Integration agent-based models and GIS as a virtual urban dynamic laboratory
NASA Astrophysics Data System (ADS)
Chen, Peng; Liu, Miaolong
2007-06-01
Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.
NASA Astrophysics Data System (ADS)
Alexandridis, Konstantinos T.
This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.
Intelligent judgements over health risks in a spatial agent-based model.
Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana
2018-03-20
Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of several macro metrics of interest: an epidemic curve, a risk perception curve, and a distribution of different types of coping strategies over time. Our results emphasize the importance of integrating behavioral aspects of decision making under risk into spatial disease ABMs using machine learning algorithms. This is especially relevant when studying cumulative impacts of behavioral changes and possible intervention strategies.
Agent-based modeling of malaria vectors: the importance of spatial simulation.
Bomblies, Arne
2014-07-03
The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as "agents" in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simulated mosquitoes interacting with their physical environment as well as humans. Various processes that are known to be epidemiologically important, such as the dependence of parity on flight distance between developmental habitat and blood meal hosts and therefore spatial relationships of pools and houses, are readily simulated using this modeling paradigm. Impacts of perturbations can be evaluated on the basis of vectorial capacity, because the interactions between individuals that make up the population- scale metric vectorial capacity can be easily tracked for simulated mosquitoes and human blood meal hosts, without the need to estimate vectorial capacity parameters. As expected, model results show pronounced impacts of pool source reduction from larvicide application and draining, but with varying degrees of impact depending on the spatial relationship between pools and human habitation. Results highlight the importance of spatially-explicit simulation that can model individuals such as in an agent-based model. The impacts of perturbations on village scale malaria transmission depend on spatial locations of individual mosquitoes, as well as the tracking of relevant life cycle events and characteristics of individual mosquitoes. This study demonstrates advantages of using an agent-based approach for village-scale mosquito simulation to address questions in which spatial relationships are known to be important.
Modeling Being "Lost": Imperfect Situation Awareness
NASA Technical Reports Server (NTRS)
Middleton, Victor E.
2011-01-01
Being "lost" is an exemplar of imperfect Situation Awareness/Situation Understanding (SA/SU) -- information/knowledge that is uncertain, incomplete, and/or just wrong. Being "lost" may be a geo-spatial condition - not knowing/being wrong about where to go or how to get there. More broadly, being "lost" can serve as a metaphor for uncertainty and/or inaccuracy - not knowing/being wrong about how one fits into a larger world view, what one wants to do, or how to do it. This paper discusses using agent based modeling (ABM) to explore imperfect SA/SU, simulating geo-spatially "lost" intelligent agents trying to navigate in a virtual world. Each agent has a unique "mental map" -- its idiosyncratic view of its geo-spatial environment. Its decisions are based on this idiosyncratic view, but behavior outcomes are based on ground truth. Consequently, the rate and degree to which an agent's expectations diverge from ground truth provide measures of that agent's SA/SU.
A physical data model for fields and agents
NASA Astrophysics Data System (ADS)
de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek
2016-04-01
Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data models and the raster data model, among many other data models. Our physical data model is capable of storing a first set of kinds of data, like omnipresent scalars, mobile spatio-temporal points and property values, and spatio-temporal rasters. With our poster we will provide an overview of the physical data model expressed in HDF5 and show examples of how it can be used to capture both object- and field-based information. References De Bakker, M, K. de Jong, D. Karssenberg. 2016. A conceptual data model and language for fields and agents. European Geosciences Union, EGU General Assembly, 2016, Vienna.
New approaches in agent-based modeling of complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei
2017-12-01
Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
NASA Astrophysics Data System (ADS)
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F
2015-12-22
The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.
Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices
Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo
2011-01-01
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019
Mesoscopic effects in an agent-based bargaining model in regular lattices.
Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo
2011-03-09
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
Research on mixed network architecture collaborative application model
NASA Astrophysics Data System (ADS)
Jing, Changfeng; Zhao, Xi'an; Liang, Song
2009-10-01
When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.
Wilmoth, Jared L; Doak, Peter W; Timm, Andrea; Halsted, Michelle; Anderson, John D; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T; Fuentes-Cabrera, Miguel
2018-01-01
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P . aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.
Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea; Halsted, Michelle; Anderson, John D.; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T.; Fuentes-Cabrera, Miguel
2018-01-01
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models. PMID:29467721
Multi-scale analysis of a household level agent-based model of landcover change.
Evans, Tom P; Kelley, Hugh
2004-08-01
Scale issues have significant implications for the analysis of social and biophysical processes in complex systems. These same scale implications are likewise considerations for the design and application of models of landcover change. Scale issues have wide-ranging effects from the representativeness of data used to validate models to aggregation errors introduced in the model structure. This paper presents an analysis of how scale issues affect an agent-based model (ABM) of landcover change developed for a research area in the Midwest, USA. The research presented here explores how scale factors affect the design and application of agent-based landcover change models. The ABM is composed of a series of heterogeneous agents who make landuse decisions on a portfolio of cells in a raster-based programming environment. The model is calibrated using measures of fit derived from both spatial composition and spatial pattern metrics from multi-temporal landcover data interpreted from historical aerial photography. A model calibration process is used to find a best-fit set of parameter weights assigned to agents' preferences for different landuses (agriculture, pasture, timber production, and non-harvested forest). Previous research using this model has shown how a heterogeneous set of agents with differing preferences for a portfolio of landuses produces the best fit to landcover changes observed in the study area. The scale dependence of the model is explored by varying the resolution of the input data used to calibrate the model (observed landcover), ancillary datasets that affect land suitability (topography), and the resolution of the model landscape on which agents make decisions. To explore the impact of these scale relationships the model is run with input datasets constructed at the following spatial resolutions: 60, 90, 120, 150, 240, 300 and 480 m. The results show that the distribution of landuse-preference weights differs as a function of scale. In addition, with the gradient descent model fitting method used in this analysis the model was not able to converge to an acceptable fit at the 300 and 480 m spatial resolutions. This is a product of the ratio of the input cell resolution to the average parcel size in the landscape. This paper uses these findings to identify scale considerations in the design, development, validation and application of ABMs of landcover change.
Modeling marine oily wastewater treatment by a probabilistic agent-based approach.
Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong
2018-02-01
This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
An agent-based approach for modeling dynamics of contagious disease spread
Perez, Liliana; Dragicevic, Suzana
2009-01-01
Background The propagation of communicable diseases through a population is an inherent spatial and temporal process of great importance for modern society. For this reason a spatially explicit epidemiologic model of infectious disease is proposed for a greater understanding of the disease's spatial diffusion through a network of human contacts. Objective The objective of this study is to develop an agent-based modelling approach the integrates geographic information systems (GIS) to simulate the spread of a communicable disease in an urban environment, as a result of individuals' interactions in a geospatial context. Methods The methodology for simulating spatiotemporal dynamics of communicable disease propagation is presented and the model is implemented using measles outbreak in an urban environment as a case study. Individuals in a closed population are explicitly represented by agents associated to places where they interact with other agents. They are endowed with mobility, through a transportation network allowing them to move between places within the urban environment, in order to represent the spatial heterogeneity and the complexity involved in infectious diseases diffusion. The model is implemented on georeferenced land use dataset from Metro Vancouver and makes use of census data sets from Statistics Canada for the municipality of Burnaby, BC, Canada study site. Results The results provide insights into the application of the model to calculate ratios of susceptible/infected in specific time frames and urban environments, due to its ability to depict the disease progression based on individuals' interactions. It is demonstrated that the dynamic spatial interactions within the population lead to high numbers of exposed individuals who perform stationary activities in areas after they have finished commuting. As a result, the sick individuals are concentrated in geographical locations like schools and universities. Conclusion The GIS-agent based model designed for this study can be easily customized to study the disease spread dynamics of any other communicable disease by simply adjusting the modeled disease timeline and/or the infection model and modifying the transmission process. This type of simulations can help to improve comprehension of disease spread dynamics and to take better steps towards the prevention and control of an epidemic outbreak. PMID:19656403
NASA Astrophysics Data System (ADS)
Inkoom, J. N.; Nyarko, B. K.
2014-12-01
The integration of geographic information systems (GIS) and agent-based modelling (ABM) can be an efficient tool to improve spatial planning practices. This paper utilizes GIS and ABM approaches to simulate spatial growth patterns of settlement structures in Shama. A preliminary household survey on residential location decision-making choice served as the behavioural rule for household agents in the model. Physical environment properties of the model were extracted from a 2005 image implemented in NetLogo. The resulting growth pattern model was compared with empirical growth patterns to ascertain the model's accuracy. The paper establishes that the development of unplanned structures and its evolving structural pattern are a function of land price, proximity to economic centres, household economic status and location decision-making patterns. The application of the proposed model underlines its potential for integration into urban planning policies and practices, and for understanding residential decision-making processes in emerging cities in developing countries. Key Words: GIS; Agent-based modelling; Growth patterns; NetLogo; Location decision making; Computational Intelligence.
NASA Astrophysics Data System (ADS)
Liu, Helin; Silva, Elisabete A.; Wang, Qian
2016-07-01
This paper presents an extension to the agent-based model "Creative Industries Development-Urban Spatial Structure Transformation" by incorporating GIS data. Three agent classes, creative firms, creative workers and urban government, are considered in the model, and the spatial environment represents a set of GIS data layers (i.e. road network, key housing areas, land use). With the goal to facilitate urban policy makers to draw up policies locally and optimise the land use assignment in order to support the development of creative industries, the improved model exhibited its capacity to assist the policy makers conducting experiments and simulating different policy scenarios to see the corresponding dynamics of the spatial distributions of creative firms and creative workers across time within a city/district. The spatiotemporal graphs and maps record the simulation results and can be used as a reference by the policy makers to adjust land use plans adaptively at different stages of the creative industries' development process.
Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea; ...
2018-02-06
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density andmore » local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density andmore » local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.« less
The agent-based spatial information semantic grid
NASA Astrophysics Data System (ADS)
Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren
2006-10-01
Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.
Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)
Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...
Dynamic Simulation of Crime Perpetration and Reporting to Examine Community Intervention Strategies
ERIC Educational Resources Information Center
Yonas, Michael A.; Burke, Jessica G.; Brown, Shawn T.; Borrebach, Jeffrey D.; Garland, Richard; Burke, Donald S.; Grefenstette, John J.
2013-01-01
Objective: To develop a conceptual computational agent-based model (ABM) to explore community-wide versus spatially focused crime reporting interventions to reduce community crime perpetrated by youth. Method: Agents within the model represent individual residents and interact on a two-dimensional grid representing an abstract nonempirically…
Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di
2016-07-15
We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.
Statistical physics of the spatial Prisoner's Dilemma with memory-aware agents
NASA Astrophysics Data System (ADS)
Javarone, Marco Alberto
2016-02-01
We introduce an analytical model to study the evolution towards equilibrium in spatial games, with `memory-aware' agents, i.e., agents that accumulate their payoff over time. In particular, we focus our attention on the spatial Prisoner's Dilemma, as it constitutes an emblematic example of a game whose Nash equilibrium is defection. Previous investigations showed that, under opportune conditions, it is possible to reach, in the evolutionary Prisoner's Dilemma, an equilibrium of cooperation. Notably, it seems that mechanisms like motion may lead a population to become cooperative. In the proposed model, we map agents to particles of a gas so that, on varying the system temperature, they randomly move. In doing so, we are able to identify a relation between the temperature and the final equilibrium of the population, explaining how it is possible to break the classical Nash equilibrium in the spatial Prisoner's Dilemma when considering agents able to increase their payoff over time. Moreover, we introduce a formalism to study order-disorder phase transitions in these dynamics. As result, we highlight that the proposed model allows to explain analytically how a population, whose interactions are based on the Prisoner's Dilemma, can reach an equilibrium far from the expected one; opening also the way to define a direct link between evolutionary game theory and statistical physics.
A multi-agent architecture for geosimulation of moving agents
NASA Astrophysics Data System (ADS)
Vahidnia, Mohammad H.; Alesheikh, Ali A.; Alavipanah, Seyed Kazem
2015-10-01
In this paper, a novel architecture is proposed in which an axiomatic derivation system in the form of first-order logic facilitates declarative explanation and spatial reasoning. Simulation of environmental perception and interaction between autonomous agents is designed with a geographic belief-desire-intention and a request-inform-query model. The architecture has a complementary quantitative component that supports collaborative planning based on the concept of equilibrium and game theory. This new architecture presents a departure from current best practices geographic agent-based modelling. Implementation tasks are discussed in some detail, as well as scenarios for fleet management and disaster management.
A spatial web/agent-based model to support stakeholders' negotiation regarding land development.
Pooyandeh, Majeed; Marceau, Danielle J
2013-11-15
Decision making in land management can be greatly enhanced if the perspectives of concerned stakeholders are taken into consideration. This often implies negotiation in order to reach an agreement based on the examination of multiple alternatives. This paper describes a spatial web/agent-based modeling system that was developed to support the negotiation process of stakeholders regarding land development in southern Alberta, Canada. This system integrates a fuzzy analytic hierarchy procedure within an agent-based model in an interactive visualization environment provided through a web interface to facilitate the learning and negotiation of the stakeholders. In the pre-negotiation phase, the stakeholders compare their evaluation criteria using linguistic expressions. Due to the uncertainty and fuzzy nature of such comparisons, a fuzzy Analytic Hierarchy Process is then used to prioritize the criteria. The negotiation starts by a development plan being submitted by a user (stakeholder) through the web interface. An agent called the proposer, which represents the proposer of the plan, receives this plan and starts negotiating with all other agents. The negotiation is conducted in a step-wise manner where the agents change their attitudes by assigning a new set of weights to their criteria. If an agreement is not achieved, a new location for development is proposed by the proposer agent. This process is repeated until a location is found that satisfies all agents to a certain predefined degree. To evaluate the performance of the model, the negotiation was simulated with four agents, one of which being the proposer agent, using two hypothetical development plans. The first plan was selected randomly; the other one was chosen in an area that is of high importance to one of the agents. While the agents managed to achieve an agreement about the location of the land development after three rounds of negotiation in the first scenario, seven rounds were required in the second scenario. The proposed web/agent-based model facilitates the interaction and learning among stakeholders when facing multiple alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sensitivity to the Sampling Process Emerges From the Principle of Efficiency.
Jara-Ettinger, Julian; Sun, Felix; Schulz, Laura; Tenenbaum, Joshua B
2018-05-01
Humans can seamlessly infer other people's preferences, based on what they do. Broadly, two types of accounts have been proposed to explain different aspects of this ability. The first account focuses on spatial information: Agents' efficient navigation in space reveals what they like. The second account focuses on statistical information: Uncommon choices reveal stronger preferences. Together, these two lines of research suggest that we have two distinct capacities for inferring preferences. Here we propose that this is not the case, and that spatial-based and statistical-based preference inferences can be explained by the assumption that agents are efficient alone. We show that people's sensitivity to spatial and statistical information when they infer preferences is best predicted by a computational model of the principle of efficiency, and that this model outperforms dual-system models, even when the latter are fit to participant judgments. Our results suggest that, as adults, a unified understanding of agency under the principle of efficiency underlies our ability to infer preferences. Copyright © 2018 Cognitive Science Society, Inc.
Agent-based models in translational systems biology
An, Gary; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram
2013-01-01
Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing. PMID:20835989
Research on monocentric model of urbanization by agent-based simulation
NASA Astrophysics Data System (ADS)
Xue, Ling; Yang, Kaizhong
2008-10-01
Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.
2015-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and private farmer agents, the emergence of a private tanker market, disparities in economic wellbeing to different user groups caused by unique supply conditions, and response of the complex system to various policy interventions.
Wiltshire, Serge W
2018-01-01
An agent-based computer model that builds representative regional U.S. hog production networks was developed and employed to assess the potential impact of the ongoing trend towards increased producer specialization upon network-level resilience to catastrophic disease outbreaks. Empirical analyses suggest that the spatial distribution and connectivity patterns of contact networks often predict epidemic spreading dynamics. Our model heuristically generates realistic systems composed of hog producer, feed mill, and slaughter plant agents. Network edges are added during each run as agents exchange livestock and feed. The heuristics governing agents' contact patterns account for factors including their industry roles, physical proximities, and the age of their livestock. In each run, an infection is introduced, and may spread according to probabilities associated with the various modes of contact. For each of three treatments-defined by one-phase, two-phase, and three-phase production systems-a parameter variation experiment examines the impact of the spatial density of producer agents in the system upon the length and size of disease outbreaks. Resulting data show phase transitions whereby, above some density threshold, systemic outbreaks become possible, echoing findings from percolation theory. Data analysis reveals that multi-phase production systems are vulnerable to catastrophic outbreaks at lower spatial densities, have more abrupt percolation transitions, and are characterized by less-predictable outbreak scales and durations. Key differences in network-level metrics shed light on these results, suggesting that the absence of potentially-bridging producer-producer edges may be largely responsible for the superior disease resilience of single-phase "farrow to finish" production systems.
Agent Based Modeling: Fine-Scale Spatio-Temporal Analysis of Pertussis
NASA Astrophysics Data System (ADS)
Mills, D. A.
2017-10-01
In epidemiology, spatial and temporal variables are used to compute vaccination efficacy and effectiveness. The chosen resolution and scale of a spatial or spatio-temporal analysis will affect the results. When calculating vaccination efficacy, for example, a simple environment that offers various ideal outcomes is often modeled using coarse scale data aggregated on an annual basis. In contrast to the inadequacy of this aggregated method, this research uses agent based modeling of fine-scale neighborhood data centered around the interactions of infants in daycare and their families to demonstrate an accurate reflection of vaccination capabilities. Despite being able to prevent major symptoms, recent studies suggest that acellular Pertussis does not prevent the colonization and transmission of Bordetella Pertussis bacteria. After vaccination, a treated individual becomes a potential asymptomatic carrier of the Pertussis bacteria, rather than an immune individual. Agent based modeling enables the measurable depiction of asymptomatic carriers that are otherwise unaccounted for when calculating vaccination efficacy and effectiveness. Using empirical data from a Florida Pertussis outbreak case study, the results of this model demonstrate that asymptomatic carriers bias the calculated vaccination efficacy and reveal a need for reconsidering current methods that are widely used for calculating vaccination efficacy and effectiveness.
Diversity and Community Can Coexist.
Stivala, Alex; Robins, Garry; Kashima, Yoshihisa; Kirley, Michael
2016-03-01
We examine the (in)compatibility of diversity and sense of community by means of agent-based models based on the well-known Schelling model of residential segregation and Axelrod model of cultural dissemination. We find that diversity and highly clustered social networks, on the assumptions of social tie formation based on spatial proximity and homophily, are incompatible when agent features are immutable, and this holds even for multiple independent features. We include both mutable and immutable features into a model that integrates Schelling and Axelrod models, and we find that even for multiple independent features, diversity and highly clustered social networks can be incompatible on the assumptions of social tie formation based on spatial proximity and homophily. However, this incompatibility breaks down when cultural diversity can be sufficiently large, at which point diversity and clustering need not be negatively correlated. This implies that segregation based on immutable characteristics such as race can possibly be overcome by sufficient similarity on mutable characteristics based on culture, which are subject to a process of social influence, provided a sufficiently large "scope of cultural possibilities" exists. © Society for Community Research and Action 2016.
NASA Astrophysics Data System (ADS)
Thomas, Romain; Donikian, Stéphane
Many articles dealing with agent navigation in an urban environment involve the use of various heuristics. Among them, one is prevalent: the search of the shortest path between two points. This strategy impairs the realism of the resulting behaviour. Indeed, psychological studies state that such a navigation behaviour is conditioned by the knowledge the subject has of its environment. Furthermore, the path a city dweller can follow may be influenced by many factors like his daily habits, or the path simplicity in term of minimum of direction changes. It appeared interesting to us to investigate how to mimic human navigation behavior with an autonomous agent. The solution we propose relies on an architecture based on a generic model of informed environment, a spatial cognitive map model merged with a human-like memory model, representing the agent's temporal knowledge of the environment, it gained along its experiences of navigation.
Dynamic simulation of crime perpetration and reporting to examine community intervention strategies.
Yonas, Michael A; Burke, Jessica G; Brown, Shawn T; Borrebach, Jeffrey D; Garland, Richard; Burke, Donald S; Grefenstette, John J
2013-10-01
To develop a conceptual computational agent-based model (ABM) to explore community-wide versus spatially focused crime reporting interventions to reduce community crime perpetrated by youth. Agents within the model represent individual residents and interact on a two-dimensional grid representing an abstract nonempirically grounded community setting. Juvenile agents are assigned initial random probabilities of perpetrating a crime and adults are assigned random probabilities of witnessing and reporting crimes. The agents' behavioral probabilities modify depending on the individual's experience with criminal behavior and punishment, and exposure to community crime interventions. Cost-effectiveness analyses assessed the impact of activating different percentages of adults to increase reporting and reduce community crime activity. Community-wide interventions were compared with spatially focused interventions, in which activated adults were focused in areas of highest crime prevalence. The ABM suggests that both community-wide and spatially focused interventions can be effective in reducing overall offenses, but their relative effectiveness may depend on the intensity and cost of the interventions. Although spatially focused intervention yielded localized reductions in crimes, such interventions were shown to move crime to nearby communities. Community-wide interventions can achieve larger reductions in overall community crime offenses than spatially focused interventions, as long as sufficient resources are available. The ABM demonstrates that community-wide and spatially focused crime strategies produce unique intervention dynamics influencing juvenile crime behaviors through the decisions and actions of community adults. It shows how such models might be used to investigate community-supported crime intervention programs by integrating community input and expertise and provides a simulated setting for assessing dimensions of cost comparison and intervention effect sustainability. ABM illustrates how intervention models might be used to investigate community-supported crime intervention programs.
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M
2017-10-03
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, V. K.; Jha, A. K.; Gupta, K.; Srivastav, S. K.
2017-12-01
Recent studies indicate that there is a significant improvement in the urban land use dynamics through modeling at finer spatial resolutions. Geo-computational models such as cellular automata and agent based model have given evident proof regarding the quantification of the urban growth pattern with urban boundary. In recent studies, socio- economic factors such as demography, education rate, household density, parcel price of the current year, distance to road, school, hospital, commercial centers and police station are considered to the major factors influencing the Land Use Land Cover (LULC) pattern of the city. These factors have unidirectional approach to land use pattern which makes it difficult to analyze the spatial aspects of model results both quantitatively and qualitatively. In this study, cellular automata model is combined with generic model known as Agent Based Model to evaluate the impact of socio economic factors on land use pattern. For this purpose, Dehradun an Indian city is selected as a case study. Socio economic factors were collected from field survey, Census of India, Directorate of economic census, Uttarakhand, India. A 3X3 simulating window is used to consider the impact on LULC. Cellular automata model results are examined for the identification of hot spot areas within the urban area and agent based model will be using logistic based regression approach where it will identify the correlation between each factor on LULC and classify the available area into low density, medium density, high density residential or commercial area. In the modeling phase, transition rule, neighborhood effect, cell change factors are used to improve the representation of built-up classes. Significant improvement is observed in the built-up classes from 84 % to 89 %. However after incorporating agent based model with cellular automata model the accuracy improved from 89 % to 94 % in 3 classes of urban i.e. low density, medium density and commercial classes. Sensitivity study of the model indicated that southern and south-west part of the city have shown improvement and small patches of growth are also observed in the north western part of the city.The study highlights the growing importance of socio economic factors and geo-computational modeling approach on changing LULC of newly growing cities of modern India.
Systems view on spatial planning and perception based on invariants in agent-environment dynamics
Mettler, Bérénice; Kong, Zhaodan; Li, Bin; Andersh, Jonathan
2015-01-01
Modeling agile and versatile spatial behavior remains a challenging task, due to the intricate coupling of planning, control, and perceptual processes. Previous results have shown that humans plan and organize their guidance behavior by exploiting patterns in the interactions between agent or organism and the environment. These patterns, described under the concept of Interaction Patterns (IPs), capture invariants arising from equivalences and symmetries in the interaction with the environment, as well as effects arising from intrinsic properties of human control and guidance processes, such as perceptual guidance mechanisms. The paper takes a systems' perspective, considering the IP as a unit of organization, and builds on its properties to present a hierarchical model that delineates the planning, control, and perceptual processes and their integration. The model's planning process is further elaborated by showing that the IP can be abstracted, using spatial time-to-go functions. The perceptual processes are elaborated from the hierarchical model. The paper provides experimental support for the model's ability to predict the spatial organization of behavior and the perceptual processes. PMID:25628524
Mena, Carlos F; Walsh, Stephen J; Frizzelle, Brian G; Xiaozheng, Yao; Malanson, George P
2011-01-01
This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways.
Geospatial Modelling Approach for 3d Urban Densification Developments
NASA Astrophysics Data System (ADS)
Koziatek, O.; Dragićević, S.; Li, S.
2016-06-01
With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.
Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun
2013-01-01
Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.
2018-01-01
An agent-based computer model that builds representative regional U.S. hog production networks was developed and employed to assess the potential impact of the ongoing trend towards increased producer specialization upon network-level resilience to catastrophic disease outbreaks. Empirical analyses suggest that the spatial distribution and connectivity patterns of contact networks often predict epidemic spreading dynamics. Our model heuristically generates realistic systems composed of hog producer, feed mill, and slaughter plant agents. Network edges are added during each run as agents exchange livestock and feed. The heuristics governing agents’ contact patterns account for factors including their industry roles, physical proximities, and the age of their livestock. In each run, an infection is introduced, and may spread according to probabilities associated with the various modes of contact. For each of three treatments—defined by one-phase, two-phase, and three-phase production systems—a parameter variation experiment examines the impact of the spatial density of producer agents in the system upon the length and size of disease outbreaks. Resulting data show phase transitions whereby, above some density threshold, systemic outbreaks become possible, echoing findings from percolation theory. Data analysis reveals that multi-phase production systems are vulnerable to catastrophic outbreaks at lower spatial densities, have more abrupt percolation transitions, and are characterized by less-predictable outbreak scales and durations. Key differences in network-level metrics shed light on these results, suggesting that the absence of potentially-bridging producer–producer edges may be largely responsible for the superior disease resilience of single-phase “farrow to finish” production systems. PMID:29522574
Kang, Jeon-Young; Aldstadt, Jared
2017-07-15
Dengue is a mosquito-borne infectious disease that is endemic in tropical and subtropical countries. Many individual-level simulation models have been developed to test hypotheses about dengue virus transmission. Often these efforts assume that human host and mosquito vector populations are randomly or uniformly distributed in the environment. Although, the movement of mosquitoes is affected by spatial configuration of buildings and mosquito populations are highly clustered in key buildings, little research has focused on the influence of the local built environment in dengue transmission models. We developed an agent-based model of dengue transmission in a village setting to test the importance of using realistic environments in individual-level models of dengue transmission. The results from one-way ANOVA analysis of simulations indicated that the differences between scenarios in terms of infection rates as well as serotype-specific dominance are statistically significant. Specifically, the infection rates in scenarios of a realistic environment are more variable than those of a synthetic spatial configuration. With respect to dengue serotype-specific cases, we found that a single dengue serotype is more often dominant in realistic environments than in synthetic environments. An agent-based approach allows a fine-scaled analysis of simulated dengue incidence patterns. The results provide a better understanding of the influence of spatial heterogeneity on dengue transmission at a local scale.
Agent-Based Modeling in Molecular Systems Biology.
Soheilypour, Mohammad; Mofrad, Mohammad R K
2018-07-01
Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.
Secure and Resilient Functional Modeling for Navy Cyber-Physical Systems
2017-05-24
Functional Modeling Compiler (SCCT) FM Compiler and Key Performance Indicators (KPI) May 2018 Pending. Model Management Backbone (SCCT) MMB Demonstration...implement the agent- based distributed runtime. - KPIs for single/multicore controllers and temporal/spatial domains. - Integration of the model management ...Distributed Runtime (UCI) Not started. Model Management Backbone (SCCT) Not started. Siemens Corporation Corporate Technology Unrestricted
Influences of Agents with a Self-Reputation Awareness Component in an Evolutionary Spatial IPD Game
Huang, Chung-Yuan; Lee, Chun-Liang
2014-01-01
Iterated prisoner’s dilemma (IPD) researchers have shown that strong positive reputations plus an efficient reputation evaluation system encourages both sides to pursue long-term collaboration and to avoid falling into mutual defection cycles. In agent-based environments with reliable reputation rating systems, agents interested in maximizing their private interests must show concern for other agents as well as their own self-reputations–an important capability that standard IPD game agents lack. Here we present a novel learning agent model possessing self-reputation awareness. Agents in our proposed model are capable of evaluating self-behaviors based on a mix of public and private interest considerations, and of testing various solutions aimed at meeting social standards. Simulation results indicate multiple outcomes from the addition of a small percentage of self-reputation awareness agents: faster cooperation, faster movement toward stability in an agent society, a higher level of public interest in the agent society, the resolution of common conflicts between public and private interests, and a lower potential for rational individual behavior to transform into irrational group behavior. PMID:24945966
An agent-based computational model of the spread of tuberculosis
NASA Astrophysics Data System (ADS)
de Espíndola, Aquino L.; Bauch, Chris T.; Troca Cabella, Brenno C.; Souto Martinez, Alexandre
2011-05-01
In this work we propose an alternative model of the spread of tuberculosis (TB) and the emergence of drug resistance due to the treatment with antibiotics. We implement the simulations by an agent-based model computational approach where the spatial structure is taken into account. The spread of tuberculosis occurs according to probabilities defined by the interactions among individuals. The model was validated by reproducing results already known from the literature in which different treatment regimes yield the emergence of drug resistance. The different patterns of TB spread can be visualized at any time of the system evolution. The implementation details as well as some results of this alternative approach are discussed.
Mena, Carlos F.; Walsh, Stephen J.; Frizzelle, Brian G.; Xiaozheng, Yao; Malanson, George P.
2010-01-01
This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways. PMID:24436501
Stability of subsystem solutions in agent-based models
NASA Astrophysics Data System (ADS)
Perc, Matjaž
2018-01-01
The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.
Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun
2013-01-01
Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472
Can agent based models effectively reduce fisheries management implementation uncertainty?
NASA Astrophysics Data System (ADS)
Drexler, M.
2016-02-01
Uncertainty is an inherent feature of fisheries management. Implementation uncertainty remains a challenge to quantify often due to unintended responses of users to management interventions. This problem will continue to plague both single species and ecosystem based fisheries management advice unless the mechanisms driving these behaviors are properly understood. Equilibrium models, where each actor in the system is treated as uniform and predictable, are not well suited to forecast the unintended behaviors of individual fishers. Alternatively, agent based models (AMBs) can simulate the behaviors of each individual actor driven by differing incentives and constraints. This study evaluated the feasibility of using AMBs to capture macro scale behaviors of the US West Coast Groundfish fleet. Agent behavior was specified at the vessel level. Agents made daily fishing decisions using knowledge of their own cost structure, catch history, and the histories of catch and quota markets. By adding only a relatively small number of incentives, the model was able to reproduce highly realistic macro patterns of expected outcomes in response to management policies (catch restrictions, MPAs, ITQs) while preserving vessel heterogeneity. These simulations indicate that agent based modeling approaches hold much promise for simulating fisher behaviors and reducing implementation uncertainty. Additional processes affecting behavior, informed by surveys, are continually being added to the fisher behavior model. Further coupling of the fisher behavior model to a spatial ecosystem model will provide a fully integrated social, ecological, and economic model capable of performing management strategy evaluations to properly consider implementation uncertainty in fisheries management.
Charecterisation and Modelling Urbanisation Pattern in Sillicon Valley of India
NASA Astrophysics Data System (ADS)
Aithal, B. H.
2015-12-01
Urbanisation and Urban sprawl has led to environmental problems and large losses of arable land in India. In this study, we characterise pattern of urban growth and model urban sprawl by means of a combination of remote sensing, geographical information system, spatial metrics and CA based modelling. This analysis uses time-series data to explore and derive the potential political-socio-economic- land based driving forces behind urbanisation and urban sprawl, and spatial models in different scenarios to explore the spatio-temporal interactions and development. The study area applied is Greater Bangalore, for the period from 1973 to 2015. Further water bodies depletion, vegetation depletion, tree cover were also analysed to obtain specific region based results effecting global climate and regional balance. Agents were integrated successfully into modelling aspects to understand and foresee the landscape pattern change in urban morphology. The results reveal built-up paved surfaces has expanded towards the outskirts and have expanded into the buffer regions around the city. Population growth, economic, industrial developments in the city core and transportation development are still the main causes of urban sprawl in the region. Agent based model are considered to be to the traditional models. Agent Based modelling approach as seen in this paper clearly shown its effectiveness in capturing the micro dynamics and influence in its neighbourhood mapping. Greenhouse gas emission inventory has shown important aspects such as domestic sector to be one of the major impact categories in the region. Further tree cover reduced drastically and is evident from the statistics and determines that if city is in verge of creating a chaos in terms of human health and desertification. Study concludes that integration of remote sensing, GIS, and agent based modelling offers an excellent opportunity to explore the spatio-temporal variation and visulaisation of sprawling metropolitan region. This study give a complete overview of urbanisation and effects being caused due to urban sprawl in the region and help planners and city managers in understanding the future pockets and scenarios of urban growth.
Hardware accelerated high performance neutron transport computation based on AGENT methodology
NASA Astrophysics Data System (ADS)
Xiao, Shanjie
The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the computation time for 3D full-core neutron transport analysis, making the AGENT methodology unique and advantageous, and thus supplies the possibility to extend the application range of neutron transport analysis in either industry engineering or academic research.
Miller, Brian W.; Breckheimer, Ian; McCleary, Amy L.; Guzmán-Ramirez, Liza; Caplow, Susan C.; Jones-Smith, Jessica C.; Walsh, Stephen J.
2010-01-01
Agent Based Models (ABMs) are powerful tools for population-environment research but are subject to trade-offs between model complexity and abstraction. This study strikes a compromise between abstract and highly specified ABMs by designing a spatially explicit, stylized ABM and using it to explore policy scenarios in a setting that is facing substantial conservation and development challenges. Specifically, we present an ABM that reflects key Land Use / Land Cover (LULC) dynamics and livelihood decisions on Isabela Island in the Galápagos Archipelago of Ecuador. We implement the model using the NetLogo software platform, a free program that requires relatively little programming experience. The landscape is composed of a satellite-derived distribution of a problematic invasive species (common guava) and a stylized representation of the Galápagos National Park, the community of Puerto Villamil, the agricultural zone, and the marine area. The agent module is based on publicly available data and household interviews, and represents the primary livelihoods of the population in the Galápagos Islands – tourism, fisheries, and agriculture. We use the model to enact hypothetical agricultural subsidy scenarios aimed at controlling invasive guava and assess the resulting population and land cover dynamics. Findings suggest that spatially explicit, stylized ABMs have considerable utility, particularly during preliminary stages of research, as platforms for (1) sharpening conceptualizations of population-environment systems, (2) testing alternative scenarios, and (3) uncovering critical data gaps. PMID:20539752
Miller, Brian W; Breckheimer, Ian; McCleary, Amy L; Guzmán-Ramirez, Liza; Caplow, Susan C; Jones-Smith, Jessica C; Walsh, Stephen J
2010-05-01
Agent Based Models (ABMs) are powerful tools for population-environment research but are subject to trade-offs between model complexity and abstraction. This study strikes a compromise between abstract and highly specified ABMs by designing a spatially explicit, stylized ABM and using it to explore policy scenarios in a setting that is facing substantial conservation and development challenges. Specifically, we present an ABM that reflects key Land Use / Land Cover (LULC) dynamics and livelihood decisions on Isabela Island in the Galápagos Archipelago of Ecuador. We implement the model using the NetLogo software platform, a free program that requires relatively little programming experience. The landscape is composed of a satellite-derived distribution of a problematic invasive species (common guava) and a stylized representation of the Galápagos National Park, the community of Puerto Villamil, the agricultural zone, and the marine area. The agent module is based on publicly available data and household interviews, and represents the primary livelihoods of the population in the Galápagos Islands - tourism, fisheries, and agriculture. We use the model to enact hypothetical agricultural subsidy scenarios aimed at controlling invasive guava and assess the resulting population and land cover dynamics. Findings suggest that spatially explicit, stylized ABMs have considerable utility, particularly during preliminary stages of research, as platforms for (1) sharpening conceptualizations of population-environment systems, (2) testing alternative scenarios, and (3) uncovering critical data gaps.
NASA Astrophysics Data System (ADS)
Poplin, A.; Shenk, L.; Krejci, C.; Passe, U.
2017-09-01
The main goal of this paper is to present the conceptual framework for engaging youth in urban planning activities that simultaneously create locally meaningful positive change. The framework for engaging youth interlinks the use of IT tools such as geographic information systems (GIS), agent-based modelling (ABM), online serious games, and mobile participatory geographic information systems with map-based storytelling and action projects. We summarize the elements of our framework and the first results gained in the program Community Growers established in a neighbourhood community of Des Moines, the capital of Iowa, USA. We conclude the paper with a discussion and future research directions.
Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A
2015-09-01
This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. © 2015 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Aithal, B. H.
2015-12-01
Abstract: Urbanisation has gained momentum with globalization in India. Policy decisions to set up commercial, industrial hubs have fuelled large scale migration, added with population upsurge has contributed to the fast growing urban region that needs to be monitored in order to design sustainable urban cities. Unplanned urbanization have resulted in the growth of peri-urban region referred to as urban sprawl, are often devoid of basic amenities and infrastructure leading to large scale environmental problems that are evident. Remote sensing data acquired through space borne sensors at regular interval helps in understanding urban dynamics aided by Geoinformatics which has proved very effective in mapping and monitoring for sustainable urban planning. Cellular automata (CA) is a robust approach for the spatially explicit simulation of land-use land cover dynamics. CA uses rules, states, conditions that are vital factors in modelling urbanisation. This communication effectively introduces simulation assistances of CA with the agent based modelling supported by its fuzzy characteristics and weightages through analytical hierarchal process (AHP). This has been done considering perceived agents such as industries, natural resource etc. Respective agent's role in development of a particular regions into an urban area has been examined with weights and its influence of each of these agents based on its characteristics functions. Validation was performed obtaining a high kappa coefficient indicating the quality and the allocation performance of the model & validity of the model to predict future projections. The prediction using the proposed model was performed for 2030. Further environmental sustainability of each of these cities are explored such as water features, environment, greenhouse gas emissions, effects on human human health etc., Modeling suggests trend of various land use classes transformation with the spurt in urban expansions based on specific regions and policies providing a visual spatial information to both urban planners and city managers. Further environmental sustainability assessment indicates dwindling natural resources and increase in thermal discomfort to the living population thereby indicating need for balanced and planned development.
Particle-based simulations of self-motile suspensions
NASA Astrophysics Data System (ADS)
Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot
2015-11-01
A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.
An, Gary; Christley, Scott
2012-01-01
Given the panoply of system-level diseases that result from disordered inflammation, such as sepsis, atherosclerosis, cancer, and autoimmune disorders, understanding and characterizing the inflammatory response is a key target of biomedical research. Untangling the complex behavioral configurations associated with a process as ubiquitous as inflammation represents a prototype of the translational dilemma: the ability to translate mechanistic knowledge into effective therapeutics. A critical failure point in the current research environment is a throughput bottleneck at the level of evaluating hypotheses of mechanistic causality; these hypotheses represent the key step toward the application of knowledge for therapy development and design. Addressing the translational dilemma will require utilizing the ever-increasing power of computers and computational modeling to increase the efficiency of the scientific method in the identification and evaluation of hypotheses of mechanistic causality. More specifically, development needs to focus on facilitating the ability of non-computer trained biomedical researchers to utilize and instantiate their knowledge in dynamic computational models. This is termed "dynamic knowledge representation." Agent-based modeling is an object-oriented, discrete-event, rule-based simulation method that is well suited for biomedical dynamic knowledge representation. Agent-based modeling has been used in the study of inflammation at multiple scales. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggest that this modeling framework is well suited for addressing the translational dilemma. This review describes agent-based modeling, gives examples of its applications in the study of inflammation, and introduces a proposed general expansion of the use of modeling and simulation to augment the generation and evaluation of knowledge by the biomedical research community at large.
A Multi-Level Approach to Modeling Rapidly Growing Mega-Regions as a Coupled Human-Natural System
NASA Astrophysics Data System (ADS)
Koch, J. A.; Tang, W.; Meentemeyer, R. K.
2013-12-01
The FUTure Urban-Regional Environment Simulation (FUTURES) integrates information on nonstationary drivers of land change (per capita land area demand, site suitability, and spatial structure of conversion events) into spatial-temporal projections of changes in landscape patterns (Meentemeyer et al., 2013). One striking feature of FUTURES is its patch-growth algorithm that includes feedback effects of former development events across several temporal and spatial scales: cell-level transition events are aggregated into patches of land change and their further growth is based on empirically derived parameters controlling its size, shape, and dispersion. Here, we augment the FUTURES modeling framework by expanding its multilevel structure and its representation of human decision making. The new modeling framework is hierarchically organized as nested subsystems including the latest theory on telecouplings in coupled human-natural systems (Liu et al., 2013). Each subsystem represents a specific level of spatial scale and embraces agents that have decision making authority at a particular level. The subsystems are characterized with regard to their spatial representation and are connected via flows of information (e.g. regulations and policies) or material (e.g. population migration). To provide a modeling framework that is applicable to a wide range of settings and geographical regions and to keep it computationally manageable, we implement a 'zooming factor' that allows to enable or disable subsystems (and hence the represented processes), based on the extent of the study region. The implementation of the FUTURES modeling framework for a specific case study follows the observational modeling approach described in Grimm et al. (2005), starting from the analysis of empirical data in order to capture the processes relevant for specific scales and to allow a rigorous calibration and validation of the model application. In this paper, we give an introduction to the basic concept of our modeling approach and describe its strengths and weaknesses. We furthermore use empirical data for the states of North and South Carolina to demonstrate how the modeling framework can be applied to a large, heterogeneous study system with diverse decision-making agents. Grimm et al. (2005) Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science 310, 987-991. Liu et al. (2013) Framing Sustainability in a Telecoupled World. Ecology and Society 18(2), 26. Meentemeyer et al. (2013) FUTURES: Multilevel Simulations of Merging Urban-Rural Landscape Structure Using a Stochastic Patch-Growing Algorithm. Annals of the Association of American Geographers 103(4), 785-807.
Evolutionary game theory using agent-based methods.
Adami, Christoph; Schossau, Jory; Hintze, Arend
2016-12-01
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Berges, J. A.; Raphael, T.; Rafa Todd, C. S.; Bate, T. C.; Hellweger, F. L.
2016-02-01
Engaging undergraduate students in research projects that require expertise in multiple disciplines (e.g. cell biology, population ecology, and mathematical modeling) can be challenging because they have often not developed the expertise that allows them to participate at a satisfying level. Use of agent-based modeling can allow exploration of concepts at more intuitive levels, and encourage experimentation that emphasizes processes over computational skills. Over the past several years, we have involved undergraduate students in projects examining both ecological and cell biological aspects of aquatic microbial biology, using the freely-downloadable, agent-based modeling environment NetLogo (https://ccl.northwestern.edu/netlogo/). In Netlogo, actions of large numbers of individuals can be simulated, leading to complex systems with emergent behavior. The interface features appealing graphics, monitors, and control structures. In one example, a group of sophomores in a BioMathematics program developed an agent-based model of phytoplankton population dynamics in a pond ecosystem, motivated by observed macroscopic changes in cell numbers (due to growth and death), and driven by responses to irradiance, temperature and a limiting nutrient. In a second example, junior and senior undergraduates conducting Independent Studies created a model of the intracellular processes governing stress and cell death for individual phytoplankton cells (based on parameters derived from experiments using single-cell culturing and flow cytometry), and then this model was embedded in the agents in the pond ecosystem model. In our experience, students with a range of mathematical abilities learned to code quickly and could use the software with varying degrees of sophistication, for example, creation of spatially-explicit two and three-dimensional models. Skills developed quickly and transferred readily to other platforms (e.g. Matlab).
NASA Astrophysics Data System (ADS)
Tanimoto, Jun
2016-11-01
Inspired by the commonly observed real-world fact that people tend to behave in a somewhat random manner after facing interim equilibrium to break a stalemate situation whilst seeking a higher output, we established two models of the spatial prisoner's dilemma. One presumes that an agent commits action errors, while the other assumes that an agent refers to a payoff matrix with an added random noise instead of an original payoff matrix. A numerical simulation revealed that mechanisms based on the annealing of randomness due to either the action error or the payoff noise could significantly enhance the cooperation fraction. In this study, we explain the detailed enhancement mechanism behind the two models by referring to the concepts that we previously presented with respect to evolutionary dynamic processes under the names of enduring and expanding periods.
