Adaptive electron beam shaping using a photoemission gun and spatial light modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
NASA Astrophysics Data System (ADS)
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan
2015-02-01
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; ...
2015-02-01
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less
NASA Astrophysics Data System (ADS)
Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun
2011-07-01
Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230fs, which is caused by the spatial--temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.
NASA Astrophysics Data System (ADS)
Nie, Yongming; Li, Xiujian; Qi, Junli; Ma, Haotong; Liao, Jiali; Yang, Jiankun; Hu, Wenhua
2012-03-01
Based on the refractive beam shaping system, the transformation of a quasi-Gaussian beam into a dark hollow Gaussian beam by a phase-only liquid crystal spatial light modulator (LC-SLM) is proposed. According to the energy conservation and constant optical path principle, the phase distribution of the aspheric lens and the phase-only LC-SLM can modulate the wave-front properly to generate the hollow beam. The numerical simulation results indicate that, the dark hollow intensity distribution of the output shaped beam can be maintained well for a certain propagation distance during which the dark region will not decrease whereas the ideal hollow Gaussian beam will do. By designing the phase modulation profile, which loaded into the LC-SLM carefully, the experimental results indicate that the dark hollow intensity distribution of the output shaped beam can be maintained well even at a distance much more than 550 mm from the LC-SLM, which agree with the numerical simulation results.
Beam shaping with vortex beam generated by liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Gao, Yue; Liu, Ke; Sun, Zeng-yu; Guo, Lei; Gan, Yu
2015-02-01
An optical vortex is a beam of light with phase varying in a corkscrew-like manner along its direction of propagation and so has a helical wavefront. When such a vectorial vortex beam and the Gaussian beam with orthogonal polarization are focused by low NA lens, the Gaussian component causes a focal intensity distribution with a solid center and the vortex component causes a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Flat top focusing can be obtained under appropriate conditions. It is demonstrated through experiments with a liquid crystal spatial light modulator in such a beam, that flattop focus can be obtained by vectorial vortex beams with topological charge of +1 to achieve beam shaping vortex.
Jacobs, S.D.; Cerqua, K.A.
1987-07-14
The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile. 11 figs.
Jacobs, Stephen D.; Cerqua, Kathleen A.
1987-01-01
The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile.
Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun
2011-07-20
Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200 mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230 fs, which is caused by the spatial-temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged. © 2011 Optical Society of America
Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A
2016-10-01
We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.
Metaoptics for Spectral and Spatial Beam Manipulation
NASA Astrophysics Data System (ADS)
Raghu Srimathi, Indumathi
Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool has been utilized to create metal-oxide nano-hair structures that are compatible with high power laser systems. These devices are multifunctional--acting as resonant structures for one wavelength regime and as effective index structures in a different wavelength regime. Discrete and continuous phase functions have been realized with this controlled fabrication process. The design, simulation, fabrication and experimental characterization of these optical elements are presented.
Dynamic laser beam shaping for material processing using hybrid holograms
NASA Astrophysics Data System (ADS)
Liu, Dun; Wang, Yutao; Zhai, Zhongsheng; Fang, Zheng; Tao, Qing; Perrie, Walter; Edwarson, Stuart P.; Dearden, Geoff
2018-06-01
A high quality, dynamic laser beam shaping method is demonstrated by displaying a series of hybrid holograms onto a spatial light modulator (SLM), while each one of the holograms consists of a binary grating and a geometric mask. A diffraction effect around the shaped beam has been significantly reduced. Beam profiles of arbitrary shape, such as square, ring, triangle, pentagon and hexagon, can be conveniently obtained by loading the corresponding holograms on the SLM. The shaped beam can be reconstructed in the range of 0.5 mm at the image plane. Ablation on a polished stainless steel sample at the image plane are consistent with the beam shape at the diffraction near-field. The ±1st order and higher order beams can be completely removed when the grating period is smaller than 160 μm. The local energy ratio of the shaped beam observed by the CCD camera is up to 77.67%. Dynamic processing at 25 Hz using different shapes has also been achieved.
Beam shaping by using small-aperture SLM and DM in a high power laser
NASA Astrophysics Data System (ADS)
Li, Sensen; Lu, Zhiwei; Du, Pengyuan; Wang, Yulei; Ding, Lei; Yan, Xiusheng
2018-03-01
High-power laser plays an important role in many fields, such as directed energy weapon, optoelectronic contermeasures, inertial confinement fusion, industrial processing and scientific research. The uniform nearfield and wavefront are the important part of the beam quality for high power lasers, which is conducive to maintaining the high spatial beam quality in propagation. We demonstrate experimentally that the spatial intensity and wavefront distribution at the output is well compensated in the complex high-power solid-state laser system by using the small-aperture spatial light modulator (SLM) and deformable mirror (DM) in the front stage. The experimental setup is a hundred-Joule-level Nd:glass laser system operating at three wavelengths at 1053 nm (1ω), 527 nm (2ω) and 351 nm (3ω) with 3 ns pulse duration with the final output beam aperture of 60 mm. While the clear arperture of the electrically addressable SLM is less than 20 mm and the effective diameter of the 52-actuators DM is about 15 mm. In the beam shaping system, the key point is that the two front-stage beam shaping devices needs to precompensate the gain nonuniform and wavefront distortion of the laser system. The details of the iterative algorithm for improving the beam quality are presented. Experimental results show that output nearfield and wavefont are both nearly flat-topped with the nearfield modulation of 1.26:1 and wavefront peak-to-valley value of 0.29 λ at 1053nm after beam shaping.
Multiplexing 200 spatial modes with a single hologram
NASA Astrophysics Data System (ADS)
Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew
2017-11-01
The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.
Rice, Tyler B.; Konecky, Soren D.; Owen, Christopher; Choi, Bernard; Tromberg, Bruce J.
2012-01-01
Laser Speckle Imaging (LSI) is fast, noninvasive technique to image particle dynamics in scattering media such as biological tissue. While LSI measurements are independent of the overall intensity of the laser source, we find that spatial variations in the laser source profile can impact measured flow rates. This occurs due to differences in average photon path length across the profile, and is of significant concern because all lasers have some degree of natural Gaussian profile in addition to artifacts potentially caused by projecting optics. Two in vivo measurement are performed to show that flow rates differ based on location with respect to the beam profile. A quantitative analysis is then done through a speckle contrast forward model generated within a coherent Spatial Frequency Domain Imaging (cSFDI) formalism. The model predicts remitted speckle contrast as a function of spatial frequency, optical properties, and scattering dynamics. Comparison with experimental speckle contrast images were done using liquid phantoms with known optical properties for three common beam shapes. cSFDI is found to accurately predict speckle contrast for all beam shapes to within 5% root mean square error. Suggestions for improving beam homogeneity are given, including a widening of the natural beam Gaussian, proper diffusing glass spreading, and flat top shaping using microlens arrays. PMID:22741080
Beam Shaping for CARS Measurements in Turbulent Environments
NASA Technical Reports Server (NTRS)
Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul M.
2010-01-01
This paper describes a new technique to mitigate the effect of beam steering on CARS measurements in turbulent, variable density environments. The new approach combines Planar BOXCARS phase-matching with elliptical shaping of one of the beams to generate a signal insensitive to beam steering, while keeping the same spatial resolution. Numerical and experimental results are provided to demonstrate the effectiveness of this approach. One set of experiments investigated the effect of beam shaping in the presence of a controlled and well quantified displacement of the beams at the focal plane. Another set of experiments, more qualitative, proved the effectiveness of the technique in the presence of severe beam steering due to turbulence.
Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform
NASA Astrophysics Data System (ADS)
Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.
2015-11-01
In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.
Skupsky, Stanley; Kessler, Terrance J.; Letzring, Samuel A.
1993-01-01
A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse.
Skupsky, S.; Kessler, T.J.; Letzring, S.A.
1993-11-16
A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.
Spatially modulated laser pulses for printing electronics.
Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto
2015-11-01
The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.
Shaping propagation invariant laser beams
NASA Astrophysics Data System (ADS)
Soskind, Michael; Soskind, Rose; Soskind, Yakov
2015-11-01
Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.
Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope
NASA Astrophysics Data System (ADS)
Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao
2013-08-01
We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.
A line scanned light-sheet microscope with phase shaped self-reconstructing beams.
Fahrbach, Florian O; Rohrbach, Alexander
2010-11-08
We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.
Characterization of equipment for shaping and imaging hadron minibeams
NASA Astrophysics Data System (ADS)
Pugatch, V.; Brons, S.; Campbell, M.; Kovalchuk, O.; Llopart, X.; Martínez-Rovira, I.; Momot, Ie.; Okhrimenko, O.; Prezado, Y.; Sorokin, Yu.
2017-11-01
For the feasibility studies of spatially fractionated hadron therapy prototypes of the equipment for hadron minibeams shaping and monitoring have been designed, built and tested. The collimators design was based on Monte Carlo simulations (Gate v.6.2). Slit and matrix collimators were used for minibeams shaping. Gafchromic films, micropixel detectors Timepix in a hybrid as well as metal mode were tested for measuring hadrons intensity distribution in minibeams. An overall beam profile was measured by the metal microstrip detector. The performance of a mini-beams shaping and monitoring equipment was characterized exploring low energy protons at the KINR Tandem generator as well as high energy carbon and oxygen ion beams at HIT (Heidelberg). The results demonstrate reliable performance of the tested equipment for shaping and imaging hadron mini-beam structures.
Synchronous characterization of semiconductor microcavity laser beam.
Wang, T; Lippi, G L
2015-06-01
We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.
Automated laser guidance of neuronal growth cones using a spatial light modulator.
Carnegie, David J; Cizmár, Tomás; Baumgartl, Jörg; Gunn-Moore, Frank J; Dholakia, Kishan
2009-11-01
The growth cone of a developing neuron can be guided using a focused infra-red (IR) laser beam [1]. In previous setups this process has required a significant amount of user intervention to adjust continuously the laser beam to guide the growing neuron. Previously, a system using an acousto-optical deflector (AOD) has been developed to steer the beam [2]. However, to enhance the controllability of this system, here we demonstrate the use of a computer controlled spatial light modulator (SLM) to steer and manipulate the shape of a laser beam for use in guided neuronal growth. This new experimental setup paves the way to enable a comprehensive investigation into beam shaping effects on neuronal growth and we show neuronal growth initiated by a Bessel light mode. This is a robust platform to explore the biochemistry of this novel phenomenon. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
NASA Astrophysics Data System (ADS)
Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui
2018-01-01
Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.
Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeffrey G., E-mail: jglee@umd.edu; Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742; Hill, W. T., E-mail: wth@umd.edu
2014-10-15
We present two spatial-shaping approaches – phase and amplitude – for creating two-dimensional optical dipole potentials for ultracold neutral atoms. When combined with an attractive or repulsive Gaussian sheet formed by an astigmatically focused beam, atoms are trapped in three dimensions resulting in planar confinement with an arbitrary network of potentials – a free-space atom chip. The first approach utilizes an adaptation of the generalized phase-contrast technique to convert a phase structure embedded in a beam after traversing a phase mask, to an identical intensity profile in the image plane. Phase masks, and a requisite phase-contrast filter, can be chemicallymore » etched into optical material (e.g., fused silica) or implemented with spatial light modulators; etching provides the highest quality while spatial light modulators enable prototyping and realtime structure modification. This approach was demonstrated on an ensemble of thermal atoms. Amplitude shaping is possible when the potential structure is made as an opaque mask in the path of a dipole trap beam, followed by imaging the shadow onto the plane of the atoms. While much more lossy, this very simple and inexpensive approach can produce dipole potentials suitable for containing degenerate gases. High-quality amplitude masks can be produced with standard photolithography techniques. Amplitude shaping was demonstrated on a Bose-Einstein condensate.« less
Beam shaping with vectorial vortex beams under low numerical aperture illumination condition
NASA Astrophysics Data System (ADS)
Dai, Jianning; Zhan, Qiwen
2008-08-01
In this paper we propose and demonstrate a novel beam shaping method using vectorial vortex beam. A vectorial vortex beam is laser beam with polarization singularity in the beam cross section. This type of beams can be decomposed into two orthogonally polarized components. Each of the polarized components could have different vortex characteristics, and consequently, different intensity distribution when focused by lens. Beam shaping in the far field can be achieved by adjusting the relative weighing of these two components. As one example, we study the vectorial vortex that consists of a linearly polarized Gaussian component and a vortex component polarized orthogonally. When such a vectorial vortex beam is focus by low NA lens, the Gaussian component gives rise to a focal intensity distribution with a solid centre while the vortex component gives rise to a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Under appropriate conditions, flat top focusing can be obtained. We experimentally demonstrate the creation of such beams with a liquid crystal spatial light modulator. Flattop focus obtained by vectorial vortex beams with topological charge of +1 has been obtained.
Ultrafast Beam Filamentation: Spatio-Temporal Characterization and Control
2013-11-01
measurement of spectral phase[7]. The output of the laser passes through a BK7 plate set at a Brewster angle to clean up the polarization of the beam...at the focus of a lens . In this configuration, the pulse focuses temporally and spatially at the same time. We developed a theory for understanding...focus by shaping only the spatial phase of the starting beam. Finally, we showed for the first time that Kerr- lens modelocking can be achieved in a Ti
Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device.
Lerner, Vitaly; Shwa, David; Drori, Yehonathan; Katz, Nadav
2012-12-01
Laguerre-Gaussian (LG) beams are used in many research fields, including microscopy, laser cavity modes, and optical tweezing. We developed a holographic method to generate pure LG modes (amplitude and phase) with a binary amplitude-only digital micromirror device (DMD) as an alternative to the commonly used phase-only spatial light modulator. The advantages of such a DMD include very high frame rates, low cost, and high damage thresholds. We have shown that the propagating shaped beams are self-similar and their phase fronts are of helical shape as demanded. We estimate the purity of the resultant beams to be above 94%.
Polarization Shaping for Control of Nonlinear Propagation.
Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-12-02
We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
NASA Astrophysics Data System (ADS)
Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel
2017-05-01
The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC) fibers. The comparison between the different fibers will be presented in the conference. Fiber spatial beam shaping Spatial beam shaping (top-hat profile) is mandatory to optimize the energy extraction in free-space amplifier. It would be very interesting to obtain a flat-top beam in an all-fiber way. Accordingly, we have design and realize a large mode area single-mode top-hat fiber able to deliver a coherent top-hat beam. This fiber, with larger MFD adapted to mJ pulse, will be implemented to perform the spatial beam shaping from coherent Gaussian profile to coherent top-hat intensity profile in the mJ range. In conclusion, we will present an all-fiber MOPA built to fulfil stringent requirements for large scale laser facility seeding. We have already achieved 750 µJ with 10 ns square pulses. Transport of high peak power pulses over 17 m in a hollow-core fiber has been achieved and points out FM to AM conversion management issues. Moreover, spatial beam shaping is obtained by using specifically designed single-mode fibers. Various optimizations are currently under progress and will be presented.
Tailored laser beam shaping for efficient and accurate microstructuring
NASA Astrophysics Data System (ADS)
Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M.
2018-02-01
Large-area processing with high material removal rates by ultrashort pulsed (USP) lasers is coming into focus by the development of high-power USP laser systems. However, currently the bottleneck for high-rate production is given by slow and inefficient beam manipulation. On the one hand, slow beam deflection with regard to high pulse repetition rates leads to heat accumulation and shielding effects, on the other hand, a conventional focus cannot provide the optimum fluence due to the Gaussian intensity profile. In this paper, we emphasize on two approaches of dynamic laser beam shaping with liquid crystal on silicon spatial light modulation and acousto-optic beam shaping. Advantages and limitations of dynamic laser beam shaping with regard to USP laser material processing and methods for reducing the influence of speckle are discussed. Additionally, the influence of optics induced aberrations on speckle characteristics is evaluated. Laser material processing results are presented correlating the achieved structure quality with the simulated and measured beam quality. Experimental and analytical investigations show a certain fluence dependence of the necessary number of alternative holograms to realize homogeneous microstructures.
Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments
NASA Astrophysics Data System (ADS)
Pommarel, L.; Vauzour, B.; Mégnin-Chanet, F.; Bayart, E.; Delmas, O.; Goudjil, F.; Nauraye, C.; Letellier, V.; Pouzoulet, F.; Schillaci, F.; Romano, F.; Scuderi, V.; Cirrone, G. A. P.; Deutsch, E.; Flacco, A.; Malka, V.
2017-03-01
The study of radiation biology on laser-based accelerators is most interesting due to the unique irradiation conditions they can produce, in terms of peak current and duration of the irradiation. In this paper we present the implementation of a beam transport system to transport and shape the proton beam generated by laser-target interaction for in vitro irradiation of biological samples. A set of four permanent magnet quadrupoles is used to transport and focus the beam, efficiently shaping the spectrum and providing a large and relatively uniform irradiation surface. Real time, absolutely calibrated, dosimetry is installed on the beam line, to enable shot-to-shot control of dose deposition in the irradiated volume. Preliminary results of cell sample irradiation are presented to validate the robustness of the full system.
Coherence area profiling in multi-spatial-mode squeezed states
Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.
2015-09-12
The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less
Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars.
Marc, Fabien; Guillet de Chatellus, Hugues; Pique, Jean-Paul
2009-03-30
The possibility to produce diffraction-limited images by large telescopes through Adaptive Optics is closely linked to the precision of measurement of the position of the guide star on the wavefront sensor. In the case of laser guide stars, many parameters can lead to a strong distortion on the shape of the LGS spot. Here we study the influence of both the saturation of the sodium layer excited by different types of lasers, the spatial quality of the laser mode at the ground and the influence of the atmospheric turbulence on the upward propagation of the laser beam. Both shape and intensity of the LGS spot are found to depend strongly on these three effects with important consequences on the precision on the wavefront analysis.
Laser Beam Filtration for High Spatial Resolution MALDI Imaging Mass Spectrometry
NASA Astrophysics Data System (ADS)
Zavalin, Andre; Yang, Junhai; Caprioli, Richard
2013-07-01
We describe an easy and inexpensive way to provide a highly defined Gaussian shaped laser spot on target of 5 μm diameter for imaging mass spectrometry using a commercial MALDI TOF instrument that is designed to produce a 20 μm diameter laser beam on target at its lowest setting. A 25 μm pinhole filter on a swivel arm was installed in the laser beam optics outside the vacuum ion source chamber so it is easily flipped into or out of the beam as desired by the operator. The resulting ion images at 5 μm spatial resolution are sharp since the satellite secondary laser beam maxima have been removed by the filter. Ion images are shown to demonstrate the performance and are compared with the method of oversampling to achieve higher spatial resolution when only a larger laser beam spot on target is available.
ELECTRON BEAM SHAPING AND ITS APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, Aliaksei
Transverse and longitudinal electron beam shaping is a crucial part of high-brightness electron accelerator operations. In this dissertation, we report on the corresponding beam dynamics research conducted at Fermilab Accelerator Science and Technology facility (FAST) and Argonne Wakeeld Accelerator (AWA). We demonstrate an experimental method for spatial laser and electron beam shaping using microlens arrays (MLAs) at a photoinjector facility. Such a setup was built at AWA and resulted in transverse emittance reduction by a factor of 2. We present transverse emittance partitioning methods that were recently employed at FAST facility. A strongly coupled electron beam was generated in anmore » axial magnetic eld and accelerated in 1.3 GHz SRF cavities to 34 MeV. It was then decoupled in Round-To-Flat beam transformer and beams with emittance asymmetry ratio of 100 were generated. We introduce the new methods of measuring electron beam canonical angular momentum, beam transformer optimization and beam image analysis. We also describe a potential longitudinal space-charge amplier setup for FAST high-energy beamline. As an outcome, a broadband partially coherent radiation in the UV range could be generated.« less
Single-beam, dark toroidal optical traps for cold atoms
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew
2007-02-01
We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.
Investigation on partially coherent vector beams and their propagation and focusing properties.
Hu, Kelei; Chen, Ziyang; Pu, Jixiong
2012-11-01
The propagation and focusing properties of partially coherent vector beams including radially polarized and azimuthally polarized (AP) beams are theoretically and experimentally investigated. The beam profile of a partially coherent radially or AP beam can be shaped by adjusting the initial spatial coherence length. The dark hollow, flat-topped, and Gaussian beam spots can be obtained, which will be useful in trapping particles. The experimental observations are consistent with the theoretical results.
Two-photon equivalent weighting of spatial excimer laser beam profiles
NASA Astrophysics Data System (ADS)
Eva, Eric; Bauer, Harry H.; Metzger, K.; Pfeiffer, A.
