there has been only one large controlled trial. For lower limb spasticity, the outcomes are more mixed. No large randomized, controlled trials have been done, and the larger size of the muscles results in a decreased ability to treat widespread spasticity. For more focal treatment in the legs and feet, however, and when combined with other denervating agents or physical modalities, BT is probably effective. Careful analysis is warranted before performing any chemodenervation on a limb muscle or muscles.
Castilho, Jéssica; Ferreira, Luiz Alfredo Braun; Pereira, Wagner Menna; Neto, Hugo Pasini; Morelli, José Geraldo da Silva; Brandalize, Danielle; Kerppers, Ivo Ilvan; Oliveira, Claudia Santos
2012-07-01
Hypertonia is prevalent in anti-gravity muscles, such as the biceps brachii. Neural mobilization is one of the techniques currently used to reduce spasticity. The aim of the present study was to assess electromyographic (EMG) activity in spastic biceps brachii muscles before and after neural mobilization of the upper limb contralateral to the hemiplegia. Repeated pre-test and post-test EMG measurements were performed on six stroke victims with grade 1 or 2 spasticity (Modified Ashworth Scale). The Upper Limb Neurodynamic Test (ULNT1) was the mobilization technique employed. After neural mobilization contralateral to the lesion, electromyographic activity in the biceps brachii decreased by 17% and 11% for 90° flexion and complete extension of the elbow, respectively. However, the results were not statistically significant (p gt; 0.05). When performed using contralateral techniques, neural mobilization alters the electrical signal of spastic muscles. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hefter, Harald; Jost, Wolfgang H.; Reissig, Andrea; Zakine, Benjamin; Bakheit, Abdel Magid; Wissel, Jorg
2012-01-01
A significant percentage of patients suffering from a stroke involving motor-relevant central nervous system regions will develop a spastic movement disorder. Hyperactivity of different muscle combinations forces the limbs affected into abnormal postures or movement patterns. As muscular hyperactivity can effectively and safely be treated with…
ERIC Educational Resources Information Center
Takekawa, Toru; Kakuda, Wataru; Taguchi, Kensuke; Ishikawa, Atsushi; Sase, Yousuke; Abo, Masahiro
2012-01-01
Botulinum toxin type A (BoNT-A) has been reported to be an effective treatment for limb spasticity after stroke. However, the reduction in the spasticity after BoNT-A injection alone does not ensure an improvement in the active motor function of the affected limb. The aim of this study was to clarify the clinical effects of a BoNT-A injection,…
Raouafi, Sana; Achiche, Sofiane; Begon, Mickael; Sarcher, Aurélie; Raison, Maxime
2018-01-01
Treatment for cerebral palsy depends upon the severity of the child's condition and requires knowledge about upper limb disability. The aim of this study was to develop a systematic quantitative classification method of the upper limb disability levels for children with spastic unilateral cerebral palsy based on upper limb movements and muscle activation. Thirteen children with spastic unilateral cerebral palsy and six typically developing children participated in this study. Patients were matched on age and manual ability classification system levels I to III. Twenty-three kinematic and electromyographic variables were collected from two tasks. Discriminative analysis and K-means clustering algorithm were applied using 23 kinematic and EMG variables of each participant. Among the 23 kinematic and electromyographic variables, only two variables containing the most relevant information for the prediction of the four levels of severity of spastic unilateral cerebral palsy, which are fixed by manual ability classification system, were identified by discriminant analysis: (1) the Falconer index (CAI E ) which represents the ratio of biceps to triceps brachii activity during extension and (2) the maximal angle extension (θ Extension,max ). A good correlation (Kendall Rank correlation coefficient = -0.53, p = 0.01) was found between levels fixed by manual ability classification system and the obtained classes. These findings suggest that the cost and effort needed to assess and characterize the disability level of a child can be further reduced.
Hubble, Jean; Schwab, Joseph; Hubert, Catherine; Abbott, Chandra Coleman
2013-01-01
Botulinum neurotoxin type A is a well-established treatment for a number of conditions involving muscle hyperactivity. Dysport (Ipsen Ltd, Wrexham, United Kingdom) is a botulinum neurotoxin type A preparation that has been available for a number of therapeutic uses for over 20 years in the European Union (EU). This survey was part of the EU botulinum toxin risk management plan to identify potential educational needs of injectors by collecting data on their routine practice administration of Dysport and their awareness of potential adverse events (AEs) that are included in the current product labeling. Dysport-experienced injectors in 5 EU countries were surveyed via telephone about their experience of Dysport in patients with cervical dystonia, adult upper and lower limb spasticity, pediatric cerebral palsy, and blepharospasm/hemifacial spasm. The reconstitution dilution volume most often used was 2.5 mL per 500 U for all indications. The mean total dose ranged from 387 to 530 U for cervical dystonia, 508 to 773 U for upper limb spasticity, 600 to 832 U for lower limb spasticity, 375 to 700 U for pediatric cerebral palsy, and 54 to 213 U for blepharospasm/hemifacial spasm. The potential AEs most commonly mentioned by surveyed physicians were dysphagia for cervical dystonia, arm muscle weakness for upper limb spasticity, leg muscle weakness for lower limb spasticity, and pediatric cerebral palsy and ptosis for blepharospasm/hemifacial spasm. The results indicate that product-labeling recommendations are generally applied in clinical practice and that there is a good familiarity with potential AEs based on clinical condition. Nevertheless, the survey shows that experienced injectors do sometimes deviate from the manufacturers labeling recommendations, highlighting the importance of ongoing education.
Moura, Renata Calhes Franco; Santos, Cibele Almeida; Grecco, Luanda André Collange; Lazzari, Roberta Delasta; Dumont, Arislander Jonathan Lopes; Duarte, Natalia Carvalho de Almeida; Braun, Luiz Alfredo; Lopes, Jamile Benite Palma; Santos, Ligia Abram Dos; Rodrigues, Eliane Lopes Souza; Albertini, Giorgio; Cimolin, Veronica; Galli, Manuela; Oliveira, Claudia Santos
2016-08-17
The aim of the proposed study is to perform a comparative analysis of functional training effects for the paretic upper limb with and without transcranial direct current stimulation over the primary motor cortex in children with spastic hemiparetic cerebral palsy. The sample will comprise 34 individuals with spastic hemiparetic cerebral palsy, 6 to 16 years old, classified at level I, II, or III of the Manual Ability Classification System. Participants will be randomly allocated to two groups: (1) functional training of the paretic upper limb combined with anodic transcranial stimulation; (2) functional training of the paretic upper limb combined with sham transcranial stimulation. Evaluation will involve three-dimensional movement analysis and electromyography using the SMART-D 140® system (BTS Engineering) and the FREEEMG® system (BTS Engineering), the Quality of Upper Extremity Skills Test, to assess functional mobility, the Portable Device and Ashworth Scale, to measure movement resistance and spasticity, and the Pediatric Evaluation of Disability Inventory, to evaluate performance. Functional reach training of the paretic upper limb will include a range of manual activities using educational toys associated with an induced constraint of the non-paretic limb during the training. Training will be performed in five weekly 20-minute sessions for two weeks. Transcranial stimulation over the primary motor cortex will be performed during the training sessions at an intensity of 1 mA. Findings will be analyzed statistically considering a 5 % significance level (P ≤ 0.05). This paper presents a detailed description of a prospective, randomized, controlled, double-blind, clinical trial designed to demonstrate the effects of combining transcranial direct current stimulation over the primary motor cortex and functional training of the paretic limb in children with cerebral palsy classified at level I, II, or III of the Manual Ability Classification System. The results will be published and evidence found may contribute to the use of transcranial stimulation for this population. ReBEC RBR-6V4Y3K . Registered on 11 February 2015.
Taveggia, Giovanni; Borboni, Alberto; Salvi, Lorena; Mulé, Chiara; Fogliaresi, Stefania; Villafañe, Jorge H; Casale, Roberto
2016-12-01
A prompt and effective physical and rehabilitation medicine approach is essential to obtain recovery of an impaired limb to prevent tendon shortening, spasticity and pain. Robot-assisted virtual reality intervention has been shown to be more effective than conventional interventions and achieved greater improvement in upper limb function. The aim of this study was to evaluate the effectiveness of robotic-assisted motion and activity in addition to PRM for the rehabilitation of the upper limb in post-stroke inpatients. Randomized controlled trial. Departments of Physical and Rehabilitation Medicine from three different hospitals (Sarnico, Brescia; Bergamo; Milan). A total of 54 patients and enrolled 23 men and 31 women with post-stroke hemiparesis, aged 18 to 80 years old, enrolled from July 2014 to February 2015. Of the 54 enrolled patients, 57% were female (mean age 71±12 years), and all had upper limb function deficit post-stroke. The experimental group received a passive mobilization of the upper limb through the robotic device ARMEO Spring and the control group received PRM for 6 consecutive weeks (5 days/week) in addition to traditional PRM. We assessed the impact on functional recovery (Functional Independence Measure [FIM] scale), strength (Motricity Index [MI]), spasticity (Modified Ashworth Scale [MAS]) and pain (Numeric Rating Pain Scale [NRPS]). All patients were evaluated by a blinded observer using the outcomes tests at enrollment (T0), after the treatment (T1) and at follow up 6 weeks later (T2). Both control and experimental groups evidenced an improvement of the outcomes after the treatment (MI, Ashworth and NRPS with P<0.05). The experimental group showed further improvements after the follow up (all outcomes with P<0.01). In the treatment of pain, disability and spasticity in upper limb after stroke, robot-assisted mobilization associated to PRM is as effective as traditional rehabilitation. Robot-assisted treatment has an impact on upper limb motor function in stroke patients.
Weightman, Andrew; Preston, Nick; Levesley, Martin; Bhakta, Bipin; Holt, Raymond; Mon-Williams, Mark
2014-05-01
To compare upper limb kinematics of children with spastic cerebral palsy (CP) using a passive rehabilitation joystick with those of adults and able-bodied children, to better understand the design requirements of computer-based rehabilitation devices. A blocked comparative study involving seven children with spastic CP, nine able-bodied adults and nine able-bodied children, using a joystick system to play a computer game whilst the kinematics of their upper limb were recorded. The translational kinematics of the joystick's end point and the participant's shoulder movement (protraction/retraction) and elbow rotational kinematics (flexion/extension) were analysed for each group. Children with spastic CP matched their able-bodied peers in the time taken to complete the computer task, but this was due to a failure to adhere to the task instructions of travelling along a prescribed straight line when moving between targets. The spastic CP group took longer to initiate the first movement, which showed jerkier trajectories and demonstrated qualitatively different movement patterns when using the joystick, with shoulder movements that were significantly of greater magnitude than the able-bodied participants. Children with spastic CP generate large shoulder and hence trunk movements when using a joystick to undertake computer-generated arm exercises. This finding has implications for the development and use of assistive technologies to encourage exercise and the instructions given to users of such systems. A kinematic analysis of upper limb function of children with CP when using joystick devices is presented. Children with CP may use upper body movements to compensate for limitations in voluntary shoulder and elbow movements when undertaking computer games designed to encourage the practice of arm movement. The design of rehabilitative computer exercise systems should consider movement of the torso/shoulder as it may have implications for the quality of therapy in the rehabilitation of the upper limb in children with CP.
Demetrios, Marina; Khan, Fary; Turner-Stokes, Lynne; Brand, Caroline; McSweeney, Shane
2013-06-05
Spasticity may affect stroke survivors by contributing to activity limitations, caregiver burden, pain and reduced quality of life (QoL). Spasticity management guidelines recommend multidisciplinary (MD) rehabilitation programmes following botulinum toxin (BoNT) treatment for post-stroke spasticity. However, the evidence base for the effectiveness of MD rehabilitation is unclear. To assess the effectiveness of MD rehabilitation, following BoNT and other focal intramuscular treatments such as phenol, in improving activity limitations and other outcomes in adults and children with post-stroke spasticity. To explore what settings, types and intensities of rehabilitation programmes are effective. We searched the Cochrane Stroke Group Trials Register (February 2012), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 12), MEDLINE (1948 to December 2011), EMBASE (1980 to January 2012), CINAHL (1982 to January 2012), AMED (1985 to January 2012), LILACS (1982 to September 2012), PEDro, REHABDATA and OpenGrey (September 2012). In an effort to identify further published, unpublished and ongoing trials we searched trials registries and reference lists, handsearched journals and contacted authors. We included randomised controlled trials (RCTs) that compared MD rehabilitation (delivered by two or more disciplines in conjunction with medical input) following BoNT and other focal intramuscular treatments for post-stroke spasticity with placebo, routinely available local services, or lower levels of intervention; or studies that compared MD rehabilitation in different settings, of different types, or at different levels of intensity. We excluded RCTs that assessed the effectiveness of unidisciplinary therapy (for example physiotherapy only) or a single modality (for example stretching, casting, electrical stimulation or splinting only). The primary outcomes were validated measures of activity level (active and passive function) according to the World Health Organization's International Classification of Functioning, Disability and Health. Secondary outcomes included measures of symptoms, impairments, participation, QoL, impact on caregivers and adverse events. We independently selected the trials, extracted data, and assessed methodological quality using the Grades of Recommendation, Assessment, Development and Evaluation (GRADE). Due to the limited number of included studies, with clinical, methodological and statistical heterogeneity, quantitative meta-analysis was not possible. Therefore, GRADE provided qualitative synthesis of 'best evidence'. We included three RCTs involving 91 participants. All three studies scored 'low quality' on the methodological quality assessment, implying high risk of bias. All studies investigated various types and intensities of outpatient rehabilitation programmes following BoNT for upper limb spasticity in adults with chronic stroke. Rehabilitation programmes included: modified constraint-induced movement therapy (mCIMT) compared with a neurodevelopmental therapy programme; task practice therapy with cyclic functional electrical stimulation (FES) compared with task practice therapy only; and occupational, manual therapy with dynamic elbow extension splinting compared with occupational therapy only. There was 'low quality' evidence for mCIMT improving upper limb motor function and spasticity in chronic stroke survivors with residual voluntary upper limb activity, up to six months, and 'very low quality' evidence for dynamic elbow splinting and occupational therapy reducing elbow range of movement at 14 weeks. Task practice therapy with cyclic FES did not improve upper limb function more than task practice therapy alone, only at 12 weeks. No studies addressed interventions in children and those with lower limb spasticity, or after other focal intramuscular treatments for spasticity. At best there was 'low level' evidence for the effectiveness of outpatient MD rehabilitation in improving active function and impairments following BoNT for upper limb spasticity in adults with chronic stroke. No trials explored the effect of MD rehabilitation on 'passive function' (caring for the affected limb), caregiver burden, or the individual's priority goals for treatment. The optimal types (modalities, therapy approaches, settings) and intensities of therapy for improving activity (active and passive function) in adults and children with post-stroke spasticity, in the short and longer term, are unclear. Further research is required to build evidence in this area.
Geroin, Christian; Bortolami, Marta; Saltuari, Leopold; Manganotti, Paolo
2018-01-01
Background Bilateral arm training (BAT) has shown promise in expediting progress toward upper limb recovery in chronic stroke patients, but its neural correlates are poorly understood. Objective To evaluate changes in upper limb function and EEG power after a robot-assisted BAT in chronic stroke patients. Methods In a within-subject design, seven right-handed chronic stroke patients with upper limb paresis received 21 sessions (3 days/week) of the robot-assisted BAT. The outcomes were changes in score on the upper limb section of the Fugl-Meyer assessment (FM), Motricity Index (MI), and Modified Ashworth Scale (MAS) evaluated at the baseline (T0), posttraining (T1), and 1-month follow-up (T2). Event-related desynchronization/synchronization were calculated in the upper alpha and the beta frequency ranges. Results Significant improvement in all outcomes was measured over the course of the study. Changes in FM were significant at T2, and in MAS at T1 and T2. After training, desynchronization on the ipsilesional sensorimotor areas increased during passive and active movement, as compared with T0. Conclusions A repetitive robotic-assisted BAT program may improve upper limb motor function and reduce spasticity in the chronically impaired paretic arm. Effects on spasticity were associated with EEG changes over the ipsilesional sensorimotor network. PMID:29780410
Ren, Kai; Gong, Xiao-Ming; Zhang, Rong; Chen, Xiu-Hui
2016-10-01
To study the effects of virtual reality (VR) training on the gross motor function of the lower limb and the fine motor function of the upper limb in children with spastic diplegia cerebral palsy. Thirty-five children with spastic diplegia cerebral palsy were randomly assigned to VR training group (n=19) and conventional training group (n=16). The conventional training group received conventional physical therapy and occupational therapy for three months. The VR training group received VR training and occupational therapy for three months. Grip and visual-motor integration subtests in Peabody Developmental Motor Scales-2 were used to evaluate the fine movement in patients before and after treatment. The D and E domains of the 88-item version of the Gross Motor Function Measure (GMFM-88), Modified Ashworth Scale (MAS), and Berg Balance Scale (BBS) were used to evaluate the gross movement in patients before and after treatment. Before treatment, there were no significant differences in grip, visual-motor integration, fine motor development quotient, scores of D and E domains of GMFM-88, MAS score, or BBS score between the two groups (P>0.05). After treatment, all the indices were significantly improved in the VR training group compared with the conventional training group (P<0.05). VR training can effectively improve the gross motor function of the lower limb and the fine motor function of the upper limb in children with spastic diplegia cerebral palsy.
Kerkemeyer, L; Lux, G; Walendzik, A; Wasem, J; Neumann, A
2017-08-01
Upper limb spasticity is a common complication following stroke. Cohort studies found 19% of post-stroke patients had upper limb spasticity at 3 months and 38% of patients at 12 months. For focal spasticity, intramuscular injections of botulinum toxin are indicated. In Germany, it is assumed that patients with the described indication are undersupplied with botulinum toxin. The aim of the present study is to evaluate the medical care of patients with upper limb spasticity post-stroke with the focus on the use of botulinum toxin as one treatment option. A standardized questionnaire was developed and a postal survey of a representative national random sample of 800 neurologists to capture the actual medical care situation. The response rate amounted to 37% (n = 292). 59% of the neurologists surveyed had never used botulinum toxin. In total, 87% of neurologists noticed barriers regarding the use of botulinum toxin, where the amount of the doctor's remuneration in 40% and the lack of reimbursement of costs in off-label use in 60% were the most commonly used answers. The achievement of an advanced training in using botulinum toxin was also stated as a general obstacle for resident neurologists. Due to a response rate of 37% for the postal survey a selection bias cannot be excluded. Although botulinum toxin is recommended in the national treatment guidelines, many neurologists do not use botulinum toxin. The reasons can be seen from the barriers described.
Seth, Nitin; Johnson, Denise; Abdullah, Hussein A
2017-07-01
Spasticity is a common impairment following an upper motor neuron lesion in conditions such as stroke and brain injury. A clinical issue is how to best quantify and measure spasticity. Recently, research has been performed to develop new methods of spasticity quantification using various systems. This paper follows up on previous work taking a closer look at the role of transversal forces obtained via rehabilitation robot for motions in the para-sagittal plane. Results from 45 healthy individuals and 40 individuals with acquired brain injury demonstrate that although the passive upper motions are vertical, horizontal forces into and away from the individual's body demonstrate a relationship with the Modified Ashworth Scale. This finding leads the way to new avenues of spasticity quantification and monitoring.
Improved motor performance in chronic spinal cord injury following upper-limb robotic training.
Cortes, Mar; Elder, Jessica; Rykman, Avrielle; Murray, Lynda; Avedissian, Manuel; Stampas, Argyrios; Thickbroom, Gary W; Pascual-Leone, Alvaro; Krebs, Hermano Igo; Valls-Sole, Josep; Edwards, Dylan J
2013-01-01
Recovering upper-limb motor function has important implications for improving independence of patients with tetraplegia after traumatic spinal cord injury (SCI). To evaluate the feasibility, safety and effectiveness of robotic-assisted training of upper limb in a chronic SCI population. A total of 10 chronic tetraplegic SCI patients (C4 to C6 level of injury, American Spinal Injury Association Impairment Scale, A to D) participated in a 6-week wrist-robot training protocol (1 hour/day 3 times/week). The following outcome measures were recorded at baseline and after the robotic training: a) motor performance, assessed by robot-measured kinematics, b) corticospinal excitability measured by transcranial magnetic stimulation (TMS), and c) changes in clinical scales: motor strength (Upper extremity motor score), pain level (Visual Analog Scale) and spasticity (Modified Ashworth scale). No adverse effects were observed during or after the robotic training. Statistically significant improvements were found in motor performance kinematics: aim (pre 1.17 ± 0.11 raduans, post 1.03 ± 0.08 raduans, p = 0.03) and smoothness of movement (pre 0.26 ± 0.03, post 0.31 ± 0.02, p = 0.03). These changes were not accompanied by changes in upper-extremity muscle strength or corticospinal excitability. No changes in pain or spasticity were found. Robotic-assisted training of the upper limb over six weeks is a feasible and safe intervention that can enhance movement kinematics without negatively affecting pain or spasticity in chronic SCI. In addition, robot-assisted devices are an excellent tool to quantify motor performance (kinematics) and can be used to sensitively measure changes after a given rehabilitative intervention.
Influence of post-stroke spasticity on EMG-force coupling and force steadiness in biceps brachii.
Carlyle, Jennilee K; Mochizuki, George
2018-02-01
Individuals with spasticity after stroke experience a decrease in force steadiness which can impact function. Alterations in the strength of EMG-force coupling may contribute to the reduction in force steadiness observed in spasticity. The aim was to determine the extent to which force steadiness and EMG-force coupling is affected by post-stroke spasticity. This cross-sectional study involved individuals with upper limb spasticity after stroke. Participants were required to generate and maintain isometric contractions of the elbow flexors at varying force levels. Coefficient of variation of force, absolute force, EMG-force cross-correlation function peak and peak latency was measured from both limbs with surface electromyography and isometric dynamometry. Statistically significant differences were observed between the affected and less affected limbs for all outcome measures. Significant main effects of force level were also observed. Force steadiness was not statistically significantly correlated with EMG-force coupling; however, both force steadiness and absolute force were associated with the level of impairment as measured by the Chedoke McMaster Stroke Assessment Scale. Spasticity after stroke uncouples the relationship between EMG and force and is associated with reduced force steadiness during isometric contractions; however, these features of control are not associated in individuals with spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gait Trainer for Children with Spastic Cerebral Palsy
2001-10-25
same person. Spastic CP is the most common type of Cerebral Palsy. It can be subdivided into 5 types : Quadriplegia : A type of CP when occurs in...all four of their limbs-both arms and both legs it is called quadriplegia . Due to the problems of controlling the muscles in their face and upper
ERIC Educational Resources Information Center
Kakuda, Wataru; Abo, Masahiro; Kobayashi, Kazushige; Momosaki, Ryo; Yokoi, Aki; Fukuda, Akiko; Ishikawa, Atsushi; Ito, Hiroshi; Tominaga, Ayumi
2010-01-01
The purpose of the study was to determine the safety and feasibility of a 15-day protocol of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with intensive occupational therapy (OT) on motor function and spasticity in hemiparetic upper limbs in poststroke patients. Fifteen poststroke patients (age at study entry 55 [plus…
ERIC Educational Resources Information Center
Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.
2012-01-01
This study examined the arm position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and typically developing children (TD) by means of a contralateral matching task. This task required participants to match the position of one arm with the position of the other arm for different target distances and from different starting…
Hara, Takatoshi; Abo, Masahiro; Hara, Hiroyoshi; Kobayashi, Kazushige; Shimamoto, Yusuke; Samizo, Yuta; Sasaki, Nobuyuki; Yamada, Naoki; Niimi, Masachika
2017-06-01
The purpose of this study was to examine the effects of combined botulinum toxin type A (BoNT-A) and inpatient multidisciplinary (MD) rehabilitation therapy on the improvement of upper and lower limb function in post-stroke patients. In this retrospective study, a 12-day inpatient treatment protocol was implemented on 51 post-stroke patients with spasticity. Assessments were performed on the day of admission, at discharge, and at 3 months following discharge. At the time of discharge, all of the evaluated items showed a statistically significant improvement. Only the Functional Reach Test (FRT) showed a statistically significant improvement at 3 months. In subgroup analyses, the slowest walking speed group showed a significantly greater change ratio of the 10 Meter Walk Test relative to the other groups, from the time of admission to discharge. This group showed a greater FRT change ratio than the other groups from the time of admission to the 3-month follow-up. Inpatient combined therapy of simultaneous injections of BoNT-A to the upper and lower limbs and MD may improve motor function.
Lannin, Natasha A; Ada, Louise; English, Coralie; Ratcliffe, Julie; Crotty, Maria
2018-01-01
Rationale Although clinical practice guidelines recommend that management of moderate to severe spasticity include the use of botulinum toxin-A in conjunction with therapy, there is currently no evidence to support the addition of therapy. Aims To determine the effect and cost-benefit of adding evidence-based movement training to botulinum toxin-A. Sample size estimate A total of 136 participants will be recruited in order to be able to detect a between-group difference of seven points on the Goal Attainment Scale T-score with 80% power at a two-tailed significance level of 0.05. Methods and design The InTENSE trial is a national, multicenter, Phase III randomized trial with concealed allocation, blinded assessment and intention-to-treat analysis. Stroke survivors who are scheduled to receive botulinum toxin-A in any muscle(s) that cross the wrist because of moderate to severe spasticity after a stroke greater than three months ago, who have completed formal rehabilitation and have no significant cognitive impairment will be randomly allocated to receive botulinum toxin-A plus evidence-based movement training or botulinum toxin-A alone. Study outcomes The primary outcomes are goal attainment (Goal Attainment Scaling) and upper limb activity (Box and Block Test) at three months (end of intervention) and at 12 months (beyond the intervention). Secondary outcomes are spasticity, range of motion, strength, pain, burden of care and health-related quality of life. Direct costs, personal costs and health system costs will be collected at 12 months. Discussion The results of the InTENSE trial are anticipated to directly influence intervention for moderate to severe spasticity after stroke. Trial Registration ANZCTR12615000616572.
ERIC Educational Resources Information Center
Aarts, Pauline B.; Jongerius, Peter H.; Geerdink, Yvonne A.; van Limbeek, Jacques; Geurts, Alexander C.
2011-01-01
A recent randomized controlled trial indicated that modified Constraint-Induced Movement Therapy followed by Bimanual Training (mCIMT-BiT) is an effective intervention to improve spontaneous use of the affected upper limb in children with unilateral spastic cerebral palsy (CP). The present study aimed to investigate how the above-mentioned…
Lee, DongJin; Lee, MyungMo; Lee, KyoungJin; Song, ChangHo
2014-07-01
Asymmetric movements with both hands contributed to the improvement of spatially coupled motion. Thus, the aim of this study was to investigate the effects of an asymmetric training program using virtual reality reflection equipment on upper limb function in stroke patients. Twenty-four stroke patients were randomly allocated to an experimental group (n=12) or a control group (n=12). Both groups participated in conventional physical therapy for 2×30 min/d, 5 d/wk, for 4 weeks. The experimental group also participated in an asymmetric training program using virtual reality reflection equipment, and the control group participated in a symmetric training program. Both asymmetric and symmetric programs were conducted for 30 min/d, 5 d/wk, for 4 weeks. To compare upper limb function before and after intervention, the Fugl-Meyer Assessment (FMA), the Box and Block Test (BBT), grip strength, range of motion (ROM), and spasticity were assessed. Both groups showed significant increases in upper limb function, excepting spasticity, after intervention (P<.05, 1-way repeated-measures analysis of variance [ANOVA]). A significant group-time interaction was demonstrated only for shoulder/elbow/wrist items of FMA, BBT, grip strength, and ROM of wrist flexion, extension, and ulnar deviation (P<.05, 2-way repeated-measures ANOVA). This study confirms that the asymmetric training program using virtual reality reflection equipment is an effective intervention method for improving upper limb function in stroke patients. We consider that an additional study based on a program using virtual reflection, which is more functional than performing simple tasks, and consisting of tasks relevant to the activities of daily living be conducted. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Choi, Kevin; Peters, Jaclyn; Tri, Andrew; Chapman, Elizabeth; Sasaki, Ayako; Ismail, Farooq; Boulias, Chris; Reid, Shannon
2017-01-01
Purpose: Goal Attainment Scaling (GAS) is used to assess functional gains in response to treatment. Specific characteristics of the functional goals set by individuals receiving botulinum toxin type A (BoNTA) injections for spasticity management are unknown. The primary objectives of this study were to describe the characteristics of the goals set by patients before receiving BoNTA injections using the International Classification of Functioning, Disability and Health (ICF) and to determine whether the pattern of spasticity distribution affected the goals set. Methods: A cross-sectional retrospective chart review was carried out in an outpatient spasticity-management clinic in Toronto. A total of 176 patients with a variety of neurological lesions attended the clinic to receive BoNTA injections and completed GAS from December 2012 to December 2013. The main outcome measures were the characteristics of the goals set by the participants on the basis of ICF categories (body functions and structures, activity and participation) and the spasticity distribution using Modified Ashworth Scale scores. Results: Of the patients, 73% set activity and participation goals, and 27% set body functions and structures goals (p<0.05). In the activity and participation category, 30% of patients set moving and walking goals, 28% set self-care and dressing goals, and 12% set changing and maintaining body position goals. In the body functions and structures category, 18% set neuromuscular and movement-related goals, and 8% set pain goals. The ICF goal categories were not related to the patterns of spasticity (upper limb vs. lower limb or unilateral vs. bilateral spasticity) or type of upper motor neuron (UMN) lesion (p>0.05). Conclusion: Our results show that patients receiving BoNTA treatment set a higher percentage of activity and participation goals than body functions and structures goals. Goal classification was not affected by type of spasticity distribution or type of UMN disorder. PMID:28539691
A case report of HTLV-I associated myelopathy presenting with cerebellar ataxia and nystagmus.
Taki, Masakatsu; Nin, Fumiaki; Hasegawa, Tatsuhisa; Sakaguchi, Hirofumi; Suzuki, Toshihiro; Hisa, Yasuo; Azuma, Yumiko; Nakagawa, Masanori
2011-06-01
HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP) is characterized by spastic paraparesis in the lower extremities, and urinary disturbance. HAM/TSP has also been less frequently associated with cerebellar syndromes and nystagmus. We report a case of HAM/TSP presenting with cerebellar ataxia and nystagmus. The patient was a 73-year-old woman who was born in southern Japan. At age 41, she developed pain and spasticity in the bilateral lower limbs and gradually progressive gait disturbance. At age 57, she was diagnosed with HAM/TSP based on spastic paraparesis in the lower limbs, urinary disturbance and positive anti HTLV-I antibody in serum and cerebrospinal fluid. In June 2008, she was referred to our university and hospitalized for rehabilitation. Twenty days later, she experienced rotatory vertigo sensation. Magnetic resonance imaging revealed pontocerebellar atrophy. The patient presented with cerebellar signs in the upper limbs, gaze-evoked nystagmus in the sitting position and right-beating horizontal nystagmus in the supine and head-hanging positions. Electronystagmography (ENG) showed horizontal saccadic overshoot dysmetria and horizontal saccadic pursuit. Nystagmus is rare among the literature on HAM/TSP. ENG is helpful to evaluate and confirm the cerebellar syndromes of HAM/TSP. Copyright © 2010. Published by Elsevier Ireland Ltd.
Zhang, Peng; Hu, Wei; Cao, Xu; Xu, Shi-gang; Li, De-kui; Xu, Lin
2009-10-01
To explore the feasibility and the result for the surgical treatment of spastic cerebral paralysis of the upper limbs in patients who underwent the selective cervical dorsal root cutting off part of the vertebral lateral mass fixation combined with exercise therapy. From March 2004 to April 2008, 27 patients included 19 boys and 8 girls, aging 13-21 years with an average of 15 years underwent selective cervical dorsal root cutting off part of the vertebral lateral mass fixation with exercise therapy. The AXIS 8 holes titanium plate was inserted into the lateral mass of spinous process through guidance of the nerve stimulator, choosed fasciculus of low-threshold nerve dorsal root and cut off its 1.5 cm. After two weeks, training exercise therapy was done in patients. Training will include lying position, turning body, sitting position, crawling, kneeling and standing position, walking and so on. Spastic Bobath inhibiting abnormal pattern was done in the whole process of training. The muscular tension, motor function (GMFM), functional independence (WeeFIM) were observed after treatment. All patients were followed up from 4 to 16 months with an average of 6 months. Muscular tension score were respectively 3.30 +/- 0.47 and 1.25 +/- 0.44 before and after treatment;GMFM score were respectively 107.82 +/- 55.17 and 131.28 +/- 46.45; WeeFIM score were respectively 57.61 +/- 25.51 and 87.91 +/- 22.39. There was significant improvement before and after treatment (P < 0.01). Selective cervical dorsal root cutting off part of the vertebral lateral mass fixation combined with exercise therapy was used to treat spastic cerebral paralysis of the upper limbs is safe and effective method, which can decrease muscular tension and improve motor function, which deserves more wide use.
Quality of life and costs of spasticity treatment in German stroke patients.
Rychlik, Reinhard; Kreimendahl, Fabian; Schnur, Nicole; Lambert-Baumann, Judith; Dressler, Dirk
2016-12-01
To gather data about the medical and non-medical health service in patients suffering from post-stroke spasticity of the upper limb and evaluate treatment effectiveness and tolerability as well as costs over the treatment period of one year. Prospective, non-interventional, multicenter, parallel-group study comparing effectivenessand costs of incobotulinumtoxinA (INCO) treatment (n = 118) to conventional (CON) antispastic therapy (n = 110) for upper limb spasticity after stroke in 47 clinical practices across Germany over a 1-year treatment period. IncobotulinumtoxinA was applied according to the individual treatment algorithms of each participating site and additional antispastic treatments were allowed. Primary efficacy objective was the reduction of the muscle tone measured by Ashworth scale. Responder analyses and logistic regressions were performed. Quality of life, measured by SF-12 questionnaire and functional disability were assessed. Besides calculating treatment costs, a cost-utility analysis was performed. Responder rates of all muscle groups of the upper extremities were significantly higher in the treatment group (62.9-86.2 % vs. 15.5-26.9 %, p < 0.01). Total health service costs were twice as high in the INCO group, however cost-utility ratios were consistently superior compared to the control group. Lowest incremental costs were documented to improve the "physical health" dimension in quality of life. Higher responder rates, higher increases in quality of life and superior cost-utility ratios in the BoNT/A-treatment group underline guideline recommendations for botulinum toxin A treatment in focal or segmental spasticity. Results may partially be influenced by different patient demographics or disease severity at study entry.
Chang, Chia-Lin; Munin, Michael C.; Skidmore, Elizabeth R.; Niyonkuru, Christian; Huber, Lynne M.; Weber, Douglas J.
2015-01-01
Objective To determine whether baseline hand spastic hemiparesis assessed by the Chedoke-McMaster Assessment influences functional improvement after botulinum toxin type A (BTX-A) injections and postinjection therapy. Design Prospective cohort study. Setting Outpatient spasticity clinic. Participants Participants (N = 14) with spastic hemiparesis divided into 2 groups: Chedoke-McMaster Assessment Hand-Higher Function (stage≥4, n = 5) and Chedoke-McMaster Assessment Hand-Lower Function (stage = 2 or 3, n = 9). Interventions Upper-limb BTX-A injections followed by 6 weeks of postinjection therapy. Main Outcome Measures Primary outcomes were Motor Activity Log-28 and Motor Activity Log items. Secondary outcomes were Action Research Arm Test (ARAT), Motor Activity Log-Self-Report, and Modified Ashworth Scale (MAS). Measures were assessed at baseline (preinjection), 6 weeks, 9 weeks, and 12 weeks postinjection. Results Primary and secondary outcomes improved significantly over time in both groups. Although no significant differences in ARAT or MAS change scores were noted between groups, Chedoke-McMaster Assessment Hand-Higher Function group demonstrated greater change on Motor Activity Log-28 (P = .013) from baseline to 6 weeks and Motor Activity Log items (P = .006) from baseline to 12 weeks compared to Chedoke-McMaster Assessment Hand-Lower Function group. Conclusions BTX-A injections and postinjection therapy improved hand function and reduced spasticity for both Chedoke-McMaster Assessment Hand-Higher Function and Chedoke-McMaster Assessment Hand-Lower Function groups. Clinicians should expect to see larger gains for persons with less baseline impairment. PMID:19735772
2010-01-01
Background Use of Botulinum toxin-A (BoNT-A) for treatment of upper limb spasticity in children with cerebral palsy has become routine clinical practice in many paediatric treatment centres worldwide. There is now high-level evidence that upper limb BoNT-A injection, in combination with occupational therapy, improves outcomes in children with cerebral palsy at both the body function/structure and activity level domains of the International Classification of Functioning, Disability and Health. Investigation is now required to establish what amount and specific type of occupational therapy will further enhance functional outcomes and prolong the beneficial effects of BoNT-A. Methods/Design A randomised, controlled, evaluator blinded, prospective parallel-group trial. Eligible participants were children aged 18 months to 6 years, diagnosed with spastic hemiplegic cerebral palsy and who were able to demonstrate selective motor control of the affected upper limb. Both groups received upper limb injections of BoNT-A. Children were randomised to either the modified constraint-induced movement therapy group (experimental) or bimanual occupational therapy group (control). Outcome assessments were undertaken at pre-injection and 1, 3 and 6 months following injection of BoNT-A. The primary outcome measure was the Assisting Hand Assessment. Secondary outcomes included: the Quality of Upper Extremity Skills Test; Pediatric Evaluation of Disability Inventory; Canadian Occupational Performance Measure; Goal Attainment Scaling; Pediatric Motor Activity Log; modified Ashworth Scale and; the modified Tardieu Scale. Discussion The aim of this paper is to describe the methodology of a randomised controlled trial comparing the effects of modified constraint-induced movement therapy (a uni-manual therapy) versus bimanual occupational therapy (a bimanual therapy) on improving bimanual upper limb performance of children with hemiplegic cerebral palsy following upper limb injection of BoNT-A. The paper outlines the background to the study, the study hypotheses, outcome measures and trial methodology. It also provides a comprehensive description of the interventions provided. Trial Registration ACTRN12605000002684 PMID:20602795
Remarkable recovery in an infant presenting with extensive perinatal cervical cord injury.
Ul Haq, Israr; Gururaj, A K
2012-12-10
Cervical-cord damage is a complication of a difficult delivery, and results in spinal shock with flaccidity progressing to spastic paralysis. Conventionally, outlook for such patients is extremely poor and most will recover only slightly from quadriplegia and autonomic dysfunction. Here, we report a case in which the extent of damage considerably contrasted with the outcome and recovery. A full-term baby girl born by difficult vaginal delivery displayed bilateral flaccid paralysis of the lower limbs with absent spontaneous movements, weakness of both upper limbs, hyporeflexia in all limbs and axial hypotonia. MRI of cervicothoracic spine exhibited raised signal intensity in the dorsal aspects of C7 to T1 signifying myelopathy. MRI at 4 months revealed a near-total transection of the cervical cord. However, at 6 months, the child could move all lower limbs independently with a marked increase in power. There was no spasticity, wasting or incontinence. Reflexes had also returned.
Costantino, Cosimo; Galuppo, Laura; Romiti, Davide
2017-02-01
In recent years, local muscle vibration received considerable attention as a useful method for muscle stimulation in clinical therapy. Some studies described specific vibration training protocol, and few of them were conducted on post-stroke patients. Therefore there is a general uncertainty regarding the vibrations protocol. The aim of this study was to evaluate the effects of local muscle high frequency mechano-acoustic vibratory treatment on grip muscle strength, muscle tonus, disability and pain in post-stroke individuals with upper limb spasticity. Single-blind randomized controlled trial. Outpatient rehabilitation center. Thirty-two chronic poststroke patients with upper-limb spasticity: 21 males, 11 females, mean age 61.59 years ±15.50, time passed from stroke 37.78±17.72 months. The protocol treatment consisted of the application of local muscle vibration, set to a frequency of 300 Hz, for 30 minutes 3 times per week, for 12 sessions, applied to the skin covering the venter of triceps brachii and extensor carpi radialis longus and brevis muscles during voluntary isometric contraction. All participants were randomized in two groups: group A treated with vibration protocol; group B with sham therapy. All participants were evaluated before and after 4-week treatment with Hand Grip Strength Test, Modified Ashworth Scale, QuickDASH score, FIM scale, Fugl-Meyer Assessment, Jebsen-Taylor Hand Function Test and Verbal Numerical Rating Scale of pain. Outcomes between groups was compared using a repeated-measures ANOVA. Over 4 weeks, the values recorded in group A when compared to group B demonstrated statistically significant improvement in grip muscle strength, pain and quality of life and decrease of spasticity; P-values were <0.05 in all tested parameters. Rehabilitation treatment with local muscle high frequency (300 Hz) vibration for 30 minutes, 3 times a week for 4 weeks, could significantly improve muscle strength and decrease muscle tonus, disability and pain in upper limb of hemiplegic post-stroke patients. Local muscle vibration treatment might be an additional and safe tool in the management of chronic poststroke patients, granted its high therapeutic efficiency, limited cost and short and repeatable protocol of use.
Del Felice, Alessandra; Daloli, Verena; Masiero, Stefano; Manganotti, Paolo
2016-12-01
Different transcranial direct current stimulation (tDCS) paradigms have been implemented to treat poststroke spasticity, but discordant results have been reported. This study aimed to determine the efficacy and persistence of dual tDCS (anode over affected motor cortex [M1] and cathode over contralateral M1) compared with cathodal tDCS (cathode over contralateral M1) on upper limb (UL) functional, behavioral, and neurophysiological measures in chronic poststroke individuals. Ten subjects with UL spasticity (7 men; mean 62 years; 8 ischemic stroke; years from event: 2.3 years) were enrolled in a cross-over, double-blinded study. Cathodal and dual tDCS, both preceded by 1 week of sham stimulation 1 month before real stimulation, were applied with 3 months interval. Stimulating paradigm was 20 minutes for five consecutive days in each block. Evaluations were performed before (T1), after real or sham treatment (T2), and after 1 (T3), 4 (T4), and 8 weeks (T5). Functional, behavioral, and neurophysiological tests were performed at each time. Both tDCS paradigms decreased spasticity, increased strength, and ameliorated behavioral scales. Cathodal tDCS was superior to dual tDCS in reducing UL distal spasticity immediately after treatment (T2: cathodal > dual: P = .023) and provided a higher and longer lasting reduction at proximal districts (T3: cathodal > dual: P = .042; T4: cathodal > dual: P = .028; T5: cathodal > dual: P = .05). These findings are supported by an H-reflex modulation (overall time effect P > .002). Cathodal tDCS is slightly more effective than dual tDCS in reducing distal UL spasticity in chronic poststroke subjects. A modulation of spinal inhibitory mechanisms, demonstrated by H-reflex modifications, supports this finding. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Hesse, Stefan; Werner, Cordula
2003-01-01
Following stroke, approximately 90% of patients experience persistent neurological motor deficits that lead to disability and handicap. Both pharmacological and physical treatment strategies for motor rehabilitation may be considered. In terms of pharmacological treatment, drugs that may potentially promote motor recovery when added to a regimen of physical therapy include the stimulants amphetamine and methylphenidate, as well as levodopa and fluoxetine. Botulinum toxin A has proven effective and well tolerated in several placebo-controlled trials for the treatment of focal upper and lower limb spasticity, although it has not been shown to improve motor function. The focal injection of botulinum toxin A inhibits the release of acetylcholine into the synaptic cleft, resulting in a reversible paresis of the muscles relevant for the spastic deformity. Other drugs, such as benzodiazepines, antiepileptic drugs and antipsychotics, may have detrimental effects on motor function and should be avoided, if possible. With respect to physical strategies, modern concepts of motor learning favour a task-specific repetitive approach that induces skill-acquisition relevant to the patient's daily life. Constrained-induced movement therapy based on the concept of learned non-use, electromyography-triggered electrical stimulation of the wrist muscles, robot-assisted motor rehabilitation to increase therapy intensity and bilateral practice to facilitate the movement of the paretic extremity are examples in upper limb rehabilitation. Lower limb rehabilitation has been enriched by treadmill training with partial bodyweight support, enabling the practice of up to 1000 steps per session; automated gait rehabilitation to relieve the strenuous effort required of the therapist; and rhythmic auditory stimulation, applying individually adjusted music to improve walking speed and symmetry.
Botulinum Toxin Treatment for Limb Spasticity in Childhood Cerebral Palsy
Pavone, Vito; Testa, Gianluca; Restivo, Domenico A.; Cannavò, Luca; Condorelli, Giuseppe; Portinaro, Nicola M.; Sessa, Giuseppe
2016-01-01
CP is the most common cause of chronic disability in childhood occurring in 2–2.5/1000 births. It is a severe disorder and a significant number of patients present cognitive delay and difficulty in walking. The use of botulinum toxin (BTX) has become a popular treatment for CP especially for spastic and dystonic muscles while avoiding deformity and pain. Moreover, the combination of physiotherapy, casting, orthotics and injection of BTX may delay or decrease the need for surgical intervention while reserving single-event, multi-level surgery for fixed musculotendinous contractures and bony deformities in older children. This report highlights the utility of BTX in the treatment of cerebral palsy in children. We include techniques for administration, side effects, and possible resistance as well as specific use in the upper and lower limbs muscles. PMID:26924985
Botulinum Toxin Treatment for Limb Spasticity in Childhood Cerebral Palsy.
Pavone, Vito; Testa, Gianluca; Restivo, Domenico A; Cannavò, Luca; Condorelli, Giuseppe; Portinaro, Nicola M; Sessa, Giuseppe
2016-01-01
CP is the most common cause of chronic disability in childhood occurring in 2-2.5/1000 births. It is a severe disorder and a significant number of patients present cognitive delay and difficulty in walking. The use of botulinum toxin (BTX) has become a popular treatment for CP especially for spastic and dystonic muscles while avoiding deformity and pain. Moreover, the combination of physiotherapy, casting, orthotics and injection of BTX may delay or decrease the need for surgical intervention while reserving single-event, multi-level surgery for fixed musculotendinous contractures and bony deformities in older children. This report highlights the utility of BTX in the treatment of cerebral palsy in children. We include techniques for administration, side effects, and possible resistance as well as specific use in the upper and lower limbs muscles.
Krewer, Carmen; Hartl, Sandra; Müller, Friedemann; Koenig, Eberhard
2014-06-01
To investigate short-term and long-term effects of repetitive peripheral magnetic stimulation (rpMS) on spasticity and motor function. Monocentric, randomized, double-blind, sham-controlled trial. Neurologic rehabilitation hospital. Patients (N=66) with severe hemiparesis and mild to moderate spasticity resulting from a stroke or a traumatic brain injury. The average time ± SD since injury for the intervention groups was 26 ± 71 weeks or 37 ± 82 weeks. rpMS for 20 minutes or sham stimulation with subsequent occupational therapy for 20 minutes, 2 times a day, over a 2-week period. Modified Tardieu Scale and Fugl-Meyer Assessment (arm score), assessed before therapy, at the end of the 2-week treatment period, and 2 weeks after study treatment. Additionally, the Tardieu Scale was assessed after the first and before the third therapy session to determine any short-term effects. Spasticity (Tardieu >0) was present in 83% of wrist flexors, 62% of elbow flexors, 44% of elbow extensors, and 10% of wrist extensors. Compared with the sham stimulation group, the rpMS group showed short-term effects on spasticity for wrist flexors (P=.048), and long-term effects for elbow extensors (P<.045). Arm motor function (rpMS group: median 5 [4-27]; sham group: median 4 [4-9]) did not significantly change over the study period in either group, whereas rpMS had a positive effect on sensory function. Therapy with rpMS increases sensory function in patients with severe limb paresis. The magnetic stimulation, however, has limited effect on spasticity and no effect on motor function. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Degelaen, Marc; de Borre, Ludo; Kerckhofs, Eric; de Meirleir, Linda; Buyl, Ronald; Cheron, Guy; Dan, Bernard
2013-01-01
Botulinum toxin injections may significantly improve lower limb kinematics in gait of children with spastic forms of cerebral palsy. Here we aimed to analyze the effect of lower limb botulinum toxin injections on trunk postural control and lower limb intralimb (intersegmental) coordination in children with spastic diplegia or spastic hemiplegia (GMFCS I or II). We recorded tridimensional trunk kinematics and thigh, shank and foot elevation angles in fourteen 3–12 year-old children with spastic diplegia and 14 with spastic hemiplegia while walking either barefoot or with ankle-foot orthoses (AFO) before and after botulinum toxin infiltration according to a management protocol. We found significantly greater trunk excursions in the transverse plane (barefoot condition) and in the frontal plane (AFO condition). Intralimb coordination showed significant differences only in the barefoot condition, suggesting that reducing the degrees of freedom may limit the emergence of selective coordination. Minimal relative phase analysis showed differences between the groups (diplegia and hemiplegia) but there were no significant alterations unless the children wore AFO. We conclude that botulinum toxin injection in lower limb spastic muscles leads to changes in motor planning, including through interference with trunk stability, but a combination of therapies (orthoses and physical therapy) is needed in order to learn new motor strategies. PMID:23344454
‘Serpent in the spine’: a case of giant spinal ependymoma of cervicothoracic spine
Arrifin, Arlizan; Kaliaperumal, Chandrasekaran; Keohane, Catherine; O'Sullivan, Michael
2012-01-01
We describe a case of giant spinal ependymoma of cervicothoracic spine in a 30-year-old lady who presented with progressive spastic paraparesis and significant combined upper and lower motor neuron signs in her lower limbs over a 1-year period. She also had upper limb small muscle wasting with absent reflexes and diminished sensation. She was wheel chair bound with involvement of sphincters. Neuroimaging revealed a uniformly enhancing intramedullary lesion from C2–T3 level with associated syringomyelia. She underwent a complete excision of this World Health Organisation (WHO) II cellular ependymoma, resulting in significant clinical outcome and improvement in bladder and bowel function. PMID:22739334
Hilliard, A.; Stott, C.; Wright, S.; Guy, G.; Pryce, G.; Al-Izki, S.; Bolton, C.; Giovannoni, G.
2012-01-01
This study investigated the antispasticity potential of Sativex in mice. Chronic relapsing experimental allergic encephalomyelitis was induced in adult ABH mice resulting in hind limb spasticity development. Vehicle, Sativex, and baclofen (as a positive control) were injected intravenously and the “stiffness” of limbs assessed by the resistance force against hind limb flexion. Vehicle alone caused no significant change in spasticity. Baclofen (5 mg/kg) induced approximately a 40% peak reduction in spasticity. Sativex dose dependently reduced spasticity; 5 mg/kg THC + 5 mg/kg CBD induced approximately a 20% peak reduction; 10 mg/kg THC + 10 mg/kg CBD produced approximately a 40% peak reduction in spasticity. Sativex has the potential to reduce spasticity in an experimental mouse model of multiple sclerosis (MS). Baclofen reduced spasticity and served as a positive control. Sativex (10 mg/kg) was just as effective as baclofen, providing supportive evidence for Sativex use in the treatment of spasticity in MS. PMID:22928118
Improvement and Neuroplasticity after Combined Rehabilitation to Forced Grasping
Ogata, Atsuko; Kawahira, Kazumi; Shimodozono, Megumi
2017-01-01
The grasp reflex is a distressing symptom but the need to treat or suppress it has rarely been discussed in the literature. We report the case of a 17-year-old man who had suffered cerebral infarction of the right putamen and temporal lobe 10 years previously. Forced grasping of the hemiparetic left upper limb was improved after a unique combined treatment. Botulinum toxin type A (BTX-A) was first injected into the left biceps, wrist flexor muscles, and finger flexor muscles. Forced grasping was reduced along with spasticity of the upper limb. In addition, repetitive facilitative exercise and object-related training were performed under low-amplitude continuous neuromuscular electrical stimulation. Since this 2-week treatment improved upper limb function, we compared brain activities, as measured by near-infrared spectroscopy during finger pinching, before and after the combined treatment. Brain activities in the ipsilesional sensorimotor cortex (SMC) and medial frontal cortex (MFC) during pinching under electrical stimulation after treatment were greater than those before. The results suggest that training under electrical stimulation after BTX-A treatment may modulate the activities of the ipsilesional SMC and MFC and lead to functional improvement of the affected upper limb with forced grasping. PMID:28265475
das Neves, Marcele Florêncio; Dos Reis, Mariana César Ribeiro; de Andrade, Eliana Aparecida Fonseca; Lima, Fernanda Pupio Silva; Nicolau, Renata Amadei; Arisawa, Emília Ângela Loschiavo; Andrade, Adriano Oliveira; Lima, Mário Oliveira
2016-09-01
A cerebrovascular accident (CVA) may affect basic motor functions, including spasticity that may be present in the upper extremity and/or the lower extremity, post-stroke. Spasticity causes pain, muscle force reduction, and decreases the time to onset of muscle fatigue. Several therapeutic resources have been employed to treat CVA to promote functional recovery. The clinical use of low-level laser therapy (LLLT) for rehabilitation of muscular disorders has provided better muscle responses. Thus, the aim of this study was to evaluate the effect of the application of LLLT in spastic muscles in patients with spasticity post-CVA. A double-blind clinical trial was conducted with 15 volunteer stroke patients who presented with post-stroke spasticity. Both males and females were treated; the average age was 51.5 ± 11.8 years old; the participants entered the study ranging from 11 to 48 months post-stroke onset. The patients participated in three consecutive phases (control, placebo, and real LLLT), in which all tests of isometric endurance of their hemiparetic lower limb were performed. LLLT (diode laser, 100 mW 808 nm, beam spot area 0.0314 cm(2), 127.39 J/cm(2)/point, 40 s) was applied before isometric endurance. After the real LLLT intervention, we observed significant reduction in the visual analogue scale for pain intensity (p = 0.0038), increased time to onset of muscle fatigue (p = 0.0063), and increased torque peak (p = 0.0076), but no significant change in the root mean square (RMS) value (electric signal in the motor unit during contraction, as obtained with surface electromyography). Our results suggest that the application of LLLT may contribute to increased recruitment of muscle fibers and, hence, to increase the onset time of the spastic muscle fatigue, reducing pain intensity in stroke patients with spasticity, as has been observed in healthy subjects and athletes.
Wallen, Margaret; O'Flaherty, Stephen J; Waugh, Mary-Clare A
2007-01-01
To investigate the functional outcomes of botulinum toxin type A (BTX-A) injections to the upper limb in combination with occupational therapy (OT) in children with cerebral palsy (CP). Randomized controlled trial with follow-up at 2 weeks, 3 months, and 6 months. Specialist outpatient physical disabilities clinic within a public pediatric teaching hospital. Eighty children with spastic quadriplegic, triplegic, or hemiplegic CP from these clinics were randomly assigned to BTX-A plus OT, BTX-A alone, OT alone, or a no-treatment control group. Single set of BTX-A (Botox) injections and 12 weeks of OT. Canadian Occupational Performance Measure (COPM) and Goal Attainment Scale (GAS). The combination of BTX-A and OT resulted in accelerated attainment of functional goals measured by the COPM and GAS. There were no differences between groups on the Melbourne Assessment of Unilateral Upper Limb Function, Quality of Upper Extremity Skills Test, Pediatric Evaluation of Disability Inventory, Child Health Questionnaire, or active and passive range of motion. As expected, there was a significant reduction in muscle tone at follow-up 2 weeks after injection, which returned to baseline level by 6 months. OT enhanced individualized functional outcomes following BTX-A injections in the upper limbs of children with CP.
ERIC Educational Resources Information Center
Reid, Siobhan; Hamer, Peter; Alderson, Jacqueline; Lloyd, David
2010-01-01
Aim: To determine the neuromuscular outcomes of an eccentric strength-training programme for children and adolescents with cerebral palsy (CP). Method: In this randomised, parallel-group trial with waiting control, 14 participants with CP (six males, eight females; mean age 11y, SD 2y range 9-15y), diagnosed with upper-limb spasticity were…
Kassee, Caroline; Hunt, Carolyn; Holmes, Michael W R; Lloyd, Meghann
2017-05-17
This pilot study compared a Nintendo Wii intervention to single-joint resistance training for the upper limb in children ages 7 to 12 with spastic hemiplegic cerebral palsy (CP). Children were randomized to Wii training (n= 3), or resistance training (n= 3) and trained at home for 6 weeks. Pre, post and 4-week follow-up measures were collected. Outcome measures were the Melbourne Assessment (MA2), and ABILHAND-Kids, and grip strength. Compliance, motivation and feasibility of each intervention was explored using daily logbook responses and questionnaires. Descriptive statistics were used. Three children improved in the MA2, two of which were in the Wii training group. Improvements in the ABILHAND-Kids were minimal for all participants. Grip strength improvements were observed in 3 participants, two of which were in the resistance training group. The Wii training group reported higher compliance and more consistently positive responses to motivation and feasibility questions. Therefore, Wii training may be an effective home-based rehabilitation strategy, and is worth exploring in a larger trial. Implications of Wii training in the context of motivation theory are discussed.
Development of Quasi-3DOF upper limb rehabilitation system using ER brake: PLEMO-P1
NASA Astrophysics Data System (ADS)
Kikuchi, T.; Fukushima, K.; Furusho, J.; Ozawa, T.
2009-02-01
In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. However, almost all the devices are active-type (motor-driven) haptic devices and they basically require high-cost safety system compared to passive-type (brake-based) devices. In this study, we developed a new practical haptic device 'PLEMO-P1'; this system adopted ER brakes as its force generators. In this paper, the mechanism of PLEMO-P1 and its software for a reaching rehabilitation are described.
Centen, Andrew; Lowrey, Catherine R; Scott, Stephen H; Yeh, Ting-Ting; Mochizuki, George
2017-06-19
Spasticity is a common sequela of stroke. Traditional assessment methods include relatively coarse scales that may not capture all characteristics of elevated muscle tone. Thus, the aim of this study was to develop a tool to quantitatively assess post-stroke spasticity in the upper extremity. Ninety-six healthy individuals and 46 individuals with stroke participated in this study. The kinematic assessment of passive stretch (KAPS) protocol consisted of passive elbow stretch in flexion and extension across an 80° range in 5 movement durations. Seven parameters were identified and assessed to characterize spasticity (peak velocity, final angle, creep (or release), between-arm peak velocity difference, between-arm final angle, between-arm creep, and between-arm catch angle). The fastest movement duration (600 ms) was most effective at identifying impairment in each parameter associated with spasticity. A decrease in peak velocity during passive stretch between the affected and unaffected limb was most effective at identifying individuals as impaired. Spasticity was also associated with a decreased passive range (final angle) and a classic 'catch and release' as seen through between-arm catch and creep metrics. The KAPS protocol and robotic technology can provide a sensitive and quantitative assessment of post-stroke elbow spasticity not currently attainable through traditional measures.
De Pace, Raffaella; Damme, Markus; Mattera, Rafael; Jarnik, Michal; Hoffmann, Victoria; Morris, H. Douglas; Han, Tae-Un; Mancini, Grazia M. S.; Buonanno, Andrés
2018-01-01
The hereditary spastic paraplegias (HSP) are a clinically and genetically heterogeneous group of disorders characterized by progressive lower limb spasticity. Mutations in subunits of the heterotetrameric (ε-β4-μ4-σ4) adaptor protein 4 (AP-4) complex cause an autosomal recessive form of complicated HSP referred to as “AP-4 deficiency syndrome”. In addition to lower limb spasticity, this syndrome features intellectual disability, microcephaly, seizures, thin corpus callosum and upper limb spasticity. The pathogenetic mechanism, however, remains poorly understood. Here we report the characterization of a knockout (KO) mouse for the AP4E1 gene encoding the ε subunit of AP-4. We find that AP-4 ε KO mice exhibit a range of neurological phenotypes, including hindlimb clasping, decreased motor coordination and weak grip strength. In addition, AP-4 ε KO mice display a thin corpus callosum and axonal swellings in various areas of the brain and spinal cord. Immunohistochemical analyses show that the transmembrane autophagy-related protein 9A (ATG9A) is more concentrated in the trans-Golgi network (TGN) and depleted from the peripheral cytoplasm both in skin fibroblasts from patients with mutations in the μ4 subunit of AP-4 and in various neuronal types in AP-4 ε KO mice. ATG9A mislocalization is associated with increased tendency to accumulate mutant huntingtin (HTT) aggregates in the axons of AP-4 ε KO neurons. These findings indicate that the AP-4 ε KO mouse is a suitable animal model for AP-4 deficiency syndrome, and that defective mobilization of ATG9A from the TGN and impaired autophagic degradation of protein aggregates might contribute to neuroaxonal dystrophy in this disorder. PMID:29698489
Simpson, David M.; Hallett, Mark; Ashman, Eric J.; Comella, Cynthia L.; Green, Mark W.; Gronseth, Gary S.; Armstrong, Melissa J.; Gloss, David; Potrebic, Sonja; Jankovic, Joseph; Karp, Barbara P.; Naumann, Markus; So, Yuen T.; Yablon, Stuart A.
2016-01-01
Objective: To update the 2008 American Academy of Neurology (AAN) guidelines regarding botulinum neurotoxin for blepharospasm, cervical dystonia (CD), headache, and adult spasticity. Methods: We searched the literature for relevant articles and classified them using 2004 AAN criteria. Results and recommendations: Blepharospasm: OnabotulinumtoxinA (onaBoNT-A) and incobotulinumtoxinA (incoBoNT-A) are probably effective and should be considered (Level B). AbobotulinumtoxinA (aboBoNT-A) is possibly effective and may be considered (Level C). CD: AboBoNT-A and rimabotulinumtoxinB (rimaBoNT-B) are established as effective and should be offered (Level A), and onaBoNT-A and incoBoNT-A are probably effective and should be considered (Level B). Adult spasticity: AboBoNT-A, incoBoNT-A, and onaBoNT-A are established as effective and should be offered (Level A), and rimaBoNT-B is probably effective and should be considered (Level B), for upper limb spasticity. AboBoNT-A and onaBoNT-A are established as effective and should be offered (Level A) for lower-limb spasticity. Headache: OnaBoNT-A is established as effective and should be offered to increase headache-free days (Level A) and is probably effective and should be considered to improve health-related quality of life (Level B) in chronic migraine. OnaBoNT-A is established as ineffective and should not be offered for episodic migraine (Level A) and is probably ineffective for chronic tension-type headaches (Level B). PMID:27164716
Kamizato, Kota; Marsala, Silvia; Navarro, Michael; Kakinohana, Manabu; Platoshyn, Oleksandr; Yoshizumi, Tetsuya; Lukacova, Nadezda; Wancewicz, Ed; Powers, Berit; Mazur, Curt; Marsala, Martin
2018-07-01
The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity. Copyright © 2018 Elsevier Inc. All rights reserved.
Rinaldi, Martina; Ranavolo, Alberto; Conforto, Silvia; Martino, Giovanni; Draicchio, Francesco; Conte, Carmela; Varrecchia, Tiwana; Bini, Fabiano; Casali, Carlo; Pierelli, Francesco; Serrao, Mariano
2017-10-01
The aim of this study was to investigate the lower limb muscle coactivation and its relationship with muscles spasticity, gait performance, and metabolic cost in patients with hereditary spastic paraparesis. Kinematic, kinetic, electromyographic and energetic parameters of 23 patients and 23 controls were evaluated by computerized gait analysis system. We computed ankle and knee antagonist muscle coactivation indexes throughout the gait cycle and during the subphases of gait. Energy consumption and energy recovery were measured as well. In addition to the correlation analysis between coactivation indexes and clinical variables, correlations between coactivation indexes and time-distance, kinematic, kinetic, and energetic parameters were estimated. Increased coactivity indexes of both knee and ankle muscles throughout the gait cycle and during the subphases of gait were observed in patients compared with controls. Energetic parameters were significantly higher in patients than in controls. Both knee and ankle muscle coactivation indexes were positively correlated with knee and ankle spasticity (Ashworth score), respectively. Knee and ankle muscle coactivation indexes were both positively correlated with energy consumption and both negatively correlated with energy recovery. Positive correlations between the Ashworth score and lower limb muscle coactivation suggest that abnormal lower limb muscle coactivation in patients with hereditary spastic paraparesis reflects a primary deficit linked to lower limb spasticity. Furthermore, these abnormalities influence the energetic mechanisms during walking. Identifying excessive muscle coactivation may be helpful in individuating the rehabilitative treatments and designing specific orthosis to restrain spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Levin, Mindy F; Baniña, Melanie C; Frenkel-Toledo, Silvi; Berman, Sigal; Soroker, Nachum; Solomon, John M; Liebermann, Dario G
2018-01-04
Recovery of voluntary movement is a main rehabilitation goal. Efforts to identify effective upper limb (UL) interventions after stroke have been unsatisfactory. This study includes personalized impairment-based UL reaching training in virtual reality (VR) combined with non-invasive brain stimulation to enhance motor learning. The approach is guided by limiting reaching training to the angular zone in which active control is preserved ("active control zone") after identification of a "spasticity zone". Anodal transcranial direct current stimulation (a-tDCS) is used to facilitate activation of the affected hemisphere and enhance inter-hemispheric balance. The purpose of the study is to investigate the effectiveness of personalized reaching training, with and without a-tDCS, to increase the range of active elbow control and improve UL function. This single-blind randomized controlled trial will take place at four academic rehabilitation centers in Canada, India and Israel. The intervention involves 10 days of personalized VR reaching training with both groups receiving the same intensity of treatment. Participants with sub-acute stroke aged 25 to 80 years with elbow spasticity will be randomized to one of three groups: personalized training (reaching within individually determined active control zones) with a-tDCS (group 1) or sham-tDCS (group 2), or non-personalized training (reaching regardless of active control zones) with a-tDCS (group 3). A baseline assessment will be performed at randomization and two follow-up assessments will occur at the end of the intervention and at 1 month post intervention. Main outcomes are elbow-flexor spatial threshold and ratio of spasticity zone to full elbow-extension range. Secondary outcomes include the Modified Ashworth Scale, Fugl-Meyer Assessment, Streamlined Wolf Motor Function Test and UL kinematics during a standardized reach-to-grasp task. This study will provide evidence on the effectiveness of personalized treatment on spasticity and UL motor ability and feasibility of using low-cost interventions in low-to-middle-income countries. ClinicalTrials.gov, ID: NCT02725853 . Initially registered on 12 January 2016.
Phadke, Chetan P.; Ismail, Farooq; Boulias, Chris
2015-01-01
ABSTRACT Purpose: In this case report, we describe the type and duration of a physical therapy and botulinum toxin type A (BoNTA) intervention directed at lower limb spasticity and the gait and balance improvement in a patient post-stroke. Treatment of focal spasticity with BoNTA intramuscular injections combined with physical therapy is recommended by rehabilitation experts. However, the optimal type and duration of physical therapy intervention to optimize any functional gains that follow chemodenervation induced by BoNTA has not been established. Method: One individual with chronic stroke who received BoNTA injections for upper and lower extremity spasticity was included. Physical therapy intervention consisted of 45- to 60-min sessions twice weekly for 12 weeks, based on the Bobath–neurodevelopmental therapy approach, and an activity-based home program. Results: After BoNTA injections and physical therapy, the patient made clinically significant improvements in balance and gait speed and became more independent with his ambulation. Conclusions: This case report demonstrates that physical therapy after BoNTA injections can result in significant functional improvements for individuals with spasticity after chronic stroke that may not be possible with BoNTA injections alone. PMID:25931655
[Palsy of the upper limb: Obstetrical brachial plexus palsy, arthrogryposis, cerebral palsy].
Salazard, B; Philandrianos, C; Tekpa, B
2016-10-01
"Palsy of the upper limb" in children includes various diseases which leads to hypomobility of the member: cerebral palsy, arthrogryposis and obstetrical brachial plexus palsy. These pathologies which differ on brain damage or not, have the same consequences due to the early achievement: negligence, stiffness and deformities. Regular entire clinical examination of the member, an assessment of needs in daily life, knowledge of the social and family environment, are key points for management. In these pathologies, the rehabilitation is an emergency, which began at birth and intensively. Splints and physiotherapy are part of the treatment. Surgery may have a functional goal, hygienic or aesthetic in different situations. The main goals of surgery are to treat: joints stiffness, bones deformities, muscles contractures and spasticity, paresis, ligamentous laxity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Sakzewski, Leanne; Carlon, Stacey; Shields, Nora; Ziviani, Jenny; Ware, Robert S.; Boyd, Roslyn N.
2012-01-01
Aim: The aim of this study was to determine whether constraint-induced movement therapy is more effective than bimanual training in improving the quality of life of children with unilateral cerebral palsy (CP). Method: Sixty-three children (mean age 10y 2mo [SD 2y 6mo]; 33 males, 30 females) with CP of the spastic motor type (n = 59) or with…
Pandyan, A D; Johnson, G R; Price, C I; Curless, R H; Barnes, M P; Rodgers, H
1999-10-01
The Ashworth Scale and the modified Ashworth Scale are the primary clinical measures of spast city. A prerequisite for using any scale is a knowledge of its characteristics and limitations, as these will play a part in analysing and interpreting the data. Despite the current emphasis on treating spasticity, clinicians rarely measure it. To determine the validity and the reliability of the Ashworth and modified Ashworth Scales. A theoretical analysis following a structured literature review (key words: Ashworth; Spasticity; Measurement) of 40 papers selected from the BIDS-EMBASE, First Search and Medline databases. The application of both scales would suggest that confusion exists on their characteristics and limitations as measures of spasticity. Resistance to passive movement is a complex measure that will be influenced by many factors, only one of which could be spasticity. The Ashworth Scale (AS) can be used as an ordinal level measure of resistance to passive movement, but not spasticity. The modified Ashworth Scale (MAS) will need to be treated as a nominal level measure of resistance to passive movement until the ambiguity between the '1' and '1+' grades is resolved. The reliability of the scales is better in the upper limb. The AS may be more reliable than the MAS. There is a need to standardize methods to apply these scales in clinical practice and research.
Clinical and imaging characterization of progressive spastic dysarthria
Clark, Heather M.; Duffy, Joseph R.; Whitwell, Jennifer L.; Ahlskog, J. Eric; Sorenson, Eric J.; Josephs, Keith A.
2013-01-01
Objective To describe speech, neurological and imaging characteristics of a series of patients presenting with progressive spastic dysarthria (PSD) as the first and predominant sign of a presumed neurodegenerative disease. Methods Participants were 25 patients with spastic dysarthria as the only or predominant speech disorder. Clinical features, pattern of MRI volume loss on voxel-based morphometry, and pattern of hypometabolism with F18-Fluorodeoxyglucose (FDG-PET) scan are described. Results All patients demonstrated speech characteristics consistent with spastic dysarthria, including strained voice quality, slow speaking rate, monopitch and monoloudness, and slow and regular speech alternating motion rates. Eight patients did not have additional neurological findings on examination. Pseudobulbar affect, upper motor neuron pattern limb weakness, spasticity, Hoffman sign and positive Babinski reflexes were noted in some of the remaining patients. Twenty-three patients had electromyographic assessment and none had diffuse motor neuron disease or met El Escorial criteria for ALS. Voxel-based morphometry revealed striking bilateral white matter volume loss, , affecting the motor cortex (BA 4), including the frontoparietal operculum (BA 43) with extension into the middle cerebral peduncle. FDG-PET showed subtle hypometabolism affecting the premotor and motor cortices in some patients, particularly in those who had a disease duration longer than two years. Conclusions We have characterized a neurodegenerative disorder that begins focally with spastic dysarthria due to involvement of the motor and premotor cortex and descending corticospinal and corticobulbar pathways. We propose the descriptive label “progressive spastic dysarthria” to best capture the dominant presenting feature of the syndrome. PMID:24053325
Lewis, Melissa J; Olby, Natasha J
2017-07-01
OBJECTIVE To develop a spasticity scale for dogs with chronic deficits following severe spinal cord injury (SCI) for use in clinical assessment and outcome measurement in clinical trials. ANIMALS 20 chronically paralyzed dogs with a persistent lack of hind limb pain perception caused by an acute SCI at least 3 months previously. PROCEDURES Spasticity was assessed in both hind limbs via tests of muscle tone, clonus, and flexor and extensor spasms adapted from human scales. Measurement of patellar clonus duration and flexor spasm duration and degree was feasible. These components were used to create a canine spasticity scale (CSS; overall score range, 0 to 18). Temporal variation for individual dogs and interrater reliability were evaluated. Gait was quantified with published gait scales, and CSS scores were compared with gait scores and clinical variables. Owners were questioned regarding spasticity observed at home. RESULTS 20 dogs were enrolled: 18 with no apparent hind limb pain perception and 2 with blunted responses; 5 were ambulatory. Testing was well tolerated, and scores were repeatable between raters. Median overall CSS score was 7 (range, 3 to 11), and flexor spasms were the most prominent finding. Overall CSS score was not associated with age, SCI duration, lesion location, or owner-reported spasticity. Overall CSS score and flexor spasm duration were associated with gait scores. CONCLUSIONS AND CLINICAL RELEVANCE The CSS could be used to quantify hind limb spasticity in dogs with chronic thoracolumbar SCI and might be a useful outcome measure. Flexor spasms may represent an integral part of stepping in dogs with severe SCI.
Co-segregation of Huntington disease and hereditary spastic paraplegia in 4 generations.
Panas, Marios; Karadima, Georgia; Kalfakis, Nikolaos; Vassilopoulos, Dimitris
2011-07-01
Huntington disease (HD) is an autosomal dominant neurodegenerative disease characterized by choreic hyperkinesias, cognitive decline, and psychiatric manifestations, caused by an increased number of CAG repeats in the IT15 gene on chromosome 4p16.3. Silver syndrome is a rare autosomal dominant form of complicated hereditary spastic paraplegia, characterized by lower limb spasticity in addition to amyotrophy of the small muscles of the hands. In addition to the previously identified locus SPG17 on chromosome 11q12-q14, a new locus (SPG38) on chromosome 4p16-p15 has been recently identified, a region that includes the HD gene. We present a Greek family with 5 members diagnosed with HD in 4 generations. All affected members also presented with clinical features of Silver syndrome showing severe spastic paraplegia and prominent atrophy of all small hand muscles bilaterally. None of the other family members showed features of either HD or spastic paraplegia. The reported coexistence of Silver syndrome with HD in 4 generations is not fortuitous, suggesting that these 2 distinct genetic disorders are in linkage disequilibrium. Although rare, it is reasonable to expect additional similar cases. Clinical neurologists should perhaps investigate this possibility in cases combining features of HD and involvement of the upper and lower motor neurons.