Rural-Urban Migration in D-Dimensional Lattices
NASA Astrophysics Data System (ADS)
Espíndola, Aquino L.; Penna, T. J. P.; Silveira, Jaylson J.
The rural-urban migration phenomenon is analyzed by using an agent-based computational model. Agents are placed on lattices which dimensions varying from d =2 up to d =7. The localization of the agents in the lattice defines that their social neighborhood (rural or urban) is not related to their spatial distribution. The effect of the dimension of lattice is studied by analyzing the variation of the main parameters that characterizes the migratory process. The dynamics displays strong effects even for around one million of sites, in higher dimensions (d =6, 7).
Uncertainty in a spatial evacuation model
NASA Astrophysics Data System (ADS)
Mohd Ibrahim, Azhar; Venkat, Ibrahim; Wilde, Philippe De
2017-08-01
Pedestrian movements in crowd motion can be perceived in terms of agents who basically exhibit patient or impatient behavior. We model crowd motion subject to exit congestion under uncertainty conditions in a continuous space and compare the proposed model via simulations with the classical social force model. During a typical emergency evacuation scenario, agents might not be able to perceive with certainty the strategies of opponents (other agents) owing to the dynamic changes entailed by the neighborhood of opponents. In such uncertain scenarios, agents will try to update their strategy based on their own rules or their intrinsic behavior. We study risk seeking, risk averse and risk neutral behaviors of such agents via certain game theory notions. We found that risk averse agents tend to achieve faster evacuation time whenever the time delay in conflicts appears to be longer. The results of our simulations also comply with previous work and conform to the fact that evacuation time of agents becomes shorter once mutual cooperation among agents is achieved. Although the impatient strategy appears to be the rational strategy that might lead to faster evacuation times, our study scientifically shows that the more the agents are impatient, the slower is the egress time.
Ajelli, Marco; Gonçalves, Bruno; Balcan, Duygu; Colizza, Vittoria; Hu, Hao; Ramasco, José J; Merler, Stefano; Vespignani, Alessandro
2010-06-29
In recent years large-scale computational models for the realistic simulation of epidemic outbreaks have been used with increased frequency. Methodologies adapt to the scale of interest and range from very detailed agent-based models to spatially-structured metapopulation models. One major issue thus concerns to what extent the geotemporal spreading pattern found by different modeling approaches may differ and depend on the different approximations and assumptions used. We provide for the first time a side-by-side comparison of the results obtained with a stochastic agent-based model and a structured metapopulation stochastic model for the progression of a baseline pandemic event in Italy, a large and geographically heterogeneous European country. The agent-based model is based on the explicit representation of the Italian population through highly detailed data on the socio-demographic structure. The metapopulation simulations use the GLobal Epidemic and Mobility (GLEaM) model, based on high-resolution census data worldwide, and integrating airline travel flow data with short-range human mobility patterns at the global scale. The model also considers age structure data for Italy. GLEaM and the agent-based models are synchronized in their initial conditions by using the same disease parameterization, and by defining the same importation of infected cases from international travels. The results obtained show that both models provide epidemic patterns that are in very good agreement at the granularity levels accessible by both approaches, with differences in peak timing on the order of a few days. The relative difference of the epidemic size depends on the basic reproductive ratio, R0, and on the fact that the metapopulation model consistently yields a larger incidence than the agent-based model, as expected due to the differences in the structure in the intra-population contact pattern of the approaches. The age breakdown analysis shows that similar attack rates are obtained for the younger age classes. The good agreement between the two modeling approaches is very important for defining the tradeoff between data availability and the information provided by the models. The results we present define the possibility of hybrid models combining the agent-based and the metapopulation approaches according to the available data and computational resources.
NASA Astrophysics Data System (ADS)
Box, Paul W.
GIS and spatial analysis is suited mainly for static pictures of the landscape, but many of the processes that need exploring are dynamic in nature. Dynamic processes can be complex when put in a spatial context; our ability to study such processes will probably come with advances in understanding complex systems in general. Cellular automata and agent-based models are two prime candidates for exploring complex spatial systems, but are difficult to implement. Innovative tools that help build complex simulations will create larger user communities, who will probably find novel solutions for understanding complexity. A significant source for such innovations is likely to be from the collective efforts of hobbyists and part-time programmers, who have been dubbed ``garage-band scientists'' in the popular press.
Integrating Agent Models of Subsistence Farming With Dynamic Models of Water Distribution
NASA Astrophysics Data System (ADS)
Bithell, M.; Brasington, J.
2004-12-01
Subsistence farming communities are dependent on the landscape to provide the resource base upon which their societies can be built. A key component of this is the role of climate, and the feedback between rainfall, crop growth and land clearance, and their coupling to the hydrological cycle. Temporal fluctuations in rainfall on timescales from annual through to decadal and longer, and the associated changes in in the spatial distribution of water availability mediated by the soil-type, slope and landcover determine the locations within the landscape that can support agriculture, and control sustainability of farming practices. We seek to make an integrated modelling system to represent land use change by coupling an agent based model of subsistence farming, and the associated exploitation of natural resources, to a realistic representation of the hydrology at the catchment scale, using TOPMODEL to map the spatial distribution of crop water stress for given time-series of rainfall. In this way we can, for example, investigate how demographic changes and associated removal of forest cover influence the possibilities for field locations within the catchment, through changes in ground water availability. The framework for this modelling exercise will be presented and preliminary results from this system will be discussed.
Using a cellular model to explore human-facilitated spread of risk of EAB in Minnesota
Anantha Prasad; Louis Iverson; Matthew Peters; Steve Matthews
2011-01-01
The Emerald Ash Borer has made inroads to Minnesota in the past two years, killing ash trees. We use our spatially explicit cell based model called EAB-SHIFT to calculate the risk of infestation owing to flight characteristics and short distance movement of the insect (insect flight model, IFM), and the human facilitated agents like roads, campgrounds etc. (insect ride...
X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents
Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph
2014-01-01
Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797
BatSLAM: Simultaneous localization and mapping using biomimetic sonar.
Steckel, Jan; Peremans, Herbert
2013-01-01
We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.
BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar
Steckel, Jan; Peremans, Herbert
2013-01-01
We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building. PMID:23365647
Improving Agent Based Models and Validation through Data Fusion
Laskowski, Marek; Demianyk, Bryan C.P.; Friesen, Marcia R.; McLeod, Robert D.; Mukhi, Shamir N.
2011-01-01
This work is contextualized in research in modeling and simulation of infection spread within a community or population, with the objective to provide a public health and policy tool in assessing the dynamics of infection spread and the qualitative impacts of public health interventions. This work uses the integration of real data sources into an Agent Based Model (ABM) to simulate respiratory infection spread within a small municipality. Novelty is derived in that the data sources are not necessarily obvious within ABM infection spread models. The ABM is a spatial-temporal model inclusive of behavioral and interaction patterns between individual agents on a real topography. The agent behaviours (movements and interactions) are fed by census / demographic data, integrated with real data from a telecommunication service provider (cellular records) and person-person contact data obtained via a custom 3G Smartphone application that logs Bluetooth connectivity between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The work demonstrates opportunities in data mining and fusion that can be used by policy and decision makers. The data become real-world inputs into individual SIR disease spread models and variants, thereby building credible and non-intrusive models to qualitatively simulate and assess public health interventions at the population level. PMID:23569606
Improving Agent Based Models and Validation through Data Fusion.
Laskowski, Marek; Demianyk, Bryan C P; Friesen, Marcia R; McLeod, Robert D; Mukhi, Shamir N
2011-01-01
This work is contextualized in research in modeling and simulation of infection spread within a community or population, with the objective to provide a public health and policy tool in assessing the dynamics of infection spread and the qualitative impacts of public health interventions. This work uses the integration of real data sources into an Agent Based Model (ABM) to simulate respiratory infection spread within a small municipality. Novelty is derived in that the data sources are not necessarily obvious within ABM infection spread models. The ABM is a spatial-temporal model inclusive of behavioral and interaction patterns between individual agents on a real topography. The agent behaviours (movements and interactions) are fed by census / demographic data, integrated with real data from a telecommunication service provider (cellular records) and person-person contact data obtained via a custom 3G Smartphone application that logs Bluetooth connectivity between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The work demonstrates opportunities in data mining and fusion that can be used by policy and decision makers. The data become real-world inputs into individual SIR disease spread models and variants, thereby building credible and non-intrusive models to qualitatively simulate and assess public health interventions at the population level.
Li, Qianqian; Yang, Tao; Zhao, Erbo; Xia, Xing’ang; Han, Zhangang
2013-01-01
There has been an increasing interest in the geographic aspects of economic development, exemplified by P. Krugman’s logical analysis. We show in this paper that the geographic aspects of economic development can be modeled using multi-agent systems that incorporate multiple underlying factors. The extent of information sharing is assumed to be a driving force that leads to economic geographic heterogeneity across locations without geographic advantages or disadvantages. We propose an agent-based market model that considers a spectrum of different information-sharing mechanisms: no information sharing, information sharing among friends and pheromone-like information sharing. Finally, we build a unified model that accommodates all three of these information-sharing mechanisms based on the number of friends who can share information. We find that the no information-sharing model does not yield large economic zones, and more information sharing can give rise to a power-law distribution of market size that corresponds to the stylized fact of city size and firm size distributions. The simulations show that this model is robust. This paper provides an alternative approach to studying economic geographic development, and this model could be used as a test bed to validate the detailed assumptions that regulate real economic agglomeration. PMID:23484007
Agent-based modelling of consumer energy choices
NASA Astrophysics Data System (ADS)
Rai, Varun; Henry, Adam Douglas
2016-06-01
Strategies to mitigate global climate change should be grounded in a rigorous understanding of energy systems, particularly the factors that drive energy demand. Agent-based modelling (ABM) is a powerful tool for representing the complexities of energy demand, such as social interactions and spatial constraints. Unlike other approaches for modelling energy demand, ABM is not limited to studying perfectly rational agents or to abstracting micro details into system-level equations. Instead, ABM provides the ability to represent behaviours of energy consumers -- such as individual households -- using a range of theories, and to examine how the interaction of heterogeneous agents at the micro-level produces macro outcomes of importance to the global climate, such as the adoption of low-carbon behaviours and technologies over space and time. We provide an overview of ABM work in the area of consumer energy choices, with a focus on identifying specific ways in which ABM can improve understanding of both fundamental scientific and applied aspects of the demand side of energy to aid the design of better policies and programmes. Future research needs for improving the practice of ABM to better understand energy demand are also discussed.
An individual-based process model to simulate landscape-scale forest ecosystem dynamics
Rupert Seidl; Werner Rammer; Robert M. Scheller; Thomas Spies
2012-01-01
Forest ecosystem dynamics emerges from nonlinear interactions between adaptive biotic agents (i.e., individual trees) and their relationship with a spatially and temporally heterogeneous abiotic environment. Understanding and predicting the dynamics resulting from these complex interactions is crucial for the sustainable stewardship of ecosystems, particularly in the...
Epstein, Joshua M.; Pankajakshan, Ramesh; Hammond, Ross A.
2011-01-01
We introduce a novel hybrid of two fields—Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)—as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool. PMID:21687788
Modeling physiological resistance in bacterial biofilms.
Cogan, N G; Cortez, Ricardo; Fauci, Lisa
2005-07-01
A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.
NASA Astrophysics Data System (ADS)
Weron, Tomasz; Kowalska-Pyzalska, Anna; Weron, Rafał
2018-09-01
Using an agent-based modeling approach we examine the impact of educational programs and trainings on the diffusion of smart metering platforms (SMPs). We also investigate how social responses, like conformity or independence, mass-media advertising as well as opinion stability impact the transition from predecisional and preactional behavioral stages (opinion formation) to actional and postactional stages (decision-making) of individual electricity consumers. We find that mass-media advertising (i.e., a global external field) and educational trainings (i.e., a local external field) lead to similar, though not identical adoption rates. Secondly, that spatially concentrated 'group' trainings are never worse than randomly scattered ones, and for a certain range of parameters are significantly better. Finally, that by manipulating the time required by an agent to make a decision, e.g., through promotions, we can speed up or slow down the diffusion of SMPs.
A coupled modeling framework for sustainable watershed management in transboundary river basins
NASA Astrophysics Data System (ADS)
Furqan Khan, Hassaan; Yang, Y. C. Ethan; Xie, Hua; Ringler, Claudia
2017-12-01
There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural-human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco-hydrological indicators at both the agent and basin-wide levels to shed light on holistic FWEE management policies in these two basins.
Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis
2018-06-06
The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.
Linking MODFLOW with an agent-based land-use model to support decision making
Reeves, H.W.; Zellner, M.L.
2010-01-01
The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.
NASA Astrophysics Data System (ADS)
Ghavami, Seyed Morsal; Taleai, Mohammad
2017-04-01
Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.
Towards a 3d Spatial Urban Energy Modelling Approach
NASA Astrophysics Data System (ADS)
Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.
2013-09-01
Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.
Nonlinearity in Social Service Evaluation: A Primer on Agent-Based Modeling
ERIC Educational Resources Information Center
Israel, Nathaniel; Wolf-Branigin, Michael
2011-01-01
Measurement of nonlinearity in social service research and evaluation relies primarily on spatial analysis and, to a lesser extent, social network analysis. Recent advances in geographic methods and computing power, however, allow for the greater use of simulation methods. These advances now enable evaluators and researchers to simulate complex…
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek
2015-04-01
Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged concentration values. We demonstrate the approach by using six land use regression (LUR) models developed in the ESCAPE (European Study of Cohorts for Air Pollution Effects) project. These models calculate several air pollutants (e.g. NO2, NOx, PM2.5) for the entire Netherlands at a high (5 m) resolution. Using these air pollution maps, we compare exposure of individuals calculated at their x, y location of their home, their work place, and aggregated over the close surroundings of these locations. In addition, total exposure is accumulated over daily activity patterns, summing exposure at home, at the work place, and while travelling between home and workplace, by routing individuals over the Dutch road network, using the shortest route. Finally, we illustrate how routes can be calculated with the minimum total exposure (instead of shortest distance).
NASA Astrophysics Data System (ADS)
Capitán, José A.; Manrubia, Susanna
2015-12-01
The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.
Capitán, José A; Manrubia, Susanna
2015-12-01
The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.
Modeling Effects of Local Extinctions on Culture Change and Diversity in the Paleolithic
Premo, L. S.; Kuhn, Steven L.
2010-01-01
The persistence of early stone tool technologies has puzzled archaeologists for decades. Cognitively based explanations, which presume either lack of ability to innovate or extreme conformism, do not account for the totality of the empirical patterns. Following recent research, this study explores the effects of demographic factors on rates of culture change and diversification. We investigate whether the appearance of stability in early Paleolithic technologies could result from frequent extinctions of local subpopulations within a persistent metapopulation. A spatially explicit agent-based model was constructed to test the influence of local extinction rate on three general cultural patterns that archaeologists might observe in the material record: total diversity, differentiation among spatially defined groups, and the rate of cumulative change. The model shows that diversity, differentiation, and the rate of cumulative cultural change would be strongly affected by local extinction rates, in some cases mimicking the results of conformist cultural transmission. The results have implications for understanding spatial and temporal patterning in ancient material culture. PMID:21179418
ERIC Educational Resources Information Center
Ballas, D.; Clarke, G. P.; Wiemers, E.
2006-01-01
Microsimulation attempts to describe economic and social events by modelling the behaviour of individual agents. These models have proved useful in evaluating the impact of policy changes at the micro level. Spatial microsimulation models contain geographic information and allow for a regional or local approach to policy analysis. This paper…
Aziz, H. M. Abdul; Park, Byung H.; Morton, April M.; ...
2017-11-24
Active transportation modes--walk and bicycle--are central for low carbon transport, healthy living, and complete streets initiative. Building a community with amenable walk and bicycle facilities asks for smart planning and investments. It is critical to investigate the impact of infrastructure building or expansion on the overall walk and bicycle mode usage prior to making investment choices utilizing public tax money. This research developed an agent-based model to support investment decisions that allows to assess the impact of changes in walk-bike infrastructures at a high spatial resolution (e.g., block group level). The agent-based model (ABM) utilizes data from a synthetic populationmore » simulator generating agents with corresponding socio-demographic characteristics, and integrates facility attributes regarding walking and bicycling (e.g., sidewalk width, bike lane length) into the mode choice decision making process. Moreover, the ABM accounts for the effect of social interactions among agents who live and work at the same geographic locations. Finally, GIS-based maps are developed at block group resolution that allows exploring the effect of walk-bike infrastructure related investments. The results from New York City case study indicate that infrastructure investments such as widening sidewalk and increasing bike lane network can positively influence the active transportation mode choices. In addition, the level of impact varies with geographic locations--different boroughs of New York City will have different impacts. Lastly, social promotions resulting in higher social interaction among agents can reinforce the impacts of infrastructure changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Park, Byung H.; Morton, April M.
Active transportation modes--walk and bicycle--are central for low carbon transport, healthy living, and complete streets initiative. Building a community with amenable walk and bicycle facilities asks for smart planning and investments. It is critical to investigate the impact of infrastructure building or expansion on the overall walk and bicycle mode usage prior to making investment choices utilizing public tax money. This research developed an agent-based model to support investment decisions that allows to assess the impact of changes in walk-bike infrastructures at a high spatial resolution (e.g., block group level). The agent-based model (ABM) utilizes data from a synthetic populationmore » simulator generating agents with corresponding socio-demographic characteristics, and integrates facility attributes regarding walking and bicycling (e.g., sidewalk width, bike lane length) into the mode choice decision making process. Moreover, the ABM accounts for the effect of social interactions among agents who live and work at the same geographic locations. Finally, GIS-based maps are developed at block group resolution that allows exploring the effect of walk-bike infrastructure related investments. The results from New York City case study indicate that infrastructure investments such as widening sidewalk and increasing bike lane network can positively influence the active transportation mode choices. In addition, the level of impact varies with geographic locations--different boroughs of New York City will have different impacts. Lastly, social promotions resulting in higher social interaction among agents can reinforce the impacts of infrastructure changes.« less
Evers, Ellen; de Vries, Han; Spruijt, Berry M.; Sterck, Elisabeth H. M.
2011-01-01
In group-living animals, such as primates, the average spatial group structure often reflects the dominance hierarchy, with central dominants and peripheral subordinates. This central-peripheral group structure can arise by self-organization as a result of subordinates fleeing from dominants after losing a fight. However, in real primates, subordinates often avoid interactions with potentially aggressive group members, thereby preventing aggression and subsequent fleeing. Using agent-based modeling, we investigated which spatial and encounter structures emerge when subordinates also avoid known potential aggressors at a distance as compared with the model which only included fleeing after losing a fight (fleeing model). A central-peripheral group structure emerged in most conditions. When avoidance was employed at small or intermediate distances, centrality of dominants emerged similar to the fleeing model, but in a more pronounced way. This result was also found when fleeing after a fight was made independent of dominance rank, i.e. occurred randomly. Employing avoidance at larger distances yielded more spread out groups. This provides a possible explanation of larger group spread in more aggressive species. With avoidance at very large distances, spatially and socially distinct subgroups emerged. We also investigated how encounters were distributed amongst group members. In the fleeing model all individuals encountered all group members equally often, whereas in the avoidance model encounters occurred mostly among similar-ranking individuals. Finally, we also identified a very general and simple mechanism causing a central-peripheral group structure: when individuals merely differed in velocity, faster individuals automatically ended up at the periphery. In summary, a central-peripheral group pattern can easily emerge from individual variation in different movement properties in general, such as fleeing, avoidance or velocity. Moreover, avoidance behavior also affects the encounter structure and can lead to subgroup formation. PMID:22125595
Schültke, Elisabeth; Fiedler, Stefan; Nemoz, Christian; Ogieglo, Lissa; Kelly, Michael E; Crawford, Paul; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Le Duc, Geraldine; Juurlink, Bernhard; Meguro, Kotoo
2010-03-01
K-edge digital subtraction angiography (KEDSA) combined with the tunability of synchrotron beam yields an imaging technique that is highly sensitive to low concentrations of contrast agents. Thus, contrast agent can be administered intravenously, obviating the need for insertion of a guided catheter to deliver a bolus of contrast agent close to the target tissue. With the high-resolution detectors used at synchrotron facilities, images can be acquired at high spatial resolution. Thus, the KEDSA appears particularly suited for studies of neurovascular pathology in animal models, where the vascular diameters are significantly smaller than in human patients. This feasibility study was designed to test the suitability of KEDSA after intravenous injection of iodine-based contrast agent for use in a pig model. Four adult male pigs were used for our experiments. Neurovascular angiographic images were acquired using KEDSA with a solid state Germanium (Ge) detector at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. After intravenous injection of 0.9 ml/kg iodinated contrast agent (Xenetix), the peak iodine concentrations in the internal carotid and middle cerebral arteries reached 35 mg/ml. KEDSA images in radiography mode allowed the visualization of intracranial arteries of less than 1.5mm diameter. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Peck, Steven L
2014-10-01
It is becoming clear that handling the inherent complexity found in ecological systems is an essential task for finding ways to control insect pests of tropical livestock such as tsetse flies, and old and new world screwworms. In particular, challenging multivalent management programs, such as Area Wide Integrated Pest Management (AW-IPM), face daunting problems of complexity at multiple spatial scales, ranging from landscape level processes to those of smaller scales such as the parasite loads of individual animals. Daunting temporal challenges also await resolution, such as matching management time frames to those found on ecological and even evolutionary temporal scales. How does one deal with representing processes with models that involve multiple spatial and temporal scales? Agent-based models (ABM), combined with geographic information systems (GIS), may allow for understanding, predicting and managing pest control efforts in livestock pests. This paper argues that by incorporating digital ecologies in our management efforts clearer and more informed decisions can be made. I also point out the power of these models in making better predictions in order to anticipate the range of outcomes possible or likely. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.
Modeling of a production system using the multi-agent approach
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Sękala, A.; Banaś, W.
2017-08-01
The method that allows for the analysis of complex systems is a multi-agent simulation. The multi-agent simulation (Agent-based modeling and simulation - ABMS) is modeling of complex systems consisting of independent agents. In the case of the model of the production system agents may be manufactured pieces set apart from other types of agents like machine tools, conveyors or replacements stands. Agents are magazines and buffers. More generally speaking, the agents in the model can be single individuals, but you can also be defined as agents of collective entities. They are allowed hierarchical structures. It means that a single agent could belong to a certain class. Depending on the needs of the agent may also be a natural or physical resource. From a technical point of view, the agent is a bundle of data and rules describing its behavior in different situations. Agents can be autonomous or non-autonomous in making the decision about the types of classes of agents, class sizes and types of connections between elements of the system. Multi-agent modeling is a very flexible technique for modeling and model creating in the convention that could be adapted to any research problem analyzed from different points of views. One of the major problems associated with the organization of production is the spatial organization of the production process. Secondly, it is important to include the optimal scheduling. For this purpose use can approach multi-purposeful. In this regard, the model of the production process will refer to the design and scheduling of production space for four different elements. The program system was developed in the environment NetLogo. It was also used elements of artificial intelligence. The main agent represents the manufactured pieces that, according to previously assumed rules, generate the technological route and allow preprint the schedule of that line. Machine lines, reorientation stands, conveyors and transport devices also represent the other type of agent that are utilized in the described simulation. The article presents the idea of an integrated program approach and shows the resulting production layout as a virtual model. This model was developed in the NetLogo multi-agent program environment.
NASA Astrophysics Data System (ADS)
Cao, Lina
Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that population density was one of the most important parameters affecting the SNV dynamics. The results also indicated that habitat disturbance could increase hantavirus transmission likely by increasing the movement and consequently contact rates. However, the model suggested that habitat disturbance had a much stronger effect on prevalence by decreasing population density than by increasing mice movement. Therefore, overall habitat disturbance reduces SNV prevalence.
An agent-based model for water management and planning in the Lake Naivasha basin, Kenya
NASA Astrophysics Data System (ADS)
van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne
2013-04-01
A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes are managed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppard, Colin; Waraich, Rashid; Campbell, Andrew
This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand. BEAM is an agent-based model of PEV mobility and charging behavior designed as an extension to MATSim (the Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco Bay Area and conduct a preliminary calibration and validation of its prediction of charging load based on observed charging infrastructure utilization for the region in 2016. We then explore the impact of a variety of common modeling assumptions in the literature regarding chargingmore » infrastructure availability and driver behavior. We find that accurately reproducing observed charging patterns requires an explicit representation of spatially disaggregated charging infrastructure as well as a more nuanced model of the decision to charge that balances tradeoffs people make with regards to time, cost, convenience, and range anxiety.« less
Modeling Temporal and Spatial Flows of Ecosystem Services in Chittenden County, VT
NASA Astrophysics Data System (ADS)
Voigt, B. G.; Bagstad, K.; Johnson, G.; Villa, F.
2010-12-01
This paper documents the integration of ARIES (ARtificial Intelligence for Ecosystem Services) with the land use change model UrbanSim to explore the impacts of current and future land use patterns on flood protection and water provision services in Chittenden County, VT. ARIES, an open source modeling platform, is particularly well-suited for measuring, mapping, and modeling the temporal and spatial flows of ecosystem services across the landscape, linking the areas of provision (sources) with human beneficiaries (users) through a spatially explicit agent-based modeling approach. UrbanSim is an open source agent-based land use model designed to facilitate a wide-range of scenarios based on user-specified behavioral assumptions, zoning regulations, and demographic, economic, and infrastructure (e.g. transportation, water, sewer, etc.) parameters. Ecosystem services travel through time and space and are susceptible to disruption and destruction from both natural and anthropogenic perturbations. The conversion of forested or agricultural land to urbanizing uses is replete with a long history of hydrologic impairment, habitat fragmentation, and the degradation of sensitive landscapes. Development decisions are predicated on the presence of landscape characteristics that meet the needs of developers and satisfy the desires of consumers, with minimal consideration of access to or effect on the provision of ecosystem services. The County houses nearly 25% of the state’s population and several employment centers that draw labor from throughout the region. Additionally, the County is expected to maintain modest residential and employment growth over the next 30 years, and will continue to serve as the state’s population and employment center. Expected future growth is likely to adversely affect the remaining farm and forest land in the County in the absence of policies to support sustainable development. We demonstrate how ARIES can be used to quantify changes in ecosystem service provision based on the outcomes of alternative land use change model scenarios. Stakeholder workshops were hosted to develop scenarios relevant to planning for future growth in the County, including alternative zoning regulations, road network improvements, and a range of future population projections. The results of the land use change simulations were passed to ARIES to model flood protection and water provision services for each of the alternative scenarios. We present Bayesian models of the ecosystem services as individual source, sink, and use components coupled with models of temporal and spatial flows of services across the landscape. Specific beneficiaries include homeowners, farmers, and other business property owners. The location choice decisions of residential and non-residential agents under the alternative scenarios resulted in varying access to ecosystem services depending on development density, habitat fragmentation, and the degree of hydrological impairment, among other factors. Modeled outputs include maps depicting flow paths (linking sources to beneficiaries), changes in land use, hotspot locations that are critical to sustain the flow of services across the landscape, and the demand for and supply of the modeled services.
The coevolution of partner switching and strategy updating in non-excludable public goods game
NASA Astrophysics Data System (ADS)
Li, Yixiao; Shen, Bin
2013-10-01
Spatial public goods game is a popular metaphor to model the dilemma of collective cooperation on graphs, yet the non-excludable property of public goods has seldom been considered in previous models. Based upon a coevolutionary model where agents play public goods games and adjust their partnerships, the present model incorporates the non-excludable property of public goods: agents are able to adjust their participation in the games hosted by others, whereas they cannot exclude others from their own games. In the coevolution, a directed and dynamical network which represents partnerships among autonomous agents is evolved. We find that non-excludable property counteracts the positive effect of partner switching, i.e., the equilibrium level of cooperation is lower than that in the situation of excludable public goods game. Therefore, we study the effect of individual punishment that cooperative agents pay a personal cost to decrease benefits of those defective neighbors who participate in their hosted games. It is found that the cooperation level in the whole population is heightened in the presence of such a costly behavior.
NASA Astrophysics Data System (ADS)
Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.
2012-08-01
In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.
Modelling the perennial energy crop market: the role of spatial diffusion
Alexander, Peter; Moran, Dominic; Rounsevell, Mark D. A.; Smith, Pete
2013-01-01
Biomass produced from energy crops, such as Miscanthus and short rotation coppice is expected to contribute to renewable energy targets, but the slower than anticipated development of the UK market implies the need for greater understanding of the factors that govern adoption. Here, we apply an agent-based model of the UK perennial energy crop market, including the contingent interaction of supply and demand, to understand the spatial and temporal dynamics of energy crop adoption. Results indicate that perennial energy crop supply will be between six and nine times lower than previously published, because of time lags in adoption arising from a spatial diffusion process. The model simulates time lags of at least 20 years, which is supported empirically by the analogue of oilseed rape adoption in the UK from the 1970s. This implies the need to account for time lags arising from spatial diffusion in evaluating land-use change, climate change (mitigation or adaptation) or the adoption of novel technologies. PMID:24026474
Modelling the perennial energy crop market: the role of spatial diffusion.
Alexander, Peter; Moran, Dominic; Rounsevell, Mark D A; Smith, Pete
2013-11-06
Biomass produced from energy crops, such as Miscanthus and short rotation coppice is expected to contribute to renewable energy targets, but the slower than anticipated development of the UK market implies the need for greater understanding of the factors that govern adoption. Here, we apply an agent-based model of the UK perennial energy crop market, including the contingent interaction of supply and demand, to understand the spatial and temporal dynamics of energy crop adoption. Results indicate that perennial energy crop supply will be between six and nine times lower than previously published, because of time lags in adoption arising from a spatial diffusion process. The model simulates time lags of at least 20 years, which is supported empirically by the analogue of oilseed rape adoption in the UK from the 1970s. This implies the need to account for time lags arising from spatial diffusion in evaluating land-use change, climate change (mitigation or adaptation) or the adoption of novel technologies.
NASA Astrophysics Data System (ADS)
Fuentes-Cabrera, Miguel; Anderson, John D.; Wilmoth, Jared; Ginovart, Marta; Prats, Clara; Portell-Canal, Xavier; Retterer, Scott
Microbial interactions are critical for governing community behavior and structure in natural environments. Examination of microbial interactions in the lab involves growth under ideal conditions in batch culture; conditions that occur in nature are, however, characterized by disequilibrium. Of particular interest is the role that system variables play in shaping cell-to-cell interactions and organization at ultrafine spatial scales. We seek to use experiments and agent-based modeling to help discover mechanisms relevant to microbial dynamics and interactions in the environment. Currently, we are using an agent-based model to simulate microbial growth, dynamics and interactions that occur on a microwell-array device developed in our lab. Bacterial cells growing in the microwells of this platform can be studied with high-throughput and high-content image analyses using brightfield and fluorescence microscopy. The agent-based model is written in the language Netlogo, which in turn is ''plugged into'' a computational framework that allows submitting many calculations in parallel for different initial parameters; visualizing the outcomes in an interactive phase-like diagram; and searching, with a genetic algorithm, for the parameters that lead to the most optimal simulation outcome.
Pérez-Rodríguez, Gael; Dias, Sónia; Pérez-Pérez, Martín; Fdez-Riverola, Florentino; Azevedo, Nuno F; Lourenço, Anália
2018-03-08
Experimental incapacity to track microbe-microbe interactions in structures like biofilms, and the complexity inherent to the mathematical modelling of those interactions, raises the need for feasible, alternative modelling approaches. This work proposes an agent-based representation of the diffusion of N-acyl homoserine lactones (AHL) in a multicellular environment formed by Pseudomonas aeruginosa and Candida albicans. Depending on the spatial location, C. albicans cells were variably exposed to AHLs, an observation that might help explain why phenotypic switching of individual cells in biofilms occurred at different time points. The simulation and algebraic results were similar for simpler scenarios, although some statistical differences could be observed (p < 0.05). The model was also successfully applied to a more complex scenario representing a small multicellular environment containing C. albicans and P. aeruginosa cells encased in a 3-D matrix. Further development of this model may help create a predictive tool to depict biofilm heterogeneity at the single-cell level.
NASA Astrophysics Data System (ADS)
Chen, L. Leon; Ulmer, Stephan; Deisboeck, Thomas S.
2010-01-01
We present an application of a previously developed agent-based glioma model (Chen et al 2009 Biosystems 95 234-42) for predicting spatio-temporal tumor progression using a patient-specific MRI lattice derived from apparent diffusion coefficient (ADC) data. Agents representing collections of migrating glioma cells are initialized based upon voxels at the outer border of the tumor identified on T1-weighted (Gd+) MRI at an initial time point. These simulated migratory cells exhibit a specific biologically inspired spatial search paradigm, representing a weighting of the differential contribution from haptotactic permission and biomechanical resistance on the migration decision process. ADC data from 9 months after the initial tumor resection were used to select the best search paradigm for the simulation, which was initiated using data from 6 months after the initial operation. Using this search paradigm, 100 simulations were performed to derive a probabilistic map of tumor invasion locations. The simulation was able to successfully predict a recurrence in the dorsal/posterior aspect long before it was depicted on T1-weighted MRI, 18 months after the initial operation.
Chen, L Leon; Ulmer, Stephan; Deisboeck, Thomas S
2010-01-21
We present an application of a previously developed agent-based glioma model (Chen et al 2009 Biosystems 95 234-42) for predicting spatio-temporal tumor progression using a patient-specific MRI lattice derived from apparent diffusion coefficient (ADC) data. Agents representing collections of migrating glioma cells are initialized based upon voxels at the outer border of the tumor identified on T1-weighted (Gd+) MRI at an initial time point. These simulated migratory cells exhibit a specific biologically inspired spatial search paradigm, representing a weighting of the differential contribution from haptotactic permission and biomechanical resistance on the migration decision process. ADC data from 9 months after the initial tumor resection were used to select the best search paradigm for the simulation, which was initiated using data from 6 months after the initial operation. Using this search paradigm, 100 simulations were performed to derive a probabilistic map of tumor invasion locations. The simulation was able to successfully predict a recurrence in the dorsal/posterior aspect long before it was depicted on T1-weighted MRI, 18 months after the initial operation.
Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.
Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P
2010-02-18
Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.
Rose-Petruck, Christoph; Wands, Jack R.; Rand, Danielle; Derdak, Zoltan; Ortiz, Vivian
2016-04-19
Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.
Magliocca, Nicholas R.; Brown, Daniel G.; Ellis, Erle C.
2013-01-01
Rural populations are undergoing rapid changes in both their livelihoods and land uses, with associated impacts on ecosystems, global biogeochemistry, and climate change. A primary challenge is, thus, to explain these shifts in terms of the actors and processes operating within a variety of land systems in order to understand how land users might respond locally to future changes in broader-scale environmental and economic conditions. Using ‘induced intensification’ theory as a benchmark, we develop a generalized agent-based model to investigate mechanistic explanations of relationships between agricultural intensity and population density, environmental suitability, and market influence. Land-use and livelihood decisions modeled from basic micro-economic theories generated spatial and temporal patterns of agricultural intensification consistent with predictions of induced intensification theory. Further, agent actions in response to conditions beyond those described by induced intensification theory were explored, revealing that interactions among environmental constraints, population pressure, and market influence may produce transitions to multiple livelihood regimes of varying market integration. The result is new hypotheses that could modify and enrich understanding of the classic relationship between agricultural intensity and population density. The strength of this agent-based model and the experimental results is the generalized form of the decision-making processes underlying land-use and livelihood transitions, creating the prospect of a virtual laboratory for systematically generating hypotheses of how agent decisions and interactions relate to observed land-use and livelihood patterns across diverse land systems. PMID:24039892
Dendritic growth model of multilevel marketing
NASA Astrophysics Data System (ADS)
Pang, James Christopher S.; Monterola, Christopher P.
2017-02-01
Biologically inspired dendritic network growth is utilized to model the evolving connections of a multilevel marketing (MLM) enterprise. Starting from agents at random spatial locations, a network is formed by minimizing a distance cost function controlled by a parameter, termed the balancing factor bf, that weighs the wiring and the path length costs of connection. The paradigm is compared to an actual MLM membership data and is shown to be successful in statistically capturing the membership distribution, better than the previously reported agent based preferential attachment or analytic branching process models. Moreover, it recovers the known empirical statistics of previously studied MLM, specifically: (i) a membership distribution characterized by the existence of peak levels indicating limited growth, and (ii) an income distribution obeying the 80 - 20 Pareto principle. Extensive types of income distributions from uniform to Pareto to a "winner-take-all" kind are also modeled by varying bf. Finally, the robustness of our dendritic growth paradigm to random agent removals is explored and its implications to MLM income distributions are discussed.
Seal, John B; Alverdy, John C; Zaborina, Olga; An, Gary
2011-09-19
There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed--i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data--i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design--i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those hypotheses. Agent-based modeling can account for the spatio-temporal dynamics of an HPI, and, even when carried out with a relatively high degree of abstraction, can be useful in the investigation of system-level consequences of putative mechanisms operating at the individual agent level. We suggest that an integrated and iterative heuristic relationship between computational modeling and more traditional laboratory and clinical investigations, with a focus on identifying useful and sufficient degrees of abstraction, will enhance the efficiency and translational productivity of biomedical research.
2011-01-01
Background There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those hypotheses. Conclusions/Significance Agent-based modeling can account for the spatio-temporal dynamics of an HPI, and, even when carried out with a relatively high degree of abstraction, can be useful in the investigation of system-level consequences of putative mechanisms operating at the individual agent level. We suggest that an integrated and iterative heuristic relationship between computational modeling and more traditional laboratory and clinical investigations, with a focus on identifying useful and sufficient degrees of abstraction, will enhance the efficiency and translational productivity of biomedical research. PMID:21929759
Measure Landscape Diversity with Logical Scout Agents
NASA Astrophysics Data System (ADS)
Wirth, E.; Szabó, G.; Czinkóczky, A.
2016-06-01
The Common Agricultural Policy reform of the EU focuses on three long-term objectives: viable food production, sustainable management of natural resources and climate action with balanced territorial development. To achieve these goals, the EU farming and subsidizing policies (EEA, 2014) support landscape heterogeneity and diversity. Current paper introduces an agent-based method to calculate the potential of landscape diversity. The method tries to catch the nature of heterogeneity using logic and modelling as opposed to the traditional statistical reasoning. The outlined Random Walk Scouting algorithm registers the land cover crossings of the scout agents to a Monte Carlo integral. The potential is proportional with the composition and the configuration (spatial character) of the landscape. Based on the measured points a potential map is derived to give an objective and quantitative basis to the stakeholders (policy makers, farmers).
A Spatial Agent-Based Model for the Simulation of Adults’ Daily Walking Within a City
Yang, Yong; Roux, Ana V. Diez; Auchincloss, Amy H.; Rodriguez, Daniel A.; Brown, Daniel G.
2012-01-01
Environmental effects on walking behavior have received attention in recent years because of the potential for policy interventions to increase population levels of walking. Most epidemiologic studies describe associations of walking behavior with environmental features. These analyses ignore the dynamic processes that shape walking behaviors. A spatial agent-based model (ABM) was developed to simulate peoples’ walking behaviors within a city. Each individual was assigned properties such as age, SES, walking ability, attitude toward walking and a home location. Individuals perform different activities on a regular basis such as traveling for work, for shopping, and for recreation. Whether an individual walks and the amount she or he walks is a function distance to different activities and her or his walking ability and attitude toward walking. An individual’s attitude toward walking evolves over time as a function of past experiences, walking of others along the walking route, limits on distances walked per day, and attitudes toward walking of the other individuals within her/his social network. The model was calibrated and used to examine the contributions of land use and safety to socioeconomic differences in walking. With further refinement and validation, ABMs may help to better understand the determinants of walking and identify the most promising interventions to increase walking. PMID:21335269
Agent-based model with multi-level herding for complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-02-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.
Agent-based model with multi-level herding for complex financial systems
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-01-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427
NASA Astrophysics Data System (ADS)
Giupponi, Carlo; Mojtahed, Vahid
2017-04-01
Global climate and socio-economic drivers determine the future patterns of the allocation and the trade of resources and commodities in all markets. The agricultural sector is an emblematic case in which natural (e.g. climate), social (e.g. demography) and economic (e.g. the market) drivers of change interact, determining the evolution of social and ecological systems (or simply socio-ecosystems; SES) over time. In order to analyse the dynamics and possible future evolutions of SES, the combination of local complex systems and global drivers and trends require the development of multiscale approaches. At global level, climatic general circulation models (CGM) and computable general equilibrium or partial equilibrium models have been used for many years to explore the effects of global trends and generate future climate and socio-economic scenarios. Al local level, the inherent complexity of SESs and their spatial and temporal variabilities require different modelling approaches of physical/environmental sub-systems (e.g. field scale crop modelling, GIS-based models, etc.) and of human agency decision makers (e.g. agent based models). Global and local models have different assumption, limitations, constrains, etc., but in some cases integration is possible and several attempts are in progress to couple different models within the so-called Integrated Assessment Models. This work explores an innovative proposal to integrate the global and local approaches, where agent-based models (ABM) are used to simulate spatial (i.e. grid-based) and temporal dynamics of land and water resource use spatial and temporal dynamics, under the effect of global drivers. We focus in particular on how global change may affect land-use allocation at the local to regional level, under the influence of limited natural resources, land and water in particular. We specifically explore how constrains and competition for natural resources may induce non-linearities and discontinuities in socio-ecosystems behaviour. Our general ambition is to explore the feasibility of an approach that could be implemented worldwide through the identification of representative cases described by means of spatially explicit integrated simulations in communication with global modelling. Our specific objective is to test how ABMs can support scenario analysis at regional scale, and in particular how this can facilitate understanding of the role of human agency and its behavioural characteristics in local to global dynamics. The SES of interest is the agro-ecosystem with its relationships with other land uses. In order to test the feasibility of application at global level, all the information about land uses, natural resources, local climate, crop potential productions, etc. were derived from freely available spatial data sets covering the whole planet, which provided the ABM model with spatial information as matrices of pixels. Input maps were extracted from the Global Agro-Ecological Zone (GAEZ) web site of the Food and Agriculture Organization of the United Nations and compiled in the local GIS from where they were then converted in a format compatible with Matlab. In this initial application, an ABM prototype was developed in three test areas around the Mediterranean Basin, in agricultural regions of Tunisia, Italy and Spain.
Emergent Societal Effects of Crimino-Social Forces in an Animat Agent Model
NASA Astrophysics Data System (ADS)
Scogings, Chris J.; Hawick, Ken A.
Societal behaviour can be studied at a causal level by perturbing a stable multi-agent model with new microscopic behaviours and observing the statistical response over an ensemble of simulated model systems. We report on the effects of introducing criminal and law-enforcing behaviours into a large scale animat agent model and describe the complex spatial agent patterns and population changes that result. Our well-established predator-prey substrate model provides a background framework against which these new microscopic behaviours can be trialled and investigated. We describe some quantitative results and some surprising conclusions concerning the overall societal health when individually anti-social behaviour is introduced.