2001-04-01
Damage in optical materials for semiconductor lithography applications caused by exposure to 248 or 193 nm light is usually two-photon driven, hence it is a nonlinear function of incident intensity. Materials should be tested with flat- topped temporal and spatial laser beam profiles to facilitate interpretation of data, but in reality this is hard to achieve. Sandstrom provided a formula that approximates any given temporal pulse shape with a two- photon equivalent rectangular pulse (Second Symposium on 193 nm Lithography, Colorado Springs 1997). Known as the integral-square pulse duration, this definition has been embraced as an industry standard. Originally faced with the problem of comparing results obtained with pseudo-Gaussian spatial profiles to literature data, we found that a general solution for arbitrarily inhomogeneous spatial beam profiles exists which results in a definition much similar to Sandstrom's. In addition, we proved the validity of our approach in experiments with intentionally altered beam profiles.
A method for generating double-ring-shaped vector beams
NASA Astrophysics Data System (ADS)
Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi
2016-07-01
We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).
Experimental study of the focusing properties of a Gaussian Schell-model vortex beam
NASA Astrophysics Data System (ADS)
Wang, Fei; Zhu, Shijun; Cai, Yangjian
2011-08-01
We carry out an experimental and theoretical study of the focusing properties of a Gaussian Schell-model (GSM) vortex beam. It is found that we can shape the beam profile of the focused GSM vortex beam by varying its initial spatial coherence width. Focused dark hollow, flat-topped, and Gaussian beam spots can be obtained in our experiment, which will be useful for trapping particles. The experimental results agree well with the theoretical results.
Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique
Halavanau, A.; Qiang, G.; Ha, G.; ...
2017-10-26
A transversely inhomogeneous laser distribution on the photocathode surface generally produces electron beams with degraded beam quality. In this paper, we explore the use of microlens arrays to dramatically improve the transverse uniformity of an ultraviolet drive-laser pulse used in a photoinjector. Here, we also demonstrate a capability of microlens arrays to generate transversely modulated electron beams and present an application of such a feature to diagnose the properties of a magnetized beam.
NASA Astrophysics Data System (ADS)
Papagiakoumou, Eirini; Papadopoulos, Dimitrios N.; Khabbaz, Marouan G.; Makropoulou, Mersini I.; Serafetinides, Alexander A.
2004-06-01
Laser based dental treatment is attractive to many researchers. Lasers in the 3 μm region, as the Er:YAG, are suitable especially for endodontic applications. In this study a pulsed free-running and Q-switched laser was used for the ablation experiments of root canal dentine. The laser beam was either directly focused on the dental tissue or delivered to it through an infrared fiber. For different spatial beam distributions, energies, number of pulses and both laser operations the quality characteristics (crater's shape formation, ablation efficiency and surface characteristics modification) were evaluated using scanning electron microscopy (SEM). The craters produced, generally, reflect the relevant beam profile. Inhomogeneous spatial beam profiles and short pulse duration result in cracks formation and lower tissue removal efficiency, while longer pulse durations cause hard dentine fusion. Any beam profile modification, due to laser characteristics variations and the specific delivering system properties, is directly reflected in the ablation crater shape and the tissue removal efficiency. Therefore, the laser parameters, as fluence, pulse repetition rate and number of pulses, have to be carefully adjusted in relation to the desirable result.
Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao
2010-03-01
We demonstrate the generation of an optical frequency comb (OFC) with a Gaussian spectrum using a continuous-wave (CW) laser, based on spatial convolution of a slit and a periodically moving optical beam spot in a linear time-to-space mapping system. A CW optical beam is linearly mapped to a spatial signal using two sinusoidal electro-optic (EO) deflections and an OFC is extracted by inserting a narrow spatial slit in the Fourier-transform plane of a second EO deflector (EOD). The spectral shape of the OFC corresponds to the spatial beam profile in the near-field region of the second EOD, which can be manipulated by a spatial filter without spectral dispersers. In a proof-of-concept experiment, a 16.25-GHz-spaced, 240-GHz-wide Gaussian-envelope OFC (corresponding to 1.8 ps Gaussian pulse generation) was demonstrated.
Experimental study of the focusing properties of a Gaussian Schell-model vortex beam.
Wang, Fei; Zhu, Shijun; Cai, Yangjian
2011-08-15
We carry out an experimental and theoretical study of the focusing properties of a Gaussian Schell-model (GSM) vortex beam. It is found that we can shape the beam profile of the focused GSM vortex beam by varying its initial spatial coherence width. Focused dark hollow, flat-topped, and Gaussian beam spots can be obtained in our experiment, which will be useful for trapping particles. The experimental results agree well with the theoretical results. © 2011 Optical Society of America
Three & Four Product Surface-Wave Acousto-Optic Time Integrating Correlators.
four product correlated signals. A laser beam is split and shaped into first and second sheet beams. The first beam is directed to a first acousto - optic medium...where it is doubly diffracted by first and second signals. The second beam is directed to a second acousto - optic medium which is spatially...rotated 90 degs relative to the first acousto - optic medium where the second sheet beam is either singly diffracted by a third signal or doubly diffracted
Controlled supercontinua via spatial beam shaping
NASA Astrophysics Data System (ADS)
Zhdanova, Alexandra A.; Shen, Yujie; Thompson, Jonathan V.; Scully, Marlan O.; Yakovlev, Vladislav V.; Sokolov, Alexei V.
2018-06-01
Recently, optimization techniques have had a significant impact in a variety of fields, leading to a higher signal-to-noise and more streamlined techniques. We consider the possibility for using programmable phase-only spatial optimization of the pump beam to influence the supercontinuum generation process. Preliminary results show that significant broadening and rough control of the supercontinuum spectrum in the visible region are possible without loss of input energy. This serves as a proof-of-concept demonstration that spatial effects can controllably influence the supercontinuum spectrum, leading to possibilities for utilizing supercontinuum power more efficiently and achieving excellent spectral control.
Meta-q-plate for complex beam shaping
Ji, Wei; Lee, Chun-Hong; Chen, Peng; Hu, Wei; Ming, Yang; Zhang, Lijian; Lin, Tsung-Hsien; Chigrinov, Vladimir; Lu, Yan-Qing
2016-01-01
Optical beam shaping plays a key role in optics and photonics. In this work, meta-q-plate featured by arbitrarily space-variant optical axes is proposed and demonstrated via liquid crystal photoalignment based on a polarization-sensitive alignment agent and a dynamic micro-lithography system. Meta-q-plates with multiple-, azimuthally/radially variant topological charges and initial azimuthal angles are fabricated. Accordingly, complex beams with elliptical, asymmetrical, multi-ringed and hurricane transverse profiles are generated, making the manipulation of optical vortex up to an unprecedented flexibility. The evolution, handedness and Michelson interferogram of the hurricane one are theoretically analysed and experimentally verified. The design facilitates the manipulation of polarization and spatial degrees of freedom of light in a point-to-point manner. The realization of meta-q-plate drastically enhances the capability of beam shaping and may pave a bright way towards optical manipulations, OAM based informatics, quantum optics and other fields. PMID:27149897
Meta-q-plate for complex beam shaping.
Ji, Wei; Lee, Chun-Hong; Chen, Peng; Hu, Wei; Ming, Yang; Zhang, Lijian; Lin, Tsung-Hsien; Chigrinov, Vladimir; Lu, Yan-Qing
2016-05-06
Optical beam shaping plays a key role in optics and photonics. In this work, meta-q-plate featured by arbitrarily space-variant optical axes is proposed and demonstrated via liquid crystal photoalignment based on a polarization-sensitive alignment agent and a dynamic micro-lithography system. Meta-q-plates with multiple-, azimuthally/radially variant topological charges and initial azimuthal angles are fabricated. Accordingly, complex beams with elliptical, asymmetrical, multi-ringed and hurricane transverse profiles are generated, making the manipulation of optical vortex up to an unprecedented flexibility. The evolution, handedness and Michelson interferogram of the hurricane one are theoretically analysed and experimentally verified. The design facilitates the manipulation of polarization and spatial degrees of freedom of light in a point-to-point manner. The realization of meta-q-plate drastically enhances the capability of beam shaping and may pave a bright way towards optical manipulations, OAM based informatics, quantum optics and other fields.
3D beam shape estimation based on distributed coaxial cable interferometric sensor
NASA Astrophysics Data System (ADS)
Cheng, Baokai; Zhu, Wenge; Liu, Jie; Yuan, Lei; Xiao, Hai
2017-03-01
We present a coaxial cable interferometer based distributed sensing system for 3D beam shape estimation. By making a series of reflectors on a coaxial cable, multiple Fabry-Perot cavities are created on it. Two cables are mounted on the beam at proper locations, and a vector network analyzer (VNA) is connected to them to obtain the complex reflection signal, which is used to calculate the strain distribution of the beam in horizontal and vertical planes. With 6 GHz swept bandwidth on the VNA, the spatial resolution for distributed strain measurement is 0.1 m, and the sensitivity is 3.768 MHz mɛ -1 at the interferogram dip near 3.3 GHz. Using displacement-strain transformation, the shape of the beam is reconstructed. With only two modified cables and a VNA, this system is easy to implement and manage. Comparing to optical fiber based sensor systems, the coaxial cable sensors have the advantage of large strain and robustness, making this system suitable for structure health monitoring applications.
The tight focusing properties of Laguerre-Gaussian-correlated Schell-model beams
NASA Astrophysics Data System (ADS)
Xu, Hua-Feng; Zhang, Zhou; Qu, Jun; Huang, Wei
2016-08-01
Based on the Richards-Wolf vectorial diffraction theory, the tight focusing properties, including the intensity distribution, the degree of polarization and the degree of coherence, of the Laguerre-Gaussian-correlated Schell-model (LGSM) beams through a high-numerical-aperture (NA) focusing system are investigated in detail. It is found that the LGSM beam exhibits some extraordinary focusing properties, which is quite different from that of the GSM beam, and the tight focusing properties are closely related to the initial spatial coherence ? and the mode order n. The LGSM beam can form an elliptical focal spot, a circular focal spot or a doughnut-shaped dark hollow beam at the focal plane by choosing a suitable value of the initial spatial coherence ?, and the central dark size of the dark hollow beam increases with the increase of the mode order n. In addition, the influences of the initial spatial coherence ? and the mode order n on the degree of polarization and the degree of coherence are also analysed in detail, respectively. Our results may find applications in optical trapping.
Compensation for the phase-type spatial periodic modulation of the near-field beam at 1053 nm
NASA Astrophysics Data System (ADS)
Gao, Yaru; Liu, Dean; Yang, Aihua; Tang, Ruyu; Zhu, Jianqiang
2017-10-01
A phase-only spatial light modulator is used to provide and compensate for the spatial periodic modulation (SPM) of the near-field beam at the near infrared at 1053nm wavelength with an improved iterative weight-based method. The transmission characteristics of the incident beam has been changed by a spatial light modulator (SLM) to shape the spatial intensity of the output beam. The propagation and reverse propagation of the light in free space are two important processes in the iterative process. The based theory is the beam angular spectrum transmit formula (ASTF) and the principle of the iterative weight-based method. We have made two improvements to the originally proposed iterative weight-based method. We select the appropriate parameter by choosing the minimum value of the output beam contrast degree and use the MATLAB built-in angle function to acquire the corresponding phase of the light wave function. The required phase that compensates for the intensity distribution of the incident SPM beam is iterated by this algorithm, which can decrease the magnitude of the SPM of the intensity on the observation plane. The experimental results show that the phase-type SPM of the near-field beam is subject to a certain restriction. We have also analyzed some factors that make the results imperfect. The experiment results verifies the possible applicability of this iterative weight-based method to compensate for the SPM of the near-field beam.
Optical vortex beams: Generation, propagation and applications
NASA Astrophysics Data System (ADS)
Cheng, Wen
An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
A technique to calibrate spatial light modulator for varying phase response over its spatial regions
NASA Astrophysics Data System (ADS)
Gupta, Deepak K.; Tata, B. V. R.; Ravindran, T. R.
2018-05-01
Holographic Optical Tweezers (HOTs) employ the technique of beam shaping and holography in an optical manipulation system to create a multitude of focal spots for simultaneous trapping and manipulation of sub-microscopic particles. The beam shaping is accomplished by the use of a phase only liquid crystal spatial light modulator (SLM). The efficiency and the uniformity in the generated traps greatly depend on the phase response behavior of SLMs. In addition the SLMs are found to show different phase response over its different spatial regions, due to non-flat structure of SLMs. Also the phase responses are found to vary over different spatial regions due to non-uniform illumination (Gaussian profile of incident laser). There are various techniques to calibrate for the varying phase response by characterizing the phase modulation at various sub-sections. We present a simple and fast technique to calibrate the SLM suffering with spatially varying phase response. We divide the SLM into many sub-sections and optimize the brightness and gamma of each sub-section for maximum diffraction efficiency. This correction is incorporated in the Weighted Gerchberg Saxton (WGS) algorithm for generation of holograms.
NASA Astrophysics Data System (ADS)
Hauschild, Dirk
2017-02-01
Today, the use of laser photons for materials processing is a key technology in nearly all industries. Most of the applications use circular beam shapes with Gaussian intensity distribution that is given by the resonator of the laser or by the power delivery via optical fibre. These beam shapes can be typically used for material removal with cutting or drilling and for selective removal of material layers with ablation processes. In addition to the removal of materials, it is possible to modify and improve the material properties in case the dose of laser photons and the resulting light-material interaction addresses a defined window of energy and dwell-time. These process windows have typically dwell-times between µs and s because of using sintering, melting, thermal diffusion or photon induced chemical and physical reaction mechanisms. Using beam shaping technologies the laser beam profiles can be adapted to the material properties and time-temperature and the space-temperature envelopes can be modified to enable selective annealing or crystallization of layers or surfaces. Especially the control of the process energy inside the beam and at its edges opens a large area of laser applications that can be addressed only with an optimized spatial and angular beam profile with down to sub-percent intensity variation used in e.g. immersion lithography tools with ArF laser sources. LIMO will present examples for new beam shapes and related material refinement processes even on large surfaces and give an overview about new mechanisms in laser material processing for current and coming industrial applications.
Beam shaping in high-power laser systems with using refractive beam shapers
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim
2012-06-01
Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications of high-power laser sources. There will be presented results of applying the refractive beam shapers in real installations.
Preliminary results of a prototype C-shaped PET designed for an in-beam PET system
NASA Astrophysics Data System (ADS)
Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun
2016-06-01
Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.
Adaptive slit beam shaping for direct laser written waveguides.
Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J
2012-02-15
We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.
Quasi-Bessel beams from asymmetric and astigmatic illumination sources.
Müller, Angelina; Wapler, Matthias C; Schwarz, Ulrich T; Reisacher, Markus; Holc, Katarzyna; Ambacher, Oliver; Wallrabe, Ulrike
2016-07-25
We study the spatial intensity distribution and the self-reconstruction of quasi-Bessel beams produced from refractive axicon lenses with edge emitting laser diodes as asymmetric and astigmatic illumination sources. Comparing these to a symmetric mono-mode fiber source, we find that the asymmetry results in a transition of a quasi-Bessel beam into a bow-tie shaped pattern and eventually to a line shaped profile at a larger distance along the optical axis. Furthermore, we analytically estimate and discuss the effects of astigmatism, substrate modes and non-perfect axicons. We find a good agreement between experiment, simulation and analytic considerations. Results include the derivation of a maximal axicon angle related to astigmatism of the illuminating beam, impact of laser diode beam profile imperfections like substrate modes and a longitudinal oscillation of the core intensity and radius caused by a rounded axicon tip.
Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.
Bañas, Andrew; Palima, Darwin; Glückstad, Jesper
2012-04-23
We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection. © 2012 Optical Society of America
Shaping non-diffracting beams with a digital micromirror device
NASA Astrophysics Data System (ADS)
Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De
2016-02-01
The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.
Rapid assessment of nonlinear optical propagation effects in dielectrics
Hoyo, J. del; de la Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243
Rapid assessment of nonlinear optical propagation effects in dielectrics.
del Hoyo, J; de la Cruz, A Ruiz; Grace, E; Ferrer, A; Siegel, J; Pasquazi, A; Assanto, G; Solis, J
2015-01-07
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
Rapid assessment of nonlinear optical propagation effects in dielectrics
NASA Astrophysics Data System (ADS)
Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
NASA Astrophysics Data System (ADS)
Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi
2008-10-01
In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.
Polarization/Spatial Combining of Laser-Diode Pump Beams
NASA Technical Reports Server (NTRS)
Gelsinger, Paul; Liu, Duncan
2008-01-01
A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.
Multi-focus beam shaping of high power multimode lasers
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei
2017-08-01
Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.
NASA Astrophysics Data System (ADS)
Park, K. W.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.
2013-02-01
A proximal probe-based quantitative measurement of thermal conductivity with ˜100-150 nm lateral and vertical spatial resolution has been implemented. Measurements on an ErAs/GaAs superlattice structure grown by molecular beam epitaxy with 3% volumetric ErAs content yielded thermal conductivity at room temperature of 9 ± 2 W/m K, approximately five times lower than that for GaAs. Numerical modeling of phonon scattering by ErAs nanoparticles yielded thermal conductivities in reasonable agreement with those measured experimentally and provides insight into the potential influence of nanoparticle shape on phonon scattering. Measurements of wedge-shaped samples created by focused ion beam milling provide direct confirmation of depth resolution achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S., Juan Manuel Franco; Cywiak, Moises; Cywiak, David
2015-06-24
A homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He–Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. Furthermore, we give analytical expressions to calculate adequately the propagation of the fieldmore » through an optical system.« less
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
Spatial emission distribution of InGaN/GaN light-emitting diodes depending on the pattern structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kwanjae; Lee, Hyunjung; Lee, Cheul-Ro
2014-10-15
Highlights: • We study carrier lifetimes of InGaN/GaN LEDs fabricated on different PSS. • Spatial EL distribution was investigated depending on the pattern structure. • The carrier lifetime of the LEDs was compared with the spatial EL distribution. - Abstract: We investigated the emission characteristics of InGaN/GaN light-emitting diodes (LEDs) fabricated on lens-shaped (LS) patterned-sapphire substrates (PSS) by using time-resolved photoluminescence (TRPL) and confocal-scanning-electroluminescence microscopy (CSEM). The carrier lifetimes evaluated from the TRPL spectra for the LEDs on the LS-PSS (LS-LEDs) at 10 K were relatively shorter than those of the LEDs on a conventional planar substrate (C-LED). However, themore » carrier lifetimes for the LS-LEDs were relatively long compared to that of the C-LED at room temperature. In the CSEM images of the LS-LEDs, the emission beam around the center region of the LS pattern was relatively weaker than that of the edge region. In addition, the beam profile for the LS-LEDs showed different shapes according to the pattern structures. The emission beam around the boundary region of the LS pattern showed periodic fluctuation with the peak-to-peak distance of 814 nm.« less
Index mismatch aberration correction over long working distances using spatial light modulation.
Gjonaj, Bergin; Johnson, Patrick; Bonn, Mischa; Domke, Katrin F
2012-11-20
For many microscopy applications, millimeters-long free working distances (LWD) are required. However, the high resolution and contrast of LWD objectives operated in air are lost when introducing glass and/or liquid with the sample. We propose to use spatial light modulation to correct for such beam aberrations caused by refractive index mismatches. Focusing a monochromatic laser beam with a 10 mm working distance air objective (50×, 0.5 NA) through air, glass, and water, we manage to restore a sharp, intense focus (FWHM<2λ) by adaptive beam phase shaping. Our approach offers a practical and cost-effective route to high resolution and contrast microscopy using LWD air objectives, extending their usage beyond applications in air.
NASA Astrophysics Data System (ADS)
Rodrigues, Gonçalo C.; Duflou, Joost R.
2018-02-01
This paper offers an in-depth look into beam shaping and polarization control as two of the most promising techniques for improving industrial laser cutting of metal sheets. An assessment model is developed for the study of such effects. It is built upon several modifications to models as available in literature in order to evaluate the potential of a wide range of considered concepts. This includes different kinds of beam shaping (achieved by extra-cavity optical elements or asymmetric diode staking) and polarization control techniques (linear, cross, radial, azimuthal). A fully mathematical description and solution procedure are provided. Three case studies for direct diode lasers follow, containing both experimental data and parametric studies. In the first case study, linear polarization is analyzed for any given angle between the cutting direction and the electrical field. In the second case several polarization strategies are compared for similar cut conditions, evaluating, for example, the minimum number of spatial divisions of a segmented polarized laser beam to achieve a target performance. A novel strategy, based on a 12-division linear-to-radial polarization converter with an axis misalignment and capable of improving cutting efficiency with more than 60%, is proposed. The last case study reveals different insights in beam shaping techniques, with an example of a beam shape optimization path for a 30% improvement in cutting efficiency. The proposed techniques are not limited to this type of laser source, neither is the model dedicated to these specific case studies. Limitations of the model and opportunities are further discussed.