NASA Astrophysics Data System (ADS)
Puzi, A. Ahmad; Sidek, S. N.; Mat Rosly, H.; Daud, N.; Yusof, H. Md
2017-11-01
Spasticity is common symptom presented amongst people with sensorimotor disabilities. Imbalanced signals from the central nervous systems (CNS) which are composed of the brain and spinal cord to the muscles ultimately leading to the injury and death of motor neurons. In clinical practice, the therapist assesses muscle spasticity using a standard assessment tool like Modified Ashworth Scale (MAS), Modified Tardiue Scale (MTS) or Fugl-Meyer Assessment (FMA). This is done subjectively based on the experience and perception of the therapist subjected to the patient fatigue level and body posture. However, the inconsistency in the assessment is prevalent and could affect the efficacy of the rehabilitation process. Thus, the aim of this paper is to describe the methodology of data collection and the quantitative model of MAS developed to satisfy its description. Two subjects with MAS of 2 and 3 spasticity levels were involved in the clinical data measurement. Their level of spasticity was verified by expert therapist using current practice. Data collection was established using mechanical system equipped with data acquisition system and LABVIEW software. The procedure engaged repeated series of flexion of the affected arm that was moved against the platform using a lever mechanism and performed by the therapist. The data was then analyzed to investigate the characteristics of spasticity signal in correspondence to the MAS description. Experimental results revealed that the methodology used to quantify spasticity satisfied the MAS tool requirement according to the description. Therefore, the result is crucial and useful towards the development of formal spasticity quantification model.
Lee, Jung-Sun; Kim, Chang-Yong; Kim, Hyeong-Dong
2016-08-01
The aim of this study was to determine the effect of whole-body vibration training combined with task-related training on arm function, spasticity, and grip strength in subjects with poststroke hemiplegia. Forty-five subjects with poststroke were randomly allocated to 3 groups, each with 15 subjects as follows: control group, whole-body vibration group, and whole-body vibration plus task-related training group. Outcome was evaluated by clinical evaluation and measurements of the grip strength before and 4 weeks after intervention. Our results show that there was a significantly greater increase in the Fugl-Meyer scale, maximal grip strength of the affected hand, and grip strength normalized to the less affected hand in subjects undergoing the whole-body vibration training compared with the control group after the test. Furthermore, there was a significantly greater increase in the Wolf motor function test and a decrease in the modified Ashworth spasticity total scores in subjects who underwent whole-body vibration plus task-related training compared with those in the other 2 groups after the test. The findings indicate that the use of whole-body vibration training combined with task-related training has more benefits on the improvement of arm function, spasticity, and maximal grip strength than conventional upper limb training alone or with whole-body vibration in people with poststroke hemiplegia.
SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome
Horga, Alejandro; Tomaselli, Pedro J.; Gonzalez, Michael A.; Laurà, Matilde; Muntoni, Francesco; Manzur, Adnan Y.; Hanna, Michael G.; Blake, Julian C.; Houlden, Henry; Züchner, Stephan
2016-01-01
Objective: To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor–1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. Methods: We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. Results: In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. Conclusions: We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies. PMID:27629094
SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome.
Horga, Alejandro; Tomaselli, Pedro J; Gonzalez, Michael A; Laurà, Matilde; Muntoni, Francesco; Manzur, Adnan Y; Hanna, Michael G; Blake, Julian C; Houlden, Henry; Züchner, Stephan; Reilly, Mary M
2016-10-11
To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor-1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies. © 2016 American Academy of Neurology.
Neuromodulation of lower limb motor control in restorative neurology.
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-06-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.
Neuromodulation of lower limb motor control in restorative neurology
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-01-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657
Lee, Dong Ryul; Kim, Yun Hee; Kim, Dong A; Lee, Jung Ah; Hwang, Pil Woo; Lee, Min Jin; You, Sung Hyun
2014-01-01
In children with cerebral palsy (CP), the never-learned-to-use (NLTU) effect and underutilization suppress the normal development of cortical plasticity in the paretic limb, which further inhibits its functional use and increases associated muscle weakness. To highlight the effects of a novel comprehensive hand repetitive intensive strengthening training system on neuroplastic changes associated with upper extremity (UE) muscle strength and motor performance in children with spastic hemiplegic CP. Two children with spastic hemiplegic CP were recruited. Intervention with the comprehensive hand repetitive intensive strengthening training system was provided for 60 min a day, three times a week, for 10 weeks. Neuroplastic changes, muscle size, strength, and associated motor function were measured using functional magnetic resonance imaging (MRI), ultrasound imaging, and standardized motor tests, respectively. The functional MRI data showed that the comprehensive hand repetitive intensive strengthening training intervention produced measurable neuroplastic changes in the neural substrates associated with motor control and learning. These neuroplastic changes were associated with increased muscle size, strength and motor function. These results provide compelling evidence of neuroplastic changes and associated improvements in muscle size and motor function following innovative upper extremity strengthening exercise.
Kamada, Takashi; Tateishi, Takahisa; Yamashita, Tamayo; Nagata, Shinji; Ohyagi, Yasumasa; Kira, Jun-Ichi
2013-01-01
We report a 58-year-old man showing spastic paraparesis due to medulla oblongata compression by tortuous vertebral arteries. He noticed weakness of both legs and gait disturbance at the age of 58 years and his symptoms progressively worsened during the following several months. General physical findings were normal. Blood pressure was normal and there were no signs of arteriosclerosis. Neurological examination on admission revealed lower-limb-dominant spasticity in all four extremities, lower-limb weakness, hyperreflexia in all extremities with positive Wartenberg's, Babinski's and Chaddock's signs, mild hypesthesia and hypopallesthesia in both lower limbs, and spastic gait. Cranial nerves were all normal. Serum was negative for antibodies against human T-cell lymphotropic virus-1 antibody. Nerve conduction and needle electromyographic studies of all four limbs revealed normal findings. Cervical, thoracic and lumbo-sacral magnetic resonance imaging (MRI) findings were all normal. Brain MRI and magnetic resonance angiography demonstrated bilateral tortuous vertebral arteries compressing the medulla oblongata. Neurovascular decompression of the right vertebral artery was performed because compression of the right side was more severe than that of the left side. Post-operative MRI revealed outward translocation of the right vertebral artery and relieved compression of the medulla oblongata on the right side. The patient's symptoms and neurological findings improved gradually after the operation. Bilateral pyramidal tract signs without cranial nerve dysfunction due to compression of the medulla oblongata by tortuous vertebral arteries are extremely rare and clinically indistinguishable from hereditary spastic paraplegia (HSP). Although we did not perform a genetic test for HSP, we consider that the spastic paraparesis and mild lower-limb hypesthesia were caused by compression of the medulla oblongata by bilateral tortuous vertebral arteries based on the post-operative improvement in symptoms. Given the favorable effects of surgery, tortuous vertebral arteries should be considered in the differential diagnosis of patients presenting with progressive spastic paraparesis.
Huang, Han-Wei; Ju, Ming-Shaung; Lin, Chou-Ching K
2016-05-01
The aim of this study was to evaluate the flexor and extensor muscle tone of the upper limbs in patients with spasticity or rigidity and to investigate the difference in hypertonia between spasticity and rigidity. The two experimental groups consisted of stroke patients and parkinsonian patients. The control group consisted of age and sex-matched normal subjects. Quantitative upper limb pendulum tests starting from both flexed and extended joint positions were conducted. System identification with a simple linear model was performed and model parameters were derived. The differences between the three groups and two starting positions were investigated by these model parameters and tested by two-way analysis of variance. In total, 57 subjects were recruited, including 22 controls, 14 stroke patients and 21 parkinsonian patients. While stiffness coefficient showed no difference among groups, the number of swings, relaxation index and damping coefficient showed changes suggesting significant hypertonia in the two patient groups. There was no difference between these two patient groups. The test starting from the extended position constantly manifested higher muscle tone in all three groups. In conclusion, the hypertonia of parkinsonian and stroke patients could not be differentiated by the modified pendulum test; the elbow extensors showed a higher muscle tone in both control and patient groups; and hypertonia of both parkinsonian and stroke patients is velocity dependent. Copyright © 2015 Elsevier Ltd. All rights reserved.
The pharmacological management of post-stroke muscle spasticity.
Bakheit, Abdel Magid O
2012-12-01
Muscle hypertonia following upper motor neurone lesions (referred to here as 'spasticity') is a common problem in patients with neurological disease, and its management is one of the major challenges in clinical practice. Understanding the pathogenesis and clinical course of spasticity is essential for the effective management of this condition. The hypertonia initially results from increased excitability of the alpha motor neurones due to an imbalance between the excitatory and inhibitory influences of the vestibulospinal and reticulospinal tracts. This is the 'neural component' of muscle hypertonia. However, usually within 3-4 weeks, changes in the structure and mechanical properties of the paralysed muscles and the effect of thixotropy also contribute to the hypertonia. The selection of the optimal treatment option is often influenced by whether the neural or the non-neural component is more pronounced. Muscle spasticity often interferes with motor function or causes distressing symptoms, such as painful muscle spasms. If untreated, spasticity may also lead to soft tissue shortening (fixed contractures). However, spasticity can also be beneficial to patients. For example, despite severe leg muscle weakness, most hemiplegic patients are able to walk because the spasticity of the extensor muscles braces the lower limb in a rigid pillar. Other reported benefits of spasticity include the maintenance of muscle bulk and bone mineral density and possibly a reduced risk of lower limb deep vein thrombosis. Several factors, such as skin pressure sores, faecal impaction, urinary tract infections and stones in the urinary bladder, can aggravate muscle spasticity. These factors should always be looked for as their adequate treatment is often sufficient to reduce muscle tone without the need for specific antispasticity medication. Therefore, a careful evaluation of the patient's symptoms and their impact on function, and the setting of clear and realistic therapy goals are important prerequisites to treatment. The best treatment outcomes are usually achieved when pharmacological and non-pharmacological treatment modalities are used in tandem. Different drugs are available for the management of spasticity, including oral muscle relaxants, anticonvulsant drugs, intrathecal baclofen, cannabis extract, phenol and alcohol (for peripheral nerve blocks) and botulinum toxin injections. Similarly, there is a range of non-pharmacological methods of treatment, e.g. regular muscle stretching, the use of splints and orthoses, electrical stimulation, etc. Although these are not discussed here, this should not detract from the importance of combining them with antispasticity drugs in order to maximize the clinical benefit of treatment.
Ring, Haim; Rosenthal, Nechama
2005-01-01
Assess the effects of daily neuroprosthetic (NESS Handmaster) functional electrical stimulation in sub-acute stroke. Controlled study, patients clinically stratified to 2 groups; no active finger movement, and partial active finger movements, and then randomized to control and neuroprosthesis groups. Observer blinded evaluations at baseline and completion of the 6-week study. 22 patients with moderate to severe upper limb paresis 3-6 months post-onset. Patients in day hospital rehabilitation, receiving physical and occupational therapy 3 times weekly. The neuroprosthesis group used the device at home. The neuroprosthesis group had significantly greater improvements in spasticity, active range of motion and scores on the functional hand tests (those with partial active motion). Of the few patients with pain and oedema, there was improvement only among those in the neuroprosthesis group. There were no adverse reactions. Supplementing standard outpatient rehabilitation with daily home neuroprosthetic activation improves upper limb outcomes.
Hoseini, Najmeh; Koceja, David M; Riley, Zachary A
2011-10-24
Spasticity in chronic hemiparetic stroke patients has primarily been treated pharmacologically. However, there is increasing evidence that physical rehabilitation can help manage hyper-excitability of reflexes (hyperreflexia), which is a primary contributor to spasticity. In the present study, one chronic hemiparetic stroke patient operantly conditioned the soleus H-reflex while training on a balance board for two weeks. The results showed a minimal decrease in the Hmax-Mmax ratio for both the affected and unaffected limb, indicating that the H-reflex was not significantly altered with training. Alternatively, paired-reflex depression (PRD), a measure of history-dependent changes in reflex excitability, could be conditioned. This was evident by the rightward shift and decreased slope of reflex excitability in the affected limb. The non-affected limb decreased as well, although the non-affected limb was very sensitive to PRD initially, whereas the affected limb was not. Based on these results, it was concluded that PRD is a better index of hyperreflexia, and this measurement could be more informative of synapse function than simple H-reflexes. This study presents a novel and non-pharmacological means of managing spasticity that warrants further investigation with the potential of being translated to the clinic. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
da Rovare, Victoria P; Magalhães, Gabriel P A; Jardini, Guilherme D A; Beraldo, Matheus L; Gameiro, Mariel O; Agarwal, Arnav; Luvizutto, Gustavo José; Paula-Ramos, Lucas; Camargo, Samira Esteves Afonso; de Oliveira, Luciane Dias; Bazan, Rodrigo; El Dib, Regina
2017-10-01
Spasticity remains highly prevalent in patients with spinal cord injury and multiple sclerosis. To summarize the effects of cannabinoids compared with usual care, placebo for spasticity due to multiple sclerosis (MS) or paraplegia. Searches of MEDLINE, EMBASE, CENTRAL and LILACS to March 2017 were performed to identify randomized controlled trials. The primary outcomes were spasticity and spasm frequency. The criteria were any patient with MS and spasticity affecting upper or lower limbs or both, and that had a confirmed diagnosis of MS based on validated criteria, or however defined by the authors of the included studies. 16 trials including 2597 patients were eligible. Moderate-certainty evidence suggested a non-statistically significant decrease in spasticity (standardized mean difference (SMD) 0.36 [confidential interval (CI) 95% -0.17 to 0.88; p=0.18; I2=88%]), and spasm frequency (SMD 0.04 [CI 95% -0.15 to 0.22]). There was an increase in adverse events such as dizziness (risk ratio (RR) 3.45 [CI 95% 2.71-4.4; p=0.20; I2=23%]), somnolence (RR 2.9 [CI 95% 1.98-4.23; p=0.77; I2=0%]), and nausea (RR 2.25 [CI 95% 1.62-3.13; p=0.83; I2=0%]). There is moderate certainty evidence regarding the impact of cannabinoids in spasticity (average 0.36 more spasticity; 0.17 fewer to 0.88 more) due to multiple sclerosis or paraplegia, and in adverse events such as dizziness (419 more dizziness/1000 over 19 weeks), somnolence (127 more somnolence/1000 over 19 weeks), and nausea (125 more somnolence/1000 over 19 weeks). Copyright © 2017. Published by Elsevier Ltd.
Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients
Jarrassé, Nathanaël; Proietti, Tommaso; Crocher, Vincent; Robertson, Johanna; Sahbani, Anis; Morel, Guillaume; Roby-Brami, Agnès
2014-01-01
Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity-dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed. PMID:25520638
Trompetto, Carlo; Marinelli, Lucio; Mori, Laura; Puce, Luca; Pelosin, Elisa; Serrati, Carlo; Fattapposta, Francesco; Rinalduzzi, Steno; Abbruzzese, Giovanni; Currà, Antonio
2017-05-01
In patients treated with botulinum toxin-A (BoNT-A), toxin-directed antibody formation was related to the dosage and frequency of injections, leading to the empirical adoption of minimum time intervals between injections of 3months or longer. However, recent data suggest that low immunogenicity of current BoNT-A preparations could allow more frequent injections. Our hypothesis is that a short time interval between injections may be safe and effective in reducing upper limb spasticity and related disability. IncobotulinumtoxinA was injected under ultrasound guidance in spastic muscles of 11 subjects, who were evaluated just before BoNT-A injection (T0), and 1month (T1), 2months (T2) and 4months (T3) after injecting. At T1, in the case of persistent disability related to spasticity interfering with normal activities, patients received an additional toxin dose. Seven subjects received the additional dose at T1 because of persistent disability; 4 of them had a decrease of disability 1month later (T2). Rethinking the injection scheme for BoNT-A treatment may have a major impact in the management of spasticity and related disability. Future studies with larger sample sizes are warranted to confirm that injection schedules with short time intervals should no longer be discouraged in clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K
2013-10-01
Loss of hand function and finger dexterity are main disabilities in the upper limb after stroke. An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Significant motor improvements were observed in the Fugl-Meyer hand/wrist and shoulder/elbow scores (p<0.05), and also in the Action Research Arm Test and Wolf Motor Function Test (p<0.05). Significant reduction in spasticity of the fingers as was measured by the Modified Ashworth Score (p<0.05). The training improved the muscle co-ordination between the antagonist muscle pair (flexor digitorum (FD) and extensor digitorum (ED)), associated with a significant reduction in the ED EMG level (p<0.05) and a significant decrease of ED and FD co-contraction during the training (p<0.05); the excessive muscle activities in the biceps brachii were also reduced significantly after the training (p<0.05). Copyright © 2013 Elsevier Ltd. All rights reserved.
Gagnon, Cynthia; Lavoie, Caroline; Lessard, Isabelle; Mathieu, Jean; Brais, Bernard; Bouchard, Jean-Pierre; Fluet, Marie-Christine; Gassert, Roger; Lambercy, Olivier
2014-12-15
This paper introduces a novel assessment tool to provide clinicians with quantitative and more objective measures of upper limb coordination in patients suffering from Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS). The Virtual Peg Insertion Test (VPIT) involves manipulating an instrumented handle in order to move nine pegs into nine holes displayed in a virtual environment. The main outcome measures were the number of zero-crossings of the hand acceleration vector, as a measure of movement coordination and the total time required to complete the insertion of the nine pegs, as a measure of overall upper limb performance. 8\\9 patients with ARSACS were able to complete five repetitions with the VPIT. Patients were found to be significantly less coordinated and slower than age-matched healthy subjects (p<0.01). Performance of ARSACS patients was positively correlated with the Nine-Hole Peg Test (r=0.85, p<0.01) and with age (r=0.93, p<0.01), indicative of the degenerative nature of the disease. This study presents preliminary results on the use of a robotics and virtual reality assessment tool with ARSACS patients. Results highlight its potential to assess impaired coordination and monitor its progression over time. Copyright © 2014 Elsevier B.V. All rights reserved.
Pervane Vural, Secil; Nakipoglu Yuzer, Guldal Funda; Sezgin Ozcan, Didem; Demir Ozbudak, Sibel; Ozgirgin, Nese
2016-04-01
To investigate the effects of mirror therapy on upper limb motor functions, spasticity, and pain intensity in patients with hemiplegia accompanied by complex regional pain syndrome type 1. Randomized controlled trial. Training and research hospital. Adult patients with first-time stroke and simultaneous complex regional pain syndrome type 1 of the upper extremity at the dystrophic stage (N=30). Both groups received a patient-specific conventional stroke rehabilitation program for 4 weeks, 5 d/wk, for 2 to 4 h/d. The mirror therapy group received an additional mirror therapy program for 30 min/d. We evaluated the scores of the Brunnstrom recovery stages of the arm and hand for motor recovery, wrist and hand subsections of the Fugl-Meyer Assessment (FMA) and motor items of the FIM-motor for functional status, Modified Ashworth Scale (MAS) for spasticity, and visual analog scale (VAS) for pain severity. After 4 weeks of rehabilitation, both groups had significant improvements in the FIM-motor and VAS scores compared with baseline scores. However, the scores improved more in the mirror therapy group than the control group (P<.001 and P=.03, respectively). Besides, the patients in the mirror therapy arm showed significant improvement in the Brunnstrom recovery stages and FMA scores (P<.05). No significant difference was found for MAS scores. In patients with stroke and simultaneous complex regional pain syndrome type 1, addition of mirror therapy to a conventional stroke rehabilitation program provides more improvement in motor functions of the upper limb and pain perception than conventional therapy without mirror therapy. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
The effect of Functional Electric Stimulation in stroke patients' motor control - a case report
NASA Astrophysics Data System (ADS)
Pripas, Denise; Rogers Venditi Beas, Allan; Fioramonte, Caroline; Gonsales de Castro, Pedro Claudio; Goroso, Daniel Gustavo; Cecília dos Santos Moreira, Maria
2011-12-01
Functional Electric Stimulation (FES) has been studied as a therapeutic resource to reduce spasticity in hemiplegic patients, however there are no studies about the effects of FES in motor control of these patients during functional tasks like balance maintenance. Muscular activation of gastrocnemius medialis and semitendinosus was investigated in both limbs of a hemiparetic patient during self-disturbed quiet stance before and after FES on tibialis anterior, by surface electromyography. The instant of maximum activation peak of GM and ST were calculated immediately after a motor self-disturbance, in order to observe muscular synergy between these two muscles, and possible balance strategies used (ankle or hip strategy). At the preserved limb there occurred distal-proximal synergy (GM followed by ST), expected for small perturbations; however, at spastic limb there was inversion of this synergy (proximal-distal) after FES. It is possible that intervention of electricity had inhibited synergical pathways due to antidromic effect, making it difficult to use ankle strategy in the spastic limb.
Usuki, Fusako; Tohyama, Satsuki
2011-10-11
The authors present a novel treatment for spasticity using a hand-held vibration massager. A fetal-type Minamata disease patient showing spasticity of lower limbs had direct application of vibratory stimuli to the right plantar fascia and to the left hamstring. After the treatment for 1 year, the Modified Ashworth Scale (MAS) of the lower limbs was improved from three (right > left) to two (right < left). After then, direct application of the same method with the left plantar fascia improved the MAS of the left lower limb to two (right = left). The increased deep tendon reflexes had diminished and markedly positive Babinski's sign had also decreased to slightly positive on both sides. This method is so simple that patients can treat themselves at home. The authors think that direct application of vibratory stimuli to the plantar fascia is valuable to patients with neurologic disorders, particularly those who cannot receive more invasive treatments.
Usuki, Fusako; Tohyama, Satsuki
2011-01-01
The authors present a novel treatment for spasticity using a hand-held vibration massager. A fetal-type Minamata disease patient showing spasticity of lower limbs had direct application of vibratory stimuli to the right plantar fascia and to the left hamstring. After the treatment for 1 year, the Modified Ashworth Scale (MAS) of the lower limbs was improved from three (right > left) to two (right < left). After then, direct application of the same method with the left plantar fascia improved the MAS of the left lower limb to two (right = left). The increased deep tendon reflexes had diminished and markedly positive Babinski’s sign had also decreased to slightly positive on both sides. This method is so simple that patients can treat themselves at home. The authors think that direct application of vibratory stimuli to the plantar fascia is valuable to patients with neurologic disorders, particularly those who cannot receive more invasive treatments. PMID:22675016
Johansson, Anna-Maria; Domellöf, Erik; Rönnqvist, Louise
2012-01-01
Children with cerebral palsy (CP) require individualized long-term management to maintain and improve motor functions. The objective of this study was to explore potential effects of synchronized metronome training (SMT) on movement kinematics in two children diagnosed with spastic hemiplegic CP (HCP). Both children underwent 4-weeks/12 sessions of SMT by means of the Interactive Metronome (IM). Optoelectronic registrations of goal-directed uni- and bimanual upper-limb movements were made at three occasions; pre-training, post completed training and at 6-months post completed training. Significant changes in kinematic outcomes following IM training were found for both cases. Findings included smoother and shorter movement trajectories in the bimanual condition, especially for the affected side. In the unimanual condition, Case I also showed increased smoothness of the non-affected side. The observed short- and long-term effects on the spatio-temporal organization of upper-limb movements need to be corroborated and extended by further case-control studies.
Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO
NASA Astrophysics Data System (ADS)
Kikuchi, T.; Jin, Y.; Fukushima, K.; Akai, H.; Furusho, J.
2009-02-01
In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named "Hybrid-PLEMO" in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.
Ashford, Stephen; Jackson, Diana; Turner-Stokes, Lynne
2015-03-01
Following stroke or brain injury, goals for rehabilitation of the hemiparetic upper limb include restoring active function if there is return of motor control or, if none is possible, improving passive function, and facilitating care for the limb. To inform development of a new patient reported outcome measure (PROM) of active and passive function in the hemiparetic upper limb, the Arm Activity measure, we examined functional goals for the upper limb, identified during goal setting for spasticity intervention (physical therapy and concomitant botulinum toxin A interventions). Using secondary analysis of a prospective observational cohort study, functional goals determined between patients, their carers and the clinical team were assigned into categories by two raters. Goal category identification, followed by assignment of goals to a category, was undertaken and then confirmed by a second reviewer. Participants comprised nine males and seven females of mean (SD) age 54.5 (15.7) years and their carers. Fifteen had sustained a stroke and one a traumatic brain injury. Goals were used to identify five categories: passive function, active function, symptoms, cosmesis and impairment. Two passive function items not previously identified by a previous systematic review were identified. Analysis of goals important to patients and carers revealed items for inclusion in a new measure of arm function and provide a useful alternative method to involve patients and carers in standardised measure development. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Workinger, Marilyn Seif; Kent, Raymond D; Meilahn, Jill R
2017-05-19
Botulinum toxin A (Btx-A) injections are used to treat limb spasticity in children with cerebral palsy (CP) resulting in improved gross and fine motor control. This treatment has also been reported to have additional functional effects, but the effect of treatment on speech has not been reported. This report presents results of longitudinal speech evaluation of two children with CP given injections of Btx-A for treatment of limb spasticity. Speech evaluations were accomplished at baseline (date of injections) and 4- and 10-weeks post-injections. Improvements in production of consonants, loudness control, and syllables produced per breath were found. Parental survey also suggested improvements in subjects' speech production and willingness to speak outside the testing situation. Future larger studies are warranted to assess the nature of the changes observed related to Btx-A.
Houwink, Annemieke; Geerdink, Yvonne A; Steenbergen, Bert; Geurts, Alexander C H; Aarts, Pauline B M
2013-01-01
To investigate the validity and reliability of the revised Video-Observation Aarts and Aarts module: Determine Developmental Disregard (VOAA-DDD-R). Upper-limb capacity and performance were assessed in children with unilateral spastic cerebral palsy (CP) by measuring overall duration of affected upper-limb use and the frequency of specific behaviours during a task in which bimanual activity was demanded ('stringing beads') and stimulated ('decorating a muffin'). Developmental disregard was defined as the difference in duration of affected upper-limb use between both tasks. Raters were two occupational and one physical therapist who received 3 hours of training. Construct validity was determined by comparing children with CP with typically developing children. Intrarater, interrater, and test-retest reliability were determined using the intraclass correlation coefficient. Standard errors of measurement and smallest detectable differences were also calculated. Twenty-five children with CP (15 females, 10 males; mean age 4 y 9 mo [SD 1 y 7 mo], range 2 y 9 mo-8 y; Manual Ability Classification System levels I-III) scored lower on capacity (p=0.052) and performance (p<0.001), and higher on developmental disregard (p<0.001) than 46 age- and sex-matched typically developing children (23 males; mean age 5 y 3 mo [SD 1 y 5 mo], range 2 y 6 mo-8 y). The intraclass correlation coefficients (0.79-1.00) indicated good reliability. Absolute agreement was high, standard errors of measurement ranged from 4.5 to 6.8%, and smallest detectable differences ranged from 12.5 to 19.0%. The VOAA-DDD-R can be reliably and validly used by occupational and physical therapists to assess upper-limb capacity, performance, and developmental disregard in children (2 y 6 mo-8 y) with CP. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.
Data condensed synthesis regarding kinesiotherapeutic procedures used in spasticity therapy
Moraru, E; Onose, G
2014-01-01
Abstract Spasticity represents an important feature of the upper motoneuron syndrome (UMNS). The clinical signs, such as the abnormal movement models, the unwanted muscular co-contractions, the muscular and joint rigidity with a consecutive deformity can be signs of spasticity and, also of upper motoneuron lesion. The different therapeutic options applied in the management of spasticity are a basic component of UMNS treatment scheme. This article presents the main kinesiotherapeutic procedures used in spasticity therapy. PMID:25408747
Pradon, Didier; Roche, Nicolas; Enette, Lievyn; Zory, Raphaël
2013-01-01
The aim of this study was to determine if lower limb muscle strength and/or spasticity are related to performance in the 6-min walk test (6MWT) in stroke patients. A total of 24 patients (12 males and 12 females) participated in the study. Muscle strength (Medical Research Council (MRC) scale) and spasticity (modified Ashworth scale) were assessed prior to the 6MWT. Heart rate was recorded at rest and during the 6MWT. Subjects were divided into two groups: (i) those with a high MRC sum score, and (ii) those with a low MRC sum score. The relationship between the 6MWT distance and the other parameters was analysed using a Spearman's rank correlation coefficient. There was a significant and positive relationship between 6MWT distance and lower limb muscle strength (p = 0.001), whereas no significant correlations were found between the 6MWT distance and spasticity, resting heart rate and heart rate during the 6MWT. The 6MWT distance may be a good indicator of lower limb muscle strength, and lower limb strengthening may improve gait capacity in stroke patients.
Simon-Martinez, Cristina; Jaspers, Ellen; Mailleux, Lisa; Desloovere, Kaat; Vanrenterghem, Jos; Ortibus, Els; Molenaers, Guy; Feys, Hilde; Klingels, Katrijn
2017-01-01
Upper limb three-dimensional movement analysis (UL-3DMA) offers a reliable and valid tool to evaluate movement patterns in children with unilateral cerebral palsy (uCP). However, it remains unknown to what extent the underlying motor impairments explain deviant movement patterns. Such understanding is key to develop efficient rehabilitation programs. Although UL-3DMA has been shown to be a useful tool to assess movement patterns, it results in a multitude of data, challenging the clinical interpretation and consequently its implementation. UL-3DMA reports are often reduced to summary metrics, such as average or peak values per joint. However, these metrics do not take into account the continuous nature of the data or the interdependency between UL joints, and do not provide phase-specific information of the movement pattern. Moreover, summary metrics may not be sensitive enough to estimate the impact of motor impairments. Recently, Statistical Parametric Mapping (SPM) was proposed to overcome these problems. We collected UL-3DMA of 60 children with uCP and 60 typically developing children during eight functional tasks and evaluated the impact of spasticity and muscle weakness on UL movement patterns. SPM vector field analysis was used to analyze movement patterns at the level of five joints (wrist, elbow, shoulder, scapula, and trunk). Children with uCP showed deviant movement patterns in all joints during a large percentage of the movement cycle. Spasticity and muscle weakness negatively impacted on UL movement patterns during all tasks, which resulted in increased wrist flexion, elbow pronation and flexion, increased shoulder external rotation, decreased shoulder elevation with a preference for movement in the frontal plane and increased trunk internal rotation. Scapular position was altered during movement initiation, although scapular movements were not affected by muscle weakness or spasticity. In conclusion, we identified pathological movement patterns in children with uCP and additionally mapped the negative impact of spasticity and muscle weakness on these movement patterns, providing useful insights that will contribute to treatment planning. Last, we also identified a subset of the most relevant tasks for studying UL movements in children with uCP, which will facilitate the interpretation of UL-3DMA data and undoubtedly contribute to its clinical implementation. PMID:29051729
Imms, Christine; Wallen, Margaret; Elliott, Catherine; Hoare, Brian; Randall, Melinda; Greaves, Susan; Adair, Brooke; Bradshaw, Elizabeth; Carter, Rob; Orsini, Francesca; Shih, Sophy T F; Reddihough, Dinah
2016-05-27
Upper limb orthoses are frequently prescribed for children with cerebral palsy (CP) who have muscle overactivity predominantly due to spasticity, with little evidence of long-term effectiveness. Clinical consensus is that orthoses help to preserve range of movement: nevertheless, they can be complex to construct, expensive, uncomfortable and require commitment from parents and children to wear. This protocol paper describes a randomised controlled trial to evaluate whether long-term use of rigid wrist/hand orthoses (WHO) in children with CP, combined with usual multidisciplinary care, can prevent or reduce musculoskeletal impairments, including muscle stiffness/tone and loss of movement range, compared to usual multidisciplinary care alone. This pragmatic, multicentre, assessor-blinded randomised controlled trial with economic analysis will recruit 194 children with CP, aged 5-15 years, who present with flexor muscle stiffness of the wrist and/or fingers/thumb (Modified Ashworth Scale score ≥1). Children, recruited from treatment centres in Victoria, New South Wales and Western Australia, will be randomised to groups (1:1 allocation) using concealed procedures. All children will receive care typically provided by their treating organisation. The treatment group will receive a custom-made serially adjustable rigid WHO, prescribed for 6 h nightly (or daily) to wear for 3 years. An application developed for mobile devices will monitor WHO wearing time and adverse events. The control group will not receive a WHO, and will cease wearing one if previously prescribed. Outcomes will be measured 6 monthly over a period of 3 years. The primary outcome is passive range of wrist extension, measured with fingers extended using a goniometer at 3 years. Secondary outcomes include muscle stiffness, spasticity, pain, grip strength and hand deformity. Activity, participation, quality of life, cost and cost-effectiveness will also be assessed. This study will provide evidence to inform clinicians, services, funding agencies and parents/carers of children with CP whether the provision of a rigid WHO to reduce upper limb impairment, in combination with usual multidisciplinary care, is worth the effort and costs. ANZ Clinical Trials Registry: U1111-1164-0572 .
Carda, Stefano; Biasiucci, Andrea; Maesani, Andrea; Ionta, Silvio; Moncharmont, Julien; Clarke, Stephanie; Murray, Micah M; Millán, José Del R
2017-08-01
To evaluate the effects of electrically assisted movement therapy (EAMT) in which patients use functional electrical stimulation, modulated by a custom device controlled through the patient's unaffected hand, to produce or assist task-specific upper limb movements, which enables them to engage in intensive goal-oriented training. Randomized, crossover, assessor-blinded, 5-week trial with follow-up at 18 weeks. Rehabilitation university hospital. Patients with chronic, severe stroke (N=11; mean age, 47.9y) more than 6 months poststroke (mean time since event, 46.3mo). Both EAMT and the control intervention (dose-matched, goal-oriented standard care) consisted of 10 sessions of 90 minutes per day, 5 sessions per week, for 2 weeks. After the first 10 sessions, group allocation was crossed over, and patients received a 1-week therapy break before receiving the new treatment. Fugl-Meyer Motor Assessment for the Upper Extremity, Wolf Motor Function Test, spasticity, and 28-item Motor Activity Log. Forty-four individuals were recruited, of whom 11 were eligible and participated. Five patients received the experimental treatment before standard care, and 6 received standard care before the experimental treatment. EAMT produced higher improvements in the Fugl-Meyer scale than standard care (P<.05). Median improvements were 6.5 Fugl-Meyer points and 1 Fugl-Meyer point after the experimental treatment and standard care, respectively. The improvement was also significant in subjective reports of quality of movement and amount of use of the affected limb during activities of daily living (P<.05). EAMT produces a clinically important impairment reduction in stroke patients with chronic, severe upper limb paresis. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Conservative management of neuromuscular scoliosis: personal experience and review of literature.
Kotwicki, Tomasz; Jozwiak, Marek
2008-01-01
The principles of conservative management of neuromuscular scoliosis in childhood and adolescence are presented. Analysis of personal experience and literature review. The topic is discussed separately for patients with flaccid or spastic paresis. These demonstrate that conservative management might be proposed for patients with neuromuscular scoliosis in many clinical situations. In spastic disorders, it maintains the symmetry around the hip joints. Bracing is technically difficult and often is not tolerated well by cerebral palsy children. In patients with flaccid paresis, the fitting and the use of brace is easier than in spastic patients. The flexibility of the spinal curvature is more important. Functional benefits of conservative management of neuromuscular scoliosis comprise stable sitting, easier use of upper limbs, discharge of the abdomen from the collapsing trunk, increased diaphragm excursion, and, not always, prevention of curve progression. Specific natural history and multiple medical problems associated with the disease make the treatment of children with neuromuscular scoliosis an extremely complex issue, best addressed when a team approach is applied. Continuously improving techniques of conservative management, comprising bracing and physiotherapy, together with correctly timed surgery incorporated in the process of rehabilitation, provide the optimal care for patients.
NDT-Bobath method in normalization of muscle tone in post-stroke patients.
Mikołajewska, Emilia
2012-01-01
Ischaemic stroke is responsible for 80-85% of strokes. There is great interest in finding effective methods of rehabilitation for post-stroke patients. The aim of this study was to assess the results of rehabilitation carried out in the normalization of upper limb muscle tonus in patients, estimated on the Ashworth Scale for Grading Spasticity. The examined group consisted of 60 patients after ischaemic stroke. 10 sessions of NDT-Bobath therapy were provided within 2 weeks (ten days of therapy). Patient examinations using the Ashworth Scale for Grading Spasticity were done twice: the first time on admission and the second after the last session of the therapy to assess rehabilitation effects. Among the patients involved in the study, the results measured on the Ashworth Scale (where possible) were as follows: recovery in 16 cases (26.67%), relapse in 1 case (1.67%), no measurable changes (or change within the same grade of the scale) in 8 cases (13.33%). Statistically significant changes were observed in the health status of the patients. These changes, in the area of muscle tone, were favorable and reflected in the outcomes of the assessment using the Ashworth Scale for Grading Spasticity.
Effects of intermittent theta burst stimulation on spasticity after stroke.
Kim, Dae Hyun; Shin, Ji Cheol; Jung, Seungsoo; Jung, Tae-Min; Kim, Deog Young
2015-07-08
Spasticity is a common cause of long-term disability in poststroke hemiplegic patients. We investigated whether intermittent theta burst stimulation (iTBS) could reduce upper-limb spasticity after a stroke. Fifteen hemiplegic stroke patients were recruited for a double-blind sham-controlled cross-over design study. A single session of iTBS or sham stimulation was delivered on the motor hotspot of the affected flexor carpi radialis muscle in a random and counterbalanced order with a 1-week interval. Modified Ashworth scale (MAS), modified Tardieu scale (MTS), H-wave/M-wave amplitude ratio, peak torque (PT), peak torque angle (PTA), work of affected wrist flexor, and rectified integrated electromyographic activity of the flexor carpi radialis muscle were measured before, immediately after, 30 min after, and 1 week after iTBS or sham stimulation. Repeated-measures analysis of variance showed a significant interaction between time and intervention for the MAS, MTS, PT, PTA, and rectified integrated electromyographic activity (P<0.05), indicating that these parameters were significantly improved by iTBS compared with sham stimulation. However, the H-wave/M-wave amplitude ratio and work were not affected. MAS and MTS significantly improved for at least 30 min after iTBS, but the other parameters only improved immediately after iTBS (P<0.05). In conclusion, iTBS on the affected hemisphere may help to reduce poststroke spasticity transiently.
Boutière, Clémence; Rey, Caroline; Zaaraoui, Wafaa; Le Troter, Arnaud; Rico, Audrey; Crespy, Lydie; Achard, Sophie; Reuter, Françoise; Pariollaud, Fanelly; Wirsich, Jonathan; Asquinazi, Patrick; Confort-Gouny, Sylviane; Soulier, Elisabeth; Guye, Maxime; Pelletier, Jean; Ranjeva, Jean-Philippe; Audoin, Bertrand
2017-05-01
Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lower limbs spasticity in multiple sclerosis (MS). However, the cerebral mechanisms underlying this effect have never been investigated. To assess whether modulation of spasticity induced by iTBS is underlined by functional reorganization of the primary motor cortices. A total of 17 patients with MS suffering from lower limbs spasticity were randomized to receive real iTBS or sham iTBS during the first half of a 5-week indoor rehabilitation programme. Spasticity was assessed using the Modified Ashworth Scale and the Visual Analogue Scale at baseline, after the stimulation session and at the end of the rehabilitation programme. Resting-state functional magnetic resonance imaging (fMRI) was performed at the three time points, and brain functional networks topology was analysed using graph-theoretical approach. At the end of stimulation, improvement of spasticity was greater in real iTBS group than in sham iTBS group ( p = 0.026). iTBS had a significant effect on the balance of the connectivity degree between the stimulated and the homologous primary motor cortex ( p = 0.005). Changes in inter-hemispheric balance were correlated with improvement of spasticity (rho = 0.56, p = 0.015). This longitudinal resting-state fMRI study evidences that functional reorganization of the primary motor cortices may underlie the effect of iTBS on spasticity in MS.
Iosa, M; Morone, G; Ragaglini, M R; Fusco, A; Paolucci, S
2013-06-01
Bilateral transfer, i.e. the capacity to transfer from one to the other hand a learned motor skill, may help the recovery of upper limb functions after stroke. To investigate the motor strategies at the basis of sensorimotor learning involved in bilateral transfer. Randomized controlled trial. Neurorehabilitation Hospital. Eighty right-handed participants (65 ± 13 years old): 40 patients with subacute stroke, 40 control healthy subjects. Subjects performed the 9 hole-peg-test twice in an order defined by random allocation: first with low and then with high skilled hand (LS-HS) or the reverse (HS-LS). Time spent to complete the test and filling sequence were recorded, together with maximum pinch force (assessed using a dynamometer), upper limb functioning (Motricity Index), spasticity (modified Ashworth Scale), limb dominance (Edinburgh Handeness Inventory). As expected, in patients, the performance was found related to the residual pinch force (P<0.001), upper limb motricity (P=0.006) and side of hemiparesis (P=0.016). The performances of all subjects improved more in HS-LS than in LS-HS subgroups (P=0.043). The strategy adopted in the first trial influenced the velocity in the second one (P=0.030). Bilateral transfer was observed from high to low skilled hand. Learning was not due to a mere sequence repetition, but on a strategy chosen on the basis of the previous performance. The affected hand of patients with subacute stroke may benefit from sensorimotor learning occurred with the un-affected hand.
Simon, Anne-Laure; Presedo, Ana; Ilharreborde, Brice; Mallet, Cindy; Mazda, Keyvan; Penneçot, Georges-François
2014-06-01
Determining patellar orientation in the transverse plane during observational gait analysis is a fundamental aspect of physical examinations. Many physicians consider that an abnormal position of the patella in the transverse planes is only explained by a rotational abnormality of the proximal femur. A total of 188 spastic diplegic children with cerebral palsy were reviewed (376 lower limbs). The physical examination included observation of patellar orientation at midstride and measuring femoral anteversion (FA). All patients also underwent 3-dimensional (3D) computerized gait analysis of pelvic and hip rotation kinematics. Observational gait analysis and videotapes found 103 children (206 lower limbs) with inturned patella at midstance. Kinematic data from 3D gait analysis showed that the visual impression of turned inward patella was erroneous in 48 limbs. Of the remaining 158 lower limbs, 117 (74%) exhibited excessive FA and 41 (26%) did not. Of the 117 with excessive FA, kinematics showed only 66 (56%) with excessive internal hip rotation (with or without excessive internal pelvic rotation). Of the 41 lower limbs without excessive FA, 25 were explained by excessive internal pelvic rotation and 16 were explained by excessive internal hip rotation (isolated spasticity and/or contracture of internal rotator muscles). Turned inward patella was caused by isolated excessive internal pelvic rotation in 48%, excessive internal hip rotation in 35% (including 44 cases with excessive FA and 12 cases with isolated spasticity and/or contracture of internal hip rotators), and excessive internal hip rotation combined with excessive internal pelvic rotation in 17%. Excessive FA was not the only cause of turned inward patella gait and could not explain this gait anomaly by itself. Excessive internal pelvic rotation was the most frequent cause of turned inward patella gait. Level IV.
Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial.
Gilliaux, Maxime; Renders, Anne; Dispa, Delphine; Holvoet, Dominique; Sapin, Julien; Dehez, Bruno; Detrembleur, Christine; Lejeune, Thierry M; Stoquart, Gaëtan
2015-02-01
Several pilot studies have evoked interest in robot-assisted therapy (RAT) in children with cerebral palsy (CP). To assess the effectiveness of RAT in children with CP through a single-blind randomized controlled trial. Sixteen children with CP were randomized into 2 groups. Eight children performed 5 conventional therapy sessions per week over 8 weeks (control group). Eight children completed 3 conventional therapy sessions and 2 robot-assisted sessions per week over 8 weeks (robotic group). For both groups, each therapy session lasted 45 minutes. Throughout each RAT session, the patient attempted to reach several targets consecutively with the REAPlan. The REAPlan is a distal effector robot that allows for displacements of the upper limb in the horizontal plane. A blinded assessment was performed before and after the intervention with respect to the International Classification of Functioning framework: body structure and function (upper limb kinematics, Box and Block test, Quality of Upper Extremity Skills Test, strength, and spasticity), activities (Abilhand-Kids, Pediatric Evaluation of Disability Inventory), and participation (Life Habits). During each RAT session, patients performed 744 movements on average with the REAPlan. Among the variables assessed, the smoothness of movement (P < .01) and manual dexterity assessed by the Box and Block test (P = .04) improved significantly more in the robotic group than in the control group. This single-blind randomized controlled trial provides the first evidence that RAT is effective in children with CP. Future studies should investigate the long-term effects of this therapy. © The Author(s) 2014.
Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio
2018-05-01
To compare medial gastrocnemius muscle-tendon structure, gait propulsive forces, and ankle joint gait kinetics between typically developing children and those with spastic cerebral palsy, and to describe significant associations between structure and function in children with spastic cerebral palsy.A sample of typically developing children (n = 9 /16 limbs) and a sample of children with spastic cerebral palsy (n = 29 /43 limbs) were recruited. Ultrasound and 3-dimensional motion capture were used to assess muscle-tendon structure, and propulsive forces and ankle joint kinetics during gait, respectively.Children with spastic cerebral palsy had shorter fascicles and muscles, and longer Achilles tendons than typically developing children. Furthermore, total negative power and peak negative power at the ankle were greater, while total positive power, peak positive power, net power, total vertical ground reaction force, and peak vertical and anterior ground reaction forces were smaller compared to typically developing children. Correlation analyses revealed that smaller resting ankle joint angles and greater maximum dorsiflexion in children with spastic cerebral palsy accounted for a significant decrease in peak negative power. Furthermore, short fascicles, small fascicle to belly ratios, and large tendon to fascicle ratios accounted for a decrease in propulsive force generation.Alterations observed in the medial gastrocnemius muscle-tendon structure of children with spastic cerebral palsy may impair propulsive mechanisms during gait. Therefore, conventional treatments should be revised on the basis of muscle-tendon adaptations.
Dias, G A S; Yoshikawa, G T; Koyama, R V L; Fujihara, S; Martins, L C S; Medeiros, R; Quaresma, J A S; Fuzii, H T
2016-02-01
A cross-sectional observational study was conducted. The aim was to analyze the clinical-functional profile of patients diagnosed with HTLV-1 (human T-lymphotropic virus type 1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in the Amazon region. Reference center for HTLV in the city of Belém, state of Pará, Brazil. Muscle strength, muscle tone, balance and the need for gait assistance among patients with HAM/TSP were evaluated. Among the 82 patients infected with HTLV-1, 27 (10 men and 17 women) were diagnosed with HAM/TSP. No statistically significant difference in muscle tone or strength was found between the lower limbs. Muscle weakness and spasticity were predominant in the proximal lower limbs. Patients with HAM/TSP are at a high risk of falls (P=0.03), and predominantly use either a cane or a crutch on one side as a gait-assistance device (P=0.02). Patients with HAM/TSP exhibit a similar clinical pattern of muscle weakness and spasticity, with a high risk of falls, requiring gait-assistance devices.
Bui, Hung Tien; Gagnon, Cynthia; Audet, Olivier; Mathieu, Jean; Leone, Mario
2017-04-15
Autosomal recessive spastic ataxia of Charlevoix/Saguenay (ARSACS) is a neuromuscular disorder that induces spasticity in lower limbs. The Wartenberg pendulum test is a classical method of assessing lower limb spasticity based on the dynamics of the pendular leg motion. However, in its original form, this test only provides subjective results and do not allow accurate assessment of spasticity. Thirteen ARSACS patients were assessed using a new wireless electrogoniometer to measure spasticity by quantifying oscillation amplitudes and relaxation indices during the Wartenburg pendulum test. The validity of the instrument was evaluated by comparing its measurements to a known precise goniometer whereas discriminant validity was evaluated by comparing healthy participants and ARSACS patients. Reliability was measured using intraclass correlation (ICC) between pendulum test scores obtained at different moments in time. Data from different tests show that the proposed device is accurate (standard error of measurement of 0.0005°), discriminates healthy and ARSACS patients (most variables have p=0.00) and provides repeatable results (significant ICC usually higher than 0.64 and p<0.05). The proposed tool allows the clinician to analyze pendulum oscillation amplitudes and ratios and thus, provide an index of spasticity for the patients affected by ARSACS. This is important as the original procedure is only evaluated visually and the progression cannot be detected until the condition changes drastically. Thus, the system proposed meets the requirements of being useful, precise and user-friendly in the evaluation of patients in a research as well as a clinical environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Samuelkamaleshkumar, Selvaraj; Reethajanetsureka, Stephen; Pauljebaraj, Paul; Benshamir, Bright; Padankatti, Sanjeev Manasseh; David, Judy Ann
2014-11-01
To investigate the effectiveness of mirror therapy (MT) combined with bilateral arm training and graded activities to improve motor performance in the paretic upper limb after stroke. Randomized, controlled, assessor-blinded study. Inpatient stroke rehabilitation center of a tertiary care teaching hospital. Patients with first-time ischemic or hemorrhagic stroke (N=20), confined to the territory of the middle cerebral artery, occurring <6 months before the commencement of the study. The MT and control group participants underwent a patient-specific multidisciplinary rehabilitation program including conventional occupational therapy, physical therapy, and speech therapy for 5 d/wk, 6 h/d, over 3 weeks. The participants in the MT group received 1 hour of MT in addition to the conventional stroke rehabilitation. The Upper Extremity Fugl-Meyer Assessment for motor recovery, Brunnstrom stages of motor recovery for the arm and hand, Box and Block Test for gross manual hand dexterity, and modified Ashworth scale to assess the spasticity. After 3 weeks of MT, mean change scores were significantly greater in the MT group than in the control group for the Fugl-Meyer Assessment (P=.008), Brunnstrom stages of motor recovery for the arm (P=.003) and hand (P=.003), and the Box and Block Test (P=.022). No significant difference was found between the groups for modified Ashworth scale (P=.647). MT when combined with bilateral arm training and graded activities was effective in improving motor performance of the paretic upper limb after stroke compared with conventional therapy without MT. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Santamato, Andrea; Micello, Maria Francesca; Panza, Francesco; Fortunato, Francesca; Picelli, Alessandro; Smania, Nicola; Logroscino, Giancarlo; Fiore, Pietro; Ranieri, Maurizio
2015-01-01
To compare the effectiveness of two procedures increasing the botulinum toxin type A effect for wrist and finger flexor spasticity after stroke. A single-blind randomized trial. Seventy patients with upper limb post-stroke spasticity. Adults with wrist and finger flexor muscles spasticity after stroke were submitted to botulinum toxin type A therapy. After the treatment, the subjects injected were randomly divided into two groups and submitted to adhesive taping (Group A) or daily muscle manual stretching, passive articular mobilization of wrist and fingers, and palmar splint (Group B) for 10 days. We measured spasticity with Modified Ashworth Scale, related disability with Disability Assessment Scale, and fingers position at rest. The measurements were done at baseline, after two weeks, and after one month from the treatment session. After two weeks, subjects in Group A reported a significantly greater decrease in spasticity scores (Modified Ashworth Scale fingers: mean (standard deviation) 1.3±0.6 vs. 2.1±0.6; Modified Ashworth Scale wrist: 1.7 ±0.6 vs. 2.3 ±0.8), and after one month in spasticity and disability scores (Modified Ashworth Scale fingers: mean (standard deviation) 1.9 ±0.7 vs. 2.5 ±0.6; Modified Ashworth Scale wrist: 2.0 ±0.7 vs. 2.6 ±0.6; Disability Assessment Scale: 1.6 ±0.7 vs. 2.1 ±0.7) compared with Group B subjects. Subjects in Group A reported also a significantly improved fingers position at rest compared with Group B subjects after two weeks (2.8 ±0.9 vs. 2.1 ±0.7) and one month (2.3 ±0.7 vs. 1.5 ±0.6). Adhesive taping of wrist and finger flexor muscles appeared to enhance the effect of botulinum toxin type A therapy more than daily manual muscle stretching combined with passive articular mobilization and palmar splint. © The Author(s) 2014.
Ren, Yupeng; Kang, Sang Hoon; Park, Hyung-Soon; Wu, Yi-Ning; Zhang, Li-Qun
2013-05-01
Arm impairments in patients post stroke involve the shoulder, elbow and wrist simultaneously. It is not very clear how patients develop spasticity and reduced range of motion (ROM) at the multiple joints and the abnormal couplings among the multiple joints and the multiple degrees-of-freedom (DOF) during passive movement. It is also not clear how they lose independent control of individual joints/DOFs and coordination among the joints/DOFs during voluntary movement. An upper limb exoskeleton robot, the IntelliArm, which can control the shoulder, elbow, and wrist, was developed, aiming to support clinicians and patients with the following integrated capabilities: 1) quantitative, objective, and comprehensive multi-joint neuromechanical pre-evaluation capabilities aiding multi-joint/DOF diagnosis for individual patients; 2) strenuous and safe passive stretching of hypertonic/deformed arm for loosening up muscles/joints based on the robot-aided diagnosis; 3) (assistive/resistive) active reaching training after passive stretching for regaining/improving motor control ability; and 4) quantitative, objective, and comprehensive neuromechanical outcome evaluation at the level of individual joints/DOFs, multiple joints, and whole arm. Feasibility of the integrated capabilities was demonstrated through experiments with stroke survivors and healthy subjects.
Clinical phenotype of hereditary spastic paraplegia due to KIF1C gene mutations across life span.
Yücel-Yılmaz, Didem; Yücesan, Emrah; Yalnızoğlu, Dilek; Oğuz, Kader Karlı; Sağıroğlu, Mahmut Şamil; Özbek, Uğur; Serdaroğlu, Esra; Bilgiç, Başar; Erdem, Sevim; İşeri, Sibel Aylin Uğur; Hanağası, Haşmet; Gürvit, Hakan; Özgül, Rıza Köksal; Dursun, Ali
2018-06-01
Hereditary spastic paraplegias (HSPs) are a group of genetic disorders resulting in pyramidal tract impairment, predominantly in lower limbs. KIF1C gene has recently been identified as one of the genetic causes of HSP and associated with pure or complicated HSP. We present three patients with complicated HSP from two unrelated families, who had early onset progressive cerebellar signs and developed pyramidal tract signs during follow-up. Whole exome sequencing in these patients followed by segregation analysis identified novel truncating KIF1C mutations (c.463C> T; p.R155 ∗ and c.2478delA; p.Ala828Argfs ∗ 13). Neuroimaging findings showed cerebral and upper cervical spinal atrophy, bilateral symmetrical pyramidal tract involvement, and focal cerebral white matter lesions. Patients with KIF1C mutations may present with cerebellar signs and pyramidal findings may emerge later, therefore complicated HSP should be considered in the differential diagnosis of unidentified cases with cerebellar dysfunction. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Cellular pathways of hereditary spastic paraplegia.
Blackstone, Craig
2012-01-01
Human voluntary movement is controlled by the pyramidal motor system, a long CNS pathway comprising corticospinal and lower motor neurons. Hereditary spastic paraplegias (HSPs) are a large, genetically diverse group of inherited neurologic disorders characterized by a length-dependent distal axonopathy of the corticospinal tracts, resulting in lower limb spasticity and weakness. A range of studies are converging on alterations in the shaping of organelles, particularly the endoplasmic reticulum, as well as intracellular membrane trafficking and distribution as primary defects underlying the HSPs, with clear relevance for other long axonopathies affecting peripheral nerves and lower motor neurons.
Kaki, Abdullah M.; Arab, Abeer A.
2012-01-01
A 7-year-old boy, weighing 18 kg, was diagnosed with maple syrup urine disease (MSUD). He suffered from spasticity of the lower limbs and pain that did not respond to oral medications. Injections of botulinum toxin A (BTX-A) at 10 sites and epidural analgesia with 0.125% bupivacaine were used to treat spasticity with good results. We conclude that BTX-A combined with epidural analgesia may be a useful treatment option for incapacitating, painful spasticity related to MSUD. This treatment modality allowed a comprehensive rehabilitation program to be completed and it lasted longer than 9 months. PMID:22754448
Lepage, D; Parratte, B; Tatu, L; Vuiller, F; Monnier, G
2005-12-01
Hypertonia of the upper limb due to spasticity causes pronation of the forearm and flexion of wrist and fingers. Nowadays this spasticity is often treated with injections of botulinum toxin and sometimes with selective fascicular neurotomy. To correctly perform this microsurgical technique, it is necessary to get precise knowledge of the extramuscular nerve branching in order to be better able to select the motor branches which supply the muscles involved in spasticity. The same knowledge is required for botulinum toxin injections which must be made as near as possible to the zones where intramuscular nerve endings are the densest, which is also where neuromuscular junctions are the most numerous. Thus, it is necessary to better know these zones, but their knowledge remains today imprecise. The muscles of the anterior compartment of 30 forearms were dissected, first macroscopically, then microscopically, to study the extra- and intramuscular nerve supply and the distribution of terminal nerve ramifications. The results were then linked to surface topographical landmarks to indicate the precise location of motor branches for each muscle with the aim of proposing appropriate surgical approaches for selective neurotomies. Then for each muscle, the zones with the highest density of nerve endings were divided into segments, thus determining the optimal zones for botulinim toxin injections.
van Meeteren, Jetty; Nieuwenhuijsen, Channah; de Grund, Arthur; Stam, Henk J; Roebroeck, Marij E
2010-01-01
The study aimed to establish whether the manual ability classification system (MACS), a valid classification system for manual ability in children with cerebral palsy (CP), is applicable in young adults with CP and normal intelligence. The participants (n = 83) were young adults with CP and normal intelligence and had a mean age of 19.9 years. In this study, inter observer reliability of the MACS was determined. We investigated relationships between the MACS level and patient characteristics (such as the gross motor function classification system (GMFCS) level, limb distribution of the spastic paresis and educational level) and with functional activities of the upper extremity (assessed with the Melbourne assessment, the Abilhand questionnaire and the domain self-care of the functional independence measure (FIM)). Furthermore, with a linear regression analysis it was determined whether the MACS is a significant determinant of activity limitations and participation restrictions. The reliability was good (intraclass correlation coefficient 0.83). The Spearman correlation coefficients with GMFCS level, limb distribution of the spastic paresis and educational level were 0.53, 0.46, and 0.26, respectively. MACS level correlated moderately with outcome measures of functional activities (correlations ranging from -0.38 to -0.55). MACS level is, in addition to the GMFCS level, an important determinant for limitations in activities and restrictions in participation. We conclude that the MACS is a feasible method to classify manual ability in young adults with CP and normal intelligence with a good manual ability.
Location and severity of spasticity in the first 1-2 weeks and at 3 and 18 months after stroke.
Welmer, A-K; Widén Holmqvist, L; Sommerfeld, D K
2010-05-01
There is no consensus concerning the location or severity of spasticity, or how this changes with time after stroke. The purpose was to describe: the location and severity of spasticity, in different muscle groups, during the first 1-2 weeks and at 3 and 18 months after stroke; the association between the severity of spasticity and control of voluntary movements; and the occurrence of spasticity in younger versus older patients. In a cohort of consecutive patients, the following parameters were assessed during the first 1-2 weeks (n = 109) and at 3 (n = 95) and 18 (n = 66) months after first-ever stroke: spasticity, by the Modified Ashworth Scale in different muscle groups; plantar-flexor clonus, by physical examination; and movement function, by the Lindmark Motor Assessment Scale. During the first 1-2 weeks and at 3 months after stroke, spasticity was most common in the anti-gravity muscles. The severity of upper extremity spasticity increased over time (P < 0.05). Upper extremity spasticity and movement scores were moderately associated (r = -0.61, P < 0.05). At 3 months, spasticity was more common amongst the younger patients (P < 0.05). The results confirm that spasticity is most common in the anti-gravity muscles and is associated with the control of voluntary movements. As the severity of spasticity also increased after 3 months, when neurally mediated spasticity is expected to have passed its peak, intrinsic muscle changes may play a larger role than neural components with the passage of time after stroke.
Katusic, Ana; Alimovic, Sonja
2013-09-01
Spasticity has been considered as a major impairment in cerebral palsy (CP), but the relationship between this impairment and motor functions is still unclear, especially in the same group of patients with CP. The aim of this investigation is to determine the relationship between spasticity and gross motor capability in nonambulatory children with spastic CP. Seventy-one children (30 boys, 41 girls) with bilateral spastic cerebral palsy and with Gross Motor Function Classification System (GMFCS) levels IV (n=34) and V (n=37) were included in the study. The spasticity level in lower limbs was evaluated using the Modified Modified Ashworth Scale and the gross motor function with the Gross Motor Function Measure (GMFM-88). Spearman's correlation analysis was used to determine the nature and the strength of the relationship. The results showed a moderate correlation between spasticity and gross motor skills (ρ=0.52 for the GMFCS level; ρ=0.57 for the GMFM-88), accounting for less than 30% of the explained variance. It seems that spasticity is just one factor among many others that could interfere with gross motor skills, even in children with severe forms of spastic CP. Knowledge of the impact of spasticity on motor skills may be useful in the setting of adequate rehabilitation strategies for nonambulatory children with spastic CP.
Xu, Qun; Guo, Feng; Salem, Hassan M Abo; Chen, Hong; Huang, Xiaolin
2017-12-01
To investigate the effectiveness of mirror therapy combined with neuromuscular electrical stimulation in promoting motor recovery of the lower limbs and walking ability in patients suffering from foot drop after stroke. Randomized controlled study. Inpatient rehabilitation center of a teaching hospital. Sixty-nine patients with foot drop. Patients were randomly divided into three groups: control, mirror therapy, and mirror therapy + neuromuscular electrical stimulation. All groups received interventions for 0.5 hours/day and five days/week for four weeks. 10-Meter walk test, Brunnstrom stage of motor recovery of the lower limbs, Modified Ashworth Scale score of plantar flexor spasticity, and passive ankle joint dorsiflexion range of motion were assessed before and after the four-week period. After four weeks of intervention, Brunnstrom stage ( P = 0.04), 10-meter walk test ( P < 0.05), and passive range of motion ( P < 0.05) showed obvious improvements between patients in the mirror therapy and control groups. Patients in the mirror therapy + neuromuscular electrical stimulation group showed better results than those in the mirror therapy group in the 10-meter walk test ( P < 0.05). There was no significant difference in spasticity between patients in the two intervention groups. However, compared with patients in the control group, patients in the mirror therapy + neuromuscular electrical stimulation group showed a significant decrease in spasticity ( P < 0.001). Therapy combining mirror therapy and neuromuscular electrical stimulation may help improve walking ability and reduce spasticity in stroke patients with foot drop.
A Symptomatic Case of Thoracic Vertebral Hemangioma Causing Lower Limb Spastic Paresis.
Alfawareh, Mohammad; Alotaibi, Tariq; Labeeb, Abdallah; Audat, Ziad
2016-10-31
BACKGROUND Despite being the most common tumor of the spine, vertebral hemangioma is rarely symptomatic in adults. In fact, only 0.9-1.2% of all vertebral hemangiomas may be symptomatic. When hemangiomas occur in the thoracic vertebrae, they are more likely to be symptomatic due to the narrow vertebral canal dimensions that mandate more aggressive management prior to the onset of severe neurological sequelae. CASE REPORT An 18-year-old male presented to the emergency room with a one-month history of mild to moderate mid-thoracic back pain, radiating to both lower limbs. It was associated with both lower limb weakness and decreased sensation. There was no history of bowel or bladder incontinence. Neurological examination revealed lower limb weakness with power 3/5, exaggerated deep tendon reflexes, bilateral sustained clonus, impaired sensation below the umbilicus, spasticity, and a positive Babinski sign. A CT scan showed a diffuse body lesion at the 8th thoracic vertebra with coarse trabeculations, corduroy appearance, or jail-bar sign. The patient underwent decompression and fixation. Biopsy of permanent samples showed proliferation of blood vessels with dilated spaces and no malignant cells, consistent with hemangioma. Postoperatively, spasticity improved, and the patient regained normal power. CONCLUSIONS Symptomatic vertebral hemangiomas are rare but should be considered as a differential diagnosis. They can present with severe neurological symptoms. When managed appropriately, patients regain full motor and sensory function. Decompression resulted in quick relief of symptoms, which was followed by an extensive rehabilitation program.
Randomized, placebo‐controlled trial of incobotulinumtoxina for upper‐limb post‐stroke spasticity
Munin, Michael C.; Kaňovský, Petr; Hanschmann, Angelika; Hiersemenzel, Reinhard; Marciniak, Christina
2015-01-01
ABSTRACT Introduction: Efficacy and safety of incobotulinumtoxinA in post‐stroke upper‐limb spasticity were studied. Methods: Subjects randomized 2:1 to incobotulinumtoxinA (fixed dose 400 U) or placebo, with fixed doses for the primary target clinical pattern (PTCP; flexed elbow, 200 U; flexed wrist, 150 U; clenched fist, 100 U). Doses for non‐primary patterns were flexible within predefined ranges. Results: At week 4, incobotulinumtoxinA led to larger improvements in PTCP Ashworth scale (AS) scores than placebo [least‐squares mean change ± standard error: –0.9 ± 0.06 (n = 171) vs. –0.5 ± 0.08 (n = 88); P < 0.001], and more subjects were PTCP AS responders (≥1‐point improvement) with incobotulinumtoxinA (69.6%) than with placebo (37.5%; P < 0.001). Investigator's Global Impression of Change confirmed superiority of incobotulinumtoxinA vs. placebo (P = 0.003). IncobotulinumtoxinA was associated with functional improvements, as demonstrated in responder rates for Disability Assessment Scale principal target at week 4 (P = 0.007). Adverse events were mainly mild/moderate, and were reported by 22.4% (incobotulinumtoxinA) and 16.8% (placebo) of subjects. Conclusions: IncobotulinumtoxinA significantly improved upper‐limb spasticity and associated disability, and was well‐tolerated. Muscle Nerve 53: 415–421, 2016 PMID:26201835
Aarts, Pauline B M; Jongerius, Peter H; Geerdink, Yvonne A; Geurts, Alexander C
2009-11-25
In 2003 new computer software, the VOAA (Video Observations Aarts and Aarts), was designed to score and evaluate two important aspects of spontaneous upper limb use, i.e. overall duration and frequency of specific behaviours. The aim of this study was to investigate the test-retest, interrater and intrarater reliability and the construct validity of a new module, the VOAA-DDD, to determine developmental disregard in children with spastic unilateral cerebral palsy (CP). A test-retest design with three raters for reliability and a two-group design for construct validity were used. Subjects were a total of 20 children with spastic unilateral CP equally divided in two age groups (2.5-5 and 5-8 years), and 56 healthy children of the same age groups. Overall duration and frequency of specific behaviours of the affected arm and hand were assessed during a task demanding ('stringing beads') and a task stimulating ('decorating a muffin') the use of both hands. Reliability was estimated by intraclass correlation coefficients (ICCs). Construct validity was assessed by comparing children with CP to healthy children. All ICCs exceeded 0.87. In contrast with healthy children, children with CP used their affected hand less during the 'muffin' task compared to the 'beads' task. Of the children with CP, 90% in the age group of 2.5-5 years and 50% in the age group of 5-8 years showed values exceeding the extreme values of healthy controls, respectively, indicating developmental disregard. The VOAA-DDD is a reliable and valid instrument to assess spontaneous use of the affected arm and hand in order to determine developmental disregard in children with spastic unilateral CP.
A Symptomatic Case of Thoracic Vertebral Hemangioma Causing Lower Limb Spastic Paresis
Alfawareh, Mohammad; Alotaibi, Tariq; Labeeb, Abdallah; Audat, Ziad
2016-01-01
Patient: Male, 18 Final Diagnosis: Hemangioma Symptoms: Pain • weaknes of lower limbs Medication: — Clinical Procedure: Decompression and fixation Specialty: Neurosurgery Objective: Unusual clinical course Background: Despite being the most common tumor of the spine, vertebral hemangioma is rarely symptomatic in adults. In fact, only 0.9–1.2% of all vertebral hemangiomas may be symptomatic. When hemangiomas occur in the thoracic vertebrae, they are more likely to be symptomatic due to the narrow vertebral canal dimensions that mandate more aggressive management prior to the onset of severe neurological sequelae. Case Report: An 18-year-old male presented to the emergency room with a one-month history of mild to moderate midthoracic back pain, radiating to both lower limbs. It was associated with both lower limb weakness and decreased sensation. There was no history of bowel or bladder incontinence. Neurological examination revealed lower limb weakness with power 3/5, exaggerated deep tendon reflexes, bilateral sustained clonus, impaired sensation below the umbilicus, spasticity, and a positive Babinski sign. A CT scan showed a diffuse body lesion at the 8th thoracic vertebra with coarse trabeculations, corduroy appearance, or jail-bar sign. The patient underwent decompression and fixation. Biopsy of permanent samples showed proliferation of blood vessels with dilated spaces and no malignant cells, consistent with hemangioma. Postoperatively, spasticity improved, and the patient regained normal power. Conclusions: Symptomatic vertebral hemangiomas are rare but should be considered as a differential diagnosis. They can present with severe neurological symptoms. When managed appropriately, patients regain full motor and sensory function. Decompression resulted in quick relief of symptoms, which was followed by an extensive rehabilitation program. PMID:27795545
Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy
Klebe, Stephan; Depienne, Christel; Gerber, Sylvie; Challe, Georges; Anheim, Mathieu; Charles, Perrine; Fedirko, Estelle; Lejeune, Elodie; Cottineau, Julien; Brusco, Alfredo; Dollfus, Hélène; Chinnery, Patrick F.; Mancini, Cecilia; Ferrer, Xavier; Sole, Guilhem; Destée, Alain; Mayer, Jean-Michel; Fontaine, Bertrand; de Seze, Jérôme; Clanet, Michel; Ollagnon, Elisabeth; Busson, Philippe; Cazeneuve, Cécile; Stevanin, Giovanni; Kaplan, Josseline; Rozet, Jean-Michel; Brice, Alexis
2012-01-01
Mutations in the spastic paraplegia 7 (SPG7) gene encoding paraplegin are responsible for autosomal recessive hereditary spasticity. We screened 135 unrelated index cases, selected in five different settings: SPG7-positive patients detected during SPG31 analysis using SPG31/SPG7 multiplex ligation-dependent probe amplification (n = 7); previously reported ambiguous SPG7 cases (n = 5); patients carefully selected on the basis of their phenotype (spasticity of the lower limbs with cerebellar signs and/or cerebellar atrophy on magnetic resonance imaging/computer tomography scan and/or optic neuropathy and without other signs) (n = 24); patients with hereditary spastic paraparesis referred consecutively from attending neurologists and the national reference centre in a diagnostic setting (n = 98); and the index case of a four-generation family with autosomal dominant optic neuropathy but no spasticity linked to the SPG7 locus. We identified two SPG7 mutations in 23/134 spastic patients, 21% of the patients selected according to phenotype but only 8% of those referred directly. Our results confirm the pathogenicity of Ala510Val, which was the most frequent mutation in our series (65%) and segregated at the homozygous state with spastic paraparesis in a large family with autosomal recessive inheritance. All SPG7-positive patients tested had optic neuropathy or abnormalities revealed by optical coherence tomography, indicating that abnormalities in optical coherence tomography could be a clinical biomarker for SPG7 testing. In addition, the presence of late-onset very slowly progressive spastic gait (median age 39 years, range 18–52 years) associated with cerebellar ataxia (39%) or cerebellar atrophy (47%) constitute, with abnormal optical coherence tomography, key features pointing towards SPG7-testing. Interestingly, three relatives of patients with heterozygote SPG7 mutations had cerebellar signs and atrophy, or peripheral neuropathy, but no spasticity of the lower limbs, suggesting that SPG7 mutations at the heterozygous state might predispose to late-onset neurodegenerative disorders, mimicking autosomal dominant inheritance. Finally, a novel missense SPG7 mutation at the heterozygous state (Asp411Ala) was identified as the cause of autosomal dominant optic neuropathy in a large family, indicating that some SPG7 mutations can occasionally be dominantly inherited and be an uncommon cause of isolated optic neuropathy. Altogether, these results emphasize the clinical variability associated with SPG7 mutations, ranging from optic neuropathy to spastic paraplegia, and support the view that SPG7 screening should be carried out in both conditions. PMID:23065789
Usuki, Fusako; Tohyama, Satsuki
2016-04-01
Fetal-type Minamata disease is caused by the exposure to high concentrations of methylmercury in the fetal period and shows cerebral palsy-like clinical features. Relief of spasticity is a major task of rehabilitation to improve their activities of daily living. Here we report the effect of long-term vibration therapy on bilateral lower-limb spasticity in 3 patients with fetal-type Minamata disease. We used a simple, inexpensive, and noninvasive approach with hand-held vibration massagers, which were applied to the plantar fascia at 90 Hz for 15 minutes. The effect was observed soon after the first treatment and resulted in better performance of the repetitive facilitation. Vibration therapy for 1 year improved Modified Ashworth Scale for the ankle flexors in 2 cases. The labored gait improved and gait speed increased in another case. Continued vibration therapy for another 1 year further improved Modified Ashworth Scale score and range of motion of ankle dorsiflexion in 1 case. This case showed the decreased amplitude of soleus H-reflex after the 15-minute vibration therapy, suggesting that α-motor neuron excitability was suppressed. Vibration therapy using a hand-held vibration massager may offer safe and effective treatment for lower-limb spasticity in patients with chronic neurological disorders.
Baronio, Gabriele; Volonghi, Paola; Signoroni, Alberto
2017-01-01
In the rehabilitation field, the use of additive manufacturing techniques to realize customized orthoses is increasingly widespread. Obtaining a 3D model for the 3D printing phase can be done following different methodologies. We consider the creation of personalized upper limb orthoses, also including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning. However, hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality. In this work, we present the concept and design of a 3D printed support to assist hand scanning of such patients. The device, realized with FDM additive manufacturing techniques in ABS material, allows palmar acquisitions, and its design and test are motivated by the following needs: (1) immobilizing the hand of patients during the palmar scanning to reduce involuntary movements affecting the scanning quality and (2) keeping hands open and in a correct position, especially to contrast the high degree of hypertonicity of spastic subjects. The resulting device can be used indifferently for the right and the left hand; it is provided in four-dimensional sizes and may be also suitable as a palmar support for the acquisition of the dorsal side of the hand.