Demarest, Jeffrey; Pagsuyoin, Sheree; Learmonth, Gerard; Mellor, Jonathan; Dillingham, Rebecca
2014-01-01
Diarrhea, the second leading cause of child morbidity and mortality, can have detrimental effects in the physical and cognitive development of children in developing countries. Health interventions (e.g., increased access to health services and safe water) designed to address this problem are difficult to implement in resource-limited settings. In this paper, we present a tool for understanding the complex relationship between water and public health in rural areas of a developing country. A spatial and temporal agent-based model (ABM) was developed to simulate the current water, sanitation, and health status in two villages in Limpopo Province, South Africa. The model was calibrated using empirical data and published sources. It was used to simulate the effects of poor water quality on the frequency of diarrheal episodes in children, and consequently on child development. Preliminary simulation results show that at the current total coliform levels in the water sources of the studied villages, children are expected to experience stunting by as much as −1.0 standard deviations from the World Health Organization height norms. With minor modifications, the calibrated ABM can be used to design and evaluate intervention strategies for improving child health in these villages. The model can also be applied to other regions worldwide that face the same environmental challenges and conditions as the studied villages. PMID:25530709
A conceptual data model and modelling language for fields and agents
NASA Astrophysics Data System (ADS)
de Bakker, Merijn; de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek
2016-04-01
Modelling is essential in order to understand environmental systems. Environmental systems are heterogeneous because they consist of fields and agents. Fields have a value defined everywhere at all times, for example surface elevation and temperature. Agents are bounded in space and time and have a value only within their bounds, for example biomass of a tree crown or the speed of a car. Many phenomena have properties of both fields and agents. Although many systems contain both fields and agents and integration of these concepts would be required for modelling, existing modelling frameworks concentrate on either agent-based or field-based modelling and are often low-level programming frameworks. A concept is lacking that integrates fields and agents in a way that is easy to use for modelers who are not software engineers. To address this issue, we develop a conceptual data model that represents fields and agents uniformly. We then show how the data model can be used in a high-level modelling language. The data model represents fields and agents in space-time. Also relations and networks can be represented using the same concepts. Using the conceptual data model we can represent static and mobile agents that may have spatial and temporal variation within their extent. The concepts we use are phenomenon, property set, item, property, domain and value. The phenomenon is the thing that is modelled, which can be any real world thing, for example trees. A phenomenon usually consists of several items, e.g. single trees. The domain is the spatiotemporal location and/or extent for which the items in the phenomenon are defined. Multiple different domains can coexist for a given phenomenon. For example a domain describing the extent of the trees and a domain describing the stem locations. The same goes for the property, which is an attribute of the thing that is being modeled. A property has a value, which is possibly discretized, for example the biomass over the tree crown extent. Properties sharing the same domain are grouped into a property set. The conceptual data model is translated into a physical data model in de Jong et al. (2016, presented in the same session). We have designed a modelling language that allows domain specialists to build models without the programming efforts required by many programming environments. The language is based on the ideas of map algebra. We have defined data types that are associated with a phenomenon. These data types determine the behavior of the language when used as arguments in operations. The result is a concise language in which fields and agents can be combined in operations. We test the language in a case study modelling exposure to air pollution of commuting children. References De Jong, K, M. de Bakker, D. Karssenberg. 2016. A physical data model for fields and agents. European Geosciences Union, EGU General Assembly, 2016, Vienna.
Integrating GIS and ABM to Explore Spatiotemporal Dynamics
NASA Astrophysics Data System (ADS)
Sun, M.; Jiang, Y.; Yang, C.
2013-12-01
Agent-based modeling as a methodology for the bottom-up exploration with the account of adaptive behavior and heterogeneity of system components can help discover the development and pattern of the complex social and environmental system. However, ABM is a computationally intensive process especially when the number of system components becomes large and the agent-agent/agent-environmental interaction is modeled very complex. Most of traditional ABM frameworks developed based on CPU do not have a satisfying computing capacity. To address the problem and as the emergence of advanced techniques, GPU computing with CUDA can provide powerful parallel structure to enable the complex simulation of spatiotemporal dynamics. In this study, we first develop a GPU-based ABM system. Secondly, in order to visualize the dynamics generated from the movement of agent and the change of agent/environmental attributes during the simulation, we integrate GIS into the ABM system. Advanced geovisualization technologies can be utilized for representing the spatiotemporal change events, such as proper 2D/3D maps with state-of-the-art symbols, space-time cube and multiple layers each of which presents pattern in one time-stamp, etc. Thirdly, visual analytics which include interactive tools (e.g. grouping, filtering, linking, etc.) is included in our ABM-GIS system to help users conduct real-time data exploration during the progress of simulation. Analysis like flow analysis and spatial cluster analysis can be integrated according to the geographical problem we want to explore.
Welch, M C; Kwan, P W; Sajeev, A S M
2014-10-01
Agent-based modelling has proven to be a promising approach for developing rich simulations for complex phenomena that provide decision support functions across a broad range of areas including biological, social and agricultural sciences. This paper demonstrates how high performance computing technologies, namely General-Purpose Computing on Graphics Processing Units (GPGPU), and commercial Geographic Information Systems (GIS) can be applied to develop a national scale, agent-based simulation of an incursion of Old World Screwworm fly (OWS fly) into the Australian mainland. The development of this simulation model leverages the combination of massively data-parallel processing capabilities supported by NVidia's Compute Unified Device Architecture (CUDA) and the advanced spatial visualisation capabilities of GIS. These technologies have enabled the implementation of an individual-based, stochastic lifecycle and dispersal algorithm for the OWS fly invasion. The simulation model draws upon a wide range of biological data as input to stochastically determine the reproduction and survival of the OWS fly through the different stages of its lifecycle and dispersal of gravid females. Through this model, a highly efficient computational platform has been developed for studying the effectiveness of control and mitigation strategies and their associated economic impact on livestock industries can be materialised. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.
Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G
2016-08-02
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Voters' Fickleness:. a Mathematical Model
NASA Astrophysics Data System (ADS)
Boccara, Nino
This paper presents a spatial agent-based model in order to study the evolution of voters' choice during the campaign of a two-candidate election. Each agent, represented by a point inside a two-dimensional square, is under the influence of its neighboring agents, located at a Euclidean distance less than or equal to d, and under the equal influence of both candidates seeking to win its support. Moreover, each agent located at time t at a given point moves at the next timestep to a randomly selected neighboring location distributed normally around its position at time t. Besides their location in space, agents are characterized by their level of awareness, a real a ∈ [0, 1], and their opinion ω ∈ {-1, 0, +1}, where -1 and +1 represent the respective intentions to cast a ballot in favor of one of the two candidates while 0 indicates either disinterest or refusal to vote. The essential purpose of the paper is qualitative; its aim is to show that voters' fickleness is strongly correlated to the level of voters' awareness and the efficiency of candidates' propaganda.
NASA Astrophysics Data System (ADS)
Carcellar, B. G., III
2017-10-01
Museum exhibit management is one of the usual undertakings of museum facilitators. Art works must be strategically placed to achieve maximum viewing from the visitors. The positioning of the artworks also highly influences the quality of experience of the visitors. One solution in such problems is to utilize GIS and Agent-Based Modelling (ABM). In ABM, persistent interacting objects are modelled as agents. These agents are given attributes and behaviors that describe their properties as well as their motion. In this study, ABM approach that incorporates GIS is utilized to perform analyticcal assessment on the placement of the artworks in the Vargas Museum. GIS serves as the backbone for the spatial aspect of the simulation such as the placement of the artwork exhibits, as well as possible obstructions to perception such as the columns, walls, and panel boards. Visibility Analysis is also done to the model in GIS to assess the overall visibility of the artworks. The ABM is done using the initial GIS outputs and GAMA, an open source ABM software. Visitors are modelled as agents, moving inside the museum following a specific decision tree. The simulation is done in three use cases: the 10 %, 20 %, and 30 % chance of having a visitor in the next minute. For the case of the said museum, the 10 % chance is determined to be the closest simulation case to the actual and the recommended minimum time to achieve a maximum artwork perception is 1 hour and 40 minutes. Initial assessment of the results shows that even after 3 hours of simulation, small parts of the exhibit show lack of viewers, due to its distance from the entrance. A more detailed decision tree for the visitor agents can be incorporated to have a more realistic simulation.
Simulating the decentralized processes of the human immune system in a virtual anatomy model.
Sarpe, Vladimir; Jacob, Christian
2013-01-01
Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.
Fundamental properties of cooperative contagion processes
NASA Astrophysics Data System (ADS)
Chen, Li; Ghanbarnejad, Fakhteh; Brockmann, Dirk
2017-10-01
We investigate the effects of cooperativity between contagion processes that spread and persist in a host population. We propose and analyze a dynamical model in which individuals that are affected by one transmissible agent A exhibit a higher than baseline propensity of being affected by a second agent B and vice versa. The model is a natural extension of the traditional susceptible-infected-susceptible model used for modeling single contagion processes. We show that cooperativity changes the dynamics of the system considerably when cooperativity is strong. The system exhibits discontinuous phase transitions not observed in single agent contagion, multi-stability, a separation of the traditional epidemic threshold into different thresholds for inception and extinction as well as hysteresis. These properties are robust and are corroborated by stochastic simulations on lattices and generic network topologies. Finally, we investigate wave propagation and transients in a spatially extended version of the model and show that especially for intermediate values of baseline reproduction ratios the system is characterized by various types of wave-front speeds. The system can exhibit spatially heterogeneous stationary states for some parameters and negative front speeds (receding wave fronts). The two agent model can be employed as a starting point for more complex contagion processes, involving several interacting agents, a model framework particularly suitable for modeling the spread and dynamics of microbiological ecosystems in host populations.
MacMillan, Katherine; Monaghan, Andrew J.; Apangu, Titus; Griffith, Kevin S.; Mead, Paul S.; Acayo, Sarah; Acidri, Rogers; Moore, Sean M.; Mpanga, Joseph Tendo; Enscore, Russel E.; Gage, Kenneth L.; Eisen, Rebecca J.
2012-01-01
East Africa has been identified as a region where vector-borne and zoonotic diseases are most likely to emerge or re-emerge and where morbidity and mortality from these diseases is significant. Understanding when and where humans are most likely to be exposed to vector-borne and zoonotic disease agents in this region can aid in targeting limited prevention and control resources. Often, spatial and temporal distributions of vectors and vector-borne disease agents are predictable based on climatic variables. However, because of coarse meteorological observation networks, appropriately scaled and accurate climate data are often lacking for Africa. Here, we use a recently developed 10-year gridded meteorological dataset from the Advanced Weather Research and Forecasting Model to identify climatic variables predictive of the spatial distribution of human plague cases in the West Nile region of Uganda. Our logistic regression model revealed that within high elevation sites (above 1,300 m), plague risk was positively associated with rainfall during the months of February, October, and November and negatively associated with rainfall during the month of June. These findings suggest that areas that receive increased but not continuous rainfall provide ecologically conducive conditions for Yersinia pestis transmission in this region. This study serves as a foundation for similar modeling efforts of other vector-borne and zoonotic disease in regions with sparse observational meteorologic networks. PMID:22403328
Spatial Epidemic Modelling in Social Networks
NASA Astrophysics Data System (ADS)
Simoes, Joana Margarida
2005-06-01
The spread of infectious diseases is highly influenced by the structure of the underlying social network. The target of this study is not the network of acquaintances, but the social mobility network: the daily movement of people between locations, in regions. It was already shown that this kind of network exhibits small world characteristics. The model developed is agent based (ABM) and comprehends a movement model and a infection model. In the movement model, some assumptions are made about its structure and the daily movement is decomposed into four types: neighborhood, intra region, inter region and random. The model is Geographical Information Systems (GIS) based, and uses real data to define its geometry. Because it is a vector model, some optimization techniques were used to increase its efficiency.
An exploration of spatial patterns of seasonal diarrhoeal morbidity in Thailand.
McCormick, B J J; Alonso, W J; Miller, M A
2012-07-01
Studies of temporal and spatial patterns of diarrhoeal disease can suggest putative aetiological agents and environmental or socioeconomic drivers. Here, the seasonal patterns of monthly acute diarrhoeal morbidity in Thailand, where diarrhoeal morbidity is increasing, are explored. Climatic data (2003-2006) and Thai Ministry of Health annual reports (2003-2009) were used to construct a spatially weighted panel regression model. Seasonal patterns of diarrhoeal disease were generally bimodal with aetiological agents peaking at different times of the year. There is a strong association between daily mean temperature and precipitation and the incidence of hospitalization due to acute diarrhoea in Thailand leading to a distinct spatial pattern in the seasonal pattern of diarrhoea. Model performance varied across the country in relation to per capita GDP and population density. While climatic factors are likely to drive the general pattern of diarrhoeal disease in Thailand, the seasonality of diarrhoeal disease is dampened in affluent urban populations.
Holistic flood risk assessment using agent-based modelling: the case of Sint Maarten Island
NASA Astrophysics Data System (ADS)
Abayneh Abebe, Yared; Vojinovic, Zoran; Nikolic, Igor; Hammond, Michael; Sanchez, Arlex; Pelling, Mark
2015-04-01
Floods in coastal regions are regarded as one of the most dangerous and harmful disasters. Though commonly referred to as natural disasters, coastal floods are also attributable to various social, economic, historical and political issues. Rapid urbanisation in coastal areas combined with climate change and poor governance can lead to a significant increase in the risk of pluvial flooding coinciding with fluvial and coastal flooding posing a greater risk of devastation in coastal communities. Disasters that can be triggered by hydro-meteorological events are interconnected and interrelated with both human activities and natural processes. They, therefore, require holistic approaches to help understand their complexity in order to design and develop adaptive risk management approaches that minimise social and economic losses and environmental impacts, and increase resilience to such events. Being located in the North Atlantic Ocean, Sint Maarten is frequently subjected to hurricanes. In addition, the stormwater catchments and streams on Sint Maarten have several unique characteristics that contribute to the severity of flood-related impacts. Urban environments are usually situated in low-lying areas, with little consideration for stormwater drainage, and as such are subject to flash flooding. Hence, Sint Maarten authorities drafted policies to minimise the risk of flood-related disasters on the island. In this study, an agent-based model is designed and applied to understand the implications of introduced policies and regulations, and to understand how different actors' behaviours influence the formation, propagation and accumulation of flood risk. The agent-based model built for this study is based on the MAIA meta-model, which helps to decompose, structure and conceptualize socio-technical systems with an agent-oriented perspective, and is developed using the NetLogo simulation environment. The agents described in this model are households and businesses, and policies on spatial planning rules are implemented. Preliminary results demonstrate the evolving nature of flood risks and describe the effectiveness of different planning policies to reduce risk and increase resilience.
A Spatial-Dynamic Agent-based Model of Energy Crop Introduction in Jiangsu province, China
NASA Astrophysics Data System (ADS)
Shu, K.; Schneider, U. A.; Scheffran, J.
2012-12-01
Bioenergy, as one promising option to replace a fraction of conventional fossil fuels and lower net greenhouse gas emissions, has gained many countries', in particular developing ones' attention. Their focus is mainly on the design of efficient bioenergy utilization pathways which adapt to both local geographic features and economic conditions. The establishment of a biomass production sector would be the first and pivotal component in the whole industrial chain. Several existing studies have estimated the global biomass for energy potential but arrived at very different results. One reason for the large uncertainty of biomass potential may be ascribed to the diverse nature of biomass leading to different estimates in different circumstances. Therefore, specific research at the local level is essential. Following this thought, our research conducted in the Jiangsu province, a representative region in China, will explore the spatial distribution of biomass production. The employed methodology can also be applied to other locations both in China and similar developing countries if model parameters are adequately adjusted. In this study, we analyze the local situation in the Jiangsu province focusing on the selection of new energy crops, since the cultivation of dedicated crop for energy use is still in experimental phase. We also examine the land use conflict which is especially relevant to China with more than 1.3 billion people and a severe burden on food supply. We develop an agent-based model to find the optimal spatial distribution of biomass (SDA-SDB) in Jiangsu province. Compromising data accessibility and heterogeneity of environmental factors across the province, we resolve our model at county level and consider the aggregated farming community in one county as a single agent. The aim of SDA-SDB is to simulate farmers' decision process of allocating land to either food or energy crops facing limited resources and political targets for bioenergy development. Different to previous engineering assessments of biomass potential, SDA-SDB depicts the price of dry matter, the biomass from dedicated energy crop, as an endogenous variable. Thus, the price of dry matter will be decided by the intersection between demand and supply. The demand of biomass is established by the official development plan for bioenergy. Several alternative plans will be assessed. On the supply side, the marginal costs of bioenergy production are controlled by the aggregated behavior of all farmers. In other words, each agent's decision is influenced by other agents' decisions and will influence the final result which will continue to affect other agents' decision in a closed information feedback loop. Furthermore, SDA-SDB introduces coastal mudflat in Jiangsu province as a possible novel resource for energy crop cultivation which is believed to alleviate the conflict between food and bioenergy demand. We also introduce a carbon tax (which is, at the same time, a green-energy subsidy for bioenergy) in our model to specifically explore its effect on the penetration of biomass. Finally, we summarize our findings for efficient bioenergy utilization pathway in Jiangsu province based on our simulation results and a sensitivity analysis over the key parameters.
NASA Astrophysics Data System (ADS)
Varnakovida, Pariwate
It is now well-recognized that, at local, regional, and global scales, land use changes are significantly altering land cover, perhaps at an accelerating pace. Further, the world's scientific community is increasingly recognizing what, in retrospect, should have been obvious, that human behavior and agency is a critical driver of Land Cover and Land Use Change. In this research, using recently developed computer modeling procedures and a rich case study, I develop spatially-explicit model-based simulations of LULCC scenarios within the rubric of sustainability science for Nang Rong town, Thailand. The research draws heavily on recent work in geography and complexity theory. A series of scenarios were built to explore different development trajectories based upon empirically observed relationships. The development models incorporate a) history and spatial pattern of village settlement; b) road development and changing geographic accessibility; c) population; d) biophysical characteristics and e) social drivers. This research uses multi-temporal and spatially-explicit data, analytic results, and dynamic modeling approaches combined with to describe, explain, and explore LULCC as the consequences of different production theories for rural, small town urbanization in the South East Asian context. Two Agent Based models were built: 1) Settlement model and 2) Land-use model. The Settlement model suggests that new development will emerge along the existing road network especially along the major highway and in close proximity to the urban center. If the population doubles in 2021, the settlement process may inhibit development along some corridors creating low density sprawl. The Land-use model under the urban expansion scenario suggests that new settlements will occur in close proximity to the town center and roads; even though, the area is suitable for rice farming or located on a flood plain. The Land-use model under the cash-crop expansion scenario captures that new agriculture will occur on the flood plain and other areas suitable for rice farming. The Land-use model under the King's Theory scenario suggests that agriculture agents occupied more disperse lands than the cash-crops scenario. In addition, the King's Theory scenario provided more access to water surface than other scenarios and was the most sustainable development plan. These products offer a better understanding of the urban growth and LULCC at a regional scale and will potentially guide more systematic and effective resource management and policy decisions. Although this research focuses on a specific site, the methods employed are applicable to other rural regions with similar characteristics.
Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations.
Shashkova, Tatiana; Popenko, Anna; Tyakht, Alexander; Peskov, Kirill; Kosinsky, Yuri; Bogolubsky, Lev; Raigorodskii, Andrei; Ischenko, Dmitry; Alexeev, Dmitry; Govorun, Vadim
2016-01-01
Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial structure is a key factor, which helps bacteria to survive and to adapt to changed environmental conditions.
On the emergence of an ‘intention field’ for socially cohesive agents
NASA Astrophysics Data System (ADS)
Bouchaud, Jean-Philippe; Borghesi, Christian; Jensen, Pablo
2014-03-01
We argue that when a social convergence mechanism exists and is strong enough, one should expect the emergence of a well-defined ‘field’, i.e. a slowly evolving, local quantity around which individual attributes fluctuate in a finite range. This condensation phenomenon is well illustrated by the Deffuant-Weisbuch opinion model for which we provide a natural extension to allow for spatial heterogeneities. We show analytically and numerically that the resulting dynamics of the emergent field is a noisy diffusion equation that has a slow dynamics. This random diffusion equation reproduces the long-ranged, logarithmic decrease of the correlation of spatial voting patterns empirically found in Borghesi and Bouchaud (2010 Eur. Phys. J. B 75 395) and Borghesi et al (2012 PLoS One 7 e36289). Interestingly enough, we find that when the social cohesion mechanism becomes too weak, cultural cohesion breaks down completely, in the sense that the distribution of intentions/opinions becomes infinitely broad. No emerging field exists in this case. All these analytical findings are confirmed by numerical simulations of an agent-based model.
Pizzitutti, Francesco; Pan, William; Feingold, Beth; Zaitchik, Ben; Álvarez, Carlos A; Mena, Carlos F
2018-01-01
Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.
Yang, Yong; Auchincloss, Amy H.; Rodriguez, Daniel A.; Brown, Daniel G.; Riolo, Rick; Diez-Roux, Ana V.
2015-01-01
We develop an agent-based model of utilitarian walking and use the model to explore spatial and socioeconomic factors affecting adult utilitarian walking and how travel costs as well as various educational interventions aimed at changing attitudes can alter the prevalence of walking and income differentials in walking. The model is validated against US national data. We contrast realistic and extreme parameter values in our model and test effects of changing these parameters across various segregation and pricing scenarios while allowing for interactions between travel choice and place and for behavioral feedbacks. Results suggest that in addition to income differences in the perceived cost of time, the concentration of mixed land use (differential density of residences and businesses) are important determinants of income differences in walking (high income walk less), whereas safety from crime and income segregation on their own do not have large influences on income differences in walking. We also show the difficulty in altering walking behaviors for higher income groups who are insensitive to price and how adding to the cost of driving could increase the income differential in walking particularly in the context of segregation by income and land use. We show that strategies to decrease positive attitudes towards driving can interact synergistically with shifting cost structures to favor walking in increasing the percent of walking trips. Agent-based models, with their ability to capture dynamic processes and incorporate empirical data, are powerful tools to explore the influence on health behavior from multiple factors and test policy interventions. PMID:25733776
Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load Balancing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, Beth Leigh
The common theme of this dissertation is sampling-based motion planning with the two key contributions being in the area of replanning and spatial load balancing for robotic systems. Here, we begin by recalling two sampling-based motion planners: the asymptotically optimal rapidly-exploring random tree (RRT*), and the asymptotically optimal probabilistic roadmap (PRM*). We also provide a brief background on collision cones and the Distributed Reactive Collision Avoidance (DRCA) algorithm. The next four chapters detail novel contributions for motion replanning in environments with unexpected static obstacles, for multi-agent collision avoidance, and spatial load balancing. First, we show improved performance of the RRT*more » when using the proposed Grandparent-Connection (GP) or Focused-Refinement (FR) algorithms. Next, the Goal Tree algorithm for replanning with unexpected static obstacles is detailed and proven to be asymptotically optimal. A multi-agent collision avoidance problem in obstacle environments is approached via the RRT*, leading to the novel Sampling-Based Collision Avoidance (SBCA) algorithm. The SBCA algorithm is proven to guarantee collision free trajectories for all of the agents, even when subject to uncertainties in the knowledge of the other agents’ positions and velocities. Given that a solution exists, we prove that livelocks and deadlock will lead to the cost to the goal being decreased. We introduce a new deconfliction maneuver that decreases the cost-to-come at each step. This new maneuver removes the possibility of livelocks and allows a result to be formed that proves convergence to the goal configurations. Finally, we present a limited range Graph-based Spatial Load Balancing (GSLB) algorithm which fairly divides a non-convex space among multiple agents that are subject to differential constraints and have a limited travel distance. The GSLB is proven to converge to a solution when maximizing the area covered by the agents. The analysis for each of the above mentioned algorithms is confirmed in simulations.« less
Hagberg, Gisela E; Mamedov, Ilgar; Power, Anthony; Beyerlein, Michael; Merkle, Hellmut; Kiselev, Valerij G; Dhingra, Kirti; Kubìček, Vojtĕch; Angelovski, Goran; Logothetis, Nikos K
2014-01-01
Calcium-sensitive MRI contrast agents can only yield quantitative results if the agent concentration in the tissue is known. The agent concentration could be determined by diffusion modeling, if relevant parameters were available. We have established an MRI-based method capable of determining diffusion properties of conventional and calcium-sensitive agents. Simulations and experiments demonstrate that the method is applicable both for conventional contrast agents with a fixed relaxivity value and for calcium-sensitive contrast agents. The full pharmacokinetic time-course of gadolinium concentration estimates was observed by MRI before, during and after intracerebral administration of the agent, and the effective diffusion coefficient D* was determined by voxel-wise fitting of the solution to the diffusion equation. The method yielded whole brain coverage with a high spatial and temporal sampling. The use of two types of MRI sequences for sampling of the diffusion time courses was investigated: Look-Locker-based quantitative T(1) mapping, and T(1) -weighted MRI. The observation times of the proposed MRI method is long (up to 20 h) and consequently the diffusion distances covered are also long (2-4 mm). Despite this difference, the D* values in vivo were in agreement with previous findings using optical measurement techniques, based on observation times of a few minutes. The effective diffusion coefficient determined for the calcium-sensitive contrast agents may be used to determine local tissue concentrations and to design infusion protocols that maintain the agent concentration at a steady state, thereby enabling quantitative sensing of the local calcium concentration. Copyright © 2014 John Wiley & Sons, Ltd.
Agent-based evacuation simulation for spatial allocation assessment of urban shelters
NASA Astrophysics Data System (ADS)
Yu, Jia; Wen, Jiahong; Jiang, Yong
2015-12-01
The construction of urban shelters is one of the most important work in urban planning and disaster prevention. The spatial allocation assessment is a fundamental pre-step for spatial location-allocation of urban shelters. This paper introduces a new method which makes use of agent-based technology to implement evacuation simulation so as to conduct dynamic spatial allocation assessment of urban shelters. The method can not only accomplish traditional geospatial evaluation for urban shelters, but also simulate the evacuation process of the residents to shelters. The advantage of utilizing this method lies into three aspects: (1) the evacuation time of each citizen from a residential building to the shelter can be estimated more reasonably; (2) the total evacuation time of all the residents in a region is able to be obtained; (3) the road congestions in evacuation in sheltering can be detected so as to take precautionary measures to prevent potential risks. In this study, three types of agents are designed: shelter agents, government agents and resident agents. Shelter agents select specified land uses as shelter candidates for different disasters. Government agents delimitate the service area of each shelter, in other words, regulate which shelter a person should take, in accordance with the administrative boundaries and road distance between the person's position and the location of the shelter. Resident agents have a series of attributes, such as ages, positions, walking speeds, and so on. They also have several behaviors, such as reducing speed when walking in the crowd, helping old people and children, and so on. Integrating these three types of agents which are correlated with each other, evacuation procedures can be simulated and dynamic allocation assessment of shelters will be achieved. A case study in Jing'an District, Shanghai, China, was conducted to demonstrate the feasibility of the method. A scenario of earthquake disaster which occurs in nighttime was set to simulate the evacuation process of the residents to the earthquake shelter candidates in the study area. The simulation results convinced that the proposed method can better evaluate the spatial configuration of urban shelter than traditional GIS methods. The method can help local decision-makers preferably handle shelter planning and emergency evacuation management problems. It can also be extended to conduct similar assessment work in other urban regions for different kinds of shelters.
Tokarski, Christian; Hummert, Sabine; Mech, Franziska; Figge, Marc Thilo; Germerodt, Sebastian; Schroeter, Anja; Schuster, Stefan
2012-01-01
Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.
Geographically explicit urban land use change scenarios for Mega cities: a case study in Tokyo
NASA Astrophysics Data System (ADS)
Yamagata, Y.; Bagan, H.; Seya, H.; Nakamichi, K.
2010-12-01
In preparation for the IPCC 5th assessment report, the international modeling community is developing four Representative Concentration Paths employing the scenarios developed by four different Integrated Assessment Models. These RCPs will be employed as an input to climate models, such as Earth System Models. In these days, the importance of assessment of not only global but also local (city/zone level) impacts of global change has gradually been recognized, thereby downscaling climate models are one of the urgent problems to be solved. Needless to say, reliable downscaling requires spatially high resolution land use change scenarios. So far, there has been proposed a lot of methods for constructing land use change scenarios with considering economic behavior of human, such as agent-based model (e.g., Parker et al., 2001), and land use transport (LUT) model (e.g., Anas and Liu, 2007). The latter approach in particular has widely been applied to actual urban/transport policy; hence modeling the interaction between them is very important for creating reliable land use change scenarios. However, the LUT models are usually built based on the zones of cities/municipalities whose spatial resolutions are too low to derive sensible parameters of the climate models. Moreover, almost all of the works which attempt to build spatially high resolution LUT model employs very small regions as the study area. The objective of this research is deriving various input parameters to climate models such as population density, fractional green vegetation cover, and anthropogenic heat emission with spatially high resolution land use change scenarios constructed with LUT model. The study area of this research is Tokyo metropolitan area, which is the largest urban area in the world (United Nations., 2010). Firstly, this study employs very high ground resolution zones composed of micro districts around 1km2. Secondly, the research attempt to combine remote sensing techniques and LUT models to derive future distribution of fractional green vegetation cover. The study has created two extreme land-use scenarios: urban concentration (compact city) and dispersion scenarios in order to show possible range of future land use change, and derives the input parameters for the climate models. The authors are planning to open the scenarios and derived parameters to relate researches. Anas, A. and Y. Liu. (2007). A Regional Economy, Land Use, and Transportation Model (REULU-TRAN): Formulation, Algorithm Design, and Testing. Journal of Regional Science, 47, 415-455. Parker, D.C., T. Berger, S.M. Manson, Editors (2001). Agent-Based Models of Land-Use and Land-Cover Change. LUCC Report Series No. 6, (Accessed: 27 AUG. 2009; http://www.globallandproject.org/Documents/LUCC_No_6.pdf) United Nations. (2010). World urbanization prospects: City population.
Tan, Mingqian; Lu, Zheng-Rong
2011-01-01
Magnetic resonance imaging (MRI) is a powerful medical diagnostic imaging modality for integrin targeted imaging, which uses the magnetic resonance of tissue water protons to display tissue anatomic structures with high spatial resolution. Contrast agents are often used in MRI to highlight specific regions of the body and make them easier to visualize. There are four main classes of MRI contrast agents based on their different contrast mechanisms, including T1, T2, chemical exchange saturation transfer (CEST) agents, and heteronuclear contrast agents. Integrins are an important family of heterodimeric transmembrane glycoproteins that function as mediators of cell-cell and cell-extracellular matrix interactions. The overexpressed integrins can be used as the molecular targets for designing suitable integrin targeted contrast agents for MR molecular imaging. Integrin targeted contrast agent includes a targeting agent specific to a target integrin, a paramagnetic agent and a linker connecting the targeting agent with the paramagnetic agent. Proper selection of targeting agents is critical for targeted MRI contrast agents to effectively bind to integrins for in vivo imaging. An ideal integrin targeted MR contrast agent should be non-toxic, provide strong contrast enhancement at the target sites and can be completely excreted from the body after MR imaging. An overview of integrin targeted MR contrast agents based on small molecular and macromolecular Gd(III) complexes, lipid nanoparticles and superparamagnetic nanoparticles is provided for MR molecular imaging. By using proper delivery systems for loading sufficient Gd(III) chelates or superparamagnetic nanoparticles, effective molecular imaging of integrins with MRI has been demonstrated in animal models. PMID:21547154
The Evolution of Cooperation in Managed Groundwater Systems: An Agent-Based Modelling Approach
NASA Astrophysics Data System (ADS)
Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.
2014-12-01
Human interactions with groundwater systems often exhibit complex features that hinder the sustainable management of the resource. This leads to costly and persistent conflicts over groundwater at the catchment scale. One possible way to address these conflicts is by gaining a better understanding of how social and groundwater dynamics coevolve using agent-based models (ABM). Such models allow exploring 'bottom-up' solutions (i.e., self-organised governance systems), where the behaviour of individual agents (e.g., farmers) results in the emergence of mutual cooperation among groundwater users. There is significant empirical evidence indicating that this kind of 'bottom-up' approach may lead to more enduring and sustainable outcomes, compared to conventional 'top-down' strategies such as centralized control and water right schemes (Ostrom 1990). New modelling tools are needed to study these concepts systematically and efficiently. Our model uses a conceptual framework to study cooperation and the emergence of social norms as initially proposed by Axelrod (1986), which we adapted to groundwater management. We developed an ABM that integrates social mechanisms and the physics of subsurface flow. The model explicitly represents feedback between groundwater conditions and social dynamics, capturing the spatial structure of these interactions and the potential effects on cooperation levels in an agricultural setting. Using this model, we investigate a series of mechanisms that may trigger norms supporting cooperative strategies, which can be sustained and become stable over time. For example, farmers in a self-monitoring community can be more efficient at achieving the objective of sustainable groundwater use than government-imposed regulation. Our coupled model thus offers a platform for testing new schemes promoting cooperation and improved resource use, which can be used as a basis for policy design. Importantly, we hope to raise awareness of agent-based modelling as a new tool for studying complex human-groundwater systems.
Naming games in two-dimensional and small-world-connected random geometric networks.
Lu, Qiming; Korniss, G; Szymanski, B K
2008-01-01
We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.
Global Sensitivity Analysis for Large-scale Socio-hydrological Models using the Cloud
NASA Astrophysics Data System (ADS)
Hu, Y.; Garcia-Cabrejo, O.; Cai, X.; Valocchi, A. J.; Dupont, B.
2014-12-01
In the context of coupled human and natural system (CHNS), incorporating human factors into water resource management provides us with the opportunity to understand the interactions between human and environmental systems. A multi-agent system (MAS) model is designed to couple with the physically-based Republican River Compact Administration (RRCA) groundwater model, in an attempt to understand the declining water table and base flow in the heavily irrigated Republican River basin. For MAS modelling, we defined five behavioral parameters (κ_pr, ν_pr, κ_prep, ν_prep and λ) to characterize the agent's pumping behavior given the uncertainties of the future crop prices and precipitation. κ and ν describe agent's beliefs in their prior knowledge of the mean and variance of crop prices (κ_pr, ν_pr) and precipitation (κ_prep, ν_prep), and λ is used to describe the agent's attitude towards the fluctuation of crop profits. Notice that these human behavioral parameters as inputs to the MAS model are highly uncertain and even not measurable. Thus, we estimate the influences of these behavioral parameters on the coupled models using Global Sensitivity Analysis (GSA). In this paper, we address two main challenges arising from GSA with such a large-scale socio-hydrological model by using Hadoop-based Cloud Computing techniques and Polynomial Chaos Expansion (PCE) based variance decomposition approach. As a result, 1,000 scenarios of the coupled models are completed within two hours with the Hadoop framework, rather than about 28days if we run those scenarios sequentially. Based on the model results, GSA using PCE is able to measure the impacts of the spatial and temporal variations of these behavioral parameters on crop profits and water table, and thus identifies two influential parameters, κ_pr and λ. The major contribution of this work is a methodological framework for the application of GSA in large-scale socio-hydrological models. This framework attempts to find a balance between the heavy computational burden regarding model execution and the number of model evaluations required in the GSA analysis, particularly through an organic combination of Hadoop-based Cloud Computing to efficiently evaluate the socio-hydrological model and PCE where the sensitivity indices are efficiently estimated from its coefficients.
Small animal optoacoustic tomography system for molecular imaging of contrast agents
NASA Astrophysics Data System (ADS)
Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.
2016-03-01
We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (<0.2 mm) and (ii) a new low noise amplifier incorporated into the ultrasonic probe and providing the noise equivalent pressure around 2 Pa resulting in increased signal-to-noise ratio and the optical absorption sensitivity of about 0.15 cm-1. We also improved scan time and the image reconstruction times. This prototype has been commercialized for a number of biomedical research applications, such as imaging vascularization and measuring hemoglobin / oxyhemoglobin distribution in the organs as well as imaging exogenous or endogenous optoacoustic contrast agents. As examples, we present in vivo experiments using phantoms and mice with and without tumor injected with contrast agents with indocyanine green (ICG). LOIS-3D was capable of detecting ~1-2 pmole of the ICG, in tissues with relatively low blood content. With its high sensitivity and excellent spatial resolution LOIS-3D is an advanced alternative to fluorescence and bioluminescence based modalities for molecular imaging in live mice.
Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth model.
You, Li; Brown, Joel S; Thuijsman, Frank; Cunningham, Jessica J; Gatenby, Robert A; Zhang, Jingsong; Staňková, Kateřina
2017-12-21
Metastatic prostate cancer is initially treated with androgen deprivation therapy (ADT). However, resistance typically develops in about 1 year - a clinical condition termed metastatic castrate-resistant prostate cancer (mCRPC). We develop and investigate a spatial game (agent based continuous space) of mCRPC that considers three distinct cancer cell types: (1) those dependent on exogenous testosterone (T + ), (2) those with increased CYP17A expression that produce testosterone and provide it to the environment as a public good (T P ), and (3) those independent of testosterone (T - ). The interactions within and between cancer cell types can be represented by a 3 × 3 matrix. Based on the known biology of this cancer there are 22 potential matrices that give roughly three major outcomes depending upon the absence (good prognosis), near absence or high frequency (poor prognosis) of T - cells at the evolutionarily stable strategy (ESS). When just two cell types coexist the spatial game faithfully reproduces the ESS of the corresponding matrix game. With three cell types divergences occur, in some cases just two strategies coexist in the spatial game even as a non-spatial matrix game supports all three. Discrepancies between the spatial game and non-spatial ESS happen because different cell types become more or less clumped in the spatial game - leading to non-random assortative interactions between cell types. Three key spatial scales influence the distribution and abundance of cell types in the spatial game: i. Increasing the radius at which cells interact with each other can lead to higher clumping of each type, ii. Increasing the radius at which cells experience limits to population growth can cause densely packed tumor clusters in space, iii. Increasing the dispersal radius of daughter cells promotes increased mixing of cell types. To our knowledge the effects of these spatial scales on eco-evolutionary dynamics have not been explored in cancer models. The fact that cancer interactions are spatially explicit and that our spatial game of mCRPC provides in general different outcomes than the non-spatial game might suggest that non-spatial models are insufficient for capturing key elements of tumorigenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Artificial intelligence based decision support for trumpeter swan management
Sojda, Richard S.
2002-01-01
The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988-2000. Applying the Matched Pairs Multivariate Permutation Test as a statistical tool was a new approach for comparing flyway distributions of waterfowl over time that seemed to work well. Based on this approach, the empirical evidence that I gathered led me to conclude that the base queuing model does accurately simulate swan distributions in the flyway. The system was insensitive to almost all model parameters tested. That remains perplexing, but might result from the base queuing model, itself, being particularly effective at representing the actual ecological diversity in the world of Rocky Mountain trumpeter swans, both spatial and temporally.
Buonaccorsi, G A; Rose, C J; O'Connor, J P B; Roberts, C; Watson, Y; Jackson, A; Jayson, G C; Parker, G J M
2010-01-01
Clinical trials of anti-angiogenic and vascular-disrupting agents often use biomarkers derived from DCE-MRI, typically reporting whole-tumor summary statistics and so overlooking spatial parameter variations caused by tissue heterogeneity. We present a data-driven segmentation method comprising tracer-kinetic model-driven registration for motion correction, conversion from MR signal intensity to contrast agent concentration for cross-visit normalization, iterative principal components analysis for imputation of missing data and dimensionality reduction, and statistical outlier detection using the minimum covariance determinant to obtain a robust Mahalanobis distance. After applying these techniques we cluster in the principal components space using k-means. We present results from a clinical trial of a VEGF inhibitor, using time-series data selected because of problems due to motion and outlier time series. We obtained spatially-contiguous clusters that map to regions with distinct microvascular characteristics. This methodology has the potential to uncover localized effects in trials using DCE-MRI-based biomarkers.
Hompland, Tord; Ellingsen, Christine; Rofstad, Einar K
2012-11-22
High interstitial fluid pressure (IFP) in the primary tumor is associated with poor disease-free survival in locally advanced cervical carcinoma. A noninvasive assay is needed to identify cervical cancer patients with highly elevated tumor IFP because these patients may benefit from particularly aggressive treatment. It has been suggested that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) as contrast agent may provide useful information on the IFP of cervical carcinomas. In this preclinical study, we investigated whether DCE-MRI with contrast agents with higher molecular weights (MW) than Gd-DTPA would be superior to Gd-DTPA-based DCE-MRI. CK-160 human cervical carcinoma xenografts were subjected to DCE-MRI with Gd-DTPA (MW of 0.55 kDa) or gadomelitol (MW of 6.5 kDa) as contrast agent before tumor IFP was measured invasively with a Millar SPC 320 catheter. The DCE-MRI was carried out at a spatial resolution of 0.23 × 0.23 × 2.0 mm³ and a time resolution of 14 s by using a 1.5-T whole-body scanner and a slotted tube resonator transceiver coil constructed for mice. Parametric images were derived from the DCE-MRI recordings by using the Tofts iso-directional transport model and the Patlak uni-directional transport model. When gadomelitol was used as contrast agent, significant positive correlations were found between the parameters of both pharmacokinetic models and tumor IFP. On the other hand, significant correlations between DCE-MRI-derived parameters and IFP could not be detected with Gd-DTPA as contrast agent. Gadomelitol is a superior contrast agent to Gd-DTPA in DCE-MRI of the IFP of CK-160 cervical carcinoma xenografts. Clinical studies attempting to develop DCE-MRI-based assays of the IFP of cervical carcinomas should involve contrast agents with higher MW than Gd-DTPA.
Disease Prediction Models and Operational Readiness
Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey; Noonan, Christine; Rabinowitz, Peter M.; Lancaster, Mary J.
2014-01-01
The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6), spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A component of this review is the identification of verification and validation (V&V) methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology Readiness Level definitions. PMID:24647562
Roche, Benjamin; Guégan, Jean-François; Bousquet, François
2008-10-15
Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems. Computational biology may prove to be flexible enough to take into account the natural complexity observed in both natural and man-made ecosystems. In this paper, we propose a new computational model to study the transmission of infectious diseases in a spatially explicit context. We developed a multi-agent system model for vector-borne disease transmission in a realistic spatial environment. Here we describe in detail the general behavior of this model that we hope will become a standard reference for the study of vector-borne disease transmission in wildlife. To conclude, we show how this simple model could be easily adapted and modified to be used as a common framework for further research developments in this field.
Digital morphogenesis via Schelling segregation
NASA Astrophysics Data System (ADS)
Barmpalias, George; Elwes, Richard; Lewis-Pye, Andrew
2018-04-01
Schelling’s model of segregation looks to explain the way in which particles or agents of two types may come to arrange themselves spatially into configurations consisting of large homogeneous clusters, i.e. connected regions consisting of only one type. As one of the earliest agent based models studied by economists and perhaps the most famous model of self-organising behaviour, it also has direct links to areas at the interface between computer science and statistical mechanics, such as the Ising model and the study of contagion and cascading phenomena in networks. While the model has been extensively studied it has largely resisted rigorous analysis, prior results from the literature generally pertaining to variants of the model which are tweaked so as to be amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory. In Brandt et al (2012 Proc. 44th Annual ACM Symp. on Theory of Computing) provided the first rigorous analysis of the unperturbed model, for a specific set of input parameters. Here we provide a rigorous analysis of the model’s behaviour much more generally and establish some surprising forms of threshold behaviour, notably the existence of situations where an increased level of intolerance for neighbouring agents of opposite type leads almost certainly to decreased segregation.
NASA Astrophysics Data System (ADS)
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph
2015-10-01
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.
NASA Astrophysics Data System (ADS)
Khan, H. F.; Yang, Y. C. E.; Brown, C.
2016-12-01
Economic decision models, such as the cap-and-trade system, have been shown to be useful in the context of groundwater management. A uniformly applied cap-and-trade system can however result in significant spatially and temporally varying hydrogeologic impacts that reduce public welfare. Hydrological challenges associated with the cap-and-trade system for groundwater management include establishing appropriate system boundaries, setting system-wide sustainable yield and limiting third party impacts from extractions. Given these challenges, these economic models need to be supplemented with physically based hydrogeologic models that are able to represent the spatial and temporal heterogeneity in conditions across a region. This investigation assesses third-party impacts and environmental externalities resulting from a cap-and-trade system in a sub-basin of the Republican River Basin, overlying the Ogallala aquifer in the High Plains of the United States. The economic model is coupled with a calibrated physically based groundwater model. The cap-and-trade system is developed using a multi-agent system model where individual benefits of each self-interested agent are maximized subject to bounds on irrigation requirements and water use permits. We then compare the performance of the cap-and-trade system with a smart groundwater market which, in addition to a cap on total groundwater extraction, also incorporates streamflow constraints. The results quantify third-party impacts and environmental externalities resulting from uncontrolled trading. This analysis demonstrates the value added by a well-designed cap-and-trade system able to account for basin-wide heterogeneity in hydrogeologic and ecological conditions by establishing trading limits, managing inter-area transfers and setting exchange rates for permit trading.
Perspective taking in language: integrating the spatial and action domains.
Beveridge, Madeleine E L; Pickering, Martin J
2013-09-17
Language is an inherently social behavior. In this paper, we bring together two research areas that typically occupy distinct sections of the literature: perspective taking in spatial language (whether people represent a scene from their own or a different spatial perspective), and perspective taking in action language (the extent to which they simulate an action as though they were performing that action). First, we note that vocabulary is used inconsistently across the spatial and action domains, and propose a more transparent vocabulary that will allow researchers to integrate action- and spatial-perspective taking. Second, we note that embodied theories of language comprehension often make the narrow assumption that understanding action descriptions involves adopting the perspective of an agent carrying out that action. We argue that comprehenders can adopt embodied action-perspectives other than that of the agent, including those of the patient or an observer. Third, we review evidence showing that perspective taking in spatial language is a flexible process. We argue that the flexibility of spatial-perspective taking provides a means for conversation partners engaged in dialogue to maximize similarity between their situation models. These situation models can then be used as the basis for action language simulations, in which language users adopt a particular action-perspective.