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-01-01
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-03-13
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.
Noseleaf pit in Egyptian slit-faced bat as a doubly curved reflector
NASA Astrophysics Data System (ADS)
Zhuang, Qiao; Wang, Xiao-Min; Li, Ming-Xuan; Mao, Jie; Wang, Fu-Xun
2012-02-01
Noseleaves in slit-faced bats have been hypothesized to affect the sonar beam. Using numerical methods, we show that the pit in the noseleaf of an Egyptian slit-faced bat has an effect on focusing the acoustic near field as well as shaping the radiation patterns and hence enhancing the directionality. The underlying physical mechanism suggested by the properties of the effect is that the pit acts as a doubly curved reflector. Thanks to the pit the beam shape is overall directional and more selectively widened at the high end of the biosonar frequency range to improve spatial coverage and detectability of targets.
NASA Astrophysics Data System (ADS)
Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo
2017-07-01
Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.
Measurements of Classical Transport of Fast Ions in the LAPD
NASA Astrophysics Data System (ADS)
Zhao, L.; Boehmer, H.; Edrich, D.; Heidbrink, W. W.; McWilliams, R.; Zimmerman, D.; Lenenman, D.; Vincena, S.
2004-11-01
To study fast ion transport in a well controlled background plasma, a 3cm diameter RF ion gun launches a pulsed, 400 eV ribbon shape argon ion beam in the LArge Plasma Device (LAPD) at UCLA. The beam velocity distribution is calibrated by Laser Induced Fluorescence (LIF) on the Mirror of UCI and the beam energy is also measured by a two-grid energy analyzer at different axial locations (z=0.3-6.0 m) from the source on LAPD. Slowing down of the ion beam is observed when the beam is launched parallel or at 15 degrees to the 0.85 kG magnetic field. Using Langmuir probe measurements of the plasma parameters, the observed energy deceleration rate is consistent with classical Coulomb scattering theory. The radial beam profile is also measured by the energy analyzer when the beam is launched at 15 degrees to the magnetic field. The beam follows the expected helical trajectory and its contour has the shape predicted by Monte Carlo simulations. The diffusion measurements are performed at different axial locations where the ion beam has the same gyro-phase to eliminate the peristaltic effect. The spatial spreading of the beam is compared with classical scattering and neutral scattering theory.
Liang, Jinyang; Kohn, Rudolph N; Becker, Michael F; Heinzen, Daniel J
2009-04-01
We demonstrate a digital micromirror device (DMD)-based optical system that converts a spatially noisy quasi-Gaussian to an eighth-order super-Lorentzian flat-top beam. We use an error-diffusion algorithm to design the binary pattern for the Texas Instruments DLP device. Following the DMD, a telescope with a pinhole low-pass filters the beam and scales it to the desired sized image. Experimental measurements show a 1% root-mean-square (RMS) flatness over a diameter of 0.28 mm in the center of the flat-top beam and better than 1.5% RMS flatness over its entire 1.43 mm diameter. The power conversion efficiency is 37%. We develop an alignment technique to ensure that the DMD pattern is correctly positioned on the incident beam. An interferometric measurement of the DMD surface flatness shows that phase uniformity is maintained in the output beam. Our approach is highly flexible and is able to produce not only flat-top beams with different parameters, but also any slowly varying target beam shape. It can be used to generate the homogeneous optical lattice required for Bose-Einstein condensate cold atom experiments.
Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Qiang, G.; Ha, G.
2017-07-24
A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear crystals. A inhomogeneous laser distribution on the photocathode produces charged beams with lower beam quality. In this paper, we explore the possible use of microlens arrays (fly-eye light condensers) to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes. We also demonstrate the use of such microlens arrays to generate transversely-modulated electron beams and present a possible application to diagnose the propertiesmore » of a magnetized beam.« less
Non-destructive splitter of twisted light based on modes splitting in a ring cavity.
Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can
2016-02-08
Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity and other beam will be reflected, both beams keep their spatial shapes. In this case, the cavity acts like a polarized beam splitter. Besides, the transmitting beam can be selected at your will, the splitting efficiency can reach unity if the cavity is lossless and it completely matches the beam. Furthermore, beams carry multi-OAMs can also be split by cascading ring cavities.
Quasi two-dimensional astigmatic solitons in soft chiral metastructures
NASA Astrophysics Data System (ADS)
Laudyn, Urszula A.; Jung, Paweł S.; Karpierz, Mirosław A.; Assanto, Gaetano
2016-03-01
We investigate a non-homogeneous layered structure encompassing dual spatial dispersion: continuous diffraction in one transverse dimension and discrete diffraction in the orthogonal one. Such dual diffraction can be balanced out by one and the same nonlinear response, giving rise to light self-confinement into astigmatic spatial solitons: self-focusing can compensate for the spreading of a bell-shaped beam, leading to quasi-2D solitary wavepackets which result from 1D transverse self-localization combined with a discrete soliton. We demonstrate such intensity-dependent beam trapping in chiral soft matter, exhibiting one-dimensional discrete diffraction along the helical axis and one-dimensional continuous diffraction in the orthogonal plane. In nematic liquid crystals with suitable birefringence and chiral arrangement, the reorientational nonlinearity is shown to support bell-shaped solitary waves with simple astigmatism dependent on the medium birefringence as well as on the dual diffraction of the input wavepacket. The observations are in agreement with a nonlinear nonlocal model for the all-optical response.
Generation of nondiffracting Bessel beam using digital micromirror device.
Gong, Lei; Ren, Yu-Xuan; Xue, Guo-Sheng; Wang, Qian-Chang; Zhou, Jin-Hua; Zhong, Min-Cheng; Wang, Zi-Qiang; Li, Yin-Mei
2013-07-01
We experimentally demonstrated Bessel-like beams utilizing digital micromirror device (DMD). DMD with images imitating the equivalent axicon can shape the collimated Gaussian beam into Bessel beam. We reconstructed the 3D spatial field of the generated beam through a stack of measured cross-sectional images. The output beams have the profile of Bessel function after intensity modulation, and the beams extend at least 50 mm while the lateral dimension of the spot remains nearly invariant. Furthermore, the self-healing property has also been investigated, and all the experimental results agree well with simulated results numerically calculated through beam propagation method. Our observations demonstrate that the DMD offers a simple and efficient method to generate Bessel beams with distinct nondiffracting and self-reconstruction behaviors. The generated Bessel beams will potentially expand the applications to the optical manipulation and high-resolution fluorescence imaging owing to the unique nondiffracting property.
NASA Astrophysics Data System (ADS)
Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.
2017-03-01
Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation of low-loss optical waveguides over shallow and deep focusing conditions. Lastly, SLM beam shaping has been successfully extended to interferometric processing inside thin transparent film, enabling the arbitrary formation of uniform or non-uniform, symmetric or asymmetric patterns of flexible shape on nano-scale dimensions without phase-noise degradation by the SLM patterning. We present quantized structuring of thin films by a single laser pulse, demonstrating λ/2nfilm layer ejection control, blister formation, nano-cavities, and film colouring. Closed intra-film nanochannels with high aspect ratio (20:1) have been formed inside 3.5 um thick silica, opening new prospects for sub-cellular studies and lab-in-film concepts that integrate on CMOS silicon technologies.
Chen, Yue; Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De
2015-09-20
Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.
Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria
2017-08-01
A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power P in ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.
NASA Astrophysics Data System (ADS)
Andreev, A. L.; Kompanets, I. N.; Minchenko, M. V.; Pozhidaev, E. P.; Andreeva, T. B.
2008-12-01
A simple method for suppressing speckles in images produced by laser projectors is proposed. The coherence of the laser beam and, therefore, speckles can be destroyed when the beam passes through an electrooptical cell in which a special ferroelectric liquid crystal is used as a modulating medium. The effect is achieved due to the spatially inhomogeneous phase modulation of light when specially shaped bipolar electric pulses are applied to the cell.
Vertical electrostatic actuator with extended digital range via tailored topology
NASA Astrophysics Data System (ADS)
Zhang, Yanhang; Dunn, Martin L.
2002-07-01
We describe the design, fabrication, and testing of an electrostatic vertical actuator that exhibits a range of motion that covers the entire initial gap between the actuator and substrate and provides controllable digital output motion. This is obtained by spatially tailoring the electrode arrangement and the stiffness characteristics of the microstructure to control the voltage-deflection characteristics. The concept is based on the electrostatic pull down of bimaterial beams, via a series of electrodes attached to the beams by flexures with tailored stiffness characteristics. The range of travel of the actuator is defined by the post-release deformed shape of the bilayer beams, and can be controlled by a post-release heat-treat process combined with a tailored actuator topology (material distribution and geometry, including spatial geometrical patterning of the individual layers of the bilayer beams). Not only does this allow an increase in the range of travel to cover the entire initial gap, but it also permits digital control of the tip of the actuator which can be designed to yield linear displacement - pull in step characteristics. We fabricated these actuators using the MUMPs surface micromachining process, and packaged them in-house. We measured, using an interferometric microscope, full field deformed shapes of the actuator at each pull in step. The measurements compare well with companion simulation results, both qualitatively and quantitatively.
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2011-03-01
Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.
Characteristics of steady vibration in a rotating hub-beam system
NASA Astrophysics Data System (ADS)
Zhao, Zhen; Liu, Caishan; Ma, Wei
2016-02-01
A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.
Spatial uniformity inspection apparatus for solar cells using a projection display.
Yoo, Jae-Keun; Kim, Seung Kwan; Lee, Dong-Hoon; Park, Seung-Nam
2012-07-10
We demonstrate a measurement apparatus to inspect spatial uniformity of quantum efficiency of solar cells using a beam projector. Deviation of irradiance from the used beam projector over the area of 1.5×0.8 m on the cell plane was flattened within ±2.6% through gray scale adjustment, which was originally about 200%. Scanning a small square image with an area of 3×3 mm over a square-shaped photovoltaic cell with an area of 15.6×15.6 cm, we could identify the locations according to efficiency level and showed that the cell had quantum efficiency deviation of more than 10%. Utilizing the advantageous feature of a projection display, we also demonstrated that this apparatus can inspect the spatial uniformity of solar modules and panels consisting of multiple solar cells.
Generation of multiple Bessel beams for a biophotonics workstation.
Cizmár, T; Kollárová, V; Tsampoula, X; Gunn-Moore, F; Sibbett, W; Bouchal, Z; Dholakia, K
2008-09-01
We present a simple method using an axicon and spatial light modulator to create multiple parallel Bessel beams and precisely control their individual positions in three dimensions. This technique is tested as an alternative to classical holographic beam shaping commonly used now in optical tweezers. Various applications of precise control of multiple Bessel beams are demonstrated within a single microscope giving rise to new methods for three-dimensional positional control of trapped particles or active sorting of micro-objects as well as "focus-free" photoporation of living cells. Overall this concept is termed a 'biophotonics workstation' where users may readily trap, sort and porate material using Bessel light modes in a microscope.
The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.; Green, S. F.
2012-06-01
It is now becoming widely accepted that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are, together with collisions and gravitational forces, primary mechanisms governing the dynamical and physical evolution of asteroids. The Yarkovsky effect causes orbital semimajor axis drift, and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of thermal-infrared beaming caused by surface roughness, which has been neglected or dismissed in all previous models. Tests on Gaussian random sphere shaped asteroids, and on the real shapes of asteroids (1620) Geographos and (6489) Golevka, show that rough surface thermal-infrared beaming enhances the Yarkovsky orbital drift by typically tens of per cent but it can be as much as a factor of 2. The YORP rotational acceleration is on average dampened by up to a third typically but can be as much as one-half. We find that the Yarkovsky orbital drift is only sensitive to the average degree, and not to the spatial distribution, of roughness across an asteroid surface. However, the YORP rotational acceleration is sensitive to the surface roughness spatial distribution, and can add significant uncertainties to the predictions for asteroids with relatively weak YORP effects. To accurately predict either effect the degree and spatial distribution of roughness across an asteroid surface must be known.
Airy beam self-focusing in a photorefractive medium
Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine
2016-01-01
The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination. PMID:27731356
The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks
NASA Astrophysics Data System (ADS)
Lakshmanan, Sriram; Sundaresan, Karthikeyan; Rangarajan, Sampath; Sivakumar, Raghupathy
Interference among co-channel users is a fundamental problem in wireless networks, which prevents nearby links from operating concurrently. Directional antennas allow the radiation patterns of wireless transmitters to be shaped to form directed beams. Conventionally, such beams are assumed to improve the spatial reuse (i.e. concurrency) in indoor wireless networks. In this paper, we use experiments in an indoor office setting of Wifi Access points equipped with directional antennas, to study their potential for interference mitigation and spatial reuse. In contrast to conventional wisdom, we observe that the interference mitigation benefits of directional antennas are minimal. On analyzing our experimental traces we observe that directional links do not reduce interference to nearby links due to the lack of signal confinement due to indoor multipath fading. We then use the insights derived from our study to develop an alternative approach that provides better interference reduction in indoor networks compared to directional links.
NASA Astrophysics Data System (ADS)
Xu, Y. F.; Chen, Da-Ming; Zhu, W. D.
2017-08-01
Spatially dense operating deflection shapes and mode shapes can be rapidly obtained by use of a continuously scanning laser Doppler vibrometer (CSLDV) system, which sweeps its laser spot over a vibrating structure surface. This paper introduces a new type of vibration shapes called a free response shape (FRS) that can be obtained by use of a CSLDV system, and a new damage identification methodology using FRSs is developed for beam structures. An analytical expression of FRSs of a damped beam structure is derived, and FRSs from the analytical expression compare well with those from a finite element model. In the damage identification methodology, a free-response damage index (FRDI) is proposed, and damage regions can be identified near neighborhoods with consistently high values of FRDIs associated with different modes; an auxiliary FRDI is defined to assist identification of the neighborhoods. A FRDI associated with a mode consists of differences between curvatures of FRSs associated with the mode in a number of half-scan periods of a CSLDV system and those from polynomials that fit the FRSs with properly determined orders. A convergence index is proposed to determine the proper order of a polynomial fit. One advantage of the methodology is that the FRDI does not require any baseline information of an undamaged beam structure, if it is geometrically smooth and made of materials that have no stiffness and mass discontinuities. Another advantage is that FRDIs associated with multiple modes can be obtained using free response of a beam structure measured by a CSLDV system in one scan. The number of half-scan periods for calculation of the FRDI associated with a mode can be determined by use of the short-time Fourier transform. The proposed methodology was numerically and experimentally applied to identify damage in beam structures; effects of the scan frequency of a CSLDV system on qualities of obtained FRSs were experimentally investigated.
Tuning donut profile for spatial resolution in stimulated emission depletion microscopy.
Neupane, Bhanu; Chen, Fang; Sun, Wei; Chiu, Daniel T; Wang, Gufeng
2013-04-01
In stimulated emission depletion (STED)-based or up-conversion depletion-based super-resolution optical microscopy, the donut-shaped depletion beam profile is of critical importance to its resolution. In this study, we investigate the transformation of the donut-shaped depletion beam focused by a high numerical aperture (NA) microscope objective, and model STED point spread function (PSF) as a function of donut beam profile. We show experimentally that the intensity profile of the dark kernel of the donut can be approximated as a parabolic function, whose slope is determined by the donut beam size before the objective back aperture, or the effective NA. Based on this, we derive the mathematical expression for continuous wave (CW) STED PSF as a function of focal plane donut and excitation beam profiles, as well as dye properties. We find that the effective NA and the residual intensity at the center are critical factors for STED imaging quality and the resolution. The effective NA is critical for STED resolution in that it not only determines the donut shape but also the area the depletion laser power is dispersed. An improperly expanded depletion beam will have negligible improvement in resolution. The polarization of the depletion beam also plays an important role as it affects the residual intensity in the center of the donut. Finally, we construct a CW STED microscope operating at 488 nm excitation and 592 nm depletion with a resolution of 70 nm. Our study provides detailed insight to the property of donut beam, and parameters that are important for the optimal performance of STED microscopes. This paper will provide a useful guide for the construction and future development of STED microscopes.
Pulse generation and preamplification for long pulse beamlines of Orion laser facility.
Hillier, David I; Winter, David N; Hopps, Nicholas W
2010-06-01
We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro
2012-02-15
In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them inmore » detail.« less
Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing.
Ruiz de la Cruz, A; Ferrer, A; Gawelda, W; Puerto, D; Sosa, M Galván; Siegel, J; Solis, J
2009-11-09
We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.
Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990
NASA Astrophysics Data System (ADS)
Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.
Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.
Multi-Wavelength, Multi-Beam, and Polarization-Sensitive Laser Transmitter for Surface Mapping
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Ramos-Izquierdo, Luis; Harding, David; Huss, Tim
2011-01-01
A multi-beam, multi-color, polarized laser transmitter has been developed for mapping applications. It uses commercial off-the-shelf components for a lowcost approach for a ruggedized laser suitable for field deployment. The laser transmitter design is capable of delivering dual wavelengths, multiple beams on each wavelength with equal (or variable) intensities per beam, and a welldefined state of polarization. This laser transmitter has been flown on several airborne campaigns for the Slope Imaging Multi-Polarization Photon Counting Lidar (SIMPL) instrument, and at the time of this reporting is at a technology readiness level of between 5 and 6. The laser is a 1,064-nm microchip high-repetition-rate laser emitting energy of about 8 microjoules per pulse. The beam was frequency-doubled to 532 nm using a KTP (KTiOPO4) nonlinear crystal [other nonlinear crystals such as LBO (LiB3O5) or periodically poled lithium niobiate can be used as well, depending on the conversion efficiency requirements], and the conversion efficiency was approximately 30 percent. The KTP was under temperature control using a thermoelectric cooler and a feedback monitoring thermistor. The dual-wavelength beams were then spectrally separated and each color went through its own optical path, which consisted of a beam-shaping lens, quarterwave plate (QWP), and a birefringent crystal (in this case, a calcite crystal, but others such as vanadate can be used). The QWP and calcite crystal set was used to convert the laser beams from a linearly polarized state to circularly polarized light, which when injected into a calcite crystal, will spatially separate the circularly polarized light into the two linear polarized components. The spatial separation of the two linearly polarized components is determined by the length of the crystal. A second set of QWP and calcite then further separated the two beams into four. Additional sets of QWP and calcite can be used to further split the beams into multiple orders of two. The spatially separated beams had alternating linearly polarization states; a half-wave plate (HWP) array was then made to rotate the alternating states of A multi-beam, multi-color, polarized laser transmitter has been developed for mapping applications. It uses commercial off-the-shelf components for a lowcost approach for a ruggedized laser suitable for field deployment. The laser transmitter design is capable of delivering dual wavelengths, multiple beams on each wavelength with equal (or variable) intensities per beam, and a welldefined state of polarization. This laser transmitter has been flown on several airborne campaigns for the Slope Imaging Multi-Polarization Photon Counting Lidar (SIMPL) instrument, and at the time of this reporting is at a technology readiness level of between 5 and 6. The laser is a 1,064-nm microchip high-repetition-rate laser emitting energy of about 8 microjoules per pulse. The beam was frequency-doubled to 532 nm using a KTP (KTiOPO4) nonlinear crystal [other nonlinear crystals such as LBO (LiB3O5) or periodically poled lithium niobiate can be used as well, depending on the conversion efficiency requirements], and the conversion efficiency was approximately 30 percent. The KTP was under temperature control using a thermoelectric cooler and a feedback monitoring thermistor. The dual-wavelength beams were then spectrally separated and each color went through its own optical path, which consisted of a beam-shaping lens, quarterwave plate (QWP), and a birefringent crystal (in this case, a calcite crystal, but others such as vanadate can be used). The QWP and calcite crystal set was used to convert the laser beams from a linearly polarized state to circularly polarized light, which when injected into a calcite crystal, will spatially separate the circularly polarized light into the two linear polarized components. The spatial separation of the two linearly polarized components is determined by the length of the crystal. A cond set of QWP and calcite then further separated the two beams into four. Additional sets of QWP and calcite can be used to further split the beams into multiple orders of two. The spatially separated beams had alternating linearly polarization states; a half-wave plate (HWP) array was then made to rotate the alternating states of
Phase Adaptation and Correction by Adaptive Optics
NASA Astrophysics Data System (ADS)
Tiziani, Hans J.
2010-04-01
Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.