Volonghi, Paola
2017-01-01
In the rehabilitation field, the use of additive manufacturing techniques to realize customized orthoses is increasingly widespread. Obtaining a 3D model for the 3D printing phase can be done following different methodologies. We consider the creation of personalized upper limb orthoses, also including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning. However, hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality. In this work, we present the concept and design of a 3D printed support to assist hand scanning of such patients. The device, realized with FDM additive manufacturing techniques in ABS material, allows palmar acquisitions, and its design and test are motivated by the following needs: (1) immobilizing the hand of patients during the palmar scanning to reduce involuntary movements affecting the scanning quality and (2) keeping hands open and in a correct position, especially to contrast the high degree of hypertonicity of spastic subjects. The resulting device can be used indifferently for the right and the left hand; it is provided in four-dimensional sizes and may be also suitable as a palmar support for the acquisition of the dorsal side of the hand. PMID:29234219
Estrada-Cuzcano, Alejandro; Martin, Shaun; Chamova, Teodora; Synofzik, Matthis; Timmann, Dagmar; Holemans, Tine; Andreeva, Albena; Reichbauer, Jennifer; De Rycke, Riet; Chang, Dae-In; van Veen, Sarah; Samuel, Jean; Schöls, Ludger; Pöppel, Thorsten; Mollerup Sørensen, Danny; Asselbergh, Bob; Klein, Christine; Zuchner, Stephan; Jordanova, Albena; Vangheluwe, Peter; Tournev, Ivailo; Schüle, Rebecca
2017-01-01
Abstract Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders characterized by progressive spasticity of the lower limbs due to degeneration of the corticospinal motor neurons. In a Bulgarian family with three siblings affected by complicated hereditary spastic paraplegia, we performed whole exome sequencing and homozygosity mapping and identified a homozygous p.Thr512Ile (c.1535C > T) mutation in ATP13A2. Molecular defects in this gene have been causally associated with Kufor-Rakeb syndrome (#606693), an autosomal recessive form of juvenile-onset parkinsonism, and neuronal ceroid lipofuscinosis (#606693), a neurodegenerative disorder characterized by the intracellular accumulation of autofluorescent lipopigments. Further analysis of 795 index cases with hereditary spastic paraplegia and related disorders revealed two additional families carrying truncating biallelic mutations in ATP13A2. ATP13A2 is a lysosomal P5-type transport ATPase, the activity of which critically depends on catalytic autophosphorylation. Our biochemical and immunocytochemical experiments in COS-1 and HeLa cells and patient-derived fibroblasts demonstrated that the hereditary spastic paraplegia-associated mutations, similarly to the ones causing Kufor-Rakeb syndrome and neuronal ceroid lipofuscinosis, cause loss of ATP13A2 function due to transcript or protein instability and abnormal intracellular localization of the mutant proteins, ultimately impairing the lysosomal and mitochondrial function. Moreover, we provide the first biochemical evidence that disease-causing mutations can affect the catalytic autophosphorylation activity of ATP13A2. Our study adds complicated hereditary spastic paraplegia (SPG78) to the clinical continuum of ATP13A2-associated neurological disorders, which are commonly hallmarked by lysosomal and mitochondrial dysfunction. The disease presentation in our patients with hereditary spastic paraplegia was dominated by an adult-onset lower-limb predominant spastic paraparesis. Cognitive impairment was present in most of the cases and ranged from very mild deficits to advanced dementia with fronto-temporal characteristics. Nerve conduction studies revealed involvement of the peripheral motor and sensory nerves. Only one of five patients with hereditary spastic paraplegia showed clinical indication of extrapyramidal involvement in the form of subtle bradykinesia and slight resting tremor. Neuroimaging cranial investigations revealed pronounced vermian and hemispheric cerebellar atrophy. Notably, reduced striatal dopamine was apparent in the brain of one of the patients, who had no clinical signs or symptoms of extrapyramidal involvement. PMID:28137957
Hofstoetter, Ursula S.; McKay, William B.; Tansey, Keith E.; Mayr, Winfried; Kern, Helmut; Minassian, Karen
2014-01-01
Context/objective To examine the effects of transcutaneous spinal cord stimulation (tSCS) on lower-limb spasticity. Design Interventional pilot study to produce preliminary data. Setting Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria. Participants Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. Interventions Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 ms-width pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. Outcome measures The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. Results The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre- to 0.9 ± 0.3 post-stimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre- to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. Conclusion These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted. PMID:24090290
Hereditary spastic paraplegias: membrane traffic and the motor pathway
Blackstone, Craig; O’Kane, Cahir J.; Reid, Evan
2017-01-01
Voluntary movement is a fundamental way in which animals respond to, and interact with, their environment. In mammals, the main CNS pathway controlling voluntary movement is the corticospinal tract, which encompasses connections between the cerebral motor cortex and the spinal cord. Hereditary spastic paraplegias (HSPs) are a group of genetic disorders that lead to a length-dependent, distal axonopathy of fibres of the corticospinal tract, causing lower limb spasticity and weakness. Recent work aimed at elucidating the molecular cell biology underlying the HSPs has revealed the importance of basic cellular processes — especially membrane trafficking and organelle morphogenesis and distribution — in axonal maintenance and degeneration. PMID:21139634
Hereditary spastic paraplegias: membrane traffic and the motor pathway.
Blackstone, Craig; O'Kane, Cahir J; Reid, Evan
2011-01-01
Voluntary movement is a fundamental way in which animals respond to, and interact with, their environment. In mammals, the main CNS pathway controlling voluntary movement is the corticospinal tract, which encompasses connections between the cerebral motor cortex and the spinal cord. Hereditary spastic paraplegias (HSPs) are a group of genetic disorders that lead to a length-dependent, distal axonopathy of fibres of the corticospinal tract, causing lower limb spasticity and weakness. Recent work aimed at elucidating the molecular cell biology underlying the HSPs has revealed the importance of basic cellular processes — especially membrane trafficking and organelle morphogenesis and distribution— in axonal maintenance and degeneration.
Gracies, Jean-Michel; Brashear, Allison; Jech, Robert; McAllister, Peter; Banach, Marta; Valkovic, Peter; Walker, Heather; Marciniak, Christina; Deltombe, Thierry; Skoromets, Alexander; Khatkova, Svetlana; Edgley, Steven; Gul, Fatma; Catus, France; De Fer, Beatrice Bois; Vilain, Claire; Picaut, Philippe
2015-10-01
Resistance from antagonistic muscle groups might be a crucial factor reducing function in chronic hemiparesis. The resistance due to spastic co-contraction might be reduced by botulinum toxin injections. We assessed the effects of abobotulinumtoxinA injection in the upper limb muscles on muscle tone, spasticity, active movement, and function. In this randomised, placebo-controlled, double-blind study, we enrolled adults (aged 18-80 years) at least 6 months after stroke or brain trauma from 34 neurology or rehabilitation clinics in Europe and the USA. Eligible participants were randomly allocated in a 1:1:1 ratio with a computer-generated list to receive a single injection session of abobotulinumtoxinA 500 U or 1000 U or placebo into the most hypertonic muscle group among the elbow, wrist, or finger flexors (primary target muscle group [PTMG]), and into at least two additional muscle groups from the elbow, wrist, or finger flexors or shoulder extensors. Patients and investigators were masked to treatment allocation. The primary endpoint was the change in muscle tone (Modified Ashworth Scale [MAS]) in the PTMG from baseline to 4 weeks. Secondary endpoints were Physician Global Assessment (PGA) at week 4 and change from baseline to 4 weeks in the perceived function (Disability Assessment Scale [DAS]) in the principal target of treatment, selected by the patient together with physician from four functional domains (dressing, hygiene, limb position, and pain). Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT01313299. 243 patients were randomly allocated to placebo (n=81), abobotulinumtoxinA 500 U (n=81), or abobotulinumtoxinA 1000 U (n=81). Mean change in MAS score from baseline at week 4 in the PTMG was -0·3 (SD 0·6) in the placebo group (n=79), -1·2 (1·0) in the abobotulinumtoxinA 500 U group (n=80; difference -0·9, 95% CI -1·2 to -0·6; p<0·0001 vs placebo), and -1·4 (1·1) in the abobotulinumtoxinA 1000 U group (n=79; -1·1, -1·4 to -0·8; p<0·0001 vs placebo). Mean PGA score at week 4 was 0·6 (SD 1·0) in the placebo group (n=78), 1·4 (1·1) in the abobotulinumtoxinA 500 U group (n=80; p=0·0003 vs placebo), and 1·8 (1·1) in the abobotulinumtoxinA 1000 U group (n=78; p<0·0001 vs placebo). Mean change from baseline at week 4 in DAS score for the principal target of treatment was -0·5 (0·7) in the placebo group (n=79), -0·7 (0·8) in the abobotulinumtoxinA 500 U group (n=80; p=0·2560 vs placebo), and -0·7 (0·7) in the abobotulinumtoxinA 1000 U group (n=78; p=0·0772 vs placebo). Three serious adverse events occurred in each group and none were treatment related; two resulted in death (from pulmonary oedema in the placebo group and a pre-existing unspecified cardiovascular disorder in the abobotulinumtoxinA 500 U group). Adverse events that were thought to be treatment related occurred in two (2%), six (7%), and seven (9%) patients in the placebo, abobotulinumtoxinA 500 U, and abobotulinumtoxinA 1000 U groups, respectively. The most common treatment-related adverse event was mild muscle weakness. All adverse events were mild or moderate. AbobotulinumtoxinA at doses of 500 U or 1000 U injected into upper limb muscles provided tone reduction and clinical benefit in hemiparesis. Future research into the treatment of spastic paresis with botulinum toxin should use active movement and function as primary outcome measures. Ipsen. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Effectiveness of acupuncture in spasticity of the post-stroke patient. Systematic review].
Rodríguez-Mansilla, Juan; Espejo-Antúnez, Luis; Bustamante-López, Ana Isabel
2016-04-01
To determine the effectiveness of acupuncture for reducing spasticity in post-stroke patients. Literature review. The literature search was performed using scientific databases from January 2000 to January 2013. Out of the 110 studies that were found, nine random and controlled trials were included. Inclusion criteria were based on clinical trials in which participants were over 18 years old, who were suffering with post-stroke spasticity, and one of the experimental groups was treated with acupuncture. The variables were the passive resistance to stretching of the affected limb, and the degree of personal dependence. The variables were assessed by the Modified Ashworth Scale and Barthel Index. The search was performed in the PUBMED, COCHRANE Library, PEDro, Dialnet, CSIC, CINAHL, databases. Search terms included the combination of keywords "acupuncture"; "muscle spasticity"; "stroke". Passive resistance to stretching, the degree of personal dependence, and motor function of the affected limb showed statistically significant improvements in at least one study included; however, these improvements are not clinically relevant changes. Passive resistance improved in the elbow, ankle, knee, and wrist. An increased joint range was observed, except for the elbow, forearm, and thumb. Improved of the patient dependency was also observed. Although improvements relative to the reduction of spasticity are shown, the results have failed to demonstrate the effectiveness of the technique for this ailment. It would take a greater number of studies to calculate the size of the reported effects with homogeneous procedures in the design as well as in the duration, frequency, and measurement tools. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
Zhang, Yue; Wang, Yi-Zhao; Huang, Li-Ping; Bai, Bei; Zhou, Shi; Yin, Miao-Miao; Zhao, Hua; Zhou, Xiao-Na; Wang, Hong-Tu
2016-11-01
The aim of this study was to evaluate the effects of an aquatic exercise program designed to enhance muscular strength in paretic lower limbs in subacute stroke patients. Thirty-six subacute stroke patients were randomly divided to a conventional or an aquatic group (n = 18 each). Outcome measures were assessed at baseline and after 8 wks of training. For the paretic lower limbs, maximum isometric voluntary contraction strength of the rectus femoris and biceps femoris caput longus and the tibialis anterior and lateral gastrocnemius was measured. Cocontraction ratios during knee extension and flexion and ankle dorsiflexion and plantarflexion were calculated respectively. In addition, Modified Ashworth Scale, Functional Ambulation Category, and Barthel Index were assessed. Compared with the conventional intervention, the aquatic intervention resulted in significantly higher knee extension (P = 0.002) and ankle plantarflexion torque (P = 0.002), accompanied with a significantly lower knee extension cocontraction ratio in the paretic limb (P = 0.000). Functional Ambulation Category (P = 0.009) and Barthel Index (P = 0.024) were greater in aquatic group than conventional group posttreatment. Modified Ashworth Scale scores did not show any differences between groups. Aquatic exercise enhanced muscle strength in paretic lower limbs and improved muscle cocontraction without increasing spasticity in subacute stroke patients.
Usuki, Fusako; Tohyama, Satsuki
2016-01-01
Abstract Fetal-type Minamata disease is caused by the exposure to high concentrations of methylmercury in the fetal period and shows cerebral palsy-like clinical features. Relief of spasticity is a major task of rehabilitation to improve their activities of daily living. Here we report the effect of long-term vibration therapy on bilateral lower-limb spasticity in 3 patients with fetal-type Minamata disease. We used a simple, inexpensive, and noninvasive approach with hand-held vibration massagers, which were applied to the plantar fascia at 90 Hz for 15 minutes. The effect was observed soon after the first treatment and resulted in better performance of the repetitive facilitation. Vibration therapy for 1 year improved Modified Ashworth Scale for the ankle flexors in 2 cases. The labored gait improved and gait speed increased in another case. Continued vibration therapy for another 1 year further improved Modified Ashworth Scale score and range of motion of ankle dorsiflexion in 1 case. This case showed the decreased amplitude of soleus H-reflex after the 15-minute vibration therapy, suggesting that α-motor neuron excitability was suppressed. Vibration therapy using a hand-held vibration massager may offer safe and effective treatment for lower-limb spasticity in patients with chronic neurological disorders. PMID:27082608
... older than 18 years of age with chronic migraine (severe, throbbing headaches that are sometimes accompanied by ... limb spasticity, urinary incontinence, overactive bladder, or chronic migraine, you may receive additional injections every 3 to ...
ERIC Educational Resources Information Center
Kawamura, Anne; Campbell, Kent; Lam-Damji, Sophie; Fehlings, Darcy
2007-01-01
This study compared the effects of low and high doses of botulinum toxin A (BTX-A) to improve upper extremity function. Thirty-nine children (22 males, 17 females) with a mean age of 6 years 2 months (SD 2y 9mo) diagnosed with spastic hemiplegia or triplegia were enrolled into this double-blind, randomized controlled trial. The high-dose group…
[Microsurgical drezotomy for the treatment of spasticity of the lower limbs].
Mertens, P; Sindou, M
1998-09-01
Ablative functional neurosurgery can be useful in some selected patients for the treatment of harmful spasticity in the lower limbs. Microsurgical drezotomy was introduced in 1972, on the basis of anatomical studies of the human dorsal root entry zone (DREZ) showing a topographical segregation of the afferent fibers according to their size and thus functional destinations. It consists of a 3 mm deep microsurgical lesion directed at a 45 degree angle in the postero-lateral sulcus, penetrating the DREZ in its ventro-lateral aspect, at the level of all the rootlets considered as involved in spasticity (and pain). It destroys mainly the lateral (nociceptive) and central (myotatic) afferent fibers as well as the facilitatory medial part of the Lissauer tract, whilst sparing most of the medial (lemniscal) fibers and the inhibitor lateral part of the Lissauer tract. We report a series of 121 bedridden patients suffering from harmful spasticity in one (15) or both (106) lower limbs and treated with microsurgical drezotomy. Surgery was decided on because of abnormal postures in flexion in two-thirds of the patients and in hyperextension in one-third, additional pain in 75 of them, and hyperactive bladder in 38 cases. The post-operative results were evaluated after a mean follow-up time of 5 years and 6 months. Both spasticity and spasms were significantly decreased or suppressed respectively in 78% and 88% of the patients. When present, pain was relieved without abolition of sensation in 82%. These benefits resulted in either disappearance or marked reduction of the abnormal postures and articular limitation in 90% of the patients. When present preoperatively, urinary leakage disappeared in 85% of the cases. Mild to severe complications occurred in 32 patients and precipitated or were responsible for death in 6 cases (5%). This is explained by the fact that most of the patients, especially those affected by multiple sclerosis, were in very precarious general and neurological conditions. Microsurgical drezotomy has however enabled a large majority of these severely disabled patients to sit and lie comfortably, and allowed them to reach a significantly improved quality of life.
Hesse, S
2004-01-01
The gait-lab at Klinik Berlin developed and evaluated novel physical and pharmacological strategies promoting the repetitive practise of hemiparetic gait in line with the slogan: who wants to relearn walking, has to walk. Areas of research are treadmill training with partial body weight support, enabling wheelchair-bound subjects to repetitively practice gait, the electromechanical gait trainer GT I reducing the effort on the therapists as compared to the manually assisted locomotor therapy, and the future HapticWalker which will allow the additional practise of stair climbing up and down and of perturbations. Further means to promote gait practice after stroke was the application of botulinum toxin A for the treatment of lower limb spasticity and the early use of walking aids. New areas of research are also the study of D-Amphetamine, which failed to promote motor recovery in acute stroke patients as compared to placebo, and the development of a computerized arm trainer, Bi-Manu-T rack, for the bilateral treatment of patients with a severe upper limb paresis.
Strifling, Kelly M B; Lu, Na; Wang, Mei; Cao, Kevin; Ackman, Jeffrey D; Klein, John P; Schwab, Jeffrey P; Harris, Gerald F
2008-10-01
This prospective study analyzes the upper extremity kinematics of 10 children with spastic diplegic cerebral palsy using anterior and posterior walkers. Although both types of walkers are commonly prescribed by clinicians, no quantitative data comparing the two in regards to upper extremity motion has been published. The study methodology included testing of each subject with both types of walkers in a motion analysis laboratory after an acclimation period of at least 1 month. Overall results showed that statistically, both walkers are relatively similar. With both anterior and posterior walkers, the shoulders were extended, elbows flexed, and wrists extended. Energy expenditure, walking speed and stride length was also similar with both walker types. Several differences were also noted although not statistically significant. Anterior torso tilt was reduced with the posterior walker and shoulder extension and elbow flexion were increased. Outcomes analysis indicated that differences in upper extremity torso and joint motion were not dependent on spasticity or hand dominance. These findings may help to build an understanding of upper extremity motion in walker-assisted gait and potentially to improve walker prescription.
Meyns, Pieter; Van Gestel, Leen; Leunissen, Inge; De Cock, Paul; Sunaert, Stefan; Feys, Hilde; Duysens, Jacques; Desloovere, Kaat; Ortibus, Els
2016-10-01
Background Even though lower-limb motor disorders are core features of spastic cerebral palsy (sCP), the relationship with brain lesions remains unclear. Unraveling the relation between gait pathology, lower-limb function, and brain lesions in sCP is complex for several reasons; wide heterogeneity in brain lesions, ongoing brain maturation, and gait depends on a number of primary motor functions/deficits (eg, muscle strength, spasticity). Objective To use a comprehensive approach combining conventional MRI and diffusion tensor imaging (DTI) in children with sCP above 3 years old to relate quantitative parameters of brain lesions in multiple brain areas to gait performance. Methods A total of 50 children with sCP (25 bilateral, 25 unilateral involvement) were enrolled. The investigated neuroradiological parameters included the following: (1) volumetric measures of the corpus callosum (CC) and lateral ventricles (LVs), and (2) DTI parameters of the corticospinal tract (CST). Gait pathology and primary motor deficits, including muscle strength and spasticity, were evaluated by 3D gait analysis and clinical examination. Results In bilateral sCP (n = 25), volume of the LV and the subparts of the CC connecting frontal, (pre)motor, and sensory areas were most related to lower-limb functioning and gait pathology. DTI measures of the CST revealed additional relations with the primary motor deficits (n = 13). In contrast, in unilateral sCP, volumetric (n = 25) and diffusion measures (n = 14) were only correlated to lower-limb strength. Conclusions These results indicate that the combined influence of multiple brain lesions and their impact on the primary motor deficits might explain a large part of the gait pathology in sCP. © The Author(s) 2016.
2016-08-01
limb spasticity, hemifacial spasm, cerebral palsy, migraine headaches, hyperhydrosis, and post- stroke spasticity [42]. In addition, BoNT has been...maximising injury , it will also minimise the ability of health services to respond sufficiently. A comparison of some possible dissemination routes is...humans, EEEV and WEEV are neurotropic viruses with limited viremia, followed by CNS infection across the cerebral vascular endothelium or the
[Botulin toxin as treatment for spasticity and dystonia in infantile cerebral paralysis].
Aguilar-Rebolledo, F; Hernández-Sánchez, J; Rayo-Mares, D; Soriano-Fonseca, F; García-Muñoz, L; Ruiz-Ponce, J; Garrido-Ramírez, E
2001-01-01
Treatment of spasticity and dystonía in PCI with Botulinum toxin A. Botulinum-A (NxTxBoA) toxin produce neuromuscular blockade, it has been effective with therapeutic purposes in strabismus, focal dystonias and spasticity. Evaluate the therapeutically effects off NxTxBoA in cerebral palsy (CP) spastic and/or dystonic in children. Prospective study. 12 CP patients (8 spastic and 4 spastic/dystonic) were treated with NxTxBoA in affected muscles at least for 2 doses by up 12 months. The indication was: improve limb function, to avoid surgical correction or improve hygienic or dressing. Ashworth Spasticity Scale (ASS), functional scale for Dystonic Sindou-Millet (SMS) and O'Brien Global Assessment Scale (OGAS) were used to evaluate improvement. No parametric tests, Wilcoxon's rang's test and sign test were used with p < 0.05. Total doses session was 3-10 U/kg. AAS showed muscle spasticity improvement in two grades in 8 patients, and one grade in the rest (p = 0.004). SMS showed the muscle dystonic improve up 60% in two patients improve 50% in others (p = 0.006). OGAS demonstrated a good correlation. Mean treatment effect during 4.8 months (rank 4 to 10 m). Two patients had side effects, general weakness, instability, and focal haematoma. Botulinum toxin type A proved a highly useful adjuvant therapy and conservative management in CP.
Botulinum Toxin Injection and Phenol Nerve Block for Reduction of End-of-Life Pain
Ngo, An; Shin, Ki; Bruera, Eduardo
2013-01-01
Abstract Background: Injectable antispasticity agents have been utilized for the reduction of pain. However, there are no reports of its use for end-of-life pain. Patient Case: A 62-year-old female with a history of progressive left frontotemporal glioblastoma status post gross total resection, radiation, and chemotherapy presented to the physical medicine and rehabilitation (PM&R) clinic for management of spastic quadriplegia and pain. At the time of presentation to the PM&R clinic she was no longer eligible for further cancer treatment. The patient had been declining neurologically with cognitive changes, weakness, and increasing spasticity. The patient had an Edmonton Symptom Assessment Scale (ESAS) pain score of 8/10 at her visit, as reported by her husband. She exhibited mild to moderate spasticity during the exam. Cognitively, she was unable to follow commands and would fluctuate between being awake for a few minutes and sleeping during the exam. She was not on any oral muscle relaxants and none were started due to her state of hypoarousal. Nine days after the initial consultation she received 700 units of onabotulinum toxin into her bilateral upper limbs and left thigh and a phenol nerve block to her left tibial nerve. At a follow-up visit 28 days later in the palliative care clinic, the ESAS pain score was 0. The patient died 51 days post-injection. Conclusion: The case report demonstrates the use of injectable antispasticity agents in the reduction of end-of-life pain in a glioblastoma patient. PMID:24236959
Wei, Ta-Sen; Liu, Peng-Ta; Chang, Liang-Wey; Liu, Sen-Yung
2017-01-01
Background Falls are the leading cause of injury in stroke patients. However, the cause of a fall is complicated, and several types of risk factors are involved. Therefore, a comprehensive model to predict falls with high sensitivity and specificity is needed. Methods This study was a prospective study of 112 inpatients in a rehabilitation ward with follow-up interviews in patients’ homes. Evaluations were performed 1 month after stroke and included the following factors: (1) status of cognition, depression, fear of fall and limb spasticity; (2) functional assessments [walking velocity and the Functional Independence Measure (FIM)]; and (3) objective, computerized gait and balance analyses. The outcome variable was the number of accidental falls during the 6-month follow-up period after baseline measurements. Results The non-faller group exhibited significantly better walking velocity and FIM scale compared to the faller group (P < .001). The faller group exhibited higher levels of spasticity in the affected limbs, asymmetry of gait parameters in single support (P < .001), double support (P = .027), and step time (P = .003), and lower stability of center of gravity in the medial-lateral direction (P = .008). Psychological assessments revealed that the faller group exhibited more severe depression and lower confidence without falling. A multivariate logistic regression model identified three independent predictors of falls with high sensitivity (82.6%) and specificity (86.5%): the asymmetry ratio of single support [adjusted odds ratio, aOR = 2.2, 95% CI (1.2–3.8)], the level of spasticity in the gastrocnemius [aOR = 3.2 (1.4–7.3)], and the degree of depression [aOR = 1.4 (1.2–1.8)]. Conclusions This study revealed depression, in additional to gait asymmetry and spasticity, as another independent factor for predicting falls. These results suggest that appropriate gait training, reduction of ankle spasticity, and aggressive management of depression may be critical to prevent falls in stroke patients. PMID:28542281
Viana, R T; Laurentino, G E C; Souza, R J P; Fonseca, J B; Silva Filho, E M; Dias, S N; Teixeira-Salmela, L F; Monte-Silva, K K
2014-01-01
Upper limb (UL) impairment is the most common disabling deficit following a stroke. Previous studies have suggested that transcranial direct current stimulation (tDCS) enhances the effect of conventional therapies. This pilot double-blind randomized control trial aimed to determine whether or not tDCS, combined with Wii virtual reality therapy (VRT), would be superior to Wii therapy alone in improving upper limb function and quality of life in chronic stroke individuals. Twenty participants were randomly assigned either to an experimental group that received VRT and tDCS, or a control group that received VRT and sham tDCS. The therapy was delivered over 15 sessions with 13 minutes of active or sham anodal tDCS, and one hour of virtual reality therapy. The outcomes included were determined using the Fugl-Meyer scale, the Wolf motor function test, the modified Ashworth scale (MAS), grip strength, and the stroke specific quality of life scale (SSQOL). Minimal clinically important differences (MCID) were observed when assessing outcome data. Both groups demonstrated gains in all evaluated areas, except for the SSQOL-UL domain. Differences between groups were only observed in wrist spasticity levels in the experimental group, where more than 50% of the participants achieved the MCID. These findings support that tDCS, combined with VRT therapy, should be investigated and clarified further.
Motor cortex stimulation does not improve dystonia secondary to a focal basal ganglia lesion.
Rieu, Isabelle; Aya Kombo, Magaly; Thobois, Stéphane; Derost, Philippe; Pollak, Pierre; Xie, Jing; Pereira, Bruno; Vidailhet, Marie; Burbaud, Pierre; Lefaucheur, Jean Pascal; Lemaire, Jean Jacques; Mertens, Patrick; Chabardes, Stephan; Broussolle, Emmanuel; Durif, Franck
2014-01-14
To assess the efficacy of epidural motor cortex stimulation (MCS) on dystonia, spasticity, pain, and quality of life in patients with dystonia secondary to a focal basal ganglia (BG) lesion. In this double-blind, crossover, multicenter study, 5 patients with dystonia secondary to a focal BG lesion were included. Two quadripolar leads were implanted epidurally over the primary motor (M1) and premotor cortices, contralateral to the most dystonic side. The leads were placed parallel to the central sulcus. Only the posterior lead over M1 was activated in this study. The most lateral or medial contact of the lead (depending on whether the dystonia predominated in the upper or lower limb) was selected as the anode, and the other 3 as cathodes. One month postoperatively, patients were randomly assigned to on- or off-stimulation for 3 months each, with a 1-month washout between the 2 conditions. Voltage, frequency, and pulse width were fixed at 3.8 V, 40 Hz, and 60 μs, respectively. Evaluations of dystonia (Burke-Fahn-Marsden Scale), spasticity (Ashworth score), pain intensity (visual analog scale), and quality of life (36-Item Short Form Health Survey) were performed before surgery and after each period of stimulation. Burke-Fahn-Marsden Scale, Ashworth score, pain intensity, and quality of life were not statistically significantly modified by MCS. Bipolar epidural MCS failed to improve any clinical feature in dystonia secondary to a focal BG lesion. This study provides Class I evidence that bipolar epidural MCS with the anode placed over the motor representation of the most affected limb failed to improve any clinical feature in dystonia secondary to a focal BG lesion.
Lam, Kuen; Leung, Man Fuk; Kwan, Chi Wai; Kwan, Joseph
2016-11-01
The study aimed to examine the epidemiology of hypertonic contractures and its relationship with minimal trauma fracture (MTF), and to determine the incidence and predictors of (MTF) in long-term care residents. This was a longitudinal cohort study of prospectively collected data. Participants were followed from March 2007 to March 2016 or until death. A 300-bed long-term care hospital in Hong Kong. All long-term care residents who were in need of continuous medical and nursing care for their activities of daily living. Information on patients' demographic data, severe contracture defined as a decrease of 50% or more of the normal passive range of joint movement of the joint, and severe limb spasticity defined by the Modified Ashworth Scale higher than grade 3, medical comorbidities, functional status, cognitive status, nutritional status including body mass index and serum albumin, past history of fractures, were evaluated as potential risk factors for subsequent MTF. Three hundred ninety-six residents [148 males, mean ± standard deviation (SD), age = 79 ± 16 years] were included for analysis. The presence of severe contracture was highly prevalent among the study population: 91% of residents had at least 1 severe contracture, and 41% of residents had severe contractures involving all 4 limbs. Moreover, there were a significant proportion of residents who had severe limb spasticity with the elbow flexors (32.4%) and knee flexors (33.9%) being the most commonly involved muscles. Twelve residents (3%) suffered from subsequent MTF over a median follow-up of 33 (SD = 30) months. Seven out of these 12 residents died during the follow-up period, with a mean survival of 17.8 months (SD = 12.6) after the fracture event. The following 2 factors were found to independently predict subsequent MTF in a multivariate Cox regression: bilateral severe spastic knee contractures (hazard ratio = 16.5, P < .0001, confidence interval 4.8-56.4) and diabetes mellitus (hazard ratio = 4.0. P = .018, confidence interval 1.3-12.7). Severe spasticity and contractures are common morbidities in long-term care residents, and bilateral severe spastic knee contractures and diabetes mellitus are 2 independent predictors of subsequent MTF. Spasticity management and prevention of contractures, combined with educational programs for caregivers to identify the high-risk residents and apply proper handling techniques during routine care, may be helpful in reducing the risk of MTF in long-term care residents. Further large-scale longitudinal studies are needed to confirm these findings. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Effect of Auditory Constraints on Motor Performance Depends on Stage of Recovery Post-Stroke
Aluru, Viswanath; Lu, Ying; Leung, Alan; Verghese, Joe; Raghavan, Preeti
2014-01-01
In order to develop evidence-based rehabilitation protocols post-stroke, one must first reconcile the vast heterogeneity in the post-stroke population and develop protocols to facilitate motor learning in the various subgroups. The main purpose of this study is to show that auditory constraints interact with the stage of recovery post-stroke to influence motor learning. We characterized the stages of upper limb recovery using task-based kinematic measures in 20 subjects with chronic hemiparesis. We used a bimanual wrist extension task, performed with a custom-made wrist trainer, to facilitate learning of wrist extension in the paretic hand under four auditory conditions: (1) without auditory cueing; (2) to non-musical happy sounds; (3) to self-selected music; and (4) to a metronome beat set at a comfortable tempo. Two bimanual trials (15 s each) were followed by one unimanual trial with the paretic hand over six cycles under each condition. Clinical metrics, wrist and arm kinematics, and electromyographic activity were recorded. Hierarchical cluster analysis with the Mahalanobis metric based on baseline speed and extent of wrist movement stratified subjects into three distinct groups, which reflected their stage of recovery: spastic paresis, spastic co-contraction, and minimal paresis. In spastic paresis, the metronome beat increased wrist extension, but also increased muscle co-activation across the wrist. In contrast, in spastic co-contraction, no auditory stimulation increased wrist extension and reduced co-activation. In minimal paresis, wrist extension did not improve under any condition. The results suggest that auditory task constraints interact with stage of recovery during motor learning after stroke, perhaps due to recruitment of distinct neural substrates over the course of recovery. The findings advance our understanding of the mechanisms of progression of motor recovery and lay the foundation for personalized treatment algorithms post-stroke. PMID:25002859
Ferrari, Adriano; Maoret, Anna Rosa; Muzzini, Simonetta; Alboresi, Silvia; Lombardi, Francesco; Sgandurra, Giuseppina; Paolicelli, Paola Bruna; Sicola, Elisa; Cioni, Giovanni
2014-10-01
The main goal of this study was to investigate the efficacy of Botulinum Toxin A (BoNT-A), combined with an individualized intensive physiotherapy/orthoses treatment, in improving upper limb activity and competence in daily activity in children with hemiplegia, and to compare its effectiveness with that of non-pharmacological instruments. It was a Randomized Clinical Trial of 27 children with spastic hemiplegic cerebral palsy, outpatients of two high speciality Centres for child rehabilitation. Each child was assigned by simple randomization to experimental group (BoNT-A) or control group (placebo). Assisting Hand Assessment (AHA) was chosen as primary outcome measure; other measures were selected according to ICF dimensions. Participants were assessed at baseline (T0), at T1, T2, T3 (1-3-6 months after injection, respectively). Every patient was given a specific physiotherapeutic treatment, consisting of individualized goal directed exercises, task oriented activities, daily stretching manoeuvres, functional and/or static orthoses. BoNT-A group showed a significant increase of AHA raw scores at T2, compared to control group (T2-T0: p=.025) and functional goals achievement (GAS) was also slightly better in the same group (p=.033). Other measures indicated some improvement in both groups, without significant intergroup differences. Children with intermediate severity of hand function at House scale for upper limb impairment seem to have a better benefit from BoNT-A protocol. BoNT-A was effective in improving manipulation in the activity domain, in association with individualized goal-directed physiotherapy and orthoses; the combined treatment is recommended. The study brings more evidence for the efficacy of a combined treatment botulinum toxin injection-physiotherapy-orthoses, and it gives some suggestions for candidate selection and individualized treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wijesekera, Lokesh C; Leigh, P Nigel
2009-01-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in degenerating lower motor neurones. Signs of upper motor neurone and lower motor neurone damage not explained by any other disease process are suggestive of ALS. The management of ALS is supportive, palliative, and multidisciplinary. Non-invasive ventilation prolongs survival and improves quality of life. Riluzole is the only drug that has been shown to extend survival. PMID:19192301
Fowler, Eileen G; Knutson, Loretta M; DeMuth, Sharon K; Sugi, Mia; Siebert, Kara; Simms, Victoria; Azen, Stanley P; Winstein, Carolee J
2007-01-01
Background In the past, effortful exercises were considered inappropriate for children with spastic cerebral palsy (CP) due to concern that they would escalate abnormalities including spasticity and abnormal movement patterns. Current scientific evidence indicates that these concerns were unfounded and that therapeutic interventions focused on muscle strengthening can lead to improved functional ability. However, few studies have examined the potential benefits of cardiorespiratory fitness exercises in this patient population. Methods/design The rationale and design of a randomized controlled trial examining the effects of a stationary cycling intervention for children with CP are outlined here. Sixty children with spastic diplegic CP between the ages of 7 and 18 years and Gross Motor Function Classification System (GMFCS) levels of I, II, or III will be recruited for this study. Participants will be randomly assigned to either an intervention (cycling) or a control (no cycling) group. The cycling intervention will be divided into strengthening and cardiorespiratory endurance exercise phases. During the strengthening phase, the resistance to lower extremity cycling will be progressively increased using a uniquely designed limb-loaded mechanism. The cardiorespiratory endurance phase will focus on increasing the intensity and duration of cycling. Children will be encouraged to exercise within a target heart rate (HR) range (70 – 80% maximum HR). Thirty sessions will take place over a 10–12 week period. All children will be evaluated before (baseline) and after (follow-up) the intervention period. Primary outcome measures are: knee joint extensor and flexor moments, or torque; the Gross Motor Function Measure (GMFM); the 600 Yard Walk-Run test and the Thirty-Second Walk test (30 sec WT). Discussion This paper presents the rationale, design and protocol for Pediatric Endurance and Limb Strengthening (PEDALS); a Phase I randomized controlled trial evaluating the efficacy of a stationary cycling intervention for children with spastic diplegic cerebral palsy. PMID:17374171
Degeneration of serotonergic neurons in amyotrophic lateral sclerosis: a link to spasticity.
Dentel, Christel; Palamiuc, Lavinia; Henriques, Alexandre; Lannes, Béatrice; Spreux-Varoquaux, Odile; Gutknecht, Lise; René, Frédérique; Echaniz-Laguna, Andoni; Gonzalez de Aguilar, Jose-Luis; Lesch, Klaus Peter; Meininger, Vincent; Loeffler, Jean-Philippe; Dupuis, Luc
2013-02-01
Spasticity is a common and disabling symptom observed in patients with central nervous system diseases, including amyotrophic lateral sclerosis, a disease affecting both upper and lower motor neurons. In amyotrophic lateral sclerosis, spasticity is traditionally thought to be the result of degeneration of the upper motor neurons in the cerebral cortex, although degeneration of other neuronal types, in particular serotonergic neurons, might also represent a cause of spasticity. We performed a pathology study in seven patients with amyotrophic lateral sclerosis and six control subjects and observed that central serotonergic neurons suffer from a degenerative process with prominent neuritic degeneration, and sometimes loss of cell bodies in patients with amyotrophic lateral sclerosis. Moreover, distal serotonergic projections to spinal cord motor neurons and hippocampus systematically degenerated in patients with amyotrophic lateral sclerosis. In SOD1 (G86R) mice, a transgenic model of amyotrophic lateral sclerosis, serotonin levels were decreased in brainstem and spinal cord before onset of motor symptoms. Furthermore, there was noticeable atrophy of serotonin neuronal cell bodies along with neuritic degeneration at disease onset. We hypothesized that degeneration of serotonergic neurons could underlie spasticity in amyotrophic lateral sclerosis and investigated this hypothesis in vivo using tail muscle spastic-like contractions in response to mechanical stimulation as a measure of spasticity. In SOD1 (G86R) mice, tail muscle spastic-like contractions were observed at end-stage. Importantly, they were abolished by 5-hydroxytryptamine-2b/c receptors inverse agonists. In line with this, 5-hydroxytryptamine-2b receptor expression was strongly increased at disease onset. In all, we show that serotonergic neurons degenerate during amyotrophic lateral sclerosis, and that this might underlie spasticity in mice. Further research is needed to determine whether inverse agonists of 5-hydroxytryptamine-2b/c receptors could be of interest in treating spasticity in patients with amyotrophic lateral sclerosis.
Intra-operatively measured spastic semimembranosus forces of children with cerebral palsy.
Yucesoy, Can A; Temelli, Yener; Ateş, Filiz
2017-10-01
The knee kept forcibly in a flexed position is typical in cerebral palsy. Using a benchmark, we investigate intra-operatively if peak spastic hamstring force is measured in flexed knee positions. This tests the assumed shift of optimal length due to adaptation of spastic muscle and a decreasing force trend towards extension. Previously we measured spastic gracilis (GRA) and semitendinosus (ST) forces. Presently, we studied spastic semimembranosus (SM) and tested the following hypotheses: spastic SM forces are (1) high in flexed and (2) low in extended positions. We compared the data to those of GRA and ST to test (3) if percentages of peak force produced in flexed positions are different. During muscle lengthening surgery of 8 CP patients (9years, 4months; GMFCS levels=II-IV; limbs tested=13) isometric SM forces were measured from flexion (120°) to full extension (0°). Spastic SM forces were low in flexed knee positions (only 4.2% (3.4%) and 10.7% (9.7%) of peak force at KA=120° and KA=90° respectively, indicating less force production compared to the GRA or ST) and high in extended knee positions (even 100% of peak force at KA=0°). This indicates an absence of strong evidence for a shift of optimal muscle length of SM towards flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Johnson, Liam; Bird, Marie-Louise; Muthalib, Makii; Teo, Wei-Peng
2018-01-09
The STRoke Interactive Virtual thErapy (STRIVE) intervention provides community-dwelling stroke survivors access to individualised, remotely supervised progressive exercise training via an online platform. This trial aims to determine the clinical efficacy of the STRIVE intervention and its effect on brain activity in community-dwelling stroke survivors. In a multisite, assessor-blinded randomised controlled trial, 60 stroke survivors >3 months poststroke with mild-to-moderate upper extremity impairment will be recruited and equally randomised by location (Melbourne, Victoria or Launceston, Tasmania) to receive 8 weeks of virtual therapy (VT) at a local exercise training facility or usual care. Participants allocated to VT will perform 3-5 upper limb exercises individualised to their impairment severity and preference, while participants allocated to usual care will be asked to maintain their usual daily activities. The primary outcome measures will be upper limb motor function and impairment, which will be assessed using the Action Research Arm Test and Upper Extremity Fugl-Meyer, respectively. Secondary outcome measures include upper extremity function and spasticity, as measured by the box and block test and Modified AshworthScale, respectively, and task-related changes in bilateral sensorimotor cortex haemodynamics during hand reaching and wrist extension movements as measured by functional near-infrared spectroscopy. Quality of life will be measured using the Euro-Quality of Life-5 Dimension-5 Level Scale, and the Motor Activity Log-28 will be used to measure use of the hemiparetic arm. All measures will be assessed at baseline and immediately postintervention. The study was approved by the Deakin University Human Research Ethics Committee in May 2017 (No. 2017-087). The results will be disseminated in peer-reviewed journals and presented at major international stroke meetings. ACTRN12617000745347; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Bird, Marie-Louise; Muthalib, Makii
2018-01-01
Introduction The STRoke Interactive Virtual thErapy (STRIVE) intervention provides community-dwelling stroke survivors access to individualised, remotely supervised progressive exercise training via an online platform. This trial aims to determine the clinical efficacy of the STRIVE intervention and its effect on brain activity in community-dwelling stroke survivors. Methods and analysis In a multisite, assessor-blinded randomised controlled trial, 60 stroke survivors >3 months poststroke with mild-to-moderate upper extremity impairment will be recruited and equally randomised by location (Melbourne, Victoria or Launceston, Tasmania) to receive 8 weeks of virtual therapy (VT) at a local exercise training facility or usual care. Participants allocated to VT will perform 3–5 upper limb exercises individualised to their impairment severity and preference, while participants allocated to usual care will be asked to maintain their usual daily activities. The primary outcome measures will be upper limb motor function and impairment, which will be assessed using the Action Research Arm Test and Upper Extremity Fugl-Meyer, respectively. Secondary outcome measures include upper extremity function and spasticity, as measured by the box and block test and Modified AshworthScale, respectively, and task-related changes in bilateral sensorimotor cortex haemodynamics during hand reaching and wrist extension movements as measured by functional near-infrared spectroscopy. Quality of life will be measured using the Euro-Quality of Life-5 Dimension-5 Level Scale, and the Motor Activity Log-28 will be used to measure use of the hemiparetic arm. All measures will be assessed at baseline and immediately postintervention. Ethics and dissemination The study was approved by the Deakin University Human Research Ethics Committee in May 2017 (No. 2017–087). The results will be disseminated in peer-reviewed journals and presented at major international stroke meetings. Trial registration number ACTRN12617000745347; Pre-results. PMID:29317414
A Locus for Autosomal Dominant Hereditary Spastic Ataxia, SAX1, Maps to Chromosome 12p13
Meijer, I. A.; Hand, C. K.; Grewal, K. K.; Stefanelli, M. G.; Ives, E. J.; Rouleau, G. A.
2002-01-01
The hereditary spastic ataxias (HSA) are a group of clinically heterogeneous neurodegenerative disorders characterized by lower-limb spasticity and generalized ataxia. HSA was diagnosed in three unrelated autosomal dominant families from Newfoundland, who presented mainly with severe leg spasticity, dysarthria, dysphagia, and ocular-movement abnormalities. A genomewide scan was performed on one family, and linkage to a novel locus for HSA on chromosome 12p13, which contains the as-yet-unidentified gene locus SAX1, was identified. Fine mapping confirmed linkage in the two large families, and the third, smaller family showed LOD scores suggestive of linkage. Haplotype construction by use of 13 polymorphic markers revealed that all three families share a disease haplotype, which key recombinants and overlapping haplotypes refine to ∼5 cM, flanked by markers D12S93 and GATA151H05. SAX1 is the first locus mapped for autosomal dominant HSA. PMID:11774073
Use of Hybrid Assistive Limb (HAL®) for a postoperative patient with cerebral palsy: a case report.
Mataki, Yuki; Kamada, Hiroshi; Mutsuzaki, Hirotaka; Shimizu, Yukiyo; Takeuchi, Ryoko; Mizukami, Masafumi; Yoshikawa, Kenichi; Takahashi, Kazushi; Matsuda, Mayumi; Iwasaki, Nobuaki; Kawamoto, Hiroaki; Wadano, Yasuyoshi; Sankai, Yoshiyuki; Yamazaki, Masashi
2018-03-27
The Hybrid Assistive Limb (HAL ® ) is an exoskeleton wearable robot suit that assists in voluntary control of knee and hip joint motion. There have been several studies on HAL intervention effects in stroke, spinal cord injury, and cerebral palsy. However, no study has investigated HAL intervention for patients with cerebral palsy after surgery. We report a case of using HAL in a postoperative patient with cerebral palsy. A 15-year-old boy was diagnosed with spastic diplegia cerebral palsy Gross Motor Function Classification System level IV, with knee flection contracture, equinus foot, and paralysis of the right upper extremity with adduction contracture. He underwent tendon lengthening of the bilateral hamstrings and Achilles tendons. Although the flexion contractures of the bilateral knees and equinus foot improved, muscle strength decreased after the soft tissue surgery. HAL intervention was performed twice during postoperative months 10 and 11. Walking speed, stride, and cadence were increased after HAL intervention. Post HAL intervention, extension angles of the knee in stance phase and hip in the pre-swing phase were improved. In the gait cycle, the proportion of terminal stance in the stance and swing phase was increased. Hybrid Assistive Limb intervention for postoperative patients with cerebral palsy whose muscle strength decreases can enhance improvement in walking ability. Further studies are needed to examine the safety and potential application of HAL in this setting.
Miller, Laura; Ziviani, Jenny; Ware, Robert S; Boyd, Roslyn N
2014-10-01
To determine the extent to which children's mastery motivation predicts occupational performance outcomes following upper limb intervention (ULI). In this cohort study, participants received 45 hours of ULI, either in an intensive group-based or distributed individualized model. The Dimensions of Mastery Questionnaire (DMQ) measured mastery motivation at baseline. Occupational performance outcomes were assessed at baseline and 13 weeks' post-intervention using the Canadian Occupational Performance Measure (COPM). Multivariable models determined the contribution of mastery motivation to COPM outcome irrespective of group membership. Forty-two children with congenital hemiplegia (29 males, 13 females; mean age 7y 8mo [SD 2y 2mo]; range 5y 1mo-12y 8mo; Manual Ability Classification System [MACS] I=20 and II=22; predominant motor type unilateral spastic n=41) participated in the study. Significant gains were seen in COPM performance and satisfaction scores (p<0.001) post-intervention with no between group differences. Children who had greater persistence with object-oriented tasks (p=0.02) and better manual ability (p=0.03) achieved higher COPM performance scores at 13 weeks. Children's persistence on object-oriented tasks was the strongest predictor of COPM satisfaction (p=0.01). Children's persistence with object-oriented tasks as well as manual abilities needs to be considered when undertaking ULI. Predetermining children's motivational predispositions can assist clinicians to tailor therapy sessions individually based on children's strengths, contributing to effective engagement in ULI. © 2014 Mac Keith Press.
The swimming test is effective for evaluating spasticity after contusive spinal cord injury
Ryu, Youngjae; Ogata, Toru; Nagao, Motoshi; Kitamura, Taku; Morioka, Kazuhito; Ichihara, Yoshinori; Doi, Toru; Sawada, Yasuhiro; Akai, Masami; Nishimura, Ryohei; Fujita, Naoki
2017-01-01
Spasticity is a frequent chronic complication in individuals with spinal cord injury (SCI). However, the severity of spasticity varies in patients with SCI. Therefore, an evaluation method is needed to determine the severity of spasticity. We used a contusive SCI model that is suitable for clinical translation. In this study, we examined the feasibility of the swimming test and an EMG for evaluating spasticity in a contusive SCI rat model. Sprague-Dawley rats received an injury at the 8th thoracic vertebra. Swimming tests were performed 3 to 6 weeks after SCI induction. We placed the SCI rats into spasticity-strong or spasticity-weak groups based on the frequency of spastic behavior during the swimming test. Subsequently, we recorded the Hoffman reflex (H-reflex) and examined the immunoreactivity of serotonin (5-HT) and its receptor (5-HT2A) in the spinal tissues of the SCI rats. The spasticity-strong group had significantly decreased rate-dependent depression of the H-reflex compared to the spasticity-weak group. The area of 5-HT2A receptor immunoreactivity was significantly increased in the spasticity-strong group. Thus, both electrophysiological and histological evaluations indicate that the spasticity-strong group presented with a more severe upper motor neuron syndrome. We also observed the groups in their cages for 20 hours. Our results suggest that the swimming test provides an accurate evaluation of spasticity in this contusive SCI model. We believe that the swimming test is an effective method for evaluating spastic behaviors and developing treatments targeting spasticity after SCI. PMID:28182676
The swimming test is effective for evaluating spasticity after contusive spinal cord injury.
Ryu, Youngjae; Ogata, Toru; Nagao, Motoshi; Kitamura, Taku; Morioka, Kazuhito; Ichihara, Yoshinori; Doi, Toru; Sawada, Yasuhiro; Akai, Masami; Nishimura, Ryohei; Fujita, Naoki
2017-01-01
Spasticity is a frequent chronic complication in individuals with spinal cord injury (SCI). However, the severity of spasticity varies in patients with SCI. Therefore, an evaluation method is needed to determine the severity of spasticity. We used a contusive SCI model that is suitable for clinical translation. In this study, we examined the feasibility of the swimming test and an EMG for evaluating spasticity in a contusive SCI rat model. Sprague-Dawley rats received an injury at the 8th thoracic vertebra. Swimming tests were performed 3 to 6 weeks after SCI induction. We placed the SCI rats into spasticity-strong or spasticity-weak groups based on the frequency of spastic behavior during the swimming test. Subsequently, we recorded the Hoffman reflex (H-reflex) and examined the immunoreactivity of serotonin (5-HT) and its receptor (5-HT2A) in the spinal tissues of the SCI rats. The spasticity-strong group had significantly decreased rate-dependent depression of the H-reflex compared to the spasticity-weak group. The area of 5-HT2A receptor immunoreactivity was significantly increased in the spasticity-strong group. Thus, both electrophysiological and histological evaluations indicate that the spasticity-strong group presented with a more severe upper motor neuron syndrome. We also observed the groups in their cages for 20 hours. Our results suggest that the swimming test provides an accurate evaluation of spasticity in this contusive SCI model. We believe that the swimming test is an effective method for evaluating spastic behaviors and developing treatments targeting spasticity after SCI.
[Physiotherapy for spasticity].
Albert, T; Yelnik, A
2003-05-01
The aims of physiotherapy techniques used for the treatment of spasticity are to favor sensorimotor recovery and gesture relearning and to lead to an optimal independence in daily life activities. For stroke and head injury patients, there are several techniques sometimes based on opposing principles. The concept of Bobath tries to inhibit the spastic paralysis and the associated reactions to improve the voluntary motricity of limbs with the ultimate goal of enabling exercises in a functional situation, sometimes after a very long period of therapy. On the contrary, according to the concept of Brunnstom, the goal of exercise is to strengthen the spastic paralysis and the associated reactions to enable the upright position and walking as soon as possible. This technique is especially used in very severe deficiencies where the aim is to avoid the bedridden situation. Three active principles can be identified for neurological rehabilitation. Electrical stimulation is not used routinely by rehabilitation teams. It allows to reduce the spasticity of antagonist muscles working against stimulated muscles. It participates in improving the strength of contraction of weak muscles notably in subjects with incomplete paraplegia. Finally, it can be used to improve or replace a functional command (lifting the foot during walking, for example). Nevertheless, electrical stimulation cannot replace basic rehabilitation exercises.
Kuo, Hsing-Ching; Friel, Kathleen M; Gordon, Andrew M
2018-02-01
Children with unilateral spastic cerebral palsy (CP) often have mirror movements, i.e. involuntary imitations of unilateral voluntary movements of the contralateral upper extremity. The pathophysiology of mirror movements has been investigated in small and heterogeneous cohorts in the literature. Specific pathophysiology of mirror movements and their impact on upper extremity function require systematic investigation in larger and homogeneous cohorts of children with unilateral spastic CP. Here we review two possible neurophysiological mechanisms underlying mirror movements in children with CP and those with typical development: (1) an ipsilateral corticospinal tract projecting from the contralesional motor cortex (M1) to both upper extremities; (2) insufficient interhemispheric inhibition between the two M1s. We also discuss clinical implications of mirror movements in children with unilateral CP and suggest that a thorough examination of the relationship between the pathophysiology and clinical manifestations of mirror movements is warranted. We suggest two premises: (1) the presence of mirror movements is indicative of an ipsilateral corticospinal tract reorganization; and (2) the corticospinal tract organization may affect patients' responses to certain treatment. If these premises are supported through future research, mirror movements should be clinically evaluated for patient selection to maximize benefits of therapy, hence promoting individualized medicine in this population. Mirror movements may be indicative of the underlying corticospinal tract reorganization in children with unilateral spastic cerebral palsy (CP). Future research will benefit from systematic investigations of the relationship between mirror movements and its pathophysiology. Mirror movements may be a potential biomarker for individualized medicine in children with unilateral spastic CP. © 2017 Mac Keith Press.
Best Practices for Intrathecal Baclofen Therapy: Patient Selection.
Saulino, Michael; Ivanhoe, Cindy B; McGuire, John R; Ridley, Barbara; Shilt, Jeffrey S; Boster, Aaron L
2016-08-01
When spasticity interferes with comfort, function, activities of daily living, mobility, positioning, or caregiver assistance, patients should be considered for intrathecal baclofen (ITB) therapy. An expert panel consulted on best practices. ITB can be considered for problematic spasticity involving muscles/muscle groups during all phases of diseases, including progressive neurologic diseases. ITB alone or with other treatments should not be exclusively reserved for individuals who have failed other approaches. ITB combined with rehabilitation can be effective in certain ambulatory patients. ITB is also highly effective in managing spasticity in children, who may suffer limb deformity, joint dislocation, and poor motor function from spasticity and muscle tightness on the growing musculoskeletal system. Spasticity management often allows individuals to achieve higher function. When cognition is impaired, ITB controls spasticity without the cognitive side effects of some oral medications. Goal setting addresses expectations and treatment in the framework of pathology, impairment, and disability. ITB is contraindicated in patients with hypersensitivity to baclofen, which is rare, or active infection. Some patients with an adverse reaction to oral baclofen may be mistakenly classified as having an allergic reaction and may benefit from ITB. Relative contraindications include unrealistic goals, unmanageable mental health issues, psychosocial factors affecting compliance, and financial burden. Vascular shunting for hydrocephalus is not a contraindication, but concurrent use may affect cerebrospinal fluid flow. Seizures or prior abdominal or pelvic surgery should be discussed before proceeding to an ITB screening test. ITB should be considered when spasticity interferes with comfort or function. © 2016 International Neuromodulation Society.
Upper limb injury in rugby union football: results of a cohort study.
Usman, Juliana; McIntosh, Andrew Stuart
2013-04-01
There have been few in-depth studies of upper limb injury epidemiology in rugby union football, despite reports that they accounted for between 14% and 28% of all rugby injuries. To report on upper limb injury incidence, injury severity and to identify the risk factors associated with upper limb injuries, for example, level of play, season (years) and playing position. Prospective cohort study across five rugby seasons from 2004 to 2008. Formal rugby competitions-suburban, provincial and international. 1475 adult male rugby players in Colts, Grade and Elite competitions. An upper limb injury resulting in a missed game and its characteristics. A total of 61 598 athletic exposures (AE) and 606 upper limb injuries were recorded. About 66% of the injuries were to the shoulder. The overall upper limb injury incidence rate (IIR) was 9.84 injuries/1000 AE (95% CI 9.06 to 10.62). Statistically significant associations were found between upper limb injuries and level of play; and between shoulder injuries and playing position (p<0.05). No association was found between upper limb and shoulder injuries and study year. The overall upper limb IIR decreased as the level of play increased; 10.74 upper limb injuries/1000 AE (95% CI 9.93 to 11.56) in Colts to 6.07 upper limb injuries/1000 AE (95% CI 5.46 to 6.69) in Elite. The upper limb IIR decreased as the level of play increased indicating that age, level of skill and playing experience may be risk factors for upper limb injury.
van der Linden, Marietta L; Jahed, Sadaf; Tennant, Nicola; Verheul, Martine H G
2018-03-01
RaceRunning enables athletes with limited or no walking ability to propel themselves independently using a three-wheeled running bike that has a saddle and a chest plate for support but no pedals. For RaceRunning to be included as a Para athletics event, an evidence-based classification system is required. Therefore, the aim of this study was to assess the association between a range of impairment measures and RaceRunning performance. The following impairment measures were recorded: lower limb muscle strength assessed using Manual Muscle Testing (MMT), selective voluntary motor control assessed using the Selective Control Assessment of the Lower Extremity (SCALE), spasticity recorded using both the Australian Spasticity Assessment Score (ASAS) and Modified Ashworth Scale (MAS), passive range of motion (ROM) of the lower extremities and the maximum static step length achieved on a stationary bike (MSSL). Associations between impairment measures and 100-meter race speed were assessed using Spearman's correlation coefficients. Sixteen male and fifteen female athletes (27 with cerebral palsy), aged 23 (SD = 7) years, Gross Motor Function Classification System levels ranging from II to V, participated. The MSSL averaged over both legs and the ASAS, MAS, SCALE, and MMT summed over all joints and both legs, significantly correlated with 100 m race performance (rho: 0.40-0.54). Passive knee extension was the only ROM measure that was significantly associated with race speed (rho = 0.48). These results suggest that lower limb spasticity, isometric leg strength, selective voluntary motor control and passive knee extension impact performance in RaceRunning athletes. This supports the potential use of these measures in a future evidence-based classification system. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Yi; Wei, Qingchuan; Gou, Wei; He, Chengqi
2018-04-01
To investigate the effects of mirror therapy on walking ability, balance and lower limb motor recovery in patients with stroke. MEDLINE, EMBASE, Web of Science, CENTRAL, PEDro Database, CNKI, VIP, Wan Fang, ClinicalTrials.gov, Current controlled trials and Open Grey were searched for randomized controlled trials that investigated the effects of mirror therapy on lower limb function through January 2018. The primary outcomes included were walking speed, mobility and balance function. Secondary outcomes included lower limb motor recovery, spasticity and range of motion. Quality assessments were performed with the PEDro scale. A total of 13 studies ( n = 572) met the inclusion criteria. A meta-analysis demonstrated a significant effect of mirror therapy on walking speed (mean difference (MD) 0.1 m/s, 95% confidence interval (CI): 0.08 to 0.12, P < 0.00001), balance function (standard mean difference (SMD) 0.66, 95% CI: 0.43 to 0.88, P < 0.00001), lower limb motor recovery (SMD 0.83, 95% CI: 0.62 to 1.05, P < 0.00001) and passive range of motion of ankle dorsiflexion (MD 2.07°, 95% CI: 082 to 3.32, P = 0.001), without improving mobility (SMD 0.43, 95% CI: -0.12 to 0.98, P = 0.12) or spasticity of ankle muscles (MD -0.14, 95% CI: -0.43 to 0.15, P = 0.35). The systematic review demonstrates that the use of mirror therapy in addition to some form of rehabilitation appears promising for some areas of lower limb function, but there is not enough evidence yet to suggest when and how to approach this therapy.
Stampacchia, Giulia; Gerini, Adriana; Mazzoleni, Stefano
2016-04-06
Intrathecal Baclofen is available to treat severe generalized spasticity in Multiple Sclerosis (MS) unresponsive to oral drug delivery. The aims of this study were to investigate the effects and the drug dosage of intrathecal Baclofen in a selected population of MS patients, affected by severe spasticity at long term follow-up. A prospective cohort study of 14 MS patients is presented. Spasticity and pain were periodically assessed and the Baclofen dosage was adjusted. The initial Baclofen dosage was 136.2 ± 109.3 μg, then it was increased at 12 months to 228.6 ± 179.2 μg (p < 0.05). The subsequent dose adjustments did not result in significant changes up to 76 months. Spasticity on the lower limbs decreased significantly from pre-implantation assessment (median: 3.5, IQR: 3.0-4.0) to 12 months evaluation (median: 0.5, IQR: 0.0-2.0) (p < 0.001); no further decrease was observed after 24 months (median: 0.5, IQR: 0.0-1.5); when pain was present, it decreased. Some effects on cerebellar symptoms were observed. Botulinum toxin injections were used with intrathecal Baclofen therapy. A reduced spasticity and pain was observed after the intrathecal Baclofen infusion for at least 76 months. To obtain these results a dosage adjustment was needed only in the first year after the implantation.
Converging cellular themes for the hereditary spastic paraplegias.
Blackstone, Craig
2018-05-10
Hereditary spastic paraplegias (HSPs) are neurologic disorders characterized by prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. They are among the most genetically-diverse neurologic disorders, with >80 distinct genetic loci and over 60 identified genes. Studies investigating the molecular pathogenesis underlying HSPs have emphasized the importance of converging cellular pathogenic themes in the most common forms of HSP, providing compelling targets for therapy. Most notably, these include organelle shaping and biogenesis as well as membrane and cargo trafficking. Published by Elsevier Ltd.
Cakar, E; Durmus, O; Tekin, L; Dincer, U; Kiralp, M Z
2010-09-01
Ankle foot orthoses (AFO) are commonly used orthotic device in order to restore the ankle foot function and to improve the balance and gait in post-stroke hemiparetic patients. However, there remain some discussions about their effectiveness on long term hemiparetic patients who had mild to moderate spasticity. To investigate the relative effect of prefabricated thermoplastic posterior leaf spring AFO (PLS-AFO) on balance and fall risk. A cross-over interventional study The Department of PMR of a tertiary hospital. Twenty-five chronic post-stroke long duration hemiparetic patients who had Ashworth grade 1-2 spasticity at affected calf muscles and lower limb Brunnstrom stage 2-3 and also able to walk independently without an assistive device. Berg Balance Scale (BERG), and the postural stability test (PST) and the fall risk test (FRT) of Biodex balance systems were used for the assessments. All of the patients were assessed with AFO and without AFO. All assessments were made with footwear. The mean post-stroke duration was 20,32±7,46 months. The BERG scores were 42,12±9,05 without AFO and 47,52±7,77 with AFO; the overall stability scores of FRT were 3,35±1,97 without AFO and 2,69±1,65 with AFO (P<0,001). It was found that the prefabricated thermoplastic PLS-AFO improve balance and provide fall risk reduction in chronic post-stroke ambulatory hemiparetic patients who had mild to moderate spasticity on their affected lower limb. These results encourage the usage of AFO on long duration hemiparetic patients in order to provide better balance and lesser fall risk.
Rose, Jessica; Cahill-Rowley, Katelyn; Butler, Erin E
2017-11-01
Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP. NMES may also be applied to specific lumbar-sacral sensory roots to reduce spasticity. Development of tablet computer-based multichannel NMES can leverage lightweight, wearable wireless stimulators, advanced control design, and surface electrodes to activate lower-limb muscles. Musculoskeletal models have been used to characterize muscle contributions to unimpaired gait and identify high muscle demands, which can help guide multichannel NMES-assisted gait protocols. In addition, patient-specific NMES-assisted gait protocols based on 3D gait analysis can facilitate the appropriate activation of lower-limb muscles to achieve a more functional gait: stance-phase hip and knee extension and swing-phase sequence of hip and knee flexion followed by rapid knee extension. NMES-assisted gait treatment can be conducted as either clinic-based or home-based programs. Rigorous testing of multichannel NMES-assisted gait training protocols will determine optimal treatment dosage for future clinical trials. Evidence-based outcome evaluation using 3D kinematics or temporal-spatial gait parameters will help determine immediate neuroprosthetic effects and longer term neurotherapeutic effects of step-initiated, multichannel NMES-assisted gait in children with spastic CP. Multichannel NMES is a promising assistive technology to help children with spastic CP achieve a more upright, functional gait. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Vaivre-Douret, Laurence; Lalanne, Christophe; Golse, Bernard
2016-01-01
Background: Developmental Coordination Disorder (DCD) defines a heterogeneous class of children exhibiting marked impairment in motor coordination as a general group of deficits in fine and gross motricity (subtype mixed group) common to all research studies, and with a variety of other motor disorders that have been little investigated. No consensus about symptoms and etiology has been established. Methods: Data from 58 children aged 6 to 13 years with DCD were collected on DSM-IV criteria, similar to DSM-5 criteria. They had no other medical condition and inclusion criteria were strict (born full-term, no medication, no occupational/physical therapy). Multivariate statistical methods were used to evidence relevant interactions between discriminant features in a general DCD subtype group and to highlight specific co-morbidities. The study examined age-calibrated standardized scores from completed assessments of psychological, neuropsychological, and neuropsychomotor functions, and more specifically the presence of minor neurological dysfunctions (MND) including neurological soft signs (NSS), without evidence of focal neurological brain involvement. These were not considered in most previous studies. Results: Findings show the salient DCD markers for the mixed subtype (imitation of gestures, digital perception, digital praxia, manual dexterity, upper, and lower limb coordination), vs. surprising co-morbidities, with 33% of MND with mild spasticity from phasic stretch reflex (PSR), not associated with the above impairments but rather with sitting tone (p = 0.004) and dysdiadochokinesia (p = 0.011). PSR was not specific to a DCD subtype but was related to increased impairment of coordination between upper and lower limbs and manual dexterity. Our results highlight the major contribution of an extensive neuro-developmental assessment (mental and physical). Discussion: The present study provides important new evidence in favor of a complete physical neuropsychomotor assessment, including neuromuscular tone examination, using appropriate standardized neurodevelopmental tools (common tasks across ages with age-related normative data) in order to distinguish motor impairments gathered under the umbrella term of developmental coordination disorders (subcortical vs. cortical). Mild spasticity in the gastrocnemius muscles, such as phasic stretch reflex (PSR), suggests disturbances of the motor pathway, increasing impairment of gross and fine motricity. These findings contribute to understanding the nature of motor disorders in DCD by taking account of possible co-morbidities (corticospinal tract disturbances) to improve diagnosis and adapt treatment programmes in clinical practice. PMID:27148114
Kim, Jong-Hoon; Lee, Jae-Il; Kim, Min-Su
2010-01-01
Objective Selective neurotomy is generally a safe, effective, and long-lasting treatment for patients with spastic equinovarus foot deformity. We retrospectively analyzed the results of microsurgical selective tibial neurotomy (STN) for spastic feet in adults and children. Methods A neurosurgeon selected 32 patients with 45 spastic feet (adults : 13, children : 32) to undergo microsurgical STN between October 1998 and September 2007. A physician of rehabilitation assessed spasticity pre- and postoperatively, that was based on the Ashworth scale, ankle clonus, and the amplitude of ankle dorsiflexion. The mean postoperative follow-up period was 36.7 months in adults and 42.5 months in children. Results Spastic components of the feet were corrected immediately after surgery in both the adult and child groups. The mean Ashworth's grade changed from 3.6 ± 0.40 to 1.6 ± 0.70 in adults and from 3.7 ± 0.69 to 1.4 ± 0.49 in children. Mean ankle clonus decreased markedly, from 1.6 ± 0.79 to 0.3 ± 0.42 in adults and from 1.7 ± 0.65 to 0.3 ± 0.56 in children. The mean amplitude of ankle dorsiflexion was improved, but eight (adults: 4, children: 4) contracted feet needed complementary orthopedic correction for acceptable results. Conclusion STN can be effective in the long-term for improving lower limb function and reduction of equinovarus deformity. Our results demonstrate that STN might be an effective procedure for treating localized harmful spastic feet in adults and children. PMID:20461163
Potential control of multiple sclerosis by cannabis and the endocannabinoid system.
Pryce, Gareth; Baker, David
2012-08-01
For many years, multiple sclerosis (MS) patients have been self-medicating with illegal street cannabis to alleviate symptoms associated with MS. Data from animal models of MS and clinical studies have supported the anecdotal data that cannabis can improve symptoms such as limb spasticity, which are commonly associated with progressive MS, by the modulation of excessive neuronal signalling. This has lead to cannabis-based medicines being approved for the treatment of pain and spasticity in MS for the first time. Experimental studies into the biology of the endocannabinoid system have revealed that cannabinoids have activity, not only in symptom relief but also potentially in neuroprotective strategies which may slow disease progression and thus delay the onset of symptoms such as spasticity. This review appraises the current knowledge of cannabinoid biology particularly as it pertains to MS and outlines potential future therapeutic strategies for the treatment of disease progression in MS.
Coroian, Flavia; Jourdan, Claire; Bakhti, Karima; Palayer, Claire; Jaussent, Audrey; Picot, Marie-Christine; Mottet, Denis; Julia, Marc; Bonnin, Huey-Yune; Laffont, Isabelle
2018-02-01
To assess the benefit of isokinetic strengthening of the upper limb (UL) in patients with chronic stroke as compared to passive mobilization. Randomized blinded assessor controlled trial. Physical Medicine and Rehabilitation departments of 2 university hospitals. Patients (N=20) with incomplete hemiplegia (16 men; mean age, 64y; median time since stroke, 32mo). A 6-week comprehensive rehabilitation program, 3d/wk, 3 sessions/d. In addition, a 45-minute session per day was performed using an isokinetic dynamometer, with either isokinetic strengthening of elbow and wrist flexors/extensors (isokinetic strengthening group) or passive joint mobilization (control group). The primary endpoint was the increase in Upper Limb Fugl-Meyer Assessment (UL-FMA) score at day 45 (t1). Secondary endpoints were increases in UL-FMA scores, Box and Block Test scores, muscle strength, spasticity, and Barthel Index at t1, t2 (3mo), and t3 (6mo). Recruitment was stopped early because of excessive fatigue in the isokinetic strengthening group. The increase in UL-FMA score at t1 was 3.5±4.4 in the isokinetic strengthening group versus 6.0±4.5 in the control group (P=.2). Gains in distal UL-FMA scores were larger (3.1±2.8) in the control group versus 0.6±2.5 in the isokinetic strengthening group (P=.05). No significant group difference was observed in secondary endpoints. Mixed models confirmed those results. Regarding the whole sample, gains from baseline were significant for the UL-FMA at t1 (+4.8; P<.001), t2, and t3 and for the Box and Block Test at t1 (+3; P=.013) and t2. In a comprehensive rehabilitation program, isokinetic strengthening did not show superiority to passive mobilization for UL rehabilitation. Findings also suggest a sustained benefit in impairments and function of late UL rehabilitation programs for patients with stroke. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Mirror therapy for an adult with central post-stroke pain: a case report.
Corbetta, Davide; Sarasso, Elisabetta; Agosta, Federica; Filippi, Massimo; Gatti, Roberto
2018-01-01
Treatment of central post-stroke pain (CPSP) after a thalamic-capsular stroke is generally based on pharmacological approach as it is low responsive to physiotherapy. In this case report, the use of mirror therapy (MT) for the reduction of CPSP in a subject after a stroke involving thalamus is presented. Five years after a right lenticular-capsular thalamic stroke, despite a good recovery of voluntary movement that guaranteed independence in daily life activities, a 50-year-old woman presented with mild weakness and spasticity, an important sensory loss and a burning pain in the left upper limb. MT for reducing arm pain was administered in 45-min sessions, five days a week, for two consecutive weeks. MT consisted in performing symmetrical movements of both forearms and hands while watching the image of the sound limb reflected by a parasagittal mirror superimposed to the affected limb. Pain severity was assessed using visual analogue scale (VAS) before and after the intervention and at one-year follow-up. After the two weeks of MT, the patient demonstrated 4.5 points reduction in VAS pain score of the hand at rest and 3.9 points during a maximal squeeze left hand contraction. At one-year follow-up, pain reduction was maintained and also extended to the shoulder. This case report shows the successful application of a motor training with a sensory confounding condition (MT) in reducing CPSP in a patient with a chronic thalamic stroke.