Perspective taking in language: integrating the spatial and action domains
Beveridge, Madeleine E. L.; Pickering, Martin J.
2013-01-01
Language is an inherently social behavior. In this paper, we bring together two research areas that typically occupy distinct sections of the literature: perspective taking in spatial language (whether people represent a scene from their own or a different spatial perspective), and perspective taking in action language (the extent to which they simulate an action as though they were performing that action). First, we note that vocabulary is used inconsistently across the spatial and action domains, and propose a more transparent vocabulary that will allow researchers to integrate action- and spatial-perspective taking. Second, we note that embodied theories of language comprehension often make the narrow assumption that understanding action descriptions involves adopting the perspective of an agent carrying out that action. We argue that comprehenders can adopt embodied action-perspectives other than that of the agent, including those of the patient or an observer. Third, we review evidence showing that perspective taking in spatial language is a flexible process. We argue that the flexibility of spatial-perspective taking provides a means for conversation partners engaged in dialogue to maximize similarity between their situation models. These situation models can then be used as the basis for action language simulations, in which language users adopt a particular action-perspective. PMID:24062676
NASA Astrophysics Data System (ADS)
Chooramun, N.; Lawrence, P. J.; Galea, E. R.
2017-08-01
In all evacuation simulation tools, the space through which agents navigate and interact is represented by one the following methods, namely Coarse regions, Fine nodes and Continuous regions. Each of the spatial representation methods has its benefits and limitations. For instance, the Coarse approach allows simulations to be processed very rapidly, but is unable to represent the interactions of the agents from an individual perspective; the Continuous approach provides a detailed representation of agent movement and interaction but suffers from relatively poor computational performance. The Fine nodal approach presents a compromise between the Continuous and Coarse approaches such that it allows agent interaction to be modelled while providing good computational performance. Our approach for representing space in an evacuation simulation tool differs such that it allows evacuation simulations to be run using a combination of Coarse regions, Fine nodes and Continuous regions. This approach, which we call Hybrid Spatial Discretisation (HSD), is implemented within the buildingEXODUS evacuation simulation software. The HSD incorporates the benefits of each of the spatial representation methods whilst providing an optimal environment for representing agent movement and interaction. In this work, we demonstrate the effectiveness of the HSD through its application to a moderately large case comprising of an underground rail tunnel station with a population of 2,000 agents.
Solovyev, Alexey; Mi, Qi; Tzen, Yi-Ting; Brienza, David; Vodovotz, Yoram
2013-01-01
Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. PMID:23696726
NASA Astrophysics Data System (ADS)
Eitzel Solera, M. V.; Neves, K.; Veski, A.; Solera, J.; Omoju, O. E.; Mawere Ndlovu, A.; Wilson, K.
2016-12-01
As climate change increases the pressures on arid ecosystems by changing timing and amount of rainfall, understanding the ways in which human management choices affect the resilience of these systems becomes key to their sustainability. On marginal farmland in Mazvihwa, Midlands Province, the historical carrying capacity of livestock has been consistently surprisingly high. We explore this phenomenon by building an agent-based model in NetLogo from a wealth of long-term data generated by the community-based participatory research team of The Muonde Trust, a Zimbabwean non-governmental organization. We combine the accumulated results of 35 years of indigenous and local knowledge with national datasets such as rainfall records. What factors keep the carrying capacity high? What management choices can maintain crops, livestock, and woodland at levels necessary for the community's survival? How do these choices affect long-term sustainability, and does increasing resilience at one scale reduce resilience at another scale? We use our agent-based model to explore the feedbacks between crops, livestock, and woodland and the impacts of various human choices as well as temporal and spatial ecological variation. By testing different scenarios, we disentangle the complex interactions between these components. We find that some factors out of the community's control can strongly affect the sustainability of the system through times of drought, and that supplementary feed may maintain livestock potentially at the expense of other resources. The challenges to resilience encountered by the farmers in Mazvihwa are not unique - many indigenous and rural people face drought and the legacies of colonialism, which contribute to lowered resilience to external challenges such as climate change, epidemics, and political instability. Using the agent-based model as a tool for synthesis and exploration initiates discussion about resilience-enhancing management choices for Mazvihwa's farmer-researchers.
a Simulation-As Framework Facilitating Webgis Based Installation Planning
NASA Astrophysics Data System (ADS)
Zheng, Z.; Chang, Z. Y.; Fei, Y. F.
2017-09-01
Installation Planning is constrained by both natural and social conditions, especially for spatially sparse but functionally connected facilities. Simulation is important for proper deploy in space and configuration in function of facilities to make them a cohesive and supportive system to meet users' operation needs. Based on requirement analysis, we propose a framework to combine GIS and Agent simulation to overcome the shortness in temporal analysis and task simulation of traditional GIS. In this framework, Agent based simulation runs as a service on the server, exposes basic simulation functions, such as scenario configuration, simulation control, and simulation data retrieval to installation planners. At the same time, the simulation service is able to utilize various kinds of geoprocessing services in Agents' process logic to make sophisticated spatial inferences and analysis. This simulation-as-a-service framework has many potential benefits, such as easy-to-use, on-demand, shared understanding, and boosted performances. At the end, we present a preliminary implement of this concept using ArcGIS javascript api 4.0 and ArcGIS for server, showing how trip planning and driving can be carried out by agents.
Vector-based navigation using grid-like representations in artificial agents.
Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan
2018-05-01
Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.
Two Formal Gas Models For Multi-Agent Sweeping and Obstacle Avoidance
NASA Technical Reports Server (NTRS)
Kerr, Wesley; Spears, Diana; Spears, William; Thayer, David
2004-01-01
The task addressed here is a dynamic search through a bounded region, while avoiding multiple large obstacles, such as buildings. In the case of limited sensors and communication, maintaining spatial coverage - especially after passing the obstacles - is a challenging problem. Here, we investigate two physics-based approaches to solving this task with multiple simulated mobile robots, one based on artificial forces and the other based on the kinetic theory of gases. The desired behavior is achieved with both methods, and a comparison is made between them. Because both approaches are physics-based, formal assurances about the multi-robot behavior are straightforward, and are included in the paper.
ABM and GIS-based multi-scenarios volcanic evacuation modelling of Merapi
NASA Astrophysics Data System (ADS)
Jumadi, Carver, Steve; Quincey, Duncan
2016-05-01
Conducting effective evacuation is one of the successful keys to deal with such crisis. Therefore, a plan that considers the probability of the spatial extent of the hazard occurrences is needed. Likewise, the evacuation plan in Merapi is already prepared before the eruption on 2010. However, the plan could not be performed because the eruption magnitude was bigger than it was predicted. In this condition, the extent of the hazardous area was increased larger than the prepared hazard model. Managing such unpredicted situation need adequate information that flexible and adaptable to the current situation. Therefore, we applied an Agent-based Model (ABM) and Geographic Information System (GIS) using multi-scenarios hazard model to support the evacuation management. The methodology and the case study in Merapi is provided.
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Medellin-Azuara, J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.; Zhang, H.
2016-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for water policy evaluation in Jordan. Jordan ranks among the most water-scarce countries in the world, a situation exacerbated due to a recent influx of refugees escaping the ongoing civil war in neighboring Syria. The modular, multi-agent model is used to evaluate interventions for enhancing Jordan's water security, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the multi-agent model, we explicitly account for human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. Human agents are implemented as autonomous entities in the model that make decisions in relation to one another and in response to hydrologic and socioeconomic conditions. The integrated model is programmed in Python using Pynsim, a generalizable, open-source object-oriented software framework for modeling network-based water resource systems. The modeling time periods include historical (2006-2014) and future (present-2050) time spans. For the historical runs, the model performance is validated against historical data for several observations that reflect the interacting dynamics of both the hydrologic and human components of the system. A historical counterfactual scenario is also constructed to isolate and identify the impacts of the recent Syrian civil war and refugee crisis on Jordan's water system. For the future period, model runs are conducted to evaluate potential supply, demand, and institutional interventions over a wide range of plausible climate and socioeconomic scenarios. In addition, model sensitivity analysis is conducted revealing the hydrologic and human aspects of the system that most strongly influence water security outcomes, providing insight into coupled human-water system dynamics as well as priority areas of focus for continued model improvement.
NASA Astrophysics Data System (ADS)
Tsai, Y.; Turnbull, S.; Zia, A.
2015-12-01
In rural areas where farming competes with urban development and environmental amenities, urban and forest transitions occur simultaneously at different locales with different rates due to the underlying socio-economic shifts. Here we develop an interactive land use transition agent-based model (ILUTABM) in which farmers' land use decisions are made contingent on expansion and location choices of urban businesses and urban residences, as well as farmers' perceived ecosystem services produced by their land holdings. The ILUTABM simulates heterogeneity in land use decisions at parcel levels by differentiating decision making processes for agricultural and urban landowners. Landowners are simulated to make land-use transition decisions as bounded rational agents that maximize their partial expected utility functions under different underlying socio-economic conditions given the category of a landowner and the spatial characteristics of the landowner's landholdings. The ILUTABM is parameterized by spatial data sets such as National Land Cover Database (NLCD), zoning, parcels, property prices, US census, farmers surveys, building/facility characteristics, soil, slope and elevation. We then apply the ILUTABM to the rural Vermont landscape, located in the Northeast Arm District of Lake Champlain and the downstream sub-watersheds of Missisquoi River, to generate phase transitions of rural land towards urban land near peri-urban areas and towards forest land near financially stressed farmlands during 2001-2051. Possible tipping point trajectories of rural land towards regional forest or urban transition are simulated under three socio-economic scenarios: business as usual (ILUTABM calibrated to 2011 NLCD), increased incentives for conservation easements, and increased incentives for attracting urban residences and businesses.
Kautz, Markus; Anthoni, Peter; Meddens, Arjan J H; Pugh, Thomas A M; Arneth, Almut
2018-05-01
Biotic disturbances (BDs, for example, insects, pathogens, and wildlife herbivory) substantially affect boreal and temperate forest ecosystems globally. However, accurate impact assessments comprising larger spatial scales are lacking to date although these are critically needed given the expected disturbance intensification under a warming climate. Hence, our quantitative knowledge on current and future BD impacts, for example, on forest carbon (C) cycling, is strongly limited. We extended a dynamic global vegetation model to simulate ecosystem response to prescribed tree mortality and defoliation due to multiple biotic agents across United States forests during the period 1997-2015, and quantified the BD-induced vegetation C loss, that is, C fluxes from live vegetation to dead organic matter pools. Annual disturbance fractions separated by BD type (tree mortality and defoliation) and agent (bark beetles, defoliator insects, other insects, pathogens, and other biotic agents) were calculated at 0.5° resolution from aerial-surveyed data and applied within the model. Simulated BD-induced C fluxes totaled 251.6 Mt C (annual mean: 13.2 Mt C year -1 , SD ±7.3 Mt C year -1 between years) across the study domain, to which tree mortality contributed 95% and defoliation 5%. Among BD agents, bark beetles caused most C fluxes (61%), and total insect-induced C fluxes were about five times larger compared to non-insect agents, for example, pathogens and wildlife. Our findings further demonstrate that BD-induced C cycle impacts (i) displayed high spatio-temporal variability, (ii) were dominated by different agents across BD types and regions, and (iii) were comparable in magnitude to fire-induced impacts. This study provides the first ecosystem model-based assessment of BD-induced impacts on forest C cycling at the continental scale and going beyond single agent-host systems, thus allowing for comparisons across regions, BD types, and agents. Ultimately, a perspective on the potential and limitations of a more process-based incorporation of multiple BDs in ecosystem models is offered. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, Frank; Garrow, Dr. Laurie
This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming,more » and agent-based microsimulation.« less
A mini-review on econophysics: Comparative study of Chinese and western financial markets
NASA Astrophysics Data System (ADS)
Zheng, Bo; Jiang, Xiong-Fei; Ni, Peng-Yun
2014-07-01
We present a review of our recent research in econophysics, and focus on the comparative study of Chinese and western financial markets. By virtue of concepts and methods in statistical physics, we investigate the time correlations and spatial structure of financial markets based on empirical high-frequency data. We discover that the Chinese stock market shares common basic properties with the western stock markets, such as the fat-tail probability distribution of price returns, the long-range auto-correlation of volatilities, and the persistence probability of volatilities, while it exhibits very different higher-order time correlations of price returns and volatilities, spatial correlations of individual stock prices, and large-fluctuation dynamic behaviors. Furthermore, multi-agent-based models are developed to simulate the microscopic interaction and dynamic evolution of the stock markets.
Entering AN ERA of Synthesis of Modeling
NASA Astrophysics Data System (ADS)
Guerin, Stephen
First, I believe we're entering an era of synthesis of modeling. Over the past 20 years, we've seen the proliferation of many isolated complex systems models. I think we now need tools for researchers, policy makers and the public to share models. Sharing could happen by stacking different layers of spatial agent-based models in geographic information systems and projecting interactive visualization out onto shared surfaces. Further, we need to make model authoring tools much more accessible to the point where motivated policy makers can author on their own. With the increased ability to author and share models, I believe this will allow us to scale our research to understand and manage the many interacting systems that make up our complex world...
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
Macleod, Ewan T.; Anderson, Neil E.; Schaten, Kathrin; Kuleszo, Joanna; Simuunza, Martin; Welburn, Susan C.; Atkinson, Peter M.
2016-01-01
Background This paper presents a new agent-based model (ABM) for investigating T. b. rhodesiense human African trypanosomiasis (rHAT) disease dynamics, produced to aid a greater understanding of disease transmission, and essential for development of appropriate mitigation strategies. Methods The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The method offers a complementary approach to traditional compartmentalised modelling techniques, permitting incorporation of fine scale demographic data such as ethnicity, age and gender into the simulation. Results Through identification of possible spatial, demographic and behavioural characteristics which may have differing implications for rHAT risk in the region, the ABM produced output that could not be readily generated by other techniques. On average there were 1.99 (S.E. 0.245) human infections and 1.83 (S.E. 0.183) cattle infections per 6 month period. The model output identified that the approximate incidence rate (per 1000 person-years) was lower amongst cattle owning households (0.079, S.E. 0.017), than those without cattle (0.134, S.E. 0.017). Immigrant tribes (e.g. Bemba I.R. = 0.353, S.E.0.155) and school-age children (e.g. 5–10 year old I.R. = 0.239, S.E. 0.041) were the most at-risk for acquiring infection. These findings have the potential to aid the targeting of future mitigation strategies. Conclusion ABMs provide an alternative way of thinking about HAT and NTDs more generally, offering a solution to the investigation of local-scale questions, and which generate results that can be easily disseminated to those affected. The ABM can be used as a tool for scenario testing at an appropriate spatial scale to allow the design of logistically feasible mitigation strategies suggested by model output. This is of particular importance where resources are limited and management strategies are often pushed to the local scale. PMID:28027323
Performance evaluation of an agent-based occupancy simulation model
Luo, Xuan; Lam, Khee Poh; Chen, Yixing; ...
2017-01-17
Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less
Performance evaluation of an agent-based occupancy simulation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xuan; Lam, Khee Poh; Chen, Yixing
Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less
An agent-based model of cattle grazing toxic Geyer's larkspur.
Jablonski, Kevin E; Boone, Randall B; Meiman, Paul J
2018-01-01
By killing cattle and otherwise complicating management, the many species of larkspur (Delphinium spp.) present a serious, intractable, and complex challenge to livestock grazing management in the western United States. Among the many obstacles to improving our understanding of cattle-larkspur dynamics has been the difficulty of testing different grazing management strategies in the field, as the risk of dead animals is too great. Agent-based models (ABMs) provide an effective method of testing alternate management strategies without risk to livestock. ABMs are especially useful for modeling complex systems such as livestock grazing management, and allow for realistic bottom-up encoding of cattle behavior. Here, we introduce a spatially-explicit, behavior-based ABM of cattle grazing in a pasture with a dangerous amount of Geyer's larkspur (D. geyeri). This model tests the role of herd cohesion and stocking density in larkspur intake, finds that both are key drivers of larkspur-induced toxicosis, and indicates that alteration of these factors within realistic bounds can mitigate risk. Crucially, the model points to herd cohesion, which has received little attention in the discipline, as playing an important role in lethal acute toxicosis. As the first ABM to model grazing behavior at realistic scales, this study also demonstrates the tremendous potential of ABMs to illuminate grazing management dynamics, including fundamental aspects of livestock behavior amidst ecological heterogeneity.
The LUE data model for representation of agents and fields
NASA Astrophysics Data System (ADS)
de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek
2017-04-01
Traditionally, agents-based and field-based modelling environments use different data models to represent the state of information they manipulate. In agent-based modelling, involving the representation of phenomena as objects bounded in space and time, agents are often represented by classes, each of which represents a particular kind of agent and all its properties. Such classes can be used to represent entities like people, birds, cars and countries. In field-based modelling, involving the representation of the environment as continuous fields, fields are often represented by a discretization of space, using multidimensional arrays, each storing mostly a single attribute. Such arrays can be used to represent the elevation of the land-surface, the pH of the soil, or the population density in an area, for example. Representing a population of agents by class instances grouped in collections is an intuitive way of organizing information. A drawback, though, is that models in which class instances grouping properties are stored in collections are less efficient (execute slower) than models in which collections of properties are grouped. The field representation, on the other hand, is convenient for the efficient execution of models. Another drawback is that, because the data models used are so different, integrating agent-based and field-based models becomes difficult, since the model builder has to deal with multiple concepts, and often multiple modelling environments. With the development of the LUE data model [1] we aim at representing agents and fields within a single paradigm, by combining the advantages of the data models used in agent-based and field-based data modelling. This removes the barrier for writing integrated agent-based and field-based models. The resulting data model is intuitive to use and allows for efficient execution of models. LUE is both a high-level conceptual data model and a low-level physical data model. The LUE conceptual data model is a generalization of the data models used in agent-based and field-based modelling. The LUE physical data model [2] is an implementation of the LUE conceptual data model in HDF5. In our presentation we will provide details of our approach to organizing information about agents and fields. We will show examples of agent and field data represented by the conceptual and physical data model. References: [1] de Bakker, M.P., de Jong, K., Schmitz, O., Karssenberg, D., 2016. Design and demonstration of a data model to integrate agent-based and field-based modelling. Environmental Modelling and Software. http://dx.doi.org/10.1016/j.envsoft.2016.11.016 [2] de Jong, K., 2017. LUE source code. https://github.com/pcraster/lue
Namboodiri, Vijay Mohan K.; Levy, Joshua M.; Mihalas, Stefan; Sims, David W.; Hussain Shuler, Marshall G.
2016-01-01
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers. PMID:27385831
Cronin, Adam L; Loeuille, Nicolas; Monnin, Thibaud
2016-02-05
Offspring investment strategies vary markedly between and within taxa, and much of this variation is thought to stem from the trade-off between offspring size and number. While producing larger offspring can increase their competitive ability, this often comes at a cost to their colonization ability. This competition-colonization trade-off (CCTO) is thought to be an important mechanism supporting coexistence of alternative strategies in a wide range of taxa. However, the relative importance of an alternative and possibly synergistic mechanism-spatial structuring of the environment-remains the topic of some debate. In this study, we explore the influence of these mechanisms on metacommunity structure using an agent-based model built around variable life-history traits. Our model combines explicit resource competition and spatial dynamics, allowing us to tease-apart the influence of, and explore the interaction between, the CCTO and the spatial structure of the environment. We test our model using two reproductive strategies which represent extremes of the CCTO and are common in ants. Our simulations show that colonisers outperform competitors in environments subject to higher temporal and spatial heterogeneity and are favoured when agents mature late and invest heavily in reproduction, whereas competitors dominate in low-disturbance, high resource environments and when maintenance costs are low. Varying life-history parameters has a marked influence on coexistence conditions and yields evolutionary stable strategies for both modes of reproduction. Nonetheless, we show that these strategies can coexist over a wide range of life-history and environmental parameter values, and that coexistence can in most cases be explained by a CCTO. By explicitly considering space, we are also able to demonstrate the importance of the interaction between dispersal and landscape structure. The CCTO permits species employing different reproductive strategies to coexist over a wide range of life-history and environmental parameters, and is likely to be an important factor in structuring ant communities. Our consideration of space highlights the importance of dispersal, which can limit the success of low-dispersers through kin competition, and enhance coexistence conditions for different strategies in spatially structured environments.
The evolution of social behavior in the prehistoric American southwest.
Gumerman, George J; Swedlund, Alan C; Dean, Jeffrey S; Epstein, Joshua M
2003-01-01
Long House Valley, located in the Black Mesa area of northeastern Arizona (USA), was inhabited by the Kayenta Anasazi from circa 1800 B.C. to circa A.D. 1300. These people were prehistoric precursors of the modern Pueblo cultures of the Colorado Plateau. A rich paleoenvironmental record, based on alluvial geomorphology, palynology, and dendroclimatology, permits the accurate quantitative reconstruction of annual fluctuations in potential agricultural production (kg maize/hectare). The archaeological record of Anasazi farming groups from A.D. 200 to 1300 provides information on a millennium of sociocultural stasis, variability, change, and adaptation. We report on a multi-agent computational model of this society that closely reproduces the main features of its actual history, including population ebb and flow, changing spatial settlement patterns, and eventual rapid decline. The agents in the model are monoagriculturalists, who decide both where to situate their fields and where to locate their settlements.
NASA Astrophysics Data System (ADS)
Ying, Shen; Li, Lin; Gao, Yurong
2009-10-01
Spatial visibility analysis is the important direction of pedestrian behaviors because our visual conception in space is the straight method to get environment information and navigate your actions. Based on the agent modeling and up-tobottom method, the paper develop the framework about the analysis of the pedestrian flow depended on visibility. We use viewshed in visibility analysis and impose the parameters on agent simulation to direct their motion in urban space. We analyze the pedestrian behaviors in micro-scale and macro-scale of urban open space. The individual agent use visual affordance to determine his direction of motion in micro-scale urban street on district. And we compare the distribution of pedestrian flow with configuration in macro-scale urban environment, and mine the relationship between the pedestrian flow and distribution of urban facilities and urban function. The paper first computes the visibility situations at the vantage point in urban open space, such as street network, quantify the visibility parameters. The multiple agents use visibility parameters to decide their direction of motion, and finally pedestrian flow reach to a stable state in urban environment through the simulation of multiple agent system. The paper compare the morphology of visibility parameters and pedestrian distribution with urban function and facilities layout to confirm the consistence between them, which can be used to make decision support in urban design.
Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes
NASA Astrophysics Data System (ADS)
Hu, Fengqin; Zhao, Yong Sheng
2012-09-01
Magnetic resonance imaging (MRI) yields high spatially resolved contrast with anatomical details for diagnosis, deeper penetration depth and rapid 3D scanning. To improve imaging sensitivity, adding contrast agents accelerates the relaxation rate of water molecules, thereby greatly increasing the contrast between specific issues or organs of interest. Currently, the majority of T1 contrast agents are paramagnetic molecular complexes, typically Gd(iii) chelates. Various nanoparticulate T1 and T1/T2 contrast agents have recently been investigated as novel agents possessing the advantages of both the T1 contrast effect and nanostructural characteristics. In this minireview, we describe the recent progress of these inorganic nanoparticle-based MRI contrast agents. Specifically, we mainly report on Gd and Mn-based inorganic nanoparticles and ultrasmall iron oxide/ferrite nanoparticles.
Dey, Cody J; Richardson, Evan; McGeachy, David; Iverson, Samuel A; Gilchrist, Hugh G; Semeniuk, Christina A D
2017-05-01
Climate change can influence interspecific interactions by differentially affecting species-specific phenology. In seasonal ice environments, there is evidence that polar bear predation of Arctic bird eggs is increasing because of earlier sea ice breakup, which forces polar bears into nearshore terrestrial environments where Arctic birds are nesting. Because polar bears can consume a large number of nests before becoming satiated, and because they can swim between island colonies, they could have dramatic influences on seabird and sea duck reproductive success. However, it is unclear whether nest foraging can provide an energetic benefit to polar bear populations, especially given the capacity of bird populations to redistribute in response to increasing predation pressure. In this study, we develop a spatially explicit agent-based model of the predator-prey relationship between polar bears and common eiders, a common and culturally important bird species for northern peoples. Our model is composed of two types of agents (polar bear agents and common eider hen agents) whose movements and decision heuristics are based on species-specific bioenergetic and behavioral ecological principles, and are influenced by historical and extrapolated sea ice conditions. Our model reproduces empirical findings that polar bear predation of bird nests is increasing and predicts an accelerating relationship between advancing ice breakup dates and the number of nests depredated. Despite increases in nest predation, our model predicts that polar bear body condition during the ice-free period will continue to decline. Finally, our model predicts that common eider nests will become more dispersed and will move closer to the mainland in response to increasing predation, possibly increasing their exposure to land-based predators and influencing the livelihood of local people that collect eider eggs and down. These results show that predator-prey interactions can have nonlinear responses to changes in climate and provides important predictions of ecological change in Arctic ecosystems. © 2016 John Wiley & Sons Ltd.
Modeling, Simulation, and Characterization of Distributed Multi-Agent Systems
2012-01-01
capabilities (vision, LIDAR , differential global positioning, ultrasonic proximity sensing, etc.), the agents comprising a MAS tend to have somewhat lesser...on the simultaneous localization and mapping ( SLAM ) problem [19]. SLAM acknowledges that externally-provided localization information is not...continually-updated mapping databases, generates a comprehensive representation of the spatial and spectral environment. Many times though, inherent SLAM
Modeling the Impact of Spatial Structure on Growth Dynamics of Invasive Plant Species
NASA Astrophysics Data System (ADS)
Murphy, James T.; Johnson, Mark P.; Walshe, Ray
2013-07-01
Invasive nonindigenous plant species can have potentially serious detrimental effects on local ecosystems and, as a result, costly control efforts often have to be put in place to protect habitats. An example of an invasive problem on a global scale involves the salt marsh grass species from the genus Spartina. The spread of Spartina anglica in Europe and Asia has drawn much concern due to its ability to convert coastal habitats into cord-grass monocultures and to alter the native food webs. However, the patterns of invasion of Spartina species are amenable to spatially-explicit modeling strategies that take into account both temporal and spatio-temporal processes. In this study, an agent-based model of Spartina growth on a simulated mud flat environment was developed in order to study the effects of spatial pattern and initial seedling placement on the invasion dynamics of the population. The spatial pattern of an invasion plays a key role in the rate of spread of the species and understanding this can lead to significant cost savings when designing efficient control strategies. We present here a model framework that can be used to explicitly represent complex spatial and temporal patterns of invasion in order to be able to predict quantitatively the impact of these factors on invasion dynamics. This would be a useful tool for assessing eradication strategies and choosing optimal control solutions in order to be able to minimize future control costs.
ERIC Educational Resources Information Center
Gu, X.; Blackmore, K. L.
2015-01-01
This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…
NASA Astrophysics Data System (ADS)
Khair, Fauzi; Sopha, Bertha Maya
2017-12-01
One of the crucial phases in disaster management is the response phase or the emergency response phase. It requires a sustainable system and a well-integrated management system. Any errors in the system on this phase will impact on significant increase of the victims number as well as material damage caused. Policies related to the location of aid posts are important decisions. The facts show that there are many failures in the process of providing assistance to the refugees due to lack of preparation and determination of facilities and aid post location. Therefore, this study aims to evaluate the number and location of aid posts on Merapi eruption in 2010. This study uses an integration between Agent Based Modeling (ABM) and Geographic Information System (GIS) about evaluation of the number and location of the aid post using some scenarios. The ABM approach aims to describe the agents behaviour (refugees and volunteers) in the event of a disaster with their respective characteristics. While the spatial data, GIS useful to describe real condition of the Sleman regency road. Based on the simulation result, it shows alternative scenarios that combine DERU UGM post, Maguwoharjo Stadium, Tagana Post and Pakem Main Post has better result in handling and distributing aid to evacuation barrack compared to initial scenario. Alternative scenarios indicates the unmet demands are less than the initial scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung
2011-01-01
The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less
NASA Astrophysics Data System (ADS)
Gromek, Katherine Emily
A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.
Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley.
Axtell, Robert L; Epstein, Joshua M; Dean, Jeffrey S; Gumerman, George J; Swedlund, Alan C; Harburger, Jason; Chakravarty, Shubha; Hammond, Ross; Parker, Jon; Parker, Miles
2002-05-14
Long House Valley in the Black Mesa area of northeastern Arizona (U.S.) was inhabited by the Kayenta Anasazi from about 1800 before Christ to about anno Domini 1300. These people were prehistoric ancestors of the modern Pueblo cultures of the Colorado Plateau. Paleoenvironmental research based on alluvial geomorphology, palynology, and dendroclimatology permits accurate quantitative reconstruction of annual fluctuations in potential agricultural production (kg of maize per hectare). The archaeological record of Anasazi farming groups from anno Domini 200-1300 provides information on a millennium of sociocultural stasis, variability, change, and adaptation. We report on a multiagent computational model of this society that closely reproduces the main features of its actual history, including population ebb and flow, changing spatial settlement patterns, and eventual rapid decline. The agents in the model are monoagriculturalists, who decide both where to situate their fields as well as the location of their settlements. Nutritional needs constrain fertility. Agent heterogeneity, difficult to model mathematically, is demonstrated to be crucial to the high fidelity of the model.
Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley
Axtell, Robert L.; Epstein, Joshua M.; Dean, Jeffrey S.; Gumerman, George J.; Swedlund, Alan C.; Harburger, Jason; Chakravarty, Shubha; Hammond, Ross; Parker, Jon; Parker, Miles
2002-01-01
Long House Valley in the Black Mesa area of northeastern Arizona (U.S.) was inhabited by the Kayenta Anasazi from about 1800 before Christ to about anno Domini 1300. These people were prehistoric ancestors of the modern Pueblo cultures of the Colorado Plateau. Paleoenvironmental research based on alluvial geomorphology, palynology, and dendroclimatology permits accurate quantitative reconstruction of annual fluctuations in potential agricultural production (kg of maize per hectare). The archaeological record of Anasazi farming groups from anno Domini 200-1300 provides information on a millennium of sociocultural stasis, variability, change, and adaptation. We report on a multiagent computational model of this society that closely reproduces the main features of its actual history, including population ebb and flow, changing spatial settlement patterns, and eventual rapid decline. The agents in the model are monoagriculturalists, who decide both where to situate their fields as well as the location of their settlements. Nutritional needs constrain fertility. Agent heterogeneity, difficult to model mathematically, is demonstrated to be crucial to the high fidelity of the model. PMID:12011406
Opinion strength influences the spatial dynamics of opinion formation
Baumgaertner, Bert O.; Tyson, Rebecca T.; Krone, Stephen M.
2016-01-01
Opinions are rarely binary; they can be held with different degrees of conviction, and this expanded attitude spectrum can affect the influence one opinion has on others. Our goal is to understand how different aspects of influence lead to recognizable spatio-temporal patterns of opinions and their strengths. To do this, we introduce a stochastic spatial agent-based model of opinion dynamics that includes a spectrum of opinion strengths and various possible rules for how the opinion strength of one individual affects the influence that this individual has on others. Through simulations, we find that even a small amount of amplification of opinion strength through interaction with like-minded neighbors can tip the scales in favor of polarization and deadlock. PMID:28529381
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions
Lawley, Mark A.; Siscovick, David S.; Zhang, Donglan; Pagán, José A.
2016-01-01
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions. PMID:27236380
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions.
Li, Yan; Lawley, Mark A; Siscovick, David S; Zhang, Donglan; Pagán, José A
2016-05-26
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions.
An entropy model to measure heterogeneity of pedestrian crowds using self-propelled agents
NASA Astrophysics Data System (ADS)
Rangel-Huerta, A.; Ballinas-Hernández, A. L.; Muñoz-Meléndez, A.
2017-05-01
An entropy model to characterize the heterogeneity of a pedestrian crowd in a counter-flow corridor is presented. Pedestrians are modeled as self-propelled autonomous agents that are able to perform maneuvers to avoid collisions based on a set of simple rules of perception and action. An observer can determine a probability distribution function of the displayed behavior of pedestrians based only on external information. Three types of pedestrian are modeled, relaxed, standard and hurried pedestrians depending on their preferences of turn and non-turn when walking. Thus, using these types of pedestrians two crowds can be simulated: homogeneous and heterogeneous crowds. Heterogeneity is measured in this research based on the entropy in function of time. For that, the entropy of a homogeneous crowd comprising standard pedestrians is used as reference. A number of simulations to measure entropy of pedestrian crowds were conducted by varying different combinations of types of pedestrians, initial simulation conditions of macroscopic flow, as well as density of the crowd. Results from these simulations show that our entropy model is sensitive enough to capture the effect of both the initial simulation conditions about the spatial distribution of pedestrians in a corridor, and the composition of a crowd. Also, a relevant finding is that entropy in function of density presents a phase transition in the critical region.
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; ...
2015-10-29
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form anmore » image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.« less
Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models
ERIC Educational Resources Information Center
Snijders, Tom A. B.; Steglich, Christian E. G.
2015-01-01
Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of…
AGENT-BASED MODELS IN EMPIRICAL SOCIAL RESEARCH*
Bruch, Elizabeth; Atwell, Jon
2014-01-01
Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first discuss the motivations for using agent-based models in both basic science and policy-oriented social research. Next, we provide an overview of methods and strategies for incorporating data on behavior and populations into agent-based models, and review techniques for validating and testing the sensitivity of agent-based models. We close with suggested directions for future research. PMID:25983351
The situated HKB model: how sensorimotor spatial coupling can alter oscillatory brain dynamics
Aguilera, Miguel; Bedia, Manuel G.; Santos, Bruno A.; Barandiaran, Xabier E.
2013-01-01
Despite the increase of both dynamic and embodied/situated approaches in cognitive science, there is still little research on how coordination dynamics under a closed sensorimotor loop might induce qualitatively different patterns of neural oscillations compared to those found in isolated systems. We take as a departure point the Haken-Kelso-Bunz (HKB) model, a generic model for dynamic coordination between two oscillatory components, which has proven useful for a vast range of applications in cognitive science and whose dynamical properties are well understood. In order to explore the properties of this model under closed sensorimotor conditions we present what we call the situated HKB model: a robotic model that performs a gradient climbing task and whose “brain” is modeled by the HKB equation. We solve the differential equations that define the agent-environment coupling for increasing values of the agent's sensitivity (sensor gain), finding different behavioral strategies. These results are compared with two different models: a decoupled HKB with no sensory input and a passively-coupled HKB that is also decoupled but receives a structured input generated by a situated agent. We can precisely quantify and qualitatively describe how the properties of the system, when studied in coupled conditions, radically change in a manner that cannot be deduced from the decoupled HKB models alone. We also present the notion of neurodynamic signature as the dynamic pattern that correlates with a specific behavior and we show how only a situated agent can display this signature compared to an agent that simply receives the exact same sensory input. To our knowledge, this is the first analytical solution of the HKB equation in a sensorimotor loop and qualitative and quantitative analytic comparison of spatially coupled vs. decoupled oscillatory controllers. Finally, we discuss the limitations and possible generalization of our model to contemporary neuroscience and philosophy of mind. PMID:23986692
Interdependency enriches the spatial reciprocity in prisoner's dilemma game on weighted networks
NASA Astrophysics Data System (ADS)
Meng, Xiaokun; Sun, Shiwen; Li, Xiaoxuan; Wang, Li; Xia, Chengyi; Sun, Junqing
2016-01-01
To model the evolution of cooperation under the realistic scenarios, we propose an interdependent network-based game model which simultaneously considers the difference of individual roles in the spatial prisoner's dilemma game. In our model, the system is composed of two lattices on which an agent designated as a cooperator or defector will be allocated, meanwhile each agent will be endowed as a specific weight taking from three typical distributions on one lattice (i.e., weighted lattice), and set to be 1.0 on the other one (i.e., un-weighted or standard lattice). In addition, the interdependency will be built through the utility coupling between point-to-point partners. Extensive simulations indicate that the cooperation will be continuously elevated for the weighted lattice as the utility coupling strength (α) increases; while the cooperation will take on a nontrivial evolution on the standard lattice as α varies, and will be still greatly promoted when compared to the case of α = 0. At the same time, the full T - K phase diagrams are also explored to illustrate the evolutionary behaviors, and it is powerfully shown that the interdependency drives the defectors to survive within the narrower range, but individual weighting of utility will further broaden the coexistence space of cooperators and defectors, which renders the nontrivial evolution of cooperation in our model. Altogether, the current consequences about the evolution of cooperation will be helpful for us to provide the insights into the prevalent cooperation phenomenon within many real-world systems.
Santos, José Ignacio; Pereda, María; Zurro, Débora; Álvarez, Myrian; Caro, Jorge; Galán, José Manuel; Briz i Godino, Ivan
2015-01-01
This article presents an agent-based model designed to explore the development of cooperation in hunter-fisher-gatherer societies that face a dilemma of sharing an unpredictable resource that is randomly distributed in space. The model is a stylised abstraction of the Yamana society, which inhabited the channels and islands of the southernmost part of Tierra del Fuego (Argentina-Chile). According to ethnographic sources, the Yamana developed cooperative behaviour supported by an indirect reciprocity mechanism: whenever someone found an extraordinary confluence of resources, such as a beached whale, they would use smoke signals to announce their find, bringing people together to share food and exchange different types of social capital. The model provides insight on how the spatial concentration of beachings and agents’ movements in the space can influence cooperation. We conclude that the emergence of informal and dynamic communities that operate as a vigilance network preserves cooperation and makes defection very costly. PMID:25853728
Image/video understanding systems based on network-symbolic models
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-03-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.
An Active Learning Exercise for Introducing Agent-Based Modeling
ERIC Educational Resources Information Center
Pinder, Jonathan P.
2013-01-01
Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…
Loggers and Forest Fragmentation: Behavioral Models of Road Building in the Amazon Basin
NASA Technical Reports Server (NTRS)
Arima, Eugenio Y.; Walker, Robert T.; Perz, Stephen G.; Caldas, Marcellus
2005-01-01
Although a large literature now exists on the drivers of tropical deforestation, less is known about its spatial manifestation. This is a critical shortcoming in our knowledge base since the spatial pattern of land-cover change and forest fragmentation, in particular, strongly affect biodiversity. The purpose of this article is to consider emergent patterns of road networks, the initial proximate cause of fragmentation in tropical forest frontiers. Specifically, we address the road-building processes of loggers who are very active in the Amazon landscape. To this end, we develop an explanation of road expansions, using a positive approach combining a theoretical model of economic behavior with geographic information systems (GIs) software in order to mimic the spatial decisions of road builders. We simulate two types of road extensions commonly found in the Amazon basin in a region: showing the fishbone pattern of fragmentation. Although our simulation results are only partially successful, they call attention to the role of multiple agents in the landscape, the importance of legal and institutional constraints on economic behavior, and the power of GIs as a research tool.
Complex groundwater flow systems as traveling agent models
Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis
2014-01-01
Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow. PMID:25337455
Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary
2015-01-01
Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.
Grating-Based Phase-Contrast Imaging of Tumor Angiogenesis in Lung Metastases
Li, Xiangting; Wang, Yujie; Ding, Bei; Shi, Chen; Liu, Huanhuan; Tang, Rongbiao; Sun, Jianqi; Yan, Fuhua; Zhang, Huan
2015-01-01
Purpose To assess the feasibility of the grating-based phase-contrast imaging (GPI) technique for studying tumor angiogenesis in nude BALB/c mice, without contrast agents. Methods We established lung metastatic models of human gastric cancer by injecting the moderately differentiated SGC-7901 gastric cancer cell line into the tail vein of nude mice. Samples were embedded in a 10% formalin suspension and dried before imaging. Grating-based X-ray phase-contrast images were obtained at the BL13W beamline of the Shanghai Synchrotron Radiation Facility (SSRF) and compared with histological sections. Results Without contrast agents, grating-based X-ray phase-contrast imaging still differentiated angiogenesis within metastatic tumors with high spatial resolution. Vessels, down to tens of microns, showed gray values that were distinctive from those of the surrounding tumors, which made them easily identifiable. The vessels depicted in the imaging study were similar to those identified on histopathology, both in size and shape. Conclusions Our preliminary study demonstrates that grating-based X-ray phase-contrast imaging has the potential to depict angiogenesis in lung metastases. PMID:25811626
Dynamics and Steady States in Excitable Mobile Agent Systems
NASA Astrophysics Data System (ADS)
Peruani, Fernando; Sibona, Gustavo J.
2008-04-01
We study the spreading of excitations in 2D systems of mobile agents where the excitation is transmitted when a quiescent agent keeps contact with an excited one during a nonvanishing time. We show that the steady states strongly depend on the spatial agent dynamics. Moreover, the coupling between exposition time (ω) and agent-agent contact rate (CR) becomes crucial to understand the excitation dynamics, which exhibits three regimes with CR: no excitation for low CR, an excited regime in which the number of quiescent agents (S) is inversely proportional to CR, and, for high CR, a novel third regime, model dependent, where S scales with an exponent ξ-1, with ξ being the scaling exponent of ω with CR.
SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.
Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi
2010-01-01
Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.
Consentaneous Agent-Based and Stochastic Model of the Financial Markets
Gontis, Vygintas; Kononovicius, Aleksejus
2014-01-01
We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation. PMID:25029364
Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds
Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas
2015-01-01
We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape. PMID:26274613
Bencsik, Martin; Al-Rwaili, Amgad; Morris, Robert; Fairhurst, David J; Mundell, Victoria; Cave, Gareth; McKendry, Jonathan; Evans, Stephen
2013-11-01
The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry. Copyright © 2012 Wiley Periodicals, Inc.
Inequity aversion and the evolution of cooperation
NASA Astrophysics Data System (ADS)
Ahmed, Asrar; Karlapalem, Kamalakar
2014-02-01
Evolution of cooperation is a widely studied problem in biology, social science, economics, and artificial intelligence. Most of the existing approaches that explain cooperation rely on some notion of direct or indirect reciprocity. These reciprocity based models assume agents recognize their partner and know their previous interactions, which requires advanced cognitive abilities. In this paper we are interested in developing a model that produces cooperation without requiring any explicit memory of previous game plays. Our model is based on the notion of inequity aversion, a concept introduced within behavioral economics, whereby individuals care about payoff equality in outcomes. Here we explore the effect of using income inequality to guide partner selection and interaction. We study our model by considering both the well-mixed and the spatially structured population and present the conditions under which cooperation becomes dominant. Our results support the hypothesis that inequity aversion promotes cooperative relationship among nonkin.
Inequity aversion and the evolution of cooperation.
Ahmed, Asrar; Karlapalem, Kamalakar
2014-02-01
Evolution of cooperation is a widely studied problem in biology, social science, economics, and artificial intelligence. Most of the existing approaches that explain cooperation rely on some notion of direct or indirect reciprocity. These reciprocity based models assume agents recognize their partner and know their previous interactions, which requires advanced cognitive abilities. In this paper we are interested in developing a model that produces cooperation without requiring any explicit memory of previous game plays. Our model is based on the notion of inequity aversion, a concept introduced within behavioral economics, whereby individuals care about payoff equality in outcomes. Here we explore the effect of using income inequality to guide partner selection and interaction. We study our model by considering both the well-mixed and the spatially structured population and present the conditions under which cooperation becomes dominant. Our results support the hypothesis that inequity aversion promotes cooperative relationship among nonkin.
NASA Astrophysics Data System (ADS)
Iwamura, T.; Fragoso, J.; Lambin, E.
2012-12-01
The interactions with animals are vital to the Amerindian, indigenous people, of Rupunini savannah-forest in Guyana. Their connections extend from basic energy and protein resource to spiritual bonding through "paring" to a certain animal in the forest. We collected extensive dataset of 23 indigenous communities for 3.5 years, consisting 9900 individuals from 1307 households, as well as animal observation data in 8 transects per communities (47,000 data entries). In this presentation, our research interest is to model the driver of land use change of the indigenous communities and its impacts on the ecosystem in the Rupunini area under global change. Overarching question we would like to answer with this program is to find how and why "tipping-point" from hunting gathering society to the agricultural society occurs in the future. Secondary question is what is the implication of the change to agricultural society in terms of biodiversity and carbon stock in the area, and eventually the well-being of Rupunini people. To answer the questions regarding the society shift in agriculture activities, we built as simulation with Agent-Based Modeling (Multi Agents Simulation). We developed this simulation by using Netlogo, the programming environment specialized for spatially explicit agent-based modeling (ABM). This simulation consists of four different process in the Rupunini landscape; forest succession, animal population growth, hunting of animals, and land clearing for agriculture. All of these processes are carried out by a set of computational unit, called "agents". In this program, there are four types of agents - patches, villages, households, and animals. Here, we describe the impacts of hunting on the biodiversity based on actual demographic data from one village named Crush Water. Animal population within the hunting territory of the village stabilized but Agouti/Paca dominates the landscape with little population of armadillos and peccaries. White-tailed deers, Tapirs, Capybara exist but very low. This finding is well aligned with the hunting dataset - Agouti/Paca consists 27% of total hunting. Based on our simulation, it seems the dominance of Agouti/Paca among hunted animals shown in the field data can be explained solely by their high carrying capacity against human extraction (population density of the Paca/Agouti = 60 per square km, whereas other animals ranges 0.63 to 7). When we incorporate agriculture, the "rodentation" of the animal population toward Agouti/Paca becomes more obvious. This simulation shows the interactions of people and animals through land change and hunting, which were observed in our fields.
Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-01-01
Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation. PMID:26150807
Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-01-01
Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation.
Design and implementation of spatial knowledge grid for integrated spatial analysis
NASA Astrophysics Data System (ADS)
Liu, Xiangnan; Guan, Li; Wang, Ping
2006-10-01
Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.
The highly intelligent virtual agents for modeling financial markets
NASA Astrophysics Data System (ADS)
Yang, G.; Chen, Y.; Huang, J. P.
2016-02-01
Researchers have borrowed many theories from statistical physics, like ensemble, Ising model, etc., to study complex adaptive systems through agent-based modeling. However, one fundamental difference between entities (such as spins) in physics and micro-units in complex adaptive systems is that the latter are usually with high intelligence, such as investors in financial markets. Although highly intelligent virtual agents are essential for agent-based modeling to play a full role in the study of complex adaptive systems, how to create such agents is still an open question. Hence, we propose three principles for designing high artificial intelligence in financial markets and then build a specific class of agents called iAgents based on these three principles. Finally, we evaluate the intelligence of iAgents through virtual index trading in two different stock markets. For comparison, we also include three other types of agents in this contest, namely, random traders, agents from the wealth game (modified on the famous minority game), and agents from an upgraded wealth game. As a result, iAgents perform the best, which gives a well support for the three principles. This work offers a general framework for the further development of agent-based modeling for various kinds of complex adaptive systems.
Propagation, cascades, and agreement dynamics in complex communication and social networks
NASA Astrophysics Data System (ADS)
Lu, Qiming
Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case. When applying the model of Naming Game on empirical social networks, this stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
2015-10-30
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
Pattern-oriented modeling of agent-based complex systems: Lessons from ecology
Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.
2005-01-01
Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.
Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology
NASA Astrophysics Data System (ADS)
Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.
2005-11-01
Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.
Rigorous Results for the Distribution of Money on Connected Graphs
NASA Astrophysics Data System (ADS)
Lanchier, Nicolas; Reed, Stephanie
2018-05-01
This paper is concerned with general spatially explicit versions of three stochastic models for the dynamics of money that have been introduced and studied numerically by statistical physicists: the uniform reshuffling model, the immediate exchange model and the model with saving propensity. All three models consist of systems of economical agents that consecutively engage in pairwise monetary transactions. Computer simulations performed in the physics literature suggest that, when the number of agents and the average amount of money per agent are large, the limiting distribution of money as time goes to infinity approaches the exponential distribution for the first model, the gamma distribution with shape parameter two for the second model and a distribution similar but not exactly equal to a gamma distribution whose shape parameter depends on the saving propensity for the third model. The main objective of this paper is to give rigorous proofs of these conjectures and also extend these conjectures to generalizations of the first two models and a variant of the third model that include local rather than global interactions, i.e., instead of choosing the two interacting agents uniformly at random from the system, the agents are located on the vertex set of a general connected graph and can only interact with their neighbors.
Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee
2018-01-01
Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.
Scarpino, Samuel V.; Jansen, Patrick A.; Garzon-Lopez, Carol X.; Winkelhagen, Annemarie J. S.; Bohlman, Stephanie A.; Walsh, Peter D.
2010-01-01
Background The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama. Methodology and Principal Findings Aerial photographs providing GPS positions for large, canopy trees, the complete census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI. Conclusions and Significance We present a framework that can provide a statistical characterization of the habitat that can be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera fruit availability will be used to understand behavioral and movement patterns of several species on BCI. PMID:21124927
A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture
NASA Technical Reports Server (NTRS)
Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.
2005-01-01
Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.
ERIC Educational Resources Information Center
Xiang, Lin
2011-01-01
This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…
Spatial effects, sampling errors, and task specialization in the honey bee.
Johnson, B R
2010-05-01
Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists.
Data-driven agent-based modeling, with application to rooftop solar adoption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua
Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less
Data-driven agent-based modeling, with application to rooftop solar adoption
Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua; ...
2016-01-25
Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less
Disaggregation and Refinement of System Dynamics Models via Agent-based Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutaro, James J; Ozmen, Ozgur; Schryver, Jack C
System dynamics models are usually used to investigate aggregate level behavior, but these models can be decomposed into agents that have more realistic individual behaviors. Here we develop a simple model of the STEM workforce to illuminate the impacts that arise from the disaggregation and refinement of system dynamics models via agent-based modeling. Particularly, alteration of Poisson assumptions, adding heterogeneity to decision-making processes of agents, and discrete-time formulation are investigated and their impacts are illustrated. The goal is to demonstrate both the promise and danger of agent-based modeling in the context of a relatively simple model and to delineate themore » importance of modeling decisions that are often overlooked.« less
Applications of agent-based modeling to nutrient movement Lake Michigan
As part of an ongoing project aiming to provide useful information for nearshore management (harmful algal blooms, nutrient loading), we explore the value of agent-based models in Lake Michigan. Agent-based models follow many individual “agents” moving through a simul...
The Agent-based Approach: A New Direction for Computational Models of Development.
ERIC Educational Resources Information Center
Schlesinger, Matthew; Parisi, Domenico
2001-01-01
Introduces the concepts of online and offline sampling and highlights the role of online sampling in agent-based models of learning and development. Compares the strengths of each approach for modeling particular developmental phenomena and research questions. Describes a recent agent-based model of infant causal perception. Discusses limitations…
Demeter, persephone, and the search for emergence in agent-based models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M. J.; Howe, T. R.; Collier, N. T.
2006-01-01
In Greek mythology, the earth goddess Demeter was unable to find her daughter Persephone after Persephone was abducted by Hades, the god of the underworld. Demeter is said to have embarked on a long and frustrating, but ultimately successful, search to find her daughter. Unfortunately, long and frustrating searches are not confined to Greek mythology. In modern times, agent-based modelers often face similar troubles when searching for agents that are to be to be connected to one another and when seeking appropriate target agents while defining agent behaviors. The result is a 'search for emergence' in that many emergent ormore » potentially emergent behaviors in agent-based models of complex adaptive systems either implicitly or explicitly require search functions. This paper considers a new nested querying approach to simplifying such agent-based modeling and multi-agent simulation search problems.« less
Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)
2008-03-01
4. REPAST (Java, Python , C#, Open Source) ........28 5. MASON: Multi-Agent Modeling Language (Swarm Extension... Python , C#, Open Source) Repast (Recursive Porous Agent Simulation Toolkit) was designed for building agent-based models and simulations in the...Repast makes it easy for inexperienced users to build models by including a built-in simple model and provide interfaces through which menus and Python
A SOA-based approach to geographical data sharing
NASA Astrophysics Data System (ADS)
Li, Zonghua; Peng, Mingjun; Fan, Wei
2009-10-01
In the last few years, large volumes of spatial data have been available in different government departments in China, but these data are mainly used within these departments. With the e-government project initiated, spatial data sharing become more and more necessary. Currently, the Web has been used not only for document searching but also for the provision and use of services, known as Web services, which are published in a directory and may be automatically discovered by software agents. Particularly in the spatial domain, the possibility of accessing these large spatial datasets via Web services has motivated research into the new field of Spatial Data Infrastructure (SDI) implemented using service-oriented architecture. In this paper a Service-Oriented Architecture (SOA) based Geographical Information Systems (GIS) is proposed, and a prototype system is deployed based on Open Geospatial Consortium (OGC) standard in Wuhan, China, thus that all the departments authorized can access the spatial data within the government intranet, and also these spatial data can be easily integrated into kinds of applications.
Simulating Cancer Growth with Multiscale Agent-Based Modeling
Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.
2014-01-01
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698
Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure
McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.
2017-01-01
Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p < 0.0001) was observed between the ratio of shortwave infrared and near infrared reflectance (d74) and LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.
Salvini, G; Ligtenberg, A; van Paassen, A; Bregt, A K; Avitabile, V; Herold, M
2016-05-01
Finding land use strategies that merge land-based climate change mitigation measures and adaptation strategies is still an open issue in climate discourse. This article explores synergies and trade-offs between REDD+, a scheme that focuses mainly on mitigation through forest conservation, with "Climate Smart Agriculture", an approach that emphasizes adaptive agriculture. We introduce a framework for ex-ante assessment of the impact of land management policies and interventions and for quantifying their impacts on land-based mitigation and adaptation goals. The framework includes a companion modelling (ComMod) process informed by interviews with policymakers, local experts and local farmers. The ComMod process consists of a Role-Playing Game with local farmers and an Agent Based Model. The game provided a participatory means to develop policy and climate change scenarios. These scenarios were then used as inputs to the Agent Based Model, a spatially explicit model to simulate landscape dynamics and the associated carbon emissions over decades. We applied the framework using as case study a community in central Vietnam, characterized by deforestation for subsistence agriculture and cultivation of acacias as a cash crop. The main findings show that the framework is useful in guiding consideration of local stakeholders' goals, needs and constraints. Additionally the framework provided beneficial information to policymakers, pointing to ways that policies might be re-designed to make them better tailored to local circumstances and therefore more effective in addressing synergistically climate change mitigation and adaptation objectives. Copyright © 2015 Elsevier Ltd. All rights reserved.
Agent-based modeling of the spread of the 1918-1919 flu in three Canadian fur trading communities.
O'Neil, Caroline A; Sattenspiel, Lisa
2010-01-01
Previous attempts to study the 1918-1919 flu in three small communities in central Manitoba have used both three-community population-based and single-community agent-based models. These studies identified critical factors influencing epidemic spread, but they also left important questions unanswered. The objective of this project was to design a more realistic agent-based model that would overcome limitations of earlier models and provide new insights into these outstanding questions. The new model extends the previous agent-based model to three communities so that results can be compared to those from the population-based model. Sensitivity testing was conducted, and the new model was used to investigate the influence of seasonal settlement and mobility patterns, the geographic heterogeneity of the observed 1918-1919 epidemic in Manitoba, and other questions addressed previously. Results confirm outcomes from the population-based model that suggest that (a) social organization and mobility strongly influence the timing and severity of epidemics and (b) the impact of the epidemic would have been greater if it had arrived in the summer rather than the winter. New insights from the model suggest that the observed heterogeneity among communities in epidemic impact was not unusual and would have been the expected outcome given settlement structure and levels of interaction among communities. Application of an agent-based computer simulation has helped to better explain observed patterns of spread of the 1918-1919 flu epidemic in central Manitoba. Contrasts between agent-based and population-based models illustrate the advantages of agent-based models for the study of small populations. © 2010 Wiley-Liss, Inc.
2010-02-01
overview of their respective national up-date. Dr. Roy presented a new technique for evaluating the bioaerosol particle size based on a multiple...Field-of-View LIDAR technique . Mr. Levesque from INO gave an overview of their expertise in LIDAR and biophotonics. Dr. Chin from Laval University gave... techniques have the potential to detect particulate aerosols remotely at distances of many kilometres [1]. They can provide spatially resolved
Unsilencing Critical Conversations in Social-Studies Teacher Education Using Agent-Based Modeling
ERIC Educational Resources Information Center
Hostetler, Andrew; Sengupta, Pratim; Hollett, Ty
2018-01-01
In this article, we argue that when complex sociopolitical issues such as ethnocentrism and racial segregation are represented as complex, emergent systems using agent-based computational models (in short agent-based models or ABMs), discourse about these representations can disrupt social studies teacher candidates' dispositions of teaching…
A choline derivate-modified nanoprobe for glioma diagnosis using MRI
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Huang, Shixian; Shao, Kun; Liu, Yang; An, Sai; Kuang, Yuyang; Guo, Yubo; Ma, Haojun; Wang, Xuxia; Jiang, Chen
2013-04-01
Gadolinium (Gd) chelate contrast-enhanced magnetic resonance imaging (MRI) is a preferred method of glioma detection and preoperative localisation because it offers high spatial resolution and non-invasive deep tissue penetration. Gd-based contrast agents, such as Gd-diethyltriaminepentaacetic acid (DTPA-Gd, Magnevist), are widely used clinically for tumor diagnosis. However, the Gd-based MRI approach is limited for patients with glioma who have an uncompromised blood-brain barrier (BBB). Moreover, the rapid renal clearance and non-specificity of such contrast agents further hinders their prevalence. We present a choline derivate (CD)-modified nanoprobe with BBB permeability, glioma specificity and a long blood half-life. Specific accumulation of the nanoprobe in gliomas and subsequent MRI contrast enhancement are demonstrated in vitro in U87 MG cells and in vivo in a xenograft nude model. BBB and glioma dual targeting by this nanoprobe may facilitate precise detection of gliomas with an uncompromised BBB and may offer better preoperative and intraoperative tumor localization.
Evolution of tag-mediated altruistic behavior in one-shot encounters on large-scale complex networks
NASA Astrophysics Data System (ADS)
Hadzibeganovic, Tarik; Lima, F. Welington S.; Stauffer, Dietrich
2012-11-01
An agent-based evolutionary model of tag-mediated altruism is studied on large-scale complex networks addressing multiplayer one-shot Prisoner’s Dilemma-like games with four competing strategies. Contrary to standard theoretical predictions, but in line with recent empirical findings, we observed that altruistic acts in non-repeated interactions can emerge as a natural consequence of recognition of heritable phenotypic traits such as visual tags, which enable the discrimination between potentially beneficial and unproductive encounters. Moreover, we identified topological regimes in which cooperation always prevails at short times, but where unconditional cooperators are favored over conditional tag-based helpers, even though the latter initially have a slight reproductive advantage. After very long times, we found that all four strategies appeared about equally often, meaning that only one quarter of agents refused cooperation egoistically. However, our study suggests that intra-tag generosity can quickly evolve to dominate over other strategies in spatially structured environments that are otherwise detrimental to cooperative behavior.
Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary
2015-01-01
Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis. PMID:25806784
NASA Astrophysics Data System (ADS)
Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John
2015-04-01
Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and surface fuels are modeled in a state and transition framework that accounts for succession, fire effects, and fuels management. Fire effects are modeled using simulated fire intensity (flame length) to calculate expected vegetation impacts for each vegetation state. This talk will describe the mechanics of the simulation system along with initial results of Envision simulations for the Central Oregon study area that explore the dynamics of wildfire, fuel management, and succession over time.
Brief introductory guide to agent-based modeling and an illustration from urban health research.
Auchincloss, Amy H; Garcia, Leandro Martin Totaro
2015-11-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.
Brief introductory guide to agent-based modeling and an illustration from urban health research
Auchincloss, Amy H.; Garcia, Leandro Martin Totaro
2017-01-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation. PMID:26648364
A technology path to tactical agent-based modeling
NASA Astrophysics Data System (ADS)
James, Alex; Hanratty, Timothy P.
2017-05-01
Wargaming is a process of thinking through and visualizing events that could occur during a possible course of action. Over the past 200 years, wargaming has matured into a set of formalized processes. One area of growing interest is the application of agent-based modeling. Agent-based modeling and its additional supporting technologies has potential to introduce a third-generation wargaming capability to the Army, creating a positive overmatch decision-making capability. In its simplest form, agent-based modeling is a computational technique that helps the modeler understand and simulate how the "whole of a system" responds to change over time. It provides a decentralized method of looking at situations where individual agents are instantiated within an environment, interact with each other, and empowered to make their own decisions. However, this technology is not without its own risks and limitations. This paper explores a technology roadmap, identifying research topics that could realize agent-based modeling within a tactical wargaming context.
A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission
Parker, Jon; Epstein, Joshua M.
2013-01-01
The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120
The Physics of Traffic Congestion and Road Pricing in Transportation Planning
NASA Astrophysics Data System (ADS)
Levinson, David
2010-03-01
This presentation develops congestion theory and congestion pricing theory from its micro- foundations, the interaction of two or more vehicles. Using game theory, with a two- player game it is shown that the emergence of congestion depends on the players' relative valuations of early arrival, late arrival, and journey delay. Congestion pricing can be used as a cooperation mechanism to minimize total costs (if returned to the players). The analysis is then extended to the case of the three- player game, which illustrates congestion as a negative externality imposed on players who do not themselves contribute to it. A multi-agent model of travelers competing to utilize a roadway in time and space is presented. To realize the spillover effect among travelers, N-player games are constructed in which the strategy set includes N+1 strategies. We solve the N-player game (for N = 7) and find Nash equilibria if they exist. This model is compared to the bottleneck model. The results of numerical simulation show that the two models yield identical results in terms of lowest total costs and marginal costs when a social optimum exists. Moving from temporal dynamics to spatial complexity, using consistent agent- based techniques, we model the decision-making processes of users and infrastructure owner/operators to explore the welfare consequence of price competition, capacity choice, and product differentiation on congested transportation networks. Component models include: (1) An agent-based travel demand model wherein each traveler has learning capabilities and unique characteristics (e.g. value of time); (2) Econometric facility provision cost models; and (3) Representations of road authorities making pricing and capacity decisions. Different from small-network equilibrium models in prior literature, this agent- based model is applicable to pricing and investment analyses on large complex networks. The subsequent economic analysis focuses on the source, evolution, measurement, and impact of product differentiation with heterogeneous users on a mixed ownership network (with tolled and untolled roads). Two types of product differentiation in the presence of toll roads, path differentiation and space differentiation, are defined and measured for a base case and several variants with different types of price and capacity competition and with various degrees of user heterogeneity. The findings favor a fixed-rate road pricing policy compared to complete pricing freedom on toll roads. It is also shown that the relationship between net social benefit and user heterogeneity is not monotonic on a complex network with toll roads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul M. Torrens; Atsushi Nara; Xun Li
2012-01-01
Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-usedmore » methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be 'good enough' for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks.« less
Agent-Based Modeling in Public Health: Current Applications and Future Directions.
Tracy, Melissa; Cerdá, Magdalena; Keyes, Katherine M
2018-04-01
Agent-based modeling is a computational approach in which agents with a specified set of characteristics interact with each other and with their environment according to predefined rules. We review key areas in public health where agent-based modeling has been adopted, including both communicable and noncommunicable disease, health behaviors, and social epidemiology. We also describe the main strengths and limitations of this approach for questions with public health relevance. Finally, we describe both methodologic and substantive future directions that we believe will enhance the value of agent-based modeling for public health. In particular, advances in model validation, comparisons with other causal modeling procedures, and the expansion of the models to consider comorbidity and joint influences more systematically will improve the utility of this approach to inform public health research, practice, and policy.
Riaz, Faisal; Niazi, Muaz A
2017-01-01
This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.
Niazi, Muaz A.
2017-01-01
This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson’s arms race model has also been presented. The performance of the proposed social agent has been validated at two levels–firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme. PMID:29040294
NASA Astrophysics Data System (ADS)
Wang, J.; Cai, X.
2007-12-01
A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.
The practice of agent-based model visualization.
Dorin, Alan; Geard, Nicholas
2014-01-01
We discuss approaches to agent-based model visualization. Agent-based modeling has its own requirements for visualization, some shared with other forms of simulation software, and some unique to this approach. In particular, agent-based models are typified by complexity, dynamism, nonequilibrium and transient behavior, heterogeneity, and a researcher's interest in both individual- and aggregate-level behavior. These are all traits requiring careful consideration in the design, experimentation, and communication of results. In the case of all but final communication for dissemination, researchers may not make their visualizations public. Hence, the knowledge of how to visualize during these earlier stages is unavailable to the research community in a readily accessible form. Here we explore means by which all phases of agent-based modeling can benefit from visualization, and we provide examples from the available literature and online sources to illustrate key stages and techniques.
NASA Astrophysics Data System (ADS)
Riegels, N.; Siegfried, T.; Pereira Cardenal, S. J.; Jensen, R. A.; Bauer-Gottwein, P.
2008-12-01
In most economics--driven approaches to optimizing water use at the river basin scale, the system is modelled deterministically with the goal of maximizing overall benefits. However, actual operation and allocation decisions must be made under hydrologic and economic uncertainty. In addition, river basins often cross political boundaries, and different states may not be motivated to cooperate so as to maximize basin- scale benefits. Even within states, competing agents such as irrigation districts, municipal water agencies, and large industrial users may not have incentives to cooperate to realize efficiency gains identified in basin- level studies. More traditional simulation--optimization approaches assume pre-commitment by individual agents and stakeholders and unconditional compliance on each side. While this can help determine attainable gains and tradeoffs from efficient management, such hardwired policies do not account for dynamic feedback between agents themselves or between agents and their environments (e.g. due to climate change etc.). In reality however, we are dealing with an out-of-equilibrium multi-agent system, where there is neither global knowledge nor global control, but rather continuous strategic interaction between decision making agents. Based on the theory of stochastic games, we present a computational framework that allows for studying the dynamic feedback between decision--making agents themselves and an inherently uncertain environment in a spatially and temporally distributed manner. Agents with decision-making control over water allocation such as countries, irrigation districts, and municipalities are represented by reinforcement learning agents and coupled to a detailed hydrologic--economic model. This approach emphasizes learning by agents from their continuous interaction with other agents and the environment. It provides a convenient framework for the solution of the problem of dynamic decision-making in a mixed cooperative / non-cooperative environment with which different institutional setups and incentive systems can be studied so to identify reasonable ways to reach desirable, Pareto--optimal allocation outcomes. Preliminary results from an application to the Syr Darya river basin in Central Asia will be presented and discussed. The Syr Darya River is a classic example of a transboundary river basin in which basin-wide efficiency gains identified in optimization studies have not been sufficient to induce cooperative management of the river by the riparian states.
Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan; Russell A. Parsons; Ian D. Davies; Karen J. King; Chao Li; Ross A. Bradstock; Malcolm Gill
2013-01-01
An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide...
The contribution of competition to tree mortality in old-growth coniferous forests
Das, A.; Battles, J.; Stephenson, N.L.; van Mantgem, P.J.
2011-01-01
Competition is a well-documented contributor to tree mortality in temperate forests, with numerous studies documenting a relationship between tree death and the competitive environment. Models frequently rely on competition as the only non-random mechanism affecting tree mortality. However, for mature forests, competition may cease to be the primary driver of mortality.We use a large, long-term dataset to study the importance of competition in determining tree mortality in old-growth forests on the western slope of the Sierra Nevada of California, U.S.A. We make use of the comparative spatial configuration of dead and live trees, changes in tree spatial pattern through time, and field assessments of contributors to an individual tree's death to quantify competitive effects.Competition was apparently a significant contributor to tree mortality in these forests. Trees that died tended to be in more competitive environments than trees that survived, and suppression frequently appeared as a factor contributing to mortality. On the other hand, based on spatial pattern analyses, only three of 14 plots demonstrated compelling evidence that competition was dominating mortality. Most of the rest of the plots fell within the expectation for random mortality, and three fit neither the random nor the competition model. These results suggest that while competition is often playing a significant role in tree mortality processes in these forests it only infrequently governs those processes. In addition, the field assessments indicated a substantial presence of biotic mortality agents in trees that died.While competition is almost certainly important, demographics in these forests cannot accurately be characterized without a better grasp of other mortality processes. In particular, we likely need a better understanding of biotic agents and their interactions with one another and with competition. ?? 2011.
Conditions for the Emergence of Shared Norms in Populations with Incompatible Preferences
Helbing, Dirk; Yu, Wenjian; Opp, Karl-Dieter; Rauhut, Heiko
2014-01-01
Understanding norms is a key challenge in sociology. Nevertheless, there is a lack of dynamical models explaining how one of several possible behaviors is established as a norm and under what conditions. Analysing an agent-based model, we identify interesting parameter dependencies that imply when two behaviors will coexist or when a shared norm will emerge in a heterogeneous society, where different populations have incompatible preferences. Our model highlights the importance of randomness, spatial interactions, non-linear dynamics, and self-organization. It can also explain the emergence of unpopular norms that do not maximize the collective benefit. Furthermore, we compare behavior-based with preference-based punishment and find interesting results concerning hypocritical punishment. Strikingly, pressuring others to perform the same public behavior as oneself is more effective in promoting norms than pressuring others to meet one’s own private preference. Finally, we show that adaptive group pressure exerted by randomly occuring, local majorities may create norms under conditions where different behaviors would normally coexist. PMID:25166137
A Cybernetic Approach to the Modeling of Agent Communities
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Karlin, Jay
2000-01-01
In an earlier paper [1] examples of agent technology in a NASA context were presented. Both groundbased and space-based applications were addressed. This paper continues the discussion of one aspect of the Goddard Space Flight Center's continuing efforts to develop a community of agents that can support both ground-based and space-based systems autonomy. The paper focuses on an approach to agent-community modeling based on the theory of viable systems developed by Stafford Beer. It gives the status of an initial attempt to capture some of the agent-community behaviors in a viable system context. This paper is expository in nature and focuses on a discussion of the modeling of some of the underlying concepts and infrastructure that will serve as the basis of more detailed investigative work into the behavior of agent communities. The paper is organized as follows. First, a general introduction to agent community requirements is presented. Secondly, a brief introduction to the cybernetic concept of a viable system is given. This concept forms the foundation of the modeling approach. Then the concept of an agent community is modeled in the cybernetic context.
Simulating cancer growth with multiscale agent-based modeling.
Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S
2015-02-01
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Agent-based model for rural-urban migration: A dynamic consideration
NASA Astrophysics Data System (ADS)
Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid
2015-10-01
This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.
A Brief Account of Nanoparticle Contrast Agents for Photoacoustic Imaging
Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V.; Lanza, Gregory M
2014-01-01
Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210
ERIC Educational Resources Information Center
Dickes, Amanda Catherine; Sengupta, Pratim; Farris, Amy Voss; Satabdi, Basu
2016-01-01
In this paper, we present a third-grade ecology learning environment that integrates two forms of modeling--embodied modeling and agent-based modeling (ABMs)--through the generation of mathematical representations that are common to both forms of modeling. The term "agent" in the context of ABMs indicates individual computational objects…
Agent based reasoning for the non-linear stochastic models of long-range memory
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Gontis, V.
2012-02-01
We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.
NASA Astrophysics Data System (ADS)
Kock, B. E.
2008-12-01
The increased availability and understanding of agent-based modeling technology and techniques provides a unique opportunity for water resources modelers, allowing them to go beyond traditional behavioral approaches from neoclassical economics, and add rich cognition to social-hydrological models. Agent-based models provide for an individual focus, and the easier and more realistic incorporation of learning, memory and other mechanisms for increased cognitive sophistication. We are in an age of global change impacting complex water resources systems, and social responses are increasingly recognized as fundamentally adaptive and emergent. In consideration of this, water resources models and modelers need to better address social dynamics in a manner beyond the capabilities of neoclassical economics theory and practice. However, going beyond the unitary curve requires unique levels of engagement with stakeholders, both to elicit the richer knowledge necessary for structuring and parameterizing agent-based models, but also to make sure such models are appropriately used. With the aim of encouraging epistemological and methodological convergence in the agent-based modeling of water resources, we have developed a water resources-specific cognitive model and an associated collaborative modeling process. Our cognitive model emphasizes efficiency in architecture and operation, and capacity to adapt to different application contexts. We describe a current application of this cognitive model and modeling process in the Arkansas Basin of Colorado. In particular, we highlight the potential benefits of, and challenges to, using more sophisticated cognitive models in agent-based water resources models.
NASA Astrophysics Data System (ADS)
Murphy, J.; Lammers, R. B.; Proussevitch, A. A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Alessa, L.; Kliskey, A. D.
2014-12-01
The global hydrological cycle intersects with human decision making at multiple scales, from dams and irrigation works to the taps in individuals' homes. Residential water consumers are commonly encouraged to conserve; these messages are heard against a background of individual values and conceptions about water quality, uses, and availability. The degree to which these values impact the larger-hydrological dynamics, the way that changes in those values have impacts on the hydrological cycle through time, and the feedbacks by which water availability and quality in turn shape those values, are not well explored. To investigate this domain we employ a global-scale water balance model (WBM) coupled with a social-science-grounded agent-based model (ABM). The integration of a hydrological model with an agent-based model allows us to explore driving factors in the dynamics in coupled human-natural systems. From the perspective of the physical hydrologist, the ABM offers a richer means of incorporating the human decisions that drive the hydrological system; from the view of the social scientist, a physically-based hydrological model allows the decisions of the agents to play out against constraints faithful to the real world. We apply the interconnected models to a study of Tucson, Arizona, USA, and its role in the larger Colorado River system. Our core concept is Technology-Induced Environmental Distancing (TIED), which posits that layers of technology can insulate consumers from direct knowledge of a resource. In Tucson, multiple infrastructure and institutional layers have arguably increased the conceptual distance between individuals and their water supply, offering a test case of the TIED framework. Our coupled simulation allows us to show how the larger system transforms a resource with high temporal and spatial variability into a consumer constant, and the effects of this transformation on the regional system. We use this to explore how pricing, messaging, and social dynamics impact demand, how changes in demand affect the regional water system, and under what system challenges the values of the individuals are likely to change. This study is a preamble to modeling multiple regionally connected cities and larger systems with impacts on hydrology at the continental and global scales.
Multi-issue Agent Negotiation Based on Fairness
NASA Astrophysics Data System (ADS)
Zuo, Baohe; Zheng, Sue; Wu, Hong
Agent-based e-commerce service has become a hotspot now. How to make the agent negotiation process quickly and high-efficiently is the main research direction of this area. In the multi-issue model, MAUT(Multi-attribute Utility Theory) or its derived theory usually consider little about the fairness of both negotiators. This work presents a general model of agent negotiation which considered the satisfaction of both negotiators via autonomous learning. The model can evaluate offers from the opponent agent based on the satisfaction degree, learn online to get the opponent's knowledge from interactive instances of history and negotiation of this time, make concessions dynamically based on fair object. Through building the optimal negotiation model, the bilateral negotiation achieved a higher efficiency and fairer deal.
Pain expressiveness and altruistic behavior: an exploration using agent-based modeling.
de C Williams, Amanda C; Gallagher, Elizabeth; Fidalgo, Antonio R; Bentley, Peter J
2016-03-01
Predictions which invoke evolutionary mechanisms are hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interactions in specific physical or social environments over many generations. The outcomes have implications for understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/nonexpresser strategies) when injured and of helping, ignoring, or exploiting another in pain (altruistic/nonaltruistic/selfish strategies). Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury interrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, contingencies that evident from experimental work with a variety of mammals, over a few interactions, were replicated in the agent-based model after selection pressure over many generations. More energy-demanding expression of pain reduced its frequency in successive generations, and increasing injury frequency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased expression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits of helping hardly changed its frequency, whereas increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent-based modeling allows simulation of complex behaviors and environmental pressures over evolutionary time.
Agent Model Development for Assessing Climate-Induced Geopolitical Instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boslough, Mark B.; Backus, George A.
2005-12-01
We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such modelsmore » do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3« less
ERIC Educational Resources Information Center
Thompson, Kate; Reimann, Peter
2010-01-01
A classification system that was developed for the use of agent-based models was applied to strategies used by school-aged students to interrogate an agent-based model and a system dynamics model. These were compared, and relationships between learning outcomes and the strategies used were also analysed. It was found that the classification system…
Modeling antimicrobial tolerance and treatment of heterogeneous biofilms.
Zhao, Jia; Seeluangsawat, Paisa; Wang, Qi
2016-12-01
A multiphasic, hydrodynamic model for spatially heterogeneous biofilms based on the phase field formulation is developed and applied to analyze antimicrobial tolerance of biofilms by acknowledging the existence of persistent and susceptible cells in the total population of bacteria. The model implements a new conversion rate between persistent and susceptible cells and its homogeneous dynamics is bench-marked against a known experiment quantitatively. It is then discretized and solved on graphic processing units (GPUs) in 3-D space and time. With the model, biofilm development and antimicrobial treatment of biofilms in a flow cell are investigated numerically. Model predictions agree qualitatively well with available experimental observations. Specifically, numerical results demonstrate that: (i) in a flow cell, nutrient, diffused in solvent and transported by hydrodynamics, has an apparent impact on persister formation, thereby antimicrobial persistence of biofilms; (ii) dosing antimicrobial agents inside biofilms is more effective than dosing through diffusion in solvent; (iii) periodic dosing is less effective in antimicrobial treatment of biofilms in a nutrient deficient environment than in a nutrient sufficient environment. This model provides us with a simulation tool to analyze mechanisms of biofilm tolerance to antimicrobial agents and to derive potentially optimal dosing strategies for biofilm control and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Seven challenges for metapopulation models of epidemics, including households models.
Ball, Frank; Britton, Tom; House, Thomas; Isham, Valerie; Mollison, Denis; Pellis, Lorenzo; Scalia Tomba, Gianpaolo
2015-03-01
This paper considers metapopulation models in the general sense, i.e. where the population is partitioned into sub-populations (groups, patches,...), irrespective of the biological interpretation they have, e.g. spatially segregated large sub-populations, small households or hosts themselves modelled as populations of pathogens. This framework has traditionally provided an attractive approach to incorporating more realistic contact structure into epidemic models, since it often preserves analytic tractability (in stochastic as well as deterministic models) but also captures the most salient structural inhomogeneity in contact patterns in many applied contexts. Despite the progress that has been made in both the theory and application of such metapopulation models, we present here several major challenges that remain for future work, focusing on models that, in contrast to agent-based ones, are amenable to mathematical analysis. The challenges range from clarifying the usefulness of systems of weakly-coupled large sub-populations in modelling the spread of specific diseases to developing a theory for endemic models with household structure. They include also developing inferential methods for data on the emerging phase of epidemics, extending metapopulation models to more complex forms of human social structure, developing metapopulation models to reflect spatial population structure, developing computationally efficient methods for calculating key epidemiological model quantities, and integrating within- and between-host dynamics in models. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
A spatial model of the efficiency of T cell search in the influenza-infected lung.
Levin, Drew; Forrest, Stephanie; Banerjee, Soumya; Clay, Candice; Cannon, Judy; Moses, Melanie; Koster, Frederick
2016-06-07
Emerging strains of influenza, such as avian H5N1 and 2009 pandemic H1N1, are more virulent than seasonal H1N1 influenza, yet the underlying mechanisms for these differences are not well understood. Subtle differences in how a given strain interacts with the immune system are likely a key factor in determining virulence. One aspect of the interaction is the ability of T cells to locate the foci of the infection in time to prevent uncontrolled expansion. Here, we develop an agent based spatial model to focus on T cell migration from lymph nodes through the vascular system to sites of infection. We use our model to investigate whether different strains of influenza modulate this process. We calibrate the model using viral and chemokine secretion rates we measure in vitro together with values taken from literature. The spatial nature of the model reveals unique challenges for T cell recruitment that are not apparent in standard differential equation models. In this model comparing three influenza viruses, plaque expansion is governed primarily by the replication rate of the virus strain, and the efficiency of the T cell search-and-kill is limited by the density of infected epithelial cells in each plaque. Thus for each virus there is a different threshold of T cell search time above which recruited T cells are unable to control further expansion. Future models could use this relationship to more accurately predict control of the infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Coupled Simulation Architecture for Agent-Based/Geohydrological Modelling
NASA Astrophysics Data System (ADS)
Jaxa-Rozen, M.
2016-12-01
The quantitative modelling of social-ecological systems can provide useful insights into the interplay between social and environmental processes, and their impact on emergent system dynamics. However, such models should acknowledge the complexity and uncertainty of both of the underlying subsystems. For instance, the agent-based models which are increasingly popular for groundwater management studies can be made more useful by directly accounting for the hydrological processes which drive environmental outcomes. Conversely, conventional environmental models can benefit from an agent-based depiction of the feedbacks and heuristics which influence the decisions of groundwater users. From this perspective, this work describes a Python-based software architecture which couples the popular NetLogo agent-based platform with the MODFLOW/SEAWAT geohydrological modelling environment. This approach enables users to implement agent-based models in NetLogo's user-friendly platform, while benefiting from the full capabilities of MODFLOW/SEAWAT packages or reusing existing geohydrological models. The software architecture is based on the pyNetLogo connector, which provides an interface between the NetLogo agent-based modelling software and the Python programming language. This functionality is then extended and combined with Python's object-oriented features, to design a simulation architecture which couples NetLogo with MODFLOW/SEAWAT through the FloPy library (Bakker et al., 2016). The Python programming language also provides access to a range of external packages which can be used for testing and analysing the coupled models, which is illustrated for an application of Aquifer Thermal Energy Storage (ATES).
Laghari, Samreen; Niazi, Muaz A
2016-01-01
Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.
Simulation of nanoparticle-mediated near-infrared thermal therapy using GATE
Cuplov, Vesna; Pain, Frédéric; Jan, Sébastien
2017-01-01
Application of nanotechnology for biomedicine in cancer therapy allows for direct delivery of anticancer agents to tumors. An example of such therapies is the nanoparticle-mediated near-infrared hyperthermia treatment. In order to investigate the influence of nanoparticle properties on the spatial distribution of heat in the tumor and healthy tissues, accurate simulations are required. The Geant4 Application for Emission Tomography (GATE) open-source simulation platform, based on the Geant4 toolkit, is widely used by the research community involved in molecular imaging, radiotherapy and optical imaging. We present an extension of GATE that can model nanoparticle-mediated hyperthermal therapy as well as simple heat diffusion in biological tissues. This new feature of GATE combined with optical imaging allows for the simulation of a theranostic scenario in which the patient is injected with theranostic nanosystems that can simultaneously deliver therapeutic (i.e. hyperthermia therapy) and imaging agents (i.e. fluorescence imaging). PMID:28663855
Morphological similarities between DBM and a microeconomic model of sprawl
NASA Astrophysics Data System (ADS)
Caruso, Geoffrey; Vuidel, Gilles; Cavailhès, Jean; Frankhauser, Pierre; Peeters, Dominique; Thomas, Isabelle
2011-03-01
We present a model that simulates the growth of a metropolitan area on a 2D lattice. The model is dynamic and based on microeconomics. Households show preferences for nearby open spaces and neighbourhood density. They compete on the land market. They travel along a road network to access the CBD. A planner ensures the connectedness and maintenance of the road network. The spatial pattern of houses, green spaces and road network self-organises, emerging from agents individualistic decisions. We perform several simulations and vary residential preferences. Our results show morphologies and transition phases that are similar to Dieletric Breakdown Models (DBM). Such similarities were observed earlier by other authors, but we show here that it can be deducted from the functioning of the land market and thus explicitly connected to urban economic theory.
Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank
2017-01-01
Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pest and Disease Management: Why We Shouldn't Go against the Grain
Skelsey, Peter; With, Kimberly A.; Garrett, Karen A.
2013-01-01
Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal (‘humpbacked’) relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness. PMID:24098739
Pest and disease management: why we shouldn't go against the grain.
Skelsey, Peter; With, Kimberly A; Garrett, Karen A
2013-01-01
Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal ('humpbacked') relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness.
A unifying framework for quantifying the nature of animal interactions.
Potts, Jonathan R; Mokross, Karl; Lewis, Mark A
2014-07-06
Collective phenomena, whereby agent-agent interactions determine spatial patterns, are ubiquitous in the animal kingdom. On the other hand, movement and space use are also greatly influenced by the interactions between animals and their environment. Despite both types of interaction fundamentally influencing animal behaviour, there has hitherto been no unifying framework for the models proposed in both areas. Here, we construct a general method for inferring population-level spatial patterns from underlying individual movement and interaction processes, a key ingredient in building a statistical mechanics for ecological systems. We show that resource selection functions, as well as several examples of collective motion models, arise as special cases of our framework, thus bringing together resource selection analysis and collective animal behaviour into a single theory. In particular, we focus on combining the various mechanistic models of territorial interactions in the literature with step selection functions, by incorporating interactions into the step selection framework and demonstrating how to derive territorial patterns from the resulting models. We demonstrate the efficacy of our model by application to a population of insectivore birds in the Amazon rainforest. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The Effects of City Streets on an Urban Disease Vector
Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.
2013-01-01
With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756
2007-12-01
model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality. 15. NUMBER OF...and a Behavioral model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality...prototypes an architectural design which is generalizable, reusable, and extensible. We have created an initial set of model elements that demonstrate
The fractional volatility model: An agent-based interpretation
NASA Astrophysics Data System (ADS)
Vilela Mendes, R.
2008-06-01
Based on the criteria of mathematical simplicity and consistency with empirical market data, a model with volatility driven by fractional noise has been constructed which provides a fairly accurate mathematical parametrization of the data. Here, some features of the model are reviewed and extended to account for leverage effects. Using agent-based models, one tries to find which agent strategies and (or) properties of the financial institutions might be responsible for the features of the fractional volatility model.
NASA Astrophysics Data System (ADS)
Barbaro, Alethea
2015-03-01
Agent-based models have been widely applied in theoretical ecology to explain migrations and other collective animal movements [2,5,8]. As D'Orsogna and Perc have expertly highlighted in [6], the recent emergence of crime modeling has opened another interesting avenue for mathematical investigation. The area of crime modeling is particularly suited to agent-based models, because these models offer a great deal of flexibility within the model and also ease of communication among criminologist, law enforcement and modelers.
Nanostructured thermites based on iodine pentoxide for bio agent defeat systems.
NASA Astrophysics Data System (ADS)
Hobosyan, Mkhitar; Kazansky, Alexander; Martirosyan, Karen
2011-10-01
The risk for bioterrorist events involving the intentional airborne release of contagious agents has led to development of new approaches for bio agent defeat technologies both indoors and outdoors. Novel approaches to defeat harmful biological agents have generated a strong demand for new active materials. The preferred solutions are to neutralize the biological agents within the immediate target area by using aerosolized biocidal substances released in situ by high energetic reactions. By using nano-thermite reactions, with energy release up to 25 kJ/cc, based on I2O5/Al nanoparticles we intend to generate high quantity of vaporized iodine for spatial deposition onto harmful bacteria for their destruction. In this report, the effect of reaction product on growth and survival of Escherichia coli (E-coli) expressing GFP (Green Fluorescent Protein) was investigated. Moreover, we developed an approach to increase sensitivity of the detection. The study has shown that I2O5/Al nanosystem is extremely effective to disinfect harmful biological agents such (E-coli) bacteria in seconds.
Multiagent intelligent systems
NASA Astrophysics Data System (ADS)
Krause, Lee S.; Dean, Christopher; Lehman, Lynn A.
2003-09-01
This paper will discuss a simulation approach based upon a family of agent-based models. As the demands placed upon simulation technology by such applications as Effects Based Operations (EBO), evaluations of indicators and warnings surrounding homeland defense and commercial demands such financial risk management current single thread based simulations will continue to show serious deficiencies. The types of "what if" analysis required to support these types of applications, demand rapidly re-configurable approaches capable of aggregating large models incorporating multiple viewpoints. The use of agent technology promises to provide a broad spectrum of models incorporating differing viewpoints through a synthesis of a collection of models. Each model would provide estimates to the overall scenario based upon their particular measure or aspect. An agent framework, denoted as the "family" would provide a common ontology in support of differing aspects of the scenario. This approach permits the future of modeling to change from viewing the problem as a single thread simulation, to take into account multiple viewpoints from different models. Even as models are updated or replaced the agent approach permits rapid inclusion in new or modified simulations. In this approach a variety of low and high-resolution information and its synthesis requires a family of models. Each agent "publishes" its support for a given measure and each model provides their own estimates on the scenario based upon their particular measure or aspect. If more than one agent provides the same measure (e.g. cognitive) then the results from these agents are combined to form an aggregate measure response. The objective would be to inform and help calibrate a qualitative model, rather than merely to present highly aggregated statistical information. As each result is processed, the next action can then be determined. This is done by a top-level decision system that communicates to the family at the ontology level without any specific understanding of the processes (or model) behind each agent. The increasingly complex demands upon simulation for the necessity to incorporate the breadth and depth of influencing factors makes a family of agent based models a promising solution. This paper will discuss that solution with syntax and semantics necessary to support the approach.