Integrated optical design for highly dynamic laser beam shaping with membrane deformable mirrors
NASA Astrophysics Data System (ADS)
Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter
2017-02-01
The utilization of membrane deformable mirrors has raised its importance in laser materials processing since they enable the generation of highly spatial and temporal dynamic intensity distributions for a wide field of applications. To take full advantage of these devices for beam shaping, the huge amount of degrees of freedom has to be considered and optimized already within the early stage of the optical design. Since the functionality of commercial available ray-tracing software has been mainly specialized on geometric dependencies and their optimization within constraints, the complex system characteristics of deformable mirrors cannot be sufficiently taken into account yet. The main reasons are the electromechanical interdependencies of electrostatic membrane deformable mirrors, namely saturation and mechanical clamping, that result in non-linear deformation. This motivates the development of an integrative design methodology. The functionality of the ray-tracing program ZEMAX is extended with a model of an electrostatic membrane mirror. This model is based on experimentally determined influence functions. Furthermore, software routines are derived and integrated that allow for the compilation of optimization criteria for the most relevant analytically describable beam shaping problems. In this way, internal optimization routines can be applied for computing the appropriate membrane deflection of the deformable mirror as well as for the parametrization of static optical components. The experimental verification of simulated intensity distributions demonstrates that the beam shaping properties can be predicted with a high degree of reliability and precision.
NASA Astrophysics Data System (ADS)
Kotova, S. P.; Mayorova, A. M.; Samagin, S. A.
2018-05-01
Techniques for forming vortex light fields using a modal type liquid crystal spatial modulator were proposed. An orbital angular momentum of light passing through the modulator or reflecting from it appears as a result of the jump in the profile of phase delay by means of using special configurations of contact electrodes and predetermined values of applying voltages. The features of the generated vortex beams and capabilities for their control were simulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Hering, P.; Brown, S. B.
To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.
Chen, Z.; Hering, P.; Brown, S. B.; ...
2016-09-19
To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.
Damage localization by statistical evaluation of signal-processed mode shapes
NASA Astrophysics Data System (ADS)
Ulriksen, M. D.; Damkilde, L.
2015-07-01
Due to their inherent, ability to provide structural information on a local level, mode shapes and t.lieir derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement, noise. The present, article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement, noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet, transformation (CWT) and subsequent, application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact, damage-induced, outlier analysis of principal components of the signal-processed mode shapes is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context, of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.
NASA Astrophysics Data System (ADS)
Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.
2017-06-01
A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.
A beam monitor based on MPGD detectors for hadron therapy
NASA Astrophysics Data System (ADS)
Altieri, P. R.; Di Benedetto, D.; Galetta, G.; Intonti, R. A.; Mercadante, A.; Nuzzo, S.; Verwilligen, P.
2018-02-01
Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron) project funded by the Ministero dell'Istruzione, dell'Università e della Ricerca (Italian Ministry of Education and Research) the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs) characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.
Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs.
Castaneda, Roman; Usuga-Castaneda, Mario; Herrera-Ramírez, Jorge
2007-08-01
Evidence of the physical existence of the spatial coherence moiré is obtained by confronting numerical results with experimental results of spatially partial interference. Although it was performed for two particular cases, the results reveal a general behavior of the optical fields in any state of spatial coherence. Moreover, the study of the spatial coherence moiré deals with a new type of filtering, named filtering of classes of radiator pairs, which allows changing the power spectrum at the observation plane by modulating the complex degree of spatial coherence, without altering the power distribution at the aperture plane or introducing conventional spatial filters. This new procedure can optimize some technological applications of actual interest, as the beam shaping for instance.
Measuring Flow With Laser-Speckle Velocimetry
NASA Technical Reports Server (NTRS)
Smith, C. A.; Lourenco, L. M. M.; Krothapalli, A.
1988-01-01
Spatial resolution sufficient for calculation of vorticity.In laser-speckle velocimetry, pulsed or chopped laser beam expanded in one dimension by cylindrical lens to illuminate thin, fan-shaped region of flow measured. Flow seeded by small particles. Lens with optical axis perpendicular to illuminating beam forms image of illuminated particles on photographic plate. Speckle pattern of laser-illuminiated, seeded flow recorded in multiple-exposure photographs and processed to extract data on velocity field. Technique suited for study of vortical flows like those about helicopter rotor blades or airplane wings at high angles of attack.
Advanced Laser Technologies for High-brightness Photocathode Electron Gun
NASA Astrophysics Data System (ADS)
Tomizawa, Hiromitsu
A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 π mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.
Statistical spatial properties of speckle patterns generated by multiple laser beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Cain, A.; Sajer, J. M.; Riazuelo, G.
2011-08-15
This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as wellmore » as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.« less
Cell sorting using efficient light shaping approaches
NASA Astrophysics Data System (ADS)
Bañas, Andrew; Palima, Darwin; Villangca, Mark; Glückstad, Jesper
2016-03-01
Early detection of diseases can save lives. Hence, there is emphasis in sorting rare disease-indicating cells within small dilute quantities such as in the confines of lab-on-a-chip devices. In our work, we use optical forces to isolate red blood cells detected by machine vision. This approach is gentler, less invasive and more economical compared to conventional FACS systems. As cells are less responsive to plastic or glass beads commonly used in the optical manipulation literature, and since laser safety would be an issue in clinical use, we develop efficient approaches in utilizing lasers and light modulation devices. The Generalized Phase Contrast (GPC) method that can be used for efficiently illuminating spatial light modulators or creating well-defined contiguous optical traps is supplemented by diffractive techniques capable of integrating the available light and creating 2D or 3D beam distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam's propagation and its interaction with the catapulted cells.
Wave front engineering by means of diffractive optical elements for applications in microscopy
NASA Astrophysics Data System (ADS)
Cojoc, Dan; Ferrari, Enrico; Garbin, Valeria; Cabrini, Stefano; Carpentiero, Alessandro; Prasciolu, Mauro; Businaro, Luca; Kaulich, Burchard; Di Fabrizio, Enzo
2006-05-01
We present a unified view regarding the use of diffractive optical elements (DOEs) for microscopy applications a wide range of electromagnetic spectrum. The unified treatment is realized through the design and fabrication of DOE through which wave front beam shaping is obtained. In particular we show applications ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy. We report some details on the design and physical implementation of diffractive elements that beside focusing perform also other optical functions: beam splitting, beam intensity and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of spherical micro beads and for direct trapping and manipulation of biological cells with non-spherical shapes. Another application is the Gauss to Laguerre-Gaussian mode conversion, which allows to trap and transfer orbital angular momentum of light to micro particles with high refractive index and to trap and manipulate low index particles. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for DOEs implementation. High resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in X-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field X-ray microscopy.
Annular Focused Electron/Ion Beams for Combining High Spatial Resolution with High Probe Current.
Khursheed, Anjam; Ang, Wei Kean
2016-10-01
This paper presents a proposal for reducing the final probe size of focused electron/ion beam columns that are operated in a high primary beam current mode where relatively large final apertures are used, typically required in applications such as electron beam lithography, focused ion beams, and electron beam spectroscopy. An annular aperture together with a lens corrector unit is used to replace the conventional final hole-aperture, creating an annular ring-shaped primary beam. The corrector unit is designed to eliminate the first- and second-order geometric aberrations of the objective lens, and for the same probe current, the final geometric aberration limited spot size is predicted to be around a factor of 50 times smaller than that of the corresponding conventional hole-aperture beam. Direct ray tracing simulation is used to illustrate how a three-stage core lens corrector can be used to eliminate the first- and second-order geometric aberrations of an electric Einzel objective lens.
NASA Astrophysics Data System (ADS)
Peng, Yong; Li, Hongqiang; Shen, Chunlong; Guo, Shun; Zhou, Qi; Wang, Kehong
2017-06-01
The power density distribution of electron beam welding (EBW) is a key factor to reflect the beam quality. The beam quality test system was designed for the actual beam power density distribution of high-voltage EBW. After the analysis of characteristics and phase relationship between the deflection control signal and the acquisition signal, the Post-Trigger mode was proposed for the signal acquisition meanwhile the same external clock source was shared by the control signal and the sampling clock. The power density distribution of beam cross-section was reconstructed using one-dimensional signal that was processed by median filtering, twice signal segmentation and spatial scale calibration. The diameter of beam cross-section was defined by amplitude method and integral method respectively. The measured diameter of integral definition is bigger than that of amplitude definition, but for the ideal distribution the former is smaller than the latter. The measured distribution without symmetrical shape is not concentrated compared to Gaussian distribution.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2011-01-01
The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail
The surface roughness of (433) Eros as measured by thermal-infrared beaming
NASA Astrophysics Data System (ADS)
Rozitis, B.
2017-01-01
In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (I.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (I.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.
Apparatus and method for laser beam diagnosis
Salmon, Jr., Joseph T.
1991-01-01
An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.
Apparatus and method for laser beam diagnosis
Salmon, J.T. Jr.
1991-08-27
An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.
Laloš, Jernej; Babnik, Aleš; Možina, Janez; Požar, Tomaž
2016-03-01
The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform, Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are calculated, and the corresponding weight distributions are compared. To demonstrate the applicability of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile of the excitation laser pulse and its corresponding spatial normal-force distribution. Copyright © 2015 Elsevier B.V. All rights reserved.
Active optical system for advanced 3D surface structuring by laser remelting
NASA Astrophysics Data System (ADS)
Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.
2015-03-01
Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.
NASA Astrophysics Data System (ADS)
Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.
2018-03-01
A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-02
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.
Flexural-torsional vibration of a tapered C-section beam
NASA Astrophysics Data System (ADS)
Dennis, Scott T.; Jones, Keith W.
2017-04-01
Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yujie, E-mail: styojm@physics.tamu.edu; Voronine, Dmitri V.; Sokolov, Alexei V.
2015-08-15
We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.
NASA Astrophysics Data System (ADS)
Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Hohenberger, M.; Landen, O. L.; Regan, S. P.; Wehrenberg, C. E.; Remington, B. A.
2015-04-01
A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb Heα x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a "prepulse" shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.
Power amplification for petawatt Ti: Sapphire lasers: New strategies for high fluence pumping
NASA Astrophysics Data System (ADS)
Canova, F.; Chambaret, J.-P.
2006-06-01
One of the major bottlenecks when we pump large Ti:Sapphire crystals, to reach Petawatt level laser amplification, is the careful control of the spatial energy distribution of Nd:Glass pump lasers. Commercially available nanosecond Nd:Glass and Nd:YAG lasers exhibit poor spatial profile quality especially in the near and in the intermediate field, which can lead to local hot spots, responsible of damages in crystals, and parasitic transverse lasing enhancement, strongly dependent on the profile of the pump beam . For these reasons, it is mandatory to keep the pump beam intensity profile as flat as possible on the pumped crystal. To guarantee the best pumping conditions we are investigating the combined use of DOE (diffractive optical elements) and optical smoothing techniques. In parallel we are starting a study on laser induced damages mechanisms in crystal. With DOE and microlens arrays we plan to guarantee to the beam a supergaussian shape. Simulation and first experiments with both optical systems show that a flat top spatial profile with less than 10% fluctuations and a 8th order supergaussian is possible with the present technology.Optical smoothing will keep the beam free of hot spots. We especially focused on the smoothing techniques involving optical fibers. This is the first time to our knowledge that this technique is applied to the pumping beams for Ti:Sapphire systems. A deep study of laser-crystal interaction will allow us to fully understand the damages created by hot spots. The knowledge of the phenomena involved in laser damages on Ti:Sapphire is mandatory to control the pumping processes and thresholds. In conclusion, mixing the advantages of these different approaches to overcome this bottleneck will allow us to amplify in a safety way femtosecond laser beams to the Petawatt level using Ti:Sapphire crystals.
Fast-ion D(alpha) measurements and simulations in DIII-D
NASA Astrophysics Data System (ADS)
Luo, Yadong
The fast-ion Dalpha diagnostic measures the Doppler-shifted Dalpha light emitted by neutralized fast ions. For a favorable viewing geometry, the bright interferences from beam neutrals, halo neutrals, and edge neutrals span over a small wavelength range around the Dalpha rest wavelength and are blocked by a vertical bar at the exit focal plane of the spectrometer. Background subtraction and fitting techniques eliminate various contaminants in the spectrum. Fast-ion data are acquired with a time evolution of ˜1 ms, spatial resolution of ˜5 cm, and energy resolution of ˜10 keV. A weighted Monte Carlo simulation code models the fast-ion Dalpha spectra based on the fast-ion distribution function from other sources. In quiet plasmas, the spectral shape is in excellent agreement and absolute magnitude also has reasonable agreement. The fast-ion D alpha signal has the expected dependencies on plasma and neutral beam parameters. The neutral particle diagnostic and neutron diagnostic corroborate the fast-ion Dalpha measurements. The relative spatial profile is in agreement with the simulated profile based on the fast-ion distribution function from the TRANSP analysis code. During ion cyclotron heating, fast ions with high perpendicular energy are accelerated, while those with low perpendicular energy are barely affected. The spatial profile is compared with the simulated profiles based on the fast-ion distribution functions from the CQL Fokker-Planck code. In discharges with Alfven instabilities, both the spatial profile and spectral shape suggests that fast ions are redistributed. The flattened fast-ion Dalpha profile is in agreement with the fast-ion pressure profile.
Planar Holographic Metasurfaces for Terahertz Focusing
Kuznetsov, Sergei A.; Astafev, Mikhail A.; Beruete, Miguel; Navarro-Cía, Miguel
2015-01-01
Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (also called metamirrors) designed for focusing terahertz radiation into a single spot and four spaced spots are proposed and experimentally investigated at the frequency of 0.35 THz. Each metasurface is designed using a computer-generated spatial distribution of the reflection phase. The phase variation within 360 deg is achieved via a topological morphing of the metasurface pattern from metallic patches to U-shaped and split-ring resonator elements, whose spectral response is derived from full-wave electromagnetic simulations. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices for the terahertz band. PMID:25583565
Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun
2011-07-04
We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.
Spectral and spatial shaping of Smith-Purcell radiation
NASA Astrophysics Data System (ADS)
Remez, Roei; Shapira, Niv; Roques-Carmes, Charles; Tirole, Romain; Yang, Yi; Lereah, Yossi; Soljačić, Marin; Kaminer, Ido; Arie, Ady
2017-12-01
The Smith-Purcell effect, observed when an electron beam passes in the vicinity of a periodic structure, is a promising platform for the generation of electromagnetic radiation in previously unreachable spectral ranges. However, most of the studies of this radiation were performed on simple periodic gratings, whose radiation spectrum exhibits a single peak and its higher harmonics predicted by a well-established dispersion relation. Here, we propose a method to shape the spatial and spectral far-field distribution of the radiation using complex periodic and aperiodic gratings. We show, theoretically and experimentally, that engineering multiple peak spectra with controlled widths located at desired wavelengths is achievable using Smith-Purcell radiation. Our method opens the way to free-electron-driven sources with tailored angular and spectral responses, and gives rise to focusing functionality for spectral ranges where lenses are unavailable or inefficient.
Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip
NASA Astrophysics Data System (ADS)
Solntsev, Alexander S.; Setzpfandt, Frank; Clark, Alex S.; Wu, Che Wen; Collins, Matthew J.; Xiong, Chunle; Schreiber, Andreas; Katzschmann, Fabian; Eilenberger, Falk; Schiek, Roland; Sohler, Wolfgang; Mitchell, Arnan; Silberhorn, Christine; Eggleton, Benjamin J.; Pertsch, Thomas; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Kivshar, Yuri S.
2014-07-01
We demonstrate a nonlinear optical chip that generates photons with reconfigurable nonclassical spatial correlations. We employ a quadratic nonlinear waveguide array, where photon pairs are generated through spontaneous parametric down-conversion and simultaneously spread through quantum walks between the waveguides. Because of the quantum interference of these cascaded quantum walks, the emerging photons can become entangled over multiple waveguide positions. We experimentally observe highly nonclassical photon-pair correlations, confirming the high fidelity of on-chip quantum interference. Furthermore, we demonstrate biphoton-state tunability by spatial shaping and frequency tuning of the classical pump beam.
Active shape control of composite blades using shape memory actuation
NASA Astrophysics Data System (ADS)
Chandra, Ramesh
2001-10-01
This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).
Power balance on a multibeam laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.
Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less
Power balance on a multibeam laser
NASA Astrophysics Data System (ADS)
Sampat, S.; Kelly, J. H.; Kosc, T. Z.; Rigatti, A. L.; Kwiatkowski, J.; Donaldson, W. R.; Romanofsky, M. H.; Waxer, L. J.; Dean, R.; Moshier, R.
2018-02-01
Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stages of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) "pickets" followed by a shaped "drive" pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. This work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.
Power balance on a multibeam laser
Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.; ...
2018-02-15
Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less
Beam uniformity of flat top lasers
NASA Astrophysics Data System (ADS)
Chang, Chao; Cramer, Larry; Danielson, Don; Norby, James
2015-03-01
Many beams that output from standard commercial lasers are multi-mode, with each mode having a different shape and width. They show an overall non-homogeneous energy distribution across the spot size. There may be satellite structures, halos and other deviations from beam uniformity. However, many scientific, industrial and medical applications require flat top spatial energy distribution, high uniformity in the plateau region, and complete absence of hot spots. Reliable standard methods for the evaluation of beam quality are of great importance. Standard methods are required for correct characterization of the laser for its intended application and for tight quality control in laser manufacturing. The International Organization for Standardization (ISO) has published standard procedures and definitions for this purpose. These procedures have not been widely adopted by commercial laser manufacturers. This is due to the fact that they are unreliable because an unrepresentative single-pixel value can seriously distort the result. We hereby propose a metric of beam uniformity, a way of beam profile visualization, procedures to automatically detect hot spots and beam structures, and application examples in our high energy laser production.
Spatially-Heterodyned Holography
Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN
2006-02-21
A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morvan, B.; Tinel, A.; Sainidou, R.
2014-12-07
Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.
Recording multiple spatially-heterodyned direct to digital holograms in one digital image
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN
2008-03-25
Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...
Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser
NASA Astrophysics Data System (ADS)
Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji'an
2018-04-01
A simple and efficient technique for fabricating parabolic cylindrical microlens arrays (CMLAs) on the surface of fused silica by shaped femtosecond (fs) laser direct-writing is demonstrated. By means of spatially shaping of a Gaussian fs laser beam to a Bessel distribution, an inversed cylindrical shape laser intensity profile is formed in a specific cross-sectional plane among the shaped optical field. Applying it to experiments, large area close-packed parabolic CMLAs with line-width of 37.5 μm and array size of about 5 × 5 mm are produced. The cross-sectional outline of obtained lenslets has a satisfied parabolic profile and the numerical aperture (NA) of lenslets is more than 0.35. Furthermore, the focusing performance of the fabricated CMLA is also tested in this work and it has been demonstrated that the focusing power of the CMLA with a parabolic profile is better than that with a semi-circular one.
NASA Astrophysics Data System (ADS)
Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.
2012-06-01
Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.
Two dimensional model for coherent synchrotron radiation
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.
2013-01-01
Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.
An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices
NASA Astrophysics Data System (ADS)
Ashok, Akarapu; Gangele, Aparna; Pal, Prem; Pandey, Ashok Kumar
2018-07-01
Microcantilever beams are the most widely used mechanical elements in the design and fabrication of MEMS/NEMS-based sensors and actuators. In this work, we have proposed a new microcantilever beam design based on a stepped trapezoidal-shaped microcantilever. Single-, double-, triple- and quadruple-stepped trapezoidal-shaped microcantilever beams along with conventional rectangular-shaped microcantilever beams were analysed experimentally, numerically and analytically. The microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt% TMAH. The length, width and thickness of the microcantilever beams were fixed at 200, 40 and 0.96 µm, respectively. A laser vibrometer was utilized to measure the resonance frequency and Q-factor of the microcantilever beams in vacuum as well as in ambient conditions. Furthermore, finite element analysis software, ANSYS, was employed to numerically analyse the resonance frequency, maximum deflection and torsional end rotation of all the microcantilever beam designs. The analytical and numerical resonance frequencies are found to be in good agreement with the experimental resonance frequencies. In the stepped trapezoidal-shaped microcantilever beams with an increasing number of steps, the Q-factor, maximum deflection and torsional end rotation were improved, whereas the resonance frequency was slightly reduced. Nevertheless, the resonance frequency is higher than the basic rectangular-shaped microcantilever beam. The observed quality factor, maximum deflection and torsional end rotation for a quadruple-stepped trapezoidal-shaped microcantilever are 38%, 41% and 52%, respectively, which are higher than those of conventional rectangular-shaped microcantilever beams. Furthermore, for an applied concentrated mass of 1 picogram on the cantilever surface, a greater shift in frequency is obtained for all the stepped trapezoidal-shaped microcantilever beam designs compared to the conventional rectangular microcantilever beam.