Yang, Liu; Tan, Jing-Yu; Ma, Haili; Zhao, Hongjia; Lai, Jinghui; Chen, Jin-Xiu; Suen, Lorna K P
2018-03-22
Spasticity is a common post-stroke complication, and it results in substantial deterioration in the quality of life of patients. Although potential positive effects of warm-needle moxibustion on spasticity after stroke have been observed, evidence on its definitive effect remains uncertain. This study aimed to summarize clinical evidence pertaining to therapeutic effects and safety of warm-needle moxibustion for treating spasticity after stroke. Randomized controlled trials were reviewed systematically on the basis of the Cochrane Handbook for Systematic Reviews of Interventions. The report follows the PRISMA statement. Ten electronic databases (PubMed, CENTRAL, EMBASE, AMED, CINAHL, Web of Science, CBM, CNKI, WanFang, and VIP) were explored, and articles were retrieved manually from two Chinese journals (The Journal of Traditional Chinese Medicine and Zhong Guo Zhen Jiu) through retrospective search. Randomized controlled trials with warm-needle moxibustion as treatment intervention for patients with limb spasm after stroke were included in this review. The risk of bias assessment tool was utilized in accordance with Cochrane Handbook 5.1.0. All included studies reported spasm effect as primary outcome. Effect size was estimated using relative risk, standardized mean difference, or mean difference with a corresponding 95% confidence interval. Review Manager 5.3 was utilized for meta-analysis. Twelve randomized controlled trials with certain methodological flaws and risk of bias were included, and they involved a total of 878 participants. Warm-needle moxibustion was found to be superior to electroacupuncture or acupuncture in reducing spasm and in promoting motor function and daily living activities. Pooled results for spasm effect and motor function were significant when warm-needle moxibustion was compared with electroacupuncture or acupuncture. A comparison of daily living activities indicated significant differences between warm-needle moxibustion and electroacupuncture. However, no difference was observed between warm-needle moxibustion and acupuncture. Warm-needle moxibustion may be a promising intervention to reduce limb spasm as well as improve motor function and daily living activities for stroke patients with spasticity. However, evidence was not conclusive. Rigorously designed randomized controlled trials with sample sizes larger than that in the included trials should be conducted for verification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Delgado, M R.; Hirtz, D; Aisen, M; Ashwal, S; Fehlings, D L.; McLaughlin, J; Morrison, L A.; Shrader, M W.; Tilton, A; Vargus-Adams, J
2010-01-01
Objective: To evaluate published evidence of efficacy and safety of pharmacologic treatments for childhood spasticity due to cerebral palsy. Methods: A multidisciplinary panel systematically reviewed relevant literature from 1966 to July 2008. Results: For localized/segmental spasticity, botulinum toxin type A is established as an effective treatment to reduce spasticity in the upper and lower extremities. There is conflicting evidence regarding functional improvement. Botulinum toxin type A was found to be generally safe in children with cerebral palsy; however, the Food and Drug Administration is presently investigating isolated cases of generalized weakness resulting in poor outcomes. No studies that met criteria are available on the use of phenol, alcohol, or botulinum toxin type B injections. For generalized spasticity, diazepam is probably effective in reducing spasticity, but there are insufficient data on its effect on motor function and its side-effect profile. Tizanidine is possibly effective, but there are insufficient data on its effect on function and its side-effect profile. There were insufficient data on the use of dantrolene, oral baclofen, and intrathecal baclofen, and toxicity was frequently reported. Recommendations: For localized/segmental spasticity that warrants treatment, botulinum toxin type A should be offered as an effective and generally safe treatment (Level A). There are insufficient data to support or refute the use of phenol, alcohol, or botulinum toxin type B (Level U). For generalized spasticity that warrants treatment, diazepam should be considered for short-term treatment, with caution regarding toxicity (Level B), and tizanidine may be considered (Level C). There are insufficient data to support or refute use of dantrolene, oral baclofen, or continuous intrathecal baclofen (Level U). GLOSSARY AAN = American Academy of Neurology; AE = adverse event; AS = Ashworth scale; BoNT-A = botulinum toxin type A; BoNT-B = botulinum toxin type B; CP = cerebral palsy; FDA = Food and Drug Administration; GAS = Goal Attainment Scale; GMFM = Gross Motor Function Measure; ITB = intrathecal baclofen; MAS = Modified Ashworth scale; OT = occupational therapy; PT = physiotherapy; QUEST = Quality of Upper Extremity Skills Test; TS = Tardieu scale. PMID:20101040
Yeh, Chien Hung; Young, Hsu Wen Vincent; Wang, Cheng Yen; Wang, Yung Hung; Lee, Po Lei; Kang, Jiunn Horng; Lo, Men Tzung
2016-10-01
Parameters derived from the goniometer measures in the Pendulum test are insufficient in describing the function of abnormal muscle activity in the spasticity. To explore a quantitative evaluation of muscle activation-movement interaction, we propose a novel index based on phase amplitude coupling (PAC) analysis with the consideration of the relations between movement and surface electromyography (SEMG) activity among 22 hemiplegic stroke patients. To take off trend and noise, we use the empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) of the angular velocity due to its superior decomposing ability in nonlinear oscillations. Shannon entropy based on angular velocity (phase)-envelope of EMG (amplitude) distribution was calculated to demonstrate characteristics of the coupling between SEMG activity and joint movement. We also compare our results with those from traditional methods such as the normalized relaxation index derived from the Pendulum test and the mean root mean square (RMS) of the SEMG signals in the study. Our results show effective discrimination ability between spastic and nonaffected limbs using our method . This study indicates the feasibility of using the novel indices based on the PAC in evaluation the spasticity among the hemiplegic stroke patients with less than three swinging cycles.
Klebe, Stephan; Azzedine, Hamid; Durr, Alexandra; Bastien, Patrick; Bouslam, Naima; Elleuch, Nizar; Forlani, Sylvie; Charon, Celine; Koenig, Michel; Melki, Judith; Brice, Alexis; Stevanin, Giovanni
2006-06-01
The hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by progressive spasticity in the lower limbs. Twenty-nine different loci (SPG) have been mapped so far, and 11 responsible genes have been identified. Clinically, one distinguishes between pure and complex HSP forms which are variably associated with numerous combinations of neurological and extra-neurological signs. Less is known about autosomal recessive forms (ARHSP) since the mapped loci have been identified often in single families and account for only a small percentage of patients. We report a new ARHSP locus (SPG30) on chromosome 2q37.3 in a consanguineous family with seven unaffected and four affected members of Algerian origin living in Eastern France with a significant multipoint lod score of 3.8. Ten other families from France (n = 4), Tunisia (n = 2), Algeria (n = 3) and the Czech Republic (n = 1) were not linked to the newly identified locus thus demonstrating further genetic heterogeneity. The phenotype of the linked family consists of spastic paraparesis and peripheral neuropathy associated with slight cerebellar signs confirmed by cerebellar atrophy on one CT scan.
Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J
2014-01-01
Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP.
Subacute copper-deficiency myelopathy in a patient with occult celiac disease.
Cavallieri, Francesco; Fini, Nicola; Contardi, Sara; Fiorini, Massimo; Corradini, Elena; Valzania, Franco
2017-07-01
Acquired copper deficiency represents a rare cause of progressive myelopathy presenting with sensory ataxia and spastic gait. The time interval from neurological symptoms onset to diagnosis of myelopathy ranges from 2 months to several years in almost all cases, mimicking the clinical course of subacute combined degeneration due to vitamin B12 deficiency. A 60-year-old man, without any gastrointestinal symptoms, developed over the course of one week rapidly progressive gait imbalance, tingling and numbness in his feet and ascending lower limb weakness. Spine magnetic resonance imaging revealed hyperintensity involving cervical and dorsal posterior columns of spinal cord. Blood analysis revealed undetectable serum copper levels, low serum ceruloplasmin and positive serum Immunoglobulin A anti-tissue transglutaminase. Upper gastrointestinal endoscopy was performed revealing duodenal villous atrophy consistent with a malabsorption pattern. A gluten-free diet in association with intravenous then oral copper supplementation prompted sustained normalization of serum copper levels and progressive clinical improvement. We report a rare case of myelopathy induced by copper deficiency secondary to undiagnosed celiac disease, peculiarly presenting with a subacute onset. This case expands the neurological presentation and clinical course of myelopathy due to acquired copper deficiency. We suggest investigation of copper deficiency in patients presenting with subacute or even acute sensory ataxia and spastic gait. Detection of hypocupremia in patients without a previous history of gastric surgery should lead to diagnostic testing for celiac disease even in the absence of any obvious gastrointestinal symptoms.
Oh, Se-Il; Kim, Jin-Kyung; Park, So-Yeon
2015-12-01
[Purpose] This study aimed to examine the effects of visual field with prism glasses, and intensive upper limb functional training on reduction of hemineglect and improvement in upper limb function and activities of daily living in three stroke patients with hemineglect. [Subjects] This study included three stroke patients hospitalized in a sanatorium. [Methods] Intervention treatment involving prism glass use for 12 hours and 30 minutes and paretic side upper limb training was conducted 5 days a week for 15 weeks. Three upper limb training tasks (hitting a balloon, passing through a ring, and reading a newspaper) were performed for 10 minutes each session, for a total of 30 minutes. Line by Section, Motor-Free Visual Perception Test-3 (MVPT-3), Manual Function Test (MFT), Box & Block Test (BBT), and Assessment of Motor and Process Skills (AMPS) were conducted before and after intervention. [Results] Subjects' hemineglect decreased and upper limb function on the paretic side improved after intervention, which enhanced activities of daily living. [Conclusion] Prism glass use and paretic upper limb functional training effectively ameliorated stroke patients' hemineglect and improved upper limb function. Future research should focus on prism glasses that provide a wide visual field for use in patients with different conditions.
Amiri, Mostafa; Nafissi, Shahriar; Jamal-Omidi, Shirin; Amiri, Motahareh; Fatehi, Farzad
2014-12-01
Human T-lymphotropic virus type 1 has been implicated in human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Regarding its endemicity in Iran and the role of repetitive transcranial magnetic stimulation in reducing spasticity, we decided to evaluate the efficacy of repetitive transcranial magnetic stimulation in reducing spasticity (as primary outcome) and pain, muscle power, and quality of life (as secondary outcomes) in patients suffering from HAM/TSP. In this pretest-posttest study, nine definite patients with HAM/TSP (according to WHO guidelines) were recruited. All patients underwent five consecutive daily sessions of active repetitive transcranial magnetic stimulation (each session consisting of 20 trains of 10 pulses at 5 Hz and an intensity of 90% of resting motor threshold for the biceps brachii muscle). Main outcome measures including spasticity (by modified Ashworth scale), pain (by visual analog scale), muscle power, and quality of life (by SF 36) were measured before the study and days 5, 7, 30 after the termination of the sessions. Seven (77.8%) females and 2 (22.2%) males were recruited with the mean age of 52 ± 12.67 years, and the mean duration of the disease was 5 ± 3.94. Comparison of the repeated measures showed a statistically significant decrease in pain and spasticity in lower limbs. The decrement in spasticity was persistent even 30 days after the intervention; however, the pain reduction was seen only 5 days after the procedure. No change in quality of life, and muscle power was detected. It seems that repetitive transcranial magnetic stimulation could decrease spasticity and pain in patients with HAM/TSP, and this effect could persistently continue by 1 month, but it did not influence patients' muscle power and quality of life, and it could be used as an adjuvant therapy in patients suffering from human T-lymphotropic virus type 1-associated HAM/TSP.
[Results of selective posterior radiculetomy at the lumbar and cervical level].
Vlahovitch, B; Fuentes, J M
1975-01-01
At the light of authors' present experience, radicletomy appears as an excellent antalgic operative procedure in the case of roots with high functional risk (brachial plexus and lumbar plexus). In the absence of any motor deficiency or ataxia, it appears that radicletomy is of help in the cure of severe hypertonies of the extremities (sequelae of cerebral stem contusions). Conversely, in the spastic sequelae of hemi- or paraparesias, lumbar-sacral posterior selective radicotomy is a sure procedure that procures results nearly super-imposable to radicletomy with an appreciable gain in time. At last, for what concerns the motor involvements of the upper extremity ending in spasticity, selective radicletomy recovers its rights and has to be preferred to S.P.R. The indications may be summarized as follows: -- At the level of the lower extremities: in the case of paraparetic sequelae or of sequelae due to spastic paraplegia, a S.P.R. has to be performed; for what concerns antalgic surgery, in the absence of motor deficiency, the best indication is radicletomy. -- At the level of the upper extremities: in the case of dystonic sequeale of the cerebral stem, spastic pain bound with hemiplegia or with carcinoma etc. (herpes zoster..), radicletomy constitutes the ideal surgical procedure.
Motor Impairment Evaluation for Upper Limb in Stroke Patients on the Basis of a Microsensor
ERIC Educational Resources Information Center
Huang, Shuai; Luo, Chun; Ye, Shiwei; Liu, Fei; Xie, Bin; Wang, Caifeng; Yang, Li; Huang, Zhen; Wu, Jiankang
2012-01-01
There has been an urgent need for an effective and efficient upper limb rehabilitation method for poststroke patients. We present a Micro-Sensor-based Upper Limb rehabilitation System for poststroke patients. The wearable motion capture units are attached to upper limb segments embedded in the fabric of garments. The body segment orientation…
TALEN-based generation of a cynomolgus monkey disease model for human microcephaly
Ke, Qiong; Li, Weiqiang; Lai, Xingqiang; Chen, Hong; Huang, Lihua; Kang, Zhuang; Li, Kai; Ren, Jie; Lin, Xiaofeng; Zheng, Haiqing; Huang, Weijun; Ma, Yunhan; Xu, Dongdong; Chen, Zheng; Song, Xinming; Lin, Xinyi; Zhuang, Min; Wang, Tao; Zhuang, Fengfeng; Xi, Jianzhong; Mao, Frank Fuxiang; Xia, Huimin; Lahn, Bruce T; Zhou, Qi; Yang, Shihua; Xiang, Andy Peng
2016-01-01
Gene editing in non-human primates may lead to valuable models for exploring the etiologies and therapeutic strategies of genetically based neurological disorders in humans. However, a monkey model of neurological disorders that closely mimics pathological and behavioral deficits in humans has not yet been successfully generated. Microcephalin 1 (MCPH1) is implicated in the evolution of the human brain, and MCPH1 mutation causes microcephaly accompanied by mental retardation. Here we generated a cynomolgus monkey (Macaca fascicularis) carrying biallelic MCPH1 mutations using transcription activator-like effector nucleases. The monkey recapitulated most of the important clinical features observed in patients, including marked reductions in head circumference, premature chromosome condensation (PCC), hypoplasia of the corpus callosum and upper limb spasticity. Moreover, overexpression of MCPH1 in mutated dermal fibroblasts rescued the PCC syndrome. This monkey model may help us elucidate the role of MCPH1 in the pathogenesis of human microcephaly and better understand the function of this protein in the evolution of primate brain size. PMID:27502025
Meyer, Sarah; Karttunen, Auli H; Thijs, Vincent; Feys, Hilde; Verheyden, Geert
2014-09-01
The association between somatosensory impairments and outcome after stroke remains unclear. The aim of this study was to systematically review the available literature on the relationship between somatosensory impairments in the upper limb and outcome after stroke. The electronic databases PubMed, CINAHL, EMBASE, Cochrane Library, PsycINFO, and Web of Science were systematically searched from inception until July 2013. Studies were included if adult patients with stroke (minimum n=10) were examined with reliable and valid measures of somatosensation in the upper limb to investigate the relationship with upper limb impairment, activity, and participation measures. Exclusion criteria included measures of somatosensation involving an overall score for upper and lower limb outcome and articles including only lower limb outcomes. Eligibility assessment, data extraction, and quality evaluation were completed by 2 independent reviewers. A cutoff score of ≥65% of the maximal quality score was used for further inclusion in this review. Six articles met all inclusion criteria. Two-point discrimination was shown to be predictive for upper limb dexterity, and somatosensory evoked potentials were shown to have predictive value in upper limb motor recovery. Proprioception was significantly correlated with perceived level of physical activity and social isolation and had some predictive value in functional movements of the upper limb. Finally, the combination of light touch and proprioception impairment was shown to be significantly related to upper limb motor recovery as well as handicap situations during activities of daily living. Heterogeneity of the included studies warrants caution when interpreting results. Large variation in results was found due to heterogeneity of the studies. However, somatosensory deficits were shown to have an important role in upper limb motor and functional performance after stroke. © 2014 American Physical Therapy Association.
Isolated primary lymphedema tarda of the upper limb.
Shariati, Farzaneh; Ravari, Hasan; Kazemzadeh, Gholamhossein; Sadeghi, Ramin
2013-03-01
Primary lymphedema tarda is considered as a congenital disease with late presentation. Primary lymphedema tarda usually affects lower limbs, and primary lymphedema tarda of the upper limbs usually accompanies lower limb lymphedema. In the current case report, we present an 80-year-old male patient with isolated left upper limb swelling that lymphoscintigraphy imaging proved to be lymphedema.
Ekelem, Andrew; Goldfarb, Michael
2018-01-01
Spasticity is a common comorbidity associated with spinal cord injury (SCI). Robotic exoskeletons have recently emerged to facilitate legged mobility in people with motor complete SCI. Involuntary muscle activity attributed to spasticity, however, can prevent such individuals from using an exoskeleton. Specifically, although most exoskeleton technologies can accommodate low to moderate spasticity, the presence of moderate to severe spasticity can significantly impair gait kinematics when using an exoskeleton. In an effort to potentially enable individuals with moderate to severe spasticity to use exoskeletons more effectively, this study investigates the use of common peroneal stimulation in conjunction with exoskeleton gait assistance. The electrical stimulation is timed with the exoskeleton swing phase, and is intended to acutely suppress extensor spasticity through recruitment of the flexion withdrawal reflex (i.e., while the stimulation is activated) to enable improved exoskeletal walking. In order to examine the potential efficacy of this approach, two SCI subjects with severe extensor spasticity (i.e., modified Ashworth ratings of three to four) walked in an exoskeleton with and without supplemental stimulation while knee and hip motion was measured during swing phase. Stimulation was alternated on and off every ten steps to eliminate transient therapeutic effects, enabling the acute effects of stimulation to be isolated. These experiments indicated that common peroneal stimulation on average increased peak hip flexion during the swing phase of walking by 21.1° (236%) and peak knee flexion by 14.4° (56%). Additionally, use of the stimulation decreased the swing phase RMS motor current by 228 mA (15%) at the hip motors and 734 mA (38%) at the knee motors, indicating improved kinematics were achieved with reduced effort from the exoskeleton. Walking with the exoskeleton did not have a significant effect on modified Ashworth scores, indicating the common peroneal stimulation has only acute effects on suppressing extensor tone and aiding flexion. This preliminary data indicates that such supplemental stimulation may be used to improve the quality of movement provided by exoskeletons for persons with severe extensor spasticity in the lower limb.
Ekelem, Andrew; Goldfarb, Michael
2018-01-01
Spasticity is a common comorbidity associated with spinal cord injury (SCI). Robotic exoskeletons have recently emerged to facilitate legged mobility in people with motor complete SCI. Involuntary muscle activity attributed to spasticity, however, can prevent such individuals from using an exoskeleton. Specifically, although most exoskeleton technologies can accommodate low to moderate spasticity, the presence of moderate to severe spasticity can significantly impair gait kinematics when using an exoskeleton. In an effort to potentially enable individuals with moderate to severe spasticity to use exoskeletons more effectively, this study investigates the use of common peroneal stimulation in conjunction with exoskeleton gait assistance. The electrical stimulation is timed with the exoskeleton swing phase, and is intended to acutely suppress extensor spasticity through recruitment of the flexion withdrawal reflex (i.e., while the stimulation is activated) to enable improved exoskeletal walking. In order to examine the potential efficacy of this approach, two SCI subjects with severe extensor spasticity (i.e., modified Ashworth ratings of three to four) walked in an exoskeleton with and without supplemental stimulation while knee and hip motion was measured during swing phase. Stimulation was alternated on and off every ten steps to eliminate transient therapeutic effects, enabling the acute effects of stimulation to be isolated. These experiments indicated that common peroneal stimulation on average increased peak hip flexion during the swing phase of walking by 21.1° (236%) and peak knee flexion by 14.4° (56%). Additionally, use of the stimulation decreased the swing phase RMS motor current by 228 mA (15%) at the hip motors and 734 mA (38%) at the knee motors, indicating improved kinematics were achieved with reduced effort from the exoskeleton. Walking with the exoskeleton did not have a significant effect on modified Ashworth scores, indicating the common peroneal stimulation has only acute effects on suppressing extensor tone and aiding flexion. This preliminary data indicates that such supplemental stimulation may be used to improve the quality of movement provided by exoskeletons for persons with severe extensor spasticity in the lower limb. PMID:29910710
Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.
Roman-Liu, Danuta
2005-01-01
The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.
Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki
2017-11-06
Upper-limb function is important in patients with hip fracture so they can perform activities of daily living and participate in leisure activities. Upper-limb function of these patients, however, has not been thoroughly investigated. The aim of this study was to evaluate the upper-limb motor and sensory functions in patients with hip fracture by comparing these functions with those of community-dwelling older adults (control group). We compared the results of motor and sensory function tests of upper-limb function - range of motion, strength, sensibility, finger dexterity, comprehensive hand function - between patients with hip fracture (n= 32) and the control group (n= 32). Patients with hip fracture had significantly reduced grip strength, pinch strength, finger dexterity, and comprehensive hand function compared with the control group. Most upper-limb functions are impaired in the patients with hip fracture. Thus, upper-limb function of patients with hip fracture should be considered during treatment.
Age Effects on Upper Limb Kinematics Assessed by the REAplan Robot in Healthy School-Aged Children.
Gilliaux, Maxime; Dierckx, Floriane; Vanden Berghe, Lola; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gaëtan; Detrembleur, Christine
2015-05-01
The use of kinematics is recommended to quantitatively evaluate upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish norms in healthy children. Ninety-three healthy children, aged 3-12 years, participated in this study. Twenty-eight kinematic indices were computed from four tasks. Each task was performed with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-four of the 28 indices showed an improvement during childhood. Indeed, older children showed better upper limb movements. This study was the first to use a robotic device to show the age effects on upper limb kinematics and establish norms in healthy children.
Wang, Nan; Ma, Jie; Jin, Dan; Yu, Bin
2017-01-01
Aim . The purpose of this study was to investigate the relationship between upper limbs' three functional partitions and the golden curve. Materials and Methods . We measured 30 subjects' right or left upper limb data and investigate the relationship between them and the golden curve by use of SPSS version 20.0 statistical software (SPSS, Inc., Chicago, Illinois), one-sample t -test. Results . There are four points on human's upper limbs which have no difference with the four points on the golden curve. And there is one point of which the difference is obvious. But we still could draw the conclusion that human upper limbs are accordant with the golden curve. Conclusion . Human upper limbs are accordant with the golden curve.
Trial of Contralateral Seventh Cervical Nerve Transfer for Spastic Arm Paralysis.
Zheng, Mou-Xiong; Hua, Xu-Yun; Feng, Jun-Tao; Li, Tie; Lu, Ye-Chen; Shen, Yun-Dong; Cao, Xiao-Hua; Zhao, Nai-Qing; Lyu, Jia-Ying; Xu, Jian-Guang; Gu, Yu-Dong; Xu, Wen-Dong
2018-01-04
Spastic limb paralysis due to injury to a cerebral hemisphere can cause long-term disability. We investigated the effect of grafting the contralateral C7 nerve from the nonparalyzed side to the paralyzed side in patients with spastic arm paralysis due to chronic cerebral injury. We randomly assigned 36 patients who had had unilateral arm paralysis for more than 5 years to undergo C7 nerve transfer plus rehabilitation (18 patients) or to undergo rehabilitation alone (18 patients). The primary outcome was the change from baseline to month 12 in the total score on the Fugl-Meyer upper-extremity scale (scores range from 0 to 66, with higher scores indicating better function). Results The mean increase in Fugl-Meyer score in the paralyzed arm was 17.7 in the surgery group and 2.6 in the control group (difference, 15.1; 95% confidence interval, 12.2 to 17.9; P<0.001). With regard to improvements in spasticity as measured on the Modified Ashworth Scale (an assessment of five joints, each scored from 0 to 5, with higher scores indicating more spasticity), the smallest between-group difference was in the thumb, with 6, 9, and 3 patients in the surgery group having a 2-unit improvement, a 1-unit improvement, or no change, respectively, as compared with 1, 6, and 7 patients in the control group (P=0.02). Transcranial magnetic stimulation and functional imaging showed connectivity between the ipsilateral hemisphere and the paralyzed arm. There were no significant differences from baseline to month 12 in power, tactile threshold, or two-point discrimination in the hand on the side of the donor graft. The mean increase in Fugl-Meyer score in the paralyzed arm was 17.7 in the surgery group and 2.6 in the control group (difference, 15.1; 95% confidence interval, 12.2 to 17.9; P<0.001). With regard to improvements in spasticity as measured on the Modified Ashworth Scale (an assessment of five joints, each scored from 0 to 5, with higher scores indicating more spasticity), the smallest between-group difference was in the thumb, with 6, 9, and 3 patients in the surgery group having a 2-unit improvement, a 1-unit improvement, or no change, respectively, as compared with 1, 6, and 7 patients in the control group (P=0.02). Transcranial magnetic stimulation and functional imaging showed connectivity between the ipsilateral hemisphere and the paralyzed arm. There were no significant differences from baseline to month 12 in power, tactile threshold, or two-point discrimination in the hand on the side of the donor graft. In this single-center trial involving patients who had had unilateral arm paralysis due to chronic cerebral injury for more than 5 years, transfer of the C7 nerve from the nonparalyzed side to the side of the arm that was paralyzed was associated with a greater improvement in function and reduction of spasticity than rehabilitation alone over a period of 12 months. Physiological connectivity developed between the ipsilateral cerebral hemisphere and the paralyzed hand. (Funded by the National Natural Science Foundation of China and others; Chinese Clinical Trial Registry number, 13004466 .).
Chiu, Hsiu-Ching; Ada, Louise
2016-07-01
Does constraint-induced movement therapy improve activity and participation in children with hemiplegic cerebral palsy? Does it improve activity and participation more than the same dose of upper limb therapy without restraint? Is the effect of constraint-induced movement therapy related to the duration of intervention or the age of the children? Systematic review of randomised trials with meta-analysis. Children with hemiplegic cerebral palsy with any level of motor disability. The experimental group received constraint-induced movement therapy (defined as restraint of the less affected upper limb during supervised activity practice of the more affected upper limb). The control group received no intervention, sham intervention, or the same dose of upper limb therapy. Measures of upper limb activity and participation were used in the analysis. Constraint-induced movement therapy was more effective than no/sham intervention in terms of upper limb activity (SMD 0.63, 95% CI 0.20 to 1.06) and participation (SMD 1.21, 95% CI 0.41 to 2.02). However, constraint-induced movement therapy was no better than the same dose of upper limb therapy without restraint either in terms of upper limb activity (SMD 0.05, 95% CI -0.21 to 0.32) or participation (SMD -0.02, 95% CI -0.34 to 0.31). The effect of constraint-induced movement therapy was not related to the duration of intervention or the age of the children. This review suggests that constraint-induced movement therapy is more effective than no intervention, but no more effective than the same dose of upper limb practice without restraint. PROSPERO CRD42015024665. [Chiu H-C, Ada L (2016) Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review.Journal of Physiotherapy62: 130-137]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Chadwell, Alix; Kenney, Laurence; Granat, Malcolm; Thies, Sibylle; Head, John S; Galpin, Adam
2018-02-01
Current outcome measures used in upper limb myoelectric prosthesis studies include clinical tests of function and self-report questionnaires on real-world prosthesis use. Research in other cohorts has questioned both the validity of self-report as an activity assessment tool and the relationship between clinical functionality and real-world upper limb activity. Previously, 1 we reported the first results of monitoring upper limb prosthesis use. However, the data visualisation technique used was limited in scope. Methodology development. To introduce two new methods for the analysis and display of upper limb activity monitoring data and to demonstrate the potential value of the approach with example real-world data. Upper limb activity monitors, worn on each wrist, recorded data on two anatomically intact participants and two prosthesis users over 1 week. Participants also filled in a diary to record upper limb activity. Data visualisation was carried out using histograms, and Archimedean spirals to illustrate temporal patterns of upper limb activity. Anatomically intact participants' activity was largely bilateral in nature, interspersed with frequent bursts of unilateral activity of each arm. At times when the prosthesis was worn prosthesis users showed very little unilateral use of the prosthesis (≈20-40 min/week compared to ≈350 min/week unilateral activity on each arm for anatomically intact participants), with consistent bias towards the intact arm throughout. The Archimedean spiral plots illustrated participant-specific patterns of non-use in prosthesis users. The data visualisation techniques allow detailed and objective assessment of temporal patterns in the upper limb activity of prosthesis users. Clinical relevance Activity monitoring offers an objective method for the assessment of upper limb prosthesis users' (PUs) activity outside of the clinic. By plotting data using Archimedean spirals, it is possible to visualise, in detail, the temporal patterns of upper limb activity. Further work is needed to explore the relationship between traditional functional outcome measures and real-world prosthesis activity.
Chronic pain associated with upper-limb loss.
Hanley, Marisol A; Ehde, Dawn M; Jensen, Mark; Czerniecki, Joseph; Smith, Douglas G; Robinson, Lawrence R
2009-09-01
To describe the prevalence, intensity, and functional impact of the following types of pain associated with upper-limb loss: phantom limb, residual limb, back, neck, and nonamputated-limb pain. Cross-sectional survey; 104 respondents with upper-limb loss at least 6 months postamputation completed measures of pain intensity, interference, disability, and health-related quality-of-life. Nearly all (90%) of the respondents reported pain, with 76% reporting more than one pain type. Phantom-limb pain and residual-limb pain were the most prevalent (79% and 71%, respectively), followed by back (52%), neck (43%), and nonamputated-limb pain (33%). Although nonamputated-limb pain was least prevalent, it was reported to cause the highest levels of interference and pain-related disability days. Self-reported quality-of-life was significantly lower for individuals with each type of pain compared with those without any pain. Age, time since amputation, and cause of amputation were not associated with pain. In addition to pain in the phantom and residual limb, back, neck, and nonamputated-limb pain are also common after upper-limb loss. All of these pain types are associated with significant disability and activity interference for some individuals, suggesting that assessment of multiple pain types in persons with upper-limb amputation may be important.
A review of supernumerary and absent limbs and digits of the upper limb.
Klaassen, Zachary; Choi, Monica; Musselman, Ruth; Eapen, Deborah; Tubbs, R Shane; Loukas, Marios
2012-03-01
For years people have been enamored by anomalies of the human limbs, particularly supernumerary and absent limbs and digits. Historically, there are a number of examples of such anomalies, including royal families of ancient Chaldea, tribes from Arabia, and examples from across nineteenth century Europe. The development of the upper limbs in a growing embryo is still being elucidated with the recent advent of homeobox genes, but researchers agree that upper limbs develop between stages 12-23 through a complex embryological process. Maternal thalidomide intake during limb development is known to cause limb reduction and subsequent amelia or phocomelia. Additionally, a number of clinical reports have illustrated different limb anomaly cases, with each situation unique in phenotype and developmental abnormality. Supernumerary and absent limbs and digits are not unique to humans, and a number of animal cases have also been reported. This review of the literature illustrates the historical, anatomical, and clinical aspects of supernumerary and absent limbs and digits for the upper limb.
Velstra, Inge-Marie; Bolliger, Marc; Krebs, Jörg; Rietman, Johan S; Curt, Armin
2016-05-01
To determine which single or combined upper limb muscles as defined by the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI); upper extremity motor score (UEMS) and the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP), best predict upper limb function and independence in activities of daily living (ADLs) and to assess the predictive value of qualitative grasp movements (QlG) on upper limb function in individuals with acute tetraplegia. As part of a Europe-wide, prospective, longitudinal, multicenter study ISNCSCI, GRASSP, and Spinal Cord Independence Measure (SCIM III) scores were recorded at 1 and 6 months after SCI. For prediction of upper limb function and ADLs, a logistic regression model and unbiased recursive partitioning conditional inference tree (URP-CTREE) were used. Results: Logistic regression and URP-CTREE revealed that a combination of ISNCSCI and GRASSP muscles (to a maximum of 4) demonstrated the best prediction (specificity and sensitivity ranged from 81.8% to 96.0%) of upper limb function and identified homogenous outcome cohorts at 6 months. The URP-CTREE model with the QlG predictors for upper limb function showed similar results. Prediction of upper limb function can be achieved through a combination of defined, specific upper limb muscles assessed in the ISNCSCI and GRASSP. A combination of a limited number of proximal and distal muscles along with an assessment of grasping movements can be applied for clinical decision making for rehabilitation interventions and clinical trials. © The Author(s) 2015.
Larsen, Kerstin L; Maanum, Grethe; Frøslie, Kathrine F; Jahnsen, Reidun
2012-02-01
In the development of a clinical program for ambulant adults with cerebral palsy (CP), we investigated the validity of joint angles measured from sagittal video recordings and explored if movements in the transversal plane identified with three-dimensional gait analysis (3DGA) affected the validity of sagittal video joint angle measurements. Ten observers, and 10 persons with spastic CP (19-63 years), Gross Motor Function Classification System I-II, participated in the study. Concurrent criterion validity between video joint angle measurements and 3DGA was assessed by Bland-Altman plots with mean differences and 95% limits of agreement (LoA). Pearson's correlation coefficients (r) and scatter plots were used supplementary. Transversal kinematics ≥2 SD from our reference band were defined as increased movement in the transversal plane. The overall mean differences in degrees between joint angles measured by 3DGA and video recordings (3°, 5° and -7° for the hip, knee and ankle respectively) and corresponding LoA (18°, 10° and 15° for the hip, knee and ankle, respectively) demonstrated substantial discrepancies between the two methods. The correlations ranged from low (r=0.39) to moderate (r=0.68). Discrepancy between the two measurements was seen both among persons with and without the presence of deviating transversal kinematics. Quantifying lower limb joint angles from sagittal video recordings in ambulant adults with spastic CP demonstrated low validity, and should be conducted with caution. This gives implications for selecting evaluation method of gait. Copyright © 2011 Elsevier B.V. All rights reserved.
Fietzek, U M; Kossmehl, P; Schelosky, L; Ebersbach, G; Wissel, J
2014-08-01
Spastic pes equinovarus is a frequent pathological posture of the lower extremity. Botulinum toxin (BoNT/A) has been successfully applied to treat lower limb spasticity. However, the best time to initiate treatment remains unclear. A beneficial effect of an early treatment has been suggested in previous studies. A single-centre double-blind randomized placebo-controlled trial was performed to investigate the efficacy of BoNT/A to reduce muscle hypertonicity at the ankle. Fifty-two patients with unilateral or bilateral spastic pes equinovarus with a modified Ashworth score (mAS) of at least 1+ after stroke, traumatic brain injury or hypoxic encephalopathy were allocated to receive either BoNT/A or placebo treatment. A second, open injection was optional at week 12. Patients received unilateral or bilateral injections with 230 or 460 U onabotulinumtoxinA, respectively. The course of the mAS was explored during the open study phase. Patients who had received BoNT/A treatment had lower mAS compared with placebo at week 12 (P < 0.01). During the open label phase, patients from the placebo group showed further deterioration of muscle tone despite starting from a similar baseline and receiving BoNT treatment. Spastic feet that had received BoNT/A in the first cycle had comparatively lower mAS scores over all follow-up data and at week 24 (P < 0.01). The study demonstrates a reduction of muscular hypertonicity in spastic pes equines with BoNT/A treatment given during the first 3 months after the lesion. Exploratory analyses of the course of muscular hypertonicity during the open phase favour earlier to later treatment. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.
Strifling, Kelly M B; Konop, Katherine A; Wang, Mei; Harris, Gerald F
2009-01-01
Walkers are prescribed with the notion that one type of walker will be better for a child than another. One underlying justification for this practice is the theory that one walker may produce less stress on the upper extremities as the patient uses the walker. Nevertheless, upper extremity joint loading is not typically analyzed during walker assisted gait in children with spastic diplegic cerebral palsy. It has been difficult to evaluate the theory of walker prescription based on upper extremity stresses because loading on the upper extremities however has not been quantified until recently. In this study, weight bearing on the glenohumeral joints was analyzed in five children with spastic diplegic cerebral palsy using both anterior and posterior walkers fitted with 6-axis handle transducers. Though walkers' effects on the upper extremities proved to be similar between walker types, the differences between the walkers may have some clinical significance in the long run. In general, posterior walker use created larger glenohumeral joint forces. Though these differences are not statistically significant, over time and with repetitive loading they may be clinically significant.
Nam, Seung-Min; Kim, Won-Hyo; Yun, Chang-Kyo
2017-04-01
[Purpose] This study aimed to investigate the effects of multisensory dynamic balance training on muscles thickness such as rectus femoris, anterior tibialis, medial gastrocnemius, lateral gastrocnemius in children with spastic diplegic cerebral palsy by using ultrasonography. [Subjects and Methods] Fifteen children diagnosed with spastic diplegic cerebral palsy were divided randomly into the balance training group and control group. The experimental group only received a multisensory dynamic balance training, while the control group performed general physiotherapy focused balance and muscle strengthening exercise based Neurodevelopmental treatment. Both groups had a therapy session for 30 minutes per day, three times a week for six weeks. The ultrasonographic muscle thickness were obtained in order to compare and analyze muscle thickness before and after in each group. [Result] The experimental group had significant increases in muscle thickness in the rectus femoris, tibialis anterior, medial gastrocnemius and lateral gastrocnemius muscles. The control group had significant increases in muscle thickness in the tibialis anterior. The test results of the rectus femoris, medial gastrocnemius and lateral gastrocnemius muscle thickness values between the groups showed significant differences. [Conclusion] In conclusion, a multisensory dynamic balance training can be recommended as a treatment method for patients with spastic diplegic cerebral palsy.
Facts about Upper and Lower Limb Reduction Defects
... its normal size or is missing. What We Know About Upper and Lower Limb Reduction Defects How ... and productive lives. What We Still Do Not Know About Upper and Lower Limb Reduction Defects What ...
Viewing medium affects arm motor performance in 3D virtual environments.
Subramanian, Sandeep K; Levin, Mindy F
2011-06-30
2D and 3D virtual reality platforms are used for designing individualized training environments for post-stroke rehabilitation. Virtual environments (VEs) are viewed using media like head mounted displays (HMDs) and large screen projection systems (SPS) which can influence the quality of perception of the environment. We estimated if there were differences in arm pointing kinematics when subjects with and without stroke viewed a 3D VE through two different media: HMD and SPS. Two groups of subjects participated (healthy control, n=10, aged 53.6 ± 17.2 yrs; stroke, n=20, 66.2 ± 11.3 yrs). Arm motor impairment and spasticity were assessed in the stroke group which was divided into mild (n=10) and moderate-to-severe (n=10) sub-groups based on Fugl-Meyer Scores. Subjects pointed (8 times each) to 6 randomly presented targets located at two heights in the ipsilateral, middle and contralateral arm workspaces. Movements were repeated in the same VE viewed using HMD (Kaiser XL50) and SPS. Movement kinematics were recorded using an Optotrak system (Certus, 6 markers, 100 Hz). Upper limb motor performance (precision, velocity, trajectory straightness) and movement pattern (elbow, shoulder ranges and trunk displacement) outcomes were analyzed using repeated measures ANOVAs. For all groups, there were no differences in endpoint trajectory straightness, shoulder flexion and shoulder horizontal adduction ranges and sagittal trunk displacement between the two media. All subjects, however, made larger errors in the vertical direction using HMD compared to SPS. Healthy subjects also made larger errors in the sagittal direction, slower movements overall and used less range of elbow extension for the lower central target using HMD compared to SPS. The mild and moderate-to-severe sub-groups made larger RMS errors with HMD. The only advantage of using the HMD was that movements were 22% faster in the moderate-to-severe stroke sub-group compared to the SPS. Despite the similarity in majority of the movement kinematics, differences in movement speed and larger errors were observed for movements using the HMD. Use of the SPS may be a more comfortable and effective option to view VEs for upper limb rehabilitation post-stroke. This has implications for the use of VR applications to enhance upper limb recovery. © 2011 Subramanian and Levin; licensee BioMed Central Ltd.
Viewing medium affects arm motor performance in 3D virtual environments
2011-01-01
Background 2D and 3D virtual reality platforms are used for designing individualized training environments for post-stroke rehabilitation. Virtual environments (VEs) are viewed using media like head mounted displays (HMDs) and large screen projection systems (SPS) which can influence the quality of perception of the environment. We estimated if there were differences in arm pointing kinematics when subjects with and without stroke viewed a 3D VE through two different media: HMD and SPS. Methods Two groups of subjects participated (healthy control, n = 10, aged 53.6 ± 17.2 yrs; stroke, n = 20, 66.2 ± 11.3 yrs). Arm motor impairment and spasticity were assessed in the stroke group which was divided into mild (n = 10) and moderate-to-severe (n = 10) sub-groups based on Fugl-Meyer Scores. Subjects pointed (8 times each) to 6 randomly presented targets located at two heights in the ipsilateral, middle and contralateral arm workspaces. Movements were repeated in the same VE viewed using HMD (Kaiser XL50) and SPS. Movement kinematics were recorded using an Optotrak system (Certus, 6 markers, 100 Hz). Upper limb motor performance (precision, velocity, trajectory straightness) and movement pattern (elbow, shoulder ranges and trunk displacement) outcomes were analyzed using repeated measures ANOVAs. Results For all groups, there were no differences in endpoint trajectory straightness, shoulder flexion and shoulder horizontal adduction ranges and sagittal trunk displacement between the two media. All subjects, however, made larger errors in the vertical direction using HMD compared to SPS. Healthy subjects also made larger errors in the sagittal direction, slower movements overall and used less range of elbow extension for the lower central target using HMD compared to SPS. The mild and moderate-to-severe sub-groups made larger RMS errors with HMD. The only advantage of using the HMD was that movements were 22% faster in the moderate-to-severe stroke sub-group compared to the SPS. Conclusions Despite the similarity in majority of the movement kinematics, differences in movement speed and larger errors were observed for movements using the HMD. Use of the SPS may be a more comfortable and effective option to view VEs for upper limb rehabilitation post-stroke. This has implications for the use of VR applications to enhance upper limb recovery. PMID:21718542
2011-01-01
This study was aimed at verifying the improvement on the motor impairment and functionality in 19 patients with chronic hemiparesis after stroke treated with a robot-aided rehabilitation protocol using the ReoGo™ system (Motorika Medical Ltd, Israel), and at evaluating the persistence of the effects after 1 month. The study also focused on the actual possibility of administering the robot-aided therapy with the ReoGo™ for the upper limbs and on the patients' degree of acceptance and compliance with the treatment. Subjects underwent an assessment prior to the start of the rehabilitation project (T-1), one at the start (T0), one at the end of the treatment (T1) and one after one month from the end of the treatment (T2). The following tests were administered: (i) Fugl-Meyer (FM) upper limb; Ashworth scale (AS); Functional Independence Measure (FIM™) (T-1 - T2); (ii) strength evaluation; Visual Analogue Scale (VAS) for pain; Frenchay Arm test (FAT); Box and Block test (BBT); Timed Up and Go (TUG) test (T0 - T2). Additionally, the Euro-QoL questionnaire and a VAS for the treatment satisfaction were administered to the subjects. Non-statistical difference of scores at T-1 and T0 on almost the entire battery of tasks suggested a stable patients' performance prior to the start of the rehabilitation. With the exception of the Medical Research Council (MRC) and the AS sub-scales measuring -as appropriate- strength and spasticity of the shoulder, triceps and wrist, all scores showed a significant increase between T0 and T1. The improvement on the pain could not be proved significant (p = 0.10). A significant increase between T0 and T2 was found for all assessment scores, with the exception of the MRC for external shoulder rotators (p = 0.05) and of the AS for shoulder (p = 0.32) and wrist (p = 0.08). Substantial stability was observed between T1 and T2. Patients were capable of completing the treatment and showed good participant satisfaction. This pilot study led to the finding of a clinical improvement and excellent patients compliance. It is possible that the learning process experienced by the patients was robot-dependent, especially in consideration of the general maintenance of the achievements observed on all activities. PMID:21477331
Interplay of upper and lower motor neuron degeneration in amyotrophic lateral sclerosis.
de Carvalho, Mamede; Poliakov, Artiom; Tavares, Cristiano; Swash, Michael
2017-11-01
We studied motor unit recruitment to test a new method to identify motor unit firing rate (FR) variability. We studied 68 ALS patients, with and without upper neuron signs (UMN) in lower limbs, 24 patients with primary lateral sclerosis (PLS), 13 patients with spinal cord lesion and 39 normal subjects. All recordings were made from tibialis anterior muscles of normal strength. Subjects performed a very slight contraction in order to activate 2 motor units in each recording. 5-7 motor unit pairs were recorded in each subject. Mean consecutive differences (MCD) were calculated for each pair of potentials. The mean MCD for each muscle was estimated as the mean from the total number of pairs recorded. Ap value<0.01 was accepted as significant. MCD of FR frequency was less in the subjects with spinal cord lesion and PLS. In addition, the FR frequency of the 1st motor unit in a pair of units was markedly reduced in PLS, and in subjects with spinal cord lesions. These results support a lower threshold and reduced FR fluctuation in spinal motor neurons of spastic patients. This method can be developed for detection of UMN lesions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Upper limb motor function in young adults with spina bifida and hydrocephalus
Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.
2011-01-01
Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605
Postema, Sietke G; Bongers, Raoul M; Brouwers, Michael A; Burger, Helena; Norling-Hermansson, Liselotte M; Reneman, Michiel F; Dijkstra, Pieter U; van der Sluis, Corry K
2016-07-01
(1) To determine the prevalence of musculoskeletal complaints (MSCs) in individuals with upper limb absence in The Netherlands, (2) to assess the health status of individuals with upper limb absence in general and in relation to the presence of MSCs, and (3) to explore the predictors of development of MSCs and MSC-related disability in this population. Cross-sectional study: national survey. Twelve rehabilitation centers and orthopedic workshops. Individuals (n=263; mean age, 50.7±16.7y; 60% men) ≥18 years old, with transverse upper limb reduction deficiency (42%) or amputation (58%) at or proximal to the carpal level (response, 45%) and 108 individuals without upper limb reduction deficiency or amputation (n=108; mean age, 50.6±15.7y; 65% men) (N=371). Not applicable. Point and year prevalence of MSCs, MSC-related disability (Pain Disability Index), and general health perception and mental health (RAND-36 subscales). Point and year prevalence of MSCs were almost twice as high in individuals with upper limb absence (57% and 65%, respectively) compared with individuals without upper limb absence (27% and 34%, respectively) and were most often located in the nonaffected limb and upper back/neck. MSCs were associated with decreased general health perception and mental health and higher perceived upper extremity work demands. Prosthesis use was not related to presence of MSCs. Clinically relevant predictors of MSCs were middle age, being divorced/widowed, and lower mental health. Individuals with upper limb absence experienced more MSC-related disability than individuals without upper limb absence. Higher age, more pain, lower general and mental health, and not using a prosthesis were related to higher disability. Presence of MSCs is a frequent problem in individuals with upper limb absence and is associated with decreased general and mental health. Mental health and physical work demands should be taken into account when assessing such a patient. Clinicians should note that MSC-related disability increases with age. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Lumbosacral Dorsal Rhizotomy for Spastic Cerebral Palsy: A Health Technology Assessment
Pron, Gaylene; Chan, Brian; Tu, Hong Anh; Xie, Xuanqian; Weir, Mark; Wells, David; Higgins, Caroline
2017-01-01
Background Cerebral palsy, a spectrum of neuromuscular conditions caused by abnormal brain development or early damage to the brain, is the most common cause of childhood physical disability. Lumbosacral dorsal rhizotomy is a neurosurgical procedure that permanently decreases spasticity and is always followed by physical therapy. The objectives of this health technology assessment were to evaluate the clinical effectiveness, safety, cost effectiveness, and family perspectives of dorsal rhizotomy. Methods We performed a systematic literature search until December 2015 with auto-alerts until December 2016. Search strategies were developed by medical librarians, and a single reviewer reviewed the abstracts. The health technology assessment included a clinical review based on functional outcomes, safety, and treatment satisfaction; an economic study reviewing cost-effective literature; a budget impact analysis; and interviews with families evaluating the intervention. Results Eighty-four studies (1 meta-analysis, 5 randomized controlled studies [RCTs], 75 observational pre-post studies, and 3 case reports) were reviewed. A meta-analysis of RCTs involving dorsal rhizotomy and physical therapy versus physical therapy confirmed reduced lower-limb spasticity and increased gross motor function (4.5%, P = .002). Observational studies reported statistically significant improvements in gross motor function over 2 years or less (12 studies, GRADE moderate) and over more than 2 years (10 studies, GRADE moderate) as well as improvements in functional independence in the short term (10 studies, GRADE moderate) and long term (4 studies, GRADE low). Major operative complications, were infrequently reported (4 studies). Bony abnormalities and instabilities monitored radiologically in the spine (15 studies) and hip (8 studies) involved minimal or clinically insignificant changes after surgery. No studies evaluated the cost effectiveness of dorsal rhizotomy. The budget impact of funding dorsal rhizotomy for treatment of Ontario children with cerebral palsy was $1.3 million per year. Families reported perceived improvements in their children and expressed satisfaction with treatment. Ontario families reported inadequate medical information on benefits or risk to make an informed decision, enormous financial burdens, and lack rehabilitation support after surgery. Conclusions Lumbrosacral dorsal rhizotomy and physical therapy effectively reduces lower-limb spasticity in children with spastic cerebral palsy and significantly improves their gross motor function and functional independence. Major peri-operative complications were infrequently reported. Families reported perceived improvements with dorsal rhizotomy, and surgery and post-operative rehabilitation were intensive and demanding. PMID:28757906
Lumbosacral Dorsal Rhizotomy for Spastic Cerebral Palsy: A Health Technology Assessment.
2017-01-01
Cerebral palsy, a spectrum of neuromuscular conditions caused by abnormal brain development or early damage to the brain, is the most common cause of childhood physical disability. Lumbosacral dorsal rhizotomy is a neurosurgical procedure that permanently decreases spasticity and is always followed by physical therapy. The objectives of this health technology assessment were to evaluate the clinical effectiveness, safety, cost effectiveness, and family perspectives of dorsal rhizotomy. We performed a systematic literature search until December 2015 with auto-alerts until December 2016. Search strategies were developed by medical librarians, and a single reviewer reviewed the abstracts. The health technology assessment included a clinical review based on functional outcomes, safety, and treatment satisfaction; an economic study reviewing cost-effective literature; a budget impact analysis; and interviews with families evaluating the intervention. Eighty-four studies (1 meta-analysis, 5 randomized controlled studies [RCTs], 75 observational pre-post studies, and 3 case reports) were reviewed. A meta-analysis of RCTs involving dorsal rhizotomy and physical therapy versus physical therapy confirmed reduced lower-limb spasticity and increased gross motor function (4.5%, P = .002). Observational studies reported statistically significant improvements in gross motor function over 2 years or less (12 studies, GRADE moderate) and over more than 2 years (10 studies, GRADE moderate) as well as improvements in functional independence in the short term (10 studies, GRADE moderate) and long term (4 studies, GRADE low). Major operative complications, were infrequently reported (4 studies). Bony abnormalities and instabilities monitored radiologically in the spine (15 studies) and hip (8 studies) involved minimal or clinically insignificant changes after surgery. No studies evaluated the cost effectiveness of dorsal rhizotomy. The budget impact of funding dorsal rhizotomy for treatment of Ontario children with cerebral palsy was $1.3 million per year. Families reported perceived improvements in their children and expressed satisfaction with treatment. Ontario families reported inadequate medical information on benefits or risk to make an informed decision, enormous financial burdens, and lack rehabilitation support after surgery. Lumbrosacral dorsal rhizotomy and physical therapy effectively reduces lower-limb spasticity in children with spastic cerebral palsy and significantly improves their gross motor function and functional independence. Major peri-operative complications were infrequently reported. Families reported perceived improvements with dorsal rhizotomy, and surgery and post-operative rehabilitation were intensive and demanding.
Revised upper limb module for spinal muscular atrophy: Development of a new module.
Mazzone, Elena S; Mayhew, Anna; Montes, Jacqueline; Ramsey, Danielle; Fanelli, Lavinia; Young, Sally Dunaway; Salazar, Rachel; De Sanctis, Roberto; Pasternak, Amy; Glanzman, Allan; Coratti, Giorgia; Civitello, Matthew; Forcina, Nicola; Gee, Richard; Duong, Tina; Pane, Marika; Scoto, Mariacristina; Pera, Maria Carmela; Messina, Sonia; Tennekoon, Gihan; Day, John W; Darras, Basil T; De Vivo, Darryl C; Finkel, Richard; Muntoni, Francesco; Mercuri, Eugenio
2017-06-01
There is a growing need for a robust clinical measure to assess upper limb motor function in spinal muscular atrophy (SMA), as the available scales lack sensitivity at the extremes of the clinical spectrum. We report the development of the Revised Upper Limb Module (RULM), an assessment specifically designed for upper limb function in SMA patients. An international panel with specific neuromuscular expertise performed a thorough review of scales currently available to assess upper limb function in SMA. This review facilitated a revision of the existing upper limb function scales to make a more robust clinical scale. Multiple revisions of the scale included statistical analysis and captured clinically relevant changes to fulfill requirements by regulators and advocacy groups. The resulting RULM scale shows good reliability and validity, making it a suitable tool to assess upper extremity function in the SMA population for multi-center clinical research. Muscle Nerve 55: 869-874, 2017. © 2016 Wiley Periodicals, Inc.
In Search of Dignity: One Family Caring for Their Child's Incontinence
ERIC Educational Resources Information Center
Coelho, Amy
2009-01-01
This article shares a story of a family with a child who has a spastic quadriplegia cerebral palsy, a form of cerebral palsy (CP) that affects all four limbs and torso with debilitating muscle dysfunction. It describes how the family cares for their child's incontinence. It also shares the experience of the child's mother, Kathy, who attributes…
Van de Walle, P; Hallemans, A; Truijen, S; Gosselink, R; Heyrman, L; Molenaers, G; Desloovere, K
2012-01-01
Gait efficiency in children with cerebral palsy is decreased. To date, most research did not include the upper body as a separate functional unit when exploring these changes in gait efficiency. Since children with spastic diplegia often experience problems with trunk control, they could benefit from separate evaluation of the so-called 'passenger unit'. Therefore, the aim of the current study was to improve insights in the role of the passenger unit in decreased gait efficiency in children with diplegia. Mechanical cost of walking was investigated by calculating work by the integrated joint power approach in 18 children with diplegia and 25 age-related typical developing controls. The total mechanical work in children with diplegia was 1.5 times higher than in typical children. In children with diplegia work at the lower limbs was increased by 37% compared to typical children. Substantially higher increases, up to 222%, were noted at the passenger unit. Trunk and head were the main contributors to the increased work of the passenger unit, but the role of the arms cannot be neglected. Due to these disproportional increases in locomotor and passenger unit, the demands of the passenger unit in pathological gait can no longer be considered minor, as in typical gait. Therefore, the role of the passenger unit must be recognized in the decrease of gait efficiency in children with spastic diplegia and should be part of the evaluation of gait efficiency in clinical practice. Copyright © 2012 Elsevier Ltd. All rights reserved.
Meyns, Pieter; Molenaers, Guy; Duysens, Jacques; Jonkers, Ilse
2017-01-01
Background: We aimed to study the contribution of upper limb movements to propulsion during walking in typically developing (TD) children ( n = 5) and children with hemiplegic and diplegic cerebral palsy (CP; n = 5 and n = 4, respectively). Methods: Using integrated three-dimensional motion capture data and a scaled generic musculoskeletal model that included upper limbs, we generated torque driven simulations of gait in OpenSim. Induced acceleration analyses were then used to determine the contributions of the individual actuators located at the relevant degrees of freedoms of the upper and lower limb joints to the forward acceleration of the COM at each time point of the gait simulation. The mean values of the contribution of the actuators of upper limbs, lower limbs, and gravity in different phases of the gait cycle were compared between the three groups. Findings: The results indicated a limited contribution of the upper limb actuators to COM forward acceleration compared to the contribution of lower limbs and gravity, in the three groups. In diplegic CP, the contribution of the upper limbs seemed larger compared to TD during the preswing and swing phases of gait. In hemiplegic CP, the unaffected arm seemed to contribute more to COM deceleration during (pre)swing, while the affected side contributed to COM acceleration. Interpretation: These findings suggest that in the presence of lower limb dysfunction, the contribution of the upper limbs to forward propulsion is altered, although they remain negligible compared to the lower limbs and gravity.
Jin, Hong; Jiang, Yibo; Wei, Qin; Wang, Bilei; Ma, Genshan
2012-01-01
To evaluate the effect of aerobic cycling training with lower limb weights on cardiovascular fitness (peak VO(2)) and walking ability in chronic stroke survivors, and to investigate the relationship between changes in these parameters. 133 Chinese patients with chronic hemiparetic stroke (mean age 58 years) were randomized to either 8-week (5×/week) aerobic cycling training with lower limb weights group (n = 68) or a low-intensity overground walking group (n = 65). Peak VO(2), 6-minute walk distance (6MWD), knee muscle strength, balance and spasticity were measured before and after intervention. Cycling training increased peak VO(2) (24% vs. 3%, p < 0.001), 6MWD (2.7% vs. 0.5%, p < 0.001), paretic (11% vs. 1.6%, p < 0.001) and nonparetic knee strength (16% vs. 1.0%, p < 0.001). In the cycling group, percent changes in peak VO(2) were positively associated with those in paretic (r = 0.491, p < 0.001) and nonparetic knee strength (r = 0.432, p < 0.001). Increased 6MWD correlated significantly with improved balance, spasticity and paretic knee strength by the stepwise regression analysis (r(2) = 0.342, p = 0.004), but not fitness gains. The enhanced cardiovascular fitness after aerobic cycling training in Chinese patients with chronic stroke is not associated with the increased walking ability. Unparallel improvements in these parameters related different determinants may have implications for intervention strategy.
Davidson, Judith
To use the Disability of the Arm Shoulder and Hand (DASH) scale to measure the disability of patients with upper limb amputation(s) and to compare these to other upper limb injuries. All 274 patients over the age of 18 years presenting to Prince Henry Hospital in Sydney over a 4-year time frame were given the DASH assessment tool and asked to complete it under supervision of the Occupational Therapist. Patients with brachial plexus injuries, Complex Regional Pain Syndrome and bilateral upper limb amputations demonstrated significantly higher levels of disability to patients with unilateral upper limb amputations. Partial hand amputees reported a higher level of disability than major unilateral upper limb amputees. For the 48 patients who completed pre- and post-treatment assessments, there was a significant improvement in their health status. Further research is required to understand the factors that affect a patient's perceptions of their disability. Perhaps the definitive nature of an amputation and the immediate involvement of highly skilled health professionals serve to assist patients to accept their injury and therefore minimizes the level of disability.
Kubota, Kazuo; Saito, Yoshiaki; Ohba, Chihiro; Saitsu, Hirotomo; Fukuyama, Tetsuhiro; Ishiyama, Akihiko; Saito, Takashi; Komaki, Hirofumi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki; Matsumoto, Naomichi
2015-01-01
A boy with spastic paraplegia type 2 (SPG2) due to a novel splice site mutation of PLP1 presented with progressive spasticity of lower limbs, which was first observed during late infancy, when he gained the ability to walk with support. His speech was slow and he had dysarthria. The patient showed mildly delayed intellectual development. Subtotal dysmyelination in the central nervous system was revealed, which was especially prominent in structures known to be myelinated during earlier period, whereas structures that are myelinated later were better myelinated. These findings on the brain magnetic resonance imaging were unusual for subjects with PLP1 mutations. Peaks I and II of the auditory brainstem response (ABR) were normally provoked, but peaks III-V were not clearly demarcated, similarly to the findings in Pelizaeus-Merzbacher disease. These findings of brain MRI and ABR may be characteristic for a subtype of SPG2 patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Aye, Thanda; Thein, Soe; Hlaing, Thaingi
2016-01-01
[Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.
Aye, Thanda; Thein, Soe; Hlaing, Thaingi
2016-01-01
[Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561
Driving ability following upper limb amputation.
Burger, Helena; Marincek, Crt
2013-10-01
In the existing literature, there is scarce information about subjects with upper limb amputation and driving. The aim of this study was to find out how frequently subjects following upper limb amputation have problems when driving; most frequently proposed adaptations and, when possible, factors that influence driving ability. Retrospective clinical study. Medical records were reviewed of all subjects following upper limb amputation who had been amputated in the last 5 years and those with congenital upper limb deficiency who in the last 5 years turned 17. Out of 37 subjects, 7 did not attend the clinic for assessment of driving abilities. They were significantly older at the time of the amputation (p < 0.001). To the remaining 30 who attended driving assessment, zero to four car adaptations (two on average) were proposed. There were no correlations between the number of suggested car adaptations and the age at the time of the amputation, amputation level, education and severity of phantom limb pain. Type of prosthesis also did not influence the number of car adaptations. Most people following upper limb amputation need at least one car adaptation for safe driving.
ERIC Educational Resources Information Center
Desmond, Deirdre M.; MacLachlan, Malcolm
2010-01-01
This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…
Sim, Julius; Lacey, Rosie J; Lewis, Martyn
2006-09-19
Work-related neck and upper limb pain has mainly been studied in specific occupational groups, and little is known about its impact in the general population. The objectives of this study were to estimate the prevalence and population impact of work-related neck and upper limb pain. A cross-sectional survey was conducted of 10,000 adults in North Staffordshire, UK, in which there is a common local manual industry. The primary outcome measure was presence or absence of neck and upper limb pain. Participants were asked to give details of up to five recent jobs, and to report exposure to six work activities involving the neck or upper limbs. Psychosocial measures included job control, demand and support. Odds ratios (ORs) and population attributable fractions were calculated for these risk factors. The age-standardized one-month period prevalence of neck and upper limb pain was 44%. There were significant independent associations between neck and upper limb pain and: repeated lifting of heavy objects (OR = 1.4); prolonged bending of neck (OR = 2.0); working with arms at/above shoulder height (OR = 1.3); little job control (OR = 1.6); and little supervisor support (OR = 1.3). The population attributable fractions were 0.24 (24%) for exposure to work activities and 0.12 (12%) for exposure to psychosocial factors. Neck and upper limb pain is associated with both physical and psychosocial factors in the work environment. Inferences of cause-and-effect from cross-sectional studies must be made with caution; nonetheless, our findings suggest that modification of the work environment might prevent up to one in three of cases of neck and upper limb pain in the general population, depending on current exposures to occupational risk.
Denton, Amanda L; Hough, Alan D; Freeman, Jennifer A; Marsden, Jonathan F
2018-03-01
Cooling of the lower limb in people with Hereditary and Spontaneous Spastic Paraparesis (pwHSSP) has been shown to affect walking speed and neuromuscular impairments. The investigation of practical strategies, which may help to alleviate these problems is important. The potential of superficial heat to improve walking speed has not been explored in pwHSSP. Primary objective was to explore whether the application of superficial heat (hot packs) to lower limbs in pwHSSP improves walking speed. Secondary objective was to explore whether wearing insulation after heating would prolong any benefits. A randomised crossover study design with 21 pwHSSP. On two separate occasions two hot packs and an insulating wrap (Neo-G™) were applied for 30minutes to the lower limbs of pwHSSP. On one occasion the insulating wrap was maintained for a further 30minutes and on the other occasion it was removed. Measures of temperature (skin, room and core), walking speed (10 metre timed walk) and co-ordination (foot tap time) were taken at baseline (T1), after 30 mins (T2) and at one hour (T3). All 21 pwHSSP reported increased lower limb stiffness and decreased walking ability when their legs were cold. After thirty minutes of heating, improvements were seen in walking speed (12.2%, P<0.0001, effect size 0.18) and foot tap time (21.5%, P<0.0001, effect size 0.59). Continuing to wear insulation for a further 30minutes gave no additional benefit; with significant improvements in walking speed maintained at one hour (9.9%, P>0.001) in both conditions. Application of 30minutes superficial heating moderately improved walking speed in pwHSSP with effects maintained at 1hour. The use of hot packs applied to lower limbs should be the focus of further research for the clinical management of pwHSSP who report increased stiffness of limbs in cold weather and do not have sensory deficits. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Upper limb dysfunction following selective neck dissection: a retrospective questionnaire study.
Carr, Simon D; Bowyer, Duncan; Cox, Graham
2009-06-01
To determine total upper limb function following selective neck dissection over a mean follow-up of 1.6 years. A retrospective questionnaire study in a tertiary head and neck surgical unit. One hundred forty-eight patients who underwent selective neck dissection for head and neck cancer from January 2000 to December 2005 were invited to participate. The main outcome measure was ipsilateral upper limb dysfunction as measured by the Disability of Arm, Shoulder and Hand (DASH) questionnaire. Sixty-five patients responded to the invitation to join the study from 148 invited. Despite accessory nerve conserving surgery for all the selective neck dissections studied, 23% reported no upper limb dysfunction, 54% reported mild upper limb dysfunction, 15% reported moderate, and 8% reported a severe dysfunction. Long-term upper limb dysfunction is common following nerve preserving surgery. The DASH questionnaire is a useful preoperative and postoperative clinical tool for those patients undergoing selective neck dissections. (c) 2009 Wiley Periodicals, Inc.
Movement analysis of upper limb during resistance training using general purpose robot arm "PA10"
NASA Astrophysics Data System (ADS)
Morita, Yoshifumi; Yamamoto, Takashi; Suzuki, Takahiro; Hirose, Akinori; Ukai, Hiroyuki; Matsui, Nobuyuki
2005-12-01
In this paper we perform movement analysis of an upper limb during resistance training. We selected sanding training, which is one type of resistance training for upper limbs widely performed in occupational therapy. Our final aims in the future are to quantitatively evaluate the therapeutic effect of upper limb motor function during training and to develop a new rehabilitation training support system. For these purposes, first of all we perform movement analysis using a conventional training tool. By measuring upper limb motion during the sanding training we perform feature abstraction. Next we perform movement analysis using the simulated sanding training system. This system is constructed using the general purpose robot arm "PA10". This system enables us to measure the force/torque exerted by subjects and to easily change the load of resistance. The control algorithm is based on impedance control. We found these features of the upper limb motion during the sanding training.
Ubhi, T; Bhakta, B; Ives, H; Allgar, V; Roussounis, S
2000-01-01
BACKGROUND—Cerebral palsy is the commonest cause of severe physical disability in childhood. For many years treatment has centred on the use of physiotherapy and orthotics to overcome the problems of leg spasticity, which interferes with walking and can lead to limb deformity. Intramuscular botulinum toxin (BT-A) offers a targeted form of therapy to reduce spasticity in specific muscle groups. AIMS—To determine whether intramuscular BT-A can improve walking in children with cerebral palsy. DESIGN—Randomised, double blind, placebo controlled trial. METHODS—Forty patients with spastic diplegia or hemiplegia were enrolled. Twenty two received botulinum toxin and 18 received placebo. The primary outcome measure was video gait analysis and secondary outcome measures were gross motor function measure (GMFM), physiological cost index (PCI), and passive ankle dorsiflexion. RESULTS—Video gait analysis showed clinically and statistically significant improvement in initial foot contact following BT-A at six weeks and 12 weeks compared to placebo. Forty eight per cent of BT-A treated children showed clinical improvement in VGA compared to 17% of placebo treated children. The GMFM (walking dimension) showed a statistically significant improvement in favour of the botulinum toxin treated group. Changes in PCI and passive ankle dorsiflexion were not statistically significant. CONCLUSION—The study gives further support to the use of intramuscular botulinum toxin type A as an adjunct to conventional physiotherapy and orthoses to reduce spasticity and improve functional mobility in children with spastic diplegic or hemiplegic cerebral palsy. PMID:11087280
Watanabe, Kosuke; Kudo, Yosuke; Sugawara, Eriko; Nakamizo, Tomoki; Amari, Kazumitsu; Takahashi, Koji; Tanaka, Osamu; Endo, Miho; Hayakawa, Yuko; Johkura, Ken
2018-01-15
Repetitive transcranial magnetic stimulation (rTMS) is reported to improve chronic post-stoke hemiparesis. However, application of rTMS during the acute phase of post-stroke has not fully been investigated. We investigated the safety and the efficacy of intermittent theta-burst stimulation (iTBS) of the affected motor cortex and 1-Hz stimulation of the unaffected hemisphere during the acute phase in patients with hemiparesis due to capsular infarction. Twenty one patients who met the study criteria were randomly assigned to receive, starting within 7days after stroke onset and for a period of 10days, iTBS of the affected motor cortex hand area (n=8), 1-Hz stimulation of the unaffected motor cortex hand area (n=7), or sham stimulation (n=6). Upper limb motor function was evaluated before rTMS and 12weeks after onset of the stroke. Evaluation was based on the Fugl-Meyer Assessment (FMA), Stroke Impairment Assessment Set (SIAS), Modified Ashworth Scale (MAS), grip strength, and motor evoked potential (MEP) amplitude in the first dorsal interosseous (FDI) muscle. Both iTBS applied to the affected motor cortex hand area and 1-Hz stimulation applied to the unaffected motor cortex hand area enhanced motor recovery. In comparison to sham stimulation, iTBS increased the SIAS finger-function test score, and 1-Hz stimulation decreased the MAS wrist and finger score. Ipsilesional iTBS and contralesional 1-Hz stimulation applied during the acute phase of stroke have different effects: ipsilesional iTBS improves movement of the affected limb, whereas contralesional 1-Hz stimulation reduces spasticity of the affected limb. Copyright © 2017 Elsevier B.V. All rights reserved.
Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke patients.
Cacchio, Angelo; De Blasis, Elisabetta; De Blasis, Vincenzo; Santilli, Valter; Spacca, Giorgio
2009-10-01
Complex regional pain syndrome type 1 (CRPSt1) of the upper limb is a painful and debilitating condition, frequent after stroke, and interferes with the rehabilitative process and outcome. However, treatments used for CRPSt1 of the upper limb are limited. . This randomized controlled study was conducted to compare the effectiveness on pain and upper limb function of mirror therapy on CRPSt1 of upper limb in patients with acute stroke. . Of 208 patients with first episode of unilateral stroke admitted to the authors' rehabilitation center, 48 patients with CRPSt1 of the affected upper limb were enrolled in a randomized controlled study, with a 6-month follow-up, and assigned to either a mirror therapy group or placebo control group. The primary end points were a reduction in the visual analogue scale score of pain at rest, on movement, and brush-induced tactile allodynia. The secondary end points were improvement in motor function as assessed by the Wolf Motor Function Test and Motor Activity Log. . The mean scores of both the primary and secondary end points significantly improved in the mirror group (P < .001). No statistically significant improvement was observed in any of the control group values (P > .001). Moreover, statistically significant differences after treatment (P < .001) and at the 6-month follow-up were found between the 2 groups. . The results indicate that mirror therapy effectively reduces pain and enhances upper limb motor function in stroke patients with upper limb CRPSt1.
Prevalence of upper limb disorders among female librarians.
Pandy, R
2013-09-01
Work as a librarian involves exposure to potential risk factors for developing upper limb disorders. The prevalence of upper limb symptoms has, however, not previously been assessed in this occupational group. To estimate the 7-day and annual prevalence of self-reported neck and upper limb symptoms in librarians and to examine associations with specific tasks and ergonomic risk factors. A cross-sectional study using components of the standardized Nordic questionnaire. The study population consisted of librarians employed by a large local authority, and data collection was by means of a self-administered questionnaire. from studies on keyboard workers and on the general population were used as comparators. The 7-day prevalence of self-reported neck and upper limb pain in female librarians was 42% (95% confidence interval (CI) 33.7-50.5) and the annual prevalence was 65% (95% CI 56.6-72.8). The prevalence of reported wrist and hand pain increased with increased working involving a wide thumb-index span (P < 0.05) with a significant linear trend in prevalence with increasing exposure (P < 0.01). There was a strong association between reporting hand and/or wrist pain and awareness of work-related upper limb disorder (P < 0.05). The annual prevalence of self-reported upper limb symptoms among female librarians was high, but there was insufficient evidence to confirm whether the prevalence was higher than in the general population or among keyboard workers. Working with a wide thumb-index span was associated with reporting upper limb symptoms.
Caselli, Thaisa Barboza; Lomazi, Elizete Aparecida; Montenegro, Maria Augusta Santos; Bellomo-Brandão, Maria Angela
2017-01-01
Due to several factors, such as gastrointestinal's diseases and difficulty in feeding, children with Spastic Quadriplegic Cerebral Palsy tend to present nutritional deficits. To assess the nutritional status of pediatric patients with Spastic Quadriplegic Cerebral Palsy according to reference curves for this population and with the measures of folds and circumferences, obtained by the upper arm circumference and triceps skin fold. The data were obtained from: knee-height, estimated height, weight, upper arm circumference, and triceps skin fold. Values of folds and circumferences were compared with Frisancho, and specific curves for these patients were used as reference. The relationship between the values in the growth curve for healthy children, Z-Score, and comparison with the reference curve were verified by Fisher's exact test. We adopted the significance level of 5%. We evaluated 54 patients. The mean age was 10.2 years, and 34 were male, 25 fed by gastrostomy and 29, orally. The frequency of low weight by the reference curve was 22.22%. More than half of the patients presented the parameters indicating lean mass below the 5th percentile. The height of all patients was classified as adequate for the age by the reference curve. Low weight was found in 22% of patients, and there is a greater tendency to present reduced muscle mass and increased fat mass, showing the need for evaluation and appropriate interventions for patients with Spastic Quadriplegic Cerebral Palsy.
Genetic and phenotypic characterization of complex hereditary spastic paraplegia
Kara, Eleanna; Tucci, Arianna; Manzoni, Claudia; Lynch, David S.; Elpidorou, Marilena; Bettencourt, Conceicao; Chelban, Viorica; Manole, Andreea; Hamed, Sherifa A.; Haridy, Nourelhoda A.; Federoff, Monica; Preza, Elisavet; Hughes, Deborah; Pittman, Alan; Jaunmuktane, Zane; Brandner, Sebastian; Xiromerisiou, Georgia; Wiethoff, Sarah; Schottlaender, Lucia; Proukakis, Christos; Morris, Huw; Warner, Tom; Bhatia, Kailash P.; Korlipara, L.V. Prasad; Singleton, Andrew B.; Hardy, John; Wood, Nicholas W.; Lewis, Patrick A.