Multiscale Modeling of Angiogenesis and Predictive Capacity
NASA Astrophysics Data System (ADS)
Pillay, Samara; Byrne, Helen; Maini, Philip
Tumors induce the growth of new blood vessels from existing vasculature through angiogenesis. Using an agent-based approach, we model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death-like processes. We use the transition probabilities associated with the discrete model and a discrete conservation equation for cell occupancy to determine collective cell behavior, in terms of partial differential equations (PDEs). We derive three PDE models incorporating single, multi-species and no volume exclusion. By fitting the parameters in our PDE models and other well-established continuum models to agent-based simulations during a specific time period, and then comparing the outputs from the PDE models and agent-based model at later times, we aim to determine how well the PDE models predict the future behavior of the agent-based model. We also determine whether predictions differ across PDE models and the significance of those differences. This may impact drug development strategies based on PDE models.
NASA Astrophysics Data System (ADS)
Zhang, Renjun
2007-06-01
Each scenic area can sustain a specific level of acceptance of tourist development and use, beyond which further development can result in socio-cultural deterioration or a decline in the quality of the experience gained by visitors. This specific level is called carrying capacity. Social carrying capacity can be defined as the maximum level of use (in terms of numbers and activities) that can be absorbed by an area without an unacceptable decline in the quality of experience of visitors and without an unacceptable adverse impact on the society of the area. It is difficult to assess the carrying capacity, because the carrying capacity is determined by not only the number of visitors, but also the time, the type of the recreation, the characters of each individual and the physical environment. The objective of this study is to build a spatial-temporal simulation model to simulate the spatial-temporal distribution of tourists. This model is a tourist spatial behaviors simulator (TSBS). Based on TSBS, the changes of each visitor's travel patterns such as location, cost, and other states data are recoded in a state table. By analyzing this table, the intensity of the tourist use in any area can be calculated; the changes of the quality of tourism experience can be quantized and analyzed. So based on this micro simulation method the social carrying capacity can be assessed more accurately, can be monitored proactively and managed adaptively. In this paper, the carrying capacity of Mount Emei scenic area is analyzed as followed: The author selected the intensity of the crowd as the monitoring Indicators. it is regarded that longer waiting time means more crowded. TSBS was used to simulate the spatial-temporal distribution of tourists. the average of waiting time all the visitors is calculated. And then the author assessed the social carrying capacity of Mount Emei scenic area, found the key factors have impacted on social carrying capacity. The results show that the TSBS-aided method for assessing carrying capacity is dynamic, quantifiable and more accurate.
Development and verification of an agent-based model of opinion leadership.
Anderson, Christine A; Titler, Marita G
2014-09-27
The use of opinion leaders is a strategy used to speed the process of translating research into practice. Much is still unknown about opinion leader attributes and activities and the context in which they are most effective. Agent-based modeling is a methodological tool that enables demonstration of the interactive and dynamic effects of individuals and their behaviors on other individuals in the environment. The purpose of this study was to develop and test an agent-based model of opinion leadership. The details of the design and verification of the model are presented. The agent-based model was developed by using a software development platform to translate an underlying conceptual model of opinion leadership into a computer model. Individual agent attributes (for example, motives and credibility) and behaviors (seeking or providing an opinion) were specified as variables in the model in the context of a fictitious patient care unit. The verification process was designed to test whether or not the agent-based model was capable of reproducing the conditions of the preliminary conceptual model. The verification methods included iterative programmatic testing ('debugging') and exploratory analysis of simulated data obtained from execution of the model. The simulation tests included a parameter sweep, in which the model input variables were adjusted systematically followed by an individual time series experiment. Statistical analysis of model output for the 288 possible simulation scenarios in the parameter sweep revealed that the agent-based model was performing, consistent with the posited relationships in the underlying model. Nurse opinion leaders act on the strength of their beliefs and as a result, become an opinion resource for their uncertain colleagues, depending on their perceived credibility. Over time, some nurses consistently act as this type of resource and have the potential to emerge as opinion leaders in a context where uncertainty exists. The development and testing of agent-based models is an iterative process. The opinion leader model presented here provides a basic structure for continued model development, ongoing verification, and the establishment of validation procedures, including empirical data collection.
Observational goals for Max '91 to identify the causative agent for impulsive bursts
NASA Technical Reports Server (NTRS)
Batchelor, D. A.
1989-01-01
Recent studies of impulsive hard x ray and microwave bursts suggest that a propagating causative agent with a characteristic velocity of the order of 1000 km/s is responsible for these bursts. The results of these studies are summarized and observable distinguishing characteristics of the various possible agents are highlighted, with emphasis on key observational goals for the Max '91 campaigns. The most likely causative agents suggested by the evidence are shocks, thermal conduction fronts, and propagating modes of magnetic reconnection in flare plasmas. With new instrumentation planned for Max '91, high spatial resolution observations of hard x ray sources have the potential to identify the agent by revealing detailed features of source spatial evolution. Observations with the Very Large Array and other radio imaging instruments are of great importance, as well as detailed modeling of coronal loop structures to place limits on their density and temperature profiles. With the combined hard x ray and microwave imaging observations, aided by loop model results, the simplest causative agent to rule out would be the propagating modes of magnetic reconnection. To fit the observational evidence, reconnection modes would need to travel at approximately the same velocity (the Alfven velocity) in different coronal structures that vary in length by a factor of 10(exp 3). Over such a vast range in loop lengths, it is difficult to believe that the Alfven velocity is constant. Thermal conduction fronts would be suggested by sources that expand along the direction of B and exhibit relatively little particle precipitation. Particle acceleration due to shocks could produce more diverse radially expanding source geometries with precipitation at loop footprints.
Agent-Based vs. Equation-based Epidemiological Models:A Model Selection Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Nutaro, James J
This paper is motivated by the need to design model validation strategies for epidemiological disease-spread models. We consider both agent-based and equation-based models of pandemic disease spread and study the nuances and complexities one has to consider from the perspective of model validation. For this purpose, we instantiate an equation based model and an agent based model of the 1918 Spanish flu and we leverage data published in the literature for our case- study. We present our observations from the perspective of each implementation and discuss the application of model-selection criteria to compare the risk in choosing one modeling paradigmmore » to another. We conclude with a discussion of our experience and document future ideas for a model validation framework.« less
Situation awareness-based agent transparency for human-autonomy teaming effectiveness
NASA Astrophysics Data System (ADS)
Chen, Jessie Y. C.; Barnes, Michael J.; Wright, Julia L.; Stowers, Kimberly; Lakhmani, Shan G.
2017-05-01
We developed the Situation awareness-based Agent Transparency (SAT) model to support human operators' situation awareness of the mission environment through teaming with intelligent agents. The model includes the agent's current actions and plans (Level 1), its reasoning process (Level 2), and its projection of future outcomes (Level 3). Human-inthe-loop simulation experiments have been conducted (Autonomous Squad Member and IMPACT) to illustrate the utility of the model for human-autonomy team interface designs. Across studies, the results consistently showed that human operators' task performance improved as the agents became more transparent. They also perceived transparent agents as more trustworthy.
Agent-based modeling as a tool for program design and evaluation.
Lawlor, Jennifer A; McGirr, Sara
2017-12-01
Recently, systems thinking and systems science approaches have gained popularity in the field of evaluation; however, there has been relatively little exploration of how evaluators could use quantitative tools to assist in the implementation of systems approaches therein. The purpose of this paper is to explore potential uses of one such quantitative tool, agent-based modeling, in evaluation practice. To this end, we define agent-based modeling and offer potential uses for it in typical evaluation activities, including: engaging stakeholders, selecting an intervention, modeling program theory, setting performance targets, and interpreting evaluation results. We provide demonstrative examples from published agent-based modeling efforts both inside and outside the field of evaluation for each of the evaluative activities discussed. We further describe potential pitfalls of this tool and offer cautions for evaluators who may chose to implement it in their practice. Finally, the article concludes with a discussion of the future of agent-based modeling in evaluation practice and a call for more formal exploration of this tool as well as other approaches to simulation modeling in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Agent Based Modeling of Collaboration and Work Practices Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Acquisti, Alessandro; Sierhuis, Maarten; Clancey, William J.; Bradshaw, Jeffrey M.; Shaffo, Mike (Technical Monitor)
2002-01-01
The International Space Station is one the most complex projects ever, with numerous interdependent constraints affecting productivity and crew safety. This requires planning years before crew expeditions, and the use of sophisticated scheduling tools. Human work practices, however, are difficult to study and represent within traditional planning tools. We present an agent-based model and simulation of the activities and work practices of astronauts onboard the ISS based on an agent-oriented approach. The model represents 'a day in the life' of the ISS crew and is developed in Brahms, an agent-oriented, activity-based language used to model knowledge in situated action and learning in human activities.
Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D
2011-11-01
There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.
Agent-Based Model Approach to Complex Phenomena in Real Economy
NASA Astrophysics Data System (ADS)
Iyetomi, H.; Aoyama, H.; Fujiwara, Y.; Ikeda, Y.; Souma, W.
An agent-based model for firms' dynamics is developed. The model consists of firm agents with identical characteristic parameters and a bank agent. Dynamics of those agents are described by their balance sheets. Each firm tries to maximize its expected profit with possible risks in market. Infinite growth of a firm directed by the ``profit maximization" principle is suppressed by a concept of ``going concern". Possibility of bankruptcy of firms is also introduced by incorporating a retardation effect of information on firms' decision. The firms, mutually interacting through the monopolistic bank, become heterogeneous in the course of temporal evolution. Statistical properties of firms' dynamics obtained by simulations based on the model are discussed in light of observations in the real economy.
NASA Astrophysics Data System (ADS)
Haer, Toon; Aerts, Jeroen
2015-04-01
Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.
2016-01-01
Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235
DAMS: A Model to Assess Domino Effects by Using Agent-Based Modeling and Simulation.
Zhang, Laobing; Landucci, Gabriele; Reniers, Genserik; Khakzad, Nima; Zhou, Jianfeng
2017-12-19
Historical data analysis shows that escalation accidents, so-called domino effects, have an important role in disastrous accidents in the chemical and process industries. In this study, an agent-based modeling and simulation approach is proposed to study the propagation of domino effects in the chemical and process industries. Different from the analytical or Monte Carlo simulation approaches, which normally study the domino effect at probabilistic network levels, the agent-based modeling technique explains the domino effects from a bottom-up perspective. In this approach, the installations involved in a domino effect are modeled as agents whereas the interactions among the installations (e.g., by means of heat radiation) are modeled via the basic rules of the agents. Application of the developed model to several case studies demonstrates the ability of the model not only in modeling higher-level domino effects and synergistic effects but also in accounting for temporal dependencies. The model can readily be applied to large-scale complicated cases. © 2017 Society for Risk Analysis.
Qian, Zeng-Hui; Feng, Xu; Li, Yang; Tang, Ke
2018-01-01
Studying the three-dimensional (3D) anatomy of the cavernous sinus is essential for treating lesions in this region with skull base surgeries. Cadaver dissection is a conventional method that has insurmountable flaws with regard to understanding spatial anatomy. The authors' research aimed to build an image model of the cavernous sinus region in a virtual reality system to precisely, individually and objectively elucidate the complete and local stereo-anatomy. Computed tomography and magnetic resonance imaging scans were performed on 5 adult cadaver heads. Latex mixed with contrast agent was injected into the arterial system and then into the venous system. Computed tomography scans were performed again following the 2 injections. Magnetic resonance imaging scans were performed again after the cranial nerves were exposed. Image data were input into a virtual reality system to establish a model of the cavernous sinus. Observation results of the image models were compared with those of the cadaver heads. Visualization of the cavernous sinus region models built using the virtual reality system was good for all the cadavers. High resolutions were achieved for the images of different tissues. The observed results were consistent with those of the cadaver head. The spatial architecture and modality of the cavernous sinus were clearly displayed in the 3D model by rotating the model and conveniently changing its transparency. A 3D virtual reality model of the cavernous sinus region is helpful for globally and objectively understanding anatomy. The observation procedure was accurate, convenient, noninvasive, and time and specimen saving.
Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses.
Griffith, Daniel A; Peres-Neto, Pedro R
2006-10-01
Recently, analytical approaches based on the eigenfunctions of spatial configuration matrices have been proposed in order to consider explicitly spatial predictors. The present study demonstrates the usefulness of eigenfunctions in spatial modeling applied to ecological problems and shows equivalencies of and differences between the two current implementations of this methodology. The two approaches in this category are the distance-based (DB) eigenvector maps proposed by P. Legendre and his colleagues, and spatial filtering based upon geographic connectivity matrices (i.e., topology-based; CB) developed by D. A. Griffith and his colleagues. In both cases, the goal is to create spatial predictors that can be easily incorporated into conventional regression models. One important advantage of these two approaches over any other spatial approach is that they provide a flexible tool that allows the full range of general and generalized linear modeling theory to be applied to ecological and geographical problems in the presence of nonzero spatial autocorrelation.
Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.
Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko
2016-01-01
Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.
Model reduction for agent-based social simulation: coarse-graining a civil violence model.
Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G
2012-06-01
Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).
Model reduction for agent-based social simulation: Coarse-graining a civil violence model
NASA Astrophysics Data System (ADS)
Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.
2012-06-01
Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).
Persuasion Model and Its Evaluation Based on Positive Change Degree of Agent Emotion
NASA Astrophysics Data System (ADS)
Jinghua, Wu; Wenguang, Lu; Hailiang, Meng
For it can meet needs of negotiation among organizations take place in different time and place, and for it can make its course more rationality and result more ideal, persuasion based on agent can improve cooperation among organizations well. Integrated emotion change in agent persuasion can further bring agent advantage of artificial intelligence into play. Emotion of agent persuasion is classified, and the concept of positive change degree is given. Based on this, persuasion model based on positive change degree of agent emotion is constructed, which is explained clearly through an example. Finally, the method of relative evaluation is given, which is also verified through a calculation example.
NASA Astrophysics Data System (ADS)
Hu, Yao; Quinn, Christopher J.; Cai, Ximing; Garfinkle, Noah W.
2017-11-01
For agent-based modeling, the major challenges in deriving agents' behavioral rules arise from agents' bounded rationality and data scarcity. This study proposes a "gray box" approach to address the challenge by incorporating expert domain knowledge (i.e., human intelligence) with machine learning techniques (i.e., machine intelligence). Specifically, we propose using directed information graph (DIG), boosted regression trees (BRT), and domain knowledge to infer causal factors and identify behavioral rules from data. A case study is conducted to investigate farmers' pumping behavior in the Midwest, U.S.A. Results show that four factors identified by the DIG algorithm- corn price, underlying groundwater level, monthly mean temperature and precipitation- have main causal influences on agents' decisions on monthly groundwater irrigation depth. The agent-based model is then developed based on the behavioral rules represented by three DIGs and modeled by BRTs, and coupled with a physically-based groundwater model to investigate the impacts of agents' pumping behavior on the underlying groundwater system in the context of coupled human and environmental systems.
Solution of the spatial neutral model yields new bounds on the Amazonian species richness
NASA Astrophysics Data System (ADS)
Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.
2017-02-01
Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon
2018-02-01
Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.
An Agent-Based Model for Studying Child Maltreatment and Child Maltreatment Prevention
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Puddy, Richard W.
This paper presents an agent-based model that simulates the dynamics of child maltreatment and child maltreatment prevention. The developed model follows the principles of complex systems science and explicitly models a community and its families with multi-level factors and interconnections across the social ecology. This makes it possible to experiment how different factors and prevention strategies can affect the rate of child maltreatment. We present the background of this work and give an overview of the agent-based model and show some simulation results.
Agent-based models of cellular systems.
Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Tesei, Luca
2013-01-01
Software agents are particularly suitable for engineering models and simulations of cellular systems. In a very natural and intuitive manner, individual software components are therein delegated to reproduce "in silico" the behavior of individual components of alive systems at a given level of resolution. Individuals' actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and methodologies available for programming societies of agents, possibly profiting also of toolkits that do not require advanced programming skills.
Spatial competition and price formation
NASA Astrophysics Data System (ADS)
Nagel, Kai; Shubik, Martin; Paczuski, Maya; Bak, Per
2000-12-01
We look at price formation in a retail setting, that is, companies set prices, and consumers either accept prices or go someplace else. In contrast to most other models in this context, we use a two-dimensional spatial structure for information transmission, that is, consumers can only learn from nearest neighbors. Many aspects of this can be understood in terms of generalized evolutionary dynamics. In consequence, we first look at spatial competition and cluster formation without price. This leads to establishement size distributions, which we compare to reality. After some theoretical considerations, which at least heuristically explain our simulation results, we finally return to price formation, where we demonstrate that our simple model with nearly no organized planning or rationality on the part of any of the agents indeed leads to an economically plausible price.
Mayle, Kristine M; Dern, Kathryn R; Wong, Vincent K; Chen, Kevin Y; Sung, Shijun; Ding, Ke; Rodriguez, April R; Knowles, Scott; Taylor, Zachary; Zhou, Z Hong; Grundfest, Warren S; Wu, Anna M; Deming, Timothy J; Kamei, Daniel T
2017-02-01
Currently, there is no curative treatment for advanced metastatic prostate cancer, and options, such as chemotherapy, are often nonspecific, harming healthy cells and resulting in severe side effects. Attaching targeting ligands to agents used in anticancer therapies has been shown to improve efficacy and reduce nonspecific toxicity. Furthermore, the use of triggered therapies can enable spatial and temporal control over the treatment. Here, we combined an engineered prostate cancer-specific targeting ligand, the A11 minibody, with a novel photothermal therapy agent, polypeptide-based gold nanoshells, which generate heat in response to near-infrared light. We show that the A11 minibody strongly binds to the prostate stem cell antigen that is overexpressed on the surface of metastatic prostate cancer cells. Compared to nonconjugated gold nanoshells, our A11 minibody-conjugated gold nanoshell exhibited significant laser-induced, localized killing of prostate cancer cells in vitro. In addition, we improved upon a comprehensive heat transfer mathematical model that was previously developed by our laboratory. By relaxing some of the assumptions of our earlier model, we were able to generate more accurate predictions for this particular study. Our experimental and theoretical results demonstrate the potential of our novel minibody-conjugated gold nanoshells for metastatic prostate cancer therapy.
Hsiao-Hsuan Wang; William Grant; Todd Swannack; Jianbang Gan; William Rogers; Tomasz Koralewski; James Miller; John W. Taylor Jr.
2011-01-01
We present an integrated approach for predicting future range expansion of an invasive species (Chinese tallow tree) that incorporates statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework.
Node Survival in Networks under Correlated Attacks
Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten
2015-01-01
We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles. PMID:25932635
Kinetic Models for Topological Nearest-Neighbor Interactions
NASA Astrophysics Data System (ADS)
Blanchet, Adrien; Degond, Pierre
2017-12-01
We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.
Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies
Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair
2017-01-01
We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445
Evaluating Water Demand Using Agent-Based Modeling
NASA Astrophysics Data System (ADS)
Lowry, T. S.
2004-12-01
The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage based on its own condition and the condition of the world around it. For example, residential agents can make decisions to convert to or from xeriscaping and/or low-flow appliances based on policy implementation, economic status, weather, and climatic conditions. Agricultural agents may vary their usage by making decisions on crop distribution and irrigation design. Preliminary results show that water usage can be highly irrational under certain conditions. Results also identify sub-sectors within each group that have the highest influence on ensemble group behavior, providing a means for policy makers to target their efforts. Finally, the model is able to predict the impact of low-probability, high-impact events such as catastrophic denial of service due to natural and/or man-made events.
Role of Cattle Movements in Bovine Tuberculosis Spread in France between 2005 and 2014.
Palisson, Aurore; Courcoul, Aurélie; Durand, Benoit
2016-01-01
Live animal movements are a major transmission route for the spread of infectious agents such as Mycobacterium bovis, the main agent of bovine Tuberculosis (bTB). France became officially bTB-free in 2001, but M. bovis is still circulating in the cattle population, with about a hundred of outbreaks per year, most located in a few geographic areas. The aim of this study was to analyse the role of cattle movements in bTB spread in France between 2005 and 2014, using social network analysis and logistic regression models. At a global scale, the trade network was studied to assess the association between several centrality measures and bTB infection though a case-control analysis. The bTB infection status was associated with a higher in-degree (odds-ratio [OR] = 2.4 [1.1-5.4]) and with a higher ingoing contact chain (OR = 2.2 [1.0-4.7]). At a more local scale, a second case-control analysis was conducted to estimate the relative importance of cattle movements and spatial neighbourhood. Only direct purchase from infected herds was shown to be associated with bTB infection (OR = 2.9 [1.7-5.2]), spatial proximity to infected herds being the predominant risk factor, with decreasing ORs when distance increases. Indeed, the population attributable fraction was 12% [5%-18%] for cattle movements and 73% [68%-78%] for spatial neighbourhood. Based on these results, networks of potential effective contacts between herds were built and analysed for the three major spoligotypes reported in France. In these networks, the links representing cattle movements were associated with higher edge betweenness than those representing the spatial proximity between infected herds. They were often links connecting distinct communities and sometimes distinct geographical areas. Therefore, although their role was quantitatively lower than the one of spatial neighbourhood, cattle movements appear to have been essential in the French bTB dynamics between 2005 and 2014.
B-tree search reinforcement learning for model based intelligent agent
NASA Astrophysics Data System (ADS)
Bhuvaneswari, S.; Vignashwaran, R.
2013-03-01
Agents trained by learning techniques provide a powerful approximation of active solutions for naive approaches. In this study using B - Trees implying reinforced learning the data search for information retrieval is moderated to achieve accuracy with minimum search time. The impact of variables and tactics applied in training are determined using reinforcement learning. Agents based on these techniques perform satisfactory baseline and act as finite agents based on the predetermined model against competitors from the course.
Cooperation in N-person evolutionary snowdrift game in scale-free Barabási Albert networks
NASA Astrophysics Data System (ADS)
Lee, K. H.; Chan, Chun-Him; Hui, P. M.; Zheng, Da-Fang
2008-09-01
Cooperation in the N-person evolutionary snowdrift game (NESG) is studied in scale-free Barabási-Albert (BA) networks. Due to the inhomogeneity of the network, two versions of NESG are proposed and studied. In a model where the size of the competing group varies from agent to agent, the fraction of cooperators drops as a function of the payoff parameter. The networking effect is studied via the fraction of cooperative agents for nodes with a particular degree. For small payoff parameters, it is found that the small- k agents are dominantly cooperators, while large- k agents are of non-cooperators. Studying the spatial correlation reveals that cooperative agents will avoid to be nearest neighbors and the correlation disappears beyond the next-nearest neighbors. The behavior can be explained in terms of the networking effect and payoffs. In another model with a fixed size of competing groups, the fraction of cooperators could show a non-monotonic behavior in the regime of small payoff parameters. This non-trivial behavior is found to be a combined effect of the many agents with the smallest degree in the BA network and the increasing fraction of cooperators among these agents with the payoff for small payoffs.
NASA Astrophysics Data System (ADS)
Ng, Thian C.
2012-06-01
It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.
NASA Astrophysics Data System (ADS)
Ghoveisi, H.; Al Dughaishi, U.; Kiker, G.
2017-12-01
Maintaining water quality in agricultural watersheds is a worldwide challenge, especially where furrow irrigation is being practiced. The Yakima River Basin watershed in south central Washington State, (USA) is an example of these impacted areas with elevated load of sediments and other agricultural products due to runoff from furrow-irrigated fields. Within the Yakima basin, the Granger Drain watershed (area of 75 km2) is particularly challenged in this regard with more than 400 flood-irrigated individual parcels (area of 21 km2) growing a variety of crops from maize to grapes. Alternatives for improving water quality from furrow-irrigated parcels include vegetated filter strip (VFS) implementation, furrow water application efficiency, polyacrylamide (PAM) application and irrigation scheduling. These alternatives were simulated separately and in combinations to explore potential Best Management Practices (BMPs) for runoff-related-pollution reduction in a spatially explicit, agent based modeling system (QnD:GrangerDrain). Two regulatory scenarios were tested to BMP adoption within individual parcels. A blanket-style regulatory scenario simulated a total of 60 BMP combinations implemented in all 409 furrow-irrigated parcels. A second regulatory scenario simulated the BMPs in 119 furrow-irrigated parcels designated as "hotspots" based on a standard 12 Mg ha-1 seasonal sediment load. The simulated cumulative runoff and sediment loading from all BMP alternatives were ranked using Multiple Criteria Decision Analysis (MCDA), specifically the Stochastic Multi-Attribute Acceptability Analysis (SMAA) method. Several BMP combinations proved successful in reducing loads below a 25 NTU (91 mg L-1) regulatory sediment concentration. The QnD:GrangerDrain simulations and subsequent MCDA ranking revealed that the BMP combinations of 5 m-VFS and high furrow water efficiency were highly ranked alternatives for both the blanket and hotspot scenarios.
Understanding Group/Party Affiliation Using Social Networks and Agent-Based Modeling
NASA Technical Reports Server (NTRS)
Campbell, Kenyth
2012-01-01
The dynamics of group affiliation and group dispersion is a concept that is most often studied in order for political candidates to better understand the most efficient way to conduct their campaigns. While political campaigning in the United States is a very hot topic that most politicians analyze and study, the concept of group/party affiliation presents its own area of study that producers very interesting results. One tool for examining party affiliation on a large scale is agent-based modeling (ABM), a paradigm in the modeling and simulation (M&S) field perfectly suited for aggregating individual behaviors to observe large swaths of a population. For this study agent based modeling was used in order to look at a community of agents and determine what factors can affect the group/party affiliation patterns that are present. In the agent-based model that was used for this experiment many factors were present but two main factors were used to determine the results. The results of this study show that it is possible to use agent-based modeling to explore group/party affiliation and construct a model that can mimic real world events. More importantly, the model in the study allows for the results found in a smaller community to be translated into larger experiments to determine if the results will remain present on a much larger scale.
NASA Astrophysics Data System (ADS)
Pavao-zuckerman, M.; Pope, A.; Chan, D.; Curl, K.; Gimblett, H. R.; Hough, M.; House-Peters, L.; Lee, R.; Scott, C. A.
2012-12-01
Riparian corridors in arid regions are highly valued for their relative scarcity, and because healthy riparian systems support high levels of biodiversity, can meet human demand for water and water-related resources and functions. Our team is taking a transdiciplinary social-ecological systems approach to assessing riparian corridor resilience in two watersheds (the San Pedro River in USA and Mexico, and the Rio San Miguel in Mexico) through a project funded by the NSF CNH program ("Strengthening Resilience of Arid Region Riparian Corridors"). Multiple perspectives are integrated in the project, including hydrology, ecology, institutional dynamics, and decision making (at the level of both policy and individual choice), as well as the perspectives of various stakeholder groups and individuals in the watersheds. Here we discuss initial findings that center around linking changes in ecohydrology and livelihoods related to decisions in response to climatic, ecological, and social change. The research team is implementing two approaches to integrate the disparate disciplines participating in the research (and the varied perspectives among the stakeholders in this binational riparian context): (1) ecosystem service assessment, and (2) agent based model simulation. We are developing an ecosystem service perspective that provides a bridge between ecological dynamics in the landscape and varied stakeholder perspectives on the implications of ecohydrology for well-being (economic, cultural, ecological). Services are linked on one hand to the spatial patterns of traits of individuals within species (allowing a more predictive application of ecosystem services as they vary with community change in time), and to stakeholder perspectives (facilitating integration of ecosystem services into our understanding of decision making processes) in a case study in the San Pedro River National Conservation Area. The agent- based model (ABM) approach incorporates the influence of human decision-making on spatially-explicit landscapes in a mechanistic way, taking into account social interaction, adaptation, and decision-making at different levels, allowing individual stakeholders to make decisions based on their unique perceptions of their environment, be it economic, social, or ecological awareness. Initial parameterization of the ABM proceeds from a case study centered in the town of Rayón, Sonora, Mexico, where semi-structured interviews were used to elicit perceptions by water resource users of CNH function, change, and solutions relating to livelihood changes in response to several drivers. In both case studies, we see the potential and limitations for an approach to adaptive management and decision support related to water resources that links ecosystem services and agent-based modeling. Methodologically, synthetic approaches such as these may allow coupling of systems for improved assessment and analysis, while at the same time lack a connection to the perspectives of water users and managers on the ground. There is thus potential for a either a loss of system resilience in the face of external change, or an opportunity to increase system resilience by building off perspectives already in place within these coupled socio-ecohydrologic systems.
Review of the systems biology of the immune system using agent-based models.
Shinde, Snehal B; Kurhekar, Manish P
2018-06-01
The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.
Chronic Heart Failure Follow-up Management Based on Agent Technology.
Mohammadzadeh, Niloofar; Safdari, Reza
2015-10-01
Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making.
Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models
Snijders, Tom A.B.; Steglich, Christian E.G.
2014-01-01
Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of generalized linear statistical models they aim to be realistic detailed representations of network dynamics in empirical data sets. Statistical parallels to micro-macro considerations can be found in the estimation of parameters determining local actor behavior from empirical data, and the assessment of goodness of fit from the correspondence with network-level descriptives. This article studies several network-level consequences of dynamic actor-based models applied to represent cross-sectional network data. Two examples illustrate how network-level characteristics can be obtained as emergent features implied by micro-specifications of actor-based models. PMID:25960578
The influence of active vision on the exoskeleton of intelligent agents
NASA Astrophysics Data System (ADS)
Smith, Patrice; Terry, Theodore B.
2016-04-01
Chameleonization occurs when a self-learning autonomous mobile system's (SLAMR) active vision scans the surface of which it is perched causing the exoskeleton to changes colors exhibiting a chameleon effect. Intelligent agents having the ability to adapt to their environment and exhibit key survivability characteristics of its environments would largely be due in part to the use of active vision. Active vision would allow the intelligent agent to scan its environment and adapt as needed in order to avoid detection. The SLAMR system would have an exoskeleton, which would change, based on the surface it was perched on; this is known as the "chameleon effect." Not in the common sense of the term, but from the techno-bio inspired meaning as addressed in our previous paper. Active vision, utilizing stereoscopic color sensing functionality would enable the intelligent agent to scan an object within its close proximity, determine the color scheme, and match it; allowing the agent to blend with its environment. Through the use of its' optical capabilities, the SLAMR system would be able to further determine its position, taking into account spatial and temporal correlation and spatial frequency content of neighboring structures further ensuring successful background blending. The complex visual tasks of identifying objects, using edge detection, image filtering, and feature extraction are essential for an intelligent agent to gain additional knowledge about its environmental surroundings.
Scoping Planning Agents With Shared Models
NASA Technical Reports Server (NTRS)
Bedrax-Weiss, Tania; Frank, Jeremy D.; Jonsson, Ari K.; McGann, Conor
2003-01-01
In this paper we provide a formal framework to define the scope of planning agents based on a single declarative model. Having multiple agents sharing a single model provides numerous advantages that lead to reduced development costs and increase reliability of the system. We formally define planning in terms of extensions of an initial partial plan, and a set of flaws that make the plan unacceptable. A Flaw Filter (FF) allows us to identify those flaws relevant to an agent. Flaw filters motivate the Plan Identification Function (PIF), which specifies when an agent is is ready hand control to another agent for further work. PIFs define a set of plan extensions that can be generated from a model and a plan request. FFs and PIFs can be used to define the scope of agents without changing the model. We describe an implementation of PIFsand FFswithin the context of EUROPA, a constraint-based planning architecture, and show how it can be used to easily design many different agents.
An Agent-Based Data Mining System for Ontology Evolution
NASA Astrophysics Data System (ADS)
Hadzic, Maja; Dillon, Darshan
We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.
Method for photo-altering a biological system to improve biological effect
Hill, Richard A.; Doiron, Daniel R.; Crean, David H.
2000-08-01
Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.
A physically based analytical spatial air temperature and humidity model
Yang Yang; Theodore A. Endreny; David J. Nowak
2013-01-01
Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...
Multi-focused geospatial analysis using probes.
Butkiewicz, Thomas; Dou, Wenwen; Wartell, Zachary; Ribarsky, William; Chang, Remco
2008-01-01
Traditional geospatial information visualizations often present views that restrict the user to a single perspective. When zoomed out, local trends and anomalies become suppressed and lost; when zoomed in for local inspection, spatial awareness and comparison between regions become limited. In our model, coordinated visualizations are integrated within individual probe interfaces, which depict the local data in user-defined regions-of-interest. Our probe concept can be incorporated into a variety of geospatial visualizations to empower users with the ability to observe, coordinate, and compare data across multiple local regions. It is especially useful when dealing with complex simulations or analyses where behavior in various localities differs from other localities and from the system as a whole. We illustrate the effectiveness of our technique over traditional interfaces by incorporating it within three existing geospatial visualization systems: an agent-based social simulation, a census data exploration tool, and an 3D GIS environment for analyzing urban change over time. In each case, the probe-based interaction enhances spatial awareness, improves inspection and comparison capabilities, expands the range of scopes, and facilitates collaboration among multiple users.
Walker, Ellen A
2010-01-01
As clinical studies reveal that chemotherapeutic agents may impair several different cognitive domains in humans, the development of preclinical animal models is critical to assess the degree of chemotherapy-induced learning and memory deficits and to understand the underlying neural mechanisms. In this chapter, the effects of various cancer chemotherapeutic agents in rodents on sensory processing, conditioned taste aversion, conditioned emotional response, passive avoidance, spatial learning, cued memory, discrimination learning, delayed-matching-to-sample, novel-object recognition, electrophysiological recordings and autoshaping is reviewed. It appears at first glance that the effects of the cancer chemotherapy agents in these many different models are inconsistent. However, a literature is emerging that reveals subtle or unique changes in sensory processing, acquisition, consolidation and retrieval that are dose- and time-dependent. As more studies examine cancer chemotherapeutic agents alone and in combination during repeated treatment regimens, the animal models will become more predictive tools for the assessment of these impairments and the underlying neural mechanisms. The eventual goal is to collect enough data to enable physicians to make informed choices about therapeutic regimens for their patients and discover new avenues of alternative or complementary therapies that reduce or eliminate chemotherapy-induced cognitive deficits.
2010-08-12
Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT
Agent-based modeling: Methods and techniques for simulating human systems
Bonabeau, Eric
2002-01-01
Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407
Agent based modeling of the coevolution of hostility and pacifism
NASA Astrophysics Data System (ADS)
Dalmagro, Fermin; Jimenez, Juan
2015-01-01
We propose a model based on a population of agents whose states represent either hostile or peaceful behavior. Randomly selected pairs of agents interact according to a variation of the Prisoners Dilemma game, and the probabilities that the agents behave aggressively or not are constantly updated by the model so that the agents that remain in the game are those with the highest fitness. We show that the population of agents oscillate between generalized conflict and global peace, without either reaching a stable state. We then use this model to explain some of the emergent behaviors in collective conflicts, by comparing the simulated results with empirical data obtained from social systems. In particular, using public data reports we show how the model precisely reproduces interesting quantitative characteristics of diverse types of armed conflicts, public protests, riots and strikes.
Agent-based Modeling with MATSim for Hazards Evacuation Planning
NASA Astrophysics Data System (ADS)
Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.
2015-12-01
Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.
Disordered Actomyosin Is Sufficient to Promote Cooperative and Telescopic Contractility
NASA Astrophysics Data System (ADS)
Murrell, Michael; Linsmeier, Ian; Banerjee, Shiladitya; Kim, Tae Yoon; Jung, Wonyeong; Oakes, Patrick
While the molecular interactions between myosin motors and F-actin are well known, the relationship between F-actin organization and myosin-mediated force generation remains poorly understood. Here, we explore the accumulation of myosin-induced stresses within a 2D biomimetic model of the actomyosin cortex, where myosin activity is controlled spatially and temporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actomyosin is highly cooperative, telescopic with the activation area and generates a pattern of mechanical stresses consistent with those observed in contractile cells. We quantitatively reproduce these properties using an in vitro isotropic model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. NSF CMMI-1525316.
Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology
Marshall, Brandon D. L.; Galea, Sandro
2015-01-01
Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher
2005-01-01
This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.
Shorebird Migration Patterns in Response to Climate Change: A Modeling Approach
NASA Technical Reports Server (NTRS)
Smith, James A.
2010-01-01
The availability of satellite remote sensing observations at multiple spatial and temporal scales, coupled with advances in climate modeling and information technologies offer new opportunities for the application of mechanistic models to predict how continental scale bird migration patterns may change in response to environmental change. In earlier studies, we explored the phenotypic plasticity of a migratory population of Pectoral sandpipers by simulating the movement patterns of an ensemble of 10,000 individual birds in response to changes in stopover locations as an indicator of the impacts of wetland loss and inter-annual variability on the fitness of migratory shorebirds. We used an individual based, biophysical migration model, driven by remotely sensed land surface data, climate data, and biological field data. Mean stop-over durations and stop-over frequency with latitude predicted from our model for nominal cases were consistent with results reported in the literature and available field data. In this study, we take advantage of new computing capabilities enabled by recent GP-GPU computing paradigms and commodity hardware (general purchase computing on graphics processing units). Several aspects of our individual based (agent modeling) approach lend themselves well to GP-GPU computing. We have been able to allocate compute-intensive tasks to the graphics processing units, and now simulate ensembles of 400,000 birds at varying spatial resolutions along the central North American flyway. We are incorporating additional, species specific, mechanistic processes to better reflect the processes underlying bird phenotypic plasticity responses to different climate change scenarios in the central U.S.
Epidemic modeling with discrete-space scheduled walkers: extensions and research opportunities
2009-01-01
Background This exploratory paper outlines an epidemic simulator built on an agent-based, data-driven model of the spread of a disease within an urban environment. An intent of the model is to provide insight into how a disease may reach a tipping point, spreading to an epidemic of uncontrollable proportions. Methods As a complement to analytical methods, simulation is arguably an effective means of gaining a better understanding of system-level disease dynamics within a population and offers greater utility in its modeling capabilities. Our investigation is based on this conjecture, supported by data-driven models that are reasonable, realistic and practical, in an attempt to demonstrate their efficacy in studying system-wide epidemic phenomena. An agent-based model (ABM) offers considerable flexibility in extending the study of the phenomena before, during and after an outbreak or catastrophe. Results An agent-based model was developed based on a paradigm of a 'discrete-space scheduled walker' (DSSW), modeling a medium-sized North American City of 650,000 discrete agents, built upon a conceptual framework of statistical reasoning (law of large numbers, statistical mechanics) as well as a correct-by-construction bias. The model addresses where, who, when and what elements, corresponding to network topography and agent characteristics, behaviours, and interactions upon that topography. The DSSW-ABM has an interface and associated scripts that allow for a variety of what-if scenarios modeling disease spread throughout the population, and for data to be collected and displayed via a web browser. Conclusion This exploratory paper also presents several research opportunities for exploiting data sources of a non-obvious and disparate nature for the purposes of epidemic modeling. There is an increasing amount and variety of data that will continue to contribute to the accuracy of agent-based models and improve their utility in modeling disease spread. The model developed here is well suited to diseases where there is not a predisposition for contraction within the population. One of the advantages of agent-based modeling is the ability to set up a rare event and develop policy as to how one may mitigate damages arising from it. PMID:19922684
Epidemic modeling with discrete-space scheduled walkers: extensions and research opportunities.
Borkowski, Maciej; Podaima, Blake W; McLeod, Robert D
2009-11-18
This exploratory paper outlines an epidemic simulator built on an agent-based, data-driven model of the spread of a disease within an urban environment. An intent of the model is to provide insight into how a disease may reach a tipping point, spreading to an epidemic of uncontrollable proportions. As a complement to analytical methods, simulation is arguably an effective means of gaining a better understanding of system-level disease dynamics within a population and offers greater utility in its modeling capabilities. Our investigation is based on this conjecture, supported by data-driven models that are reasonable, realistic and practical, in an attempt to demonstrate their efficacy in studying system-wide epidemic phenomena. An agent-based model (ABM) offers considerable flexibility in extending the study of the phenomena before, during and after an outbreak or catastrophe. An agent-based model was developed based on a paradigm of a 'discrete-space scheduled walker' (DSSW), modeling a medium-sized North American City of 650,000 discrete agents, built upon a conceptual framework of statistical reasoning (law of large numbers, statistical mechanics) as well as a correct-by-construction bias. The model addresses where, who, when and what elements, corresponding to network topography and agent characteristics, behaviours, and interactions upon that topography. The DSSW-ABM has an interface and associated scripts that allow for a variety of what-if scenarios modeling disease spread throughout the population, and for data to be collected and displayed via a web browser. This exploratory paper also presents several research opportunities for exploiting data sources of a non-obvious and disparate nature for the purposes of epidemic modeling. There is an increasing amount and variety of data that will continue to contribute to the accuracy of agent-based models and improve their utility in modeling disease spread. The model developed here is well suited to diseases where there is not a predisposition for contraction within the population. One of the advantages of agent-based modeling is the ability to set up a rare event and develop policy as to how one may mitigate damages arising from it.
A Novel Machine Learning Classifier Based on a Qualia Modeling Agent (QMA)
Information Theory (IIT) of Consciousness , which proposes that the fundamental structural elements of consciousness are qualia. By modeling the...This research develops a computational agent, which overcomes this problem. The Qualia Modeling Agent (QMA) is modeled after two cognitive theories
Aytar, Burcu S.; Muller, John P. E.; Kondo, Yukishige; Abbott, Nicholas L.; Lynn, David M.
2013-01-01
We report principles for active, user-defined control over the locations and timing with which DNA is expressed in cells. Our approach exploits unique properties of a ferrocenyl cationic lipid that is inactive when oxidized, but active when chemically reduced. We show that methods that exert spatial control over the administration of reducing agents can lead to local activation of lipoplexes and spatial control over gene expression. The versatility of this approach is demonstrated using both soluble and solid-phase reducing agents. These methods provide control over cell transfection, including methods for remote activation and the patterning of expression using solid-phase redox agents, that are difficult to achieve using conventional lipoplexes. PMID:23965341
Aytar, Burcu S; Muller, John P E; Kondo, Yukishige; Abbott, Nicholas L; Lynn, David M
2013-09-11
We report principles for active, user-defined control over the locations and timing with which DNA is expressed in cells. Our approach exploits unique properties of a ferrocenyl cationic lipid that is inactive when oxidized, but active when chemically reduced. We show that methods that exert spatial control over the administration of reducing agents can lead to local activation of lipoplexes and spatial control over gene expression. The versatility of this approach is demonstrated using both soluble and solid-phase reducing agents. These methods provide control over cell transfection, including methods for remote activation and the patterning of expression using solid-phase redox agents, that are difficult to achieve using conventional lipoplexes.
NASA Astrophysics Data System (ADS)
Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.
2016-12-01
Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire spread and intensity is affect by the antecedent eco-hydrological condition, which then affects the resulting tree mortality patterns.
NASA Astrophysics Data System (ADS)
Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.
2017-12-01
Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.
A Multiagent Based Model for Tactical Planning
2002-10-01
Pub. Co. 1985. [10] Castillo, J.M. Aproximación mediante procedimientos de Inteligencia Artificial al planeamiento táctico. Doctoral Thesis...been developed under the same conceptual model and using similar Artificial Intelligence Tools. We use four different stimulus/response agents in...The conceptual model is built on base of the Agents theory. To implement the different agents we have used Artificial Intelligence techniques such
Lapse of time effects on tax evasion in an agent-based econophysics model
NASA Astrophysics Data System (ADS)
Seibold, Götz; Pickhardt, Michael
2013-05-01
We investigate an inhomogeneous Ising model in the context of tax evasion dynamics where different types of agents are parameterized via local temperatures and magnetic fields. In particular, we analyze the impact of lapse of time effects (i.e. backauditing) and endogenously determined penalty rates on tax compliance. Both features contribute to a microfoundation of agent-based econophysics models of tax evasion.
Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador
2016-02-04
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.
Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador
2016-01-01
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level. PMID:26841954
NASA Astrophysics Data System (ADS)
Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador
2016-02-01
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.
Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services
Bagstad, Kenneth J.; Johnson, Gary W.; Voigt, Brian; Villa, Ferdinando
2013-01-01
Recent ecosystem services research has highlighted the importance of spatial connectivity between ecosystems and their beneficiaries. Despite this need, a systematic approach to ecosystem service flow quantification has not yet emerged. In this article, we present such an approach, which we formalize as a class of agent-based models termed “Service Path Attribution Networks” (SPANs). These models, developed as part of the Artificial Intelligence for Ecosystem Services (ARIES) project, expand on ecosystem services classification terminology introduced by other authors. Conceptual elements needed to support flow modeling include a service's rivalness, its flow routing type (e.g., through hydrologic or transportation networks, lines of sight, or other approaches), and whether the benefit is supplied by an ecosystem's provision of a beneficial flow to people or by absorption of a detrimental flow before it reaches them. We describe our implementation of the SPAN framework for five ecosystem services and discuss how to generalize the approach to additional services. SPAN model outputs include maps of ecosystem service provision, use, depletion, and flows under theoretical, possible, actual, inaccessible, and blocked conditions. We highlight how these different ecosystem service flow maps could be used to support various types of decision making for conservation and resource management planning.