Multistable wireless micro-actuator based on antagonistic pre-shaped double beams
NASA Astrophysics Data System (ADS)
Liu, X.; Lamarque, F.; Doré, E.; Pouille, P.
2015-07-01
This paper presents a monolithic multistable micro-actuator based on antagonistic pre-shaped double beams. The designed micro-actuator is formed by two rows of bistable micro-actuators providing four stable positions. The bistable mechanism for each row is a pair of antagonistic pre-shaped beams. This bistable mechanism has an easier pre-load operation compared to the pre-compressed bistable beams method. Furthermore, it solves the asymmetrical force output problem of parallel pre-shaped bistable double beams. At the same time, the geometrical limit is lower than parallel pre-shaped bistable double beams, which ensures a smaller stroke of the micro-actuator with the same dimensions. The designed micro-actuator is fabricated using laser cutting machine on medium density fiberboard (MDF). The bistability and merits of antagonistic pre-shaped double beams are experimentally validated. Finally, a contactless actuation test is performed using 660 nm wavelength laser heating shape memory alloy (SMA) active elements.
Robust and adjustable C-shaped electron vortex beams
NASA Astrophysics Data System (ADS)
Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.
2017-06-01
Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.
NASA Astrophysics Data System (ADS)
Silva, Guilherme Augusto Lopes da; Nicoletti, Rodrigo
2017-06-01
This work focuses on the placement of natural frequencies of beams to desired frequency regions. More specifically, we investigate the effects of combining mode shapes to shape a beam to change its natural frequencies, both numerically and experimentally. First, we present a parametric analysis of a shaped beam and we analyze the resultant effects for different boundary conditions and mode shapes. Second, we present an optimization procedure to find the optimum shape of the beam for desired natural frequencies. In this case, we adopt the Nelder-Mead simplex search method, which allows a broad search of the optimum shape in the solution domain. Finally, the obtained results are verified experimentally for a clamped-clamped beam in three different optimization runs. Results show that the method is effective in placing natural frequencies at desired values (experimental results lie within a 10% error to the expected theoretical ones). However, the beam must be axially constrained to have the natural frequencies changed.
NASA Astrophysics Data System (ADS)
Hirst, Edwin; Kaye, Paul H.; Foot, Virginia E.; Clark, James M.; Withers, Philip B.
2004-12-01
We describe the construction of a bio-aerosol monitor designed to capture and record intrinsic fluorescence spectra from individual aerosol particles carried in a sample airflow and to simultaneously capture data relating to the spatial distribution of elastically scattered light from each particle. The spectral fluorescence data recorded by this PFAS (Particle Fluorescence and Shape) monitor contains information relating to the particle material content and specifically to possible biological fluorophores. The spatial scattering data from PFAS yields information relating to particle size and shape. The combination of these data can provide a means of aiding the discrimination of bio-aerosols from background or interferent aerosol particles which may have similar fluorescence properties but exhibit shapes and/or sizes not normally associated with biological particles. The radiation used both to excite particle fluorescence and generate the necessary spatially scattered light flux is provided by a novel compact UV fiber laser operating at 266nm wavelength. Particles drawn from the ambient environment traverse the laser beam in single file. Intrinsic particle fluorescence in the range 300-570nm is collected via an ellipsoidal concentrator into a concave grating spectrometer, the spectral data being recorded using a 16-anode linear array photomultiplier detector. Simultaneously, the spatial radiation pattern scattered by the particle over 5°-30° scattering angle and 360° of azimuth is recorded using a custom designed 31-pixel radial hybrid photodiode array. Data from up to ~5,000 particles per second may be acquired for analysis, usually performed by artificial neural network classification.
Design and development of high frequency matrix phased-array ultrasonic probes
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Spencer, Roger L.
2012-05-01
High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.
Generation of an ultra-flexible focused top-hat beam profile with aspheres
NASA Astrophysics Data System (ADS)
Möhl, A.; Wickenhagen, S.; Fuchs, U.
2017-02-01
The demand for a uniform intensity distribution in the focal region of the working beam is growing steadily, especially in the field of laser material processing. To generate such a top-hat beam profile, it was shown in the past, that the use of refractive beam shaping solutions provides very good results. In this work, existing beam shaping knowledge is combined with an intelligent modular approach to create a new beam shaping solution, that simplifies both, handling and integration into existing set-ups. Furthermore, the present system enables not just a flattop intensity distribution, but even donut shaped beam profile without adding any further components to the system. Additionally, this beam shaping system is built and successfully tested. Some results of the characterization are presented.
Khorshidi, Abdollah; Ashoor, Mansour
2014-05-01
This study investigates modulation transfer function (MTF) in parallel beam (PB) and fan beam (FB) collimators using the Monte Carlo method with full width at half maximum (FWHM), square and circular-shaped holes, and scatter and penetration (S + P) components. A regulation similar to the lead-to-air ratio was used for both collimators to estimate output data. The hole pattern was designed to compare FB by PB parameters. The radioactive source in air and in a water phantom placed in front of the collimators was simulated using MCNP5 code. The test results indicated that the square holes in PB (PBs) had better FWHM than did the cylindrical (PBc) holes. In contrast, the cylindrical holes in the FB (FBc) had better FWHM than the square holes. In general, the resolution of FBc was better than that of the PBc in air and scatter mediums. The S + P decreased for all collimators as the distance from the source to the collimator surface (z) increased. The FBc had a lower S + P than FBs, but PBc had a higher S + P than PBs. Of the FB and PB collimators with the identical hole shapes, PBs had a smaller S + P than FBs, and FBc had a smaller S + P than PBc. The MTF value for the FB was greater than for the PB and had increased spatial frequency; the FBc had higher MTF than the FBs and PB collimators. Estimating the FB using PB parameters and diverse hole shapes may be useful in collimator design to improve the resolution and efficiency of SPECT images.
NASA Astrophysics Data System (ADS)
Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.
2016-02-01
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S. S.; Liu, D.; Gorelenkova, M. V.
2016-01-12
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components producemore » first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.« less
Statistical characterization of the optical interaction at a supercavitating interface
NASA Astrophysics Data System (ADS)
Walters, Gage; Kane, Tim; Jefferies, Rhett; Antonelli, Lynn
2016-05-01
The optical characteristics of an air/water interface have been widely studied for natural interface formations. However, the creation and management of artificial cavities creates a complicated interaction of gas and liquid that makes optical sensing and communication through the interface challenging. A ventilated cavity can reduce friction in underwater vehicles, but the resulting bubble drastically impedes optical and acoustic communication propagation. The complicated interaction at the air/water boundary yields surface waves and turbulence that make modeling and compensating of the optical properties difficult. Our experimental approach uses a narrow laser beam to probe the surface of the interface and measure the beam deflection and lensing effects. Using a vehicle model with a cavitator in a water tunnel, a laser beam is propagated outward from the model through the boundary and projected onto a target grid. The beam projection is captured using a high-speed camera, allowing us to measure and analyze beam shape and deflection. This approach has enabled us to quantify the temporal and spatial periodic variations in the beam propagation through the cavity boundary and fluid.
Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams
NASA Astrophysics Data System (ADS)
Li, Manman; Cai, Yanan; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli
2018-05-01
Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately. Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in optical spin and orbit interaction, light-beam shaping, or optical manipulation.
NASA Technical Reports Server (NTRS)
Cherrette, A. R.; Lee, S. W.; Acosta, R. J.
1988-01-01
Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.
Spatial frequency performance limitations of radiation dose optimization and beam positioning
NASA Astrophysics Data System (ADS)
Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.
2018-06-01
The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.
Magnetic field amplitude and pitch angle measurements using Spectral MSE on EAST
NASA Astrophysics Data System (ADS)
Liao, Ken; Rowan, William; Fu, Jia; Li, Ying-Ying; Lyu, Bo; Marchuk, Oleksandr; Ralchenko, Yuri
2017-10-01
We have developed the Spectral Motional Stark Effect technique for measuring magnetic field amplitude and pitch angle on EAST. The experiments were conducted using the tangential co-injection heating beam at A port and Beam Emission Spectroscopy array at D port. A spatial calibration of the observation channels was conducted before the campaign. As a first check, the measured magnetic field amplitude was compared to prediction. Since the toroidal field is dominant, we recovered the expected 1/R shape over the spatial range 1.75
Mitigation of X-ray damage in macromolecular crystallography by submicrometre line focusing.
Finfrock, Y Zou; Stern, Edward A; Alkire, R W; Kas, Joshua J; Evans-Lutterodt, Kenneth; Stein, Aaron; Duke, Norma; Lazarski, Krzysztof; Joachimiak, Andrzej
2013-08-01
Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 µm full-width half-maximum (FWHM). The experimental results determined that the penetration depth of PEs is 5 ± 0.5 µm with a monotonically decreasing spatial distribution shape, resulting in mitigation of diffraction signal damage. This does not agree with previous theoretical predication that the mitigation of damage requires a peak of damage outside the focus. A new improved calculation provides some qualitative agreement with the experimental results, but significant errors still remain. The mitigation of radiation damage by line focusing was measured experimentally by comparing the damage in the X-ray-irradiated regions of the submicrometre focus with the large-beam case under conditions of equal exposure and equal volumes of the protein crystal, and a mitigation factor of 4.4 ± 0.4 was determined. The mitigation of radiation damage is caused by spatial separation of the dominant PE radiation-damage component from the crystal region of the line-focus beam that contributes the diffraction signal. The diffraction signal is generated by coherent scattering of incident X-rays (which introduces no damage), while the overwhelming proportion of damage is caused by PE emission as X-ray photons are absorbed.
Kolbus, Lindsay M.; Payzant, E. Andrew; Cornwell, Paris A.; ...
2015-01-10
Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting and the other with direct laser sintering. Spatially indexed stress-free cubes were obtained by EDM sectioning equivalent prisms of similar shape. The (311) interplanar spacing examined for the EDM sectioned sample was compared to the interplanar spacings calculated to fulfill force and moment balance. We have shown that Applying force and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. Furthermore, our work hasmore » shown that residual stresses in electron beam melting parts are much smaller than that of direct laser metal sintering parts.« less
Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo
2005-11-10
The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.
NASA Astrophysics Data System (ADS)
Conny, Joseph M.; Ortiz-Montalvo, Diana L.
2017-09-01
We show the effect of composition heterogeneity and shape on the optical properties of urban dust particles based on the three-dimensional spatial and optical modeling of individual particles. Using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) and focused ion beam (FIB) tomography, spatial models of particles collected in Los Angeles and Seattle accounted for surface features, inclusions, and voids, as well as overall composition and shape. Using voxel data from the spatial models and the discrete dipole approximation method, we report extinction efficiency, asymmetry parameter, and single-scattering albedo (SSA). Test models of the particles involved (1) the particle's actual morphology as a single homogeneous phase and (2) simple geometric shapes (spheres, cubes, and tetrahedra) depicting composition homogeneity or heterogeneity (with multiple spheres). Test models were compared with a reference model, which included the particle's actual morphology and heterogeneity based on SEM/EDX and FIB tomography. Results show particle shape to be a more important factor for determining extinction efficiency than accounting for individual phases in a particle, regardless of whether absorption or scattering dominated. In addition to homogeneous models with the particles' actual morphology, tetrahedral geometric models provided better extinction accuracy than spherical or cubic models. For iron-containing heterogeneous particles, the asymmetry parameter and SSA varied with the composition of the iron-containing phase, even if the phase was <10% of the particle volume. For particles containing loosely held phases with widely varying refractive indexes (i.e., exhibiting "severe" heterogeneity), only models that account for heterogeneity may sufficiently determine SSA.
NASA Astrophysics Data System (ADS)
Letan, Amelie; Mishchik, Konstantin; Audouard, Eric; Hoenninger, Clemens; Mottay, Eric P.
2017-03-01
With the development of high average power, high repetition rate, industrial ultrafast lasers, it is now possible to achieve a high throughput with femtosecond laser processing, providing that the operating parameters are finely tuned to the application. Femtosecond lasers play a key role in these processes, due to their ability to high quality micro processing. They are able to drill high thickness holes (up to 1 mm) with arbitrary shapes, such as zero-conicity or even inversed taper, but can also perform zero-taper cutting. A clear understanding of all the processing steps necessary to optimize the processing speed is a main challenge for industrial developments. Indeed, the laser parameters are not independent of the beam steering devices. Pulses energy and repetition rate have to be precisely adjusted to the beam angle with the sample, and to the temporal and spatial sequences of pulses superposition. The purpose of the present work is to identify the role of these parameters for high aspect ratio drilling and cutting not only with experimental trials, but also with numerical estimations, using a simple engineering model based on the two temperature description of ultra-fast ablation. Assuming a nonlinear logarithmic response of the materials to ultrafast pulses, each material can be described by only two adjustable parameters. Simple assumptions allow to predict the effect of beam velocity and non-normal incident beams to estimate profile shapes and processing time.
Single beam write and/or replay of spatial heterodyne holograms
Thomas, Clarence E.; Hanson, Gregory R.
2007-11-20
A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.
Coherent superposition of propagation-invariant laser beams
NASA Astrophysics Data System (ADS)
Soskind, R.; Soskind, M.; Soskind, Y. G.
2012-10-01
The coherent superposition of propagation-invariant laser beams represents an important beam-shaping technique, and results in new beam shapes which retain the unique property of propagation invariance. Propagation-invariant laser beam shapes depend on the order of the propagating beam, and include Hermite-Gaussian and Laguerre-Gaussian beams, as well as the recently introduced Ince-Gaussian beams which additionally depend on the beam ellipticity parameter. While the superposition of Hermite-Gaussian and Laguerre-Gaussian beams has been discussed in the past, the coherent superposition of Ince-Gaussian laser beams has not received significant attention in literature. In this paper, we present the formation of propagation-invariant laser beams based on the coherent superposition of Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian beams of different orders. We also show the resulting field distributions of the superimposed Ince-Gaussian laser beams as a function of the ellipticity parameter. By changing the beam ellipticity parameter, we compare the various shapes of the superimposed propagation-invariant laser beams transitioning from Laguerre-Gaussian beams at one ellipticity extreme to Hermite-Gaussian beams at the other extreme.
Detailed characterisation of the incident neutron beam on the TOSCA spectrometer
NASA Astrophysics Data System (ADS)
Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix
2017-10-01
We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.
Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing
NASA Astrophysics Data System (ADS)
Yin, Yanchun
The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging resolution enhancement, while the results of the modeling in the time domain open opportunities for development of flexible pulse shaping benefitting a variety of ultrafast applications.
Absolute surface reconstruction by slope metrology and photogrammetry
NASA Astrophysics Data System (ADS)
Dong, Yue
Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.
N'Gom, Moussa; Lien, Miao-Bin; Estakhri, Nooshin M; Norris, Theodore B; Michielssen, Eric; Nadakuditi, Raj Rao
2017-05-31
Complex Semi-Definite Programming (SDP) is introduced as a novel approach to phase retrieval enabled control of monochromatic light transmission through highly scattering media. In a simple optical setup, a spatial light modulator is used to generate a random sequence of phase-modulated wavefronts, and the resulting intensity speckle patterns in the transmitted light are acquired on a camera. The SDP algorithm allows computation of the complex transmission matrix of the system from this sequence of intensity-only measurements, without need for a reference beam. Once the transmission matrix is determined, optimal wavefronts are computed that focus the incident beam to any position or sequence of positions on the far side of the scattering medium, without the need for any subsequent measurements or wavefront shaping iterations. The number of measurements required and the degree of enhancement of the intensity at focus is determined by the number of pixels controlled by the spatial light modulator.
Laser beam shaping design based on micromirror array
NASA Astrophysics Data System (ADS)
Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang
2017-10-01
In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.
Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z
2012-07-01
We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution.
Partial-Wave Representations of Laser Beams for Use in Light-Scattering Calculations
NASA Technical Reports Server (NTRS)
Gouesbet, Gerard; Lock, James A.; Grehan, Gerard
1995-01-01
In the framework of generalized Lorenz-Mie theory, laser beams are described by sets of beam-shape coefficients. The modified localized approximation to evaluate these coefficients for a focused Gaussian beam is presented. A new description of Gaussian beams, called standard beams, is introduced. A comparison is made between the values of the beam-shape coefficients in the framework of the localized approximation and the beam-shape coefficients of standard beams. This comparison leads to new insights concerning the electromagnetic description of laser beams. The relevance of our discussion is enhanced by a demonstration that the localized approximation provides a very satisfactory description of top-hat beams as well.
Shape control of NITINOL-reinforced composite beams
NASA Astrophysics Data System (ADS)
Baz, Amr M.; Chen, Tung-Huei; Ro, Jeng-Jong
1994-05-01
The shape of composite beams is controlled by sets of flat strips of a shape memory nickel-titanium alloy (NITINOL). A mathematical model is developed to describe the behavior of this class of SMART composites. The model describes the interaction between the elastic characteristics of the composite beams and the thermally- induced shape memory effect of the NITINOL strips. The effect of various activation strategies of the NITINOL strips on the shape of the composite beams is determined. The theoretical predictions of the model are validated experimentally using a fiberglass composite beam made of 8 plies of unidirectional BASF 5216 prepregs which are 9.75-cm wide and 21.20 cm long. The beams are provided with four NITINOL-55 strips which are 1.2 mm thick and 1.25 cm wide. The time response characteristics of the beam are monitored and compared with the corresponding theoretical characteristics. Close agreement is obtained between the theoretical predictions and the experimental results. The obtained results suggest the potential of the NITINOL strips in controlling the shape of composite beams without compromising their structural stiffness.
X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.
2016-02-15
X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less
NASA Astrophysics Data System (ADS)
Conny, J. M.; Ortiz-Montalvo, D. L.
2017-12-01
In the remote sensing of atmospheric aerosols, coarse-mode dust particles are often modeled optically as a collection of spheroids. However, atmospheric particles rarely resemble simplified shapes such as spheroids. Moreover, individual particles often have a heterogenous composition and may not be sufficiently modeled as a single material. In this work, we determine the optical properties of dust particles based on 3-dimensional models of individual particles from focused ion-beam (FIB) tomography. We compare the optical properties of the actual particles with the particles as simplified shapes including one or more spheres, an ellipsoid, cube, rectangular prism, or tetrahedron. FIB tomography is performed with a scanning electron microscope equipped with an ion-beam column. The ion beam slices through the particle incrementally as the electron beam images each slice. Element maps of the particle may be acquired with energy-dispersive x-ray spectroscopy. The images and maps are used to create the 3-D spatial model, from which the discrete dipole approximation method is used to calculate extinction, single scattering albedo, asymmetry parameter, and the phase function. Models of urban dust show that shape is generally more important than accounting for composition heterogeneity. However, if a particle has material phases with widely-varying refractive indexes, a geometric model may be insufficient if it does not incorporate heterogeneity. Models of Asian dust show that geometric models generally exhibit lower extinction efficiencies than the actual particles suggesting that simplified models do not adequately account for particle surface roughness. Nevertheless, in most cases the extinction from the tetrahedron model comes closest to that of the actual particles suggesting that accounting for particle angularity is important. The phase function from the tetrahedron model is comparable to the ellipsoid model and generally close to the actual particle, particularly in the backscatter direction (90° to 180°). Current work focuses on optical models of particles with a strongly-absorbing soot phase attached to a scattering mineral phase.
New x-ray pink-beam profile monitor system for the SPring-8 beamline front-end
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Sunao; Kudo, Togo; Sano, Mutsumi
A new beam profile monitoring system for the small X-ray beam exiting from the SPring-8 front-end was developed and tested at BL13XU. This system is intended as a screen monitor and also as a position monitor even at beam currents of 100 mA by using photoluminescence of a chemical vapor deposition-grown diamond film. To cope with the challenge that the spatial distribution of the photoluminescence in the vertical direction is too flat to detect the beam centroid within a limited narrow aperture, a filter was installed that absorbs the fundamental harmonic concentrated in the beam center, which resulted in “de-flattening”more » of the vertical distribution. For the measurement, the filter crossed the photon beam vertically at high speed to withstand the intense heat flux of the undulator pink-beam. A transient thermal analysis, which can simulate the movement of the irradiation position with time, was conducted to determine the appropriate configuration and the required moving speed of the filter to avoid accidental melting. In a demonstration experiment, the vertically separated beam profile could be successfully observed for a 0.8 × 0.8 mm{sup 2} beam shaped by an XY slit and with a fundamental energy of 18.48 keV. The vertical beam centroid could be detected with a resolution of less than 0.1 mm.« less
NASA Astrophysics Data System (ADS)
Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan
2016-05-01
Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.