2016-01-01
Abstract The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15 , SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease-causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next generation sequencing was carried out revealing variants in a number of other known complex spastic paraplegia genes, including five in SPG7 (5/97), four in FA2H (also known as SPG35 ) (4/97) and two in ZFYVE26 / SPG15 . Variants were identified in genes usually associated with pure spastic paraplegia and also in the Parkinson’s disease-associated gene ATP13A2 , neuronal ceroid lipofuscinosis gene TPP1 and the hereditary motor and sensory neuropathy DNMT1 gene, highlighting the genetic heterogeneity of spastic paraplegia. No plausible genetic cause was identified in 51% of probands, likely indicating the existence of as yet unidentified genes. PMID:27217339
Cimolin, Veronica; Beretta, Elena; Piccinini, Luigi; Turconi, Anna Carla; Locatelli, Federica; Galli, Manuela; Strazzer, Sandra
2012-01-01
The aims of this study are to quantify the movement limitation of upper limbs in hemiplegic children with traumatic brain injury (TBI) by using a clinical-functional scale and upper limb kinematics and to evaluate the effectiveness of constraint-induced movement therapy (CIMT) on upper limbs. Pre-post study. Clinical rehabilitation research laboratory. Ten children with TBI. The participants were evaluated by clinical examinations (Gross Motor Function Measure, Besta scale, Quality of Upper Extremities Skills Test, and Manual Ability Classification System) and 3D kinematic movement analysis of the upper limb before the CIMT program (pretest: 0.7 years after the injury) and at the end of the program (posttest: 10 weeks later). After the CIMT, most of the clinical measures improved significantly. Some significant improvements were present in terms of kinematics, in particular, in the movement duration and the velocity of movement execution of both tasks; the index of curvature and the average jerk improved, respectively, during reaching and hand-to-mouth task, while the adjusting sway parameter decreased during the 2 movements. Significant improvements were found in upper limb joint excursion after the rehabilitative programme too. Our results suggest that the CIMT program can improve movement efficiency and upper limb function in children after TBI. The integration of the clinical outcomes and upper limb kinematics revealed to be crucial in detecting the effects of the CIMT programme.
Bohannon, Richard W; Harrison, Steven; Kinsella-Shaw, Jeffrey
2009-01-01
Background Spasticity is a common impairment accompanying stroke. Spasticity of the quadriceps femoris muscle can be quantified using the pendulum test. The measurement properties of pendular kinematics captured using a magnetic tracking system has not been studied among patients who have experienced a stroke. Therefore, this study describes the test-retest reliability and known groups and convergent validity of the pendulum test measures obtained with the Polhemus tracking system. Methods Eight patients with chronic stroke underwent pendulum tests with their affected and unaffected lower limbs, with and without the addition of a 2.2 kg cuff weight at the ankle, using the Polhemus magnetic tracking system. Also measured bilaterally were knee resting angles, Ashworth scores (grades 0–4) of quadriceps femoris muscles, patellar tendon (knee jerk) reflexes (grades 0–4), and isometric knee extension force. Results Three measures obtained from pendular traces of the affected side were reliable (intraclass correlation coefficient ≥ .844). Known groups validity was confirmed by demonstration of a significant difference in the measurements between sides. Convergent validity was supported by correlations ≥ .57 between pendulum test measures and other measures reflective of spasticity. Conclusion Pendulum test measures obtained with the Polhemus tracking system from the affected side of patients with stroke have good test-retest reliability and both known groups and convergent validity. PMID:19642989
Bohannon, Richard W; Harrison, Steven; Kinsella-Shaw, Jeffrey
2009-07-30
Spasticity is a common impairment accompanying stroke. Spasticity of the quadriceps femoris muscle can be quantified using the pendulum test. The measurement properties of pendular kinematics captured using a magnetic tracking system has not been studied among patients who have experienced a stroke. Therefore, this study describes the test-retest reliability and known groups and convergent validity of the pendulum test measures obtained with the Polhemus tracking system. Eight patients with chronic stroke underwent pendulum tests with their affected and unaffected lower limbs, with and without the addition of a 2.2 kg cuff weight at the ankle, using the Polhemus magnetic tracking system. Also measured bilaterally were knee resting angles, Ashworth scores (grades 0-4) of quadriceps femoris muscles, patellar tendon (knee jerk) reflexes (grades 0-4), and isometric knee extension force. Three measures obtained from pendular traces of the affected side were reliable (intraclass correlation coefficient > or = .844). Known groups validity was confirmed by demonstration of a significant difference in the measurements between sides. Convergent validity was supported by correlations > or = .57 between pendulum test measures and other measures reflective of spasticity. Pendulum test measures obtained with the Polhemus tracking system from the affected side of patients with stroke have good test-retest reliability and both known groups and convergent validity.
Piana, A R; Viñals, C L; Del Valle, M C; Arellano, M S; Redón, A T; Peralta, S C; León, S L
2010-01-01
Cerebral palsy (CP) is a static neurologic condition resulting from a brain lesion occurring before the completion of brain development. The goal of management is not cure, but increasing patients' functionality and improving their capabilities and maintaining their locomotion, cognitive development, social interaction and independence. The best results are obtained with an early and intensive management that includes physical and occupational therapy, medical and surgical treatments, mechanical aids and the management of concomitant conditions. To assess the neuromotor improvement in patients with spastic CP after surgical treatment at the National Rehabilitation Institute. Patients with a diagnosis of spastic CP who presented at the Pediatric Rehabilitation outpatient service were referred to the Joint CP Clinic from January 2007 to January 2008, and underwent surgical treatment of the pelvic limbs. They were assessed 3 times and underwent neuromotor tests with gross motor function measure (GMFM), which was rated with the gross motor function classification system (GMFCS). Most of the patients had improvement in the muscle tone and contracture assessments as well as in the GMFM, and their self-mobility increased one level. Significant improvements were seen in the muscle tone and contractures after surgery; the GMFM and the self-mobility levels in the GMFCS also improved. Multiple level surgery together with a postoperative physical therapy program results in considerable improvements in the gross motor function measure of patients with spastic CP.
Singh, D K A; Rahman, N N A; Seffiyah, R; Chang, S Y; Zainura, A K; Aida, S R; Rajwinder, K H S
2017-04-01
There is limited information regarding the effects of interactive virtual reality (VR) games on psychological and physical well-being among adults with physical disabilities. We aimed to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities. Fifteen participants completed the intervention using Wii VR games in this pilot study. Depressive, Anxiety and Stress Scales (DASS) and Capabilities of Upper Extremity (CUE) questionnaires were used to measure psychological well-being and upper limb motor function respectively. Upper limb reaction time was measured using reaction time test. Results showed that there was a significant difference (p<0.05) in DASS questionnaire and average reaction time score after intervention. There is a potential for using interactive VR games as an exercise tool to improve psychological wellbeing and upper limb reaction time among adults with disabilities.
Role Of Stretching Exercises In The Management Of Constipation In Spastic Cerebral Palsy.
Awan, Waqar Ahmed; Masood, Tahir
2016-01-01
Constipation is considered as one of the most common non-motor manifestations in cerebral palsy (CP). Along with other reasons, spasticity also contributes in developing constipation in CP, by decreasing mobility of trunk and lower extremities and abdominal viscera. Stretching exercises of upper extremities, trunk and lower extremities are routine management of spasticity in CP children. The objective of the study was to determine the role of stretching exercises in improving constipation symptoms in children with spastic cerebral palsy and to explore the association between spasticity and constipation among cerebral palsy children. Single-group Pretest-Posttest Design (Quasi Experimental Study Design). The study was conducted at Physiotherapy Department of National Institute of Rehabilitation Medicine (NIRM) Islamabad. Thirty spastic CP children - both male and female - with complaints of constipation were recruited through non-probability, convenience sampling. The mean age of the children was 7.55±1.33 years. Each child was assessed for defecation frequency (DF), constipation severity by constipation assessment scale (CAS) and level of spasticity by modified ash worth scale for spasticity (MASS) at baseline. Stretching exercises were performed for 30 seconds with five repetitions and at least once a day for six week, followed by positioning of patients in reflex inhibiting posture. Final data was collected using the same tools as done at the baseline. Paired samples t-test was used to analyse the rehabilitation-induced changes after 6 weeks. To determine association between spasticity and constipation Pearson product-moment correlation coefficient was used. The data was analysed through SPSS 20. Significant changes, compared to the baseline scores, were observed after 6 weeks of stretching exercises in MASS (2.53±0.62 Vs 1.53±0.77), DF (2.43±0.67 Vs 3.70±1.02) and CAS (7.23±1.50 Vs 5.43±1.73) with p≤0.05. The results also showed significant correlation between changes in levels of spasticity and severity of constipation (r = 0.37; p=0.04). Finally, significant correlation was present between improvement in spasticity and defecation frequency (r =-0.39; p=0.02). Stretching exercises administered for the management of spasticity in CP can significantly improve the symptoms of constipation in such children. The results of the study showed that constipation is strongly associated with level of spasticity in CP children.
Sokal, Paweł; Rudaś, Marcin; Harat, Marek; Szylberg, Łukasz; Zieliński, Piotr
2015-08-01
Deep anterior cerebellar stimulation (DACS) is a neuromodulation therapy of spasticity. Bilateral DACS is applied in young patients with cerebral palsy (CP). In these patients symptoms of spasticity coexist with symptoms of focal or segmental dystonia, which can cause chronic pain. We performed the study to investigate the therapeutic effects of DACS in spasticity, secondary dystonia and pain. We examined 10 from 13 patients with CP treated with DACS due to spasticity in years 2006-2012. We compared Ashworth scores of spasticity, VAS scale of pain and UDRS (Unified Dystonia Rating Scale) score before DACS and after it in follow-up lasting from 2 to 11 years it in these patients basing on clinical examination and evaluating forms given by the patients or parents. We received statistically significant reduction of spasticity in upper extremities (median: from 3 to 1,5 in Ashworth scale) in 8 patients (p = 0,01), in lower extremities in 7 patients (median: from 3 to 1,75) (p = 0,02). Symptoms of focal dystonia were reduced. Total score for the UDRS (median = 18,0 before surgery) after DACS decreased significantly (median = 10,3) (p = 0,043). Change in consecutive parts of UDRS before (median = 1,6) and after (median = 1,0) surgery in 7 patients had statistical significance (p = 0,0179). There were not significant changes in intensity of pain before and after surgery (p = 0,108). Chronic bilateral DACS aimed for spasticity treatment not only decreases muscular tone in quadriplegic or paraplegic patients with CP but also is associated with reduction of symptoms of focal or segmental, secondary dystonia. Copyright © 2015 Elsevier B.V. All rights reserved.
Nielsen, Troels Tolstrup; Svenstrup, Kirsten; Budtz-Jørgensen, Esben; Eiberg, Hans; Hasholt, Lis; Nielsen, Jørgen E
2012-10-15
Hereditary spastic paraplegia (HSP) confines a group of heterogeneous neurodegenerative disorders characterized by progressive spasticity and lower limb weakness. Age of onset is highly variable even in familial cases with known mutations suggesting that the disease is modulated by other yet unknown parameters. Although progressive gait disturbances, lower limb spasticity and extensor plantar responses are hallmarks of HSP these characteristics are also found in other neurodegenerative disorders, e.g. amytrophic lateral sclerosis (ALS). HSP has been linked to ALS and frontotemporal degeneration with motor neuron disease (FTD-MND), since TDP-43 positive inclusions have recently been found in an HSP subtype, and TDP-43 are found in abundance in pathological inclusions of both ALS and FTD-MND. Furthermore, ataxin-2 (encoded by the gene ATXN2), a polyglutamine containing protein elongated in spinocerebellar ataxia type 2, has been shown to be a modulator of TDP-43 induced toxicity in ALS animal and cell models. Finally, it has been shown that ATXN2 with non-pathogenic intermediate-length CAG/CAA repeat elongations (encoding the polyglutamine tract) is a genetic risk factor of ALS. Considering the similarities in the disease phenotype and the neuropathological link between ALS and HSP we hypothesized that intermediate-length CAG/CAA repeats in ATXN2 could be a modulator of HSP. We show that in a cohort of 181 HSP patients 4.9 % of the patients had intermediate-length CAG/CAA repeats in ATXN2 which was not significantly different from the frequencies in a Danish control cohort or in American and European control populations. However, the mean age of onset was significantly lower in HSP patients with intermediate-length CAG/CAA repeats in ATXN2 compared to patients with normal length repeats. Based on these results we conclude that ATXN2 is most likely not a risk factor of HSP, whereas it might serve as a modulator of age of onset. Copyright © 2012 Elsevier B.V. All rights reserved.
Pérez-Cruzado, David; Merchán-Baeza, Jose Antonio; González-Sánchez, Manuel; Cuesta-Vargas, Antonio I
2017-04-01
Stroke is a leading cause of disability in developed countries. One of the most widespread techniques in clinical practice is mirror therapy (MT). To determine the effectiveness of MT over other methods of intervention in the recovery of upper limb function in people who have had a stroke. A systematic review was conducted. The search string was established based on the last systematic review about MT that dated from 2009: "upper extremity" OR "upper limb "AND "mirror therapy" AND stroke. For this search Pubmed, Scopus and SciELO databases were used. Fifteen studies were included in the systematic review. Recovery of the upper limb, upper limb function and gross manual dexterity were frequently measured in these studies. In the primary variables in promoting recovery, MT alone showed better results in acute and chronic stroke patients in upper limb functioning than either conventional rehabilitation (CR) or CR plus MT. PROSPERO registration number: CRD42015026869. © 2016 Occupational Therapy Australia.
Alreni, Ahmad Salah Eldin; Harrop, Deborah; Gumber, Anil; McLean, Sionnadh
2015-04-07
Upper limb disability is a common musculoskeletal condition frequently associated with neck pain. Recent literature has reported the need to utilise validated upper limb outcome measures in the assessment and management of patients with neck pain. However, there is a lack of clear guidance about the suitability of available measures, which may impede utilisation. This review will identify all available measures of upper limb function developed for use in neck pain patients and evaluate their measurement and practical properties in order to identify those measures that are most appropriate for use in clinical practice and research. This review will be performed in two phases. Phase one will identify all measures used to assess upper limb function for patients with neck pain. Phase two will identify all available studies of the measurement and practical properties of identified instrument. The COnsensus-based Standards for selection of health Measurement INstrument (COSMIN) will be used to evaluate the methodological quality of the included studies. To ensure methodological rigour, the findings of this review will be reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guideline. Optimal management of patients with neck pain should incorporate upper limb rehabilitation. The findings of this study will assist clinicians who seek to utilise suitable and accurate measures to assess upper limb function for a patient with neck pain. In addition, the findings of this study may suggest new research directions to support the development of upper limb outcome measures for patients with neck pain. PROSPERO CRD42015016624.
Caring for muscle spasticity or spasms
High muscle tone - care; Increased muscle tension - care; Upper motor neuron syndrome - care; Muscle stiffness - care ... and doing daily tasks. Talk with your health care provider or physical therapist first before starting any ...
Ubiquitous human upper-limb motion estimation using wearable sensors.
Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang
2011-07-01
Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.
Design and preliminary evaluation of an exoskeleton for upper limb resistance training
NASA Astrophysics Data System (ADS)
Wu, Tzong-Ming; Chen, Dar-Zen
2012-06-01
Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.
[Venous tone of the limbs. Methods and comparison of 2 areas].
Journo, H; London, G; Pannier, B; Safar, M
1989-07-01
The limb venous tone, index of local venous compliance, was studied with mercury strain gauge plethysmography on 28 male normal subjects (40 +/- 17 years, +/- SD) simultaneously on upper and lower limbs. Measurements were done after 20 mn rest in supine position. Venous tone (VT) equals the slope of the pressure-volume curve established by simultaneous recording of the forearm and calf relative volumes for successive steps of pressure lower than or equal to 30 mmHg. Limb venous capacitance was expressed by means of the maximal limb relative volume (V30) reached for a pressure of 30 mmHg applied through cuffs in standardized conditions. The upper limb venous tone was greater than the lower limb venous tone: 24.3 +/- 8.2 mmHg/ml/100 vs 17.5 +/- 7.9 mmHg/ml/100, p = 0.001. V30 was greater in lower limb than in upper limb: 1.5 +/- 0.5 ml/100 vs 1.1 +/- 0.4 ml/100, p = 0.001. In conclusion, it appears that upper and lower limbs venous distensibility and capacitance are different. They are greater in the lower limb in baseline conditions. Thus simultaneous studies of both these limb venous systems seems important for physiological experiments because of their baseline differences.
New possibilities of improving the function of the hand of patients with spastic hemiplegia.
Kiwerski, J
1984-01-01
The report presents a therapeutic proposal aiming at the improvement of the functions of the paretic hand in spastic hemiplegics. To achieve this aim the author suggests a combination of phenolization of the medial and ulnar nerves and the stimulation training of the wrist and fingers extensors. An implanted stimulator is used; the stimulator electrodes are fixed to the radial nerve. The strengthening of the extensors during the period of increased muscular tension of the flexors makes it possible to improve the functions of the paretic upper extremity.
Risk factors of the upper limb disorders among cashiers in grocery retail industries: A review
NASA Astrophysics Data System (ADS)
Zuhaidi, Muhammad Fareez Ahmad; Nasrull Abdol Rahman, Mohd
2017-08-01
Cashiers have been appointed as one of top ten occupations in developing musculoskeletal disorders (MSDs) particularly on the upper limb. Many of the workers are still in high risk injury due to incorrect workstations and lack of employee education in basic biomechanical principles. Normally, cashiers are exposed in several risk factors such as awkward and static postures, repetition motion and forceful exertions. Thus, cashiers in supermarket are considered at risk from developing upper limb disorders (ULDs). This review evaluates selected papers that have studied risk factors of the upper limb disorders among cashiers in grocery retail industries. In addition, other studies from related industry were reviewed as applicable. In order to understand risk factors of the upper limb disorders among cashiers, it is recommended that future studies are needed in evaluating these risk factors among cashiers.
Ikumi, Akira; Kubota, Shigeki; Shimizu, Yukiyo; Kadone, Hideki; Marushima, Aiki; Ueno, Tomoyuki; Kawamoto, Hiroaki; Hada, Yasushi; Matsumura, Akira; Sankai, Yoshiyuki; Yamazaki, Masashi
2017-09-01
Recently, locomotor training with robotic assistance has been found effective in treating spinal cord injury (SCI). Our case report examined locomotor training using the robotic suit hybrid assistive limb (HAL) in a patient with complete C4 quadriplegia due to chronic SCI. This is the first report examining HAL in complete C4 quadriplegia. The patient was a 19-year-old man who dislocated C3/4 during judo 4 years previously. Following the injury, he underwent C3/4 posterior spinal fusion but remained paralyzed despite rehabilitation. There was muscle atrophy under C5 level and no sensation around the anus, but partial sensation of pressure remained in the limbs. The American Spinal Injury Association impairment scale was Grade A (complete motor C4 lesion). HAL training was administered in 10 sessions (twice per week). The training sessions consisted of treadmill walking with HAL. For safety, 2 physicians and 1 therapist supported the subject for balance and weight-bearing. The device's cybernic autonomous control mode provides autonomic physical support based on predefined walking patterns. We evaluated the adverse events, walking time and distance, and the difference in muscle spasticity before and after HAL-training using a modified Ashworth scale (mAs). No adverse events were observed that required discontinuation of rehabilitation. Walking distance and time increased from 25.2 meters/7.6 minutes to 148.3 meter/15 minutes. The mAs score decreased after HAL training. Our case report indicates that HAL training is feasible and effective for complete C4 quadriplegia in chronic SCI.
Impaired visually guided weight-shifting ability in children with cerebral palsy.
Ballaz, Laurent; Robert, Maxime; Parent, Audrey; Prince, François; Lemay, Martin
2014-09-01
The ability to control voluntary weight shifting is crucial in many functional tasks. To our knowledge, weight shifting ability in response to a visual stimulus has never been evaluated in children with cerebral palsy (CP). The aim of the study was (1) to propose a new method to assess visually guided medio-lateral (M/L) weight shifting ability and (2) to compare weight-shifting ability in children with CP and typically developing (TD) children. Ten children with spastic diplegic CP (Gross Motor Function Classification System level I and II; age 7-12 years) and 10 TD age-matched children were tested. Participants played with the skiing game on the Wii Fit game console. Center of pressure (COP) displacements, trunk and lower-limb movements were recorded during the last virtual slalom. Maximal isometric lower limb strength and postural control during quiet standing were also assessed. Lower-limb muscle strength was reduced in children with CP compared to TD children and postural control during quiet standing was impaired in children with CP. As expected, the skiing game mainly resulted in M/L COP displacements. Children with CP showed lower M/L COP range and velocity as compared to TD children but larger trunk movements. Trunk and lower extremity movements were less in phase in children with CP compared to TD children. Commercially available active video games can be used to assess visually guided weight shifting ability. Children with spastic diplegic CP showed impaired visually guided weight shifting which can be explained by non-optimal coordination of postural movement and reduced muscular strength. Copyright © 2014 Elsevier Ltd. All rights reserved.
Namdari, Surena; Alosh, Hassan; Baldwin, Keith; Mehta, Samir; Keenan, Mary Ann
2011-07-01
Shoulder adduction and internal rotation contractures commonly develop in patients with spastic hemiplegia after upper motor neuron (UMN) injury. Contractures are often painful, macerate skin, and impair axillary hygiene. We hypothesize that shoulder tenotomies are an effective means of pain relief and passive motion restoration in patients without active upper extremity motor function. A consecutive series of 36 adults (10 men, 26 women) with spastic hemiplegia from UMN injury, shoulder adduction, and internal rotation contractures, and no active movement, who underwent shoulder tenotomies of the pectoralis major, latissimus dorsi, teres major, and subscapularis were evaluated. Patients were an average age of 52.2 years. Pain, passive motion, and satisfaction were considered preoperatively and postoperatively. Average follow-up was 14.3 months. Preoperatively, all patients had limited passive motion that interfered with passive functions. Nineteen patients had pain. After surgery, passive extension, flexion, abduction, and external rotation improved from 50%, 27%, 27%, and 1% to 85%, 70%, 66%, and 56%, respectively, compared with the normal contralateral side (P < .001). All patients with preoperative pain had improved pain relief at follow-up, with 18 (95%) being pain-free. Thirty-five (97%) were satisfied with the outcome of surgery, and all patients reported improved axillary hygiene and skin care. Age, gender, etiology, and chronicity of UMN injury were not associated with improvement in motion. We observed improvements in passive ROM and high patient satisfaction with surgery at early follow-up. Patients who had pain with passive motion preoperatively had significant improvements in pain after shoulder tenotomy. Shoulder tenotomy to relieve spastic contractures resulting from UMN injury can be an effective means of pain relief and improved passive range of motion in patients without active motor function. Copyright © 2011 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Upper limb contributions to frontal plane balance control in rollator-assisted walking.
Tung, James Y; Gage, William H; Poupart, Pascal; McIlroy, William E
2014-01-01
While assisting with balance is a primary reason for rollator use, few studies have examined how the upper limbs are used for balance. This study examines upper limb contributions to balance control during rollator-assisted walking. We hypothesized that there would be an increased upper limb contribution, measured by mean vertical loading (Fz) and variation in frontal plane center-of-pressure (COPhigh), when walking balance is challenged/impaired. Experiment 1 compared straight-line and beam-walking in young adults (n = 11). As hypothesized, Fz and COPhighincreased in beam-walking compared to baseline (mean Fz: 13.7 vs. 9.1% body weight (BW), p < 0.001, RMS COPhigh: 1.35 vs. 1.07 cm, p < 0.001). Experiment 2 compared older adults who regularly use rollators (RU, n = 10) to older adult controls (CTL, n = 10). The predicted higher upper limb contribution in the RU group was not supported. However, when individuals were grouped by balance impairment, those with the lowest Berg Balance scores (< 45) demonstrated greater speed-adjusted COPhigh than those with higher scores (p = 0.013). Furthermore, greater COPhigh and Fz were correlated to greater reduction in step width, supporting the role of upper limb contributions to frontal plane balance. This work will guide studies assessing reliance on rollators by providing a basis for measurement of upper limb balance contributions.
Andrade Ortega, Juan Alfonso; Millán Gómez, Ana Pilar; Ribeiro González, Marisa; Martínez Piró, Pilar; Jiménez Anula, Juan; Sánchez Andújar, María Belén
2017-06-21
The early detection of upper limb complications is important in women operated on for breast cancer. The "FACT-B+4-UL" questionnaire, a specific variant of the Functional Assessment of Cancer Therapy-Breast (FACT-B) is available among others to measure the upper limb function. The Spanish version of the upper limb subscale of the FACT-B+4 was validated in a prospective cohort of 201 women operated on for breast cancer (factor analysis, internal consistency, test-retest reliability, construct validity and sensitivity to change were determined). Its predictive capacity of subsequent lymphoedema and other complications in the upper limb was explored using logistic regression. This subscale is unifactorial and has a great internal consistency (Cronbach's alpha: 0.87), its test-retest reliability and construct validity are strong (intraclass correlation coefficient: 0.986; Pearson's R with "Quick DASH": 0.81) as is its sensitivity to change. It didn't predict the onset of lymphedema. Its predictive capacity for other upper limb complications is low. FACT-B+4-UL is useful in measuring upper limb disability in women surgically treated for breast cancer; but it does not predict the onset of lymphoedema and its predictive capacity for others complications in the upper limb is low. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Management of the multiple limb amputee.
Davidson, J H; Jones, L E; Cornet, J; Cittarelli, T
2002-09-10
Multiple limb amputations involving at least one upper extremity are very uncommon. The amputation of both an upper and lower limb is even more uncommon. Due to the rarity of these amputations therapists are uncertain regarding the most appropriate treatment methods. While the majority of the protocols used for single limb amputations are appropriate for these multiple limb amputees, there are differences. Loss of multiple limbs creates a problem of overheating for the individual. Loss of an arm and leg results in difficulty donning the prostheses and difficulty using crutches and parallel bars during mobilization. A review is given of 16 multiple limb amputees seen in our rehabilitation centre in the last 15 years. Return to work was seen in one third and was not related to the number of the amputations. A higher proportion of these multiple limb amputations occur through alcoholism or attempted suicide behaviour than occurs with either single upper limb amputations or lower limb amputations. This existing behaviour can create a management problem for the rehabilitation team during rehabilitation. Guidelines as to appropriate prosthetic and preprosthetic care are provided to assist the practitioner who has the acute and long term care of these patients. All multiple limb amputees should be referred to a specialized rehabilitation centre to discuss prosthetic options and long term rehabilitation requirements. This paper does not discuss bilateral lower limb amputations when not combined with an upper limb amputation.
Hang Them High: A Hands-Free Technique for Upper Extremity Limb Holding During Surgical Preparation.
Aneja, Arun; Leung, Patrick; Marquez-Lara, Alejandro
Lifting and holding upper and lower limbs during the "prep and drape" portion of certain orthopaedic procedures exert strong forces on the holder and may lead to musculoskeletal disorders. To address these challenges during upper extremity procedures, this article describes a hand-free elevation and traction technique of the upper limbs during preoperative skin preparation with the use of items readily available within the operating room (OR). This technique is particularly useful for heavy or fractured limbs that may impose a physical challenge to lift and maintain in a stable position. Implementation of this technique reduces the risk to nurses, OR personnel, and caregivers of developing work-related musculoskeletal injuries while lifting and holding limbs in the orthopaedic OR.
Zhou, Zhihao; Sun, Yao; Wang, Ninghua; Gao, Fan; Wei, Kunlin; Wang, Qining
2016-01-01
In this paper, we aim to investigate the effect of proprioceptive neuromuscular facilitation (PNF)-based rehabilitation for ankle plantar flexors spasticity by using a Robotic Ankle–foot Rehabilitation System (RARS). A modified robot-assisted system was proposed, and seven poststroke patients with hemiplegic spastic ankles participated in a 3-month robotic PNF training. Their impaired sides were used as the experimental group, while their unimpaired sides as the control group. A robotic intervention for the experimental group started from a 2-min passive stretching to warming-up or relaxing the soleus and gastrocnemius muscles and also ended with the same one. Then a PNF training session including 30 trials was activated between them. The rehabilitation trainings were carried out three times a week as an addition to their regular rehabilitation exercise. Passive range of motion, resistance torque, and stiffness were measured in both ankles before and after the interventions. The changes in Achilles tendon length, walking speed, and lower limb function were also evaluated by the same physician or physiotherapist for each participant. Biomechanical measurements before interventions showed significant difference between the experimental group and the control group due to ankle spasticity. For the control group, there was no significant difference in the 3 months with no robotic intervention. But for the experimental group, passive dorsiflexion range of motion increased (p < 0.01), resistance torque under different dorsiflexion angle levels (0°, 10°, and 20°) decreased (p < 0.05, p < 0.001, and p < 0.001, respectively), and quasi-static stiffness under different dorsiflexion angle levels (0°, 10°, and 20°) also decreased (p < 0.01, p < 0.001, and p < 0.001, respectively). Achilles’s tendon length shortened (p < 0.01), while its thickness showed no significant change (p > 0.05). The robotic rehabilitation also improved the muscle strength (p < 0.01) and muscle control performance (p < 0.001). In addition, improvements were observed in clinical and functional measurements, such as Timed Up-and-Go (p < 0.05), normal walking speed (p > 0.05), and fast walking speed (p < 0.05). These results indicated that the PNF-based robotic intervention could significantly alleviate lower limb spasticity and improve the motor function in chronic stroke participant. The robotic system could potentially be used as an effective tool in poststroke rehabilitation training. PMID:27895574
Bia, Daniel; Cabrera-Fischer, Edmundo I.; Zócalo, Yanina; Galli, Cintia; Graf, Sebastián; Valtuille, Rodolfo; Pérez-Cámpos, Héctor; Saldías, María; Álvarez, Inés; Armentano, Ricardo L.
2012-01-01
Purpose. To evaluate in chronically haemodialysed patients (CHPs), if: (1) the vascular access (VA) position (upper arm or forearm) is associated with differential changes in upper limb arterial stiffness; (2) differences in arterial stiffness exist between genders associated with the VA; (3) the vascular substitute (VS) of choice, in biomechanical terms, depends on the previous VA location and CHP gender. Methods. 38 CHPs (18 males; VA in upper arm: 18) were studied. Left and right carotid-brachial pulse wave velocity (PWVc-b) was measured. In in vitro studies, PWV was obtained in ePTFE prostheses and in several arterial and venous homografts obtained from donors. The biomechanical mismatch (BM) between CHP native vessel (NV) and VS was calculated. Results/Conclusions. PWVc-b in upper limbs with VA was lower than in the intact contralateral limbs (P < 0.05), and differences were higher (P < 0.05) when the VA was performed in the upper arm. Differences between PWVc-b in upper limbs with VA (in the upper arm) with respect to intact upper limbs were higher (P < 0.05) in males. Independently of the region in which the VA was performed, the homograft that ensured the minimal BM was the brachial artery. The BM was highly dependent on gender and the location in the upper limb in which the VA was performed. PMID:22567282
Ickmans, Kelly; Simoens, Fauve; Nijs, Jo; Kos, Daphne; Cras, Patrick; Willekens, Barbara; Meeus, Mira
2014-07-01
Delayed recovery of muscle function following exercise has been demonstrated in the lower limbs of patients with multiple sclerosis (MS). However, studies examining this in the upper limbs are currently lacking. This study compared physical activity level (PAL) and recovery of upper limb muscle function following exercise between MS patients and healthy inactive controls. Furthermore, the relationship between PAL and muscle recovery was examined. PAL of 19 MS patients and 32 controls was measured using an accelerometer for 7 consecutive days. Afterwards, recovery of muscle function was assessed by performing a fatiguing upper limb exercise test with subsequent recovery measures. Muscle recovery of the upper limb muscles was similar in both groups. Average activity counts were significantly lower in MS patients than in the control group. MS patients spent significantly more time being sedentary and less time on activities of moderate intensity compared with the control group. No significant correlation between PAL and recovery of muscle function was found in MS patients. Recovery of upper limb muscle function following exercise is normal in MS patients. MS patients are less physically active than healthy inactive controls. PAL and recovery of upper limb muscle function appear unrelated in MS patients. Copyright © 2014 Elsevier B.V. All rights reserved.
The contribution of cognition and spasticity to driving performance in multiple sclerosis.
Marcotte, Thomas D; Rosenthal, Theodore J; Roberts, Erica; Lampinen, Sara; Scott, J Cobb; Allen, R Wade; Corey-Bloom, Jody
2008-09-01
To examine the independent and combined impact of cognitive dysfunction and spasticity on driving tasks involving high cognitive workload and lower-limb mobility in persons with multiple sclerosis (MS). Single-visit cohort study. Clinical research center. Participants included 17 drivers with MS and 14 referent controls. The group with MS exhibited a broad range of cognitive functioning and disability. Of the 17 patients with MS, 8 had significant spasticity in the knee used to manipulate the accelerator and brake pedals (based on the Modified Ashworth Scale). Not applicable. A brief neuropsychologic test battery and 2 driving simulations. Simulation 1 required participants to maintain a constant speed and lane position while attending to a secondary task. Simulation 2 required participants to adjust their speed to accelerations and decelerations of a lead car in front of them. Patients with MS showed greater variability in lane position (effect size, g=1.30), greater difficulty in maintaining a constant speed (g=1.25), and less ability to respond to lead car speed changes (g=1.85) compared with controls. Within the MS group, in a multivariate model that included neuropsychologic and spasticity measures, cognitive functioning was the strongest predictor of difficulty in maintaining lane position during the divided attention task and poor response time to lead car speed changes, whereas spasticity was associated with reductions in accuracy of tracking the lead car movements and speed maintenance. In this preliminary study, cognitive and physical impairments associated with MS were related to deficits in specific components of simulated driving. Assessment of these factors may help guide the clinician regarding the types of driving behaviors that would put patients with MS at an increased risk for an automobile crash.
The Contribution of Cognition and Spasticity to Driving Performance in Multiple Sclerosis
Marcotte, Thomas D.; Rosenthal, Theodore J.; Roberts, Erica; Lampinen, Sara; Scott, J. Cobb; Allen, R. Wade; Corey-Bloom, Jody
2014-01-01
Objective To examine the independent and combined impact of cognitive dysfunction and spasticity on driving tasks involving high cognitive workload and lower-limb mobility in individuals with multiple sclerosis (MS). Design Single-visit cohort study. Setting Clinical research center. Participants Seventeen drivers with MS and 14 normal controls. The MS group exhibited a broad range of cognitive functioning and disability. Eight MS patients had significant spasticity in the knee proximal to the pedals (based on the Modified Ashworth Scale). Interventions Not applicable. Main Outcome Measures A brief neuropsychologic test battery and 2 driving simulations. Simulation 1 required participants to maintain a constant speed and lane position while attending to a secondary task. Simulation 2 required participants to adjust their speed to accelerations and decelerations of a lead car in front of them. Results MS patients demonstrated greater variability in lane position (effect size g=1.30), greater difficulty in maintaining a constant speed (g=1.25), and less ability to respond to lead car speed changes (g=1.85) compared with controls. Within the MS group, in a multivariate model that included neuropsychologic and spasticity measures, cognitive functioning was the strongest predictor of difficulty in maintaining lane position during the divided attention task and poor response time to lead car speed changes, whereas spasticity was associated with reductions in accuracy of tracking the lead car movements and speed maintenance. Conclusions In this preliminary study, cognitive and physical impairments associated with MS were related to deficits in specific components of simulated driving, and assessment of these factors may help guide the clinician regarding the types of driving behaviors that would put MS patients at increased risk for a crash. PMID:18760160
Poltawski, Leon; Allison, Rhoda; Briscoe, Simon; Freeman, Jennifer; Kilbride, Cherry; Neal, Debbie; Turton, Ailie J; Dean, Sarah
2016-01-01
Upper limb disability following stroke may have multiple effects on the individual. Existing assessment instruments tend to focus on impairment and function and may miss other changes that are personally important. This study aimed to identify personally significant impacts of upper limb disability following stroke. Accounts by stroke survivors, in the form of web-based diaries (blogs) and stories, were sought using a blog search engine and in stroke-related web-sites. Thematic analysis using the World Health Organisation's International Classification of Functioning Disability and Health (ICF) was used to identify personal impacts of upper limb disability following stroke. Ninety-nine sources from at least four countries were analysed. Many impacts were classifiable using the ICF, but a number of additional themes emerged, including emotional, cognitive and behavioural changes. Blogs and other web-based accounts were easily accessible and rich sources of data, although using them raised several methodological issues, including potential sample bias. A range of impacts was identified, some of which (such as use of information technology and alienation from the upper limb) are not addressed in current assessment instruments. They should be considered in post-stroke assessments. Blogs may help in the development of more comprehensive assessments. A comprehensive assessment of the upper limb following stroke should include the impact of upper limb problems on social participation, as well as associated emotional, cognitive and behavioural changes. Using personalised assessment instruments alongside standardised measures may help ensure that these broader domains are considered in discussions between clinicians and patients. Rehabilitation researchers should investigate whether and how these domains could be addressed and operationalised in standard upper limb assessment instruments.
Klimkiewicz, Paulina; Kubsik, Anna; Jankowska, Agnieszka; Woldańska-Okońska, Marta
2014-03-01
Rehabilitation of upper limb in patients after ischemic stroke is a major challenge for modern neurorehabilitation. Function of upper limb of patients after ischemic stroke returns on the end of the rehabilitation comparing with another parts of the body. Below presents two groups of patients after ischemic stroke who were rehabilitated with use of the following methods: kinesiotherapy combined with NDT- Bobath method and kinesiotherapy only. The aim of this study was to assess the impact of kinesiotherapy only and NDT- Bobath method combined with kinesiotherapy on the functional state and muscle tone of upper limb in patients after ischemic stroke. The study involved a group of 40 patients after ischemic stroke with motor control and muscle tone problems of upper limb. Patients were divided into two groups, each of them included 20 people. Upper limb in group I was rehabilitated with the use of kinesiotherapy exercise however group II with the use of kinesiotherapy exercise combined with NDT- Bobath method (Neurodevelopmental Treatment Bobath). To evaluate the patients before and after rehabilitation muscle tone Asworth scale was used and to assess functional status Rivermead Motor Assessment (RMAIII) scale was used. After 5 weeks of rehabilitation in group II in majority patients were observed decrease of muscle tone and improvement in upper limb functional status. In group I the muscle tone were also decreased and functional status were better but in smaller impact than in II group. Classical kinesiotherapy combined with the NDT-Bobath method gives better results in neurorehabilitation of upper limb than the use of kinesiotherapy exercises only in patients after ischemic stroke.
[Tests of hand functionality in upper limb amputation with prosthesis].
Bazzini, G; Orlandini, D; Moscato, T A; Nicita, D; Panigazzi, M
2007-01-01
The need for standardized instruments for clinical measurements has become pressing in the fields of occupational rehabilitation and ergonomics. This is particularly the case for instruments that allow a quantitative evaluation of upper limb function, and especially hand function in patients who have undergone an amputation and then application of an upper limb prosthesis. This study presents a review of the main tests used to evaluate hand function, with a critical analysis of their use in subjects with an upper limb prosthesis. The tests are divided into: tests to evaluate strength, tests to evaluate co-ordination and dexterity, tests of global or overall function, and tests proposed specifically for subjects with an upper limb prosthesis. Of the various tests presented, the authors give their preference to the Bimanual Functional Assessment, Abilhand and/or the ADL Questionnaire, because of the practical usefulness, clinimetric features, simplicity and ease of administration of these tests.
Reflections on the present and future of upper limb prostheses.
Farina, Dario; Amsüss, Sebastian
2016-01-01
Despite progress in research and media attention on active upper limb prostheses, presently the most common commercial upper limb prosthetic devices are not fundamentally different from solutions offered almost one century ago. Limited information transfer for both control and sensory-motor integration and challenges in socket technology have been major obstacles. By analysing the present state-of-the-art and academic achievements, we provide our opinion on the future of upper limb prostheses. We believe that surgical procedures for muscle reinnervation and osseointegration will become increasingly clinically relevant; muscle electrical signals will remain the main clinical means for prosthetic control; and chronic electrode implants, first in muscles (control), then in nerves (sensory feedback), will become viable clinical solutions. After decades of suspended clinically relevant progress, it is foreseeable that a new generation of upper limb prostheses will enter the market in the near future based on such advances, thereby offering substantial clinical benefit for patients.
Upper extremity prosthesis user perspectives on unmet needs and innovative technology.
Benz, Heather L; Jia Yao; Rose, Laura; Olgac, Okan; Kreutz, Karen; Saha, Anindita; Civillico, Eugene F
2016-08-01
The needs of individuals with upper limb amputation and congenital limb difference are not being fully met by current prostheses, as evidenced by prosthesis rejection, non-wear, and user reports of pain and challenging activities. Emerging technologies such as dexterous sensorized robotic limbs, osseointegrated prostheses, implantable EMG electrodes, and electrical stimulation for sensory feedback have the potential to address unmet needs, but pose additional risks. We plan to assess upper limb prosthesis user needs and perspectives on these new benefits and risks using an extensive quantitative survey. In preparation for this survey, we report here on qualitative interviews with seven individuals with upper limb amputation or congenital limb difference. Unstructured text was mined using topic modeling and the results compared with identified themes. A more complete understanding of how novel technologies could address real user concerns will inform implementation of new technologies and regulatory decision-making.
Upper Extremity Prosthesis User Perspectives on Unmet Needs and Innovative Technology
Benz, Heather L.; Yao, Jia; Rose, Laura; Olgac, Okan; Kreutz, Karen; Saha, Anindita; Civillico, Eugene F.
2017-01-01
The needs of individuals with upper limb amputation and congenital limb difference are not being fully met by current prostheses, as evidenced by prosthesis rejection, non-wear, and user reports of pain and challenging activities. Emerging technologies such as dexterous sensorized robotic limbs, osseointegrated prostheses, implantable EMG electrodes, and electrical stimulation for sensory feedback have the potential to address unmet needs, but pose additional risks. We plan to assess upper limb prosthesis user needs and perspectives on these new benefits and risks using an extensive quantitative survey. In preparation for this survey, we report here on qualitative interviews with seven individuals with upper limb amputation or congenital limb difference. Unstructured text was mined using topic modeling and the results compared with identified themes. A more complete understanding of how novel technologies could address real user concerns will inform implementation of new technologies and regulatory decision-making. PMID:28268333
MacLellan, M J; Catavitello, G; Ivanenko, Y P; Lacquaniti, F
2017-11-01
Habitual quadrupeds have been shown to display a planar covariance of segment elevation angle waveforms in the fore and hind limbs during many forms of locomotion. The purpose of the current study was to determine if humans generate similar patterns in the upper and lower limbs during hand-foot crawling. Nine healthy young adults performed hand-foot crawling on a treadmill at speeds of 1, 2, and 3 km/h. A principal component analysis (PCA) was applied to the segment elevation angle waveforms for the upper (upper arm, lower arm, and hand) and lower (thigh, shank, and foot) limbs separately. The planarity of the elevation angle waveforms was determined using the sum of the variance explained by the first two PCs and the orientation of the covariance plane was quantified using the direction cosines of the eigenvector orthogonal to the plane, projected upon each of the segmental semi-axes. Results showed that planarity of segment elevation angles was maintained in the upper and lower limbs (explained variance >97%), although a slight decrease was present in the upper limb when crawling at 3 km/h. The orientation of the covariance plane was highly limb-specific, consistent with animal studies and possibly related to the functional neural control differences between the upper and lower limbs. These results may suggest that the motor patterns stored in the central nervous system for quadrupedal locomotion may be retained through evolution and may still be exploited when humans perform such tasks.
Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni
2012-01-01
Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821
Identification of temporal pathomechanical factors during the tennis serve.
Martin, Caroline; Kulpa, Richard; Ropars, Mickaël; Delamarche, Paul; Bideau, Benoit
2013-11-01
The purpose of this study was twofold: (a) to measure the effects of temporal parameters on both ball velocity and upper limb joint kinetics to identify pathomechanical factors during the tennis serve and (b) to validate these pathomechanical factors by comparing injured and noninjured players. The serves of expert tennis players were recorded with an optoelectronic motion capture system. These experts were then followed during two seasons to identify overuse injuries of the upper limb. Correlation coefficients assessed the relationships between temporal parameters, ball velocity, and peaks of upper limb joint kinetics to identify pathomechanical factors. Temporal parameters and ball velocity were compared between injured and noninjured groups. Temporal pathomechanical factors were identified. The timings of peak angular velocities of pelvis longitudinal rotation, upper torso longitudinal rotation, trunk sagittal rotation, and trunk transverse rotation and the duration between instants of shoulder horizontal adduction and external rotation were significantly related to upper limb joint kinetics and ball velocity. Injured players demonstrated later timings of trunk rotations, improper differences in time between instants of shoulder horizontal adduction and external rotation, lower ball velocities, and higher joint kinetics. The findings of this study imply that improper temporal mechanics during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus possibly increase overuse injuries of the upper limb.
Skeletal Maturation and Mineralisation of Children with Moderate to Severe Spastic Quadriplegia.
Sharawat, Indar Kumar; Sitaraman, Sadasivan
2016-06-01
Diminished bone mineral density and delayed skeletal maturation are common in children with spastic quadriplegia. The purpose of our study was to evaluate the Bone Mineral Density (BMD) of children with moderate to severe spastic quadriplegia and its relationship with other variables like nutrition and growth. This was a hospital based, cross- sectional, case-control study. Forty-two (28 males, 14 females) children with spastic quadriplegia and 42 (24 males, 18 females) healthy children were included in the study. BMD of cases and control were measured by Dual Energy X-ray Absorptiometry (DEXA). Radiographs of left hand and wrist of cases and controls were taken and bone age was determined. BMD values of upper extremity, lower extremity, thoraco-lumbar spine and pelvis in cases were lower than those of controls (p <0.0001). In children with non severe malnutrition, 75% of the cases had lower bone age than chronological age, whereas all cases with severe malnutrition had lower bone age than chronological age. Step wise regression analysis showed that nutritional status independently contributed to lower BMD values but the BMD values did not correlate significantly with the use of anticonvulsant drugs and presence of physical therapy. Decreased BMD and delayed bone age is prevalent in children with spastic quadriplegia and nutritional status is an important contributing factor.
Walker-Bone, K; Cooper, C
2005-10-01
Pain in the neck and upper limb is common and contributes considerably to absence from work due to sickness. Evidence suggest that prolonged abnormal posture and repetition contribute to such conditions. Psychosocial risk factors may also play a part in the aetiology of upper limb disorders.
Delwaide, P J; Figiel, C; Richelle, C
1977-06-01
The influence of passive changes in upper limb position on the excitability of three myotatic arc reflexes (soleus, quadriceps, and biceps femoris) of the lower limb has been explored on 42 volunteers. The results indicate that the excitability of the three myotatic arcs can be influenced at a distance by postural modifications of the upper limb. When the ipsilateral upper limb is forwards or the contralateral backwards, a facilitation of both soleus and quadriceps tendon reflexes is observed while the biceps femoris reflexes are reduced. This pattern of facilitation and inhibition is reversed when the ipsilateral upper limb is backwards or the contralateral forwards. The facilitations as well as inhibitions of proximal myotatic arc reflexes are quantitatively more marked than that of the soleus reflex. Facilitation and inhibition are not linearly related to the angle of the arm with the trunk. Effects begin at a considerable angle, become maximal at 45 degrees, and progressively disappear for greater values. It is suggested that the distinct pattern of facilitation and inhibition which is exerted in reciprocal fashion on extensor and flexor motor nuclei might depend on the long propriospinal neurones connecting cervical and lumbar enlargements.
D'Orso, M I; Centemeri, R; Oggionni, P; Latocca, R; Crippa, M; Vercellino, R; Riva, M; Cesana, G
2011-01-01
The movement computerized analysis of upper limb is a valid support in the definition of residual functional capability and of specific work suitability in complex cases. This methodology of evaluation is able to correctly and objectively define the tridimensional ranges of motion of every patient's upper limb. This fact can be particularly useful for workers coming back to work after a work-related or a not work-related accident of for handicapped workers at the beginning of a new work activity. We report a research carried out using computerized analysis of motion of upper limbs in 20 engineering workers.
Hoe, Victor C W; Urquhart, Donna M; Kelsall, Helen L; Sim, Malcolm R
2012-08-15
Work-related upper limb and neck musculoskeletal disorders (MSDs) are one of the most common occupational disorders around the world. Although ergonomic design and training are likely to reduce the risk of workers developing work-related upper limb and neck MSDs, the evidence is unclear. To assess the effects of workplace ergonomic design or training interventions, or both, for the prevention of work-related upper limb and neck MSDs in adults. We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, AMED, Web of Science (Science Citation Index), SPORTDiscus, Cochrane Occupational Safety and Health Review Group Database and Cochrane Bone, Joint and Muscle Trauma Group Specialised Register to July 2010, and Physiotherapy Evidence Database, US Centers for Disease Control and Prevention, the National Institute for Occupational Safety and Health database, and International Occupational Safety and Health Information Centre database to November 2010. We included randomised controlled trials (RCTs) of ergonomic workplace interventions for preventing work-related upper limb and neck MSDs. We included only studies with a baseline prevalence of MSDs of the upper limb or neck, or both, of less than 25%. Two review authors independently extracted data and assessed risk of bias. We included studies with relevant data that we judged to be sufficiently homogeneous regarding the intervention and outcome in the meta-analysis. We assessed the overall quality of the evidence for each comparison using the GRADE approach. We included 13 RCTs (2397 workers). Eleven studies were conducted in an office environment and two in a healthcare setting. We judged one study to have a low risk of bias. The 13 studies evaluated effectiveness of ergonomic equipment, supplementary breaks or reduced work hours, ergonomic training, a combination of ergonomic training and equipment, and patient lifting interventions for preventing work-related MSDs of the upper limb and neck in adults.Overall, there was moderate-quality evidence that arm support with alternative mouse reduced the incidence of neck/shoulder disorders (risk ratio (RR) 0.52; 95% confidence interval (CI) 0.27 to 0.99) but not the incidence of right upper limb MSDs (RR 0.73; 95% CI 0.32 to 1.66); and low-quality evidence that this intervention reduced neck/shoulder discomfort (standardised mean difference (SMD) -0.41; 95% CI -0.69 to -0.12) and right upper limb discomfort (SMD -0.34; 95% CI -0.63 to -0.06).There was also moderate-quality evidence that the incidence of neck/shoulder and right upper limb disorders were not reduced when comparing alternative mouse and conventional mouse (neck/shoulder RR 0.62; 95% CI 0.19 to 2.00; right upper limb RR 0.91; 95% CI 0.48 to 1.72), arm support and no arm support with conventional mouse (neck/shoulder RR 0.67; 95% CI 0.36 to 1.24; right upper limb RR 1.09; 95% CI 0.51 to 2.29), and alternative mouse with arm support and conventional mouse with arm support (neck/shoulder RR 0.58; 95% CI 0.30 to 1.12; right upper limb RR 0.92; 95% CI 0.36 to 2.36).There was low-quality evidence that using an alternative mouse with arm support compared to conventional mouse with arm support reduced neck/shoulder discomfort (SMD -0.39; 95% CI -0.67 to -0.10). There was low- to very low-quality evidence that other interventions were not effective in reducing work-related upper limb and neck MSDs in adults. We found moderate-quality evidence to suggest that the use of arm support with alternative mouse may reduce the incidence of neck/shoulder MSDs, but not right upper limb MSDs. Moreover, we found moderate-quality evidence to suggest that the incidence of neck/shoulder and right upper limb MSDs is not reduced when comparing alternative and conventional mouse with and without arm support. However, given there were multiple comparisons made involving a number of interventions and outcomes, high-quality evidence is needed to determine the effectiveness of these interventions clearly. While we found very-low- to low-quality evidence to suggest that other ergonomic interventions do not prevent work-related MSDs of the upper limb and neck, this was limited by the paucity and heterogeneity of available studies. This review highlights the need for high-quality RCTs examining the prevention of MSDs of the upper limb and neck.
Development of a 3-D Rehabilitation System for Upper Limbs Using ER Actuators in a Nedo Project
NASA Astrophysics Data System (ADS)
Furusho, Junji; Koyanagi, Ken'ichi; Nakanishi, Kazuhiko; Ryu, Ushio; Takenaka, Shigekazu; Inoue, Akio; Domen, Kazuhisa; Miyakoshi, Koichi
New training methods and exercises for upper limbs rehabilitation are made possible by application of robotics and virtual reality technology. The technologies can also make quantitative evaluations and enhance the qualitative effect of training. We have joined a project managed by NEDO (New Energy and Industrial Technology Development Organization as a semi-governmental organization under the Ministry of Economy, Trade and Industry of Japan) 5-year Project, "Rehabilitation System for the Upper Limbs and Lower Limbs", and developed a 3-DOF exercise machine for upper limbs (EMUL) using ER actuators. In this paper, we also present the development of software for motion exercise trainings and some results of clinical evaluation. Moreover, it is discussed how ER actuators ensure the mechanical safety.
Thomas, Rachel E; Johnston, Leanne M; Boyd, Roslyn N; Sakzewski, Leanne; Kentish, Megan J
2014-02-07
Cerebral palsy is the most common cause of physical disability in childhood. Spasticity is a significant contributor to the secondary impairments impacting functional performance and participation. The most common lower limb spasticity management is focal intramuscular injections of Botulinum Toxin-Type A accompanied by individually-delivered (one on one) physiotherapy rehabilitation. With increasing emphasis on improving goal-directed functional activity and participation within a family-centred framework, it is timely to explore whether physiotherapy provided in a group could achieve comparable outcomes, encouraging providers to offer flexible models of physiotherapy delivery. This study aims to compare individual to group-based physiotherapy following intramuscular Botulinum Toxin-A injections to the lower limbs for ambulant children with cerebral palsy aged four to fourteen years. An assessor-masked, block randomised comparison trial will be conducted with random allocation to either group-based or individual physiotherapy. A sample size of 30 (15 in each study arm) will be recruited. Both groups will receive six hours of direct therapy following Botulinum Toxin-A injections in either an individual or group format with additional home programme activities (three exercises to be performed three times a week). Study groups will be compared at baseline (T1), then at 10 weeks (T2, efficacy) and 26 weeks (T3, retention) post Botulinum Toxin-A injections. Primary outcomes will be caregiver/s perception of and satisfaction with their child's occupational performance goals (Canadian Occupational Performance Measure) and quality of gait (Edinburgh Visual Gait Score) with a range of secondary outcomes across domains of the International Classification of Disability, Functioning and Health. This paper outlines the study protocol including theoretical basis, study hypotheses and outcome measures for this assessor-masked, randomised comparison trial comparing group versus individual models of physiotherapy following intramuscular injections of Botulinum Toxin-A to the lower limbs for ambulant children with cerebral palsy. ACTRN12611000454976.
Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients.
Ackerley, Suzanne J; Byblow, Winston D; Barber, P Alan; MacDonald, Hayley; McIntyre-Robinson, Andrew; Stinear, Cathy M
2016-05-01
Recovery of upper limb function is important for regaining independence after stroke. To test the effects of priming upper limb physical therapy with intermittent theta burst stimulation (iTBS), a form of noninvasive brain stimulation. Eighteen adults with first-ever chronic monohemispheric subcortical stroke participated in this randomized, controlled, triple-blinded trial. Intervention consisted of priming with real or sham iTBS to the ipsilesional primary motor cortex immediately before 45 minutes of upper limb physical therapy, daily for 10 days. Changes in upper limb function (Action Research Arm Test [ARAT]), upper limb impairment (Fugl-Meyer Scale), and corticomotor excitability, were assessed before, during, and immediately, 1 month and 3 months after the intervention. Functional magnetic resonance images were acquired before and at one month after the intervention. Improvements in ARAT were observed after the intervention period when therapy was primed with real iTBS, but not sham, and were maintained at 1 month. These improvements were not apparent halfway through the intervention, indicating a dose effect. Improvements in ARAT at 1 month were related to balancing of corticomotor excitability and an increase in ipsilesional premotor cortex activation during paretic hand grip. Two weeks of iTBS-primed therapy improves upper limb function at the chronic stage of stroke, for at least 1 month postintervention, whereas therapy alone may not be sufficient to alter function. This indicates a potential role for iTBS as an adjuvant to therapy delivered at the chronic stage. © The Author(s) 2015.
Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation.
Resnik, Linda; Meucci, Marissa R; Lieberman-Klinger, Shana; Fantini, Christopher; Kelty, Debra L; Disla, Roxanne; Sasson, Nicole
2012-04-01
The number of catastrophic injuries caused by improvised explosive devices in the Afghanistan and Iraq Wars has increased public, legislative, and research attention to upper limb amputation. The Department of Veterans Affairs (VA) has partnered with the Defense Advanced Research Projects Agency and DEKA Integrated Solutions to optimize the function of an advanced prosthetic arm system that will enable greater independence and function. In this special communication, we examine current practices in prosthetic rehabilitation including trends in adoption and use of prosthetic devices, financial considerations, and the role of rehabilitation team members in light of our experiences with a prototype advanced upper limb prosthesis during a VA study to optimize the device. We discuss key challenges in the adoption of advanced prosthetic technology and make recommendations for service provision and use of advanced upper limb prosthetics. Rates of prosthetic rejection are high among upper limb amputees. However, these rates may be reduced with sufficient training by a highly specialized, multidisciplinary team of clinicians, and a focus on patient education and empowerment throughout the rehabilitation process. There are significant challenges emerging that are unique to implementing the use of advanced upper limb prosthetic technology, and a lack of evidence to establish clinical guidelines regarding prosthetic prescription and treatment. Finally, we make recommendations for future research to aid in the identification of best practices and development of policy decisions regarding insurance coverage of prosthetic rehabilitation. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Bania, Theofani A; Taylor, Nicholas F; Baker, Richard J; Graham, H Kerr; Karimi, Leila; Dodd, Karen J
2014-12-01
The aim of the study was to describe daily physical activity levels of adolescents and young adults with bilateral spastic cerebral palsy (CP) and to identify factors that help predict these levels. Daily physical activity was measured using an accelerometer-based activity monitor in 45 young people with bilateral spastic CP (23 males, 22 females; mean age 18y 6mo [SD 2y 5mo] range 16y 1mo-20y 11mo); classified as Gross Motor Function Classification System (GMFCS) level II or III and with contractures of <20° at hip and knee. Predictor variables included demographic characteristics (age, sex, weight) and physical characteristics (gross motor function, lower limb muscle strength, 6min walk distance). Data were analyzed using the information-theoretic approach, using the Akaike information criterion (AIC) and linear regression. Daily activity levels were low compared with published norms. Gross Motor Function Measure Dimension-E (GMFM-E; walking, running, and jumping) was the only common predictor variable in models that best predicted energy expenditure, number of steps, and time spent sitting/lying. GMFM Dimension-D (standing) and bilateral reverse leg press strength contributed to the models that predicted daily physical activity. Adolescents and young adults with bilateral spastic CP and mild to moderate walking disabilities have low levels of daily activity. The GMFM-E was an important predictor of daily physical activity. © 2014 Mac Keith Press.
Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William
2015-09-01
We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.
Adaptive behaviour and motor skills in children with upper limb deficiency.
Mano, Hiroshi; Fujiwara, Sayaka; Haga, Nobuhiko
2018-04-01
The dysfunction of individuals with upper limb deficiencies affects their daily lives and social participation. To clarify the adaptive behaviours and motor skills of children with upper limb deficiencies. Cross-sectional survey. The subjects were 10 children ranging from 1 to 6 years of age with unilateral upper limb deficiencies at the level distal to the elbow who were using only cosmetic or passive prostheses or none at all. To measure their adaptive behaviour and motor skills, the Vineland Adaptive Behavior Scales, Second Edition was used. They were evaluated on the domains of communication, daily living skills, socialization and motor skills. We also examined the relationship of the scores with age. There were no statistically significant scores for domains or subdomains. The domain standard score of motor skills was significantly lower than the median scores of the domains and was negatively correlated with age. Children with upper limb deficiencies have individual weaknesses in motor skill behaviours, and these weaknesses increase with age. It may be helpful in considering approaches to rehabilitation and the prescription of prostheses to consider the characteristics and course of children's motor skill behaviours. Clinical relevance Even if children with unilateral upper limb deficiencies seem to compensate well for their affected limb function, they have or will experience individual weaknesses in motor skills. We should take this into consideration to develop better strategies for rehabilitation and prostheses prescriptions.
Sugimoto, Seiichiro; Sugimoto, Akiko; Saita, Kazuko; Kishi, Masahiko; Shioya, Keiichi; Higa, Toshinobu
2008-08-01
A 67-year-old woman developed gait disturbance, dysarthria, cognitive impairment and incontinence at age 65, and became bedridden. She showed mutism, stupor and lower limb spasticity. Cranial CT and MRI revealed marked ventricular enlargement and a cerebellopontine angle tumor. CSF study showed normal pressure (125 mmH2O) and elevated protein (143 mg/dl). Radionuclide cisternography showed redistribution of radionuclide to the ventricles and intraventricular residual radionuclide after 72 hours, which allowed a diagnosis of normal pressure hydrocephalus. After removal of the tumor, ventricle size and CSF protein decreased, and the symptoms of cognitive impairment and motor dysfunction resolved. Histological examination showed acoustic neurinoma. Over the half of hydrocephalus following acoustic neurinoma shows a tendency to improve by surgical resection of the tumor. Neurologists who see cognitively impaired spastic bedridden patients should not overlook this pathology.
Work-Related Upper Limb Disorders: A Case Report
Stoyneva, Zlatka Borisova; Dermendjiev, Svetlan; Dermendjiev, Tihomir; Dobrev, Hristo
2015-01-01
In this study the complex interrelationship between physical factors, job stress, lifestyle and genetic factors on symptoms of work-related musculoskeletal disorders of the upper limbs is demonstrated by a case report and discussion of the literature. A 58 year old woman with long lasting complaints of the upper limbs with increasing intensity and duration, generalisation, combined with skin thickness, Raynaud’s phenomenon, joint disorders, arterial and pulmonary hypertension, metabolic lipid dysfunctions is presented. Occupational history proves continuous duration of service at a job with occupational physical static load with numerous repetitive monotonous systematic motions of fingers and hands as a weaver of Persian rugs followed by work at an automated loom and variable labour activities. Though the complaints dated since the time she was a manual weaver, the manifestations of generalized joint degenerative changes, system sclerosis with Raynaud’s phenomenon with similar upper extremities signs and symptoms discount upper limbs musculoskeletal disorder as caused only or mainly by occupational risk factors. The main principles and criteria for occupational diagnosis of musculoskeletal upper limb disorders and legislative requirements for their reglamentation are discussed. PMID:27275213
Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
Chen, Yanyan; Li, Ge; Zhu, Yanhe; Zhao, Jie; Cai, Hegao
2014-01-01
In this paper, a 6-DOF wearable upper limb exoskeleton with parallel actuated joints which perfectly mimics human motions is proposed. The upper limb exoskeleton assists the movement of physically weak people. Compared with the existing upper limb exoskeletons which are mostly designed using a serial structure with large movement space but small stiffness and poor wearable ability, a prototype for motion assistance based on human anatomy structure has been developed in our design. Moreover, the design adopts balls instead of bearings to save space, which simplifies the structure and reduces the cost of the mechanism. The proposed design also employs deceleration processes to ensure that the transmission ratio of each joint is coincident.
Di Blasio, Andrea; Morano, Teresa; Bucci, Ines; Di Santo, Serena; D’Arielli, Alberto; Castro, Cristina Gonzalez; Cugusi, Lucia; Cianchetti, Ettore; Napolitano, Giorgio
2016-01-01
[Purpose] The aims of this study were to verify the effects on upper limb circumferences and total body extracellular water of 10 weeks of Nordic Walking (NW) and Walking (W), both alone and combined with a series of exercises created for breast cancer survivors, the ISA method. [Subjects and Methods] Twenty breast cancer survivors were randomly assigned to 4 different training groups and evaluated for upper limb circumferences, total body and extracellular water. [Results] The breast cancer survivors who performed NW, alone and combined with the ISA method, and Walking combined with the ISA method (but not alone) showed significantly reduced arm and forearm circumferences homolateral to the surgical intervention. [Conclusion] For breast cancer survivors, NW, alone and combined with the ISA method, and Walking combined with the ISA method should be prescribed to prevent the onset and to treat light forms of upper limb lymphedema because Walking training practiced alone had no significant effect on upper limb circumference reduction. PMID:27821934
Golf and upper limb injuries: a summary and review of the literature
McHardy, Andrew J; Pollard, Henry P
2005-01-01
Background Golf is a popular past time that provides exercise with social interaction. However, as with all sports and activities, injury may occur. Many golf-related injuries occur in the upper limb, yet little research on the potential mechanisms of these injuries has been conducted. Objective To review the current literature on golf-related upper limb injuries and report on potential causes of injury as it relates to the golf swing. Discussion An overview of the golf swing is described in terms of its potential to cause the frequently noted injuries. Most injuries occur at impact when the golf club hits the ball. This paper concludes that more research into golf-related upper limb injuries is required to develop a thorough understanding of how injuries occur. Types of research include epidemiology studies, kinematic swing analysis and electromyographic studies of the upper limb during golf. By conducting such research, preventative measures maybe developed to reduce golf related injury. PMID:15967021
Assessing upper limb function in nonambulant SMA patients: development of a new module.
Mazzone, Elena; Bianco, Flaviana; Martinelli, Diego; Glanzman, Allan M; Messina, Sonia; De Sanctis, Roberto; Main, Marion; Eagle, Michelle; Florence, Julaine; Krosschell, Kristin; Vasco, Gessica; Pelliccioni, Marco; Lombardo, Marilena; Pane, Marika; Finkel, Richard; Muntoni, Francesco; Bertini, Enrico; Mercuri, Eugenio
2011-06-01
We report the development of a module specifically designed for assessing upper limb function in nonambulant SMA patients, including young children and those with severe contractures. The application of the module to a preschool cohort of 40 children (age 30-48 months) showed that all the items could be completed by 30 months. The module was also used in 45 nonambulant SMA patients (age 30 months to 27 years). Their scores were more variable than in the preschool cohort, ranging from 0 to 18. The magnitude of scores was not related to age (r=-0.19). The upper limb scores had a good correlation with the Hammersmith Functional Motor Scale, r=0.75, but the upper limb function did not always strictly follow the overall gross motor function. These findings suggest that even some of the very weak nonambulant children possess upper limb skills that can be measured. Copyright © 2011 Elsevier B.V. All rights reserved.
Hereditary spastic paraplegia.
Blackstone, Craig
2018-01-01
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurologic disorders with the common feature of prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. The HSPs exist not only in "pure" forms but also in "complex" forms that are associated with additional neurologic and extraneurologic features. The HSPs are among the most genetically diverse neurologic disorders, with well over 70 distinct genetic loci, for which about 60 mutated genes have already been identified. Numerous studies elucidating the molecular pathogenesis underlying HSPs have highlighted the importance of basic cellular functions - especially membrane trafficking, mitochondrial function, organelle shaping and biogenesis, axon transport, and lipid/cholesterol metabolism - in axon development and maintenance. An encouragingly small number of converging cellular pathogenic themes have been identified for the most common HSPs, and some of these pathways present compelling targets for future therapies. Copyright © 2018 Elsevier B.V. All rights reserved.
Østlie, Kristin; Magnus, Per; Skjeldal, Ola H; Garfelt, Beate; Tambs, Kristian
2011-01-01
To assess how upper limb amputation affects mental health and life satisfaction. Cross-sectional study comparing the mental health and perceived satisfaction with life among adult acquired major upper limb amputees in Norway with a control group drawn from the Norwegian general population. The scales used were the Satisfaction With Life Scale (SWLS) and the Hopkins Symptom Check List 25-item (SCL-25). The groups were compared using multiple linear regression analyses. The amputees scored significantly lower on life satisfaction than the control group. A tendency to poorer mental health in the amputee group was observed, but there was no clear evidence of such a difference. The amputation effect on life satisfaction seemed to be mediated mainly by changes in occupational status and by the occurrence of short- or long-term complications related to the amputation. Our findings imply that rehabilitation of upper limb amputees should emphasise facilitating return to work as well as the prevention of short- and long-term complications, and that this will be of importance not only for the amputees' physical function, but for the maintenance of acceptable life satisfaction. Further studies on the effect of upper limb amputation on mental health are recommended.
The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies
Isaias, Ioannis U.; Volkmann, Jens; Marzegan, Alberto; Marotta, Giorgio; Cavallari, Paolo; Pezzoli, Gianni
2012-01-01
To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. PMID:23236504
Carlsson, Håkan; Gard, Gunvor; Brogårdh, Christina
2018-01-10
To describe stroke survivors' experiences of sensory impairment in the upper limb, the influence of such impairment on daily life, coping strategies used, and sensory training for the affected hand. A qualitative study with a content analysis approach. Fifteen post-stroke patients interviewed individually. Five categories emerged from the data: "Changed and varied perception of the sensation"; "Affected movement control"; "Problems using the hand in daily life"; "Various strategies to cope with upper limb disability"; and "Lack of sensory training". Numbness and tingling, changes in temperature sensitivity, and increased sensitivity to touch and pain were reported. Many subjects had difficulty adjusting their grip force and performing movements with precision. It was problematic and mentally fatiguing managing personal care and carrying out household and leisure activities. Practical adaptations, compensation with vision, increased concentration, and use of the less affected hand were strategies used to overcome difficulties. Despite their problems very few subjects had received any specific sensory training for the hand. Stroke survivors perceive that sensory impairment of the upper limb has a highly negative impact on daily life, but specific rehabilitation for the upper limb is lacking. These findings imply that the clinical management of upper limb sensory impairment after stroke requires more attention.
Figueiredo, Priscilla Rezende Pereira; Silva, Paula Lanna; Avelar, Bruna Silva; da Fonseca, Sérgio Teixeira; Bootsma, Reinoud J; Mancini, Marisa Cotta
2015-04-01
Individuals with unilateral cerebral palsy (CP) demonstrate reduced performance in upper limb tasks compared to typically developing (TD) peers. We examined whether task conditions modify differences between teenagers with and without CP during a reciprocal aiming task. Twenty teenagers (nine CP and 11 TD) moved a pointer between two targets as fast as possible without missing a target. Task conditions were manipulated by changing the targets' size, by modifying the inertial properties of the pointer and by varying the upper limb used to perform the task (preferred/non-affected and non-preferred/affected upper limbs). While compared to TD peers, CP teenagers exhibited lower performance (longer movement times). Such differences were attenuated when the task was performed with the preferred upper limb and when accuracy requirements were less stringent. CP teenagers were not differentially affected by the pointer inertia manipulation. Task conditions not only affected performance but also joint kinematics. CP teenagers revealed less movement at the elbow and more movement at the shoulder when performing the task with their less skilled upper limb. However, both CP and TD teenagers demonstrated a larger contribution of trunk movement when facing more challenging task conditions. The overall pattern of results indicated that the joint kinematics employed by individuals with unilateral CP constituted adaptive responses to task requirements. Thus, the explanation of the effects of unilateral CP on upper limb behavior needs to go beyond a context-indifferent manifestation of the brain injury to include the interaction between task demands and action capabilities.
Martin, Caroline; Bideau, Benoit; Bideau, Nicolas; Nicolas, Guillaume; Delamarche, Paul; Kulpa, Richard
2014-11-01
Energy flow has been hypothesized to be one of the most critical biomechanical concepts related to tennis performance and overuse injuries. However, the relationships among energy flow during the tennis serve, ball velocity, and overuse injuries have not been assessed. To investigate the relationships among the quality and magnitude of energy flow, the ball velocity, and the peaks of upper limb joint kinetics and to compare the energy flow during the serve between injured and noninjured tennis players. Case-control study; Level of evidence, 3. The serves of expert tennis players were recorded with an optoelectronic motion capture system. The forces and torques of the upper limb joints were calculated from the motion captures by use of inverse dynamics. The amount of mechanical energy generated, absorbed, and transferred was determined by use of a joint power analysis. Then the players were followed during 2 seasons to identify upper limb overuse injuries with a questionnaire. Finally, players were classified into 2 groups according to the questionnaire results: injured or noninjured. Ball velocity increased and upper limb joint kinetics decreased with the quality of energy flow from the trunk to the hand + racket segment. Injured players showed a lower quality of energy flow through the upper limb kinetic chain, a lower ball velocity, and higher rates of energy absorbed by the shoulder and elbow compared with noninjured players. The findings of this study imply that improper energy flow during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus increase overuse injuries of the upper limb joints. © 2014 The Author(s).
Stinear, Cathy M; Petoe, Matthew A; Anwar, Samir; Barber, Peter Alan; Byblow, Winston D
2014-01-01
The ability to live independently after stroke depends on the recovery of upper limb function. We hypothesized that bilateral priming with active-passive movements before upper limb physiotherapy would promote rebalancing of corticomotor excitability and would accelerate upper limb recovery at the subacute stage. A single-center randomized controlled trial of bilateral priming was conducted with 57 patients randomized at the subacute stage after first-ever ischemic stroke. The PRIMED group made device-assisted mirror symmetrical bimanual movements before upper limb physiotherapy, every weekday for 4 weeks. The CONTROL group was given intermittent cutaneous electric stimulation of the paretic forearm before physiotherapy. Assessments were made at baseline, 6, 12, and 26 weeks. The primary end point was the proportion of patients who reached their plateau for upper limb function at 12 weeks, measured with the Action Research Arm Test. Odds ratios indicated that PRIMED participants were 3× more likely than controls to reach their recovery plateau by 12 weeks. Intention-to-treat and per-protocol analyses showed a greater proportion of PRIMED participants achieved their plateau by 12 weeks (intention to treat, χ2=4.25; P=0.039 and per protocol, χ2=3.99; P=0.046). ANOVA of per-protocol data showed PRIMED participants had greater rebalancing of corticomotor excitability than controls at 12 and 26 weeks and interhemispheric inhibition at 26 weeks (all P<0.05). Bilateral priming accelerated recovery of upper limb function in the initial weeks after stroke. URL: http://www.anzctr.org.au. Unique identifier: ANZCTR1260900046822.