Agent-Based Modeling of Growth Processes
ERIC Educational Resources Information Center
Abraham, Ralph
2014-01-01
Growth processes abound in nature, and are frequently the target of modeling exercises in the sciences. In this article we illustrate an agent-based approach to modeling, in the case of a single example from the social sciences: bullying.
ERIC Educational Resources Information Center
Sengupta, Pratim; Farris, Amy Voss; Wright, Mason
2012-01-01
Novice learners find motion as a continuous process of change challenging to understand. In this paper, we present a pedagogical approach based on agent-based, visual programming to address this issue. Integrating agent-based programming, in particular, Logo programming, with curricular science has been shown to be challenging in previous research…
Modelling of robotic work cells using agent based-approach
NASA Astrophysics Data System (ADS)
Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.
2016-08-01
In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.
NASA Astrophysics Data System (ADS)
Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin
2013-03-01
Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"
Structural and functional photoacoustic molecular tomography aided by emerging contrast agents
Nie, Liming
2015-01-01
Photoacoustic tomography (PAT) can offer structural, functional and molecular contrasts at scalable observation level. By ultrasonically overcoming the strong optical scattering, this imaging technology can reach centimeters penetration depth while retaining high spatial resolution in biological tissue. Recent extensive research has been focused on developing new contrast agents to improve the imaging sensitivity, specificity and efficiency. These emerging materials have substantially accelerated PAT applications in signal sensing, functional imaging, biomarker labeling and therapy monitoring etc. Here, the potentials of different optical probes as PAT contrast agents were elucidated. We first describe the instrumental embodiments and the measured functional parameters, then focus on emerging contrast agent-based PAT applications, and finally discuss the challenges and prospects. PMID:24967718
Topping, Chris J; Craig, Peter S; de Jong, Frank; Klein, Michael; Laskowski, Ryszard; Manachini, Barbara; Pieper, Silvia; Smith, Rob; Sousa, José Paulo; Streissl, Franz; Swarowsky, Klaus; Tiktak, Aaldrik; van der Linden, Ton
2015-12-15
Pesticides are regulated in Europe and this process includes an environmental risk assessment (ERA) for non-target arthropods (NTA). Traditionally a non-spatial or field trial assessment is used. In this study we exemplify the introduction of a spatial context to the ERA as well as suggest a way in which the results of complex models, necessary for proper inclusion of spatial aspects in the ERA, can be presented and evaluated easily using abundance and occupancy ratios (AOR). We used an agent-based simulation system and an existing model for a widespread carabid beetle (Bembidion lampros), to evaluate the impact of a fictitious highly-toxic pesticide on population density and the distribution of beetles in time and space. Landscape structure and field margin management were evaluated by comparing scenario-based ERAs for the beetle. Source-sink dynamics led to an off-crop impact even when no pesticide was present off-crop. In addition, the impacts increased with multi-year application of the pesticide whereas current ERA considers only maximally one year. These results further indicated a complex interaction between landscape structure and pesticide effect in time, both in-crop and off-crop, indicating the need for NTA ERA to be conducted at landscape- and multi-season temporal-scales. Use of AOR indices to compare ERA outputs facilitated easy comparison of scenarios, allowing simultaneous evaluation of impacts and planning of mitigation measures. The landscape and population ERA approach also demonstrates that there is a potential to change from regulation of a pesticide in isolation, towards the consideration of pesticide management at landscape scales and provision of biodiversity benefits via inclusion and testing of mitigation measures in authorisation procedures. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cenek, Martin; Dahl, Spencer K.
2016-11-01
Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.
Cenek, Martin; Dahl, Spencer K
2016-11-01
Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.
Access Control for Cooperation Systems Based on Group Situation
NASA Astrophysics Data System (ADS)
Kim, Minsoo; Joshi, James B. D.; Kim, Minkoo
Cooperation systems characterize many emerging environments such as ubiquitous and pervasive systems. Agent based cooperation systems have been proposed in the literature to address challenges of such emerging application environments. A key aspect of such agent based cooperation system is the group situation that changes dynamically and governs the requirements of the cooperation. While individual agent context is important, the overall cooperation behavior is more driven by the group context because of relationships and interactions between agents. Dynamic access control based on group situation is a crucial challenge in such cooperation systems. In this paper we propose a dynamic role based access control model for cooperation systems based on group situation. The model emphasizes capability based agent to role mapping and group situation based permission assignment to allow capturing dynamic access policies that evolve continuously.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models
ERIC Educational Resources Information Center
Dickes, Amanda Catherine; Sengupta, Pratim
2013-01-01
In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…
NASA Astrophysics Data System (ADS)
Xin, Chen; Huang, Ji-Ping
2017-12-01
Agent-based modeling and controlled human experiments serve as two fundamental research methods in the field of econophysics. Agent-based modeling has been in development for over 20 years, but how to design virtual agents with high levels of human-like "intelligence" remains a challenge. On the other hand, experimental econophysics is an emerging field; however, there is a lack of experience and paradigms related to the field. Here, we review some of the most recent research results obtained through the use of these two methods concerning financial problems such as chaos, leverage, and business cycles. We also review the principles behind assessments of agents' intelligence levels, and some relevant designs for human experiments. The main theme of this review is to show that by combining theory, agent-based modeling, and controlled human experiments, one can garner more reliable and credible results on account of a better verification of theory; accordingly, this way, a wider range of economic and financial problems and phenomena can be studied.
Kinetic theory of situated agents applied to pedestrian flow in a corridor
NASA Astrophysics Data System (ADS)
Rangel-Huerta, A.; Muñoz-Meléndez, A.
2010-03-01
A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.
Zhu, Lin; Qualls, Whitney A.; Marshall, John M; Arheart, Kris L.; DeAngelis, Donald L.; McManus, John W.; Traore, Sekou F.; Doumbia, Seydou; Schlein, Yosef; Muller, Gunter C.; Beier, John C.
2015-01-01
BackgroundAgent-based modelling (ABM) has been used to simulate mosquito life cycles and to evaluate vector control applications. However, most models lack sugar-feeding and resting behaviours or are based on mathematical equations lacking individual level randomness and spatial components of mosquito life. Here, a spatial individual-based model (IBM) incorporating sugar-feeding and resting behaviours of the malaria vector Anopheles gambiae was developed to estimate the impact of environmental sugar sources and resting sites on survival and biting behaviour.MethodsA spatial IBM containing An. gambiae mosquitoes and humans, as well as the village environment of houses, sugar sources, resting sites and larval habitat sites was developed. Anopheles gambiae behaviour rules were attributed at each step of the IBM: resting, host seeking, sugar feeding and breeding. Each step represented one second of time, and each simulation was set to run for 60 days and repeated 50 times. Scenarios of different densities and spatial distributions of sugar sources and outdoor resting sites were simulated and compared.ResultsWhen the number of natural sugar sources was increased from 0 to 100 while the number of resting sites was held constant, mean daily survival rate increased from 2.5% to 85.1% for males and from 2.5% to 94.5% for females, mean human biting rate increased from 0 to 0.94 bites per human per day, and mean daily abundance increased from 1 to 477 for males and from 1 to 1,428 for females. When the number of outdoor resting sites was increased from 0 to 50 while the number of sugar sources was held constant, mean daily survival rate increased from 77.3% to 84.3% for males and from 86.7% to 93.9% for females, mean human biting rate increased from 0 to 0.52 bites per human per day, and mean daily abundance increased from 62 to 349 for males and from 257 to 1120 for females. All increases were significant (P < 0.01). Survival was greater when sugar sources were randomly distributed in the whole village compared to clustering around outdoor resting sites or houses.ConclusionsIncreases in densities of sugar sources or outdoor resting sites significantly increase the survival and human biting rates of An. gambiae mosquitoes. Survival of An. gambiae is more supported by random distribution of sugar sources than clustering of sugar sources around resting sites or houses. Density and spatial distribution of natural sugar sources and outdoor resting sites modulate vector populations and human biting rates, and thus malaria parasite transmission.
Zhu, Lin; Qualls, Whitney A; Marshall, John M; Arheart, Kris L; DeAngelis, Donald L; McManus, John W; Traore, Sekou F; Doumbia, Seydou; Schlein, Yosef; Müller, Günter C; Beier, John C
2015-02-05
Agent-based modelling (ABM) has been used to simulate mosquito life cycles and to evaluate vector control applications. However, most models lack sugar-feeding and resting behaviours or are based on mathematical equations lacking individual level randomness and spatial components of mosquito life. Here, a spatial individual-based model (IBM) incorporating sugar-feeding and resting behaviours of the malaria vector Anopheles gambiae was developed to estimate the impact of environmental sugar sources and resting sites on survival and biting behaviour. A spatial IBM containing An. gambiae mosquitoes and humans, as well as the village environment of houses, sugar sources, resting sites and larval habitat sites was developed. Anopheles gambiae behaviour rules were attributed at each step of the IBM: resting, host seeking, sugar feeding and breeding. Each step represented one second of time, and each simulation was set to run for 60 days and repeated 50 times. Scenarios of different densities and spatial distributions of sugar sources and outdoor resting sites were simulated and compared. When the number of natural sugar sources was increased from 0 to 100 while the number of resting sites was held constant, mean daily survival rate increased from 2.5% to 85.1% for males and from 2.5% to 94.5% for females, mean human biting rate increased from 0 to 0.94 bites per human per day, and mean daily abundance increased from 1 to 477 for males and from 1 to 1,428 for females. When the number of outdoor resting sites was increased from 0 to 50 while the number of sugar sources was held constant, mean daily survival rate increased from 77.3% to 84.3% for males and from 86.7% to 93.9% for females, mean human biting rate increased from 0 to 0.52 bites per human per day, and mean daily abundance increased from 62 to 349 for males and from 257 to 1120 for females. All increases were significant (P < 0.01). Survival was greater when sugar sources were randomly distributed in the whole village compared to clustering around outdoor resting sites or houses. Increases in densities of sugar sources or outdoor resting sites significantly increase the survival and human biting rates of An. gambiae mosquitoes. Survival of An. gambiae is more supported by random distribution of sugar sources than clustering of sugar sources around resting sites or houses. Density and spatial distribution of natural sugar sources and outdoor resting sites modulate vector populations and human biting rates, and thus malaria parasite transmission.
An agent-based computational model for tuberculosis spreading on age-structured populations
NASA Astrophysics Data System (ADS)
Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.
2015-06-01
In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.
NASA Astrophysics Data System (ADS)
Streitmatter, Seth W.; Stewart, Robert D.; Jenkins, Peter A.; Jevremovic, Tatjana
2017-08-01
A multi-scale Monte Carlo model is proposed to assess the dosimetric and biological impact of iodine-based contrast agents commonly used in computed tomography. As presented, the model integrates the general purpose MCNP6 code system for larger-scale radiation transport and dose assessment with the Monte Carlo damage simulation to determine the sub-cellular characteristics and spatial distribution of initial DNA damage. The repair-misrepair-fixation model is then used to relate DNA double strand break (DSB) induction to reproductive cell death. Comparisons of measured and modeled changes in reproductive cell survival for ultrasoft characteristic k-shell x-rays (0.25-4.55 keV) up to orthovoltage (200-500 kVp) x-rays indicate that the relative biological effectiveness (RBE) for DSB induction is within a few percent of the RBE for cell survival. Because of the very short range of secondary electrons produced by low energy x-ray interactions with contrast agents, the concentration and subcellular distribution of iodine within and near cellular targets have a significant impact on the estimated absorbed dose and number of DSB produced in the cell nucleus. For some plausible models of the cell-level distribution of contrast agent, the model predicts an increase in RBE-weighted dose (RWD) for the endpoint of DSB induction of 1.22-1.40 for a 5-10 mg ml-1 iodine concentration in blood compared to an RWD increase of 1.07 ± 0.19 from a recent clinical trial. The modeled RWD of 2.58 ± 0.03 is also in good agreement with the measured RWD of 2.3 ± 0.5 for an iodine concentration of 50 mg ml-1 relative to no iodine. The good agreement between modeled and measured DSB and cell survival estimates provides some confidence that the presented model can be used to accurately assess biological dose for other concentrations of the same or different contrast agents.
Bittig, Arne T; Matschegewski, Claudia; Nebe, J Barbara; Stählke, Susanne; Uhrmacher, Adelinde M
2014-09-09
Intra-cellular processes of cells at the interface to an implant surface are influenced significantly by their extra-cellular surrounding. Specifically, when growing osteoblasts on titanium surfaces with regular micro-ranged geometry, filaments are shorter, less aligned and they concentrate at the top of the geometric structures. Changes to the cytoskeleton network, i. e., its localization, alignment, orientation, and lengths of the filaments, as well as the overall concentration and distribution of key-actors are induced. For example, integrin is distributed homogeneously, whereas integrin in activated state and vinculin, both components of focal adhesions, have been found clustered on the micro-ranged geometries. Also, the concentration of Rho, an intracellular signaling protein related to focal adhesion regulation, was significantly lower. To explore whether regulations associated with the focal adhesion complex can be responsible for the changed actin filament patterns, a spatial computational model has been developed using ML-Space, a rule-based model description language, and its associated Brownian-motion-based simulator. The focus has been on the deactivation of cofilin in the vicinity of the focal adhesion complex. The results underline the importance of sensing mechanisms to support a clustering of actin filament nucleations on the micro-ranged geometries, and of intracellular diffusion processes, which lead to spatially heterogeneous distributions of active (dephosphorylated) cofilin, which in turn influences the organization of the actin network. We find, for example, that the spatial heterogeneity of key molecular actors can explain the difference in filament lengths in cells on different micro-geometries partly, but to explain the full extent, further model assumptions need to be added and experimentally validated. In particular, our findings and hypothesis referring to the role, distribution, and amount of active cofilin have still to be verified in wet-lab experiments. Letting cells grow on surface structures is a possibility to shed new light on the intricate mechanisms that relate membrane and actin related dynamics in the cell. Our results demonstrate the need for declarative expressive spatial modeling approaches that allow probing different hypotheses, and the central role of the focal adhesion complex not only for nucleating actin filaments, but also for regulating possible severing agents locally.
2014-01-01
Background Intra-cellular processes of cells at the interface to an implant surface are influenced significantly by their extra-cellular surrounding. Specifically, when growing osteoblasts on titanium surfaces with regular micro-ranged geometry, filaments are shorter, less aligned and they concentrate at the top of the geometric structures. Changes to the cytoskeleton network, i. e., its localization, alignment, orientation, and lengths of the filaments, as well as the overall concentration and distribution of key-actors are induced. For example, integrin is distributed homogeneously, whereas integrin in activated state and vinculin, both components of focal adhesions, have been found clustered on the micro-ranged geometries. Also, the concentration of Rho, an intracellular signaling protein related to focal adhesion regulation, was significantly lower. Results To explore whether regulations associated with the focal adhesion complex can be responsible for the changed actin filament patterns, a spatial computational model has been developed using ML-Space, a rule-based model description language, and its associated Brownian-motion-based simulator. The focus has been on the deactivation of cofilin in the vicinity of the focal adhesion complex. The results underline the importance of sensing mechanisms to support a clustering of actin filament nucleations on the micro-ranged geometries, and of intracellular diffusion processes, which lead to spatially heterogeneous distributions of active (dephosphorylated) cofilin, which in turn influences the organization of the actin network. We find, for example, that the spatial heterogeneity of key molecular actors can explain the difference in filament lengths in cells on different micro-geometries partly, but to explain the full extent, further model assumptions need to be added and experimentally validated. In particular, our findings and hypothesis referring to the role, distribution, and amount of active cofilin have still to be verified in wet-lab experiments. Conclusion Letting cells grow on surface structures is a possibility to shed new light on the intricate mechanisms that relate membrane and actin related dynamics in the cell. Our results demonstrate the need for declarative expressive spatial modeling approaches that allow probing different hypotheses, and the central role of the focal adhesion complex not only for nucleating actin filaments, but also for regulating possible severing agents locally. PMID:25200251
Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno
2017-08-01
Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Daly, Keith R; Tracy, Saoirse R; Crout, Neil M J; Mairhofer, Stefan; Pridmore, Tony P; Mooney, Sacha J; Roose, Tiina
2018-01-01
Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray computed tomography (CT) and image-based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X-ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi-automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image-based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image-based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image-based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system. © 2017 John Wiley & Sons Ltd.
Agent-Based Models in Social Physics
NASA Astrophysics Data System (ADS)
Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo
2018-06-01
We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.
Reverse engineering a social agent-based hidden markov model--visage.
Chen, Hung-Ching Justin; Goldberg, Mark; Magdon-Ismail, Malik; Wallace, William A
2008-12-01
We present a machine learning approach to discover the agent dynamics that drives the evolution of the social groups in a community. We set up the problem by introducing an agent-based hidden Markov model for the agent dynamics: an agent's actions are determined by micro-laws. Nonetheless, We learn the agent dynamics from the observed communications without knowing state transitions. Our approach is to identify the appropriate micro-laws corresponding to an identification of the appropriate parameters in the model. The model identification problem is then formulated as a mixed optimization problem. To solve the problem, we develop a multistage learning process for determining the group structure, the group evolution, and the micro-laws of a community based on the observed set of communications among actors, without knowing the semantic contents. Finally, to test the quality of our approximations and the feasibility of the approach, we present the results of extensive experiments on synthetic data as well as the results on real communities, such as Enron email and Movie newsgroups. Insight into agent dynamics helps us understand the driving forces behind social evolution.
Simulating storm surge inundation and damage potential within complex port facilities
NASA Astrophysics Data System (ADS)
Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan
2017-04-01
Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular flood scenario to perform adaptive responses (e.g. pre-emptive relocation of equipment), as well as estimate the likely duration of any disruption to port and supply chain operation. High resolution numerical inundation modelling, coupled to accurate storm surge forecasting and an agent based port operation model, thus has the potential to significantly reduce damage and disruption costs associated with storm surge impacts on port infrastructure and systems.
NASA Astrophysics Data System (ADS)
Davidovich, Hadar; Louzoun, Yoram
2013-05-01
The globalization of modern markets has led to the emergence of competition between producers in ever growing distances. This opens the interesting question in population dynamics of the effect of long-range competition. We here study a model of non-local competition to test the effect of the competition radius on the wealth distribution, using the framework of a stochastic birth-death process, with non-local interactions. We show that this model leads to non-trivial dynamics that can have implications in other domains of physics. Competition is studied in the context of the catalyst induced growth of autocatalytic agents, representing the growth of capital in the presence of investment opportunities. These agents are competing with all other agents in a given radius on growth possibilities. We show that a large scale competition leads to an extreme localization of the agents, where typically a single aggregate of agents can survive within a given competition radius. The survival of these aggregates is determined by the diffusion rates of the agents and the catalysts. For high and low agent diffusion rates, the agent population is always annihilated, while for intermediate diffusion rates, a finite agent population persists. Increasing the catalyst diffusion rate always leads to a decrease in the average agent population density. The extreme localization of the agents leads to the emergence of intermittent fluctuations, when a large aggregate of agents disappear. As the competition radius increases, so does the average agent density and its spatial variance as well as the volatility.
Bittig, Arne T; Uhrmacher, Adelinde M
2017-01-01
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
NASA Astrophysics Data System (ADS)
Honeysett, Jack E.; Stride, Eleanor; Deng, Jing; Leung, Terence S.
2012-02-01
Near-infrared spectroscopy (NIRS) can provide an estimate of the mean oxygen saturation in tissue. This technique is limited by optical scattering, which reduces the spatial resolution of the measurement, and by absorption, which makes the measurement insensitive to oxygenation changes in larger deep blood vessels relative to that in the superficial tissue. Acousto-optic (AO) techniques which combine focused ultrasound (US) with diffuse light have been shown to improve the spatial resolution as a result of US-modulation of the light signal, however this technique still suffers from low signal-to-noise when detecting a signal from regions of high optical absorption. Combining an US contrast agent with this hybrid technique has been proposed to amplify an AO signal. Microbubbles are a clinical contrast agent used in diagnostic US for their ability to resonate in a sound field: in this work we also make use of their optical scattering properties (modelled using Mie theory). A perturbation Monte Carlo (pMC) model of light transport in a highly absorbing blood vessel containing microbubbles surrounded by tissue is used to calculate the AO signal detected on the top surface of the tissue. An algorithm based on the modified Beer-Lambert law is derived which expresses intravenous oxygen saturation in terms of an AO signal. This is used to determine the oxygen saturation in the blood vessel from a dual wavelength microbubble-contrast AO measurement. Applying this algorithm to the simulation data shows that the venous oxygen saturation is accurately recovered, and this measurement is robust to changes in the oxygenation of the superficial tissue layer.
Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)
NASA Technical Reports Server (NTRS)
Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)
2004-01-01
These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.
Chronic Heart Failure Follow-up Management Based on Agent Technology
Safdari, Reza
2015-01-01
Objectives Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. Methods This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Results Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. Conclusions The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making. PMID:26618038
A technology platform to assess multiple cancer agents simultaneously within a patient's tumor
Klinghoffer, Richard A.; Frazier, Jason P.; Moreno-Gonzalez, Alicia; Strand, Andrew D.; Kerwin, William S.; Casalini, Joseph R.; Thirstrup, Derek J.; You, Sheng; Morris, Shelli M.; Watts, Korashon L.; Veiseh, Mandana; Grenley, Marc O.; Tretyak, Ilona; Dey, Joyoti; Carleton, Michael; Beirne, Emily; Pedro, Kyle D.; Ditzler, Sally H.; Girard, Emily J.; Deckwerth, Thomas L.; Bertout, Jessica A.; Meleo, Karri A.; Filvaroff, Ellen H.; Chopra, Rajesh; Press, Oliver W.; Olson, James M.
2016-01-01
A fundamental problem in cancer drug development is that antitumor efficacy in preclinical cancer models does not translate faithfully to patient outcomes. Much of early cancer drug discovery is performed under in vitro conditions in cell-based models that poorly represent actual malignancies. To address this inconsistency, we have developed a technology platform called CIVO, which enables simultaneous assessment of up to eight drugs or drug combinations within a single solid tumor in vivo. The platform is currently designed for use in animal models of cancer and patients with superficial tumors but can be modified for investigation of deeper-seated malignancies. In xenograft lymphoma models, CIVO microinjection of well-characterized anticancer agents (vincristine, doxorubicin, mafosfamide, and prednisolone) induced spatially defined cellular changes around sites of drug exposure, specific to the known mechanisms of action of each drug. The observed localized responses predicted responses to systemically delivered drugs in animals. In pair-matched lymphoma models, CIVO correctly demonstrated tumor resistance to doxorubicin and vincristine and an unexpected enhanced sensitivity to mafosfamide in multidrug-resistant lymphomas compared with chemotherapy-naïve lymphomas. A CIVO-enabled in vivo screen of 97 approved oncology agents revealed a novel mTOR (mammalian target of rapamycin) pathway inhibitor that exhibits significantly increased tumor-killing activity in the drug-resistant setting compared with chemotherapy-naïve tumors. Finally, feasibility studies to assess the use of CIVO in human and canine patients demonstrated that microinjection of drugs is toxicity-sparing while inducing robust, easily tracked, drug-specific responses in autochthonous tumors, setting the stage for further application of this technology in clinical trials. PMID:25904742
Henrickson, Leslie; McKelvey, Bill
2002-01-01
Since the death of positivism in the 1970s, philosophers have turned their attention to scientific realism, evolutionary epistemology, and the Semantic Conception of Theories. Building on these trends, Campbellian Realism allows social scientists to accept real-world phenomena as criterion variables against which theories may be tested without denying the reality of individual interpretation and social construction. The Semantic Conception reduces the importance of axioms, but reaffirms the role of models and experiments. Philosophers now see models as “autonomous agents” that exert independent influence on the development of a science, in addition to theory and data. The inappropriate molding effects of math models on social behavior modeling are noted. Complexity science offers a “new” normal science epistemology focusing on order creation by self-organizing heterogeneous agents and agent-based models. The more responsible core of postmodernism builds on the idea that agents operate in a constantly changing web of interconnections among other agents. The connectionist agent-based models of complexity science draw on the same conception of social ontology as do postmodernists. These recent developments combine to provide foundations for a “new” social science centered on formal modeling not requiring the mathematical assumptions of agent homogeneity and equilibrium conditions. They give this “new” social science legitimacy in scientific circles that current social science approaches lack. PMID:12011408
Market-oriented Programming Using Small-world Networks for Controlling Building Environments
NASA Astrophysics Data System (ADS)
Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa
The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.
Event processing in the visual world: Projected motion paths during spoken sentence comprehension.
Kamide, Yuki; Lindsay, Shane; Scheepers, Christoph; Kukona, Anuenue
2016-05-01
Motion events in language describe the movement of an entity to another location along a path. In 2 eye-tracking experiments, we found that comprehension of motion events involves the online construction of a spatial mental model that integrates language with the visual world. In Experiment 1, participants listened to sentences describing the movement of an agent to a goal while viewing visual scenes depicting the agent, goal, and empty space in between. Crucially, verbs suggested either upward (e.g., jump) or downward (e.g., crawl) paths. We found that in the rare event of fixating the empty space between the agent and goal, visual attention was biased upward or downward in line with the verb. In Experiment 2, visual scenes depicted a central obstruction, which imposed further constraints on the paths and increased the likelihood of fixating the empty space between the agent and goal. The results from this experiment corroborated and refined the previous findings. Specifically, eye-movement effects started immediately after hearing the verb and were in line with data from an additional mouse-tracking task that encouraged a more explicit spatial reenactment of the motion event. In revealing how event comprehension operates in the visual world, these findings suggest a mental simulation process whereby spatial details of motion events are mapped onto the world through visual attention. The strength and detectability of such effects in overt eye-movements is constrained by the visual world and the fact that perceivers rarely fixate regions of empty space. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A guide to calculating habitat-quality metrics to inform conservation of highly mobile species
Bieri, Joanna A.; Sample, Christine; Thogmartin, Wayne E.; Diffendorfer, James E.; Earl, Julia E.; Erickson, Richard A.; Federico, Paula; Flockhart, D. T. Tyler; Nicol, Sam; Semmens, Darius J.; Skraber, T.; Wiederholt, Ruscena; Mattsson, Brady J.
2018-01-01
Many metrics exist for quantifying the relative value of habitats and pathways used by highly mobile species. Properly selecting and applying such metrics requires substantial background in mathematics and understanding the relevant management arena. To address this multidimensional challenge, we demonstrate and compare three measurements of habitat quality: graph-, occupancy-, and demographic-based metrics. Each metric provides insights into system dynamics, at the expense of increasing amounts and complexity of data and models. Our descriptions and comparisons of diverse habitat-quality metrics provide means for practitioners to overcome the modeling challenges associated with management or conservation of such highly mobile species. Whereas previous guidance for applying habitat-quality metrics has been scattered in diversified tracks of literature, we have brought this information together into an approachable format including accessible descriptions and a modeling case study for a typical example that conservation professionals can adapt for their own decision contexts and focal populations.Considerations for Resource ManagersManagement objectives, proposed actions, data availability and quality, and model assumptions are all relevant considerations when applying and interpreting habitat-quality metrics.Graph-based metrics answer questions related to habitat centrality and connectivity, are suitable for populations with any movement pattern, quantify basic spatial and temporal patterns of occupancy and movement, and require the least data.Occupancy-based metrics answer questions about likelihood of persistence or colonization, are suitable for populations that undergo localized extinctions, quantify spatial and temporal patterns of occupancy and movement, and require a moderate amount of data.Demographic-based metrics answer questions about relative or absolute population size, are suitable for populations with any movement pattern, quantify demographic processes and population dynamics, and require the most data.More real-world examples applying occupancy-based, agent-based, and continuous-based metrics to seasonally migratory species are needed to better understand challenges and opportunities for applying these metrics more broadly.
ERIC Educational Resources Information Center
Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan
2015-01-01
In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…
Gurarie, David; Karl, Stephan; Zimmerman, Peter A; King, Charles H; St Pierre, Timothy G; Davis, Timothy M E
2012-01-01
Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.
Impact of committed individuals on vaccination behavior
NASA Astrophysics Data System (ADS)
Liu, Xiao-Tao; Wu, Zhi-Xi; Zhang, Lianzhong
2012-11-01
We study how the presence of committed vaccinators, a small fraction of individuals who consistently hold the vaccinating strategy and are immune to influence, impact the vaccination dynamics in well-mixed and spatially structured populations. For this purpose, we develop an epidemiological game-theoretic model of a flu-like vaccination by integrating an epidemiological process into a simple agent-based model of adaptive learning, where individuals (except for those committed ones) use anecdotal evidence to estimate costs and benefits of vaccination. We show that the committed vaccinators, acting as “steadfast role models” in the populations, can efficiently avoid the clustering of susceptible individuals and stimulate other imitators to take vaccination, hence contributing to the promotion of vaccine uptake. We substantiate our findings by making comparative studies of our model on a full lattice and on a randomly diluted one. Our work is expected to provide valuable information for decision-making and design more effective disease-control strategy.
Examining the Impact of the Walking School Bus With an Agent-Based Model
Diez-Roux, Ana; Evenson, Kelly R.; Colabianchi, Natalie
2014-01-01
We used an agent-based model to examine the impact of the walking school bus (WSB) on children’s active travel to school. We identified a synergistic effect of the WSB with other intervention components such as an educational campaign designed to improve attitudes toward active travel to school. Results suggest that to maximize active travel to school, children should arrive on time at “bus stops” to allow faster WSB walking speeds. We also illustrate how an agent-based model can be used to identify the location of routes maximizing the effects of the WSB on active travel. Agent-based models can be used to examine plausible effects of the WSB on active travel to school under various conditions and to identify ways of implementing the WSB that maximize its effectiveness. PMID:24832410
Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R
2014-09-10
Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.
NASA Astrophysics Data System (ADS)
Jiang, Min; Li, Hui; Zhang, Zeng-ke; Zeng, Jia
2011-02-01
We present an approach to faithfully teleport an unknown quantum state of entangled particles in a multi-particle system involving multi spatially remote agents via probabilistic channels. In our scheme, the integrity of an entangled multi-particle state can be maintained even when the construction of a faithful channel fails. Furthermore, in a quantum teleportation network, there are generally multi spatially remote agents which play the role of relay nodes between a sender and a distant receiver. Hence, we propose two schemes for directly and indirectly constructing a faithful channel between the sender and the distant receiver with the assistance of relay agents, respectively. Our results show that the required auxiliary particle resources, local operations and classical communications are considerably reduced for the present purpose.
Modeling the transport of cryoprotective agents in articular cartilage for cryopreservation
NASA Astrophysics Data System (ADS)
Torqabeh, Alireza Abazari
Loading vitrifiable concentrations of cryoprotective agents is an important step for cryopreservation of biological tissues by vitrification for research and transplantation purposes. This may be done by immersing the tissue in a cryoprotective agent (CPA) solution, and increasing the concentration, continuously or in multiple steps, and simultaneously decreasing the temperature to decrease the toxicity effects of the cryoprotective agent on the tissue cellular system. During cryoprotective agent loading, osmotic water movement from the tissue to the surrounding solution, and the resultant tissue shrinkage and stress-strain in the tissue matrix as well as on the cellular system can significantly alter the outcome of the cryopreservation protocol. In this thesis, a biomechanical model for articular cartilage is developed to account for the transport of the cryoprotective agent, the nonideal-nondilute properties of the vitrifiable solutions, the osmotic water movement and the resultant tissue shrinkage and stress-strain in the tissue matrix, and the osmotic volume change of the chondrocytes, during cryoprotective agent loading in the cartilage matrix. Four essential transport parameters needed for the model were specified, the values of which were obtained uniquely by fitting the model to experimental data from porcine articular cartilage. Then, it was shown that using real nonuniform initial distributions of water and fixed charges in cartilage, measured separately in this thesis using MRI, in the model can significantly affect the model predictions. The model predictions for dimethyl sulfoxide diffusion in porcine articular cartilage were verified by comparing to spatially and temporally resolved measurements of dimethyl sulfoxide concentration in porcine articular cartilage using a spectral MRI technique, developed for this purpose and novel to the field of cryobiology. It was demonstrated in this thesis that the developed mathematical model provides a novel tool for studying transport phenomena in cartilage during cryopreservation protocols, and can make accurate predictions for the quantities of interest for applications in the cryopreservation of articular cartilage.
Using Agent Base Models to Optimize Large Scale Network for Large System Inventories
NASA Technical Reports Server (NTRS)
Shameldin, Ramez Ahmed; Bowling, Shannon R.
2010-01-01
The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.
Multi-agent Reinforcement Learning Model for Effective Action Selection
NASA Astrophysics Data System (ADS)
Youk, Sang Jo; Lee, Bong Keun
Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocop Keep away which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.
Using Model Replication to Improve the Reliability of Agent-Based Models
NASA Astrophysics Data System (ADS)
Zhong, Wei; Kim, Yushim
The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.
An Agent Based Collaborative Simplification of 3D Mesh Model
NASA Astrophysics Data System (ADS)
Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro
Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.
NASA Astrophysics Data System (ADS)
McConnell, William J.
Due to the call of current science education reform for the integration of engineering practices within science classrooms, design-based instruction is receiving much attention in science education literature. Although some aspect of modeling is often included in well-known design-based instructional methods, it is not always a primary focus. The purpose of this study was to better understand how design-based instruction with an emphasis on scientific modeling might impact students' spatial abilities and their model-based argumentation abilities. In the following mixed-method multiple case study, seven seventh grade students attending a secular private school in the Mid-Atlantic region of the United States underwent an instructional intervention involving design-based instruction, modeling and argumentation. Through the course of a lesson involving students in exploring the interrelatedness of the environment and an animal's form and function, students created and used multiple forms of expressed models to assist them in model-based scientific argument. Pre/post data were collected through the use of The Purdue Spatial Visualization Test: Rotation, the Mental Rotation Test and interviews. Other data included a spatial activities survey, student artifacts in the form of models, notes, exit tickets, and video recordings of students throughout the intervention. Spatial abilities tests were analyzed using descriptive statistics while students' arguments were analyzed using the Instrument for the Analysis of Scientific Curricular Arguments and a behavior protocol. Models were analyzed using content analysis and interviews and all other data were coded and analyzed for emergent themes. Findings in the area of spatial abilities included increases in spatial reasoning for six out of seven participants, and an immense difference in the spatial challenges encountered by students when using CAD software instead of paper drawings to create models. Students perceived 3D printed models to better assist them in scientific argumentation over paper drawing models. In fact, when given a choice, students rarely used paper drawing to assist in argument. There was also a difference in model utility between the two different model types. Participants explicitly used 3D printed models to complete gestural modeling, while participants rarely looked at 2D models when involved in gestural modeling. This study's findings added to current theory dealing with the varied spatial challenges involved in different modes of expressed models. This study found that depth, symmetry and the manipulation of perspectives are typically spatial challenges students will attend to using CAD while they will typically ignore them when drawing using paper and pencil. This study also revealed a major difference in model-based argument in a design-based instruction context as opposed to model-based argument in a typical science classroom context. In the context of design-based instruction, data revealed that design process is an important part of model-based argument. Due to the importance of design process in model-based argumentation in this context, trusted methods of argument analysis, like the coding system of the IASCA, was found lacking in many respects. Limitations and recommendations for further research were also presented.
A framework for the use of agent based modeling to simulate ...
Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an agent-based model (ABM) is used to simulate population distributions of longitudinal patterns of four macro activities (sleeping, eating, working, and commuting) in populations of adults over a period of one year. In this ABM, an individual is modeled as an agent whose movement through time and space is determined by a set of decision rules. The rules are based on the agent having time-varying “needs” that are satisfied by performing actions. Needs are modeled as increasing over time, and taking an action reduces the need. Need-satisfying actions include sleeping (meeting the need for rest), eating (meeting the need for food), and commuting/working (meeting the need for income). Every time an action is completed, the model determines the next action the agent will take based on the magnitude of each of the agent’s needs at that point in time. Different activities advertise their ability to satisfy various needs of the agent (such as food to eat or sleeping in a bed or on a couch). The model then chooses the activity that satisfies the greatest of the agent’s needs. When multiple actions could address a need, the model will choose the most effective of the actions (bed over the couc
Hybrid evolutionary computing model for mobile agents of wireless Internet multimedia
NASA Astrophysics Data System (ADS)
Hortos, William S.
2001-03-01
The ecosystem is used as an evolutionary paradigm of natural laws for the distributed information retrieval via mobile agents to allow the computational load to be added to server nodes of wireless networks, while reducing the traffic on communication links. Based on the Food Web model, a set of computational rules of natural balance form the outer stage to control the evolution of mobile agents providing multimedia services with a wireless Internet protocol WIP. The evolutionary model shows how mobile agents should behave with the WIP, in particular, how mobile agents can cooperate, compete and learn from each other, based on an underlying competition for radio network resources to establish the wireless connections to support the quality of service QoS of user requests. Mobile agents are also allowed to clone themselves, propagate and communicate with other agents. A two-layer model is proposed for agent evolution: the outer layer is based on the law of natural balancing, the inner layer is based on a discrete version of a Kohonen self-organizing feature map SOFM to distribute network resources to meet QoS requirements. The former is embedded in the higher OSI layers of the WIP, while the latter is used in the resource management procedures of Layer 2 and 3 of the protocol. Algorithms for the distributed computation of mobile agent evolutionary behavior are developed by adding a learning state to the agent evolution state diagram. When an agent is in an indeterminate state, it can communicate to other agents. Computing models can be replicated from other agents. Then the agents transitions to the mutating state to wait for a new information-retrieval goal. When a wireless terminal or station lacks a network resource, an agent in the suspending state can change its policy to submit to the environment before it transitions to the searching state. The agents learn the facts of agent state information entered into an external database. In the cloning process, two agents on a host station sharing a common goal can be merged or married to compose a new agent. Application of the two-layer set of algorithms for mobile agent evolution, performed in a distributed processing environment, is made to the QoS management functions of the IP multimedia IM sub-network of the third generation 3G Wideband Code-division Multiple Access W-CDMA wireless network.
NASA Astrophysics Data System (ADS)
Komarov, P.; Markina, A.; Ivanov, V.
2016-06-01
The problems of constructing of a meso-scale model of composites based on polymers and aluminosilicate nanotubes for prediction of the filler's spatial distribution at early stages of material formation have been considered. As a test system for the polymer matrix, the mixture of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as epoxy resin monomers and 4-methylhexahydrophthalic anhydride as curing agent has been used. It is shown that the structure of a mixture of uncured epoxy resin and nanotubes is (mainly) determined by the surface functionalization of nanotubes. The results indicate that only nanotubes with maximum functionalization can preserve a uniform distribution in space.
Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B
2013-01-01
The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.
Agent Based Modeling Applications for Geosciences
NASA Astrophysics Data System (ADS)
Stein, J. S.
2004-12-01
Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in a thermodynamic framework as a set of reactions that roll-up the integrated effect that diverse biological communities exert on a geological system. This approach may work well to predict the effect of certain biological communities in specific environments in which experimental data is available. However, it does not further our knowledge of how the geobiological system actually functions on a micro scale. Agent-based techniques may provide a framework to explore the fundamental interactions required to explain the system-wide behavior. This presentation will present a survey of several promising applications of agent-based modeling approaches to problems in the geosciences and describe specific contributions to some of the inherent challenges facing this approach.
A knowledge base architecture for distributed knowledge agents
NASA Technical Reports Server (NTRS)
Riedesel, Joel; Walls, Bryan
1990-01-01
A tuple space based object oriented model for knowledge base representation and interpretation is presented. An architecture for managing distributed knowledge agents is then implemented within the model. The general model is based upon a database implementation of a tuple space. Objects are then defined as an additional layer upon the database. The tuple space may or may not be distributed depending upon the database implementation. A language for representing knowledge and inference strategy is defined whose implementation takes advantage of the tuple space. The general model may then be instantiated in many different forms, each of which may be a distinct knowledge agent. Knowledge agents may communicate using tuple space mechanisms as in the LINDA model as well as using more well known message passing mechanisms. An implementation of the model is presented describing strategies used to keep inference tractable without giving up expressivity. An example applied to a power management and distribution network for Space Station Freedom is given.
Incorporating time and spatial-temporal reasoning into situation management
NASA Astrophysics Data System (ADS)
Jakobson, Gabriel
2010-04-01
Spatio-temporal reasoning plays a significant role in situation management that is performed by intelligent agents (human or machine) by affecting how the situations are recognized, interpreted, acted upon or predicted. Many definitions and formalisms for the notion of spatio-temporal reasoning have emerged in various research fields including psychology, economics and computer science (computational linguistics, data management, control theory, artificial intelligence and others). In this paper we examine the role of spatio-temporal reasoning in situation management, particularly how to resolve situations that are described by using spatio-temporal relations among events and situations. We discuss a model for describing context sensitive temporal relations and show have the model can be extended for spatial relations.
Brahms Mobile Agents: Architecture and Field Tests
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Kaskiris, Charis; vanHoof, Ron
2002-01-01
We have developed a model-based, distributed architecture that integrates diverse components in a system designed for lunar and planetary surface operations: an astronaut's space suit, cameras, rover/All-Terrain Vehicle (ATV), robotic assistant, other personnel in a local habitat, and a remote mission support team (with time delay). Software processes, called agents, implemented in the Brahms language, run on multiple, mobile platforms. These mobile agents interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. The Brahms-based mobile agent architecture (MAA) uses a novel combination of agent types so the software agents may understand and facilitate communications between people and between system components. A state-of-the-art spoken dialogue interface is integrated with Brahms models, supporting a speech-driven field observation record and rover command system (e.g., return here later and bring this back to the habitat ). This combination of agents, rover, and model-based spoken dialogue interface constitutes a personal assistant. An important aspect of the methodology involves first simulating the entire system in Brahms, then configuring the agents into a run-time system.
NASA Astrophysics Data System (ADS)
Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.
2012-08-01
We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.
IPA (v1): a framework for agent-based modelling of soil water movement
NASA Astrophysics Data System (ADS)
Mewes, Benjamin; Schumann, Andreas H.
2018-06-01
In the last decade, agent-based modelling (ABM) became a popular modelling technique in social sciences, medicine, biology, and ecology. ABM was designed to simulate systems that are highly dynamic and sensitive to small variations in their composition and their state. As hydrological systems, and natural systems in general, often show dynamic and non-linear behaviour, ABM can be an appropriate way to model these systems. Nevertheless, only a few studies have utilized the ABM method for process-based modelling in hydrology. The percolation of water through the unsaturated soil is highly responsive to the current state of the soil system; small variations in composition lead to major changes in the transport system. Hence, we present a new approach for modelling the movement of water through a soil column: autonomous water agents that transport water through the soil while interacting with their environment as well as with other agents under physical laws.
An Immune Agent for Web-Based AI Course
ERIC Educational Resources Information Center
Gong, Tao; Cai, Zixing
2006-01-01
To overcome weakness and faults of a web-based e-learning course such as Artificial Intelligence (AI), an immune agent was proposed, simulating a natural immune mechanism against a virus. The immune agent was built on the multi-dimension education agent model and immune algorithm. The web-based AI course was comprised of many files, such as HTML…
Comparison of an Agent-based Model of Disease Propagation with the Generalised SIR Epidemic Model
2009-08-01
has become a practical method for conducting Epidemiological Modelling. In the agent- based approach the whole township can be modelled as a system of...SIR system was initially developed based on a very simplified model of social interaction. For instance an assumption of uniform population mixing was...simulating the progress of a disease within a host and of transmission between hosts is based upon Transportation Analysis and Simulation System
Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests
NASA Astrophysics Data System (ADS)
Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.
2011-12-01
In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.
Diversity and Community: The Role of Agent-Based Modeling.
Stivala, Alex
2017-06-01
Community psychology involves several dialectics between potentially opposing ideals, such as theory and practice, rights and needs, and respect for human diversity and sense of community. Some recent papers in the American Journal of Community Psychology have examined the diversity-community dialectic, some with the aid of agent-based modeling and concepts from network science. This paper further elucidates these concepts and suggests that research in community psychology can benefit from a useful dialectic between agent-based modeling and the real-world concerns of community psychology. © Society for Community Research and Action 2017.