Method and apparatus for measuring spatial uniformity of radiation
Field, Halden
2002-01-01
A method and apparatus for measuring the spatial uniformity of the intensity of a radiation beam from a radiation source based on a single sampling time and/or a single pulse of radiation. The measuring apparatus includes a plurality of radiation detectors positioned on planar mounting plate to form a radiation receiving area that has a shape and size approximating the size and shape of the cross section of the radiation beam. The detectors concurrently receive portions of the radiation beam and transmit electrical signals representative of the intensity of impinging radiation to a signal processor circuit connected to each of the detectors and adapted to concurrently receive the electrical signals from the detectors and process with a central processing unit (CPU) the signals to determine intensities of the radiation impinging at each detector location. The CPU displays the determined intensities and relative intensity values corresponding to each detector location to an operator of the measuring apparatus on an included data display device. Concurrent sampling of each detector is achieved by connecting to each detector a sample and hold circuit that is configured to track the signal and store it upon receipt of a "capture" signal. A switching device then selectively retrieves the signals and transmits the signals to the CPU through a single analog to digital (A/D) converter. The "capture" signal. is then removed from the sample-and-hold circuits. Alternatively, concurrent sampling is achieved by providing an A/D converter for each detector, each of which transmits a corresponding digital signal to the CPU. The sampling or reading of the detector signals can be controlled by the CPU or level-detection and timing circuit.
A Bragg beam splitter for hard x-ray free-electron lasers.
Osaka, Taito; Yabashi, Makina; Sano, Yasuhisa; Tono, Kensuke; Inubushi, Yuichi; Sato, Takahiro; Matsuyama, Satoshi; Ishikawa, Tetsuya; Yamauchi, Kazuto
2013-02-11
We report a Bragg beam splitter developed for utilization of hard x-ray free-electron lasers. The splitter is based on an ultrathin silicon crystal operating in the symmetric Bragg geometry to provide high reflectivity and transmissivity simultaneously. We fabricated frame-shaped Si(511) and (110) crystals with thicknesses below 10 μm by a reactive dry etching method using atmospheric-pressure plasma. The thickness variation over an illuminated area is less than 300 nm peak-to-valley. High crystalline perfection was verified by topographic and diffractometric measurements. The crystal thickness was evaluated from the period of the Pendellösung beats measured with a highly monochromatic and collimated x-ray probe. The crystals provide two replica pulses with uniform wavefront [(<1/50)λ] and low spatial intensity variation (<5%). These Bragg beam splitters will play an important role in innovating XFEL applications.
Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission
Chrystal, Colin; Burrell, Keith H.; Grierson, Brian A.; ...
2015-10-20
Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in-situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination diagnostic (CER) at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain informationmore » about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. Lastly, the methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.« less
Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission
NASA Astrophysics Data System (ADS)
Chrystal, C.; Burrell, K. H.; Grierson, B. A.; Pace, D. C.
2015-10-01
Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.
NASA Astrophysics Data System (ADS)
Avramov-Zamurovic, S.; Nelson, C.
2018-10-01
We report on experiments where spatially partially coherent laser beams with flat top intensity profiles were propagated underwater. Two scenarios were explored: still water and mechanically moved entrained salt scatterers. Gaussian, fully spatially coherent beams, and Multi-Gaussian Schell model beams with varying degrees of spatial coherence were used in the experiments. The main objective of our study was the exploration of the scintillation performance of scalar beams, with both vertical and horizontal polarizations, and the comparison with electromagnetic beams that have a randomly varying polarization. The results from our investigation show up to a 50% scintillation index reduction for the case with electromagnetic beams. In addition, we observed that the fully coherent beam performance deteriorates significantly relative to the spatially partially coherent beams when the conditions become more complex, changing from still water conditions to the propagation through mechanically moved entrained salt scatterers.
NASA Astrophysics Data System (ADS)
Ciancio, P. M.; Rossit, C. A.; Laura, P. A. A.
2007-05-01
This study is concerned with the vibration analysis of a cantilevered rectangular anisotropic plate when a concentrated mass is rigidly attached to its center point. Based on the classical theory of anisotropic plates, the Ritz method is employed to perform the analysis. The deflection of the plate is approximated by a set of beam functions in each principal coordinate direction. The influence of the mass magnitude on the natural frequencies and modal shapes of vibration is studied for a boron-epoxy plate and also in the case of a generic anisotropic material. The classical Ritz method with beam functions as the spatial approximation proved to be a suitable procedure to solve a problem of this analytical complexity.
Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.
2017-03-09
Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less
Khan, Saba N; Chatterjee, Sudip K; Chaudhuri, Partha Roy
2015-02-20
We report here the controlled generation of a linearly polarized first-order azimuthally asymmetric beam (F-AAB) in a dual-mode fiber (DMF) by appropriate superposition of selectively excited zeroth-order vector modes that are doughnut-shaped azimuthally symmetric beams (D-ASBs). We first demonstrate continually switching polarization mode structures having an identical two-lobe intensity profile (i.e., intra-F-AAB conversion). Then, under a distinct launching state, we generate mode structures progressively toggling between the doughnut-shaped profile and two-lobe pattern having dissimilar polarization orientations (i.e., F-AAB to D-ASB conversion). Interestingly, a decentralized elliptical Gaussian beam possessing homogenous spatial polarization is obtained by enhancing the contribution of the fundamental mode (HE11/LP01) in selectively excited F-AAB. A smoothly varying azimuth of the input beam in this situation resulted in redistribution of transverse energy procuring a unique and exciting unconventional two-grain T-polarized beam having mutually orthogonal state of polarization (SOP). All of the above three were achieved under a given set of launching conditions (tilt/offset) of a Gaussian mode (TEM00) devised with changing SOP of the input beam. A strong modulation in the output beam characteristics was also observed with the variation in propagation distance (for a fixed input SOP) owing to the large difference in propagation constants of the participating modes (LP01 and one of the F-AABs). Finally, this particular study led to a design for a low-cost highly sensitive strain measuring device based on tracking the centroid movement of the output intensity pattern. Each of our experimentally observed intensity/polarization distributions is theoretically mapped on a one-to-one basis considering a linear superposition of appropriately excited LP basis modes of the waveguide toward a complete understanding of the polarization and mode propagation in the dual-mode structure.
Optical design of transmitter lens for asymmetric distributed free space optical networks
NASA Astrophysics Data System (ADS)
Wojtanowski, Jacek; Traczyk, Maciej
2018-05-01
We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is examined, showing perfect agreement with expectations.
Off-axis illumination direct-to-digital holography
Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.
2004-06-08
Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.
Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting
2016-01-01
The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry. PMID:27589754
Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting
2016-08-30
The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry.
Active Beam Shaping System and Method Using Sequential Deformable Mirrors
NASA Technical Reports Server (NTRS)
Pueyo, Laurent A. (Inventor); Norman, Colin A. (Inventor)
2015-01-01
An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.
NASA Astrophysics Data System (ADS)
Sramek, Christopher; Leung, Loh-Shan; Leng, Theodore; Brown, Jefferson; Paulus, Yannis M.; Schuele, Georg; Palanker, Daniel
2011-02-01
Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are investigated: (a) decreasing the central irradiance of the laser beam and (b) temporally modulating the pulse. An annular beam with adjustable central irradiance was created by coupling a 532-nm laser into a 200-μm core multimode optical fiber at a 4-7 deg angle to normal incidence. Pulse shapes were optimized using a computational model, and a waveform generator was used to drive a PASCAL photocoagulator (532 nm), producing modulated laser pulses. Acute thresholds for mild coagulation and rupture were measured in Dutch-Belted rabbit in vivo with an annular beam (154-163 μm retinal diameter) and modulated pulse (132 μm, uniform irradiance ``flat-top'' beam) with 2-50 ms pulse durations. Thresholds with conventional constant-power pulse and a flat-top beam were also determined. Both annular beam and modulated pulse provided a 28% increase in TW at 10-ms duration, affording the same TW as 20-ms pulses with conventional parameters.
21 CFR 892.5710 - Radiation therapy beam-shaping block.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710 Section 892.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping...
Spatial-spectral characterization of focused spatially chirped broadband laser beams.
Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-11-20
Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams.
Practical use of a plastic scintillator for quality assurance of electron beam therapy.
Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige
2017-06-07
Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).
NASA Astrophysics Data System (ADS)
Chen, Yong; Yan, Zhenya; Li, Xin
2018-02-01
The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.
Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.
Broadband interferometric characterization of divergence and spatial chirp.
Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-09-01
We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).
Electron beam machining using rotating and shaped beam power distribution
Elmer, John W.; O'Brien, Dennis W.
1996-01-01
An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.
Shaping ultrafast laser inscribed optical waveguides using a deformable mirror.
Thomson, R R; Bockelt, A S; Ramsay, E; Beecher, S; Greenaway, A H; Kar, A K; Reid, D T
2008-08-18
We use a two-dimensional deformable mirror to shape the spatial profile of an ultrafast laser beam that is then used to inscribe structures in a soda-lime silica glass slide. By doing so we demonstrate that it is possible to control the asymmetry of the cross section of ultrafast laser inscribed optical waveguides via the curvature of the deformable mirror. When tested using 1.55 mum light, the optimum waveguide exhibited coupling losses of approximately 0.2 dB/facet to Corning SMF-28 single mode fiber and propagation losses of approximately 1.5 dB.cm(-1). This technique promises the possibility of combining rapid processing speeds with the ability to vary the waveguide cross section along its length.
Three-beam double stimulated Raman scatterings: Cascading configuration
NASA Astrophysics Data System (ADS)
Rao, B. Jayachander; Cho, Minhaeng
2018-03-01
Two-beam stimulated Raman scattering (SRS) has been used in diverse label-free spectroscopy and imaging applications of live cells, biological tissues, and functional materials. Recently, we developed a theoretical framework for the three-beam double SRS processes that involve pump, Stokes, and depletion beams, where the pump-Stokes and pump-depletion SRS processes compete with each other. It was shown that the net Stokes gain signal can be suppressed by increasing the depletion beam intensity. The theoretical prediction has been experimentally confirmed recently. In the previous scheme for a selective suppression of one SRS by making it compete with another SRS, the two SRS processes occur in a parallel manner. However, there is another possibility of three-beam double SRS scheme that can be of use to suppress either Raman gain of the Stokes beam or Raman loss of the pump beam by depleting the Stokes photons with yet another SRS process induced by the pair of Stokes and another (second) Stokes beam. This three-beam double SRS process resembles a cascading energy transfer process from the pump beam to the first Stokes beam (SRS-1) and subsequently from the first Stokes beam to the second Stokes beam (SRS-2). Here, the two stimulated Raman gain-loss processes are associated with two different Raman-active vibrational modes of solute molecule. In the present theory, both the radiation and the molecules are treated quantum mechanically. We then show that the cascading-type three-beam double SRS can be described by coupled differential equations for the photon numbers of the pump and Stokes beams. From the approximate solutions as well as exact numerical calculation results for the coupled differential equations, a possibility of efficiently suppressing the stimulated Raman loss of the pump beam by increasing the second Stokes beam intensity is shown and discussed. To further prove a potential use of this scheme for developing a super-resolution SRS microscopy, we present a theoretical expression and numerical simulation results for the full-width-at-half-maximum of SRS imaging point spread function, assuming that the pump and Stokes beam profiles are Gaussian and the second Stokes beam has a doughnut-shaped spatial profile. It is clear that the spatial resolution with the present 3-beam cascading SRS method can be enhanced well beyond the diffraction limit. We anticipate that the present work will provide a theoretical framework for a super-resolution stimulated Raman scattering microscopy that is currently under investigation.
Self-accelerating self-trapped nonlinear beams of Maxwell's equations.
Kaminer, Ido; Nemirovsky, Jonathan; Segev, Mordechai
2012-08-13
We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.
Sound localization by echolocating bats
NASA Astrophysics Data System (ADS)
Aytekin, Murat
Echolocating bats emit ultrasonic vocalizations and listen to echoes reflected back from objects in the path of the sound beam to build a spatial representation of their surroundings. Important to understanding the representation of space through echolocation are detailed studies of the cues used for localization, the sonar emission patterns and how this information is assembled. This thesis includes three studies, one on the directional properties of the sonar receiver, one on the directional properties of the sonar transmitter, and a model that demonstrates the role of action in building a representation of auditory space. The general importance of this work to a broader understanding of spatial localization is discussed. Investigations of the directional properties of the sonar receiver reveal that interaural level difference and monaural spectral notch cues are both dependent on sound source azimuth and elevation. This redundancy allows flexibility that an echolocating bat may need when coping with complex computational demands for sound localization. Using a novel method to measure bat sonar emission patterns from freely behaving bats, I show that the sonar beam shape varies between vocalizations. Consequently, the auditory system of a bat may need to adapt its computations to accurately localize objects using changing acoustic inputs. Extra-auditory signals that carry information about pinna position and beam shape are required for auditory localization of sound sources. The auditory system must learn associations between extra-auditory signals and acoustic spatial cues. Furthermore, the auditory system must adapt to changes in acoustic input that occur with changes in pinna position and vocalization parameters. These demands on the nervous system suggest that sound localization is achieved through the interaction of behavioral control and acoustic inputs. A sensorimotor model demonstrates how an organism can learn space through auditory-motor contingencies. The model also reveals how different aspects of sound localization, such as experience-dependent acquisition, adaptation, and extra-auditory influences, can be brought together under a comprehensive framework. This thesis presents a foundation for understanding the representation of auditory space that builds upon acoustic cues, motor control, and learning dynamic associations between action and auditory inputs.
Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN
2006-02-14
Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.
Swiftly moving focus points and forming shapes through the scattering media
NASA Astrophysics Data System (ADS)
Tran, Vinh; Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong
2018-02-01
Propagation of light through scattering media such as ground glass or biological tissue limits the quality and intensity of focusing point. Wave front shaping technique which uses spatial light modulator (SLM) devices to reshape the field profile of incoming light, is considered as one of the most effective and convenient methods. Advanced biomedical or manufacturing applications require drawing various contours or shapes quickly and precisely. However, creating each shape behind the scattering medium needs different phase profiles, which are time consuming to optimize or measure. Here, we demonstrate a technique to draw various shapes or contours behind the scattering medium by swiftly moving the focus point without any mechanical movements. Our technique relies on the existence of speckle correlation property in scattering media, also known as optical memory effect. In our procedure, we first modulate the phase-only SLM to create the focus point on the other side of scattering medium. Then, we digitally shift the preoptimized phase profile on the SLM and ramp it to tilt the beam accordingly. Now, the incoming beam with identical phase profile shines on the same scattering region at a tilted angle to regenerate the focus point at the desired position due to memory effect. Moreover, with linear combination of different field patterns, we can generate a single phase profile on SLM to produce two, three or more focus points simultaneously on the other side of a turbid medium. Our method could provide a useful tool for prominent applications such as opto-genetic excitation, minimally invasive laser surgery and other related fields.
Femtosecond optical injection of intact plant cells using a reconfigurable platform
NASA Astrophysics Data System (ADS)
Mitchell, Claire A.; Kalies, Stefan; Cizmar, Tomas; Bellini, Nicola; Kubasik-Thayil, Anisha; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G.; Gunn-Moore, Frank J.; Dholakia, Kishan
2014-03-01
The use of ultrashort-pulsed lasers for molecule delivery and transfection has proved to be a non-invasive and highly efficient technique for a wide range of mammalian cells. This present study investigates the effectiveness of femtosecond photoporation in plant cells, a hard-to-manipulate yet agriculturally relevant cell type, specifically suspension tobacco BY-2 cells. Both spatial and temporal shaping of the light field is employed to optimise the delivery of membrane impermeable molecules into plant cells using a reconfigurable optical system designed to be able to switch easily between different spatial modes and pulse durations. The use of a propagation invariant Bessel beam was found to increase the number of cells that could be viably optoinjected, when compared to the use of a Gaussian beam. Photoporation with a laser producing sub-12 fs pulses, coupled with a dispersion compensation system to retain the pulse duration at focus, reduced the power required for efficient optical injection by 1.5-1.8 times when compared to a photoporation with a 140 fs laser output.
Adaptive x-ray optics development at AOA-Xinetics
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Cavaco, Jeff L.; Brooks, Audrey D.; Ezzo, Kevin; Pearson, David D.; Wellman, John A.
2013-05-01
Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOA-Xinetics.
Adaptive x-ray optics development at AOA-Xinetics
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Pearson, David D.; Cavaco, Jeffrey L.; Plinta, Audrey D.; Wellman, John A.
2012-10-01
Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOAXinetics.
Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils
NASA Technical Reports Server (NTRS)
Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.
1992-01-01
The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Tsutomu; Watanabe, Takeshi
2014-05-27
In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishiuchi, Mamiko; Pirozhkov, Alexander S.; Sakaki, Hironao
From the interaction between the high-contrast ({approx}more than 10{sup 10}) 130 TW Ti:sapphire laser pulse and Stainless Steel-2.5 um-thick tape target, proton beam with energies up to 23 MeV with the conversion efficiency of {approx}1% is obtained. After plasma mirror installation for contrast improvement, from the interaction between the 30 TW laser pulse and thin-foil target installed on the target holder with the hole whose shape is associated with the design of the well-known Wehnelt electrode of electron-gun, a 7 MeV intense proton beam is controlled dynamically and energy selected by the self-induced quasi-static electric field on the target holder.more » From the highly divergent beam having continuous spectrum, which are the typical features of the laser-driven proton beams from the interactions between the short-pulse laser and solid target, the spatial distribution of 7 MeV proton bunch is well manipulated to be focused to an small spots with an angular distribution of {approx}10 mrad. The number of protons included in the bunch is >10{sup 6}.« less
Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation
NASA Astrophysics Data System (ADS)
Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel
2016-07-01
Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses.
pF3D Simulations of Large Outer-Beam Brillouin Scattering from NIF Rugby Hohlraums
NASA Astrophysics Data System (ADS)
Langer, Steven; Strozzi, David; Chapman, Thomas; Amendt, Peter
2015-11-01
We assess the cause of large outer-beam stimulated Brillouin scattering (SBS) in a NIF shot with a rugby-shaped hohlraum, which has less wall surface loss and thus higher x-ray drive than a cylindrical hohlraum of the same radius. This shot differed from a prior rugby shot with low SBS in three ways: outer beam pointing, split-pointing of the four beams within each outer-beam quadruplet, and a small amount of neon added to the hohlraum helium fill gas. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles from the radiation-hydrodynamics code Lasnex. We determine which change between the two shots increased the SBS by adding them one at a time to the simulations. We compare the simulations to experimental data for total SBS power, its spatial distribution at the lens, and the SBS spectrum. For each shot, we use profiles from Lasnex simulations with and without a model for mix at the hohlraum wall-gas interface. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674893.
Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation
Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel
2016-01-01
Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses. PMID:27435390
Liu, Jun; Wang, Jian
2015-07-06
We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations.
Korte, Andrew R.; Yandeau-Nelson, Marna D.; Nikolau, Basil J.; ...
2015-01-25
A significant limiting factor in achieving high spatial resolution for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is the size of the laser spot at the sample surface. We present modifications to the beam-delivery optics of a commercial MALDI-linear ion trap-Orbitrap instrument, incorporating an external Nd:YAG laser, beam-shaping optics, and an aspheric focusing lens, to reduce the minimum laser spot size from ~50 μm for the commercial configuration down to ~9 μm for the modified configuration. This improved system was applied for MALDI-MS imaging of cross sections of juvenile maize leaves at 5-μm spatial resolution using an oversampling method. Theremore » are a variety of different metabolites including amino acids, glycerolipids, and defense-related compounds were imaged at a spatial resolution well below the size of a single cell. Such images provide unprecedented insights into the metabolism associated with the different tissue types of the maize leaf, which is known to asymmetrically distribute the reactions of C4 photosynthesis among the mesophyll and bundle sheath cell types. The metabolite ion images correlate with the optical images that reveal the structures of the different tissues, and previously known and newly revealed asymmetric metabolic features are observed.« less
Light propagation with phase discontinuities: generalized laws of reflection and refraction.
Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno
2011-10-21
Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat's principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.
Electron beam machining using rotating and shaped beam power distribution
Elmer, J.W.; O`Brien, D.W.
1996-07-09
An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.
NASA Astrophysics Data System (ADS)
Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng
2018-02-01
High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.
NASA Astrophysics Data System (ADS)
Raimondi, L.; Svetina, C.; Mahne, N.; Cocco, D.; Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M.; De Ninno, G.; Zeitoun, P.; Dovillaire, G.; Lambert, G.; Boutu, W.; Merdji, H.; Gonzalez, A. I.; Gauthier, D.; Zangrando, M.
2013-05-01
FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10-100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens-Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.