2012-01-01
Background The use of botulinum toxin A (BT-A) for the treatment of lower limb spasticity is common in children with cerebral palsy (CP). Following the administration of BT-A, physical therapy plays a fundamental role in potentiating the functionality of the child. The balance deficit found in children with CP is mainly caused by muscle imbalance (spastic agonist and weak antagonist). Neuromuscular electrical stimulation (NMES) is a promising therapeutic modality for muscle strengthening in this population. The aim of the present study is to describe a protocol for a study aimed at analyzing the effects of NMES on dorsiflexors combined with physical therapy on static and functional balance in children with CP submitted to BT- A. Methods/Design Protocol for a prospective, randomized, controlled trial with a blinded evaluator. Eligible participants will be children with cerebral palsy (Levels I, II and III of the Gross Motor Function Classification System) between five and 12 years of age, with independent gait with or without a gait-assistance device. All participants will receive BT-A in the lower limbs (triceps surae). The children will then be randomly allocated for either treatment with motor physical therapy combined with NMES on the tibialis anterior or motor physical therapy alone. The participants will be evaluated on three occasions: 1) one week prior to the administration of BT-A; 2) one week after the administration of BT-A; and 3) four months after the administration of BT-A (end of intervention). Spasticity will be assessed by the Modified Ashworth Scale and Modified Tardieu Scale. Static balance will be assessed using the Medicapteurs Fusyo pressure platform and functional balance will be assessed using the Berg Balance Scale. Discussion The aim of this protocol study is to describe the methodology of a randomized, controlled, clinical trial comparing the effect of motor physical therapy combined with NMES on the tibialis anterior muscle or motor physical therapy alone on static and functional balance in children with CP submitted to BT-A in the lower limbs. This study describes the background, hypotheses, methodology of the procedures and measurement of the results. Trial registration RBR5qzs8h PMID:22591446
Ibrahim, Alaa I; Hawamdeh, Ziad M
2007-03-01
The object of this study was to detect any possible relation between the current gross motor function score for cerebral palsy children and their physical growth parameters. We measured 71 children with spastic cerebral palsy (35 diplegic, 25 quadriplegic and 11 hemiplegic) and a control group of 80 normal children. Measures taken for cerebral palsy and normal children included stature, weight, head circumference and mid upper-arm circumference, and, additionally for the cerebral palsied children, duration of the disease, birth weight, presence or absence of orofacial dysfunction, distribution of paralysis and degree of spasticity. Motor abilities were measured using the Gross Motor Function Measure. Results showed a significant decrease in the stature, current weight, head circumference and mid upper-arm circumference of both sexes of the quadriplegic children, and significant decreases in the current weight of the diplegic girls and the head circumference of the hemiplegic girls. There were also significant decreases in all scores of the quadriplegic children compared to the diplegic and hemiplegic children. Diplegic children had significantly decreased standing, walking and running, and total scores, compared to the hemiplegic children. Total score at age of testing was independently predicted by the duration of the disease, distribution of paralysis, presence or absence of orofacial dysfunction, spasticity index and the current body weight. Our findings indicate that in spastic cerebral palsy the physical growth parameters were markedly decreased in the quadriplegic form compared to other forms. Only current body weight, from the growth parameters, in addition to other relevant clinical data, can be considered predictors of the current gross motor abilities of those children.
Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss
Whelan, Lynsay R.; Wagner, Nathan
2011-01-01
While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008), only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapists at Touch Bionics, a manufacturer of advanced upper limb prosthetic devices, employ Voice over the Internet Protocol (VoIP) videoconferencing software telehealth technologies to engage in remote consultation with users of prosthetic devices and/or their local practitioners. The Touch Bionics staff provide follow-up expertise to local prosthetists, occupational therapists, and other health professionals. Contrasted with prior telephone-based consultations, the video-enabled approach provides enhanced capabilities to benefit persons with upper limb loss. Currently, the opportunities for Touch Bionics occupational therapists to fully engage in patient-based services delivered through telehealth technologies are significantly reduced by their need to obtain and maintain professional licenses in multiple states. PMID:25945186
Upper limb function in persons with long term paraplegia and implications for independence: Part II.
Pentland, W E; Twomey, L T
1994-04-01
Research has shown that wheelchair use in long term paraplegia is associated with upper limb pain and degeneration that interferes with the independent performance of activities of daily living. This paper proposes a model to explain the development of upper limb problems in persons with long term paraplegia, and one that will guide in the prevention and management of this type of long term complication.
Skeletal Maturation and Mineralisation of Children with Moderate to Severe Spastic Quadriplegia
Sitaraman, Sadasivan
2016-01-01
Introduction Diminished bone mineral density and delayed skeletal maturation are common in children with spastic quadriplegia. Aim The purpose of our study was to evaluate the Bone Mineral Density (BMD) of children with moderate to severe spastic quadriplegia and its relationship with other variables like nutrition and growth. Materials and Methods This was a hospital based, cross- sectional, case-control study. Forty-two (28 males, 14 females) children with spastic quadriplegia and 42 (24 males, 18 females) healthy children were included in the study. BMD of cases and control were measured by Dual Energy X-ray Absorptiometry (DEXA). Radiographs of left hand and wrist of cases and controls were taken and bone age was determined. Results BMD values of upper extremity, lower extremity, thoraco-lumbar spine and pelvis in cases were lower than those of controls (p <0.0001). In children with non severe malnutrition, 75% of the cases had lower bone age than chronological age, whereas all cases with severe malnutrition had lower bone age than chronological age. Step wise regression analysis showed that nutritional status independently contributed to lower BMD values but the BMD values did not correlate significantly with the use of anticonvulsant drugs and presence of physical therapy. Conclusion Decreased BMD and delayed bone age is prevalent in children with spastic quadriplegia and nutritional status is an important contributing factor. PMID:27504366
Ahmed, Altayeb Abdalla
2016-09-01
Identification of a deceased individual is an essential component of medicolegal practice. However, personal identification based on commingled limbs or parts of limbs, necessary in investigations of mass disasters or some crimes, is a difficult task. Limb measurements have been utilized in the development of biological parameters for personal identification, but the possibility to estimate the dimensions of parts of limbs other than hands and feet has not been assessed. The present study proposes an approach to estimate the dimensions of various parts of limbs based on other limb measurements. The study included 320 Sudanese adults, with equal representation of men and women. Nine limb dimensions were measured (five based on the upper limb, four based on the lower limb), and extensive statistical analysis of the distribution of values was performed. The results showed that all of the measured dimensions were sexually dimorphic and that there was a significant positive correlation between the dimensions of various parts of limbs. Regression models (direct and stepwise) were developed to estimate the dimensions of parts of limbs based on measurements pertaining to one or more other parts of limbs. The study revealed that the dimensions of parts of the upper and lower limb can be estimated from one another. These findings can be used in medicolegal practice and extended to constructive surgery, orthopedics, and prosthesis design for lost limbs.
Hennighausen, U; Schmidt-Martens, F W; Reim, M
1978-05-01
A 5-months-old female baby with Down's Syndrome developed an intermittent spastic ectropion of the upper eyelids. The reasons for this are thought to be the flaccidity of the connective tissue, which is typical in Down's Syndrome, and a little anomaly of the eyelids, the tarsus was too short horizontally and very weak and the upper eyelids were somewhat larger than normal and elongated. Suturing Bangerter's lid-sheets on the upper eyelids for 15 days resulted in a scarring of the tarsus with the lax connective tissue of the upper eyelids. The ectropion disappeared and did not recur.
Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A.
2016-01-01
Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation. PMID:27583121
Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A; Danish, Qazi
2016-09-01
Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation.
Zhang, Ri-Hui; Kang, Zhi-Xin
2011-05-01
To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.
Brauer, Sandra G; Hayward, Kathryn S; Carson, Richard G; Cresswell, Andrew G; Barker, Ruth N
2013-07-02
Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone. A prospective, assessor-blinded parallel, three-group randomised controlled trial is being conducted. Seventy-five participants with a first-ever unilateral stroke less than 4 months previously, who present with severe arm disability (three or fewer out of a possible six points on the Motor Assessment Scale [MAS] Item 6), will be recruited from inpatient rehabilitation facilities. Participants will be randomly allocated to one of three dose-matched groups: SMART Arm training with OT-stim and usual therapy; SMART Arm training without OT-stim and usual therapy; or usual therapy alone. All participants will receive 20 hours of upper limb training over four weeks. Blinded assessors will conduct four assessments: pre intervention (0-weeks), post intervention (4-weeks), 26 weeks and 52 weeks follow-up. The primary outcome measure is MAS item 6. All analyses will be based on an intention-to-treat principle. By enabling intensive and repetitive practice of a functional upper limb task during inpatient rehabilitation, SMART Arm training with or without OT-stim in combination with usual therapy, has the potential to improve recovery of upper limb function in those with severe motor disability. The immediate and long-term effects of SMART Arm training on upper limb impairment, activity and participation will be explored, in addition to the benefit of training with or without OT-stim to augment movement when compared to usual therapy alone. ACTRN12608000457347.
Zhang, Di; Sessa, Salvatore; Kong, Weisheng; Cosentino, Sarah; Magistro, Daniele; Ishii, Hiroyuki; Zecca, Massimiliano; Takanishi, Atsuo
2015-11-01
Current training for laparoscopy focuses only on the enhancement of manual skill and does not give advice on improving trainees' posture. However, a poor posture can result in increased static muscle loading, faster fatigue, and impaired psychomotor task performance. In this paper, the authors propose a method, named subliminal persuasion, which gives the trainee real-time advice for correcting the upper limb posture during laparoscopic training like the expert but leads to a lower increment in the workload. A 9-axis inertial measurement unit was used to compute the upper limb posture, and a Detection Reaction Time device was developed and used to measure the workload. A monitor displayed not only images from laparoscope, but also a visual stimulus, a transparent red cross superimposed to the laparoscopic images, when the trainee had incorrect upper limb posture. One group was exposed, when their posture was not correct during training, to a short (about 33 ms) subliminal visual stimulus. The control group instead was exposed to longer (about 660 ms) supraliminal visual stimuli. We found that subliminal visual stimulation is a valid method to improve trainees' upper limb posture during laparoscopic training. Moreover, the additional workload required for subconscious processing of subliminal visual stimuli is less than the one required for supraliminal visual stimuli, which is processed instead at the conscious level. We propose subliminal persuasion as a method to give subconscious real-time stimuli to improve upper limb posture during laparoscopic training. Its effectiveness and efficiency were confirmed against supraliminal stimuli transmitted at the conscious level: Subliminal persuasion improved upper limb posture of trainees, with a smaller increase on the overall workload.
Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C
2018-04-27
Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Colomer, Carolina; NOé, Enrique; Llorens, Roberto
2016-06-01
Mirror therapy (MT) has been proposed to improve the motor function of chronic individuals with stroke with mild to moderate impairment. With regards to severe upper limb paresis, MT has shown to provide limited motor improvement in the acute or sub-acute phase. However, no previous research has described the effects of MT in chronic individuals with stroke with severely impaired upper limb function. The aim of this study was to determine the effectiveness of MT on chronic stroke survivors with severe upper-limb impairment in comparison with passive mobilization. A randomized controlled trial. Rehabilitative outpatient unit. A total of 31 chronic subjects poststroke with severely impaired upper limb function were randomly assigned to either an experimental group (N.=15), or a control group (N.=16). Twenty-four intervention sessions were performed for both groups. Each session included 45-minute period of MT (experimental group) or passive mobilization (control group), administered three days a week. Participants were assessed before and after the intervention with the Wolf Motor Function Test, the Fugl-Meyer Assessment, and the Nottingham Sensory Assessment. Improvement in motor function was observed in both groups on the time (P=0.002) and ability (P=0.001) subscales of the Wolf Motor Function Test. No differences were detected in kinesthesis or stereognosis. However, the experimental group showed a significant improvement in tactile sensation that was mainly observed as an increased sensitivity to light touches. In comparison with passive mobilization, MT in chronic stroke survivors with severely impaired upper-limb function may provide a limited but positive effect on light touch sensitivity while providing similar motor improvement. MT is a therapeutic approach that can be used in the rehabilitation of severely impaired upper limb in chronic stroke survivors, specifically to address light touch sensitivity deficits.
Outcomes of the Bobath concept on upper limb recovery following stroke.
Luke, Carolyn; Dodd, Karen J; Brock, Kim
2004-12-01
To determine the effectiveness of the Bobath concept at reducing upper limb impairments, activity limitations and participation restrictions after stroke. Electronic databases were searched to identify relevant trials published between 1966 and 2003. Two reviewers independently assessed articles for the following inclusion criteria: population of adults with upper limb disability after stroke; stated use of the Bobath concept aimed at improving upper limb disability in isolation from other approaches; outcomes reflecting changes in upper limb impairment, activity limitation or participation restriction. Of the 688 articles initially identified, eight met the inclusion criteria. Five were randomized controlled trials, one used a single-group crossover design and two were single-case design studies. Five studies measured impairments including shoulder pain, tone, muscle strength and motor control. The Bobath concept was found to reduce shoulder pain better than cryotherapy, and to reduce tone compared to no intervention and compared to proprioceptive neuromuscular facilitation (PNF). However, no difference was detected for changes in tone between the Bobath concept and a functional approach. Differences did not reach significance for measures of muscle strength and motor control. Six studies measured activity limitations, none of these found the Bobath concept was superior to other therapy approaches. Two studies measured changes in participation restriction and both found equivocal results. Comparisons of the Bobath concept with other approaches do not demonstrate superiority of one approach over the other at improving upper limb impairment, activity or participation. However, study limitations relating to methodological quality, the outcome measures used and contextual factors investigated limit the ability to draw conclusions. Future research should use sensitive upper limb measures, trained Bobath therapists and homogeneous samples to identify the influence of patient factors on the response to therapy approaches.
Electromyography-based analysis of human upper limbs during 45-day head-down bed-rest
NASA Astrophysics Data System (ADS)
Fu, Anshuang; Wang, Chunhui; Qi, Hongzhi; Li, Fan; Wang, Zheng; He, Feng; Zhou, Peng; Chen, Shanguang; Ming, Dong
2016-03-01
Muscle deconditioning occurs in response to simulated or actual microgravity. In spaceflight, astronauts become monkey-like for mainly using their upper limbs to control the operating system and to complete corresponding tasks. The changes of upper limbs' athletic ability will directly affect astronauts' working performance. This study investigated the variation trend of surface electromyography (sEMG) during prolonged simulated microgravity. Eight healthy males participating in this study performed strict 45-day head-down bed-rest (HDBR). On the 5th day of pre-HDBR, and the 15th, the 30th and the 45th days of HDBR, the subjects performed maximum pushing task and maximum pulling task, and sEMG was collected from upper limbs synchronously. Each subject's maximum volunteer contractions of both the tasks during these days were compared, showing no significant change. However, changes were detected by sEMG-based analysis. It was found that integrated EMG, root mean square, mean frequency, fuzzy entropy of deltoid, and fuzzy entropy of triceps brachii changed significantly when comparing pre-HDBR with HDBR. The variation trend showed a recovery tendency after significant decline, which is inconsistent with the monotonic variation of lower limbs that was proved by previous research. These findings suggest that EMG changes in upper limbs during prolonged simulated microgravity, but has different variation trend from lower limbs.
Development of upper limb prostheses: current progress and areas for growth.
González-Fernández, Marlís
2014-06-01
Upper extremity prosthetic technology has significantly changed in recent years. The devices available and those under development are more and more able to approximate the function of the lost limb; however, other challenges remain. This article provides a brief perspective on the most advanced upper limb prostheses available and the challenges present for continued development of the technology. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Importance of upper-limb inertia in calculating concentric bench press force.
Rambaud, Olivier; Rahmani, Abderrahmane; Moyen, Bernard; Bourdin, Muriel
2008-03-01
The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 +/- 4.1 years, 184.6 +/- 5.5 cm, 99.5 +/- 18.6 kg) performed all-out concentric bench press exercise against 8 loads ranging between 7 and 74 kg. The results showed that for each load, Fpeakb was significantly less than Fpeakp (P < 0.0001), whereas no significant difference was found between Fpeakp and Fpeakt. The values of maximal force (F0), maximal velocity (V0), optimal velocity (Vopt), and maximal power (Pmax), extrapolated from the force- and power-velocity relationships determined with the kinematic device, were significantly underestimated when upper-limb inertia was ignored. The results underline the importance of taking account of the total inertia of the moving system to ensure precise evaluation of upper-limb muscular characteristics in all-out concentric bench press exercise with a kinematic device. A major application of this study would be to develop precise upper-limb muscular characteristic evaluation in laboratory and field conditions by using a simple and cheap kinematic device.
Evaluation of rotator cuff muscle strength in healthy individuals
Cortez, Paulo José Oliveira; Tomazini, José Elias
2015-01-01
OBJECTIVE: To compare the strength generated by the rotator muscles of the shoulder joint between the right upper limb and left upper limb among healthy individuals. METHODS: To evaluate the muscle strength of upper limbs from isometric contractions in the horizontal direction (rotation) an isometric dynamometer was used, equipped with transducers, signal conditioning, a data acquisition board, and finally, a computer. Study participants were 22 male military subjects, aged between 18 and 19 years old, body mass between 57.7 and 93.0 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without clinical diseases or any type of orthopedic injury in the muscle skeletal system. RESULTS: The internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0.723). The external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0.788). No statistical difference was observed by comparing the strength values of all isometric strength tests. CONCLUSION: For the sample and methodology used to assess muscle strength, there was no statistical difference between the strength generated by the muscles of the rotator cuff of the right and left upper limbs. Experimental Study. PMID:26207091
Dubé, M P; Mlodzienski, M A; Kibar, Z; Farlow, M R; Ebers, G; Harper, P; Kolodny, E H; Rouleau, G A; Figlewicz, D A
1997-03-01
Hereditary spastic paraplegia (HSP) is a degenerative disorder of the motor system, defined by progressive weakness and spasticity of the lower limbs. HSP may be inherited as an autosomal dominant (AD), autosomal recessive, or an X-linked trait. AD HSP is genetically heterogeneous, and three loci have been identified so far: SPG3 maps to chromosome 14q, SPG4 to 2p, and SPG4a to 15q. We have undertaken linkage analysis with 21 uncomplicated AD families to the three AD HSP loci. We report significant linkage for three of our families to the SPG4 locus and exclude several families by multipoint linkage. We used linkage information from several different research teams to evaluate the statistical probability of linkage to the SPG4 locus for uncomplicated AD HSP families and established the critical LOD-score value necessary for confirmation of linkage to the SPG4 locus from Bayesian statistics. In addition, we calculated the empirical P-values for the LOD scores obtained with all families with computer simulation methods. Power to detect significant linkage, as well as type I error probabilities, were evaluated. This combined analytical approach permitted conclusive linkage analyses on small to medium-size families, under the restrictions of genetic heterogeneity.
Lynch, David S; Koutsis, Georgios; Tucci, Arianna; Panas, Marios; Baklou, Markella; Breza, Marianthi; Karadima, Georgia; Houlden, Henry
2016-06-01
Hereditary Spastic Paraplegia (HSP) is a syndrome characterised by lower limb spasticity, occurring alone or in association with other neurological manifestations, such as cognitive impairment, seizures, ataxia or neuropathy. HSP occurs worldwide, with different populations having different frequencies of causative genes. The Greek population has not yet been characterised. The purpose of this study was to describe the clinical presentation and molecular epidemiology of the largest cohort of HSP in Greece, comprising 54 patients from 40 families. We used a targeted next-generation sequencing (NGS) approach to genetically assess a proband from each family. We made a genetic diagnosis in >50% of cases and identified 11 novel variants. Variants in SPAST and KIF5A were the most common causes of autosomal dominant HSP, whereas SPG11 and CYP7B1 were the most common cause of autosomal recessive HSP. We identified a novel variant in SPG11, which led to disease with later onset and may be unique to the Greek population and report the first nonsense mutation in KIF5A. Interestingly, the frequency of HSP mutations in the Greek population, which is relatively isolated, was very similar to other European populations. We confirm that NGS approaches are an efficient diagnostic tool and should be employed early in the assessment of HSP patients.
Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C.; Rasskin-Gutman, Diego
2015-01-01
How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual’s survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts—their topological patterns relative to each other—using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures. PMID:26452269
Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego
2015-01-01
How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures.
Ateş, Filiz; Temelli, Yener; Yucesoy, Can A
2018-02-01
Most activities involve co-activation of several muscles and epimuscular myofascial force transmission (EMFT) can affect their mechanics. This can be relevant for spastic muscles of cerebral palsy (CP) patients. Isometric spastic semitendinosus (ST) forces vs. knee angle (KA-F ST ) data were collected intra-operatively to test the following hypotheses: (i) Inter-antagonistic EMFT elevates F ST , (ii) changes the shape of KA-F ST characteristics, (iii) reduces the muscle's joint range of force exertion (Range-F ST ) and (iv) combined inter-antagonistic and synergistic EMFT further changes those effects. 11 limbs of 6 patients with CP (mean (SD) = 7.7 (4.7) years; GMFCS levels = II-IV) were tested in 3 conditions from 120° to full extension: ST activated (I) exclusively, (II) simultaneously with an antagonist, and (III) with added activation of synergists. Condition II increased F ST (e.g., peak force = 87.6 N (30.5 N)) significantly (by 33.6%), but condition III caused no further change. No condition changed the muscle's wide Range-F ST (100.7° (15.9°)) significantly. Therefore, only the first hypothesis was confirmed. Co-activating its antagonist elevates forces of activated spastic ST substantially, but does not change its joint range of force exertion. Added activation of its synergists causes no further effects. Therefore, EMFT effects in CP can be relevant and need to be tested in other knee flexors. Copyright © 2017 Elsevier B.V. All rights reserved.
A short overview of upper limb rehabilitation devices
NASA Astrophysics Data System (ADS)
Macovei, S.; Doroftei, I.
2016-08-01
As some studies show, the number of people over 65 years old increases constantly, leading to the need of solution to provide services regarding patient mobility. Diseases, accidents and neurologic problems affect hundreds of people every day, causing pain and lost of motor functions. The ability of using the upper limb is indispensable for a human being in everyday activities, making easy tasks like drinking a glass of water a real challenge. We can agree that physiotherapy promotes recovery, but not at an optimal level, due to limited financial and human resources. Hence, the need of robot-assisted rehabilitation emerges. A robot for upper-limb exercises should have a design that can accurately control interaction forces and progressively adapt assistance to the patients’ abilities and also to record the patient's motion and evolution. In this paper a short overview of upper limb rehabilitation devices is presented. Our goal is to find the shortcomings of the current developed devices in terms of utility, ease of use and costs, for future development of a mechatronic system for upper limb rehabilitation.
Upper limb function in Duchenne muscular dystrophy: 24 month longitudinal data.
Pane, Marika; Coratti, Giorgia; Brogna, Claudia; Mazzone, Elena Stacy; Mayhew, Anna; Fanelli, Lavinia; Messina, Sonia; D'Amico, Adele; Catteruccia, Michela; Scutifero, Marianna; Frosini, Silvia; Lanzillotta, Valentina; Colia, Giulia; Cavallaro, Filippo; Rolle, Enrica; De Sanctis, Roberto; Forcina, Nicola; Petillo, Roberta; Barp, Andrea; Gardani, Alice; Pini, Antonella; Monaco, Giulia; D'Angelo, Maria Grazia; Zanin, Riccardo; Vita, Gian Luca; Bruno, Claudio; Mongini, Tiziana; Ricci, Federica; Pegoraro, Elena; Bello, Luca; Berardinelli, Angela; Battini, Roberta; Sansone, Valeria; Albamonte, Emilio; Baranello, Giovanni; Bertini, Enrico; Politano, Luisa; Sormani, Maria Pia; Mercuri, Eugenio
2018-01-01
The aim of the study was to establish 24 month changes in upper limb function using a revised version of the performance of upper limb test (PUL 2.0) in a large cohort of ambulant and non-ambulant boys with Duchenne muscular dystrophy and to identify possible trajectories of progression. Of the 187 patients studied, 87 were ambulant (age range: 7-15.8 years), and 90 non-ambulant (age range: 9.08-24.78). The total scores changed significantly over time (p<0.001). Non-ambulant patients had lower total scores at baseline (mean 19.7) when compared to the ambulant ones (mean 38.4). They also had also a bigger decrease in total scores over 24 months compared to the ambulant boys (4.36 vs 2.07 points). Multivariate model analysis showed that the Performance of Upper Limb changes reflected the entry level and ambulation status, that were independently associated to the slope of Performance of Upper Limb changes. This information will be of help both in clinical practice and at the time of designing clinical trials.
Kakinoki, Ryosuke; Duncan, Scott F M; Ikeguchi, Ryosuke; Ohta, Souichi; Nankaku, Manabu; Sakai, Hiroshi; Noguchi, Takashi; Kaizawa, Yukitoshi; Akagi, Masao
2017-06-01
Previous animal studies demonstrated that the sensory and motor functions in ipsilesional upper limbs that had been reconstructed by CC7 transfer eventually associated with the contralesional brain cortices that had originally mediated the functions of the ipsilesional upper limbs before brachial plexus injury (BPI). Our hypothesis was that the same findings would be seen in humans. Four patients with total BPI treated with CC7 transfer were included. Changes in the locations of the activated areas in the primary motor (M1) and somatosensory (S1) cortices corresponding to the motor outputs to and sensory inputs from the ipsilesional limbs were investigated using functional near-infrared spectroscopy (fNIRS) 2-3 years and 6-7 years after surgery. One patient was excluded from the evaluation of motor function after CC7 transfer. The motor and sensory functions of the ipsilesional upper limb in all patients were still controlled by the ipsilesional brain hemisphere 2-3 years after CC7 transfer. The reconstructed motions of the ipsilesional upper limbs correlated with the contralesional M1 in one patient and the bilateral M1s in another patient (both of whom demonstrated good motor recovery in the ipsilesional upper limbs) and with the ipsilesional M1 in a third patient with poor motor recovery in the ipsilesional upper limb. Sensory stimulation of the ipsilesional hands 6-7 years after CC7 transfer activated the contralesional S1 in two patients who achieved good sensory recovery in the ipsilesional hands but activated the ipsilesional S1 in the other two patients with poor sensory recovery of the ipsilesional hands. Transhemispheric transposition of the activated brain cortices associated with the recovery of motor and sensory functions of the ipsilesional upper limbs was seen in patients with CC7 transfer as has been reported for animal models of CC7 transfer.
Clinical acceptability of the sense_assess© kids: Children and youth perspectives.
Taylor, Susan; McLean, Belinda; Blair, Eve; Carey, Leeanne Mary; Valentine, Jane; Girdler, Sonya; Elliott, Catherine
2018-04-01
The sense_assess© kids is a standardised, norm-referenced assessment designed to measure the functional somatosensation capacity of the upper limb of children with cerebral palsy. The objective of the current study was to determine if the sense_assess© kids was clinically acceptable to children and youth. A questionnaire was completed by participants following administration of the sense_assess© kids by a trained occupational therapist. Twenty-six children with spastic hemiplegic cerebral palsy (aged 6-15 years six months; mean 10 years eight months; 16 boys) were recruited. Participants responded to questions regarding the administration and level of difficulty of the sense_assess© kids using a Q-Sort of 'like' and 'dislike', Likert scales and short answers. Content analysis was applied. Twenty-one of twenty-six children, indicated that they were 'very happy' or 'happy' with the administration process of the sense_assess© kids. Most participants indicated that they liked the sensation they felt in the hand when tested. This study has demonstrated the acceptability of sense_assess© kids for the population for whom it is intended. © 2017 Occupational Therapy Australia.
Ortiz-Rubio, Araceli; Cabrera-Martos, Irene; Rodríguez-Torres, Janet; Fajardo-Contreras, Waldo; Díaz-Pelegrina, Ana; Valenza, Marie Carmen
2016-12-01
To evaluate the effects of a home-based upper limb training program on arm function in patients with multiple sclerosis (MS). Additionally, the effects of this program on manual dexterity, handgrip strength, and finger prehension force were analyzed. Randomized, single-blind controlled trial. Home based. Patients with a clinical diagnosis of MS acknowledging impaired manual ability (N=37) were randomized into 2 groups. Patients in the experimental group were included in a supervised home-based upper limb training program for 8 weeks twice a week. Patients in the control group received information in the form of a leaflet with a schedule of upper limb exercise training. The primary outcome measure was arm function (motor functioning assessed using the finger tapping test and a functional measure, the Action Research Arm Test). The secondary outcome measures were manual dexterity assessed with the Purdue Pegboard Test and handgrip strength and finger prehension force evaluated with a handgrip and a pinch dynamometer, respectively. After 8 weeks, a significant between-group improvement (P<.05) was found on the Action Research Arm Test bilaterally and the finger tapping test in the most affected upper limb. The secondary outcomes also improved in the most affected limb in the experimental group. An 8-week home-based intervention program focused on upper limbs twice a week improved arm function and physiologic variables with a primary focus on the more affected extremity in patients with MS compared with the control group. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Yoo, In-gyu; Jung, Min-ye; Yoo, Eun-young; Park, Ji-hyuk; Kang, Dae-hyuk; Lee, Jin
2014-01-01
Stroke patients have major problems with impaired upper-extremity function. Unfortunately, many patients do not experience a full recovery from movement deficits in the upper extremities. The purpose of this study was to compare the effectiveness of inter-limb learning transfer (ILT) to the contralateral upper limb after both hemisphere-specific and -unspecific ipsilateral upper limb training for stroke patients with hemiparesis. Twenty-four stroke patients with hemiparesis participated. The hemisphere-specific training group performed reaching movements in a customized training setting in which non-dominant limb training participants began from a single starting location and proceeded to one of three target locations (1S3T condition); the dominant limb training participants started from one of three starting locations and proceeded to a single target location (3S1T condition). The hemisphere-unspecific training group performed these movements starting under reverse-start and target conditions. The non-dominant to dominant limb transfer, the hemisphere-specific training group performance time decreased significantly as compared with the pre-training session (p < 0.05). Also, the isolation contraction ratio was decreased significantly from that of the pre-training session in the biceps brachii muscles and increased significantly in the upper trapezius muscles (p < 0.05). And, dominant to non-dominant limb transfer in the hemisphere-specific training group significantly increased RMS amplitudes from the pre-training session in the biceps brachii and triceps muscles (p < 0.05). Also, the isolation contraction ratio was increased significantly from that of the pre-training session in the biceps brachii muscles and decreased significantly in the upper trapezius muscles (p < 0.05). However, the hemisphere-unspecific training group showed no significant differences in inter-limb learning transfer (ILT). The transfer of hemisphere-specific training from one arm to the other had a more positive influence on functional recovery than did hemisphere-unspecific training for patients with stroke and hemiparesis.
Design and Development of a Novel Upper-Limb Cycling Prosthesis
Soni-Sadar, Shivam; Rowbottom, Jack; Patel, Shilen; Mathewson, Edward; Pearson, Samuel; Hutchins, David; Head, John; Hutchins, Stephen
2017-01-01
The rise in popularity of the Paralympics in recent years has created a need for effective, low-cost sports-prosthetic devices for upper-limb amputees. There are various opportunities for lower-limb amputees to participate in cycling; however, there are only few options for those with upper-limb amputations. If the individual previously participated in cycling, a cycling-specific prosthesis could allow these activities to be integrated into rehabilitation methods. This article describes the processes involved with designing, developing and manufacturing such a prosthesis. The fundamental needs of people with upper-limb amputation were assessed and realised in the prototype of a transradial terminal device with two release mechanisms, including a sliding mechanism (for falls and minor collisions) and clamping mechanism (for head-on collisions). The sliding mechanism requires the rider to exert approximately 200 N, while the clamping mechanism requires about 700 N. The force ranges can be customised to match rider requirements. Experiments were conducted in a controlled environment to demonstrate stability of the device during normal cycling. Moreover, a volunteer test-rider was able to successfully activate the release mechanism during a simulated emergency scenario. The development of this prosthesis has the potential to enable traumatic upper-limb amputees to participate in cycling for rehabilitation or recreation. PMID:29144392
Coker-Bolt, Patty; Downey, Ryan J; Connolly, Jacqueline; Hoover, Reagin; Shelton, Daniel; Seo, Na Jin
2017-01-01
The aim of this pilot study was to determine the feasibility and use accelerometers before, during, and after a camp-based constraint-induced movement therapy (CIMT) program for children with hemiplegic cerebral palsy. A pre-test post-test design was used for 12 children with CP (mean = 4.9 yrs) who completed a 30-hour camp-based CIMT program. The accelerometer data were collected using ActiGraph GT9X Link. Children wore accelerometers on both wrists one day before and after the camp and on the affected limb during each camp day. Three developmental assessments were administered pre-post CIMT program. Accelerometers were successfully worn before, during, and directly after the CIMT program to collect upper limb data. Affected upper limb accelerometer activity significantly increased during the CIMT camp compared to baseline (p< 0.05). Significant improvements were seen in all twelve children on all assessments of affected upper limb function (p< 0.05) measuring capacity and quality of affected upper limb functioning. Accelerometers can be worn during high intensity pediatric CIMT programs to collect data about affected upper limb function. Further study is required to determine the relationship between accelerometer data, measure of motor capacity, and real-world performance post-CIMT.
Design and Development of a Novel Upper-Limb Cycling Prosthesis.
Tiele, Akira; Soni-Sadar, Shivam; Rowbottom, Jack; Patel, Shilen; Mathewson, Edward; Pearson, Samuel; Hutchins, David; Head, John; Hutchins, Stephen
2017-11-16
The rise in popularity of the Paralympics in recent years has created a need for effective, low-cost sports-prosthetic devices for upper-limb amputees. There are various opportunities for lower-limb amputees to participate in cycling; however, there are only few options for those with upper-limb amputations. If the individual previously participated in cycling, a cycling-specific prosthesis could allow these activities to be integrated into rehabilitation methods. This article describes the processes involved with designing, developing and manufacturing such a prosthesis. The fundamental needs of people with upper-limb amputation were assessed and realised in the prototype of a transradial terminal device with two release mechanisms, including a sliding mechanism (for falls and minor collisions) and clamping mechanism (for head-on collisions). The sliding mechanism requires the rider to exert approximately 200 N, while the clamping mechanism requires about 700 N. The force ranges can be customised to match rider requirements. Experiments were conducted in a controlled environment to demonstrate stability of the device during normal cycling. Moreover, a volunteer test-rider was able to successfully activate the release mechanism during a simulated emergency scenario. The development of this prosthesis has the potential to enable traumatic upper-limb amputees to participate in cycling for rehabilitation or recreation.
Lymphoedema of the upper limb: a rare complication of thyroid surgery?
Stephen, Christopher; Munnoch, David Alexander
2016-01-01
A 40-year-old woman underwent an elective thyroidectomy for a non-toxic, multinodular goitre. In the early postoperative period, the patient developed a significant unilateral swelling of the right upper limb, which was subsequently confirmed to be lymphoedema. This was eventually treated successfully using liposuction and compression garment therapies. We report the case due to its rarity and present a possible explanation for such an unexpected complication based on known anatomical variations of lymphatic drainage of the upper limb. PMID:27090542
Physiologically Relevant Prosthetic Limb Movement Feedback for Upper and Lower Extremity Amputees
2016-10-01
upper arm (elbow movement), Upper leg (knee movement) and lower leg ( ankle movement) to provide a physiologically relevant sense of limb movement...Additionally a BOA cable tensioning system is passed through these plates and anchored to the external surface of the socket. When tension is applied the
[The importance of upper limb diseases in occupational medicine].
Riva, Matteo Marco; Santini, Marisa; Mosconi, Giovanni
2013-01-01
In this work the authors analyse the results of the clinical evaluation of patients affected by suspected work related musculo-skeletal disorders (WMSDs), observed throughout 2008-2009 in the specific ambulatory of Occupational Medicine Division of Ospedali Riuaniti di Bergamo. The aim is to illustrate the epidemiological relevance of upper limb (UL) WMSDs. We observed 430 patients (mean age 46,9 years, DS 9,3; mean working seniority 29 years, DS 10,4), investigating 600 disorders in diferent musculoskeletal segments. Most of the patients (66%) got to the division for a clinical consultation requested by general practitioners, 29,8% by occupational physicians, 4,2% by national insurance for occupational injuries and diseases (INAIL). Most of the patients (38,4%) were employed in construction industry. Among the 600 disorders investigated, 34,5% was at lumbar spine, 74,5% was at upper limb. The clinical diagnosis was already clear at the first consultation for 81,6% of subjects with low back pain and for 56,5% of patients with upper limb disorders; for the others was necessary to prescribe some instrumental exams or specialistic (neurologic, physiatric, orthopaedic) medical examination. We concluded for a diagnosis of WMSDs in 48,3% of the 600 cases: the percentage is 50,2% if we consider only disorders at lumbar spine and 52,5% among disorders at upper limb. The most frequent reason of refusing occupational aetiology, in the cases of low back pain, was the concomitant presence of other diseases at the segment; on the contrary, for the cases of upper limb disorders, was the lack of correlation between type of disease and professional exposure. All physicians demonstrate a high attention about upper limb disorders, topical subject of great epidemiological interest. General practitioners and occupational physicians have to take more advantage of diagnostic support and clinical evaluations offered by Occupational Medicine Divisions an Universities about WMSDs. In consideration of the dificulties to diagnose upper limb disorders and proving correlation with professional exposure is useful to promote specific courses for general practitioners and occupational physicians.
Using commercial video games for upper limb stroke rehabilitation: is this the way of the future?
Pietrzak, Eva; Cotea, Cristina; Pullman, Stephen
2014-01-01
The increasing number of people living with poststroke sequelae has stimulated the search for novel ways of providing poststroke rehabilitation without putting additional stress on overburdened health care systems. One of them is the use of commercially available technology and off-the-shelf video games for hemiparetic upper limb rehabilitation. The MEDLINE, EMBASE, and Cochrane Library databases were searched using key word synonyms for stroke, upper limb, and video games. Included studies investigated upper limb stroke rehabilitation using commercially available consoles and video games, reported outcomes that included measures of upper limb functionality, and were published in a peer-reviewed journal written in English. Thirteen studies were identified - 6 published as full articles and 7 as abstracts. Studies were generally small and only 3 were randomized. The gaming systems investigated were the Nintendo Wii (n = 10), EyeToy PlayStation (n = 2), and CyWee Z (n = 1). The Nintendo Wii appears to provide the greatest benefits to patients, with improvements seen in upper extremity function measures such as joint range of motion, hand motor function, grip strength, and dexterity. Three studies indicate that video therapy appears to be safe and that long-term improvements continue at follow-up. At present, the evidence that the use of commercial video games in rehabilitation improves upper limb functionality after stroke is very limited. However, this approach has the potential to provide easily available and affordable stroke rehabilitation therapy in settings where access to therapy is limited by geographical or financial constraints.
A survey of overuse problems in patients with acquired or congenital upper limb deficiency.
Burger, Helena; Vidmar, Gaj
2016-08-01
Little is known about secondary impairments and overuse problems in patient with acquired or congenital upper limb deficiency. Our aim was to estimate the frequency of overuse problems in persons after unilateral upper limb deficiency and identify the factors relevant for development of these problems. Cross-sectional study conducted at the University Rehabilitation Institute in Ljubljana. In total, 65 persons after unilateral upper limb deficiency who had visited our subspecialist outpatient clinic during the 2011-2013 period (excluding those with other possible medical causes of overuse-type problems) were interviewed about the frequency, duration and severity of neck, elbow and shoulder pain and the presence of carpal tunnel syndrome and filled in the Orthotics and Prosthetics User Survey-Upper Extremity Functional Status questionnaire. The most frequent problem was carpal tunnel syndrome, followed by shoulder pain, neck pain and elbow pain. No statistically significant association of deficiency level, cause of deficiency, time since deficiency, extent of daily prosthesis use or type of prosthesis with frequency or severity of pain or number of problems was found. The presence of carpal tunnel syndrome decreased from wearing no prosthesis through aesthetic and body-powered to myoelectric prosthesis (p = 0.014). Factors contributing to overuse problems after upper limb deficiency are not straightforward, so a large multicentric study is warranted. Persons with acquired or congenital upper limb deficiency are under a heightened risk of developing overuse problems but the contributing factors are not clear, so regular individual follow-up is required. © The International Society for Prosthetics and Orthotics 2015.
Update on embryology of the upper limb.
Al-Qattan, Mohammad M; Kozin, Scott H
2013-09-01
Current concepts in the steps of upper limb development and the way the limb is patterned along its 3 spatial axes are reviewed. Finally, the embryogenesis of various congenital hand anomalies is delineated with an emphasis on the pathogenetic basis for each anomaly. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Decq, P; Filipetti, P; Cubillos, A; Slavov, V; Lefaucheur, J P; Nguyen, J P
2000-11-01
This prospective, nonrandomized, noncontrolled study was performed to evaluate the results of a new type of neurotomy, namely the soleus neurotomy, for treatment of the spastic equinus foot. Between May 1996 and March 1998, 46 patients were treated for a spastic equinus foot. Clinical status, spasticity (Ashworth Scale score), and kinematic parameters of the gait were determined before and after surgery. The neurotomy was performed on the upper nerve of the soleus in all cases and was associated with other neurotomies (lower nerve of the soleus, 21 patients; gastrocnemius, 9 patients, tibialis posterior, 18 patients; flexor hallucis longus, 16 patients; and flexor digitorum longus, 17 patients). The mean follow-up period was 15 months (range, 8-28 mo). The equinus deformity disappeared clinically in all patients. Before the operation, all patients had an Ashworth Scale score of 2, with an inexhaustible clonus present on knee extension and persisting with knee flexion (Tardieu Scale score, 4), which was abolished in 95% of the patients after surgery. Two patients still had some clonus on knee extension; this did not interfere with their clinical improvement. Knee recurvatum disappeared in eight patients. Analysis of kinematic parameters demonstrated a statistically significant increase in joint motion of the second rocker (P = 0.0026) of the ankle during stance. The duration of the stance or swing phase, length of the walking cycle, and velocity or rate of spontaneous walking were not significantly modified. The study demonstrated that soleus neurotomy is effective for the treatment of spastic equinus foot, leading to abolition of spasticity and improvement in the range of ankle motion during the stance phase of gait.
Stein, Cinara; Fritsch, Carolina Gassen; Robinson, Caroline; Sbruzzi, Graciele; Plentz, Rodrigo Della Méa
2015-08-01
Neuromuscular electric stimulation (NMES) has been used to reduce spasticity and improve range of motion in patients with stroke. However, contradictory results have been reported by clinical trials. A systematic review of randomized clinical trials was conducted to assess the effect of treatment with NMES with or without association to another therapy on spastic muscles after stroke compared with placebo or another intervention. We searched the following electronic databases (from inception to February 2015): Medline (PubMed), EMBASE, Cochrane Central Register of Controlled Trials and Physiotherapy Evidence Database (PEDro). Two independent reviewers assessed the eligibility of studies based on predefined inclusion criteria (application of electric stimulation on the lower or upper extremities, regardless of NMES dosage, and comparison with a control group which was not exposed to electric stimulation), excluding studies with <3 days of intervention. The primary outcome extracted was spasticity, assessed by the Modified Ashworth Scale, and the secondary outcome extracted was range of motion, assessed by Goniometer. Of the total of 5066 titles, 29 randomized clinical trials were included with 940 subjects. NMES provided reductions in spasticity (-0.30 [95% confidence interval, -0.58 to -0.03], n=14 randomized clinical trials) and increase in range of motion when compared with control group (2.87 [95% confidence interval, 1.18-4.56], n=13 randomized clinical trials) after stroke. NMES combined with other intervention modalities can be considered as a treatment option that provides improvements in spasticity and range of motion in patients after stroke. URL: http://www.crd.york.ac.uk/PROSPERO. Unique identifier: CRD42014008946. © 2015 American Heart Association, Inc.
Prior nonhip limb fracture predicts subsequent hip fracture in institutionalized elderly people.
Nakamura, K; Takahashi, S; Oyama, M; Oshiki, R; Kobayashi, R; Saito, T; Yoshizawa, Y; Tsuchiya, Y
2010-08-01
This 1-year cohort study of nursing home residents revealed that historical fractures of upper limbs or nonhip lower limbs were associated with hip fracture (hazard ratio = 2.14), independent of activities of daily living (ADL), mobility, dementia, weight, and type of nursing home. Prior nonhip fractures are useful for predicting of hip fracture in institutional settings. The aim of this study was to evaluate the utility of fracture history for the prediction of hip fracture in nursing home residents. This was a cohort study with a 1-year follow-up. Subjects were 8,905 residents of nursing homes in Niigata, Japan (mean age, 84.3 years). Fracture histories were obtained from nursing home medical records. ADL levels were assessed by caregivers. Hip fracture diagnosis was based on hospital medical records. Subjects had fracture histories of upper limbs (5.0%), hip (14.0%), and nonhip lower limbs (4.6%). Among historical single fractures, only prior nonhip lower limbs significantly predicted subsequent fracture (adjusted hazard ratio, 2.43; 95% confidence interval (CI), 1.30-4.57). The stepwise method selected the best model, in which a combined historical fracture at upper limbs or nonhip lower limbs (adjusted hazard ratio, 2.14; 95% CI, 1.30-3.52), dependence, ADL levels, mobility, dementia, weight, and type of nursing home independently predicted subsequent hip fracture. A fracture history at upper or nonhip lower limbs, in combination with other known risk factors, is useful for the prediction of future hip fracture in institutional settings.
Tyson, Sarah; Wilkinson, Jack; Thomas, Nessa; Selles, Ruud; McCabe, Candy; Tyrrell, Pippa; Vail, Andy
2015-10-01
Patient-led therapy has the potential to increase the amount of therapy patients undertake during stroke rehabilitation and to enhance recovery. Our objective was to assess the feasibility and acceptability of 2 patient-led therapies during the acute stages of stroke care: mirror therapy for the upper limb and lower-limb exercises for the lower limb. This was a blind assessed, multicenter, pragmatic randomized controlled trial of patient-led upper-limb mirror therapy and patient-led lower leg exercises. Stroke survivors with upper and lower limb limitations, undergoing inpatient rehabilitation and able to consent were recruited at least 1 week poststroke. Both interventions proved feasible, with >90% retention. No serious adverse events were reported. Both groups did less therapy than recommended; typically 5 to 15 minutes for 7 days or less. Participants receiving mirror therapy (n = 63) tended to do less practice than those doing lower-limb exercises (n = 31). Those with neglect did 69% less mirror therapy than those without (P = .02), which was not observed in the exercise group. Observed between-group differences were modest but neglect, upper-limb strength, and dexterity showed some improvement in the mirror therapy group. No changes were seen in the lower-limb group. Both patient-led mirror therapy and lower-limb exercises during inpatient stroke care are safe, feasible, and acceptable and warrant further investigation. Practice for 5 to 15 minutes for 7 days is a realistic prescription unless strategies to enhance adherence are included. © The Author(s) 2015.
Bertomeu-Motos, Arturo; Blanco, Andrea; Badesa, Francisco J; Barios, Juan A; Zollo, Loredana; Garcia-Aracil, Nicolas
2018-02-20
End-effector robots are commonly used in robot-assisted neuro-rehabilitation therapies for upper limbs where the patient's hand can be easily attached to a splint. Nevertheless, they are not able to estimate and control the kinematic configuration of the upper limb during the therapy. However, the Range of Motion (ROM) together with the clinical assessment scales offers a comprehensive assessment to the therapist. Our aim is to present a robust and stable kinematic reconstruction algorithm to accurately measure the upper limb joints using only an accelerometer placed onto the upper arm. The proposed algorithm is based on the inverse of the augmented Jaciobian as the algorithm (Papaleo, et al., Med Biol Eng Comput 53(9):815-28, 2015). However, the estimation of the elbow joint location is performed through the computation of the rotation measured by the accelerometer during the arm movement, making the algorithm more robust against shoulder movements. Furthermore, we present a method to compute the initial configuration of the upper limb necessary to start the integration method, a protocol to manually measure the upper arm and forearm lengths, and a shoulder position estimation. An optoelectronic system was used to test the accuracy of the proposed algorithm whilst healthy subjects were performing upper limb movements holding the end effector of the seven Degrees of Freedom (DoF) robot. In addition, the previous and the proposed algorithms were studied during a neuro-rehabilitation therapy assisted by the 'PUPArm' planar robot with three post-stroke patients. The proposed algorithm reports a Root Mean Square Error (RMSE) of 2.13cm in the elbow joint location and 1.89cm in the wrist joint location with high correlation. These errors lead to a RMSE about 3.5 degrees (mean of the seven joints) with high correlation in all the joints with respect to the real upper limb acquired through the optoelectronic system. Then, the estimation of the upper limb joints through both algorithms reveal an instability on the previous when shoulder movement appear due to the inevitable trunk compensation in post-stroke patients. The proposed algorithm is able to accurately estimate the human upper limb joints during a neuro-rehabilitation therapy assisted by end-effector robots. In addition, the implemented protocol can be followed in a clinical environment without optoelectronic systems using only one accelerometer attached in the upper arm. Thus, the ROM can be perfectly determined and could become an objective assessment parameter for a comprehensive assessment.
Sindou, Marc; Georgoulis, George
2016-01-01
Focal dystonia in hemiplegic upper limbs is poorly responsive to medications or classical neurosurgical treatments. Only repeated botulinum toxin injections show efficacy, but in most severe cases effects are transient. Cervical DREZ lesioning, which has proven efficacious in hyperspasticity when done deeply (3-5 mm) in the dorsal horn, may have favorable effects on the dystonic component when performed down to, and including, the base of the ventral horn (5-6 mm in depth). Three patients underwent deep cervical microsurgical DREZotomy (MDT) for focal dystonia in the upper limb. Hypertonia was reduced, and sustained dystonic postures were suppressed. Residual motor function (hidden behind hypertonia) came to the surface. Cervical MDT may be a useful armamentarium for treating refractory focal dystonia in the upper limb. © 2016 S. Karger AG, Basel.
Upper limb functional electrical stimulation devices and their man-machine interfaces.
Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D
2015-01-01
Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.
Progressive upper limb prosthetics.
Lake, Chris; Dodson, Robert
2006-02-01
The field of upper extremity prosthetics is a constantly changing arena as researchers and prosthetists strive to bridge the gap between prosthetic reality and upper limb physiology. With the further development of implantable neurologic sensing devices and targeted muscle innervation (discussed elsewhere in this issue), the challenge of limited input to control vast outputs promises to become a historical footnote in the future annals of upper limb prosthetics. Soon multidextrous terminal devices, such as that found in the iLimb system(Touch EMAS, Inc., Edinburgh, UK), will be a clinical reality (Fig. 22). Successful prosthetic care depends on good communication and cooperation among the surgeon, the amputee, the rehabilitation team, and the scientists harnessing the power of technology to solve real-life challenges. If the progress to date is any indication, amputees of the future will find their dreams limited only by their imagination.
Zhang, Lijuan; Fan, Aiqun; Yan, Jun; He, Yan; Zhang, Huiting; Zhang, Huizhen; Zhong, Qiaoling; Liu, Feng; Luo, Qinghua; Zhang, Liping; Tang, Hailin; Xin, Mingzhu
2016-06-01
Upper limb lymphedema is a common complication after radical mastectomy in patients with breast cancer. In this study, we examined the efficacy of self-manual lymph drainage (MLD) after modified radical mastectomy for the prevention of upper limb lymphedema, scar formation, or shoulder joint dysfunction in breast cancer patients. Breast cancer patients scheduled for modified radical mastectomy were randomly apportioned to undergo physical exercise only (PE group, the control; n = 500) or self-MLD as well as exercise (MLD group; n = 500) after surgery. In the PE group, patients started to undertake remedial exercises and progressive weight training after recovery from anesthesia. In the MLD group, in addition to receiving the same treatments as in the PE group, the patients were trained to perform self-MLD on the surgical incision for 10 min/session, 3 sessions/day, beginning after suture removal and incision closure (10 to 30 days after the surgery). Scar formation was evaluated at one week, and 1, 3, 6, and 12 months after the surgery, respectively. Upper limb circumference and shoulder abduction were measured 24 h before surgery, and at one week, and 1, 3, 6 and 12 months after the surgery. Compared to those in the PE group, patients in MLD group experienced significant improvements in scar contracture, shoulder abduction, and upper limb circumference. Self-MLD, in combination with physical exercise, is beneficial for breast cancer patients in preventing postmastectomy scar formation, upper limb lymphedema, and shoulder joint dysfunction.
Fuentes, María Antonia; Borrego, Adrián; Latorre, Jorge; Colomer, Carolina; Alcañiz, Mariano; Sánchez-Ledesma, María José; Noé, Enrique; Llorens, Roberto
2018-04-02
Impairments of the upper limb function are a major cause of disability and rehabilitation. Most of the available therapeutic options are based on active exercises and on motor and attentional inclusion of the affected arm in task oriented movements. However, active movements may not be possible after severe impairment of the upper limbs. Different techniques, such as mirror therapy, motor imagery, and non-invasive brain stimulation have been shown to elicit cortical activity in absence of movements, which could be used to preserve the available neural circuits and promote motor learning. We present a virtual reality-based paradigm for upper limb rehabilitation that allows for interaction of individuals with restricted movements from active responses triggered when they attempt to perform a movement. The experimental system also provides multisensory stimulation in the visual, auditory, and tactile channels, and transcranial direct current stimulation coherent to the observed movements. A feasibility study with a chronic stroke survivor with severe hemiparesis who seemed to reach a rehabilitation plateau after two years of its inclusion in a physical therapy program showed clinically meaningful improvement of the upper limb function after the experimental intervention and maintenance of gains in both the body function and activity. The experimental intervention also was reported to be usable and motivating. Although very preliminary, these results could highlight the potential of this intervention to promote functional recovery in severe impairments of the upper limb.
Recovery of upper limb muscle function in chronic fatigue syndrome with and without fibromyalgia.
Ickmans, Kelly; Meeus, Mira; De Kooning, Margot; Lambrecht, Luc; Nijs, Jo
2014-02-01
Chronic fatigue syndrome (CFS) patients frequently complain of muscle fatigue and abnormally slow recovery, especially of the upper limb muscles during and after activities of daily living. Furthermore, disease heterogeneity has not yet been studied in relation to recovery of muscle function in CFS. Here, we examine recovery of upper limb muscle function from a fatiguing exercise in CFS patients with (CFS+FM) and without (CFS-only) comorbid fibromyalgia and compare their results with a matched inactive control group. In this case-control study, 18 CFS-only patients, 30 CFS+FM patients and 30 healthy inactive controls performed a fatiguing upper limb exercise test with subsequent recovery measures. There was no significant difference among the three groups for maximal handgrip strength of the non-dominant hand. A significant worse recovery of upper limb muscle function was found in the CFS+FM, but not in de CFS-only group compared with the controls (P < 0·05). This study reveals, for the first time, delayed recovery of upper limb muscle function in CFS+FM, but not in CFS-only patients. The results underline that CFS is a heterogeneous disorder suggesting that reducing the heterogeneity of the disorder in future research is important to make progress towards a better understanding and uncovering of mechanisms regarding the nature of divers impairments in these patients. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.
Meyns, Pieter; Pans, Liene; Plasmans, Kaat; Heyrman, Lieve; Desloovere, Kaat; Molenaers, Guy
2017-02-01
Impaired balance is disabling for children with cerebral palsy (CPc), especially for CPc who recently underwent lower limb surgery. Positive results of using virtual reality (VR) in balance rehabilitation have been published in several outpatient populations. We investigated the feasibility of applying additional VR training focused on sitting balance in CP inpatients of a rehabilitation center after lower limb surgery. Additionally, we investigated the rate of enjoyment of VR training compared with conventional physiotherapy. Eleven spastic CPc (4/7 males/females) following rehabilitation after lower limb orthopedic surgery were included (5-18 years). The control group received conventional physiotherapy. The intervention group received additional VR training. Balance was measured using the Trunk Control Measurement Scale every 3 weeks of the rehabilitation period. Enjoyment was analyzed using a 10-point Visual Analog Scale. Providing additional VR training was feasible in terms of recruitment, treatment adherence, and assessment adherence. Both groups improved sitting balance after therapy. The current games were not perceived as more enjoyable than conventional physiotherapy. Including additional VR training to conventional physiotherapy is feasible and might be promising to train sitting balance in CPc after lower limb surgery. Future research should take equal patient allocation and training duration between groups into consideration.
Redgrave, Jessica N; Moore, Lucy; Oyekunle, Tosin; Ebrahim, Maryam; Falidas, Konstantinos; Snowdon, Nicola; Ali, Ali; Majid, Arshad
2018-03-23
Invasive vagus nerve stimulation (VNS) has the potential to enhance the effects of physiotherapy for upper limb motor recovery after stroke. Noninvasive, transcutaneous auricular branch VNS (taVNS) may have similar benefits, but this has not been evaluated in stroke recovery. We sought to determine the feasibility of taVNS delivered alongside upper limb repetitive task-specific practice after stroke and its effects on a range of outcome measures evaluating limb function. Thirteen participants at more than 3 months postischemic stroke with residual upper limb dysfunction were recruited from the community of Sheffield, United Kingdom (October-December 2016). Participants underwent 18 × 1-hour sessions over 6 weeks in which they made 30-50 repetitions of 8-10 arm movements concurrently with taVNS (NEMOS; Cerbomed, Erlangen, Germany, 25 Hz, .1-millisecond pulse width) at maximum tolerated intensity (mA). An electrocardiogram and rehabilitation outcome scores were obtained at each visit. Qualitative interviews determined the acceptability of taVNS to participants. Median time after stroke was 1.16 years, and baseline median/interquartile range upper limb Fugl-Meyer (UFM) score was 63 (54.5-99.5). Participants attended 92% of the planned treatment sessions. Three participants reported side effects, mainly fatigue, but all performed mean of more than 300 arm repetitions per session with no serious adverse events. There was a significant change in the UFM score with a mean increase per participant of 17.1 points (standard deviation 7.8). taVNS is feasible and well-tolerated alongside upper limb repetitive movements in poststroke rehabilitation. The motor improvements observed justify a phase 2 trial in patients with residual arm weakness. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
EMG based FES for post-stroke rehabilitation
NASA Astrophysics Data System (ADS)
Piyus, Ceethal K.; Anjaly Cherian, V.; Nageswaran, Sharmila
2017-11-01
Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG Abstract—Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG based FES system can be used for effective upper limb motor re-education in post stroke upper limb rehabilitation. The governing feature of the designed system is its synchronous activation, in which the FES stimulation is dependent on the amplitude of the EMG signal acquired from the unaffected upper limb muscle of the hemiplegic patient. This proportionate operation eliminates the undesirable damage to the patient’s skin by generating stimulus in proportion to voluntary EMG signals. This feature overcomes the disadvantages of currently available manual motor re-education systems. This model can be used in home-based post stroke rehabilitation, to effectively improve the upper limb functions.
Gilliaux, Maxime; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gaëtan; Detrembleur, Christine
2016-04-01
Kinematics is recommended for the quantitative assessment of upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish normative values in healthy subjects. Three hundred and seventy healthy subjects, aged 3-93 years, participated in the study. They performed two unidirectional and two geometrical tasks ten consecutive times with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-six kinematic indices were computed for the four tasks. For the four tasks, nineteen of the computed kinematic indices showed an age effect. Seventeen indices (the accuracy, speed and smoothness indices and the reproducibility of the accuracy, speed and smoothness) improved in young subjects aged 3-30 years, showed stabilization in adults aged 30-60 years and declined in elderly subjects aged 60-93 years. Additionally, for both geometrical tasks, the speed index exhibited a decrease throughout life. Finally, a principal component analysis provided the relations between the kinematic indices, tasks and subjects' age. This study is the first to assess age effects on upper limb kinematics and establish normative values in subjects aged 3-93 years.
NASA Astrophysics Data System (ADS)
Pastacaldi, P.; Orsini, P.; Bracciaferri, F.; Neri, G.; Porciani, M.; Liuni, L.; Zolesi, V.
2004-01-01
Experiments executed on the upper limb are assuming increasing significance in the frame of the Human Physiology in space, for at least two reasons: the upper limb is the principal means of locomotion for the subject living in a space station; furthermore, fatigue can have a significant effect on the hand, for the ordinary work on board, and in particular for the extra-vehicular activities. The degradation of the performances affecting the muscular-skeletal apparatus can be easily recognized on the upper limb, by exerting specific scientific protocols, to be repeated through the permanence of the subject in weightlessness conditions. Another aspect relevant to the effect of microgravity on the upper limb is associated with the alteration of the motor control programs due to the different gravity factor, affecting not only the bio-mechanics of the subject, but in general all his/her psycho-physical conditions, induced by the totally different environment. Specific protocols on the upper limb can facilitate the studies on learning mechanisms for the motor control. The results of such experiments can be transferred to the Earth, useful for treatment of subjects with local traumas or diseases of the Central Nervous System.
Wijdenes, Paula; Brouwers, Michael; van der Sluis, Corry K
2018-02-01
In order to create more uniformity in the prescription of upper limb prostheses by Dutch rehabilitation teams, the development and implementation of a Prosthesis Prescription Protocol of the upper limb (PPP-Arm) was initiated. The aim was to create a national digital protocol to structure, underpin, and evaluate the prescription of upper limb prostheses for clients with acquired or congenital arm defects. Prosthesis Prescription Protocol of the Arm (PPP-Arm) was developed on the basis of the International Classification of Functioning and consisted of several layers. All stakeholders (rehabilitation teams, orthopedic workshops, patients, and insurance companies) were involved in development and implementation. A national project coordinator and knowledge brokers in each team were essential for the project. PPP-Arm was successfully developed and implemented in nine Dutch rehabilitation teams. The protocol improved team collaboration, structure, and completeness of prosthesis prescriptions and treatment uniformity and might be interesting for other countries as well. Clinical relevance A national protocol to prescribe upper limb prostheses can be helpful to create uniformity in treatment of patients with upper limb defects. Such a protocol improves quality of care for all patients in the country.
Predictive classification of self-paced upper-limb analytical movements with EEG.
Ibáñez, Jaime; Serrano, J I; del Castillo, M D; Minguez, J; Pons, J L
2015-11-01
The extent to which the electroencephalographic activity allows the characterization of movements with the upper limb is an open question. This paper describes the design and validation of a classifier of upper-limb analytical movements based on electroencephalographic activity extracted from intervals preceding self-initiated movement tasks. Features selected for the classification are subject specific and associated with the movement tasks. Further tests are performed to reject the hypothesis that other information different from the task-related cortical activity is being used by the classifiers. Six healthy subjects were measured performing self-initiated upper-limb analytical movements. A Bayesian classifier was used to classify among seven different kinds of movements. Features considered covered the alpha and beta bands. A genetic algorithm was used to optimally select a subset of features for the classification. An average accuracy of 62.9 ± 7.5% was reached, which was above the baseline level observed with the proposed methodology (30.2 ± 4.3%). The study shows how the electroencephalography carries information about the type of analytical movement performed with the upper limb and how it can be decoded before the movement begins. In neurorehabilitation environments, this information could be used for monitoring and assisting purposes.
Biomimetics in the design of a robotic exoskeleton for upper limb therapy
NASA Astrophysics Data System (ADS)
Baniqued, Paul Dominick E.; Dungao, Jade R.; Manguerra, Michael V.; Baldovino, Renann G.; Abad, Alexander C.; Bugtai, Nilo T.
2018-02-01
Current methodologies in designing robotic exoskeletons for upper limb therapy simplify the complex requirements of the human anatomy. As a result, such devices tend to compromise safety and biocompatibility with the intended user. However, a new design methodology uses biological analogues as inspiration to address these technical issues. This approach follows that of biomimetics, a design principle that uses the extraction and transfer of useful information from natural morphologies and processes to solve technical design issues. In this study, a biomimetic approach in the design of a 5-degree-of-freedom robotic exoskeleton for upper limb therapy was performed. A review of biomimetics was first discussed along with its current contribution to the design of rehabilitation robots. With a proposed methodological framework, the design for an upper limb robotic exoskeleton was generated using CATIA software. The design was inspired by the morphology of the bones and the muscle force transmission of the upper limbs. Finally, a full design assembly presented had integrated features extracted from the biological analogue. The successful execution of a biomimetic design methodology made a case in providing safer and more biocompatible robots for rehabilitation.
[Study on the center-driven multiple degrees of freedom upper limb rehabilitation training robot].
Huang, Xiaohai; Yu, Hongliu; Wang, Jinchao; Dong, Qi; Zhang, Linling; Meng, Qiaoling; Li, Sujiao; Wang, Duojin
2018-03-01
With the aging of the society, the number of stroke patients has been increasing year by year. Compared with the traditional rehabilitation therapy, the application of upper limb rehabilitation robot has higher efficiency and better rehabilitation effect, and has become an important development direction in the field of rehabilitation. In view of the current development status and the deficiency of upper limb rehabilitation robot system, combined with the development trend of all kinds of products of the upper limb rehabilitation robot, this paper designed a center-driven upper limb rehabilitation training robot for cable transmission which can help the patients complete 6 degrees of freedom (3 are driven, 3 are underactuated) training. Combined the structure of robot with more joints rehabilitation training, the paper choosed a cubic polynomial trajectory planning method in the joint space planning to design two trajectories of eating and lifting arm. According to the trajectory equation, the movement trajectory of each joint of the robot was drawn in MATLAB. It laid a foundation for scientific and effective rehabilitation training. Finally, the experimental prototype is built, and the mechanical structure and design trajectories are verified.
Using upper limb kinematics to assess cognitive deficits in people living with both HIV and stroke.
Bui, Kevin D; Rai, Roshan; Johnson, Michelle J
2017-07-01
In this study, we aim to explore ways to objectively assess cognitive deficits in the stroke and HIV/stroke populations, where cognitive and motor impairments can be hard to separate. Using an upper limb rehabilitation robot called the Haptic TheraDrive, we collect performance error scores and motor learning data on the impaired and unimpaired limb during a trajectory tracking task. We compare these data to clinical cognitive scores. The preliminary results suggest a possible relationship between unimpaired upper limb performance error and visuospatial/executive function cognitive domains, but more work needs to be done to further investigate this. The potential of using robot-assisted technologies to measure unimpaired limb kinematics as a tool to assess cognitive deficits would be useful to inform more effective rehabilitation strategies for HIV, stroke, and HIV/stroke populations.
2014-01-01
Background Cerebral palsy is the most common cause of physical disability in childhood. Spasticity is a significant contributor to the secondary impairments impacting functional performance and participation. The most common lower limb spasticity management is focal intramuscular injections of Botulinum Toxin-Type A accompanied by individually-delivered (one on one) physiotherapy rehabilitation. With increasing emphasis on improving goal-directed functional activity and participation within a family-centred framework, it is timely to explore whether physiotherapy provided in a group could achieve comparable outcomes, encouraging providers to offer flexible models of physiotherapy delivery. This study aims to compare individual to group-based physiotherapy following intramuscular Botulinum Toxin-A injections to the lower limbs for ambulant children with cerebral palsy aged four to fourteen years. Methods/Design An assessor-masked, block randomised comparison trial will be conducted with random allocation to either group-based or individual physiotherapy. A sample size of 30 (15 in each study arm) will be recruited. Both groups will receive six hours of direct therapy following Botulinum Toxin-A injections in either an individual or group format with additional home programme activities (three exercises to be performed three times a week). Study groups will be compared at baseline (T1), then at 10 weeks (T2, efficacy) and 26 weeks (T3, retention) post Botulinum Toxin-A injections. Primary outcomes will be caregiver/s perception of and satisfaction with their child’s occupational performance goals (Canadian Occupational Performance Measure) and quality of gait (Edinburgh Visual Gait Score) with a range of secondary outcomes across domains of the International Classification of Disability, Functioning and Health. Discussion This paper outlines the study protocol including theoretical basis, study hypotheses and outcome measures for this assessor-masked, randomised comparison trial comparing group versus individual models of physiotherapy following intramuscular injections of Botulinum Toxin-A to the lower limbs for ambulant children with cerebral palsy. Trial registration ACTRN12611000454976 PMID:24502231
Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT.
Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael
2017-01-01
Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases.
Risk Factors for Developing Scoliosis in Cerebral Palsy: A Cross-Sectional Descriptive Study.
Bertoncelli, Carlo M; Solla, Federico; Loughenbury, Peter R; Tsirikos, Athanasios I; Bertoncelli, Domenico; Rampal, Virginie
2017-06-01
This study aims to identify the risk factors leading to the development of severe scoliosis among children with cerebral palsy. A cross-sectional descriptive study of 70 children (aged 12-18 years) with severe spastic and/or dystonic cerebral palsy treated in a single specialist unit is described. Statistical analysis included Fisher exact test and logistic regression analysis to identify risk factors. Severe scoliosis is more likely to occur in patients with intractable epilepsy ( P = .008), poor gross motor functional assessment scores ( P = .018), limb spasticity ( P = .045), a history of previous hip surgery ( P = .048), and nonambulatory patients ( P = .013). Logistic regression model confirms the major risk factors are previous hip surgery ( P = .001), moderate to severe epilepsy ( P = .007), and female gender ( P = .03). History of previous hip surgery, intractable epilepsy, and female gender are predictors of developing severe scoliosis in children with cerebral palsy. This knowledge should aid in the early diagnosis of scoliosis and timely referral to specialist services.
Rogowski, Isabelle; Creveaux, Thomas; Genevois, Cyril; Klouche, Shahnaz; Rahme, Michel; Hardy, Philippe
2016-01-01
The purpose of this study was to examine the relationship between the upper limb anthropometric dimensions and a history of dominant upper limb injury in tennis players. Dominant and non-dominant wrist, forearm, elbow and arm circumferences, along with a history of dominant upper limb injuries, were assessed in 147 male and female players, assigned to four groups based on location of injury: wrist (n = 9), elbow (n = 25), shoulder (n = 14) and healthy players (n = 99). From anthropometric dimensions, bilateral differences in circumferences and in proportions were calculated. The wrist group presented a significant bilateral difference in arm circumference, and asymmetrical bilateral proportions between wrist and forearm, as well as between elbow and arm, compared to the healthy group (6.6 ± 3.1% vs. 4.9 ± 4.0%, P < 0.01; -3.6 ± 3.0% vs. -0.9 ± 2.9%, P < 0.05; and -2.2 ± 2.2% vs. 0.1 ± 3.4%, P < 0.05, respectively). The elbow group displayed asymmetrical bilateral proportions between forearm and arm compared to the healthy group (-0.4 ± 4.3% vs. 1.5 ± 4.0%, P < 0.01). The shoulder group showed significant bilateral difference in elbow circumference, and asymmetrical bilateral proportions between forearm and elbow when compared to the healthy group (5.8 ± 4.7% vs. 3.1 ± 4.8%, P < 0.05 and -1.7 ± 4.5% vs. 1.4 ± 4.3%, P < 0.01, respectively). These findings suggest that players with a history of injury at the upper limb joint present altered dominant upper limb proportions in comparison with the non-dominant side, and such asymmetrical proportions would appear to be specific to the location of injury. Further studies are needed to confirm the link between location of tennis injury and asymmetry in upper limb proportions using high-tech measurements in symptomatic tennis players.
Simpson, Lisa A.; Eng, Janice J.; Chan, May
2017-01-01
Abstract Purpose: To investigate the feasibility of a phone-monitored home exercise program for the upper limb following stroke. Methods: A pre-post double baseline repeated measures design was used. Participants completed an 8-week home exercise program that included behavioural strategies to promote greater use of the affected upper limb. Participants were monitored weekly by therapists over the phone. The following feasibility outcomes were collected: Process (e.g. recruitment rate); Resources (e.g. exercise adherence rate); Management (e.g. therapist monitoring) and Scientific (e.g. safety, effect sizes). Clinical outcomes included: The Chedoke Arm and Hand Inventory, Motor Activity Log, grip strength and the Canadian Occupational Performance Measure. Results: Eight individuals with stroke were recruited and six participants completed the exercise program. All but one of the six participants met the exercise target of 60 minutes/day, 6 days/week. Participants were stable across the baseline period. The following post-treatment effect sizes were observed: CAHAI (0.944, p = 0.046); MALQ (0.789, p = 0.03) grip strength (0.947, p = 0.046); COPM (0.789, p = 0.03). Improvements were maintained at three and six month follow ups. Conclusions: Community dwelling individuals with stroke may benefit from a phone-monitored upper limb home exercise program that includes behavioural strategies that promote transfer of exercise gains into daily upper limb use.Implications for RehabilitationA repetitive, task-oriented home exercise program that utilizes telephone supervision may be an effective method for the treatment of the upper limb following strokeThis program is best suited for individuals with mild to moderate level impairment and experience a sufficient level of challenge from the exercisesAn exercise program that includes behavioural strategies may promote transfer of exercise gains into greater use of the affected upper limb during daily activities PMID:27017890
Lee, Myung Mo; Cho, Hwi-Young; Song, Chang Ho
2012-08-01
The purpose of this study was to evaluate the effects of the mirror therapy program on upper-limb motor recovery and motor function in patients with acute stroke. Twenty-six patients who had an acute stroke within 6 mos of study commencement were assigned to the experimental group (n = 13) or the control group (n = 13). Both experimental and control group members participated in a standard rehabilitation program, but only the experimental group members additionally participated in mirror therapy program, for 25 mins twice a day, five times a week, for 4 wks. The Fugl-Meyer Assessment, Brunnstrom motor recovery stage, and Manual Function Test were used to assess changes in upper-limb motor recovery and motor function after intervention. In upper-limb motor recovery, the scores of Fugl-Meyer Assessment (by shoulder/elbow/forearm items, 9.54 vs. 4.61; wrist items, 2.76 vs. 1.07; hand items, 4.43 vs. 1.46, respectively) and Brunnstrom stages for upper limb and hand (by 1.77 vs. 0.69 and 1.92 vs. 0.50, respectively) were improved more in the experimental group than in the control group (P < 0.05). In upper-limb motor function, the Manual Function Test score (by shoulder item, 5.00 vs. 2.23; hand item, 5.07 vs. 0.46, respectively) was significantly increased in the experimental group compared with the control group (P < 0.01). No significant differences were found between the groups for the coordination items in Fugl-Meyer Assessment. This study confirms that mirror therapy program is an effective intervention for upper-limb motor recovery and motor function improvement in acute stroke patients. Additional research on mirror therapy program components, intensity, application time, and duration could result in it being used as a standardized form of hand rehabilitation in clinics and homes.