2008-06-01
postponed the fulfillment of her own Masters Degree by at least 18 months so that I would have the opportunity to earn mine. She is smart , lovely...GENETIC ALGORITHM AND MULTI AGENT SYSTEM TO EXPLORE EMERGENT PATTERNS OF SOCIAL RATIONALITY AND A DISTRESS-BASED MODEL FOR DECEIT IN THE WORKPLACE...of a Genetic Algorithm and Mutli Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the
NASA Astrophysics Data System (ADS)
Hu, Y.; Quinn, C.; Cai, X.
2015-12-01
One major challenge of agent-based modeling is to derive agents' behavioral rules due to behavioral uncertainty and data scarcity. This study proposes a new approach to combine a data-driven modeling based on the directed information (i.e., machine intelligence) with expert domain knowledge (i.e., human intelligence) to derive the behavioral rules of agents considering behavioral uncertainty. A directed information graph algorithm is applied to identifying the causal relationships between agents' decisions (i.e., groundwater irrigation depth) and time-series of environmental, socio-economical and institutional factors. A case study is conducted for the High Plains aquifer hydrological observatory (HO) area, U.S. Preliminary results show that four factors, corn price (CP), underlying groundwater level (GWL), monthly mean temperature (T) and precipitation (P) have causal influences on agents' decisions on groundwater irrigation depth (GWID) to various extents. Based on the similarity of the directed information graph for each agent, five clusters of graphs are further identified to represent all the agents' behaviors in the study area as shown in Figure 1. Using these five representative graphs, agents' monthly optimal groundwater pumping rates are derived through the probabilistic inference. Such data-driven relationships and probabilistic quantifications are then coupled with a physically-based groundwater model to investigate the interactions between agents' pumping behaviors and the underlying groundwater system in the context of coupled human and natural systems.
DOT National Transportation Integrated Search
2016-04-01
In this study, we developed an adaptive signal control (ASC) framework for connected vehicles (CVs) using agent-based modeling technique. : The proposed framework consists of two types of agents: 1) vehicle agents (VAs); and 2) signal controller agen...
A practical approach for active camera coordination based on a fusion-driven multi-agent system
NASA Astrophysics Data System (ADS)
Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.
2014-04-01
In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.
NASA Astrophysics Data System (ADS)
Jolivet, L.; Cohen, M.; Ruas, A.
2015-08-01
Landscape influences fauna movement at different levels, from habitat selection to choices of movements' direction. Our goal is to provide a development frame in order to test simulation functions for animal's movement. We describe our approach for such simulations and we compare two types of functions to calculate trajectories. To do so, we first modelled the role of landscape elements to differentiate between elements that facilitate movements and the ones being hindrances. Different influences are identified depending on landscape elements and on animal species. Knowledge were gathered from ecologists, literature and observation datasets. Second, we analysed the description of animal movement recorded with GPS at fine scale, corresponding to high temporal frequency and good location accuracy. Analysing this type of data provides information on the relation between landscape features and movements. We implemented an agent-based simulation approach to calculate potential trajectories constrained by the spatial environment and individual's behaviour. We tested two functions that consider space differently: one function takes into account the geometry and the types of landscape elements and one cost function sums up the spatial surroundings of an individual. Results highlight the fact that the cost function exaggerates the distances travelled by an individual and simplifies movement patterns. The geometry accurate function represents a good bottom-up approach for discovering interesting areas or obstacles for movements.
Organization-based Model-driven Development of High-assurance Multiagent Systems
2009-02-27
based Model -driven Development of High-assurance Multiagent Systems " performed by Dr. Scott A . DeLoach and Dr Robby at Kansas State University... A Capabilities Based Model for Artificial Organizations. Journal of Autonomous Agents and Multiagent Systems . Volume 16, no. 1, February 2008, pp...Matson, E . T. (2007). A capabilities based theory of artificial organizations. Journal of Autonomous Agents and Multiagent Systems
NASA Astrophysics Data System (ADS)
Ding, Deng
Intensive human-environment interactions are taking place in Midwestern agricultural systems. An integrated modeling framework is suitable for predicting dynamics of key variables of the socio-economic, biophysical, hydrological processes as well as exploring the potential transitions of system states in response to changes of the driving factors. The purpose of this dissertation is to address issues concerning the interacting processes and consequent changes in land use, water balance, and water quality using an integrated modeling framework. This dissertation is composed of three studies in the same agricultural watershed, the Clear Creek watershed in East-Central Iowa. In the first study, a parsimonious hydrologic model, the Threshold-Exceedance-Lagrangian Model (TELM), is further developed into RS-TELM (Remote Sensing TELM) to integrate remote sensing vegetation data for estimating evapotranspiration. The goodness of fit of RS-TELM is comparable to a well-calibrated SWAT (Soil and Water Assessment Tool) and even slightly superior in capturing intra-seasonal variability of stream flow. The integration of RS LAI (Leaf Area Index) data improves the model's performance especially over the agriculture dominated landscapes. The input of rainfall datasets with spatially explicit information plays a critical role in increasing the model's goodness of fit. In the second study, an agent-based model is developed to simulate farmers' decisions on crop type and fertilizer application in response to commodity and biofuel crop prices. The comparison between simulated crop land percentage and crop rotations with satellite-based land cover data suggest that farmers may be underestimating the effects that continuous corn production has on yields (yield drag). The simulation results given alternative market scenarios based on a survey of agricultural land owners and operators in the Clear Creek Watershed show that, farmers see cellulosic biofuel feedstock production in the form of perennial grasses or corn stover as a more risky enterprise than their current crop production systems, likely because of market and production risks and lock in effects. As a result farmers do not follow a simple farm-profit maximization rule. In the third study, the consequent water quantity and quality change of the potential land use transitions given alternative biofuel crop market scenarios is explored in a case study in the Clear Creek watershed. A computer program is developed to implement the loose-coupling strategy to couple an agent-based land use model with SWAT. The simulation results show that watershed-scale water quantity (water yield and runoff) and quality variables (sediment and nutrient loads) decrease in values as switchgrass price increases. However, negligence of farmers risk aversions towards biofuel crop adoption would cause overestimation of the impacts of switchgrass price on water quantity and quality.
NASA Astrophysics Data System (ADS)
Zhao, J.; Cai, X.; Wang, Z.
2009-12-01
It also has been well recognized that market-based systems can have significant advantages over administered systems for water allocation. However there are not many successful water markets around the world yet and administered systems exist commonly in water allocation management practice. This paradox has been under discussion for decades and still calls for attention for both research and practice. This paper explores some insights for the paradox and tries to address why market systems have not been widely implemented for water allocation. Adopting the theory of agent-based system we develop a consistent analytical model to interpret both systems. First we derive some theorems based on the analytical model, with respect to the necessary conditions for economic efficiency of water allocation. Following that the agent-based model is used to illustrate the coherence and difference between administered and market-based systems. The two systems are compared from three aspects: 1) the driving forces acting on the system state, 2) system efficiency, and 3) equity. Regarding economic efficiency, penalty on the violation of water use permits (or rights) under an administered system can lead to system-wide economic efficiency, as well as being acceptable by some agents, which follows the theory of the so-call rational violation. Ideal equity will be realized if penalty equals incentive with an administered system and if transaction costs are zero with a market system. The performances of both agents and the over system are explained with an administered system and market system, respectively. The performances of agents are subject to different mechanisms of interactions between agents under the two systems. The system emergency (i.e., system benefit, equilibrium market price, etc), resulting from the performance at the agent level, reflects the different mechanism of the two systems, the “invisible hand” with the market system and administrative measures (penalty and subsidy) with the administered system. Furthermore, the impact of hydrological uncertainty on the performance of water users under the two systems is analyzed by extending the deterministic model to a stochastic one subject to the uncertainty of water availability. It is found that the system response to hydrologic uncertainty depends on risk management mechanics - sharing risk equally among the agents or by prescribed priorities on some agents. Figure1. Agent formulation and its implications in administered system and market-based system
Characterization of chemical agent transport in paints.
Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent
2013-09-15
A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. Published by Elsevier B.V.
Driving-forces model on individual behavior in scenarios considering moving threat agents
NASA Astrophysics Data System (ADS)
Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia
2017-09-01
The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.
Spatial and temporal patterns of deforestation in Rio Cajarí Extrative Reserve, Amapá, Brazil.
Funi, Claudia; Paese, Adriana
2012-01-01
The Rio Cajarí Extractive Reserve (RCER) is a sustainable use protected area located in Southern Amapá state, Brazil. This protected area is home to traditional agro-extractive families, but has been increasingly invaded by commercial agriculture producers. In this work, we test the hypothesis that the RCER implementation has distinctly affected spatial patterns of deforestation and rates of bare soil and secondary forest formation by the social groups occupying the protected area and its surrounding area. Detailed maps of vegetation cover and deforestation were elaborated, based on Landsat TM images from 1991, 1998, 2007 and 2008 and Linear Spectral Mixture Models. Based on an extensive fieldwork, patches were classified according to the agents causing deforestation and characterized with ten explanatory variables. A discriminant function analysis was used to identify homogeneous groups based on the data. Results show increased rates and distinct spatial patterns of deforestation by three groups: extractivists, non traditional commercial agriculture producers, and a less representative group constituted of miners, cattle and timber producers. In all analyzed dates, clearings by the extrativist community presented the highest total area and smaller average sizes and were located in close proximity to villages. Deforestation patches by the non-traditional group were exclusively associated with ombrophilous forests; these presented higher average sizes and proximity indexes, and showed increased aggregation and large cluster formation. No significant differences were observed in deforestation patterns by the three groups inside or outside the reserve.
Spatial and Temporal Patterns of Deforestation in Rio Cajarí Extrative Reserve, Amapá, Brazil
Funi, Claudia; Paese, Adriana
2012-01-01
The Rio Cajarí Extractive Reserve (RCER) is a sustainable use protected area located in Southern Amapá state, Brazil. This protected area is home to traditional agro-extractive families, but has been increasingly invaded by commercial agriculture producers. In this work, we test the hypothesis that the RCER implementation has distinctly affected spatial patterns of deforestation and rates of bare soil and secondary forest formation by the social groups occupying the protected area and its surrounding area. Detailed maps of vegetation cover and deforestation were elaborated, based on Landsat TM images from 1991, 1998, 2007 and 2008 and Linear Spectral Mixture Models. Based on an extensive fieldwork, patches were classified according to the agents causing deforestation and characterized with ten explanatory variables. A discriminant function analysis was used to identify homogeneous groups based on the data. Results show increased rates and distinct spatial patterns of deforestation by three groups: extractivists, non traditional commercial agriculture producers, and a less representative group constituted of miners, cattle and timber producers. In all analyzed dates, clearings by the extrativist community presented the highest total area and smaller average sizes and were located in close proximity to villages. Deforestation patches by the non-traditional group were exclusively associated with ombrophilous forests; these presented higher average sizes and proximity indexes, and showed increased aggregation and large cluster formation. No significant differences were observed in deforestation patterns by the three groups inside or outside the reserve. PMID:23284806
We have developed a modeling framework to support grid-based simulation of ecosystems at multiple spatial scales, the Ecological Component Library for Parallel Spatial Simulation (ECLPSS). ECLPSS helps ecologists to build robust spatially explicit simulations of ...
Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D
2017-09-11
Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.
Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that is able to simulate longitudinal patterns in behaviors. By basing o...
Petri Nets as Modeling Tool for Emergent Agents
NASA Technical Reports Server (NTRS)
Bergman, Marto
2004-01-01
Emergent agents, those agents whose local interactions can cause unexpected global results, require a method of modeling that is both dynamic and structured Petri Nets, a modeling tool developed for dynamic discrete event system of mainly functional agents, provide this, and have the benefit of being an established tool. We present here the details of the modeling method here and discuss how to implement its use for modeling agent-based systems. Petri Nets have been used extensively in the modeling of functional agents, those agents who have defined purposes and whose actions should result in a know outcome. However, emergent agents, those agents who have a defined structure but whose interaction causes outcomes that are unpredictable, have not yet found a modeling style that suits them. A problem with formally modeling emergent agents that any formal modeling style usually expects to show the results of a problem and the results of problems studied using emergent agents are not apparent from the initial construction. However, the study of emergent agents still requires a method to analyze the agents themselves, and have sensible conversation about the differences and similarities between types of emergent agents. We attempt to correct this problem by applying Petri Nets to the characterization of emergent agents. In doing so, the emergent properties of these agents can be highlighted, and conversation about the nature and compatibility of the differing methods of agent creation can begin.
Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.
Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang
2013-11-01
Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.
An application of queuing theory to waterfowl migration
Sojda, Richard S.; Cornely, John E.; Fredrickson, Leigh H.; Rizzoli, A.E.; Jakeman, A.J.
2002-01-01
There has always been great interest in the migration of waterfowl and other birds. We have applied queuing theory to modelling waterfowl migration, beginning with a prototype system for the Rocky Mountain Population of trumpeter swans (Cygnus buccinator) in Western North America. The queuing model can be classified as a D/BB/28 system, and we describe the input sources, service mechanism, and network configuration of queues and servers. The intrinsic nature of queuing theory is to represent the spatial and temporal characteristics of entities and how they move, are placed in queues, and are serviced. The service mechanism in our system is an algorithm representing how swans move through the flyway based on seasonal life cycle events. The system uses an observed number of swans at each of 27 areas for a breeding season as input and simulates their distribution through four seasonal steps. The result is a simulated distribution of birds for the subsequent year's breeding season. The model was built as a multiagent system with one agent handling movement algorithms, with one facilitating user interface, and with one to seven agents representing specific geographic areas for which swan management interventions can be implemented. The many parallels in queuing model servers and service mechanisms with waterfowl management areas and annual life cycle events made the transfer of the theory to practical application straightforward.
Agent-Based Models in Empirical Social Research
ERIC Educational Resources Information Center
Bruch, Elizabeth; Atwell, Jon
2015-01-01
Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first…
Emotional Multiagent Reinforcement Learning in Spatial Social Dilemmas.
Yu, Chao; Zhang, Minjie; Ren, Fenghui; Tan, Guozhen
2015-12-01
Social dilemmas have attracted extensive interest in the research of multiagent systems in order to study the emergence of cooperative behaviors among selfish agents. Understanding how agents can achieve cooperation in social dilemmas through learning from local experience is a critical problem that has motivated researchers for decades. This paper investigates the possibility of exploiting emotions in agent learning in order to facilitate the emergence of cooperation in social dilemmas. In particular, the spatial version of social dilemmas is considered to study the impact of local interactions on the emergence of cooperation in the whole system. A double-layered emotional multiagent reinforcement learning framework is proposed to endow agents with internal cognitive and emotional capabilities that can drive these agents to learn cooperative behaviors. Experimental results reveal that various network topologies and agent heterogeneities have significant impacts on agent learning behaviors in the proposed framework, and under certain circumstances, high levels of cooperation can be achieved among the agents.
NASA Technical Reports Server (NTRS)
Albus, James S.
1996-01-01
The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.
CDPOP: A spatially explicit cost distance population genetics program
Erin L. Landguth; S. A. Cushman
2010-01-01
Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...
NASA Astrophysics Data System (ADS)
Hibbard, Bill
2012-05-01
Orseau and Ring, as well as Dewey, have recently described problems, including self-delusion, with the behavior of agents using various definitions of utility functions. An agent's utility function is defined in terms of the agent's history of interactions with its environment. This paper argues, via two examples, that the behavior problems can be avoided by formulating the utility function in two steps: 1) inferring a model of the environment from interactions, and 2) computing utility as a function of the environment model. Basing a utility function on a model that the agent must learn implies that the utility function must initially be expressed in terms of specifications to be matched to structures in the learned model. These specifications constitute prior assumptions about the environment so this approach will not work with arbitrary environments. But the approach should work for agents designed by humans to act in the physical world. The paper also addresses the issue of self-modifying agents and shows that if provided with the possibility to modify their utility functions agents will not choose to do so, under some usual assumptions.
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Kurien, James; Rajan, Kanna
1999-01-01
We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.
NASA Astrophysics Data System (ADS)
Rana, Navdeep; Ghosh, Pushpita; Perlekar, Prasad
2017-11-01
We study spreading of a nonmotile bacteria colony on a hard agar plate by using agent-based and continuum models. We show that the spreading dynamics depends on the initial nutrient concentration, the motility, and the inherent demographic noise. Population fluctuations are inherent in an agent-based model, whereas for the continuum model we model them by using a stochastic Langevin equation. We show that the intrinsic population fluctuations coupled with nonlinear diffusivity lead to a transition from a diffusion limited aggregation type of morphology to an Eden-like morphology on decreasing the initial nutrient concentration.
Toward Agent-Based Models of the Development And Evolution of Business Relations and Networks
NASA Astrophysics Data System (ADS)
Wilkinson, Ian F.; Marks, Robert E.; Young, Louise
Firms achieve competitive advantage in part through the development of cooperative relations with other firms and organisations. We describe a program of research designed to map and model the development of cooperative inter-firm relations, including the processes and paths by which firms may evolve from adversarial to more cooperative relations. Narrative-event-history methods will be used to develop stylised histories of the emergence of business relations in various contexts and to identify relevant causal mechanisms to be included in the agent-based models of relationship and network evolution. The relationship histories will provide the means of assuring the agent-based models developed.
An agent-based stochastic Occupancy Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Hong, Tianzhen; Luo, Xuan
Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less
An agent-based stochastic Occupancy Simulator
Chen, Yixing; Hong, Tianzhen; Luo, Xuan
2017-06-01
Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less
Alderton, Simon; Noble, Jason; Schaten, Kathrin; Welburn, Susan C; Atkinson, Peter M
2015-01-01
In this research, an agent-based model (ABM) was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval). This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.
Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M
2009-05-01
A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.
Agent-based game theory modeling for driverless vehicles at intersections.
DOT National Transportation Integrated Search
2013-02-01
This report presents three research efforts that were published in various journals. The first research effort presents a reactive-driving agent based algorithm for modeling driver left turn gap acceptance behavior at signalized intersections. This m...
Constructing Agent Model for Virtual Training Systems
NASA Astrophysics Data System (ADS)
Murakami, Yohei; Sugimoto, Yuki; Ishida, Toru
Constructing highly realistic agents is essential if agents are to be employed in virtual training systems. In training for collaboration based on face-to-face interaction, the generation of emotional expressions is one key. In training for guidance based on one-to-many interaction such as direction giving for evacuations, emotional expressions must be supplemented by diverse agent behaviors to make the training realistic. To reproduce diverse behavior, we characterize agents by using a various combinations of operation rules instantiated by the user operating the agent. To accomplish this goal, we introduce a user modeling method based on participatory simulations. These simulations enable us to acquire information observed by each user in the simulation and the operating history. Using these data and the domain knowledge including known operation rules, we can generate an explanation for each behavior. Moreover, the application of hypothetical reasoning, which offers consistent selection of hypotheses, to the generation of explanations allows us to use otherwise incompatible operation rules as domain knowledge. In order to validate the proposed modeling method, we apply it to the acquisition of an evacuee's model in a fire-drill experiment. We successfully acquire a subject's model corresponding to the results of an interview with the subject.
Arifin, S M Niaz; Madey, Gregory R; Collins, Frank H
2013-08-21
Agent-based models (ABMs) have been used to estimate the effects of malaria-control interventions. Early studies have shown the efficacy of larval source management (LSM) and insecticide-treated nets (ITNs) as vector-control interventions, applied both in isolation and in combination. However, the robustness of results can be affected by several important modelling assumptions, including the type of boundary used for landscapes, and the number of replicated simulation runs reported in results. Selection of the ITN coverage definition may also affect the predictive findings. Hence, by replication, independent verification of prior findings of published models bears special importance. A spatially-explicit entomological ABM of Anopheles gambiae is used to simulate the resource-seeking process of mosquitoes in grid-based landscapes. To explore LSM and replicate results of an earlier LSM study, the original landscapes and scenarios are replicated by using a landscape generator tool, and 1,800 replicated simulations are run using absorbing and non-absorbing boundaries. To explore ITNs and evaluate the relative impacts of the different ITN coverage schemes, the settings of an earlier ITN study are replicated, the coverage schemes are defined and simulated, and 9,000 replicated simulations for three ITN parameters (coverage, repellence and mortality) are run. To evaluate LSM and ITNs in combination, landscapes with varying densities of houses and human populations are generated, and 12,000 simulations are run. General agreement with an earlier LSM study is observed when an absorbing boundary is used. However, using a non-absorbing boundary produces significantly different results, which may be attributed to the unrealistic killing effect of an absorbing boundary. Abundance cannot be completely suppressed by removing aquatic habitats within 300 m of houses. Also, with density-dependent oviposition, removal of insufficient number of aquatic habitats may prove counter-productive. The importance of performing large number of simulation runs is also demonstrated. For ITNs, the choice of coverage scheme has important implications, and too high repellence yields detrimental effects. When LSM and ITNs are applied in combination, ITNs' mortality can play more important roles with higher densities of houses. With partial mortality, increasing ITN coverage is more effective than increasing LSM coverage, and integrating both interventions yields more synergy as the densities of houses increase. Using a non-absorbing boundary and reporting average results from sufficiently large number of simulation runs are strongly recommended for malaria ABMs. Several guidelines (code and data sharing, relevant documentation, and standardized models) for future modellers are also recommended.
Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A
2018-04-01
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.
Exploring component-based approaches in forest landscape modeling
H. S. He; D. R. Larsen; D. J. Mladenoff
2002-01-01
Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...
Distributed Cooperation Solution Method of Complex System Based on MAS
NASA Astrophysics Data System (ADS)
Weijin, Jiang; Yuhui, Xu
To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.
Pe'er, Guy; Zurita, Gustavo A.; Schober, Lucia; Bellocq, Maria I.; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. PMID:23724108
Pe'er, Guy; Zurita, Gustavo A; Schober, Lucia; Bellocq, Maria I; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.
NASA Technical Reports Server (NTRS)
Mourou, Pascal; Fade, Bernard
1992-01-01
This article describes a planning method applicable to agents with great perception and decision-making capabilities and the ability to communicate with other agents. Each agent has a task to fulfill allowing for the actions of other agents in its vicinity. Certain simultaneous actions may cause conflicts because they require the same resource. The agent plans each of its actions and simultaneously transmits these to its neighbors. In a similar way, it receives plans from the other agents and must take account of these plans. The planning method allows us to build a distributed scheduling system. Here, these agents are robot vehicles on a highway communicating by radio. In this environment, conflicts between agents concern the allocation of space in time and are connected with the inertia of the vehicles. Each vehicle made a temporal, spatial, and situated reasoning in order to drive without collision. The flexibility and reactivity of the method presented here allows the agent to generate its plan based on assumptions concerning the other agents and then check these assumptions progressively as plans are received from the other agents. A multi-agent execution monitoring of these plans can be done, using data generated during planning and the multi-agent decision-making algorithm described here. A selective backtrack allows us to perform incremental rescheduling.
Estimation of Spatial Dynamic Nonparametric Durbin Models with Fixed Effects
ERIC Educational Resources Information Center
Qian, Minghui; Hu, Ridong; Chen, Jianwei
2016-01-01
Spatial panel data models have been widely studied and applied in both scientific and social science disciplines, especially in the analysis of spatial influence. In this paper, we consider the spatial dynamic nonparametric Durbin model (SDNDM) with fixed effects, which takes the nonlinear factors into account base on the spatial dynamic panel…
Cultural Geography Modeling and Analysis in Helmand Province
2010-10-01
the application of an agent-based model called “Cultural Geography” to represent the civilian populace. This project uses a multi-agent system ...represent the civilian populace. This project uses a multi-agent system consisting of an environment, agents, objects (things), operations that can be...environments[1]. The model is patterned after the conflict eco- system described by Kilcullen[2] in an attempt to capture the complexities of irregular
Cooperative biological effects between ionizing radiation and other physical and chemical agents.
Manti, Lorenzo; D'Arco, Annalisa
2010-01-01
Exposure to ionizing radiation (IR), at environmentally and therapeutically relevant doses or as a result of diagnostics or accidents, causes cyto- and genotoxic damage. However, exposure to IR alone is a rare event as it occurs in spatial and temporal combination with several physico-chemical agents. Some of these are of known noxiousness, as is the case with chemical compounds at high dose, hence additive/synergistic effects can be expected or have been demonstrated. Conversely, the cellular toxicity of other agents, such as non-ionizing electromagnetic fields (EMFs), is only presumed and their short- and long-term cooperation on IR-induced damage remains undetermined. In this review, we shall examine evidence in support of the interplay between spatially and/or temporally related environmentally relevant stressors. In vitro or animal-based studies as well as epidemiological surveys have generally examined the combined action of no more than a couple of known or potentially DNA-damaging agents. Moreover, most existing research mainly focused on short-term effects of combined exposures. Hence, it is important that quantitative research addresses the issue of the possible cooperation between chronic exposure to environmental trace contaminants and exposure to EMFs, examining not only the modulation of damage acutely induced by IR but also long-term genome stability. 2010 Elsevier B.V. All rights reserved.
Formalizing the role of agent-based modeling in causal inference and epidemiology.
Marshall, Brandon D L; Galea, Sandro
2015-01-15
Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Economic communication model set
NASA Astrophysics Data System (ADS)
Zvereva, Olga M.; Berg, Dmitry B.
2017-06-01
This paper details findings from the research work targeted at economic communications investigation with agent-based models usage. The agent-based model set was engineered to simulate economic communications. Money in the form of internal and external currencies was introduced into the models to support exchanges in communications. Every model, being based on the general concept, has its own peculiarities in algorithm and input data set since it was engineered to solve the specific problem. Several and different origin data sets were used in experiments: theoretic sets were estimated on the basis of static Leontief's equilibrium equation and the real set was constructed on the basis of statistical data. While simulation experiments, communication process was observed in dynamics, and system macroparameters were estimated. This research approved that combination of an agent-based and mathematical model can cause a synergetic effect.
Evolving learning rules and emergence of cooperation in spatial prisoner's dilemma.
Moyano, Luis G; Sánchez, Angel
2009-07-07
In the evolutionary Prisoner's dilemma (PD) game, agents play with each other and update their strategies in every generation according to some microscopic dynamical rule. In its spatial version, agents do not play with every other but, instead, interact only with their neighbours, thus mimicking the existing of a social or contact network that defines who interacts with whom. In this work, we explore evolutionary, spatial PD systems consisting of two types of agents, each with a certain update (reproduction, learning) rule. We investigate two different scenarios: in the first case, update rules remain fixed for the entire evolution of the system; in the second case, agents update both strategy and update rule in every generation. We show that in a well-mixed population the evolutionary outcome is always full defection. We subsequently focus on two-strategy competition with nearest-neighbour interactions on the contact network and synchronised update of strategies. Our results show that, for an important range of the parameters of the game, the final state of the system is largely different from that arising from the usual setup of a single, fixed dynamical rule. Furthermore, the results are also very different if update rules are fixed or evolve with the strategies. In these respect, we have studied representative update rules, finding that some of them may become extinct while others prevail. We describe the new and rich variety of final outcomes that arise from this co-evolutionary dynamics. We include examples of other neighbourhoods and asynchronous updating that confirm the robustness of our conclusions. Our results pave the way to an evolutionary rationale for modelling social interactions through game theory with a preferred set of update rules.
Quantitative Agent Based Model of User Behavior in an Internet Discussion Forum
Sobkowicz, Pawel
2013-01-01
The paper presents an agent based simulation of opinion evolution, based on a nonlinear emotion/information/opinion (E/I/O) individual dynamics, to an actual Internet discussion forum. The goal is to reproduce the results of two-year long observations and analyses of the user communication behavior and of the expressed opinions and emotions, via simulations using an agent based model. The model allowed to derive various characteristics of the forum, including the distribution of user activity and popularity (outdegree and indegree), the distribution of length of dialogs between the participants, their political sympathies and the emotional content and purpose of the comments. The parameters used in the model have intuitive meanings, and can be translated into psychological observables. PMID:24324606
Laskowski, Marek; Demianyk, Bryan C P; Witt, Julia; Mukhi, Shamir N; Friesen, Marcia R; McLeod, Robert D
2011-11-01
The objective of this paper was to develop an agent-based modeling framework in order to simulate the spread of influenza virus infection on a layout based on a representative hospital emergency department in Winnipeg, Canada. In doing so, the study complements mathematical modeling techniques for disease spread, as well as modeling applications focused on the spread of antibiotic-resistant nosocomial infections in hospitals. Twenty different emergency department scenarios were simulated, with further simulation of four infection control strategies. The agent-based modeling approach represents systems modeling, in which the emergency department was modeled as a collection of agents (patients and healthcare workers) and their individual characteristics, behaviors, and interactions. The framework was coded in C++ using Qt4 libraries running under the Linux operating system. A simple ordinary least squares (OLS) regression was used to analyze the data, in which the percentage of patients that became infected in one day within the simulation was the dependent variable. The results suggest that within the given instance context, patient-oriented infection control policies (alternate treatment streams, masking symptomatic patients) tend to have a larger effect than policies that target healthcare workers. The agent-based modeling framework is a flexible tool that can be made to reflect any given environment; it is also a decision support tool for practitioners and policymakers to assess the relative impact of infection control strategies. The framework illuminates scenarios worthy of further investigation, as well as counterintuitive findings.
Model-Drive Architecture for Agent-Based Systems
NASA Technical Reports Server (NTRS)
Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.
2004-01-01
The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.
Is the Voter Model a Model for Voters?
NASA Astrophysics Data System (ADS)
Fernández-Gracia, Juan; Suchecki, Krzysztof; Ramasco, José J.; San Miguel, Maxi; Eguíluz, Víctor M.
2014-04-01
The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its ability to model real opinion dynamics has not been addressed. We introduce a noisy voter model (accounting for social influence) with recurrent mobility of agents (as a proxy for social context), where the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be described as a noisy diffusive process that contains the proper anisotropic coupling topology given by population and mobility heterogeneity. The model captures statistical features of U.S. presidential elections as the stationary vote-share fluctuations across counties and the long-range spatial correlations that decay logarithmically with the distance. Furthermore, it recovers the behavior of these properties when the geographical space is coarse grained at different scales—from the county level through congressional districts, and up to states. Finally, we analyze the role of the mobility range and the randomness in decision making, which are consistent with the empirical observations.
NASA Astrophysics Data System (ADS)
Hervind, Widyaningsih, Y.
2017-07-01
Concurrent infection with multiple infectious agents may occur in one patient, it appears frequently in dengue hemorrhagic fever (DHF) and typhoid fever. This paper depicted association between DHF and typhoid based on spatial point of view. Since paucity of data regarding dengue and typhoid co-infection, data that be used are the number of patients of those diseases in every district (kecamatan) in Jakarta in 2014 and 2015 obtained from Jakarta surveillance website. Poisson spatial scan statistics is used to detect DHF and typhoid hotspots area district in Jakarta separately. After obtain the hotspot, Fisher's exact test is applied to validate association between those two diseases' hotspot. The result exhibit hotspots of DHF and typhoid are located around central Jakarta. The further analysis used Poisson space-time scan statistics to reveal the hotspot in term of spatial and time. DHF and typhoid fever more likely occurr from January until May in the area which is relatively similar with pure spatial result. Preventive action could be done especially in the hotspot areas and it is required further study to observe the causes based on characteristics of the hotspot area.
Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats
Lloyd, Kevin; Becker, Nadine; Jones, Matthew W.; Bogacz, Rafal
2012-01-01
Learning to form appropriate, task-relevant working memory representations is a complex process central to cognition. Gating models frame working memory as a collection of past observations and use reinforcement learning (RL) to solve the problem of when to update these observations. Investigation of how gating models relate to brain and behavior remains, however, at an early stage. The current study sought to explore the ability of simple RL gating models to replicate rule learning behavior in rats. Rats were trained in a maze-based spatial learning task that required animals to make trial-by-trial choices contingent upon their previous experience. Using an abstract version of this task, we tested the ability of two gating algorithms, one based on the Actor-Critic and the other on the State-Action-Reward-State-Action (SARSA) algorithm, to generate behavior consistent with the rats'. Both models produced rule-acquisition behavior consistent with the experimental data, though only the SARSA gating model mirrored faster learning following rule reversal. We also found that both gating models learned multiple strategies in solving the initial task, a property which highlights the multi-agent nature of such models and which is of importance in considering the neural basis of individual differences in behavior. PMID:23115551
China's Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model.
Cao, Qilong; Liang, Ying; Niu, Xueting
2017-09-18
Background : Air pollution has become an important factor restricting China's economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods : Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM 2.5 . Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results : It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM 2.5 pollutions in the control of other variables. Conclusions : Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.
Safe motion planning for mobile agents: A model of reactive planning for multiple mobile agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Kikuo.
1990-01-01
The problem of motion planning for multiple mobile agents is studied. Each planning agent independently plans its own action based on its map which contains a limited information about the environment. In an environment where more than one mobile agent interacts, the motions of the robots are uncertain and dynamic. A model for reactive agents is described and simulation results are presented to show their behavior patterns. 18 refs., 2 figs.
An Agent-Based Model of New Venture Creation: Conceptual Design for Simulating Entrepreneurship
NASA Technical Reports Server (NTRS)
Provance, Mike; Collins, Andrew; Carayannis, Elias
2012-01-01
There is a growing debate over the means by which regions can foster the growth of entrepreneurial activity in order to stimulate recovery and growth of their economies. On one side, agglomeration theory suggests the regions grow because of strong clusters that foster knowledge spillover locally; on the other side, the entrepreneurial action camp argues that innovative business models are generated by entrepreneurs with unique market perspectives who draw on knowledge from more distant domains. We will show you the design for a novel agent-based model of new venture creation that will demonstrate the relationship between agglomeration and action. The primary focus of this model is information exchange as the medium for these agent interactions. Our modeling and simulation study proposes to reveal interesting relationships in these perspectives, offer a foundation on which these disparate theories from economics and sociology can find common ground, and expand the use of agent-based modeling into entrepreneurship research.
A Primer for Agent-Based Simulation and Modeling in Transportation Applications
DOT National Transportation Integrated Search
2013-11-01
Agent-based modeling and simulation (ABMS) methods have been applied in a spectrum of research domains. This primer focuses on ABMS in the transportation interdisciplinary domain, describes the basic concepts of ABMS and the recent progress of ABMS i...
NASA Astrophysics Data System (ADS)
Rienow, Andreas; Stenger, Dirk
2014-07-01
The Ruhr is an "old acquaintance" in the discourse of urban decline in old industrialized cities. The agglomeration has to struggle with archetypical problems of former monofunctional manufacturing cities. Surprisingly, the image of a shrinking city has to be refuted if you shift the focus from socioeconomic wealth to its morphological extension. Thus, it is the objective of this study to meet the challenge of modeling urban sprawl and demographic decline by combining two artificial intelligent solutions: The popular urban cellular automaton SLEUTH simulates urban growth using four simple but effective growth rules. In order to improve its performance, SLEUTH has been modified among others by combining it with a robust probability map based on support vector machines. Additionally, a complex multi-agent system is developed to simulate residential mobility in a shrinking city agglomeration: residential mobility and the housing market of shrinking city systems focuses on the dynamic of interregional housing markets implying the development of potential dwelling areas. The multi-agent system comprises the simulation of population patterns, housing prices, and housing demand in shrinking city agglomerations. Both models are calibrated and validated regarding their localization and quantification performance. Subsequently, the urban landscape configuration and composition of the Ruhr 2025 are simulated. A simple spatial join is used to combine the results serving as valuable inputs for future regional planning in the context of multifarious demographic change and preceding urban growth.
Interacting with an artificial partner: modeling the role of emotional aspects.
Cattinelli, Isabella; Goldwurm, Massimiliano; Borghese, N Alberto
2008-12-01
In this paper we introduce a simple model based on probabilistic finite state automata to describe an emotional interaction between a robot and a human user, or between simulated agents. Based on the agent's personality, attitude, and nature, and on the emotional inputs it receives, the model will determine the next emotional state displayed by the agent itself. The probabilistic and time-varying nature of the model yields rich and dynamic interactions, and an autonomous adaptation to the interlocutor. In addition, a reinforcement learning technique is applied to have one agent drive its partner's behavior toward desired states. The model may also be used as a tool for behavior analysis, by extracting high probability patterns of interaction and by resorting to the ergodic properties of Markov chains.
Thematic and spatial resolutions affect model-based predictions of tree species distribution.
Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.
Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution
Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828
Zhang, Donglan; Giabbanelli, Philippe J; Arah, Onyebuchi A; Zimmerman, Frederick J
2014-07-01
Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems.
Adapting Price Predictions in TAC SCM
NASA Astrophysics Data System (ADS)
Pardoe, David; Stone, Peter
In agent-based markets, adapting to the behavior of other agents is often necessary for success. When it is not possible to directly model individual competitors, an agent may instead model and adapt to the market conditions that result from competitor behavior. Such an agent could still benefit from reasoning about specific competitor strategies by considering how various combinations of these strategies would impact the conditions being modeled. We present an application of such an approach to a specific prediction problem faced by the agent TacTex-06 in the Trading Agent Competition's Supply Chain Management scenario (TAC SCM).
NASA Astrophysics Data System (ADS)
Gavagnin, Enrico; Yates, Christian A.
2018-03-01
Persistence of motion is the tendency of an object to maintain motion in a direction for short time scales without necessarily being biased in any direction in the long term. One of the most appropriate mathematical tools to study this behavior is an agent-based velocity-jump process. In the absence of agent-agent interaction, the mean-field continuum limit of the agent-based model (ABM) gives rise to the well known hyperbolic telegraph equation. When agent-agent interaction is included in the ABM, a strictly advective system of partial differential equations (PDEs) can be derived at the population level. However, no diffusive limit of the ABM has been obtained from such a model. Connecting the microscopic behavior of the ABM to a diffusive macroscopic description is desirable, since it allows the exploration of a wider range of scenarios and establishes a direct connection with commonly used statistical tools of movement analysis. In order to connect the ABM at the population level to a diffusive PDE at the population level, we consider a generalization of the agent-based velocity-jump process on a two-dimensional lattice with three forms of agent interaction. This generalization allows us to take a diffusive limit and obtain a faithful population-level description. We investigate the properties of the model at both the individual and population levels and we elucidate some of the models' key characteristic features. In particular, we show an intrinsic anisotropy inherent to the models and we find evidence of a spontaneous form of aggregation at both the micro- and macroscales.
A nonparametric spatial scan statistic for continuous data.
Jung, Inkyung; Cho, Ho Jin
2015-10-20
Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.
Minority game and anomalies in financial markets
NASA Astrophysics Data System (ADS)
Liu, Xinghua; Liang, Xiaobei; Tang, Bingyong
2004-02-01
The minority game (MG), which is intrinsically associated with financial markets, is an agent-based model of a competing population with limited resources. We find that the fluctuation features of MG in crowded region are more similar to real market than that of in perfect cooperation region. So we propose and study a modified model based on the MG in which agents accumulate virtual points for their strategies from the last H steps instead of from the beginning of the game. The results of numerical simulations on our new model show that agents will be more intelligent, and the types of features of fluctuations are the same in real-world market. We also give a numerical explanation of the high adaptability of agents in new model.
Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach
Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy
2013-01-01
Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.
Efficient Agent-Based Models for Non-Genomic Evolution
NASA Technical Reports Server (NTRS)
Gupta, Nachi; Agogino, Adrian; Tumer, Kagan
2006-01-01
Modeling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modeling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation s fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisins that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweizer, M.
This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.
Dual Rationality and Deliberative Agents
NASA Astrophysics Data System (ADS)
Debenham, John; Sierra, Carles
Human agents deliberate using models based on reason for only a minute proportion of the decisions that they make. In stark contrast, the deliberation of artificial agents is heavily dominated by formal models based on reason such as game theory, decision theory and logic—despite that fact that formal reasoning will not necessarily lead to superior real-world decisions. Further the Nobel Laureate Friedrich Hayek warns us of the ‘fatal conceit’ in controlling deliberative systems using models based on reason as the particular model chosen will then shape the system’s future and either impede, or eventually destroy, the subtle evolutionary processes that are an integral part of human systems and institutions, and are crucial to their evolution and long-term survival. We describe an architecture for artificial agents that is founded on Hayek’s two rationalities and supports the two forms of deliberation used by mankind.
NASA Astrophysics Data System (ADS)
Wells, Aaron Raymond
This research focuses on the Emory and Obed Watersheds in the Cumberland Plateau in Central Tennessee and the Lower Hatchie River Watershed in West Tennessee. A framework based on market and nonmarket valuation techniques was used to empirically estimate economic values for environmental amenities and negative externalities in these areas. The specific techniques employed include a variation of hedonic pricing and discrete choice conjoint analysis (i.e., choice modeling), in addition to geographic information systems (GIS) and remote sensing. Microeconomic models of agent behavior, including random utility theory and profit maximization, provide the principal theoretical foundation linking valuation techniques and econometric models. The generalized method of moments estimator for a first-order spatial autoregressive function and mixed logit models are the principal econometric methods applied within the framework. The dissertation is subdivided into three separate chapters written in a manuscript format. The first chapter provides the necessary theoretical and mathematical conditions that must be satisfied in order for a forest amenity enhancement program to be implemented. These conditions include utility, value, and profit maximization. The second chapter evaluates the effect of forest land cover and information about future land use change on respondent preferences and willingness to pay for alternative hypothetical forest amenity enhancement options. Land use change information and the amount of forest land cover significantly influenced respondent preferences, choices, and stated willingness to pay. Hicksian welfare estimates for proposed enhancement options ranged from 57.42 to 25.53, depending on the policy specification, information level, and econometric model. The third chapter presents economic values for negative externalities associated with channelization that affect the productivity and overall market value of forested wetlands. Results of robust, generalized moments estimation of a double logarithmic first-order spatial autoregressive error model (inverse distance weights with spatial dependence up to 1500m) indicate that the implicit cost of damages to forested wetlands caused by channelization equaled -$5,438 ha-1. Collectively, the results of this dissertation provide economic measures of the damages to and benefits of environmental assets, help private landowners and policy makers identify the amenity attributes preferred by the public, and improve the management of natural resources.
Tree-based approach for exploring marine spatial patterns with raster datasets.
Liao, Xiaohan; Xue, Cunjin; Su, Fenzhen
2017-01-01
From multiple raster datasets to spatial association patterns, the data-mining technique is divided into three subtasks, i.e., raster dataset pretreatment, mining algorithm design, and spatial pattern exploration from the mining results. Comparison with the former two subtasks reveals that the latter remains unresolved. Confronted with the interrelated marine environmental parameters, we propose a Tree-based Approach for eXploring Marine Spatial Patterns with multiple raster datasets called TAXMarSP, which includes two models. One is the Tree-based Cascading Organization Model (TCOM), and the other is the Spatial Neighborhood-based CAlculation Model (SNCAM). TCOM designs the "Spatial node→Pattern node" from top to bottom layers to store the table-formatted frequent patterns. Together with TCOM, SNCAM considers the spatial neighborhood contributions to calculate the pattern-matching degree between the specified marine parameters and the table-formatted frequent patterns and then explores the marine spatial patterns. Using the prevalent quantification Apriori algorithm and a real remote sensing dataset from January 1998 to December 2014, a successful application of TAXMarSP to marine spatial patterns in the Pacific Ocean is described, and the obtained marine spatial patterns present not only the well-known but also new patterns to Earth scientists.
Belem, Mahamadou; Saqalli, Mehdi
2017-11-01
This paper presents an integrated model assessing the impacts of climate change, agro-ecosystem and demographic transition patterns on major ecosystem services in West-Africa along a partial overview of economic aspects (poverty reduction, food self-sufficiency and income generation). The model is based on an agent-based model associated with a soil model and multi-scale spatial model. The resulting Model for West-Africa Agro-Ecosystem Integrated Assessment (MOWASIA) is ecologically generic, meaning it is designed for all sudano-sahelian environments but may then be used as an experimentation facility for testing different scenarios combining ecological and socioeconomic dimensions. A case study in Burkina Faso is examined to assess the environmental and economic performances of semi-continuous and continuous farming systems. Results show that the semi-continuous system using organic fertilizer and fallowing practices contribute better to environment preservation and food security than the more economically performant continuous system. In addition, this study showed that farmers heterogeneity could play an important role in agricultural policies planning and assessment. In addition, the results showed that MOWASIA is an effective tool for designing, analysing the impacts of agro-ecosystems. Copyright © 2017. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor); Penn, Joaquin (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments, an agent-oriented specification modeled with MaCMAS, is analyzed, flaws in the agent-oriented specification modeled with MaCMAS are corrected, and an implementation is derived from the corrected agent-oriented specification. Described herein are systems, method and apparatus that produce fully (mathematically) tractable development of agent-oriented specification(s) modeled with methodology fragment for analyzing complex multiagent systems (MaCMAS) and policies for autonomic systems from requirements through to code generation. The systems, method and apparatus described herein are illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming systems, method and apparatus described herein may provide faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.