Pirih, Primož; Wilts, Bodo D; Stavenga, Doekele G
2011-10-01
The males of many pierid butterflies have iridescent wings, which presumably function in intraspecific communication. The iridescence is due to nanostructured ridges of the cover scales. We have studied the iridescence in the males of a few members of Coliadinae, Gonepteryx aspasia, G. cleopatra, G. rhamni, and Colias croceus, and in two members of the Colotis group, Hebomoia glaucippe and Colotis regina. Imaging scatterometry demonstrated that the pigmentary colouration is diffuse whereas the structural colouration creates a directional, line-shaped far-field radiation pattern. Angle-dependent reflectance measurements demonstrated that the directional iridescence distinctly varies among closely related species. The species-dependent scale curvature determines the spatial properties of the wing iridescence. Narrow beam illumination of flat scales results in a narrow far-field iridescence pattern, but curved scales produce broadened patterns. The restricted spatial visibility of iridescence presumably plays a role in intraspecific signalling.
Simulation of a beam rotation system for a spallation source
NASA Astrophysics Data System (ADS)
Reiss, Tibor; Reggiani, Davide; Seidel, Mike; Talanov, Vadim; Wohlmuther, Michael
2015-04-01
With a nominal beam power of nearly 1 MW on target, the Swiss Spallation Neutron Source (SINQ), ranks among the world's most powerful spallation neutron sources. The proton beam transport to the SINQ target is carried out exclusively by means of linear magnetic elements. In the transport line to SINQ the beam is scattered in two meson production targets and as a consequence, at the SINQ target entrance the beam shape can be described by Gaussian distributions in transverse x and y directions with tails cut short by collimators. This leads to a highly nonuniform power distribution inside the SINQ target, giving rise to thermal and mechanical stresses. In view of a future proton beam intensity upgrade, the possibility of homogenizing the beam distribution by means of a fast beam rotation system is currently under investigation. Important aspects which need to be studied are the impact of a rotating proton beam on the resulting neutron spectra, spatial flux distributions and additional—previously not present—proton losses causing unwanted activation of accelerator components. Hence a new source description method was developed for the radiation transport code MCNPX. This new feature makes direct use of the results from the proton beam optics code TURTLE. Its advantage to existing MCNPX source options is that all phase space information and correlations of each primary beam particle computed with TURTLE are preserved and transferred to MCNPX. Simulations of the different beam distributions together with their consequences in terms of neutron production are presented in this publication. Additionally, a detailed description of the coupling method between TURTLE and MCNPX is provided.
Alternative Shapes and Shaping Techniques for Enhanced Transformer Ratios in Beam Driven Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemery, F.; Piot, P.
The transformer ration of collinear beam-driven techniques can be significantly improved by shaping the current profile of the drive bunch. To date, several current shapes have been proposed to increase the transformer ratio and produce quasi-uniform energy loss within the drive bunch. Some of these tailoring techniques are possible as a results of recent beam-dynamics advances, e.g., transverse-to-longitudinal emittance exchanger. In ths paper, we propose an alternative class of longitudinal shapes that enable high transformer ratio and uniform energy loss across the drive bunch. We also suggest a simple method based on photocathode-laser shaping and passive shaping in wakefield structuremore » to realize shape close to the theoretically optimized current profiles.« less
Apparatus and method for increasing the bandwidth of a laser beam
Wilcox, Russell B.
1992-01-01
A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
Liu, Jun; Wang, Jian
2015-01-01
We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations. PMID:26146032
Spatial-heterodyne interferometry for transmission (SHIFT) measurements
Bingham, Philip R.; Hanson, Gregory R.; Tobin, Ken W.
2006-10-10
Systems and methods are described for spatial-heterodyne interferometry for transmission (SHIFT) measurements. A method includes digitally recording a spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis using a reference beam, and an object beam that is transmitted through an object that is at least partially translucent; Fourier analyzing the digitally recorded spatially-heterodyned hologram, by shifting an original origin of the digitally recorded spatially-heterodyned hologram to sit on top of a spatial-heterodyne carrier frequency defined by an angle between the reference beam and the object beam, to define an analyzed image; digitally filtering the analyzed image to cut off signals around the original origin to define a result; and performing an inverse Fourier transform on the result.
Geometric controls of the flexural gravity waves on the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Sergienko, O. V.
2017-12-01
Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.
Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy.
Schröter, M-A; Holschneider, M; Sturm, H
2012-11-02
The direct observation of small oscillating structures with the help of a scanning electron beam is a new approach to study the vibrational dynamics of cantilevers and microelectromechanical systems. In the scanning electron microscope, the conventional signal of secondary electrons (SE, dc part) is separated from the signal response of the SE detector, which is correlated to the respective excitation frequency for vibration by means of a lock-in amplifier. The dynamic response is separated either into images of amplitude and phase shift or into real and imaginary parts. Spatial resolution is limited to the diameter of the electron beam. The sensitivity limit to vibrational motion is estimated to be sub-nanometer for high integration times. Due to complex imaging mechanisms, a theoretical model was developed for the interpretation of the obtained measurements, relating cantilever shapes to interaction processes consisting of incident electron beam, electron-lever interaction, emitted electrons and detector response. Conclusions drawn from this new model are compared with numerical results based on the Euler-Bernoulli equation.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
Reversible wavefront shaping between Gaussian and Airy beams by mimicking gravitational field
NASA Astrophysics Data System (ADS)
Wang, Xiangyang; Liu, Hui; Sheng, Chong; Zhu, Shining
2018-02-01
In this paper, we experimentally demonstrate reversible wavefront shaping through mimicking gravitational field. A gradient-index micro-structured optical waveguide with special refractive index profile was constructed whose effective index satisfying a gravitational field profile. Inside the waveguide, an incident broad Gaussian beam is firstly transformed into an accelerating beam, and the generated accelerating beam is gradually changed back to a Gaussian beam afterwards. To validate our experiment, we performed full-wave continuum simulations that agree with the experimental results. Furthermore, a theoretical model was established to describe the evolution of the laser beam based on Landau’s method, showing that the accelerating beam behaves like the Airy beam in the small range in which the linear potential approaches zero. To our knowledge, such a reversible wavefront shaping technique has not been reported before.
NASA Astrophysics Data System (ADS)
Aït-Ameur, Kamel; Passilly, Nicolas; de Saint Denis, R.; Fromager, Michaël
2008-09-01
We consider the promising properties of very simple Diffractive Optical Elements (DOE) for reshaping the intensity profile of a laser beam. The first type of DOE that we have considered is a phase aperture which consists in a transparent plate with a circular relief introducing a π phase shift in the central region of the incident beam. The phase aperture is able to convert a Gaussian beam into a super-Gaussian, a ring-shaped or a doughnut profile. The second DOE that has been considered is an adjustable axicon able to transform a Gaussian laser beam into a dark hollow beam or a Bessel-Gauss beam. The desired conical geometry is obtained from a deformable mirror formed by a 2 inches, 0.25mm thick silicon wafer supported by a standard 2 inches optical mount. To achieve the adequate deformation a small metallic ball pushes the back of the mirror wafer. The realized shape is monitored with a Shack-Hartmann wave-front sensor and it is shown that conical shape cannot be achieved. Nevertheless, recorded wave fronts exhibit important third order spherical aberration able to achieve beam profile transformation as conical lenses.
NASA Astrophysics Data System (ADS)
Wang, Wei; Shen, Jianqi
2018-06-01
The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.
Diffractive beam shaping for enhanced laser polymer welding
NASA Astrophysics Data System (ADS)
Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.
2015-03-01
Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.
SU-F-T-179: Fast and Accurate Profile Acquisition for Proton Beam Using Multi-Ion Chamber Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X; Zou, J; Chen, T
2016-06-15
Purpose: Proton beam profile measurement is more time-consuming than photon beam. Due to the energy modulation during proton delivery, chambers have to move step-by-step instead of continuously. Multi-ion chamber arrays are appealing to this task since multiple measurements can be performed at once. However, their utilization suffers from sparse spatial resolution and potential intrinsic volume-averaging effect of the disk-shaped ion chambers. We proposed an approach to measure proton beam profiles accurately and efficiently. Methods: Mevion S250 proton system and IBA Matrixx ion chamber arrays were used in this study. Matrixx has interchamber distance of 7.62 mm, and chamber diameter ofmore » 4.5 mm. We measured the same beam profile by moving the Matrixx seven times with 1 mm each time along y axis. All 7 measurements were superimposed to get a “finer” profile with 1 mm spatial resolution. Coarser resolution profiles of 2 mm and 3 mm were also generated by using subsets of measurements. Those profiles were compared to the TPS calculated beam profile. Gamma analysis was performed for 2D dose maps to evaluate the difference to TPS dose plane. Results: Preliminary results showed a large discrepancy between the TPS calculated profile and the single measurement profile with 7.6 mm resolution. A good match could be achieved when the resolution reduced to 3 mm by adding one extra measurement. Gamma analysis for 2D dose map of a 10×10 field showed a passing rate (γ ≤ 1) of 90.6% using a 3% and 3mm criterion for single measurement, which increased to 92.3% for 2-measurement superimposition, and slightly further increased to 92.9% for 7-measurement superimposition. Conclusion: The results indicated that 2 measurements shifted by 3mm using Matrixx generated a smooth proton beam profile with good matching to Eclipse beam profile. We suggest using this 2-measurement approach in clinic for double scattering proton beam profile measurement.« less
Fouad, Anthony; Pfefer, T. Joshua; Chen, Chao-Wei; Gong, Wei; Agrawal, Anant; Tomlins, Peter H.; Woolliams, Peter D.; Drezek, Rebekah A.; Chen, Yu
2014-01-01
Point spread function (PSF) phantoms based on unstructured distributions of sub-resolution particles in a transparent matrix have been demonstrated as a useful tool for evaluating resolution and its spatial variation across image volumes in optical coherence tomography (OCT) systems. Measurements based on PSF phantoms have the potential to become a standard test method for consistent, objective and quantitative inter-comparison of OCT system performance. Towards this end, we have evaluated three PSF phantoms and investigated their ability to compare the performance of four OCT systems. The phantoms are based on 260-nm-diameter gold nanoshells, 400-nm-diameter iron oxide particles and 1.5-micron-diameter silica particles. The OCT systems included spectral-domain and swept source systems in free-beam geometries as well as a time-domain system in both free-beam and fiberoptic probe geometries. Results indicated that iron oxide particles and gold nanoshells were most effective for measuring spatial variations in the magnitude and shape of PSFs across the image volume. The intensity of individual particles was also used to evaluate spatial variations in signal intensity uniformity. Significant system-to-system differences in resolution and signal intensity and their spatial variation were readily quantified. The phantoms proved useful for identification and characterization of irregularities such as astigmatism. Our multi-system results provide evidence of the practical utility of PSF-phantom-based test methods for quantitative inter-comparison of OCT system resolution and signal uniformity. PMID:25071949
Longitudinal bunch shaping of picosecond high-charge MeV electron beams
Beaudoin, B. L.; Thangaraj, J. C. T.; Edstrom, Jr., D.; ...
2016-10-20
With ever increasing demands for intensities in modern accelerators, the understanding of space-charge effects becomes crucial. Herein are presented measurements of optically shaped picosecond-long electron beams in a superconducting L-band linac over a wide range of charges, from 0.2 nC to 3.4 nC. At low charges, the shape of the electron beam is preserved, while at higher charge densities, modulations on the beam convert to energy modulations. Here, energy profile measurements using a spectrometer and time profile measurements using a streak camera reveal the dynamics of longitudinal space-charge on MeV-scale electron beams.
Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Y.; Bane, K. L. F.; Colocho, W.
2016-10-27
A new operating mode has been developed for the Linac Coherent Light Source (LCLS) in which we shape the longitudinal phase space of the electron beam. This mode of operation is realized using a horizontal collimator located in the middle of the first bunch compressor to truncate the head and tail of the beam. With this method, the electron beam longitudinal phase space and current profile are reshaped, and improvement in lasing performance can be realized. As a result, we present experimental studies at the LCLS of the beam shaping effects on the free-electron laser performance.
Spatial light modulators for full cross-connections in optical networks
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
2004-01-01
A polarization-independent optical switch is disclosed for switching at least one incoming beam from at least one input source to at least one output drain. The switch includes a polarizing beam splitter to split each of the at least one incoming beam into a first input beam and a second input beam, wherein the first input beam and the second input beams are independently polarized; a wave plate optically coupled to the second input beam for converting the polarization of the second input beam to an appropriately polarized second input beam; a beam combiner optically coupled to the first input beam and the modified second input beam, wherein the beam combiner accepts the first input beam and the modified second input beam to produce a combined beam; the combined beam is invariant to the polarization state of the input source's polarization; and a controllable spatial light modulator optically coupled to the combined beam, wherein the combined beam is diffracted by the controllable spatial light modulator to place light at a plurality of output locations.
Content-based fused off-axis object illumination direct-to-digital holography
Price, Jeffery R.
2006-05-02
Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.
Flat profile laser beam shaper
Johnson, Todd R.
2017-09-12
A system for shaping a beam comprises an emitter for emitting coherent electromagnetic radiation. Birefringent displacers are configured between the emitter and a target wherein the at least two birefringent displacers split the coherent electromagnetic radiation into a plurality of coherent parallel beams of electromagnetic radiation thereby producing a shaped wave front of the coherent parallel beams of electromagnetic radiation.
Hypergeometric Gaussian beam and its propagation in turbulence
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil Tanyer; Cai, Yangjian
2012-10-01
We study propagation characteristics of hypergeometric Gaussian beam in turbulence. In this context, we formulate the receiver plane intensity using extended Huygens-Fresnel integral. From the graphical results, it is seen that, after propagation, hypergeometric Gaussian will in general assume the shape of a dark hollow beam at topological charges other than zero. Increasing values of topological charge will make the beam broader with steeper walls. On the other hand, higher values of hollowness parameter will contract into a narrower shape. Raising the topological charge or the hollowness parameter individually will cause outer rings to appear. Both increased levels of turbulence and longer propagation distances will accelerate the beam evolution and help reach the final Gaussian shape sooner. At lower wavelengths, there will be less beam spreading.
Optical fiber designs for beam shaping
NASA Astrophysics Data System (ADS)
Farley, Kevin; Conroy, Michael; Wang, Chih-Hao; Abramczyk, Jaroslaw; Campbell, Stuart; Oulundsen, George; Tankala, Kanishka
2014-03-01
A large number of power delivery applications for optical fibers require beams with very specific output intensity profiles; in particular applications that require a focused high intensity beam typically image the near field (NF) intensity distribution at the exit surface of an optical fiber. In this work we discuss optical fiber designs that shape the output beam profile to more closely correspond to what is required in many real world industrial applications. Specifically we present results demonstrating the ability to transform Gaussian beams to shapes required for industrial applications and how that relates to system parameters such as beam product parameter (BPP) values. We report on the how different waveguide structures perform in the NF and show results on how to achieve flat-top with circular outputs.
Study on THz wave generation from air plasma induced by quasi-square Airy beam
NASA Astrophysics Data System (ADS)
Zhang, Shijing; Zhang, Liangliang; Jiang, Guangtong; Zhang, Cunlin; Zhao, Yuejin
2018-01-01
Terahertz (THz) wave has attracted considerable attention in recent years because of its potential applications. The intense THz waves generated from air plasma induced by two-color femtosecond laser are widely used due to its high generation efficiency and broad frequency bandwidth. The parameters of the laser change the distribution of the air plasma, and then affect the generation of THz wave. In this research, we investigate the THz wave generation from air plasma induced by quasi-square Airy beam. Unlike the common Gauss beam, the quasi-square Airy beam has ability to autofocus and to increase the maximum intensity at the focus. By using the spatial light modulator (SLM), we can change the parameters of phase map to control the shape of the Airy beam. We obtain the two-color laser field by a 100-um-thick BBO crystal, then use a Golay detector to record THz wave energy. By comparing terahertz generation at different modulation depths, we find that terahertz energy produced by quasi-square Airy beam is up to 3.1 times stronger than that of Gauss beam with identical laser energy. In order to understand the influence of quasi-square Airy beam on the BBO crystal, we record THz wave energy by changing the azimuthal angle of BBO crystal with Gauss beam and Airy beam at different modulation depths. We find that the trend of terahertz energy with respect to the azimuthal angle of the BBO crystal keeps the same for different laser beams. We believe that the quasi-square Airy beam or other auto focusing beam can significantly improve the efficiency of terahertz wave generation and pave the way for its applications.
Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.
Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M
2015-04-30
A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.
Curvature methods of damage detection using digital image correlation
NASA Astrophysics Data System (ADS)
Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter
2009-03-01
Analytical models have shown that local damage in a structure can be detected by studying changes in the curvature of the structure's displaced shape while under an applied load. In order for damage to be detected, located, and quantified using curvature methods, a spatially dense set of measurement points is required on the structure of interest and the change in curvature must be measurable. Experimental testing done to validate the theory is often plagued by sparse data sets and experimental noise. Furthermore, the type of load, the location and severity of the damage, and the mechanical properties (material and geometry) of the structure have a significant effect on how much the curvature will change. Within this paper, three-dimensional (3D) Digital Image Correlation (DIC) as one possible method for detecting damage through curvature methods is investigated. 3D DIC is a non-contacting full-field measurement technique which uses a stereo pair of digital cameras to capture surface shape. This approach allows for an extremely dense data set across the entire visible surface of an object. A test is performed to validate the approach on an aluminum cantilever beam. A dynamic load is applied to the beam which allows for measurements to be made of the beam's response at each of its first three resonant frequencies, corresponding to the first three bending modes of the structure. DIC measurements are used with damage detection algorithms to predict damage location with varying levels of damage inflicted in the form of a crack with a prescribed depth. The testing demonstrated that this technique will likely only work with structures where a large displaced shape is easily achieved and in cases where the damage is relatively severe. Practical applications and limitations of the technique are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpes, Nathan; Kumar, Prashant; Abdelkefi, Abdessattar
Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. Inmore » this study, the second bending mode shape of the “Elephant” two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.« less
Multi-image acquisition-based distance sensor using agile laser spot beam.
Riza, Nabeel A; Amin, M Junaid
2014-09-01
We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.
NASA Astrophysics Data System (ADS)
Yuan, Yangsheng; Chen, Yahong; Liang, Chunhao; Cai, Yangjian; Baykal, Yahya
2013-03-01
With the help of a tensor method, we derive an explicit expression for the on-axis scintillation index of a circular partially coherent dark hollow (DH) beam in weakly turbulent atmosphere. The derived formula can be applied to study the scintillation properties of a partially coherent Gaussian beam and a partially coherent flat-topped (FT) beam. The effect of spatial coherence on the scintillation properties of DH beam, FT beam and Gaussian beam is studied numerically and comparatively. Our results show that the advantage of a DH beam over a FT beam and a Gaussian beam for reducing turbulence-induced scintillation increases particularly at long propagation distances with the decrease of spatial coherence or the increase of the atmospheric turbulence, which will be useful for long-distance free-space optical communications.
Effect of axial load on mode shapes and frequencies of beams
NASA Technical Reports Server (NTRS)
Shaker, F. J.
1975-01-01
An investigation of the effect of axial load on the natural frequencies and mode shapes of uniform beams and of a cantilevered beam with a concentrated mass at the tip is presented. Characteristic equations which yield the frequencies and mode shape functions for the various cases are given. The solutions to these equations are presented by a series of graphs so that frequency as a function of axial load can readily be determined. The effect of axial load on the mode shapes are also depicted by another series of graphs.
Field mappers for laser material processing
NASA Astrophysics Data System (ADS)
Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy
2016-03-01
The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.
Photoelectric-enhanced radiation therapy with quasi-monochromatic computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost, Gregor; Mensing, Tristan; Golfier, Sven
2009-06-15
Photoelectric-enhanced radiation therapy is a bimodal therapy, consisting of the administration of highly radiation-absorbing substances into the tumor area and localized regional irradiation with orthovoltage x-rays. Irradiation can be performed by a modified computed tomography (CT) unit equipped with an additional x-ray optical module which converts the polychromatic, fan-shaped CT beam into a monochromatized and focused beam for energy-tuned photoelectric-enhanced radiotherapy. A dedicated x-ray optical module designed for spatial collimation, focusing, and monochromatization was mounted at the exit of the x-ray tube of a clinical CT unit. Spectrally resolved measurements of the resulting beam were performed using an energy-dispersive detectionmore » system calibrated by synchrotron radiation. The spatial photon fluence was determined by film dosimetry. Depth-dose measurements were performed and compared to the polychromatic CT and a therapeutic 6 MV beam. The spatial dose distribution in phantoms using a rotating radiation source (quasi-monochromatic CT and 6 MV, respectively) was investigated by gel dosimetry. The photoelectric dose enhancement for an iodine fraction of 1% in tissue was calculated and verified experimentally. The x-ray optical module selectively filters the energy of the tungsten K{alpha} emission line with an FWHM of 5 keV. The relative photon fluence distribution demonstrates the focusing characteristic of the x-ray optical module. A beam width of about 3 mm was determined at the isocenter of the CT gantry. The depth-dose measurements resulted in a half-depth value of approximately 36 mm for the CT beams (quasi-monochromatic, polychromatic) compared to 154 mm for the 6 MV beam. The rotation of the radiation source leads to a steep dose gradient at the center of rotation; the gel dosimetry yields an entrance-to-peak dose ratio of 1:10.8 for the quasi-monochromatic CT and 1:37.3 for a 6 MV beam of the same size. The photoelectric dose enhancement factor increases from 2.2 to 2.4 by using quasi-monochromatic instead of polychromatic radiation. An additional increase in the radiation dose by a factor of 1.4 due to the focusing characteristic of the x-ray optical module was calculated. Photoelectric-enhanced radiation therapy based on a clinical CT unit combined with an x-ray optical module is a novel therapy option in radiation oncology. The optimized quasi-monochromatic radiation is strongly focused and ensures high photoelectric dose enhancement for iodine.« less
Hohimer, John P.