Di Monaco, Marco; Vallero, Fulvia; Castiglioni, Carlotta; Di Monaco, Roberto; Tappero, Rosa
2011-01-01
To investigate the association between serum levels of 25-hydroxyvitamin D and the occurrence of simultaneous fractures of the upper limb in older women who sustain a fall-related fracture of the hip. Cross-sectional study. We investigated 472 of 480 white women consecutively admitted to a rehabilitation hospital because of a fall-related hip fracture. Twenty-seven (5.7%) of the 472 women sustained a concomitant upper-limb fracture of either distal radius (20 women) or proximal humerus (seven women). We assessed serum levels of 25-hydroxyvitamin D 14.2 ± 4.1 (mean ± SD) days after surgical repair of the hip fracture in the 472 women by an immunoenzymatic assay. Twenty-five-hydroxyvitamin D levels were significantly lower in the 27 women with concomitant fractures of both hip and upper limb than in the remaining 445 hip-fracture women: mean ± SD values were 6.5 ± 5.0 ng/ml and 11.7 ± 10.4 ng/ml respectively in the two groups (mean difference between groups 5.2 ng/ml: 95% CI 1.2-9.2; p=0.011). Low levels of 25-hydroxyvitamin D were significantly associated with concomitant fractures of the upper limb (p=0.017), after adjustment for eight potential confounders including age, height, weight, hip-fracture type, cognitive impairment, neurologic impairment, previous hip fracture, and previous upper-limb fracture. Low levels of 25-hydroxyvitamin D were significantly associated with concomitant upper-limb fractures in our sample of older women with a fall-related fracture of the hip. Preventing vitamin D deficiency may lower the incidence of simultaneous fractures due to a singe fall in elderly women. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report
2011-01-01
Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees. PMID:21272334
Neck and Upper Limb Dysfunction in Patients following Neck Dissection: Looking beyond the Shoulder.
Gane, Elise M; O'Leary, Shaun P; Hatton, Anna L; Panizza, Benedict J; McPhail, Steven M
2017-10-01
Objective To measure patient-perceived upper limb and neck function following neck dissection and to investigate potential associations between clinical factors, symptoms, and function. Study Design Cross-sectional. Setting Two tertiary hospitals in Brisbane, Australia. Subjects and Methods Inclusion criteria: patients treated with neck dissection (2009-2014). aged <18 years, accessory nerve or sternocleidomastoid sacrifice, previous neck dissection, preexisting shoulder/neck injury, and inability to provide informed consent (cognition, insufficient English). Primary outcomes were self-reported function of the upper limb (Quick Disabilities of the Arm, Shoulder, and Hand) and neck (Neck Disability Index). Secondary outcomes included demographics, oncological management, self-efficacy, and pain. Generalized linear models were prepared to examine relationships between explanatory variables and self-reported function. Results Eighty-nine participants (male n = 63, 71%; median age, 62 years; median 3 years since surgery) reported mild upper limb and neck dysfunction (median [quartile 1, quartile 3] scores of 11 [3, 32] and 12 [4, 28], respectively). Significant associations were found between worse upper limb function and longer time since surgery (coefficient, 1.76; 95% confidence interval [CI], 0.01-3.51), having disease within the thyroid (17.40; 2.37-32.44), postoperative radiation therapy (vs surgery only) (13.90; 6.67-21.14), and shoulder pain (0.65; 0.44-0.85). Worse neck function was associated with metastatic cervical lymph nodes (coefficient, 6.61; 95% CI, 1.14-12.08), shoulder pain (0.19; 0.04-0.34), neck pain (0.34; 0.21-0.47), and symptoms of neuropathic pain (0.61; 0.25-0.98). Conclusion Patients can experience upper limb and neck dysfunction following nerve-preserving neck dissection. The upper quadrant as a whole should be considered when assessing rehabilitation priorities after neck dissection.
3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor
NASA Astrophysics Data System (ADS)
Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki
The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].
Applications of Shape Memory Alloys for Neurology and Neuromuscular Rehabilitation
Pittaccio, Simone; Garavaglia, Lorenzo; Ceriotti, Carlo; Passaretti, Francesca
2015-01-01
Shape memory alloys (SMAs) are a very promising class of metallic materials that display interesting nonlinear properties, such as pseudoelasticity (PE), shape memory effect (SME) and damping capacity, due to high mechanical hysteresis and internal friction. Our group has applied SMA in the field of neuromuscular rehabilitation, designing some new devices based on the mentioned SMA properties: in particular, a new type of orthosis for spastic limb repositioning, which allows residual voluntary movement of the impaired limb and has no predetermined final target position, but follows and supports muscular elongation in a dynamic and compliant way. Considering patients in the sub-acute phase after a neurological lesion, and possibly bedridden, the paper presents a mobiliser for the ankle joint, which is designed exploiting the SME to provide passive exercise to the paretic lower limb. Two different SMA-based applications in the field of neuroscience are then presented, a guide and a limb mobiliser specially designed to be compatible with diagnostic instrumentations that impose rigid constraints in terms of electromagnetic compatibility and noise distortion. Finally, the paper discusses possible uses of these materials in the treatment of movement disorders, such as dystonia or hyperkinesia, where their dynamic characteristics can be advantageous. PMID:26023790
An objective assessment of safety to drive in an upper limb cast.
Stevenson, H L; Peterson, N; Talbot, C; Dalal, S; Watts, A C; Trail, I A
2013-03-01
Patients managed with upper limb cast immobilization often seek advice about driving. There is very little published data to assist in decision making, and advice given varies between healthcare professionals. There are no specific guidelines available from the UK Drivers and Vehicles Licensing Agency, police, or insurance companies. Evidence-based guidelines would enable clinicians to standardize the advice given to patients. Six individuals (three male, three female; mean age 36 years, range 27-43 years) were assessed by a mobility occupational therapist and driving standards agency examiner while completing a formal driving test in six different types of upper limb casts (above-elbow, below-elbow neutral, and below-elbow cast incorporating the thumb [Bennett's cast]) on both left and right sides. Of the 36 tests, participants passed 31 tests, suggesting that most people were able to safely drive with upper limb cast immobilization. However, driving in a left above-elbow cast was considered unsafe.
Rasotto, Chiara; Bergamin, Marco; Sieverdes, John C; Gobbo, Stefano; Alberton, Cristine L; Neunhaeuserer, Daniel; Maso, Stefano; Zaccaria, Marco; Ermolao, Andrea
2015-02-01
The aim of this study was to evaluate a tailored physical activity protocol performed in a work environment with a group of female workers employed in manual precision tasks to reduce upper limb pain. Sixty female subjects were randomly assigned to an intervention group or a control group. The IG was administered of a 6-month, twice-a-week, tailored exercise program, whereas the CG received no intervention. The IG showed a reduction on shoulder pain accompanied by increases on the range of motion measures. In addition, reductions in upper limb pain and neck disability were detected with concomitant increases in grip strength. This study indicated positive effects of a tailored workplace exercise protocol in female workers exposed to moderate risk for work-related musculoskeletal disorders, showing clinically meaningful reductions of pain symptoms and disability on upper limb and neck regions.
Koyama, Soichiro; Tanabe, Shigeo; Takeda, Kazuya; Sakurai, Hiroaki; Kanada, Yoshikiyo
2016-03-01
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50 Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30 min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.
Kerzoncuf, Marjorie; Bensoussan, Laurent; Delarque, Alain; Durand, Jacques; Viton, Jean-Michel; Rossi-Durand, Christiane
2015-11-01
The therapeutic effects of intramuscular injections of botulinum toxin-type A on spasticity can largely be explained by its blocking action at the neuromuscular junction. Botulinum toxin-type A is also thought to have a central action on the functional organization of the central nervous system. This study assessed the action of botulinum toxin-type A on spinal motor networks by investigating post-activation depression of the soleus H-reflex in post-stroke patients. Post-activation depression, a presynaptic mechanism controlling the synaptic efficacy of Ia-motoneuron transmission, is involved in the pathophysiology of spasticity. Eight patients with chronic hemiplegia post-stroke presenting with lower limb spasticity and requiring botulinum toxin-type A injection in the ankle extensor muscle. Post-activation depression of soleus H-reflex assessed as frequency-related depression of H-reflex was investigated before and 3, 6 and 12 weeks after botulinum toxin-type A injections in the triceps surae. Post-activation depression was quantified as the ratio between H-reflex amplitude at 0.5 and 0.1 Hz. Post-activation depression of soleus H-reflex, which is reduced on the paretic leg, was affected 3 weeks after botulinum toxin-type A injection. Depending on the residual motor capacity of the post-stroke patients, post-activation depression was either restored in patients with preserved voluntary motor control or further reduced in patients with no residual voluntary control. Botulinum toxin treatment induces synaptic plasticity at the Ia-motoneuron synapse in post-stroke paretic patients, which suggests that the effectiveness of botulinum toxin-type A in post-stroke rehabilitation might be partly due to its central effects.
Dabrowski, Edward; Bonikowski, Marcin; Gormley, Mark; Volteau, Magali; Picaut, Philippe; Delgado, Mauricio R
2018-05-01
The effects of botulinum toxin are transient, and repeat injections are required in children with lower-limb spasticity. However, the efficacy of botulinum toxin in patients who have received previous injections has remained largely unexplored. We present subgroup analyses of a phase III study conducted in ambulatory children (aged two to 17) with spastic equinus foot. Patients were randomized to single doses of abobotulinumtoxinA 10 U/kg/leg, 15 U/kg/leg, or placebo injected into the gastrocnemius-soleus complex (one or both legs). The first analysis was prespecified to review the effect of abobotulinumtoxinA in children previously treated with botulinum toxin versus those children new to the treatment; a second post hoc analysis evaluated the effect of abobotulinumtoxinA in children who changed botulinum toxin formulation. Of the 241 randomized patients, 113 had previously received botulinum toxin, including 86 who had been treated with another formulation. In both analyses, muscle tone (Modified Ashworth Scale) and the Physicians Global Assessment, at week 4, improved with abobotulinumtoxinA treatment versus placebo, regardless of baseline botulinum toxin status. Placebo responses in patients new to treatment were consistently higher than in the previously treated group. These results demonstrate similar abobotulinumtoxinA efficacy and safety profiles in children with spasticity who are new to botulinum toxin treatment and those children who were previously treated. The efficacy and safety of abobotulinumtoxinA treatment in these previously treated patients were comparable with the overall trial population, indicating that doses of 10 and 15 U/kg/leg are suitable starting doses for children with spasticity regardless of the previous botulinum toxin preparation used. Copyright © 2018 Elsevier Inc. All rights reserved.
Kakinohana, O; Hefferan, M P; Nakamura, S; Kakinohana, M; Galik, J; Tomori, Z; Marsala, J; Yaksh, T L; Marsala, M
2006-09-01
Transient spinal cord ischemia may lead to a progressive degeneration of spinal interneurons and subsequently to increased hind limb motor tone. In the present work we sought to characterize the rigidity and spasticity components of this altered motor function by: i) tonic electromyographic activity measured in gastrocnemius muscle before and after ischemia, ii) measurement of muscle resistance during the period of ankle flexion and corresponding changes in electromyographic activity, iii) changes in Hoffmann reflex, and, iv) motor evoked potentials. In addition the effect of intrathecal treatment with baclofen (GABAB receptor agonist; 1 microg), nipecotic acid (GABA uptake inhibitor; 300 microg) and dorsal L2-L5 rhizotomy on spasticity and rigidity was studied. Finally, the changes in spinal choline acetyltransferase (ChAT) and vesicular glutamate transporter 2 and 1 (VGLUT2 and VGLUT1) expression were characterized using immunofluorescence and confocal microscopy. At 3-7 days after ischemia an increase in tonic electromyographic activity with a variable degree of rigidity was seen. In animals with modest rigidity a velocity-dependent increase in muscle resistance and corresponding appearance in electromyographic activity (consistent with the presence of spasticity) was measured during ankle rotation (4-612 degrees /s rotation). Measurement of the H-reflex revealed a significant increase in Hmax/Mmax ratio and a significant loss of rate-dependent inhibition. In the same animals a potent increase in motor evoked potential amplitudes was measured and this change correlated positively with the increased H-reflex responses. Spasticity and rigidity were consistently present for a minimum of 3 months after ischemia. Intrathecal treatment with baclofen (GABA B receptor agonist) and nipecotic acid (GABA uptake inhibitor) provided a significant suppression of spasticity, rigidity, H-reflex or motor evoked potentials. Dorsal L2-L5 rhizotomy significantly decreased muscle resistance but had no effect on increased amplitudes of motor evoked potentials. Confocal analysis of spinal cord sections at 8 weeks-12 months after ischemia revealed a continuing presence of ChAT positive alpha-motoneurons, Ia afferents and VGLUT2 and VGLUT1-positive terminals but a selective loss of small presumably inhibitory interneurons between laminae V-VII. These data demonstrate that brief transient spinal cord ischemia in rat leads to a consistent development of spasticity and rigidity. The lack of significant suppressive effect of dorsal L2-L5 rhizotomy on motor evoked potentials response indicates that descending motor input into alpha-motoneurons is independent on Ia afferent couplings and can independently contribute to increased alpha-motoneuronal excitability. The pharmacology of this effect emphasizes the potent role of GABAergic type B receptors in regulating both the spasticity and rigidity.
Principles of Tendon Reconstruction Following Complex Trauma of the Upper Limb
Chattopadhyay, Arhana; McGoldrick, Rory; Umansky, Elise; Chang, James
2015-01-01
Reconstruction of tendons following complex trauma to the upper limb presents unique clinical and research challenges. In this article, the authors review the principles guiding preoperative assessment, surgical reconstruction, and postoperative rehabilitation and management of the upper extremity. Tissue engineering approaches to address tissue shortages for tendon reconstruction are also discussed. PMID:25685101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madaric, Juraj, E-mail: jurmad@hotmail.com; Klepanec, Andrej; Mistrik, Martin
Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.
Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Abe, Tetsuya; Ueno, Tomoyuki; Soma, Yuichiro; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi
2017-01-01
Patients with complete paraplegia after spinal cord injury (SCI) are unable to stand or walk on their own. Standing exercise decreases the risk of decubitus ulcers, osteoporosis, and joint deformities in patients with SCI. Conventional gait training for complete paraplegia requires excessive upper limb usage for weight bearing and is difficult in cases of complete quadriplegia. The purpose of this study was to describe voluntary ambulation triggered by upper limb activity using the Hybrid Assistive Limb® (HAL) in patients with complete quadri/paraplegia after chronic SCI. Four patients (3 men, 1 woman) were enrolled in this study. The mean patient age ± standard deviation was 37.2 ± 17.8 (range, 20-67) years. Clinical evaluation before intervention revealed the following findings: case 1, neurological level C6, American Spinal Cord Injury Association impairment scale (AIS) grade B; case 2, T6, AIS A; case 3, T10 AIS A; and case 4, T11, AIS A. The HAL intervention consisted of 10 sessions. Each HAL session lasted 60-90 min. The HAL electrodes for hip and knee flexion-extension were placed on the anterior and posterior sides of the upper limbs contralaterally corresponding to each of the lower limbs. Surface electromyography (EMG) was used to evaluate muscle activity of the tensor fascia lata and quadriceps femoris (Quad) in synchronization with a Vicon motion capture system. The modified Ashworth scale (mAs) score was also evaluated before and after each session. All participants completed all 10 sessions. Cases 1, 2, and 3 demonstrated significant decreases in mAs score after the sessions compared to pre-session measurements. In all cases, EMG before the intervention showed no apparent activation in either Quad. However, gait phase dependent activity of the lower limb muscles was seen during voluntarily triggered ambulation driven by upper limb muscle activities. In cases 3 and 4, active contraction in both Quads was observed after intervention. These findings suggest that upper-limb-triggered HAL ambulation is a safe and feasible option for rehabilitation in patients with complete quadri/paraplegia caused by chronic SCI.
Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Abe, Tetsuya; Ueno, Tomoyuki; Soma, Yuichiro; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi
2017-01-01
Patients with complete paraplegia after spinal cord injury (SCI) are unable to stand or walk on their own. Standing exercise decreases the risk of decubitus ulcers, osteoporosis, and joint deformities in patients with SCI. Conventional gait training for complete paraplegia requires excessive upper limb usage for weight bearing and is difficult in cases of complete quadriplegia. The purpose of this study was to describe voluntary ambulation triggered by upper limb activity using the Hybrid Assistive Limb® (HAL) in patients with complete quadri/paraplegia after chronic SCI. Four patients (3 men, 1 woman) were enrolled in this study. The mean patient age ± standard deviation was 37.2 ± 17.8 (range, 20–67) years. Clinical evaluation before intervention revealed the following findings: case 1, neurological level C6, American Spinal Cord Injury Association impairment scale (AIS) grade B; case 2, T6, AIS A; case 3, T10 AIS A; and case 4, T11, AIS A. The HAL intervention consisted of 10 sessions. Each HAL session lasted 60–90 min. The HAL electrodes for hip and knee flexion-extension were placed on the anterior and posterior sides of the upper limbs contralaterally corresponding to each of the lower limbs. Surface electromyography (EMG) was used to evaluate muscle activity of the tensor fascia lata and quadriceps femoris (Quad) in synchronization with a Vicon motion capture system. The modified Ashworth scale (mAs) score was also evaluated before and after each session. All participants completed all 10 sessions. Cases 1, 2, and 3 demonstrated significant decreases in mAs score after the sessions compared to pre-session measurements. In all cases, EMG before the intervention showed no apparent activation in either Quad. However, gait phase dependent activity of the lower limb muscles was seen during voluntarily triggered ambulation driven by upper limb muscle activities. In cases 3 and 4, active contraction in both Quads was observed after intervention. These findings suggest that upper-limb-triggered HAL ambulation is a safe and feasible option for rehabilitation in patients with complete quadri/paraplegia caused by chronic SCI. PMID:29209163
Kong, Keng-He; Loh, Yong-Joo; Thia, Ernest; Chai, Audrey; Ng, Chwee-Yin; Soh, Yan-Ming; Toh, Shirlene; Tjan, Soon-Yin
2016-10-01
To compare the efficacy of a virtual reality commercial gaming device, Nintendo wii (NW) with conventional therapy and customary care in facilitating upper limb recovery after stroke. Randomized, controlled, single-blinded study. Tertiary rehabilitation center. 105 subjects admitted to in inpatient rehabilitation program within 6 weeks of stroke onset. Subjects were randomly assigned to one of three groups of upper limb exercises: (1) NW gaming; (2) conventional therapy; (3) control. NW gaming and conventional therapy were provided fourtimes a week for 3 weeks. The main outcome measure was Fugl-Meyer assessment (FMA) of upper limb function. Secondary outcome measures included Action Research Arm Test, Functional Independence Measure, and Stroke Impact Scale. These measures were assessed at baseline, completion of intervention (week 3) and at 4 weeks and 8 weeks after completion of intervention. The primary outcome measure was the change in FMA scores at completion of intervention. The mean age was 57.5±9.8 years, and subjects were enrolled at a mean of 13.7±8.9 days after stroke. The mean baseline FMA score was 16.4±14.2. There was no difference in FMA scores between all 3 groups at the end of intervention, and at 4 and 8 weeks after completion of intervention. Similar findings were also noted for the secondary outcome measures. Twelve sessions of augmented upper limb exercises via NW gaming or conventional therapy over a 3-week period was not effective in enhancing upper limb motor recovery compared to control.
Wang, Yue; Yu, Lei; Fu, Jianming; Fang, Qiang
2014-04-01
In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.
Upper extremity transplantation: current concepts and challenges in an emerging field.
Elliott, River M; Tintle, Scott M; Levin, L Scott
2014-03-01
Loss of an isolated upper limb is an emotionally and physically devastating event that results in significant impairment. Patients who lose both upper extremities experience profound disability that affects nearly every aspect of their lives. While prosthetics and surgery can eventually provide the single limb amputee with a suitable assisting hand, limited utility, minimal haptic feedback, weight, and discomfort are persistent problems with these techniques that contribute to high rates of prosthetic rejection. Moreover, despite ongoing advances in prosthetic technology, bilateral amputees continue to experience high levels of dependency, disability, and distress. Hand and upper extremity transplantation holds several advantages over prosthetic rehabilitation. The missing limb is replaced with one of similar skin color and size. Sensibility, voluntary motor control, and proprioception are restored to a greater degree, and afford better dexterity and function than prosthetics. The main shortcomings of transplantation include the hazards of immunosuppression, the complications of rejection and its treatment, and high cost. Hand and upper limb transplantation represents the most commonly performed surgery in the growing field of Vascularized Composite Allotransplantation (VCA). As upper limb transplantation and VCA have become more widespread, several important challenges and controversies have emerged. These include: refining indications for transplantation, optimizing immunosuppression, establishing reliable criteria for monitoring, diagnosing, and treating rejection, and standardizing outcome measures. This article will summarize the historical background of hand transplantation and review the current literature and concepts surrounding it.
Microwave Limb Sounder/El Niño Watch - Water Vapor Measurement, October, 1997
1997-10-30
This image shows atmospheric water vapor in Earth upper troposphere, about 10 kilometers 6 miles above the surface, as measured by NASA Microwave Limb Sounder MLS instrument flying aboard the Upper Atmosphere Research Satellite.
Bernaards, Claire M; Ariëns, Geertje AM; Hildebrandt, Vincent H
2006-01-01
Background Neck and upper limb symptoms are frequently reported by computer workers. Work style interventions are most commonly used to reduce work-related neck and upper limb symptoms but lifestyle physical activity interventions are becoming more popular to enhance workers health and reduce work-related symptoms. A combined approach targeting work style and lifestyle physical activity seems promising, but little is known on the effectiveness of such combined interventions. Methods/design The RSI@Work study is a randomised controlled trial that aims to assess the added value of a lifestyle physical activity intervention in addition to a work style intervention to reduce neck and upper limb symptoms in computer workers. Computer workers from seven Dutch companies with frequent or long-term neck and upper limb symptoms in the preceding six months and/or the last two weeks are randomised into three groups: (1) work style group, (2) work style and physical activity group, or (3) control group. The work style intervention consists of six group meetings in a six month period that take place at the workplace, during work time, and under the supervision of a specially trained counsellor. The goal of this intervention is to stimulate workplace adjustment and to improve body posture, the number and quality of breaks and coping behaviour with regard to high work demands. In the combined (work style and physical activity) intervention the additional goal is to increase moderate to heavy physical activity. The control group receives usual care. Primary outcome measures are degree of recovery, pain intensity, disability, number of days with neck and upper limb symptoms, and number of months without neck and upper limb symptoms. Outcome measures will be assessed at baseline and six and 12 months after randomisation. Cost-effectiveness of the group meetings will be assessed using an employer's perspective. Discussion This study will be one of the first to assess the added value of a lifestyle physical activity intervention in addition to a work style intervention in reducing neck and upper limb symptoms of computer workers. The results of the study are expected in 2007. PMID:17062141
Rodgers, Helen; Shaw, Lisa; Bosomworth, Helen; Aird, Lydia; Alvarado, Natasha; Andole, Sreeman; Cohen, David L; Dawson, Jesse; Eyre, Janet; Finch, Tracy; Ford, Gary A; Hislop, Jennifer; Hogg, Steven; Howel, Denise; Hughes, Niall; Krebs, Hermano Igo; Price, Christopher; Rochester, Lynn; Stamp, Elaine; Ternent, Laura; Turner, Duncan; Vale, Luke; Warburton, Elizabeth; van Wijck, Frederike; Wilkes, Scott
2017-07-20
Loss of arm function is a common and distressing consequence of stroke. We describe the protocol for a pragmatic, multicentre randomised controlled trial to determine whether robot-assisted training improves upper limb function following stroke. Study design: a pragmatic, three-arm, multicentre randomised controlled trial, economic analysis and process evaluation. NHS stroke services. adults with acute or chronic first-ever stroke (1 week to 5 years post stroke) causing moderate to severe upper limb functional limitation. Randomisation groups: 1. Robot-assisted training using the InMotion robotic gym system for 45 min, three times/week for 12 weeks 2. Enhanced upper limb therapy for 45 min, three times/week for 12 weeks 3. Usual NHS care in accordance with local clinical practice Randomisation: individual participant randomisation stratified by centre, time since stroke, and severity of upper limb impairment. upper limb function measured by the Action Research Arm Test (ARAT) at 3 months post randomisation. upper limb impairment (Fugl-Meyer Test), activities of daily living (Barthel ADL Index), quality of life (Stroke Impact Scale, EQ-5D-5L), resource use, cost per quality-adjusted life year and adverse events, at 3 and 6 months. Blinding: outcomes are undertaken by blinded assessors. Economic analysis: micro-costing and economic evaluation of interventions compared to usual NHS care. A within-trial analysis, with an economic model will be used to extrapolate longer-term costs and outcomes. Process evaluation: semi-structured interviews with participants and professionals to seek their views and experiences of the rehabilitation that they have received or provided, and factors affecting the implementation of the trial. allowing for 10% attrition, 720 participants provide 80% power to detect a 15% difference in successful outcome between each of the treatment pairs. Successful outcome definition: baseline ARAT 0-7 must improve by 3 or more points; baseline ARAT 8-13 improve by 4 or more points; baseline ARAT 14-19 improve by 5 or more points; baseline ARAT 20-39 improve by 6 or more points. The results from this trial will determine whether robot-assisted training improves upper limb function post stroke. ISRCTN, identifier: ISRCTN69371850 . Registered 4 October 2013.
Mirror therapy improves hand function in subacute stroke: a randomized controlled trial.
Yavuzer, Gunes; Selles, Ruud; Sezer, Nebahat; Sütbeyaz, Serap; Bussmann, Johannes B; Köseoğlu, Füsun; Atay, Mesut B; Stam, Henk J
2008-03-01
To evaluate the effects of mirror therapy on upper-extremity motor recovery, spasticity, and hand-related functioning of inpatients with subacute stroke. Randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 6 months. Rehabilitation education and research hospital. A total of 40 inpatients with stroke (mean age, 63.2y), all within 12 months poststroke. Thirty minutes of mirror therapy program a day consisting of wrist and finger flexion and extension movements or sham therapy in addition to conventional stroke rehabilitation program, 5 days a week, 2 to 5 hours a day, for 4 weeks. The Brunnstrom stages of motor recovery, spasticity assessed by the Modified Ashworth Scale (MAS), and hand-related functioning (self-care items of the FIM instrument). The scores of the Brunnstrom stages for the hand and upper extremity and the FIM self-care score improved more in the mirror group than in the control group after 4 weeks of treatment (by 0.83, 0.89, and 4.10, respectively; all P<.01) and at the 6-month follow-up (by 0.16, 0.43, and 2.34, respectively; all P<.05). No significant differences were found between the groups for the MAS. In our group of subacute stroke patients, hand functioning improved more after mirror therapy in addition to a conventional rehabilitation program compared with a control treatment immediately after 4 weeks of treatment and at the 6-month follow-up, whereas mirror therapy did not affect spasticity.
Jodoin, Marianne; Rouleau, Dominique M; Charlebois-Plante, Camille; Benoit, Benoit; Leduc, Stéphane; Laflamme, G-Yves; Gosselin, Nadia; Larson-Dupuis, Camille; De Beaumont, Louis
2016-08-01
This study compares the incidence rate of mild traumatic brain injury (mild TBI) detected at follow-up visits (retrospective diagnosis) in patients suffering from an isolated limb trauma, with the incidence rate held by the hospital records (prospective diagnosis) of the sampled cohort. This study also seeks to determine which types of fractures present with the highest incidence of mild TBI. Retrospective assessment of mild TBI among orthopaedic monotrauma patients, randomly selected for participation in an Orthopaedic clinic of a Level I Trauma Hospital. Patients in the remission phase of a limb fracture were recruited between August 2014 and May 2015. No intervention was done (observational study). Standardized semi-structured interviews were conducted with all patients to retrospectively assess for mild TBI at the time of the fracture. Emergency room related medical records of all patients were carefully analyzed to determine whether a prospective mild TBI diagnosis was made following the accident. A total of 251 patients were recruited (54% females, Mean age=49). Study interview revealed a 23.5% incidence rate of mild TBI compared to an incidence rate of 8.8% for prospective diagnosis (χ(2)=78.47; p<0.0001). Patients suffering from an upper limb monotrauma (29.6%; n=42/142) are significantly more at risk of sustaining a mild TBI compared to lower limb fractures (15.6%; n=17/109) (χ(2)=6.70; p=0.010). More specifically, patients with a proximal upper limb injury were significantly more at risk of sustaining concomitant mild TBI (40.6%; 26/64) compared to distal upper limb fractures (20.25%; 16/79) (χ(2)=7.07; p=0.008). Results suggest an important concomitance of mild TBI among orthopaedic trauma patients, the majority of which go undetected during acute care. Patients treated for an upper limb fracture are particularly at risk of sustaining concomitant mild TBI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lynch, David S; Koutsis, Georgios; Tucci, Arianna; Panas, Marios; Baklou, Markella; Breza, Marianthi; Karadima, Georgia; Houlden, Henry
2016-01-01
Hereditary Spastic Paraplegia (HSP) is a syndrome characterised by lower limb spasticity, occurring alone or in association with other neurological manifestations, such as cognitive impairment, seizures, ataxia or neuropathy. HSP occurs worldwide, with different populations having different frequencies of causative genes. The Greek population has not yet been characterised. The purpose of this study was to describe the clinical presentation and molecular epidemiology of the largest cohort of HSP in Greece, comprising 54 patients from 40 families. We used a targeted next-generation sequencing (NGS) approach to genetically assess a proband from each family. We made a genetic diagnosis in >50% of cases and identified 11 novel variants. Variants in SPAST and KIF5A were the most common causes of autosomal dominant HSP, whereas SPG11 and CYP7B1 were the most common cause of autosomal recessive HSP. We identified a novel variant in SPG11, which led to disease with later onset and may be unique to the Greek population and report the first nonsense mutation in KIF5A. Interestingly, the frequency of HSP mutations in the Greek population, which is relatively isolated, was very similar to other European populations. We confirm that NGS approaches are an efficient diagnostic tool and should be employed early in the assessment of HSP patients. PMID:26374131
SPG3A-linked hereditary spastic paraplegia associated with cerebral glucose hypometabolism.
Terada, Tatsuhiro; Kono, Satoshi; Ouchi, Yasuomi; Yoshida, Kenichi; Hamaya, Yasushi; Kanaoka, Shigeru; Miyajima, Hiroaki
2013-04-01
SPG3A-linked hereditary spastic paraplegia (HSP) is a rare autosomal dominant motor disorder caused by a mutation in the SPG3A gene, and is characterized by progressive motor weakness and spasticity in the lower limbs, without any other neurological abnormalities. SPG3A-linked HSP caused by a R239C mutation has been reported to present a pure phenotype confined to impairment of the corticospinal tract. However, there is still a debate about the etiology of this motor deficit with regard to whether it is peripheral or central. We herein report two patients who were heterozygous for a R239C mutation in the SPG3A gene. Two middle-aged Japanese sisters had been suffering from a pure phenotype of HSP since their childhood. Both patients had a significant decrease in glucose metabolism in the frontal cortex medially and dorsolaterally in a [(18)F]-fluorodeoxyglucose (FDG) positron emission photography (PET) study and low scores on the Frontal Assessment Battery. A real-time PCR analysis in normal subjects showed the frontal cortex to be the major location where SPG3A mRNA is expressed. The present finding that the frontal glucose hypometabolism was associated with frontal cognitive impairment indicates that widespread neuropathology associated with mutations in the SPG3A gene may be present more centrally than previously assumed.
Morais, Sara; Raymond, Laure; Mairey, Mathilde; Coutinho, Paula; Brandão, Eva; Ribeiro, Paula; Loureiro, José Leal; Sequeiros, Jorge; Brice, Alexis; Alonso, Isabel; Stevanin, Giovanni
2017-01-01
Hereditary spastic paraplegias (HSP) are neurodegenerative disorders characterized by lower limb spasticity and weakness that can be complicated by other neurological or non-neurological signs. Despite a high genetic heterogeneity (>60 causative genes), 40–70% of the families remain without a molecular diagnosis. Analysis of one of the pioneer cohorts of 193 HSP families generated in the early 1990s in Portugal highlighted that SPAST and SPG11 are the most frequent diagnoses. We have now explored 98 unsolved families from this series using custom next generation sequencing panels analyzing up to 70 candidate HSP genes. We identified the likely disease-causing variant in 20 of the 98 families with KIF5A being the most frequently mutated gene. We also found 52 variants of unknown significance (VUS) in 38% of the cases. These new diagnoses resulted in 42% of solved cases in the full Portuguese cohort (81/193). Segregation of the variants was not always compatible with the presumed inheritance, indicating that the analysis of all HSP genes regardless of the inheritance mode can help to explain some cases. Our results show that there is still a large set of unknown genes responsible for HSP and most likely novel mechanisms or inheritance modes leading to the disease to be uncovered, but this will require international collaborative efforts, particularly for the analysis of VUS. PMID:28832565
Clinical studies on teenage Brazilian victims of thalidomide.
Schmidt, M; Salzano, F M
1983-07-01
Ninety-three Brazilian teenagers with thalidomide embryopathy were studied. The pattern of distribution of their most significant defect was: upper limbs, 66; lower limbs, 8; all four limbs, 12; head, 7. Only 10 individuals presented the major defect unilaterally. In 30 of 83 with bilateral defects there were differences in severity between the two sides. Of the 31 patients whose spines had been X-rayed, 16 showed defects, the most common being spina bifida occulta at S1. Gynecomasty was found in three of the patients having major upper limb defects.
Development of an EMG-ACC-Based Upper Limb Rehabilitation Training System.
Ling Liu; Xiang Chen; Zhiyuan Lu; Shuai Cao; De Wu; Xu Zhang
2017-03-01
This paper focuses on the development of an upper limb rehabilitation training system designed for use by children with cerebral palsy (CP). It attempts to meet the requirements of in-home training by taking advantage of the combination of portable accelerometers (ACC) and surface electromyography (SEMG) sensors worn on the upper limb to capture functional movements. In the proposed system, the EMG-ACC acquisition device works essentially as wireless game controller, and three rehabilitation games were designed for improving upper limb motor function under a clinician's guidance. The games were developed on the Android platform based on a physical engine called Box2D. The results of a system performance test demonstrated that the developed games can respond to the upper limb actions within 210 ms. Positive questionnaire feedbacks from twenty CP subjects who participated in the game test verified both the feasibility and usability of the system. Results of a long-term game training conducted with three CP subjects demonstrated that CP patients could improve in their game performance through repetitive training, and persistent training was needed to improve and enhance the rehabilitation effect. According to our experimental results, the novel multi-feedback SEMG-ACC-based user interface improved the users' initiative and performance in rehabilitation training.
Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette
2016-01-01
Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well. PMID:26843992
Weiss, Patrice L.; Keshner, Emily A.
2015-01-01
The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522
Prosthetic Cost Projections for Servicemembers with Major Limb Loss from Vietnam and OIF/OEF
2010-01-01
death rates ), DOD = Department of Defense, DSS = Decision Support Sys- tem, MFCL = Medicare Functional Classification Level, OEF = Operation...age-sex-race-adjusted death rates . Figure 3. Markov model for unilateral upper limb and bilateral upper limbs for Operation Iraqi Freedom...Operation Enduring Freedom (OIF/OEF) group. ASR = age-sex-race-adjusted death rates . 394 JRRD, Volume 47, Number 4, 2010 higher, one level lower, or
Chen, Kai-Hua; Hsiao, Kuang-Yu; Lin, Chu-Hsu; Chang, Wen-Ming; Hsu, Hung-Chih; Hsieh, Wei-Chi
2013-01-01
Objectives. To demonstrate the use of acupuncture in the lower limbs to treat myofascial pain of the upper trapezius muscles via a remote effect. Methods. Five adults with latent myofascial trigger points (MTrPs) of bilateral upper trapezius muscles received acupuncture at Weizhong (UB40) and Yanglingquan (GB34) points in the lower limbs. Modified acupuncture was applied at these points on a randomly selected ipsilateral lower limb (experimental side) versus sham needling on the contralateral lower limb (control side) in each subject. Each subject received two treatments within a one-week interval. To evaluate the remote effect of acupuncture, the range of motion (ROM) upon bending the contralateral side of the cervical spine was assessed before and after each treatment. Results. There was significant improvement in cervical ROM after the second treatment (P = 0.03) in the experimental group, and the increased ROM on the modified acupuncture side was greater compared to the sham needling side (P = 0.036). Conclusions. A remote effect of acupuncture was demonstrated in this pilot study. Using modified acupuncture needling at remote acupuncture points in the ipsilateral lower limb, our treatments released tightness due to latent MTrPs of the upper trapezius muscle. PMID:23710218
Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Saotome, Kousaku; Ueno, Tomoyuki; Abe, Tetsuya; Marushima, Aiki; Watanabe, Hiroki; Endo, Ayumu; Tsurumi, Kazue; Ishimoto, Ryu; Matsushita, Akira; Koda, Masao; Matsumura, Akira; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi
2018-01-19
We sought to describe our experience with the Hybrid Assistive Limb® (HAL®) for active knee extension and voluntary ambulation with remaining muscle activity in a patient with complete paraplegia after spinal cord injury. A 30-year-old man with complete paraplegia used the HAL® for 1 month (10 sessions) using his remaining muscle activity, including hip flexor and upper limb activity. Electromyography was used to evaluate muscle activity of the gluteus maximus, tensor fascia lata, quadriceps femoris, and hamstring muscles in synchronization with the Vicon motion capture system. A HAL® session included a knee extension session with the hip flexor and voluntary gait with upper limb activity. After using the HAL® for one month, the patient's manual muscle hip flexor scores improved from 1/5 to 2/5 for the right and from 2/5 to 3/5 for the left knee, and from 0/5 to 1/5 for the extension of both knees. Knee extension sessions with HAL®, and hip flexor and upper-limb-triggered HAL® ambulation seem a safe and feasible option in a patient with complete paraplegia due to spinal cord injury.
High-voltage electrical burn injuries: functional upper extremity assessment.
Mazzetto-Betti, K C; Amâncio, A C G; Farina, J A; Barros, M E P M; Fonseca, M C R
2009-08-01
High-voltage electric injuries have many manifestations, and an important complication is the damage of the central/peripheral nervous system. The purpose of this work was to assess the upper limb dysfunction in patients injured by high-voltage current. The evaluation consisted of analysis of patients' records, cutaneous-sensibility threshold, handgrip and pinch strength and a specific questionnaire about upper limb dysfunctions (DASH) in 18 subjects. All subjects were men; the average age at the time of the injury was 38 years. Of these, 72% changed job/retired after the injury. The current entrance was the hand in 94% and grounding in the lower limb in 78%. The average burned surface area (BSA) was 8.6%. The handgrip strength of the injured limb was reduced (p<0.05) and so also that of the three pinch types. The relationship between the handgrip strength and the DASH was statistically significant (p<0.001) as well as the relationship between the three pinch types (p
Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT
Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael
2017-01-01
Summary Introduction Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Methods Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Results Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. Discussion CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases. PMID:28740526
Disorders of Upper Limb Movements in Ataxia-Telangiectasia
Shaikh, Aasef G.; Zee, David S.; Mandir, Allen S.; Lederman, Howard M.; Crawford, Thomas O.
2013-01-01
Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia. PMID:23826191
Disorders of Upper Limb Movements in Ataxia-Telangiectasia.
Shaikh, Aasef G; Zee, David S; Mandir, Allen S; Lederman, Howard M; Crawford, Thomas O
2013-01-01
Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.
Pagliaro, P; Zamparo, P
1999-04-01
The aim of this study was the quantitative evaluation of the myotatic reflex in a group of 26 patients affected by stationary spastic paresis (6: hemiparesis; 5: paraparesis; 8: tetraparesis; 7: multiple sclerosis) before and after a treatment of hydro-kinesy therapy. The treatment was carried out in an indoor pool containing warm (32 degrees C) sea water and consisted of active and passive motion exercises, coordination exercises and immersion walking. The measured parameters were: (i) the peak input force (FpH) measured by means of an instrumented hammer with which the patellar tendon was hit; and (ii) the peak value of the corresponding reflex force of the quadriceps femoris (FpQ) measured by means of a load cell connected to the subject's ankle. The peak values of the reflex response (FpQ) were found to increase as a function of the intensity of the imposed stimulus and to reach a plateau between 15 and 30 N of FpH. A Student's t test applied to the paired values of FpQ (as measured at plateau conditions) on both the lower limbs, before and after therapy, showed no significant changes due to the treatment in the four groups of subjects. However, if all subjects were grouped regardless the type of illness: 1) the average reflex response of the affected limb (the one characterized before therapy by the higher FpQ values) was found to decrease following the treatment (75.1+/-26.7 N pre therapy and 69.1+/-29.3 N post therapy, p = 0.07, n = 26); and 2) the effect of the treatment was found to be significantly larger (p = 0.04, n = 26) on the affected limb (delta FpQ = 6.07+/-16.5 N) as respect with the contra lateral one (delta FpQ = -0.16+/-12.1 N).
Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity
Crea, Simona; Cempini, Marco; Mazzoleni, Stefano; Carrozza, Maria Chiara; Posteraro, Federico; Vitiello, Nicola
2017-01-01
Introduction: Spasticity is a typical motor disorder in patients affected by stroke. Typically post-stroke rehabilitation consists of repetition of mobilization exercises on impaired limbs, aimed to reduce muscle hypertonia and mitigate spastic reflexes. It is currently strongly debated if the treatment's effectiveness improves with the timeliness of its adoption; in particular, starting intensive rehabilitation as close as possible to the stroke event may counteract the growth and postpone the onset of spasticity. In this paper we present a phase-II clinical validation of a robotic exoskeleton in treating subacute post-stroke patients. Methods: Seventeen post-stroke patients participated in 10 daily rehabilitation sessions using the NEUROExos Elbow Module exoskeleton, each one lasting 45 min: the exercises consisted of isokinetic passive mobilization of the elbow, with torque threshold to detect excessive user's resistance to the movement. We investigated the safety by reporting possible adverse events, such as mechanical, electrical or software failures of the device or injuries or pain experienced by the patient. As regards the efficacy, the Modified Ashworth Scale, was identified as primary outcome measure and the NEEM metrics describing elbow joint resistance to passive extension (i.e., maximum extension torque and zero-torque angle) as secondary outcomes. Results: During the entire duration of the treatments no failures or adverse events for the patients were reported. No statistically significant differences were found in the Modified Ashworth Scale scores, between pre-treatment and post-treatment and between post-treatment and follow-up sessions, indicating the absence of spasticity increase throughout (14 days) and after (3–4 months follow-up) the treatment. Exoskeleton metrics confirmed the absence of significant difference in between pre- and post-treatment data, whereas intra-session data highlighted significant differences in the secondary outcomes, toward a decrease of the subject's joint resistance. Conclusions: The results show that our robotic exoskeleton can be safely used for prolonged sessions in post-stroke and suggest that intensive early rehabilitation treatment may prevent the occurrence of spasticity at a later stage. Moreover, the NEEM metrics were found to be reliable compared to the Modified Ashworth Scale and sensitive to revealing intra-session changes of elbow resistance to passive extension, in agreement with clinical evidences. PMID:28553200
Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity.
Crea, Simona; Cempini, Marco; Mazzoleni, Stefano; Carrozza, Maria Chiara; Posteraro, Federico; Vitiello, Nicola
2017-01-01
Introduction: Spasticity is a typical motor disorder in patients affected by stroke. Typically post-stroke rehabilitation consists of repetition of mobilization exercises on impaired limbs, aimed to reduce muscle hypertonia and mitigate spastic reflexes. It is currently strongly debated if the treatment's effectiveness improves with the timeliness of its adoption; in particular, starting intensive rehabilitation as close as possible to the stroke event may counteract the growth and postpone the onset of spasticity. In this paper we present a phase-II clinical validation of a robotic exoskeleton in treating subacute post-stroke patients. Methods: Seventeen post-stroke patients participated in 10 daily rehabilitation sessions using the NEUROExos Elbow Module exoskeleton, each one lasting 45 min: the exercises consisted of isokinetic passive mobilization of the elbow, with torque threshold to detect excessive user's resistance to the movement. We investigated the safety by reporting possible adverse events, such as mechanical, electrical or software failures of the device or injuries or pain experienced by the patient. As regards the efficacy , the Modified Ashworth Scale, was identified as primary outcome measure and the NEEM metrics describing elbow joint resistance to passive extension (i.e., maximum extension torque and zero-torque angle) as secondary outcomes. Results: During the entire duration of the treatments no failures or adverse events for the patients were reported. No statistically significant differences were found in the Modified Ashworth Scale scores, between pre-treatment and post-treatment and between post-treatment and follow-up sessions, indicating the absence of spasticity increase throughout (14 days) and after (3-4 months follow-up) the treatment. Exoskeleton metrics confirmed the absence of significant difference in between pre- and post-treatment data, whereas intra-session data highlighted significant differences in the secondary outcomes, toward a decrease of the subject's joint resistance. Conclusions: The results show that our robotic exoskeleton can be safely used for prolonged sessions in post-stroke and suggest that intensive early rehabilitation treatment may prevent the occurrence of spasticity at a later stage. Moreover, the NEEM metrics were found to be reliable compared to the Modified Ashworth Scale and sensitive to revealing intra-session changes of elbow resistance to passive extension, in agreement with clinical evidences.
Rong, Wei; Tong, Kai Yu; Hu, Xiao Ling; Ho, Sze Kit
2015-03-01
An electromyography-driven robot system integrated with neuromuscular electrical stimulation (NMES) was developed to investigate its effectiveness on post-stroke rehabilitation. The performance of this system in assisting finger flexion/extension with different assistance combinations was evaluated in five stroke subjects. Then, a pilot study with 20-sessions training was conducted to evaluate the training's effectiveness. The results showed that combined assistance from the NMES-robot could improve finger movement accuracy, encourage muscle activation of the finger muscles and suppress excessive muscular activities in the elbow joint. When assistances from both NMES and the robot were 50% of their maximum assistances, finger-tracking performance had the best results, with the lowest root mean square error, greater range of motion, higher voluntary muscle activations of the finger joints and lower muscle co-contraction in the finger and elbow joints. Upper limb function improved after the 20-session training, indicated by the increased clinical scores of Fugl-Meyer Assessment, Action Research Arm Test and Wolf Motor Function Test. Muscle co-contraction was reduced in the finger and elbow joints reflected by the Modified Ashworth Scale. The findings demonstrated that an electromyography-driven NMES-robot used for chronic stroke improved hand function and tracking performance. Further research is warranted to validate the method on a larger scale. Implications for Rehabilitation The hand robotics and neuromuscular electrical stimulation (NMES) techniques are still separate systems in current post-stroke hand rehabilitation. This is the first study to investigate the combined effects of the NMES and robot on hand rehabilitation. The finger tracking performance was improved with the combined assistance from the EMG-driven NMES-robot hand system. The assistance from the robot could improve the finger movement accuracy and the assistance from the NMES could reduce the muscle co-contraction on finger and elbow joints. The upper limb functions were improved on chronic stroke patients after the pilot study of 20-session hand training with the combined assistance from the EMG-driven NMES-robot. The muscle spasticity on finger and elbow joints was reduced after the training.
Achondroplasia: Really rhizomelic?
Shelmerdine, Susan Cheng; Brittain, Helen; Arthurs, Owen J; Calder, Alistair D
2016-08-01
Achondroplasia is the most common form of short limb dwarfism in humans. The shortening of the limb lengths in achondroplasia is widely described as "rhizomelic." While this appearance may be convincing clinically, the description is not necessarily true or helpful radiologically. The aims of this study, were therefore, to determine whether rhizomelic shortening is a true feature of achondroplasia at diagnosis in infancy. Humeral, radial, femoral, and tibial diaphyseal lengths were recorded by two independent observers from 22 skeletal surveys of infants with achondroplasia and compared with 150 normal age-matched control subjects. Upper and lower limb bone length ratios (radial/humeral and tibial/femoral lengths, respectively) in both groups were compared using an unpaired t-test. Mean upper limb length ratios were statistically higher within the achondroplasia group at 0.87 ± 0.04 (n = 22, mean age 70 ± 94 days) compared to normal controls at 0.79 ± 0.02 (n = 150, mean age 113 days ± 88 days; P < 0.0001). Lower limb length ratios were not significantly different between groups (0.84 ± 0.04 vs. 0.83 ± 0.02, P = 0.46). There was good inter-observer agreement of limb length measurements, with an average measurement difference of 0.1 ± 1.4 mm. In conclusion, infants with achondroplasia demonstrate statistically significant rhizomelic shortening within the upper limbs, but not lower limbs at diagnosis, compared to normal controls. The term "rhizomelic shortening" in relation to achondroplasia should be reserved when describing upper limb proportions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Upper and lower limb functionality: are these compromised in obese children?
Riddiford-Harland, Diane L; Steele, Julie R; Baur, Louise A
2006-01-01
The aim of this study was to investigate the effects of obesity on upper and lower limb functional strength and power in children, and to determine whether the ability to perform the daily activity of rising from a chair was compromised in obese children. It was hypothesised that obese children would display less upper and lower limb functionality compared to their non-obese counterparts. Upper and lower limb strength and power of 43 obese children (aged 8.4 +/- 0.5 y, BMI 24.1 +/- 2.3 kg/m(-2)) and 43 non-obese controls (aged 8.4 +/- 0.5 y, BMI 16.9 +/- 0.4 kg/m(-2)) were assessed using age-appropriate field-based tests: arm push/pull ability; basketball throw; vertical jump (VJ), and standing long jump (SLJ) performance. Functional lower limb strength was assessed for 13 obese and 13 non-obese children by quantifying their chair rising ability. Although obese children displayed significantly greater upper limb push (9.3 +/- 2.3 kg) and pull strength (9.6 +/- 3.0 kg) than their non-obese peers (push: 8.8 +/- 2.2 kg; pull: 8.8 +/- 2.3 kg; p < or = 0.05), their VJ (22.1 +/- 4.3 cm) and SLJ (94.6 +/- 12.8 cm) performance was significantly impaired relative to the non-obese children (VJ: 24.7 +/- 4.0 cm; SLJ: 101.7 +/- 14.0 cm; p < or = 0.05). Obese children spent significantly more time during all transfer phases of the chair rising task, compared to the non-obese children. Lower limb functionality in young obese children is impeded when they move their greater body mass against gravity.
Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience.
Resnik, Linda; Klinger, Shana Lieberman; Etter, Katherine; Fantini, Christopher
2014-07-01
The DEKA Arm, a pre-commercial upper limb prosthesis, funded by the DARPA Revolutionizing Prosthetics Program, offers increased degrees of freedom while requiring a large number of user control inputs to operate. To address this challenge, DEKA developed prototype foot controls. Although the concept of utilizing foot controls to operate an upper limb prosthesis has been discussed for decades, only small-sized studies have been performed and no commercial product exists. The purpose of this paper is to report amputee user perspectives on using three different iterations of foot controls to operate the DEKA Arm. Qualitative data was collected from 36 subjects as part of the Department of Veterans Affairs (VA) Study to Optimize the DEKA Arm through surveys, interviews, audio memos, and videotaped sessions. Three major, interrelated themes were identified using the constant comparative method: attitudes towards foot controls, psychomotor learning and physical experience of using foot controls. Feedback about foot controls was generally positive for all iterations. The final version of foot controls was viewed most favorably. Our findings indicate that foot controls are a viable control option that can enable control of a multifunction upper limb prosthesis (the DEKA Arm). Multifunction upper limb prostheses require many user control inputs to operate. Foot controls offer additional control input options for such advanced devices, yet have had minimal study. This study found that foot controls were a viable option for controlling multifunction upper limb prostheses. Most of the 36 subjects in this study were willing to adopt foot controls to control the multiple degrees of freedom of the DEKA Arm. With training and practice, all users were able to develop the psychomotor skills needed to successfully operate food controls. Some had initial difficulty, but acclimated over time.
Beretta, Elena; Cesareo, Ambra; Biffi, Emilia; Schafer, Carolyn; Galbiati, Sara; Strazzer, Sandra
2018-01-01
Acquired brain injuries (ABIs) can lead to a wide range of impairments, including weakness or paralysis on one side of the body known as hemiplegia. In hemiplegic patients, the rehabilitation of the upper limb skills is crucial, because the recovery has an immediate impact on patient quality of life. For this reason, several treatments were developed to flank physical therapy (PT) and improve functional recovery of the upper limbs. Among them, Constraint-Induced Movement Therapy (CIMT) and robot-aided therapy have shown interesting potentialities in the rehabilitation of the hemiplegic upper limb. Nevertheless, there is a lack of quantitative evaluations of effectiveness in a standard clinical setting, especially in children, as well as a lack of direct comparative studies between these therapeutic techniques. In this study, a group of 18 children and adolescents with hemiplegia was enrolled and underwent intensive rehabilitation treatment including PT and CIMT or Armeo®Spring therapy. The effects of the treatments were assessed using clinical functional scales and upper limb kinematic analysis during horizontal and vertical motor tasks. Results showed CIMT to be the most effective in terms of improved functional scales, while PT seemed to be the most significant in terms of kinematic variations. Specifically, PT resulted to have positive influence on distal movements while CIMT conveyed more changes in the proximal kinematics. Armeo treatment delivered improvements mainly in the vertical motor task, showing trends of progresses of the movement efficiency and reduction of compensatory movements of the shoulder with respect to other treatments. Therefore, every treatment gave advantages in a specific and different upper limb district. Therefore, results of this preliminary study may be of help to define the best rehabilitation treatment for each patient, depending on the goal, and may thus support clinical decision.
van der Laan, Tallie M J; Postema, Sietke G; Reneman, Michiel F; Bongers, Raoul M; van der Sluis, Corry K
2018-02-10
Reliability study. Quantifying compensatory movements during work-related tasks may help to prevent musculoskeletal complaints in individuals with upper limb absence. (1) To develop a qualitative scoring system for rating compensatory shoulder and trunk movements in upper limb prosthesis wearers during the performance of functional capacity evaluation tests adjusted for use by 1-handed individuals (functional capacity evaluation-one handed [FCE-OH]); (2) to examine the interrater and intrarater reliability of the scoring system; and (3) to assess its feasibility. Movement patterns of 12 videotaped upper limb prosthesis wearers and 20 controls were analyzed. Compensatory movements were defined for each FCE-OH test, and a scoring system was developed, pilot tested, and adjusted. During reliability testing, 18 raters (12 FCE experts and 6 physiotherapists/gait analysts) scored videotapes of upper limb prosthesis wearers performing 4 FCE-OH tests 2 times (2 weeks apart). Agreement was expressed in % and kappa value. Feasibility (focus area's "acceptability", "demand," and "implementation") was determined by using a questionnaire. After 2 rounds of pilot testing and adjusting, reliability of a third version was tested. The interrater reliability for the first and second rating sessions were к = 0.54 (confidence interval [CI]: 0.52-0.57) and к = 0.64 (CI: 0.61-0.66), respectively. The intrarater reliability was к = 0.77 (CI: 0.72-0.82). The feasibility was good but could be improved by a training program. It seems possible to identify compensatory movements in upper limb prosthesis wearers during the performance of FCE-OH tests reliably by observation using the developed observational scoring system. Interrater reliability was satisfactory in most instances; intrarater reliability was good. Feasibility was established. Copyright © 2018 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Kingston, David C; Riddell, Maureen F; McKinnon, Colin D; Gallagher, Kaitlin M; Callaghan, Jack P
2016-02-01
We evaluated the effect of work surface angle and input hardware on upper-limb posture when using a hybrid computer workstation. Offices use sit-stand and/or tablet workstations to increase worker mobility. These workstations may have negative effects on upper-limb joints by increasing time spent in non-neutral postures, but a hybrid standing workstation may improve working postures. Fourteen participants completed office tasks in four workstation configurations: a horizontal or sloped 15° working surface with computer or tablet hardware. Three-dimensional right upper-limb postures were recorded during three tasks: reading, form filling, and writing e-mails. Amplitude probability distribution functions determined the median and range of upper-limb postures. The sloped-surface tablet workstation decreased wrist ulnar deviation by 5° when compared to the horizontal-surface computer when reading. When using computer input devices (keyboard and mouse), the shoulder, elbow, and wrist were closest to neutral joint postures when working on a horizontal work surface. The elbow was 23° and 15° more extended, whereas the wrist was 6° less ulnar deviated, when reading compared to typing forms or e-mails. We recommend that the horizontal-surface computer configuration be used for typing and the sloped-surface tablet configuration be used for intermittent reading tasks in this hybrid workstation. Offices with mobile employees could use this workstation for alternating their upper-extremity postures; however, other aspects of the device need further investigation. © 2015, Human Factors and Ergonomics Society.
Ethical considerations in providing an upper limb exoskeleton device for stroke patients.
Bulboacă, Adriana E; Bolboacă, Sorana D; Bulboacă, Angelo C
2017-04-01
The health care system needs to face new and advanced medical technologies that can improve the patients' quality of life by replacing lost or decreased functions. In stroke patients, the disabilities that follow cerebral lesions may impair the mandatory daily activities of an independent life. These activities are dependent mostly on the patient's upper limb function so that they can carry out most of the common activities associated with a normal life. Therefore, an upper limb exoskeleton device for stroke patients can contribute a real improvement of quality of their life. The ethical problems that need to be considered are linked to the correct adjustment of the upper limb skills in order to satisfy the patient's expectations, but within physiological limits. The debate regarding the medical devices dedicated to neurorehabilitation is focused on their ability to be beneficial to the patient's life, keeping away damages, injustice, and risks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling
2010-01-01
Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960
The effect of arm weight support on upper limb muscle synergies during reaching movements
2014-01-01
Background Compensating for the effect of gravity by providing arm-weight support (WS) is a technique often utilized in the rehabilitation of patients with neurological conditions such as stroke to facilitate the performance of arm movements during therapy. Although it has been shown that, in healthy subjects as well as in stroke survivors, the use of arm WS during the performance of reaching movements leads to a general reduction, as expected, in the level of activation of upper limb muscles, the effects of different levels of WS on the characteristics of the kinematics of motion and of the activity of upper limb muscles have not been thoroughly investigated before. Methods In this study, we systematically assessed the characteristics of the kinematics of motion and of the activity of 14 upper limb muscles in a group of 9 healthy subjects who performed 3-D arm reaching movements while provided with different levels of arm WS. We studied the hand trajectory and the trunk, shoulder, and elbow joint angular displacement trajectories for different levels of arm WS. Besides, we analyzed the amplitude of the surface electromyographic (EMG) data collected from upper limb muscles and investigated patterns of coordination via the analysis of muscle synergies. Results The characteristics of the kinematics of motion varied across WS conditions but did not show distinct trends with the level of arm WS. The level of activation of upper limb muscles generally decreased, as expected, with the increase in arm WS. The same eight muscle synergies were identified in all WS conditions. Their level of activation depended on the provided level of arm WS. Conclusions The analysis of muscle synergies allowed us to identify a modular organization underlying the generation of arm reaching movements that appears to be invariant to the level of arm WS. The results of this study provide a normative dataset for the assessment of the effects of the level of arm WS on muscle synergies in stroke survivors and other patients who could benefit from upper limb rehabilitation with arm WS. PMID:24594139
The accuracy and precision of radiostereometric analysis in upper limb arthroplasty.
Ten Brinke, Bart; Beumer, Annechien; Koenraadt, Koen L M; Eygendaal, Denise; Kraan, Gerald A; Mathijssen, Nina M C
2017-06-01
Background and purpose - Radiostereometric analysis (RSA) is an accurate method for measurement of early migration of implants. Since a relation has been shown between early migration and future loosening of total knee and hip prostheses, RSA plays an important role in the development and evaluation of prostheses. However, there have been few RSA studies of the upper limb, and the value of RSA of the upper limb is not yet clear. We therefore performed a systematic review to investigate the accuracy and precision of RSA of the upper limb. Patients and methods - PRISMA guidelines were followed and the protocol for this review was published online at PROSPERO under registration number CRD42016042014. A systematic search of the literature was performed in the databases Embase, Medline, Cochrane, Web of Science, Scopus, Cinahl, and Google Scholar on April 25, 2015 based on the keywords radiostereometric analysis, shoulder prosthesis, elbow prosthesis, wrist prosthesis, trapeziometacarpal joint prosthesis, humerus, ulna, radius, carpus. Articles concerning RSA for the analysis of early migration of prostheses of the upper limb were included. Quality assessment was performed using the MINORS score, Downs and Black checklist, and the ISO RSA Results - 23 studies were included. Precision values were in the 0.06-0.88 mm and 0.05-10.7° range for the shoulder, the 0.05-0.34 mm and 0.16-0.76° range for the elbow, and the 0.16-1.83 mm and 11-124° range for the TMC joint. Accuracy data from marker- and model-based RSA were not reported in the studies included. Interpretation - RSA is a highly precise method for measurement of early migration of orthopedic implants in the upper limb. However, the precision of rotation measurement is poor in some components. Challenges with RSA in the upper limb include the symmetrical shape of prostheses and the limited size of surrounding bone, leading to over-projection of the markers by the prosthesis. We recommend higher adherence to RSA guidelines and encourage investigators to publish long-term follow-up RSA studies.
Barredo, Jennifer; Acluche, Frantzy; Disla, Roxanne; Fantini, Christopher; Fishelis, Leah; Sasson, Nicole; Resnik, Linda
2017-08-01
To describe a participant with scapulo-thoracic amputation and cognitive impairment trained to use the DEKA Arm and discuss factors relevant to the determination that he was not an appropriate candidate for independent home use of the device. The participant underwent 40 h of in-laboratory training with the DEKA Arm Advanced Upper Limb Prosthesis. Pre-training neuropsychological measures of cognition were collected. Qualitative and quantitative data related to functional performance, quality of life and pain were collected after 10 h of training, and at the conclusion of training. Using a constant comparative approach, data were binned into major themes; elements within each theme were identified. Six themes were relevant to the determination that the participant was inappropriate for home use of the DEKA Arm: physical and mental health; learning, memory and cognition; adult role function; functional performance; user safety and judgement and capacity for independent device use. Issues contraindicating unsupervised device use included: uncontrolled health symptoms, poor knowledge application, safety concerns, absenteeism and performance degradation under stress. The findings have implications for training with and prescription of the DEKA Arm and other complex upper limb prostheses. Further research is needed to develop a model to guide prescription of technologically complex upper limb prostheses. Implications for Rehabilitation Advanced upper limb prostheses, like the DEKA Arm, promise greater functionality, but also may be cognitively demanding, raising questions of when, and if, prescription is appropriate for patients with cognitive impairment. At this time, no formal criteria exist to guide prescription of advanced upper limb prostheses. Each clinical team applies their own informal standards in decision-making. In this case report, we described six factors that were considered in determining whether or not a research participant, with scapulo-thoracic amputation and cognitive impairment was appropriate for home use of a complex upper limb prosthesis. The findings have implications for training with and prescription of the DEKA Arm, and highlights the need for further research to develop prescription guidelines for advanced assistive devices.
Normative Data for an Instrumental Assessment of the Upper-Limb Functionality.
Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco
2015-01-01
Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment.
Normative Data for an Instrumental Assessment of the Upper-Limb Functionality
Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco
2015-01-01
Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment. PMID:26539500
Measuring upper limb function in children with hemiparesis with 3D inertial sensors.
Newman, Christopher J; Bruchez, Roselyn; Roches, Sylvie; Jequier Gygax, Marine; Duc, Cyntia; Dadashi, Farzin; Massé, Fabien; Aminian, Kamiar
2017-12-01
Upper limb assessments in children with hemiparesis rely on clinical measurements, which despite standardization are prone to error. Recently, 3D movement analysis using optoelectronic setups has been used to measure upper limb movement, but generalization is hindered by time and cost. Body worn inertial sensors may provide a simple, cost-effective alternative. We instrumented a subset of 30 participants in a mirror therapy clinical trial at baseline, post-treatment, and follow-up clinical assessments, with wireless inertial sensors positioned on the arms and trunk to monitor motion during reaching tasks. Inertial sensor measurements distinguished paretic and non-paretic limbs with significant differences (P < 0.01) in movement duration, power, range of angular velocity, elevation, and smoothness (normalized jerk index and spectral arc length). Inertial sensor measurements correlated with functional clinical tests (Melbourne Assessment 2); movement duration and complexity (Higuchi fractal dimension) showed moderate to strong negative correlations with clinical measures of amplitude, accuracy, and fluency. Inertial sensor measurements reliably identify paresis and correlate with clinical measurements; they can therefore provide a complementary dimension of assessment in clinical practice and during clinical trials aimed at improving upper limb function.
Active unicameral bone cysts in the upper limb are at greater risk of fracture.
Tey, Inn Kuang; Mahadev, Arjandas; Lim, Kevin Boon Leong; Lee, Eng Hin; Nathan, Saminathan Suresh
2009-08-01
To elucidate the natural history of unicameral bone cyst (UBC) and risk factors for pathological fracture. 14 males and 8 females (mean age, 9 years) diagnosed with UBC were reviewed. Cyst location, symptoms, and whether there was any fracture or surgery were recorded. Cyst parameters were measured on radiographs, and included (1) the cyst index, (2) the ratio of the widest cyst diameter to the growth plate diameter, and (3) the adjusted distance of the cyst border from the growth plate. There were 11 upper- and 11 lower-limb cysts. 13 patients had pathological fractures and 9 did not. 20 patients were treated conservatively with limb immobilisation; 2 underwent curettage and bone grafting (one resolved and one did not). Seven cysts resolved (5 had fractures and 2 did not). The risk of fracture was higher in the upper than lower limbs (100% vs 18%, p<0.001). Fractured cysts were larger than unfractured cysts (mean cyst index, 4.5 vs. 2.2, p=0.07). Active cysts were more likely to fracture. Conservative management had a 30% resolution rate. Surgery should be considered for large active cysts in the upper limbs in order to minimise the fracture risk.
Long term effects of intensity of upper and lower limb training after stroke: a randomised trial
Kwakkel, G; Kollen, B; Wagenaar, R
2002-01-01
Objective: To assess long term effects at 1 year after stroke in patients who participated in an upper and lower limb intensity training programme in the acute and subacute rehabilitation phases. Design: A three group randomised controlled trial with repeated measures was used. Method: One hundred and one patients with a primary middle cerebral artery stroke were randomly allocated to one of three groups for a 20 week rehabilitation programme with an emphasis on (1) upper limb function, (2) lower limb function or (3) immobilisation with an inflatable pressure splint (control group). Follow up assessments within and between groups were compared at 6, 9, and 12 months after stroke. Results: No statistically significant effects were found for treatment assignment from 6 months onwards. At a group level, the significant differences in efficacy demonstrated at 20 weeks after stroke in favour of the lower limb remained. However, no significant differences in functional recovery between groups were found for Barthel index (BI), functional ambulation categories (FAC),action research arm test (ARAT), comfortable and maximal walking speed, Nottingham health profile part 1(NHP-part 1), sickness impact profile-68 (SIP-68), and Frenchay activities index (FAI) from 6 months onwards. At an individual subject level a substantial number of patients showed improvement or deterioration in upper limb function (n=8 and 5, respectively) and lower limb function (n=19 and 9, respectively). Activities of daily living (ADL) scores showed that five patients deteriorated and four improved beyond the error threshold from 6 months onwards. In particular, patients with some but incomplete functional recovery at 6 months are likely to continue to improve or regress from 6 months onwards. Conclusions: On average patients maintained their functional gains for up to 1 year after stroke after receiving a 20 week upper or lower limb function training programme. However, a significant number of patients with incomplete recovery showed improvements or deterioration in dexterity, walking ability, and ADL beyond the error threshold. PMID:11909906
Benda, William; McGibbon, Nancy H; Grant, Kathryn L
2003-12-01
To evaluate the effect of hippotherapy (physical therapy utilizing the movement of a horse) on muscle activity in children with spastic cerebral palsy. Pretest/post-test control group. Therapeutic Riding of Tucson (TROT), Tucson, AZ. Fifteen (15) children ranging from 4 to 12 years of age diagnosed with spastic cerebral palsy. Children meeting inclusion criteria were randomized to either 8 minutes of hippotherapy or 8 minutes astride a stationary barrel. Remote surface electromyography (EMG) was used to measure muscle activity of the trunk and upper legs during sitting, standing, and walking tasks before and after each intervention. After hippotherapy, significant improvement in symmetry of muscle activity was noted in those muscle groups displaying the highest asymmetry prior to hippotherapy. No significant change was noted after sitting astride a barrel. Eight minutes of hippotherapy, but not stationary sitting astride a barrel, resulted in improved symmetry in muscle activity in children with spastic cerebral palsy. These results suggest that the movement of the horse rather than passive stretching accounts for the measured improvements.
Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects.
Lo, Ho Shing; Xie, Sheng Quan
2012-04-01
Current health services are struggling to provide optimal rehabilitation therapy to victims of stroke. This has motivated researchers to explore the use of robotic devices to provide rehabilitation therapy for strokepatients. This paper reviews the recent progress of upper limb exoskeleton robots for rehabilitation treatment of patients with neuromuscular disorders. Firstly, a brief introduction to rehabilitation robots will be given along with examples of existing commercial devices. The advancements in upper limb exoskeleton technology and the fundamental challenges in developing these devices are described. Potential areas for future research are discussed. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Wong, Joyce Y P; Chin, David; Fung, Henry; Li, Ann; Wong, Marcus M S; Kwok, Henry K H
2014-01-01
Upper limb musculoskeletal complaints are common among certain health professionals. We report two cases, both involving technicians working in a diagnostic tuberculosis laboratory in Hong Kong. A work process evaluation suggest that the need to repeatedly open and close small bottles, as well as to work for prolonged periods of time in confined areas, could be related to the workers' clinical presentation. The cases are also compatible with the diagnosis of repetitive strain injury (RSI) of the upper limb, but this term is not commonly used nowadays because of various definitional issues. A review of the various diagnostic issues in RSI is presented.
NASA Astrophysics Data System (ADS)
Hayashi, Ryota; Ishimine, Tomoyasu; Kawahira, Kazumi; Yu, Yong; Tsujio, Showzow
In this research, we focus on the method of rehabilitation with stretch reflexes for the hemiplegic upper limb in stroke patients. We propose a new device which utilizes electromagnetic force to evoke stretch reflexes. The device can exert an assisting force safely, because the electromagnetic force is non contact force. In this paper, we develop a support system applying the proposed device for the functional recovery training of the hemiplegic upper limb. The results obtained from several clinical tests with and without our support system are compared. Then we discuss the validity of our support system.
Early manifestation of arm-leg coordination during stepping on a surface in human neonates.
La Scaleia, Valentina; Ivanenko, Y; Fabiano, A; Sylos-Labini, F; Cappellini, G; Picone, S; Paolillo, P; Di Paolo, A; Lacquaniti, F
2018-04-01
The accomplishment of mature locomotor movements relies upon the integrated coordination of the lower and upper limbs and the trunk. Human adults normally swing their arms and a quadrupedal limb coordination persists during bipedal walking despite a strong corticospinal control of the upper extremities that allows to uncouple this connection during voluntary activities. Here we investigated arm-leg coordination during stepping responses on a surface in human neonates. In eight neonates, we found the overt presence of alternating arm-leg oscillations, the arms moving up and down in alternation with ipsilateral lower limb movements. These neonates moved the diagonal limbs together, and the peak of the arm-to-trunk angle (i.e., maximum vertical excursion of the arm) occurred around the end of the ipsilateral stance phase, as it occurs during typical adult walking. Although episodes of arm-leg coordination were sporadic in our sample of neonates, their presence provides significant evidence for a neural coupling between the upper and lower limbs during early ontogenesis of locomotion in humans.
Rajabally, Yusuf A; Wong, Siew L
2012-03-01
We describe a patient presenting with progressive upper limb numbness and sensory ataxia of the 4 limbs. Motor nerve conduction studies were completely normal. Sensory electrophysiology showed reduced/absent upper limb sensory action potentials (SAPs). In the lower limbs, SAPs were mostly normal. Sensory conduction velocities were normal. Forearm sensory conduction blocks were present for both median nerves on antidromic testing. The maximal recordable sural SAP was preserved in comparison to maximal recordable radial SAP, consistent with an "abnormal radial normal sural" pattern. Somatosensory evoked potentials were unrecordable for tibial and median nerves. Cerebrospinal fluid protein was raised (0.99 g/L). The patient worsened on oral corticosteroids but subsequently made substantial functional recovery on intravenous immunoglobulins. This case is different to those previously reported of sensory chronic inflammatory demyelinating polyradiculoneuropathy, given its exclusive sensory electrophysiologic presentation, presence of predominant upper limb reduced sensory amplitudes, and detection of sensory conduction blocks. These electrophysiologic features were of paramount importance in establishing diagnosis and effective therapy.
Pseudoelastic Nitinol-Based Device for Relaxation of Spastic Elbow in Stroke Patients
NASA Astrophysics Data System (ADS)
Viscuso, S.; Pittaccio, S.; Caimmi, M.; Gasperini, G.; Pirovano, S.; Villa, E.; Besseghini, S.; Molteni, F.
2009-08-01
A compliant brace (EDGES) promoting spastic elbow relaxation was designed to investigate the potentialities of pseudoelastic NiTi in orthotics. By exploiting its peculiar characteristics, EDGES could improve elbow posture without constraining movements and thus avoiding any pain to the patient. A commercial Ni50.7-Ti49.3 alloy heat treated at 400 °C 1 h + WQ was selected for this application. A prototype of EDGES was assembled with two thermoplastic shells connected by polycentric hinges. Four 2-mm-diameter NiTi bars were encastred in the upper-arm shell and let slide along tubular fixtures on the forearm. Specially designed bending tests demonstrated suitable moment-angle characteristics. Two post-stroke subjects (aged 62 and 64, mild elbow flexors spasticity) wore EDGES for 1 week, at least 10 h a day. No additional treatment was applied during this period or the following week. A great improvement (20° ± 5°) of the resting position was observed in both patients as early as 3 h after starting the treatment. Acceptability was very good. A slight decrease in spasticity was also observed in both subjects. All the effects disappeared 1 week after discontinuation. EDGES appears to be a good alternative to traditional orthoses in terms of acceptability and effectiveness in improving posture, especially whenever short-term splinting is planned.
Kawahira, Kazumi; Shimodozono, Megumi; Etoh, Seiji; Kamada, Katsuya; Noma, Tomokazu; Tanaka, Nobuyuki
2010-01-01
Objective To study the effects on the hemiplegic upper limb of repetitive facilitation exercises (RFEs) using a novel facilitation technique, in which the patient's intention to move the hemiplegic upper limb or finger was followed by realization of the movement using multiple sensory stimulations. Methods Twenty-three stroke patients were enrolled in a cross-over study in which 2-week RFE sessions (100 repetitions each of five-to-eight types of facilitation exercise per day) were alternated with 2-week conventional rehabilitation (CR) sessions, for a total of four sessions. Treatments were begun with the 2-week RFE session in one group and the 2-week CR session in the second group. Results After the first 2-week RFE session, both groups showed improvements in the Brunnstrom stages of the upper limb and the hand, in contrast to the small improvements observed during the first CR session. The Simple Test for Evaluating Hand Function (STEF) score, which evaluates the ability of manipulating objects, in both groups improved during both sessions. After the second 2-week RFE and CR sessions, both groups showed little further improvement except in the STEF score. Conclusion The novel RFEs promoted the functional recovery of the hemiplegic upper limb and hand to a greater extent than the CR sessions. PMID:20715890
Upper limb movement analysis during gait in multiple sclerosis patients.
Elsworth-Edelsten, Charlotte; Bonnefoy-Mazure, Alice; Laidet, Magali; Armand, Stephane; Assal, Frederic; Lalive, Patrice; Allali, Gilles
2017-08-01
Gait disorders in multiple sclerosis (MS) are well studied; however, no previous study has described upper limb movements during gait. However, upper limb movements have an important role during locomotion and can be altered in MS patients due to direct MS lesions or mechanisms of compensation. The aim of this study was to describe the arm movements during gait in a population of MS patients with low disability compared with a healthy control group. In this observational study we analyzed the arm movements during gait in 52 outpatients (mean age: 39.7±9.6years, female: 40%) with relapsing-remitting MS with low disability (mean EDSS: 2±1) and 25 healthy age-matched controls using a 3-dimension gait analysis. MS patients walked slower, with increased mean elbow flexion and decreased amplitude of elbow flexion (ROM) compared to the control group, whereas shoulder and hand movements were similar to controls. These differences were not explained by age or disability. Upper limb alterations in movement during gait in MS patients with low disability can be characterized by an increase in mean elbow flexion and a decrease in amplitude (ROM) for elbow flexion/extension. This upper limb movement pattern should be considered as a new component of gait disorders in MS and may reflect subtle motor deficits or the use of compensatory mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Upper limb module in non-ambulant patients with spinal muscular atrophy: 12 month changes.
Sivo, Serena; Mazzone, Elena; Antonaci, Laura; De Sanctis, Roberto; Fanelli, Lavinia; Palermo, Concetta; Montes, Jacqueline; Pane, Marika; Mercuri, Eugenio
2015-03-01
Recent studies have suggested that in non-ambulant patients affected by spinal muscular atrophy the Upper Limb Module can increase the range of activities assessed by the Hammersmith Functional Motor Scale Expanded. The aim of this study was to establish 12-month changes in the Upper Limb Module in a cohort of non-ambulant spinal muscular atrophy patients and their correlation with changes on the Hammersmith Functional Motor Scale Expanded. The Upper Limb Module scores ranged between 0 and 17 (mean 10.23, SD 4.81) at baseline and between 1 and 17 at 12 months (mean 10.27, SD 4.74). The Hammersmith Functional Motor Scale Expanded scores ranged between 0 and 34 (mean 12.43, SD 9.13) at baseline and between 0 and 34 at 12 months (mean 12.08, SD 9.21). The correlation betweeen the two scales was 0.65 at baseline and 0.72 on the 12 month changes. Our results confirm that the Upper Limb Module can capture functional changes in non-ambulant spinal muscular atrophy patients not otherwise captured by the other scale and that the combination of the two measures allows to capture changes in different subgroups of patients in whom baseline scores and functional changes may be influenced by several variables such as age. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel upper limb rehabilitation system with self-driven virtual arm illusion.
Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul
2014-01-01
This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment.
Wang, Yong Tai; Vrongistinos, Konstantinos Dino; Xu, Dali
2008-08-01
The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.
Upper limb malformations in DiGeorge syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormier-Daire, V.; Iserin, L.; Sidi, D.
1995-03-13
We report on upper limb anomalies in two children with a complete DiGeorge sequence: conotruncal defects, hypocalcemia, thymic aplasia, and facial anomalies. One child had preaxial polydactyly, and the other had club hands with hypoplastic first metacarpal. In both patients, molecular analysis documented a 22q11 deletion. To our knowledge, limb anomalies have rarely been reported in DiGeorge syndrome, and they illustrate the variable clinical expression of chromosome 22q11 deletions. 13 refs., 2 figs.
Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects.
Bawa, P; Hamm, J D; Dhillon, P; Gross, P A
2004-10-01
Anatomical and behavioural work on primates has shown bilateral innervation of axial and proximal limb muscles, and contralateral control of distal limb muscles. The following study examined if a clear boundary exists between the distal and proximal upper limb muscles that are controlled contralaterally or bilaterally. The right motor cortical area representing the upper limb was stimulated, while surface EMG was recorded bilaterally from various upper limb muscles during rest and phasic voluntary contractions. Peak-to-peak amplitude of motor evoked potential (MEP) was measured for each muscle on both sides. The ratio R = (ipsilateral MEP: contralateral MEP) was calculated for seven pairs of muscles. For each of the seven pairs, R was less than 1.0, implying that for each muscle and subject, the contralateral control is stronger. The boundary where R changed from almost zero to a clearly measurable magnitude depended on the subject. Ipsilateral MEPs from trapezius and pectoralis could be recorded with a small background contraction from almost all subjects; on the other hand, in deltoid and biceps brachii, ipsilateral MEPs were observed only with bimanual phasic contractions. The forearm and hand muscles, in general, did not show any ipsilateral MEPs. Major differences between subjects lay in the presence or the absence of ipsilateral MEPs in biceps brachii and deltoid, without defining a sharp boundary between proximal and distal muscles.
The occurrence of dystonia in upper-limb multiple sclerosis tremor.
Van der Walt, A; Buzzard, K; Sung, S; Spelman, T; Kolbe, S C; Marriott, M; Butzkueven, H; Evans, A
2015-12-01
The pathophysiology of multiple sclerosis (MS) tremor is uncertain with limited phenotypical studies available. To investigate whether dystonia contributes to MS tremor and its severity. MS patients (n = 54) with and without disabling uni- or bilateral upper limb tremor were recruited (39 limbs per group). We rated tremor severity, writing and Archimedes spiral drawing; cerebellar dysfunction (SARA score); the Global Dystonia Scale (GDS) for proximal and distal upper limbs, dystonic posturing, mirror movements, geste antagoniste, and writer's cramp. Geste antagoniste, mirror dystonia, and dystonic posturing were more frequent and severe (p < 0.001) and dystonia scores were correlated with tremor severity in tremor compared to non-tremor patients. A 1-unit increase in distal dystonia predicted a 0.52-Bain unit (95% confidence interval (CI) 0.08-0.97), p = 0.022) increase in tremor severity and a 1-unit (95% CI 0.48-1.6, p = 0.001) increase in drawing scores. A 1-unit increase in proximal dystonia predicted 0.93-Bain unit increase (95% CI 0.45-1.41, p < 0.001) in tremor severity and 1.5-units (95% CI 0.62-2.41, p = 0.002) increase in the drawing score. Cerebellar function in the tremor limb and tremor severity was correlated (p < 0.001). Upper limb dystonia is common in MS tremor suggesting that MS tremor pathophysiology involves cerebello-pallido-thalamo-cortical network dysfunction. © The Author(s), 2015.
Sehatzadeh, S
2015-01-01
Background After stroke, impairment of the upper and lower limb can limit patients’ motor function and ability to perform activities of daily living (ADL). Physiotherapy (PT) is an established clinical practice for stroke patients, playing an important role in improving limb function. Recently, several randomized trials have evaluated the effect of higher-intensity physiotherapy (increased duration and/or frequency) on patients’ functional ability. Objectives Our objective is to investigate whether an increased intensity of PT after stroke results in better outcomes for patients. Data Sources A literature search was performed on June 7, 2013, for English-language randomized controlled trials published from January 1, 2003, to June 7, 2013. Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews were searched. Review Methods We reviewed the full text of articles that compared 2 or more levels of PT intensity. Outcomes of interest included motor function, ADL, and quality of life (QOL). Results High-quality evidence showed that higher-intensity upper-limb PT and higher-intensity lower-limb PT both resulted in significantly greater improvements in motor function. Moderate-quality evidence showed that higher-intensity general PT did not. Moderate-quality evidence showed a significant improvement in ADL performance with higher-intensity upper-limb PT, but no improvement with higher-intensity general PT; no studies reported on ADL outcomes on lower-limb PT specifically. According to moderate-quality evidence, patient QOL did not change significantly after increased intensity of upper-limb, lower-limb, or general PT. When considering the results, one difference should be noted: Compared with the studies examining upper- and lower-limb PT, the studies examining general PT looked at a smaller increase—2 hours or less of additional therapy per week. Limitations This analysis is limited to the earlier post-stroke phase and is not equipped to comment on expected outcomes of later-stage PT. Conclusions Overall, this analysis found support for the use of more intensive PT to improve motor function and ability to perform ADL after stroke. PMID:26356355
The influence of musical cadence into aquatic jumping jacks kinematics.
Costa, Mário J; Oliveira, Cristiana; Teixeira, Genoveva; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M
2011-01-01
The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface). Subjects performed an incremental protocol of five bouts (120 b·min(-1), 135 b·min(-1), 150 b·min(-1), 165 b·min(-1) and 180 b·min(-1)) with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands), lower limbs' (i.e. feet) and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence. Key pointsWhile performing the Jumping Jacks, expert and fit subjects increase their lower limbs segmental velocity to maintain the range of motion.The upper limbs displacement is reduced to maintain the music cadence.Expert and fit subjects present similar response for alternating or simultaneously head-out aquatic exercises when increasing the music cadence.
Young People's Computer Use: Implications for Health Education
ERIC Educational Resources Information Center
Alexander, Leslie M.; Currie, Candace
2004-01-01
Increasing numbers of young people use Information and Communication Technology (ICT) for education, work and leisure activities. Research on ICT and Upper Limb Disorders (ULDs) in adults has shown that functional impairment, pain and discomfort in the upper limbs, neck and shoulder increases with frequency and duration of exposure to computer…
Motion of the center of gravity of the body in clinical evaluation of gait.
Tesio, L; Civaschi, P; Tessari, L
1985-04-01
The motion of the center of gravity during walking was analyzed in five hemiplegic subjects and eleven subjects affected by unilateral hip arthritis. In the hemiplegic subjects and 6 subjects with hip arthritis the transfer between kinetic and potential energy (with a passive pendular motion) was found to be 9-95% greater during the step performed on the affected limb ("pathological" step); as a consequence, the muscular work done during this step was 7-81% of the work done during the step performed on the second limb ("normal" step). Qualitatively similar gait anomalies were recorded in all hemiplegic subjects with hypertonus of the paretic limb: these subjects had to lift the spastic limb as a whole during the normal step, with the consequence that the center of gravity was lifted 0.6-3 cm more than during the pathological step. In contrast, various motor patterns were found in patients with hip arthritis. During the pathological step the center of gravity reached a height 0.5-3 cm greater in 7 subjects, 1 cm smaller in one subject, and about the same height reached during the normal step in 3 subjects. This was consistent with the various motor deficits caused by hip arthritis.
Chen, Albert; Yao, Jun; Kuiken, Todd; Dewald, Julius P A
2013-01-01
Previous studies have postulated that the amount of brain reorganization following peripheral injuries may be correlated with negative symptoms or consequences. However, it is unknown whether restoring effective limb function may then be associated with further changes in the expression of this reorganization. Recently, targeted reinnervation (TR), a surgical technique that restores a direct neural connection from amputated sensorimotor nerves to new peripheral targets such as muscle, has been successfully applied to upper-limb amputees. It has been shown to be effective in restoring both peripheral motor and sensory functions via the reinnervated nerves as soon as a few months after the surgery. However, it was unclear whether TR could also restore normal cortical motor representations for control of the missing limb. To answer this question, we used high-density electroencephalography (EEG) to localize cortical activity related to cued motor tasks generated by the intact and missing limb. Using a case study of 3 upper-limb amputees, 2 of whom went through pre and post-TR experiments, we present unique quantitative evidence for the re-mapping of motor representations for the missing limb closer to their original locations following TR. This provides evidence that an effective restoration of peripheral function from TR can be linked to the return of more normal cortical expression for the missing limb. Therefore, cortical mapping may be used as a potential guide for monitoring rehabilitation following peripheral injuries.
Temperature-salinity structure of the AMOC in high-resolution ocean simulations and in CMIP5 models
NASA Astrophysics Data System (ADS)
Wang, F.; Xu, X.; Chassignet, E.
2017-12-01
On average, the CMIP5 models represent the AMOC structure, water properties, Heat transport and Freshwater transport reasonably well. For temperature, CMIP5 models exhibit a colder northward upper limb and a warmer southward lower limb. the temperature contrast induces weaker heat transport than observation. For salinity, CMIP5 models exhibit saltier southward lower limb, thus contributes to weaker column freshwater transport. Models have large spread, among them, AMOC strength contributes to Heat transport but not freshwater transport. AMOC structure (the overturning depth) contributes to transport-weighted temperature not transport-weighted salinity in southward lower limb. The salinity contrast in upper and lower limb contributes to freshwater transport, but temperature contrast do not contribute to heat transport.
Cooper, Helen M.; Yang, Yang; Ylikallio, Emil; Khairullin, Rafil; Woldegebriel, Rosa; Lin, Kai-Lan; Euro, Liliya; Palin, Eino; Wolf, Alexander; Trokovic, Ras; Isohanni, Pirjo; Kaakkola, Seppo; Auranen, Mari; Lönnqvist, Tuula; Wanrooij, Sjoerd
2017-01-01
Abstract De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity. PMID:28158749
Melorheostosis of Leri: report of a case in a young African.
Adeyomoye, A A O; Awosanya, G O G; Arogundade, R A
2004-09-01
Melorheostosis of Leri is a non-familial condition of hyperostosis of the cortical bone that usually presents unilaterally in long bones of the upper and lower limbs, but may also present in vertebra, ribs, skull and jaw. The incidence of this disease is quite rare, only about 300 cases have been reported worldwide. We present a case, which may be the first documented case in sub-Saharan Africa. S.K. is a 14 year old male student who presented to the hospital with an 18 month history of persistent pain in the joints of the right upper limb and a limb length discrepancy since birth which has worsened with growth. Examination revealed generalised hypoplasia of the right upper limb with shortening of the limb and atrophy of the muscles, also hypoplasia and contracture of the thumb was observed. The radiographs of the limb showed multiple areas of dense hyperostosis and scleroderma, which showed a linear distribution along the radial half of the bones. In children presentation of melorheostosis, is more likely be as limb length discrepancy, deformity or joint contractures which may be seen before radiographic evidence of any bony changes. Improvement in imaging techniques will therefore result in early diagnosis and greater success with conservative management. Also the increased frequency of tumours necessitates long-term follow up. melorheostosis, scleroderma.
Kavanagh, Justin J; Wedderburn-Bisshop, Jacob; Keogh, Justin W L
2016-01-01
Although symptoms of Essential Tremor (ET) are typically controlled with medication, it is of interest to explore additional therapies to assist with functionality. The purpose of this study was to determine if a generalized upper limb resistance training (RT) program improves manual dexterity and reduces force tremor in older individuals with ET. Ten Essential Tremor and 9 controls were recruited into a dual group, pretest-posttest intervention study. Participants performed 6 weeks of upper-limb RT, and battery of manual dexterity and isometric force tremor assessments were performed before and after the RT to determine the benefits of the program. The six-week, high-load, RT program produced strength increases in each limb for the ET and healthy older group. These changes in strength aligned with improvements in manual dexterity and tremor-most notably for the ET group. The least affected limb and the most affected limb exhibited similar improvements in functional assessments of manual dexterity, whereas reductions in force tremor amplitude following the RT program were restricted to the most affected limb of the ET group. These findings suggest that generalized upper limb RT program has the potential to improve aspects of manual dexterity and reduce force tremor in older ET patients.
Characterization of interfacial socket pressure in transhumeral prostheses: A case series.
Schofield, Jonathon S; Schoepp, Katherine R; Williams, Heather E; Carey, Jason P; Marasco, Paul D; Hebert, Jacqueline S
2017-01-01
One of the most important factors in successful upper limb prostheses is the socket design. Sockets must be individually fabricated to arrive at a geometry that suits the user's morphology and appropriately distributes the pressures associated with prosthetic use across the residual limb. In higher levels of amputation, such as transhumeral, this challenge is amplified as prosthetic weight and the physical demands placed on the residual limb are heightened. Yet, in the upper limb, socket fabrication is largely driven by heuristic practices. An analytical understanding of the interactions between the socket and residual limb is absent in literature. This work describes techniques, adapted from lower limb prosthetic research, to empirically characterize the pressure distribution occurring between the residual limb and well-fit transhumeral prosthetic sockets. A case series analyzing the result of four participants with transhumeral amputation is presented. A Tekscan VersaTek pressure measurement system and FaroArm Edge coordinate measurement machine were employed to capture socket-residual limb interface pressures and geometrically register these values to the anatomy of participants. Participants performed two static poses with their prosthesis under two separate loading conditions. Surface pressure maps were constructed from the data, highlighting pressure distribution patterns, anatomical locations bearing maximum pressure, and the relative pressure magnitudes. Pressure distribution patterns demonstrated unique characteristics across the four participants that could be traced to individual socket design considerations. This work presents a technique that implements commercially available tools to quantitatively characterize upper limb socket-residual limb interactions. This is a fundamental first step toward improved socket designs developed through informed, analytically-based design tools.
Characterization of interfacial socket pressure in transhumeral prostheses: A case series
Schoepp, Katherine R.; Williams, Heather E.; Carey, Jason P.; Marasco, Paul D.
2017-01-01
One of the most important factors in successful upper limb prostheses is the socket design. Sockets must be individually fabricated to arrive at a geometry that suits the user’s morphology and appropriately distributes the pressures associated with prosthetic use across the residual limb. In higher levels of amputation, such as transhumeral, this challenge is amplified as prosthetic weight and the physical demands placed on the residual limb are heightened. Yet, in the upper limb, socket fabrication is largely driven by heuristic practices. An analytical understanding of the interactions between the socket and residual limb is absent in literature. This work describes techniques, adapted from lower limb prosthetic research, to empirically characterize the pressure distribution occurring between the residual limb and well-fit transhumeral prosthetic sockets. A case series analyzing the result of four participants with transhumeral amputation is presented. A Tekscan VersaTek pressure measurement system and FaroArm Edge coordinate measurement machine were employed to capture socket-residual limb interface pressures and geometrically register these values to the anatomy of participants. Participants performed two static poses with their prosthesis under two separate loading conditions. Surface pressure maps were constructed from the data, highlighting pressure distribution patterns, anatomical locations bearing maximum pressure, and the relative pressure magnitudes. Pressure distribution patterns demonstrated unique characteristics across the four participants that could be traced to individual socket design considerations. This work presents a technique that implements commercially available tools to quantitatively characterize upper limb socket-residual limb interactions. This is a fundamental first step toward improved socket designs developed through informed, analytically-based design tools. PMID:28575012
Gastrointestinal and urinary complaints in adults with hereditary spastic paraparesis.
Kanavin, Øivind J; Fjermestad, Krister W
2018-04-16
Hereditary spastic paraparesis (HSP) is a group of rare genetic disorders affecting the central nervous system. Pure HSP is limited to lower limb spasticity and urinary voiding dysfunction. Complex HSP involves additional neurological features. Beyond the described core symptoms, knowledge about the burden of disease for adults with HSP is limited, particularly regarding gastrointestinal functions, fecal incontinence, and urinary symptoms. We conducted a cross-sectional self-report survey with 108 adult HSP patients (M age = 57.7 years, SD = 11.5, range 30 to 81; 54.2% females) recruited from a national HSP user group association and a national (non-clinical) advisory unit for rare disorders. HSP data was compared to data from a Norwegian population study, HUNT-3 (N = 46,293). The HSP group reported more gastrointestinal and urinary complaints compared to controls. Gastrointestinal complaints included at least "much" complaints with constipation (14.6%) and alternating constipation/diarrhea (8.0%), and at least daily uncontrollable flatulence (47.6%), fecal incontinence (11.6%), and inability to hold back stools (38.5%). Urinary complaints included frequent urination (27.4% > 8 times daily), sudden urge (51.9%) and urinary incontinence (30.5% at least daily/nightly). This survey of adults with HSP recruited from non-clinical settings showed constipation, alternate constipation and diarrhea, fecal incontinence, and voiding dysfunction represent considerable problems for many persons with HSP. Health care providers should screen and manage often unrecognized gastrointestinal and fecal incontinence complaints among HSP patients.
Lack of Spartin Protein in Troyer Syndrome
Bakowska, Joanna C.; Wang, Heng; Xin, Baozhong; Sumner, Charlotte J.; Blackstone, Craig
2017-01-01
Background Hereditary spastic paraplegias (SPG1-SPG33) are characterized by progressive spastic weakness of the lower limbs. A nucleotide deletion (1110delA) in the (SPG20; OMIM 275900) spartin gene is the origin of autosomal recessive Troyer syndrome. This mutation is predicted to cause premature termination of the spartin protein. However, it remains unknown whether this truncated spartin protein is absent or is present and partially functional in patients. Objective To determine whether the truncated spartin protein is present or absent in cells derived from patients with Troyer syndrome. Design Case report. Setting Academic research. Patients We describe a new family with Troyer syndrome due to the 1110delA mutation. Main Outcome Measures We cultured primary fibroblasts and generated lymphoblasts from affected individuals, carriers, and control subjects and subjected these cells to immunoblot analyses. Results Spartin protein is undetectable in several cell lines derived from patients with Troyer syndrome. Conclusions Our data suggest that Troyer syndrome results from complete loss of spartin protein rather than from the predicted partly functional fragment. This may reflect increased protein degradation or impaired translation. PMID:18413476
Anatomic motor point localization for partial quadriceps block in spasticity.
Albert, T; Yelnik, A; Colle, F; Bonan, I; Lassau, J P
2000-03-01
To identify the location of the vastus intermedius nerve and its motor point (point M) and to precisely identify its coordinates in relation to anatomic surface landmarks. Descriptive study. Anatomy institute of a university school of medicine. Twenty-nine adult cadaver limbs immobilized in anatomic position. Anatomic dissection to identify point M. Anatomic surface landmarks were point F, the issuing point of femoral nerve under the inguinal ligament; point R, the middle of superior edge of the patella; segment FR, which corresponds to thigh length; point M', point M orthogonal projection on segment FR. Absolute vertical coordinate, distance FM, relative vertical coordinate compared to the thigh length, FM'/FR ratio; absolute horizontal coordinate, distance MM'. The absolute vertical coordinate was 11.7+/-2 cm. The relative vertical coordinate was at .29+/-.04 of thigh length. The horizontal coordinate was at 2+/-.5 cm lateral to the FR line. Point M can be defined with relative precision by two coordinates. Application and clinical interest of nerve blocking using these coordinates in quadriceps spasticity should be studied.
Wang, Cheng; Chen, Shijiu; Wang, Zengtao
2014-09-01
The aim of this study is to characterize and dynamically monitor the progress of peripheral neuropathy induced by n-hexane by electromyography and nerve conduction velocity (NCV-EMG). Twenty-five patients with n-hexane poisoning from an electronic company were investigated in the year 2009. The occupational history of these workers was collected, and toxic substance exposure was identified. Neurologic inspection and regular NCV-EMG inspection were performed for all patients upon hospital admission and after 3, 6, and 12 months of treatment. NCV-EMG results shown that patients with n-hexane poisoning have simultaneous damage on motor and sensory nerves, of which sensory nerve damage was more severe. Motor nerves of the lower limbs were severe damaged than those of the upper limbs; whereas injury of sensory nerve in the upper limbs was more severe than that of the lower limbs. After treatment, clinical signs and symptoms of the patients were significantly improved. NCV-EMG result showed a delayed worsening at 3 months then gradually recovered after 12 months. Recovery of the motor nerve was better compared with sensory nerve, with upper limbs faster than that of the lower limbs.
Bimanual Force Coordination in Children with Spastic Unilateral Cerebral Palsy
ERIC Educational Resources Information Center
Smits-Engelsman, B. C. M.; Klingels, K.; Feys, H.
2011-01-01
In this study bimanual grip-force coordination was quantified using a novel "Gripper" system that records grip forces produced while holding a lower and upper unit, in combination with the lift force necessary to separate these units. Children with unilateral cerebral palsy (CP) (aged 5-14 years, n = 12) were compared to age matched typically…
Panzone, I; Carra, G; Melosi, A; Rappazzo, G; Innocenti, A
1996-01-01
In order to assess the prevalence of work-related musculo-skeletal disorders of the upper limbs, a total population of 29 female workers in an industrial vegetable preserving plant were examined. The average age of the workers was 41.3 years (SD = 9.2), and their average length of service was 16.7 years (SD = 7.2). Only 20% of the workers were anamnestically negative, whilst 80% had one or more disorders attributable to repetitive trauma of the upper limbs. The disorders showed no prevalence for the right side, a finding in line with the risk analysis which indicated that both limbs were equally used. The results of the risk analysis and clinical assessment confirm that high-frequency actions, combined with improper posture and a shortage of suitable recovery times, play a causal role in determining the onset of the disorders studied.
Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.
Riani, Akram; Madani, Tarek; Hadri, Abdelhafid El; Benallegue, Abdelaziz
2017-07-01
This paper presents an adaptive control strategy for an upper-limb exoskeleton based on an on-line dynamic parameter estimator. The objective is to improve the control performance of this system that plays a critical role in assisting patients for shoulder, elbow and wrist joint movements. In general, the dynamic parameters of the human limb are unknown and differ from a person to another, which degrade the performances of the exoskeleton-human control system. For this reason, the proposed control scheme contains a supplementary loop based on a new efficient on-line estimator of the dynamic parameters. Indeed, the latter is acting upon the parameter adaptation of the controller to ensure the performances of the system in the presence of parameter uncertainties and perturbations. The exoskeleton used in this work is presented and a physical model of the exoskeleton interacting with a 7 Degree of Freedom (DoF) upper limb model is generated using the SimMechanics library of MatLab/Simulink. To illustrate the effectiveness of the proposed approach, an example of passive rehabilitation movements is performed using multi-body dynamic simulation. The aims is to maneuver the exoskeleton that drive the upper limb to track desired trajectories in the case of the passive arm movements.
Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver
Infantolino, Benjamin
2016-01-01
Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age. PMID:28033339
Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver.
Ruggiero, Marissa; Cless, Daniel; Infantolino, Benjamin
2016-01-01
Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age.
ERIC Educational Resources Information Center
Cowart, Jim
1979-01-01
The booklet discusses sports adaptations for unilateral and bilateral upper limb amputees. Designs for adapted equipment are illustrated and information on adaptations are described for archery (including an archery release aid and a stationary bow holder); badminton (serving tray); baseball/softball (adaptations for catching, throwing, and…
ERIC Educational Resources Information Center
Jaspers, Ellen; Desloovere, Kaat; Bruyninckx, Herman; Klingels, Katrijn; Molenaers, Guy; Aertbelien, Erwin; Van Gestel, Leen; Feys, Hilde
2011-01-01
The aim of this study was to measure which three-dimensional spatiotemporal and kinematic parameters differentiate upper limb movement characteristics in children with hemiplegic cerebral palsy (HCP) from those in typically developing children (TDC), during various clinically relevant tasks. We used a standardized protocol containing three reach…
[Restoration of function by microsurgical reconstruction after sarcoma excision in the upper limb].
Voigtländer, D; Schmidt, A
2006-08-01
The treatment of soft tissue sarcomas includes different modalities, but the complete excision of the tumor is the most important one. It is often difficult to resect the tumor completely and simultaneously restore a good function of the upper limb. Therefore a microsurgical reconstruction is often necessary as demonstrated here.
[Characteristics of pain syndrome in patients with upper limbs occupational polyneuropathies].
Kochetova, O A; Mal'kova, N Yu
2015-01-01
Pain syndrome accompanies various diseases of central and peripheral nervous system--that is one of the most important problems in contemporary neurology. Many scientists are in search for effective diagnostic and therapeutic tools. The article covers characteristics of the pain syndrome and its mechanisms in patients with upper limbs occupational polyneuropathies.
Short-Term Upper Limb Immobilization Affects Action-Word Understanding
ERIC Educational Resources Information Center
Bidet-Ildei, Christel; Meugnot, Aurore; Beauprez, Sophie-Anne; Gimenes, Manuel; Toussaint, Lucette
2017-01-01
The present study aimed to investigate whether well-established associations between action and language can be altered by short-term upper limb immobilization. The dominant arm of right-handed participants was immobilized for 24 hours with a rigid splint fixed on the hand and an immobilization vest restraining the shoulder, arm, and forearm. The…
[Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
Wang, Lulu; Hu, Xin; Hu, Jie; Fang, Youfang; He, Rongrong; Yu, Hongliu
2016-12-01
In order to help the patients with upper-limb disfunction go on rehabilitation training,this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom(DOF),and realized two control schemes,i.e.,voice control and electromyography control.The hardware and software design of the voice control system was completed based on RSC-4128 chips,which realized the speech recognition technology of a specific person.Besides,this study adapted self-made surface eletromyogram(sEMG)signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing,extracting time domain features and fixed threshold algorithm.In addition,the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system.Voice control and electromyography control experiments were then carried out,and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1%and 90.9%,respectively.The results proved the feasibility of the control system.This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.
Hale, Leigh A; Satherley, Jessica A; McMillan, Nicole J; Milosavljevic, Stephan; Hijmans, Juha M; King, Marcus J
2012-01-01
This article reports on the perceptions of 14 adults with chronic stroke who participated in a pilot study to determine the utility, acceptability, and potential efficacy of using an adapted CyWee Z handheld game controller to play a variety of computer games aimed at improving upper-limb function. Four qualitative in-depth interviews and two focus groups explored participant perceptions. Data were thematically analyzed with the general inductive approach. Participants enjoyed playing the computer games with the technology. The perceived benefits included improved upper-limb function, concentration, and balance; however, six participants reported shoulder and/or arm pain or discomfort, which presented while they were engaged in play but appeared to ease during rest. Participants suggested changes to the games and provided opinions on the use of computer games in rehabilitation. Using an adapted CyWee Z controller and computer games in upper-limb rehabilitation for people with chronic stroke is an acceptable and potentially beneficial adjunct to rehabilitation. The development of shoulder pain was a negative side effect for some participants and requires further investigation.
Timed activity performance in persons with upper limb amputation: A preliminary study.
Resnik, Linda; Borgia, Mathew; Acluche, Frantzy
55 subjects with upper limb amputation were administered the T-MAP twice within one week. To develop a timed measure of activity performance for persons with upper limb amputation (T-MAP); examine the measure's internal consistency, test-retest reliability and validity; and compare scores by prosthesis use. Measures of activity performance for persons with upper limb amputation are needed The time required to perform daily activities is a meaningful metric that implication for participation in life roles. Internal consistency and test-retest reliability were evaluated. Construct validity was examined by comparing scores by amputation level. Exploratory analyses compared sub-group scores, and examined correlations with other measures. Scale alpha was 0.77, ICC was 0.93. Timed scores differed by amputation level. Subjects using a prosthesis took longer to perform all tasks. T-MAP was not correlated with other measures of dexterity or activity, but was correlated with pain for non-prosthesis users. The timed scale had adequate internal consistency and excellent test-retest reliability. Analyses support reliability and construct validity of the T-MAP. 2c "outcomes" research. Published by Elsevier Inc.
Masiero, Stefano; Armani, Mario; Rosati, Giulio
2011-01-01
The successful motor rehabilitation of stroke patients requires early intensive and task-specific therapy. A recent Cochrane Review, although based on a limited number of randomized controlled trials (RCTs), showed that early robotic training of the upper limb (i.e., during acute or subacute phase) can enhance motor learning and improve functional abilities more than chronic-phase training. In this article, a new subacute-phase RCT with the Neuro-Rehabilitation-roBot (NeReBot) is presented. While in our first study we used the NeReBot in addition to conventional therapy, in this new trial we used the same device in substitution of standard proximal upper-limb rehabilitation. With this protocol, robot patients achieved similar reductions in motor impairment and enhancements in paretic upper-limb function to those gained by patients in a control group. By analyzing these results and those of previous studies, we hypothesize a new robotic protocol for acute and subacute stroke patients based on both treatment modalities (in addition and in substitution).
Grosmaire, Anne-Gaëlle; Duret, Christophe
2017-01-01
Repetitive, active movement-based training promotes brain plasticity and motor recovery after stroke. Robotic therapy provides highly repetitive therapy that reduces motor impairment. However, the effect of assist-as-needed algorithms on patient participation and movement quality is not known. To analyze patient participation and motor performance during highly repetitive assist-as-needed upper limb robotic therapy in a retrospective study. Sixteen patients with sub-acute stroke carried out a 16-session upper limb robotic training program combined with usual care. The Fugl-Meyer Assessment (FMA) score was evaluated pre and post training. Robotic assistance parameters and Performance measures were compared within and across sessions. Robotic assistance did not change within-session and decreased between sessions during the training program. Motor performance did not decrease within-session and improved between sessions. Velocity-related assistance parameters improved more quickly than accuracy-related parameters. An assist-as-needed-based upper limb robotic training provided intense and repetitive rehabilitation and promoted patient participation and motor performance, facilitating motor recovery.
Zielinski, Ingar Marie; Steenbergen, Bert; Baas, C Marjolein; Aarts, Pauline; Jongsma, Marijtje L A
2016-01-11
Unilateral Cerebral Palsy (CP) is a neurodevelopmental disorder that is a very common cause of disability in childhood. It is characterized by unilateral motor impairments that are frequently dominated in the upper limb. In addition to a reduced movement capacity of the affected upper limb, several children with unilateral CP show a reduced awareness of the remaining movement capacity of that limb. This phenomenon of disregarding the preserved capacity of the affected upper limb is regularly referred to as Developmental Disregard (DD). Different theories have been postulated to explain DD, each suggesting slightly different guidelines for therapy. Still, cognitive processes that might additionally contribute to DD in children with unilateral CP have never been directly studied. The current protocol was developed to study cognitive aspects involved in upper limb control in children with unilateral CP with and without DD. This was done by recording event-related potentials (ERPs) extracted from the ongoing EEG during target-response tasks asking for a hand-movement response. ERPs consist of several components, each of them associated with a well-defined cognitive process (e.g., the N1 with early attention processes, the N2 with cognitive control and the P3 with cognitive load and mental effort). Due to its excellent temporal resolution, the ERP technique enables to study several covert cognitive processes preceding overt motor responses and thus allows insight into the cognitive processes that might contribute to the phenomenon of DD. Using this protocol adds a new level of explanation to existing behavioral studies and opens new avenues to the broader implementation of research on cognitive aspects of developmental movement restrictions in children.
Carmo, A.A.; Kleiner, A.F.R.; Lobo da Costa, P.H.; Barros, R.M.L.
2012-01-01
The aim of this study was to analyze the alterations of arm and leg movements of patients during stroke gait. Joint angles of upper and lower limbs and spatiotemporal variables were evaluated in two groups: hemiparetic group (HG, 14 hemiparetic men, 53 ± 10 years) and control group (CG, 7 able-bodied men, 50 ± 4 years). The statistical analysis was based on the following comparisons (P ≤ 0.05): 1) right versus left sides of CG; 2) affected (AF) versus unaffected (UF) sides of HG; 3) CG versus both the affected and unaffected sides of HG, and 4) an intracycle comparison of the kinematic continuous angular variables between HG and CG. This study showed that the affected upper limb motion in stroke gait was characterized by a decreased range of motion of the glenohumeral (HG: 6.3 ± 4.5, CG: 20.1 ± 8.2) and elbow joints (AF: 8.4 ± 4.4, UF: 15.6 ± 7.6) on the sagittal plane and elbow joint flexion throughout the cycle (AF: 68.2 ± 0.4, CG: 46.8 ± 2.7). The glenohumeral joint presented a higher abduction angle (AF: 14.2 ± 1.6, CG: 11.5 ± 4.0) and a lower external rotation throughout the cycle (AF: 4.6 ± 1.2, CG: 22.0 ± 3.0). The lower limbs showed typical alterations of the stroke gait patterns. Thus, the changes in upper and lower limb motion of stroke gait were identified. The description of upper limb motion in stroke gait is new and complements gait analysis. PMID:22473324
Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna
2017-08-01
One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro
2016-01-01
Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.
Creatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis.
Lanhers, Charlotte; Pereira, Bruno; Naughton, Geraldine; Trousselard, Marion; Lesage, François-Xavier; Dutheil, Frédéric
2017-01-01
Creatine is the most widely used supplementation to increase performance in strength; however, the most recent meta-analysis focused specifically on supplementation responses in muscles of the lower limbs without regard to upper limbs. We aimed to systematically review the effect of creatine supplementation on upper limb strength performance. We conducted a systematic review and meta-analyses of all randomized controlled trials comparing creatine supplementation with a placebo, with strength performance measured in exercises shorter than 3 min in duration. The search strategy used the keywords 'creatine', 'supplementation', and 'performance'. Independent variables were age, sex and level of physical activity at baseline, while dependent variables were creatine loading, total dose, duration, time interval between baseline (T0) and the end of the supplementation (T1), and any training during supplementation. We conducted three meta-analyses: at T0 and T1, and on changes between T0 and T1. Each meta-analysis was stratified within upper limb muscle groups. We included 53 studies (563 individuals in the creatine supplementation group and 575 controls). Results did not differ at T0, while, at T1, the effect size (ES) for bench press and chest press were 0.265 (95 % CI 0.132-0.398; p < 0.001) and 0.677 (95 % CI 0.149-1.206; p = 0.012), respectively. Overall, pectoral ES was 0.289 (95 % CI 0.160-0.419; p = 0.000), and global upper limb ES was 0.317 (95 % CI 0.185-0.449; p < 0.001). Meta-analysis of changes between T0 and T1 gave similar results. The meta-regression showed no link with characteristics of population or supplementation, demonstrating the efficacy of creatine independently of all listed conditions. Creatine supplementation is effective in upper limb strength performance for exercise with a duration of less than 3 min, independent of population characteristics, training protocols, and supplementary doses or duration.
The 6 minute walk test and performance of upper limb in ambulant duchenne muscular dystrophy boys.
Pane, Marika; Mazzone, Elena Stacy; Sivo, Serena; Fanelli, Lavinia; De Sanctis, Roberto; D'Amico, Adele; Messina, Sonia; Battini, Roberta; Bianco, Flaviana; Scutifero, Marianna; Petillo, Roberta; Frosini, Silvia; Scalise, Roberta; Vita, Gian Luca; Bruno, Claudio; Pedemonte, Marina; Mongini, Tiziana; Pegoraro, Elena; Brustia, Francesca; Gardani, Alice; Berardinelli, Angela; Lanzillotta, Valentina; Viggiano, Emanuela; Cavallaro, Filippo; Sframeli, Maria; Bello, Luca; Barp, Andrea; Busato, Fabio; Bonfiglio, Serena; Rolle, Enrica; Colia, Giulia; Bonetti, Annamaria; Palermo, Concetta; Graziano, Alessandra; D'Angelo, Grazia; Pini, Antonella; Corlatti, Alice; Gorni, Ksenija; Baranello, Giovanni; Antonaci, Laura; Bertini, Enrico; Politano, Luisa; Mercuri, Eugenio
2014-10-07
The Performance of Upper Limb (PUL) test was specifically developed for the assessment of upper limbs in Duchenne muscular dystrophy (DMD). The first published data have shown that early signs of involvement can also be found in ambulant DMD boys. The aim of this longitudinal Italian multicentric study was to evaluate the correlation between the 6 Minute Walk Test (6MWT) and the PUL in ambulant DMD boys. Both 6MWT and PUL were administered to 164 ambulant DMD boys of age between 5.0 and 16.17 years (mean 8.82). The 6 minute walk distance (6MWD) ranged between 118 and 557 (mean: 376.38, SD: 90.59). The PUL total scores ranged between 52 and 74 (mean: 70.74, SD: 4.66). The correlation between the two measures was 0.499. The scores on the PUL largely reflect the overall impairment observed on the 6MWT but the correlation was not linear. The use of the PUL appeared to be less relevant in the very strong patients with 6MWD above 400 meters, who, with few exceptions had near full scores. In patients with lower 6MWD the severity of upper limb involvement was more variable and could not always be predicted by the 6MWD value or by the use of steroids. Our results confirm that upper limb involvement can already be found in DMD boys even in the ambulant phase.
Gravity-supported exercise with computer gaming improves arm function in chronic stroke.
Jordan, Kimberlee; Sampson, Michael; King, Marcus
2014-08-01
To investigate the effect of 4 to 6 weeks of exergaming with a computer mouse embedded within an arm skate on upper limb function in survivors of chronic stroke. Intervention study with a 4-week postintervention follow-up. In home. Survivors (N=13) of chronic (≥6 mo) stroke with hemiparesis of the upper limb with stable baseline Fugl-Meyer assessment scores received the intervention. One participant withdrew, and 2 participants were not reassessed at the 4-week follow-up. No participants withdrew as a result of adverse effects. Four to 6 weeks of exergaming using the arm skate where participants received either 9 (n=5) or 16 (n=7) hours of game play. Upper limb component of the Fugl-Meyer assessment. There was an average increase in the Fugl-Meyer upper limb assessment score from the beginning to end of the intervention of 4.9 points. At the end of the 4-week period after the intervention, the increase was 4.4 points. A 4- to 6-week intervention using the arm skate significantly improved arm function in survivors of chronic stroke by an average of 4.9 Fugl-Meyer upper limb assessment points. This research shows that a larger-scale randomized trial of this device is warranted and highlights the potential value of using virtual reality technology (eg, computer games) in a rehabilitation setting. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Artilheiro, Mariana Cunha; Fávero, Francis Meire; Caromano, Fátima Aparecida; Oliveira, Acary de Souza Bulle; Carvas, Nelson; Voos, Mariana Callil; Sá, Cristina Dos Santos Cardoso de
2017-12-08
The Jebsen-Taylor Test evaluates upper limb function by measuring timed performance on everyday activities. The test is used to assess and monitor the progression of patients with Parkinson disease, cerebral palsy, stroke and brain injury. To analyze the reliability, internal consistency and validity of the Jebsen-Taylor Test in people with Muscular Dystrophy and to describe and classify upper limb timed performance of people with Muscular Dystrophy. Fifty patients with Muscular Dystrophy were assessed. Non-dominant and dominant upper limb performances on the Jebsen-Taylor Test were filmed. Two raters evaluated timed performance for inter-rater reliability analysis. Test-retest reliability was investigated by using intraclass correlation coefficients. Internal consistency was assessed using the Cronbach alpha. Construct validity was conducted by comparing the Jebsen-Taylor Test with the Performance of Upper Limb. The internal consistency of Jebsen-Taylor Test was good (Cronbach's α=0.98). A very high inter-rater reliability (0.903-0.999), except for writing with an Intraclass correlation coefficient of 0.772-1.000. Strong correlations between the Jebsen-Taylor Test and the Performance of Upper Limb Module were found (rho=-0.712). The Jebsen-Taylor Test is a reliable and valid measure of timed performance for people with Muscular Dystrophy. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Runnalls, Keith D.; Anson, Greg; Wolf, Steven L.; Byblow, Winston D.
2014-01-01
Abstract Partial weight support may hold promise as a therapeutic adjuvant during rehabilitation after stroke by providing a permissive environment for reducing the expression of abnormal muscle synergies that cause upper limb impairment. We explored the neurophysiological effects of upper limb weight support in 13 healthy young adults by measuring motor‐evoked potentials (MEPs) from transcranial magnetic stimulation (TMS) of primary motor cortex and electromyography from anterior deltoid (AD), biceps brachii (BB), extensor carpi radialis (ECR), and first dorsal interosseous (FDI). Five levels of weight support, varying from none to full, were provided to the arm using a commercial device (Saebo Mobile Arm Support). For each level of support, stimulus–response (SR) curves were derived from MEPs across a range of TMS intensities. Weight support affected background EMG activity in each of the four muscles examined (P <0.0001 for each muscle). Tonic background activity was primarily reduced in the AD. Weight support had a differential effect on the size of MEPs across muscles. After curve fitting, the SR plateau for ECR increased at the lowest support level (P =0.004). For FDI, the SR plateau increased at the highest support level (P =0.0003). These results indicate that weight support of the proximal upper limb modulates corticomotor excitability across the forearm and hand. The findings support a model of integrated control of the upper limb and may inform the use of weight support in clinical settings. PMID:25501435
3D-printed upper limb prostheses: a review.
Ten Kate, Jelle; Smit, Gerwin; Breedveld, Paul
2017-04-01
This paper aims to provide an overview with quantitative information of existing 3D-printed upper limb prostheses. We will identify the benefits and drawbacks of 3D-printed devices to enable improvement of current devices based on the demands of prostheses users. A review was performed using Scopus, Web of Science and websites related to 3D-printing. Quantitative information on the mechanical and kinematic specifications and 3D-printing technology used was extracted from the papers and websites. The overview (58 devices) provides the general specifications, the mechanical and kinematic specifications of the devices and information regarding the 3D-printing technology used for hands. The overview shows prostheses for all different upper limb amputation levels with different types of control and a maximum material cost of $500. A large range of various prostheses have been 3D-printed, of which the majority are used by children. Evidence with respect to the user acceptance, functionality and durability of the 3D-printed hands is lacking. Contrary to what is often claimed, 3D-printing is not necessarily cheap, e.g., injection moulding can be cheaper. Conversely, 3D-printing provides a promising possibility for individualization, e.g., personalized socket, colour, shape and size, without the need for adjusting the production machine. Implications for rehabilitation Upper limb deficiency is a condition in which a part of the upper limb is missing as a result of a congenital limb deficiency of as a result of an amputation. A prosthetic hand can restore some of the functions of a missing limb and help the user in performing activities of daily living. Using 3D-printing technology is one of the solutions to manufacture hand prostheses. This overview provides information about the general, mechanical and kinematic specifications of all the devices and it provides the information about the 3D-printing technology used to print the hands.
Murray, R S; Keeling, J W; Ellis, P M; FitzPatrick, D R
2002-04-01
We report a female fetus of 20 weeks gestation with severe symmetrical deformity affecting all four limbs. These deformities were unusual in that there was upper limb peromelia and lower limb phocomelia. No additional major malformations were identified on postmortem examination. In particular there was no evidence of splenogonadal fusion or micrognathia and hypoglossia. The limb malformations in this case are associated with a de novo apparently balanced reciprocal translocation 46,XX,t(2;12)(p25.1;q24.1). The cytogenetic features of Roberts-SC phocomelia syndrome were not detected. Unfortunately, the fibroblast line died and no FISH or DNA analysis could be carried out. In spite of this, the case is presented as it may be useful to other researchers in the selection of candidate genes for mendelian forms of peromelia and phocomelia.
Weedon, Benjamin David; Liu, Francesca; Mahmoud, Wala; Metz, Renske; Beunder, Kyle; Delextrat, Anne; Morris, Martyn G; Esser, Patrick; Collett, Johnny; Meaney, Andy; Howells, Ken; Dawes, Helen
2018-01-01
Motor competence (MC) is an important factor in the development of health and fitness in adolescence. This cross-sectional study aims to explore the distribution of MC across school students aged 13-14 years old and the extent of the relationship of MC to measures of health and fitness across genders. A total of 718 participants were tested from three different schools in the UK, 311 girls and 407 boys (aged 13-14 years), pairwise deletion for correlation variables reduced this to 555 (245 girls, 310 boys). Assessments consisted of body mass index, aerobic capacity, anaerobic power, and upper limb and lower limb MC. The distribution of MC and the strength of the relationships between MC and health/fitness measures were explored. Girls performed lower for MC and health/fitness measures compared with boys. Both measures of MC showed a normal distribution and a significant linear relationship of MC to all health and fitness measures for boys, girls and combined genders. A stronger relationship was reported for upper limb MC and aerobic capacity when compared with lower limb MC and aerobic capacity in boys (t=-2.21, degrees of freedom=307, P=0.03, 95% CI -0.253 to -0.011). Normally distributed measures of upper and lower limb MC are linearly related to health and fitness measures in adolescents in a UK sample. NCT02517333.
Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
Veerbeek, Janne M; Langbroek-Amersfoort, Anneli C; van Wegen, Erwin E H; Meskers, Carel G M; Kwakkel, Gert
2017-02-01
Robot technology for poststroke rehabilitation is developing rapidly. A number of new randomized controlled trials (RCTs) have investigated the effects of robot-assisted therapy for the paretic upper limb (RT-UL). To systematically review the effects of poststroke RT-UL on measures of motor control of the paretic arm, muscle strength and tone, upper limb capacity, and basic activities of daily living (ADL) in comparison with nonrobotic treatment. Relevant RCTs were identified in electronic searches. Meta-analyses were performed for measures of motor control (eg, Fugl-Meyer Assessment of the arm; FMA arm), muscle strength and tone, upper limb capacity, and basic ADL. Subgroup analyses were applied for the number of joints involved, robot type, timing poststroke, and treatment contrast. Forty-four RCTs (N = 1362) were included. No serious adverse events were reported. Meta-analyses of 38 trials (N = 1206) showed significant but small improvements in motor control (~2 points FMA arm) and muscle strength of the paretic arm and a negative effect on muscle tone. No effects were found for upper limb capacity and basic ADL. Shoulder/elbow robotics showed small but significant effects on motor control and muscle strength, while elbow/wrist robotics had small but significant effects on motor control. RT-UL allows patients to increase the number of repetitions and hence intensity of practice poststroke, and appears to be a safe therapy. Effects on motor control are small and specific to the joints targeted by RT-UL, whereas no generalization is found to improvements in upper limb capacity. The impact of RT-UL started in the first weeks poststroke remains unclear. These limited findings could mainly be related to poor understanding of robot-induced motor learning as well as inadequate designing of RT-UL trials, by not applying an appropriate selection of stroke patients with a potential to recovery at baseline as well as the lack of fixed timing of baseline assessments and using an insufficient treatment contrast early poststroke.
Robotic exoskeleton assessment of transient ischemic attack.
Simmatis, Leif; Krett, Jonathan; Scott, Stephen H; Jin, Albert Y
2017-01-01
We used a robotic exoskeleton to quantify specific patterns of abnormal upper limb motor behaviour in people who have had transient ischemic attack (TIA). A cohort of people with TIA was recruited within two weeks of symptom onset. All individuals completed a robotic-based assessment of 8 behavioural tasks related to upper limb motor and proprioceptive function, as well as cognitive function. Robotic task performance was compared to a large cohort of controls without neurological impairments corrected for the influence of age. Impairment in people with TIA was defined as performance below the 5th percentile of controls. Participants with TIA were also assessed with the National Institutes of Health Stroke Scale (NIHSS) score, Chedoke-McMaster Stroke Assessment (CMSA) of the arm, the Behavioural Inattention Test (BIT), the Purdue pegboard test (PPB), and the Montreal Cognitive Assessment (MoCA). Age-related white matter change (ARWMC), prior infarction and cella-media index (CMI) were assessed from baseline CT scan that was performed within 24 hours of TIA. Acute infarction was assessed from diffusion-weighted imaging in a subset of people with TIA. Twenty-two people with TIA were assessed. Robotic assessment showed impaired upper limb motor function in 7/22 people with TIA patients and upper limb sensory impairment in 4/22 individuals. Cognitive tasks involving robotic assessment of the upper limb were completed in 13 participants, of whom 8 (61.5%) showed significant impairment. Abnormal performance in the CMSA arm inventory was present in 12/22 (54.5%) participants. ARWMC was 11.8 ± 6.4 and CMI was 5.4 ± 1.5. DWI was positive in 0 participants. Quantitative robotic assessment showed that people who have had a TIA display a spectrum of upper limb motor and sensory performance deficits as well as cognitive function deficits despite resolution of symptoms and no evidence of tissue infarction.
Xu, Ying; Lin, Shufang; Jiang, Cai; Ye, Xiaoqian; Tao, Jing; Wilfried, Schupp; Wong, Alex W K; Chen, Lidian; Yang, Shanli
2018-05-31
Upper limb dysfunction is common after stroke, posing an important challenge for post-stroke rehabilitation. The clinical efficacy of acupuncture for the recovery of post-stroke upper limb function has been previously demonstrated. Mirror therapy (MT) has also been found to be effective. However, the effects of acupuncture and MT have not been systematically compared. This trial aims to elucidate the synergistic effects of acupuncture and MT on upper limb dysfunction after stroke. A 2 × 2 factorial randomized controlled trial will be conducted at the rehabilitation hospitals affiliated with Fujian University of Traditional Chinese Medicine. A total of 136 eligible subjects will be randomly divided into acupuncture treatment (AT), MT, combined treatment, and control groups in a 1:1:1:1 ratio. All subjects will receive conventional treatment. The interventions will be performed 5 days per week for 4 weeks. AT, MT, and combined treatment will be performed for 30 min per day (combined treatment: AT 15 min + MT 15 min). The primary outcomes in this study will be the mean change in scores on both the FMA and WMFT from baseline to 4 weeks intervention and at 12 weeks follow-up between the two groups and within groups. The secondary outcomes are the mean change in the scores on the Visual Analogue Scale, Stroke Impact Scale, and modified Barthel index. Medical abstraction of adverse events will be assessed at each visit. The results of this trial will demonstrate the synergistic effect of acupuncture and MT on upper limb motor dysfunction after stroke. In addition, whether AT and MT, either combined or alone, are more effective than the conventional treatment in the management of post-stroke upper limb dysfunction will also be determined. Chinese Clinical Trial Registry: ChiCTR-IOR-17011118 . Registered on April 11, 2017. Version number: 01.2016.09.1.
Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation
Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.
2014-01-01
New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698
Tsay, Anthony J; Giummarra, Melita J
2016-07-01
Awareness of limb position is derived primarily from muscle spindles and higher-order body representations. Although chronic pain appears to be associated with motor and proprioceptive disturbances, it is not clear if this is due to disturbances in position sense, muscle spindle function, or central representations of the body. This study examined position sense errors, as an indicator of spindle function, in participants with unilateral chronic limb pain. The sample included 15 individuals with upper limb pain, 15 with lower limb pain, and 15 sex- and age-matched pain-free control participants. A 2-limb forearm matching task in blindfolded participants, and a single-limb pointer task, with the reference limb hidden from view, was used to assess forearm position sense. Position sense was determined after muscle contraction or stretch, intended to induce a high or low spindle activity in the painful and nonpainful limbs, respectively. Unilateral upper and lower limb chronic pain groups produced position errors comparable with healthy control participants for position matching and pointer tasks. The results indicate that the painful and nonpainful limb are involved in limb-matching. Lateralized pain, whether in the arm or leg, does not influence forearm position sense. Painful and nonpainful limbs are involved in bilateral limb-matching. Muscle spindle function appears to be preserved in the presence of chronic pain. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels
NASA Astrophysics Data System (ADS)
Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari
2010-10-01
A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.
Hereditary motor and sensory neuropathy-russe: new autosomal recessive neuropathy in Balkan Gypsies.
Thomas, P K; Kalaydjieva, L; Youl, B; Rogers, T; Angelicheva, D; King, R H; Guergueltcheva, V; Colomer, J; Lupu, C; Corches, A; Popa, G; Merlini, L; Shmarov, A; Muddle, J R; Nourallah, M; Tournev, I
2001-10-01
A novel peripheral neuropathy of autosomal recessive inheritance has been identified in Balkan Gypsies and termed hereditary motor and sensory neuropathy-Russe (HMSN-R). We investigated 21 affected individuals from 10 families. Distal lower limb weakness began between the ages of 8 and 16 years, upper limb involvement beginning between 10 and 43 years, with an average of 22 years. This progressive disorder led to severe weakness of the lower limbs, generalized in the oldest subject (aged 57 years), and marked distal upper limb weakness. Prominent distal sensory loss involved all modalities, resulting in neuropathic joint degeneration in two instances. All patients showed foot deformity, and most showed hand deformity. Motor nerve conduction velocity was moderately reduced in the upper limbs but unobtainable in the legs. Sensory nerve action potentials were absent. There was loss of larger myelinated nerve fibers and profuse regenerative activity in the sural nerve. HMSN-R is a new form of autosomal recessive inherited HMSN caused by a single founder mutation in a 1 Mb interval on chromosome 10q.
Do, Ji-Hye; Yoo, Eun-Young; Jung, Min-Ye; Park, Hae Yean
2016-01-01
Hemiplegic cerebral palsy is a neurological symptom appearing on the unilateral arm and leg of the body that causes affected upper/lower limb muscle weakening and dysesthesia and accompanies tetany and difficulties in postural control due to abnormal muscle tone, and difficulties in body coordination. The purpose of this study was to examine the impact of virtual reality-based bilateral arm training on the motor skills of children with hemiplegic cerebral palsy, in terms of their upper limb motor skills on the affected side, as well as their bilateral coordination ability. The research subjects were three children who were diagnosed with hemiplegic cerebral palsy. The research followed an ABA design, which was a single-subject experimental design. The procedure consisted of a total of 20 sessions, including four during the baseline period (A1), 12 during the intervention period (B), and four during the baseline regression period (A2), For the independent variable bilateral arm training based on virtual reality, Nintendo Wii game was played for 30 minutes in each of the 12 sessions. For the dependent variables of upper limb motor skills on the affected side and bilateral coordination ability, a Wolf Motor Function Test (WMFT) was carried out for each session and the Pediatric Motor Activity Log (PMAL) was measured before and after the intervention, as well as after the baseline regression period. To test bilateral coordination ability, shooting baskets in basketball with both hands and moving large light boxes were carried out under operational definitions, with the number of shots and time needed to move boxes measured. The results were presented using visual graphs and bar graphs. The study's results indicated that after virtual reality-based bilateral arm training, improvement occurred in upper limb motor skills on the affected sides, and in bilateral coordination ability, for all of the research subjects. Measurements of the effects of sustained therapy after completion of the intervention, during the baseline regression period, revealed that upper limb motor skills on the affected side and bilateral coordination ability were better than in the baseline period for all subjects. This study confirmed that for children with hemiplegic with cerebral palsy, bilateral arm training based on virtual reality can be an effective intervention method for enhancing the upper limb motor skills on the affected side, as well as bilateral coordination ability.
The functional anatomy of suggested limb paralysis.
Deeley, Quinton; Oakley, David A; Toone, Brian; Bell, Vaughan; Walsh, Eamonn; Marquand, Andre F; Giampietro, Vincent; Brammer, Michael J; Williams, Steven C R; Mehta, Mitul A; Halligan, Peter W
2013-02-01
Suggestions of limb paralysis in highly hypnotically suggestible subjects have been employed to successfully model conversion disorders, revealing similar patterns of brain activation associated with attempted movement of the affected limb. However, previous studies differ with regard to the executive regions involved during involuntary inhibition of the affected limb. This difference may have arisen as previous studies did not control for differences in hypnosis depth between conditions and/or include subjective measures to explore the experience of suggested paralysis. In the current study we employed functional magnetic resonance imaging (fMRI) to examine the functional anatomy of left and right upper limb movements in eight healthy subjects selected for high hypnotic suggestibility during (i) hypnosis (NORMAL) and (ii) attempted movement following additional left upper limb paralysis suggestions (PARALYSIS). Contrast of left upper limb motor function during NORMAL relative to PARALYSIS conditions revealed greater activation of contralateral M1/S1 and ipsilateral cerebellum, consistent with the engagement of these regions in the completion of movements. By contrast, two significant observations were noted in PARALYSIS relative to NORMAL conditions. In conjunction with reports of attempts to move the paralysed limb, greater supplementary motor area (SMA) activation was observed, a finding consistent with the role of SMA in motor intention and planning. The anterior cingulate cortex (ACC, BA 24) was also significantly more active in PARALYSIS relative to NORMAL conditions - suggesting that ACC (BA 24) may be implicated in involuntary, as well as voluntary inhibition of prepotent motor responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Research on the performance of the spastic calf muscle of young adults with cerebral palsy.
Lampe, Renee; Mitternacht, Jurgen
2011-02-12
The aim of this study was to find an objective graduation of pes equinus in infantile cerebral palsy, especially with regard to functional aspects, to allow a differentiated choice of the therapeutic options. Very often raises the question of whether a surgical lengthening of the Achilles tendon may let expect a functional improvement. For this documentation 17 patients with pes equinus and a diagnosis of spastic cerebral palsy, primarily of the lower limbs, and hemiplegia were examined first clinically and then by a procedure for calculating the functional kinetic parameters from an in-shoe plantar pressure distribution measurement (novel pedar-X system), which is used in many orthopedic practices and clinics as a standard measuring device. Using additional video motion analysis, the flexion in the ankle joint and the ankle joint torque were determined. From this the physical performance of the spastically shortened calf muscle was calculated. The course of the curves of torque and joint performance allows a functional classification of the pes equinus. Approximately three quarters of all pes equinus demonstrated functional activity of the most part of the normal push-off propulsion power. Even the rigid pes equinus was capable of performing push-off propulsion work, provided it converted energy that was absorbed during the heel-strike phase and released it again during the push-off phase. This suggests that the function of paretic ankle joint is better than its kinematics of motion. A heel strike with a pes equinus triggers via stretching stimuli in the muscle-ligament structure reflex motor functions, thereby causing the typical spastic gait pattern. This remarkable gait pattern is often evaluated as dysfunctional and as absolutely requiring correction. However, an aspect possibly neglected in this instance is the fact that this gait pattern may be efficient for the patient and may in fact be a suitable means allowing for economic locomotion despite the cerebral control deficits. Pes equinus; Cerebral palsy; Pedography; Ankle joint performance.
Lacerda, Eliana M; Nácul, Luis C; Augusto, Lia G da S; Olinto, Maria Teresa A; Rocha, Dyhanne C; Wanderley, Danielle C
2005-10-11
The repetitive strain injury syndrome (RSI) is a worldwide occupational health problem affecting all types of economic activities. We investigated the prevalence and some risk factors for RSI and related conditions, namely 'symptoms of upper limbs' and 'RSI-like condition'. We conducted a cross-sectional study with 395 bank workers in Recife, Northeast Brazil. Symptoms of upper limbs and 'RSI-like condition' were assessed by a simple questionnaire, which was used to screen probable cases of RSI. The diagnosis of RSI was confirmed by clinical examination. The associations of potential risk factors and the outcomes were assessed by multiple logistic regression analysis. We found prevalence rates of 56% for symptoms of the upper limbs and 30% for 'RSI-like condition'. The estimated prevalence of clinically confirmed cases of RSI was 22%. Female sex and occupation (as cashier or clerk) increased the risk of all conditions, but the associations were stronger for cases of RSI than for less specific diagnoses of 'RSI-like condition' and symptoms of upper limbs. Age was inversely related to the risk of symptoms of upper limbs but not to 'RSI-like' or RSI. The variation in the magnitude of risk according to the outcome assessed suggests that previous studies using different definitions may not be immediately comparable. We propose the use of a simple instrument to screen cases of RSI in population based studies, which still needs to be validated in other populations. The high prevalence of RSI and related conditions in this population suggests the need for urgent interventions to tackle the problem, which could be directed to individuals at higher risk and to changes in the work organization and environment of the general population.
Rodríguez-Romero, Beatriz; Pérez-Valiño, Coral; Ageitos-Alonso, Beatriz; Pértega-Díaz, Sonia
2016-12-01
To assess the prevalence of and factors associated with musculoskeletal pain (MSP) and neck and upper limb disability among music conservatory students. An observational study in two Spanish conservatories, investigating a total of 206 students, administered the Nordic Musculoskeletal Questionnaire, visual analog scale for pain intensity, Neck Disability Index, DASH, and SF-36. Demographic and lifestyle characteristics and musical performance variables were recorded. Regression models were performed to identify variables associated with MSP for the four most affected anatomical regions and with neck and upper limb disability. The locations with the highest prevalence of MSP were the neck, upper back, shoulders, and lower back. Mild disability affected 47% of participants in the neck and 31% in the upper limbs. Mental health (SF-36) was below the average for the general population (45.5±10.2). Women were more likely to suffer neck pain (odds ratio [OR] 1.1-5.2), lower back pain (OR 1.7-8.7), and neck disability (B 0.6-7.8). The risk for shoulder pain was higher in those who played for more hours (OR 1.7-24.7) and lower among those who performed physical activity (OR 0.23-1.00). Disability in the neck (B -0.3) and upper limbs (B -0.4) was associated with poorer mental health (SF-36). MSP is highly prevalent in music students. Neck and upper limb disability were slight to moderate and both were associated with poorer mental health. The main factors associated with MSP were being female, hours spent practicing, and physical activity. Physical and psychological factors should be taken into account in the prevention of MSP in student-musicians.
Samuel, Geoffrey Sithamparapillai; Oey, Nicodemus Edrick; Choo, Min; Ju, Han; Chan, Wai Yin; Kok, Stanley; Ge, Yu; Dongen, Antonius M Van; Ng, Yee Sien
2017-01-01
INTRODUCTION This study aimed to evaluate the safety and efficacy of a combination of levodopa and virtual reality (VR)-based therapy for the enhancement of upper limb recovery following acute stroke. METHODS This was a pilot single-blinded case series of acute stroke patients with upper extremity hemiparesis. Patients were randomised to standard care with concomitant administration of either levodopa alone (control group) or combination therapy consisting of VR-based motivational visuomotor feedback training with levodopa neuromodulation (VR group). Main clinical outcome measures were the Fugl-Meyer Upper Extremity (FM-UE) assessment and Action Research Arm Test (ARAT). Kinematic measurements of affected upper limb movement were evaluated as a secondary measure of improvement. RESULTS Of 42 patients screened, four patients were enrolled in each of the two groups. Two patients dropped out from the control group during the trial. Patients receiving combination therapy had clinically significant improvements in FM-UE assessment scores of 16.5 points compared to a 3.0-point improvement among control patients. Similarly, ARAT scores of VR group patients improved by 15.3 points compared to a 10.0-point improvement in the control group. Corresponding improvements were noted in kinematic measures, including hand-path ratio, demonstrating that the quality of upper limb movement improved in the VR group. CONCLUSION Our results suggest that VR-based therapy and pharmacotherapy may be combined for acute stroke rehabilitation. Bedside acquisition of kinematic measurements allows accurate assessment of the quality of limb movement, offering a sensitive clinical tool for quantifying motor recovery during the rehabilitation process after acute stroke. PMID:27311739
Responsiveness of outcome measures for upper limb prosthetic rehabilitation.
Resnik, Linda; Borgia, Matthew
2016-02-01
There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.
Kukke, Sahana N.; Curatalo, Lindsey A.; de Campos, Ana Carolina; Hallett, Mark; Alter, Katharine E.; Damiano, Diane L.
2015-01-01
Functional reaching is impaired in dystonia. Here, we analyze upper extremity kinematics to quantify timing and coordination abnormalities during unimanual reach-to-grasp movements in individuals with childhood-onset unilateral wrist dystonia. Kinematics were measured during movements of both upper limbs in a patient group (n = 11, age = 17.5 ± 5 years), and a typically developing control group (n = 9, age = 16.6 ± 5 years). Hand aperture was computed to study the coordination of reach and grasp. Time-varying joint synergies within one upper limb were calculated using a novel technique based on principal component analysis to study intra-limb coordination. In the non-dominant arm, results indicate reduced coordination between reach and grasp in patients who could not lift the grasped object compared to those who could lift it. Lifters exhibit incoordination in distal upper extremity joints later in the movement and non-lifters lacked coordination throughout the movement and in the whole upper limb. The amount of atypical coordination correlates with dystonia severity in patients. Reduced coordination during movement may reflect deficits in the execution of simultaneous movements, motor planning, or muscle activation. Rehabilitation efforts can focus on particular time points when kinematic patterns deviate abnormally to improve functional reaching in individuals with childhood-onset dystonia. PMID:26208359
Kukke, Sahana N; Curatalo, Lindsey A; de Campos, Ana Carolina; Hallett, Mark; Alter, Katharine E; Damiano, Diane L
2016-05-01
Functional reaching is impaired in dystonia. Here, we analyze upper extremity kinematics to quantify timing and coordination abnormalities during unimanual reach-to-grasp movements in individuals with childhood-onset unilateral wrist dystonia. Kinematics were measured during movements of both upper limbs in a patient group ( n = 11, age = 17.5 ±5 years), and a typically developing control group ( n = 9, age = 16.6 ±5 years). Hand aperture was computed to study the coordination of reach and grasp. Time-varying joint synergies within one upper limb were calculated using a novel technique based on principal component analysis to study intra-limb coordination. In the non-dominant arm, results indicate reduced coordination between reach and grasp in patients who could not lift the grasped object compared to those who could lift it. Lifters exhibit incoordination in distal upper extremity joints later in the movement and non-lifters lacked coordination throughout the movement and in the whole upper limb. The amount of atypical coordination correlates with dystonia severity in patients. Reduced coordination during movement may reflect deficits in the execution of simultaneous movements, motor planning, or muscle activation. Rehabilitation efforts can focus on particular time points when kinematic patterns deviate abnormally to improve functional reaching in individuals with childhood-onset dystonia.
d'Errico, Angelo; Fontana, Dario; Merogno, Angela
2016-01-01
to assess reproducibility of self-reported exposure to ergonomic hazards for the upper limbs, measured through a questionnaire based on a diffused checklist for the assessment of ergonomic risk (OCRA) in a sample of mechanical assemblers of an automotive industry. cross-sectional study; reproducibility was assessed as interrater agreement of a composite index of ergonomic risk, estimated through the intraclass correlation coefficient (ICC). 58 mechanical assemblers, working in 29 twin areas, characterised by same work stations and tasks. composite index of ergonomic risk for the upper limbs. reproducibility of the ergonomic index was high in the overall sample (ICC: 0.81) and it was higher for the twin areas employing same-gender workers (ICC: 0.96), compared to those with workers of the opposite gender (ICC: 0.66). these results indicate that a questionnaire measuring with a great detail the exposure to the main ergonomic risk factors for the upper limbs, as the one based on the OCRA checklist used for this study, would allow to obtain a highly reproducible ergonomic index. If its validity against the corresponding observational checklist will be found elevated by future studies, this questionnaire may represent a useful tool for a preliminary assessment of workers' exposure to ergonomic hazards for the upper limbs.
Contribution of limb momentum to power transfer in athletic wheelchair pushing.
Masson, G; Bégin, M-A; Lopez Poncelas, M; Pelletier, S-K; Lessard, J-L; Laroche, J; Berrigan, F; Langelier, E; Smeesters, C; Rancourt, D
2016-09-06
Pushing capacity is a key parameter in athletic racing wheelchair performance. This study estimated the potential contribution of upper limb momentum to pushing. The question is relevant since it may affect the training strategy adopted by an athlete. A muscle-free Lagrangian dynamic model of the upper limb segments was developed and theoretical predictions of power transfer to the wheelchair were computed during the push phase. Results show that limb momentum capacity for pushing can be in the order of 40J per push cycle at 10m/s, but it varies with the specific pushing range chosen by the athlete. Although use of momentum could certainly help an athlete improve performance, quantifying the actual contribution of limb momentum to pushing is not trivial. A preliminary experimental investigation on an ergometer, along with a simplified model of the upper limb, suggests that momentum is not the sole contributor to power transfer to a wheelchair. Muscles substantially contribute to pushing, even at high speeds. Moreover, an optimal pushing range is challenging to find since it most likely differs if an athlete chooses a limb momentum pushing strategy versus a muscular exertion pushing strategy, or both at the same time. The study emphasizes the importance of controlling pushing range, although one should optimize it while also taking the dynamics of the recovery period into account. Copyright © 2016 Elsevier Ltd. All rights reserved.
Age-Related Differences in Bilateral Asymmetry in Cycling Performance
ERIC Educational Resources Information Center
Liu, Ting; Jensen, Jody L.
2012-01-01
Bilateral asymmetry, a form of limb laterality in the context of moving two limbs, emerges in childhood. Children and adults show lateral preference in tasks that involve the upper and lower limbs. The importance of research in limb laterality is the insight it could provide about lateralized functions of the cerebral hemispheres. Analyzing…
Multi-limb necrotizing fasciitis in a patient with rectal cancer
Liu, Shirley Yuk Wah; Ng, Simon Siu Man; Lee, Janet Fung Yee
2006-01-01
Necrotizing fasciitis is a devastating soft tissue infection affecting fascias and subcutaneous soft tissues. Literature reviews have identified several related risk factors, including malignancy, alcoholism, malnutrition, diabetes, male gender and old age. There are only scanty case reports in the literature describing its rare association with colorectal malignancy. All published cases are attributed to bowel perforation resulting in necrotizing fasciitis over the perineal region. Isolated upper or lower limb diseases are rarely identified. Simultaneous upper and lower limb infection in colorectal cancer patients has never been described in the literature. We report an unusual case of multi-limb necrotizing fasciitis in a patient with underlying non-perforated rectal carcinoma. PMID:16937546
Robot-Mediated Upper Limb Physiotherapy: Review and Recommendations for Future Clinical Trials
ERIC Educational Resources Information Center
Peter, Orsolya; Fazekas, Gabor; Zsiga, Katalin; Denes, Zoltan
2011-01-01
Robot-mediated physiotherapy provides a new possibility for improving the outcome of rehabilitation of patients who are recovering from stroke. This study is a review of robot-supported upper limb physiotherapy focusing on the shoulder, elbow, and wrist. A literature search was carried out in PubMed, OVID, and EBSCO for clinical trials with robots…
The principles of management of congenital anomalies of the upper limb.
Watson, S
2000-07-01
Management of congenital anomalies of the upper limb is reviewed with reference to classification and aetiology, incidence, diagnosis before birth, broad principles of treatment, timing of x rays and scans, functional aims, cosmetic appearance, counselling of parents, therapists, scars, skin grafts, growth, and timing of surgery. Notes on 11 congenital hand conditions are given.