1994-01-01
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.
Hohimer, J.P.
1994-06-07
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.
An analytical model of a curved beam with a T shaped cross section
NASA Astrophysics Data System (ADS)
Hull, Andrew J.; Perez, Daniel; Cox, Donald L.
2018-03-01
This paper derives a comprehensive analytical dynamic model of a closed circular beam that has a T shaped cross section. The new model includes in-plane and out-of-plane vibrations derived using continuous media expressions which produces results that have a valid frequency range above those available from traditional lumped parameter models. The web is modeled using two-dimensional elasticity equations for in-plane motion and the classical flexural plate equation for out-of-plane motion. The flange is modeled using two sets of Donnell shell equations: one for the left side of the flange and one for the right side of the flange. The governing differential equations are solved with unknown wave propagation coefficients multiplied by spatial domain and time domain functions which are inserted into equilibrium and continuity equations at the intersection of the web and flange and into boundary conditions at the edges of the system resulting in 24 algebraic equations. These equations are solved to yield the wave propagation coefficients and this produces a solution to the displacement field in all three dimensions. An example problem is formulated and compared to results from finite element analysis.
Single element laser beam shaper
Zhang, Shukui [Yorktown, VA; Shinn, Michelle D [Newport News, VA
2005-09-13
A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.
Bessel beams with spatial oscillating polarization
Fu, Shiyao; Zhang, Shikun; Gao, Chunqing
2016-01-01
Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174
Laser intensity scaling through stimulated scattering in optical fibers
NASA Astrophysics Data System (ADS)
Russell, Timothy H.
The influence of stimulated scattering on laser intensity in fiber optic waveguides is examined. Stimulated Brillouin scattering (SBS) in long, multimode optical waveguides is found to generate a Stokes beam that propagates in the fiber LP01 mode. This characteristic of the Stokes beam was first applied to beam cleanup, where an aberrated pump generated a Gaussian-like Stokes beam. Additionally, the same process is found to combine multiple laser beams into a single spatially coherent source. The mean square difference between the two beams was used to measure the degree of spatial overlap, demonstrating spatial coherence between the Stokes beams even when the pump beams are not spatially correlated. This result is obtained regardless of whether the pump beams are at the same or different frequencies; producing two temporally coherent or incoherent Stokes beams respectively. Limitations in beam cleanup and combining are also examined to identify ways to overcome them. Output couplers are designed that could be used to spatially filter the Stokes beam from the pump, thus increasing the number of beams that could be combined. The combined power restriction induced by second order Stokes threshold is examined experimentally and theoretically and is not found to be a significant limitation. Finally, stimulated Raman scattering (SRS) beam cleanup is examined to overcome the stringent spectral requirements on the pump beams required by SBS. The last portion of the dissertation theoretically examines suppression of stimulated Raman scattering in fibers to eliminate the restriction this imposes on the power of a fiber laser or amplifier. The suppression was modeled using both a holmium dopant and adding a long period grating to the fiber. Both methods were shown to have a significant effect on the SRS threshold.
Rapid and efficient formation of propagation invariant shaped laser beams.
Chriki, Ronen; Barach, Gilad; Tradosnky, Chene; Smartsev, Slava; Pal, Vishwa; Friesem, Asher A; Davidson, Nir
2018-02-19
A rapid and efficient all-optical method for forming propagation invariant shaped beams by exploiting the optical feedback of a laser cavity is presented. The method is based on the modified degenerate cavity laser (MDCL), which is a highly incoherent cavity laser. The MDCL has a very large number of degrees of freedom (320,000 modes in our system) that can be coupled and controlled, and allows direct access to both the real space and Fourier space of the laser beam. By inserting amplitude masks into the cavity, constraints can be imposed on the laser in order to obtain minimal loss solutions that would optimally lead to a superposition of Bessel-Gauss beams forming a desired shaped beam. The resulting beam maintains its transverse intensity distribution for relatively long propagation distances.
Beam shaping as an enabler for new applications
NASA Astrophysics Data System (ADS)
Guertler, Yvonne; Kahmann, Max; Havrilla, David
2017-02-01
For many years, laser beam shaping has enabled users to achieve optimized process results as well as manage challenging applications. The latest advancements in industrial lasers and processing optics have taken this a step further as users are able to adapt the beam shape to meet specific application requirements in a very flexible way. TRUMPF has developed a wide range of experience in creating beam profiles at the work piece for optimized material processing. This technology is based on the physical model of wave optics and can be used with ultra short pulse lasers as well as multi-kW cw lasers. Basically, the beam shape can be adapted in all three dimensions in space, which allows maximum flexibility. Besides adaption of intensity profile, even multi-spot geometries can be produced. This approach is very cost efficient, because a standard laser source and (in the case of cw lasers) a standard fiber can be used without any special modifications. Based on this innovative beam shaping technology, TRUMPF has developed new and optimized processes. Two of the most recent application developments using these techniques are cutting glass and synthetic sapphire with ultra-short pulse lasers and enhanced brazing of hot dip zinc coated steel for automotive applications. Both developments lead to more efficient and flexible production processes, enabled by laser technology and open the door to new opportunities. They also indicate the potential of beam shaping techniques since they can be applied to both single-mode laser sources (TOP Cleave) and multi-mode laser sources (brazing).
Structural-change localization and monitoring through a perturbation-based inverse problem.
Roux, Philippe; Guéguen, Philippe; Baillet, Laurent; Hamze, Alaa
2014-11-01
Structural-change detection and characterization, or structural-health monitoring, is generally based on modal analysis, for detection, localization, and quantification of changes in structure. Classical methods combine both variations in frequencies and mode shapes, which require accurate and spatially distributed measurements. In this study, the detection and localization of a local perturbation are assessed by analysis of frequency changes (in the fundamental mode and overtones) that are combined with a perturbation-based linear inverse method and a deconvolution process. This perturbation method is applied first to a bending beam with the change considered as a local perturbation of the Young's modulus, using a one-dimensional finite-element model for modal analysis. Localization is successful, even for extended and multiple changes. In a second step, the method is numerically tested under ambient-noise vibration from the beam support with local changes that are shifted step by step along the beam. The frequency values are revealed using the random decrement technique that is applied to the time-evolving vibrations recorded by one sensor at the free extremity of the beam. Finally, the inversion method is experimentally demonstrated at the laboratory scale with data recorded at the free end of a Plexiglas beam attached to a metallic support.
NASA Astrophysics Data System (ADS)
Kondalkar, Vijay V.; Ryu, Geonhee; Lee, Yongbeom; Lee, Keekeun
2018-07-01
An acousto-optic (AO) based holographic display unit was developed using surface acoustic wave (SAW) with different wavelength to modulate the diffraction angles, intensities, and phases of light. The new configurations were employed to control two beams simultaneously by using a single chirp inter-digital transducer (IDT), and a micro-lens array was integrated at the end of the waveguide layer to focus the diffracted light on to the screen. Two incident light beams were simultaneously modulated by using different refractive grating periods generated from chirp IDT. A diffraction angle of about 5° was obtained by using a SAW with a frequency of 430 MHz. The increase in the SAW input power enhances the diffraction efficiency of the light beam at the exit. The obtained maximum diffraction efficiency is ~70% at a frequency of 430 MHz. The sloped shape of the waveguide entrance and a tall rounded Ni poles help in coupling the incident light to the waveguide layer. The diffracted beam was collected through the lens, which increased the intensity of light in the viewing plane. COMSOL multi-physics and coupling of mode (COM) modeling were performed to predict the device performance and compared with the experimental results.
Structured light generation by magnetic metamaterial half-wave plates at visible wavelength
NASA Astrophysics Data System (ADS)
Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong
2017-12-01
Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam-Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light-matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.
NASA Astrophysics Data System (ADS)
Chen, Enguo; Wu, Rengmao; Guo, Tailiang
2014-06-01
Collimated beam shaping with freeform surface usually employs a predefined mapping to tailor one or multiple freeform surfaces. Limitation on those designs is that the source, the freeform optics and the target are in fixed one-to-one correspondence with each other. To overcome this drawback, this paper presents a kind of freeform microlens array module integrated with an ultra-thin freeform microlens array and a condenser lens to reshape any arbitrary-shape collimated beam into a prescribed uniform rectangular illumination and achieve color mixing. The design theory is explicitly given, and some key issues are addressed. Several different application examples are given, and the target is obtained with high uniformity and energy efficiency. This freeform microlens array module, which shows better flexibility and practicality than the regular designs, can be used not only to reshape any arbitrary-shape collimated beam (or a collimated beam integrated with several sub-collimated beams), but also most importantly to achieve color mixing. With excellent optical performance and ultra-compact volume, this optical module together with the design theory can be further introduced into other applications and will have a huge market potential in the near future.
Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui
2016-11-15
Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.
Fabricating Blazed Diffraction Gratings by X-Ray Lithography
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel
2004-01-01
Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the nonlinearity and produce a desired groove profile. An example of grating grooves generated by this technique is shown in Figure 2. A maximum relative efficiency of 88 percent has been demonstrated.
Recent advances in patterned photostimulation for optogenetics
NASA Astrophysics Data System (ADS)
Ronzitti, Emiliano; Ventalon, Cathie; Canepari, Marco; Forget, Benoît C.; Papagiakoumou, Eirini; Emiliani, Valentina
2017-11-01
An important technological revolution is underway in the field of neuroscience as we begin the 21st century. The combination of optical methods with genetically encoded photosensitive tools (optogenetics) offers the opportunity to quickly modulate and monitor a large number of neuronal events and the ability to recreate the physiological, spatial, and temporal patterns of brain activity. The use of light instead of electrical stimulation is less invasive, and permits superior spatial and temporal specificity and flexibility. This ongoing revolution has motivated the development of new optical methods for light stimulation. They can be grouped in two main categories: scanning and parallel photostimulation techniques, each with its advantages and limitations. In scanning approaches, a small light spot is displaced in targeted regions of interest (ROIs), using galvanometric mirrors or acousto-optic deflectors, whereas in parallel approaches, the light beam can be spatially shaped to simultaneously cover all ROIs by modulating either the light intensity or the phase of the illumination beam. With amplitude modulation, light patterns are created by selectively blocking light rays that illuminate regions of no interest, while with phase modulation, the wavefront of the light beam is locally modified so that light rays are directed onto the target, thus allowing for higher intensity efficiency. In this review, we will describe the principle of each of these photostimulation techniques and review the use of these approaches in optogenetics experiments by presenting their advantages and drawbacks. Finally, we will review the challenges that need to be faced when photostimulation methods are combined with two-photon imaging approaches to reach an all-optical brain control through optogenetics and functional reporters (Ca2+ and voltage indicators).
Three-dimensional spatially curved local Bessel beams generated by metasurface
NASA Astrophysics Data System (ADS)
Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang
2018-03-01
We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.
High-precision double-frequency interferometric measurement of the cornea shape
NASA Astrophysics Data System (ADS)
Molebny, Vasyl V.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.; Smirnov, Eugene M.; Ilchenko, Leonid M.; Goncharov, Vadym O.
1996-11-01
To measure the shape of the cornea and its declinations from the necessary values before and after PRK operation, s well as the shape of other spherical objects like artificial pupil, a technique was used of double-frequency dual-beam interferometry. The technique is based on determination of the optical path difference between two neighboring laser beams, reflected from the cornea or other surface under investigation. Knowing the distance between the beams on the investigated shape. The shape itself is reconstructed by along-line integration. To adjust the wavefront orientation of the laser beam to the spherical shape of the cornea or artificial pupil in the course of scanning, additional lens is involved. Signal-to-noise ratio is ameliorated excluding losses in the acousto-optic deflectors. Polarization selection is realized for choosing the signal needed for measurement. 2D image presentation is accompanied by convenient PC accessories, permitting precise cross-section measurements along selected directions. Sensitivity of the order of 10-2 micrometers is achieved.
The FERMIatElettra FEL Photon Transport System
NASA Astrophysics Data System (ADS)
Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.
2010-06-01
The FERMI@Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI@Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.
Precise optical dosimetry in low-level laser therapy of soft tissues in oral cavity
NASA Astrophysics Data System (ADS)
Stoykova, Elena V.; Sabotinov, O.
2004-06-01
The new low level laser therapy (LLLT) is widely applied for treatment of diseases of the oral mucosa and parodont. Depending on indication, different optical tips and light-guides are used to create beams with a required shape. However, to the best of our knowledge, the developed irradiation geometries are usually proposed assuming validity of Bouger-Lambert law. This hardly corresponds to the real situation because of the dominating multiple scattering within 600-1200 nm range that destroys correlation between the emitted laser beam and the spatial distribution of the absorbed dose inside the tissue. The aim of this work is to base the dosimetry of the LLLT procedures of periodontal tissues on radiation transfer theory using a flexible Monte-Carlo code. We studied quantitatively the influence of tissue optical parameters (absorption and scattering coefficients, tissue refraction index, anisotropy factor) on decreasing of correlation between the emitted beam and the energy deposition for converging or diverging beams. We evaluated energy deposition for the developed by us LLLT system in a 3-D model of periodontal tissues created using a cross-sectional image of this region with internal structural information on the gingival and the tooth. The laser source is a CW diode laser emitting elliptical beam within 650-675 nm at output power 5-30 mW. To determine the geometry of the irradiating beam we used CCD camera Spiricon LBA 300.
Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II
NASA Astrophysics Data System (ADS)
Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan
2018-05-01
The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.
Continuous time quantum random walks in free space
NASA Astrophysics Data System (ADS)
Eichelkraut, Toni; Vetter, Christian; Perez-Leija, Armando; Christodoulides, Demetrios; Szameit, Alexander
2014-05-01
We show theoretically and experimentally that two-dimensional continuous time coherent random walks are possible in free space, that is, in the absence of any external potential, by properly tailoring the associated initial wave function. These effects are experimentally demonstrated using classical paraxial light. Evidently, the usage of classical beams to explore the dynamics of point-like quantum particles is possible since both phenomena are mathematically equivalent. This in turn makes our approach suitable for the realization of random walks using different quantum particles, including electrons and photons. To study the spatial evolution of a wavefunction theoretically, we consider the one-dimensional paraxial wave equation (i∂z +1/2 ∂x2) Ψ = 0 . Starting with the initially localized wavefunction Ψ (x , 0) = exp [ -x2 / 2σ2 ] J0 (αx) , one can show that the evolution of such Gaussian-apodized Bessel envelopes within a region of validity resembles the probability pattern of a quantum walker traversing a uniform lattice. In order to generate the desired input-field in our experimental setting we shape the amplitude and phase of a collimated light beam originating from a classical HeNe-Laser (633 nm) utilizing a spatial light modulator.
NASA Astrophysics Data System (ADS)
Zoller, Christian; Hohmann, Ansgar; Ertl, Thomas; Kienle, Alwin
2017-07-01
The Monte Carlo method is often referred as the gold standard to calculate the light propagation in turbid media [1]. Especially for complex shaped geometries where no analytical solutions are available the Monte Carlo method becomes very important [1, 2]. In this work a Monte Carlo software is presented, to simulate the light propagation in complex shaped geometries. To improve the simulation time the code is based on OpenCL such that graphics cards can be used as well as other computing devices. Within the software an illumination concept is presented to realize easily all kinds of light sources, like spatial frequency domain (SFD), optical fibers or Gaussian beam profiles. Moreover different objects, which are not connected to each other, can be considered simultaneously, without any additional preprocessing. This Monte Carlo software can be used for many applications. In this work the transmission spectrum of a tooth and the color reconstruction of a virtual object are shown, using results from the Monte Carlo software.
Rapidly accelerating Mathieu and Weber surface plasmon beams.
Libster-Hershko, Ana; Epstein, Itai; Arie, Ady
2014-09-19
We report the generation of two types of self-accelerating surface plasmon beams which are solutions of the nonparaxial Helmholtz equation in two dimensions. These beams preserve their shape while propagating along either elliptic (Mathieu beam) or parabolic (Weber beam) trajectories. We show that owing to the nonparaxial nature of the Weber beam, it maintains its shape over a much larger distance along the parabolic trajectory, with respect to the corresponding solution of the paraxial equation-the Airy beam. Dynamic control of the trajectory is realized by translating the position of the illuminating free-space beam. Finally, the ability of these beams to self-heal after blocking obstacles is demonstrated as well.
Beam shaping optics to enhance performance of interferometry techniques in grating manufacture
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei
2018-02-01
Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.
Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim
2016-05-01
Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.
Preliminary design of the spatial filters used in the multipass amplification system of TIL
NASA Astrophysics Data System (ADS)
Zhu, Qihua; Zhang, Xiao Min; Jing, Feng
1998-12-01
The spatial filters are used in Technique Integration Line, which has a multi-pass amplifier, not only to suppress parasitic high spatial frequency modes but also to provide places for inserting a light isolator and injecting the seed beam, and to relay image while the beam passes through the amplifiers several times. To fulfill these functions, the parameters of the spatial filters are optimized by calculations and analyzes with the consideration of avoiding the plasma blow-off effect and components demanding by ghost beam focus. The 'ghost beams' are calculated by ray tracing. A software was developed to evaluate the tolerance of the spatial filters and their components, and to align the whole system on computer simultaneously.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.
NASA Astrophysics Data System (ADS)
Bajoria, Kamal M.; Kaduskar, Shreya S.
2016-04-01
In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.
Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kildemo, M.; Levinsen, Y. Inntjore; Le Roy, S.
2009-09-15
High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author's knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio,more » single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel
Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. Wemore » present current profile shaping results, aberrations on the shaped profile, and its suppression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tammas-Williams, S., E-mail: Samuel.tammas-wiliams@manchester.ac.uk; Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD; Zhao, H.
Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship wasmore » found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida, G. L.; Silvani, M. I.; Lopes, R. T.
Two main parameters rule the performance of an Image Acquisition System, namely, spatial resolution and contrast. For radiographic systems using cone beam arrangements, the farther the source, the better the resolution, but the contrast would diminish due to the lower statistics. A closer source would yield a higher contrast but it would no longer reproduce the attenuation map of the object, as the incoming beam flux would be reduced by unequal large divergences and attenuation factors. This work proposes a procedure to correct these effects when the object is comprised of a hull - or encased in it - possessingmore » a shape capable to be described in analytical geometry terms. Such a description allows the construction of a matrix containing the attenuation factors undergone by the beam from the source until its final destination at each coordinate on the 2D detector. Each matrix element incorporates the attenuation suffered by the beam after its travel through the hull wall, as well as its reduction due to the square of distance to the source and the angle it hits the detector surface. When the pixel intensities of the original image are corrected by these factors, the image contrast, reduced by the overall attenuation in the exposure phase, are recovered, allowing one to see details otherwise concealed due to the low contrast. In order to verify the soundness of this approach, synthetic images of objects of different shapes, such as plates and tubes, incorporating defects and statistical fluctuation, have been generated, recorded for further comparison and afterwards processed to improve their contrast. The developed algorithm which, generates processes and plots the images has been written in Fortran 90 language. As the resulting final images exhibit the expected improvements, it therefore seemed worthwhile to carry out further tests with actual experimental radiographies.« less
Shapes, spectra and new methods in nonlinear spatial optics
NASA Astrophysics Data System (ADS)
Sun, Can
For a myriad of optical applications, the quality of the light source is poor and the beam is inherently spatially partially-coherent. For this broad class of systems, wave dynamics depends not only on the wave intensity, but also on its distribution of spatial frequencies. Unfortunately, this entire spectrum of problems has often been overlooked - for reasons of theoretical ease or experimental difficulties. Here, we remedy this by demonstrating a novel experimental setup which, for the first time, allows arbitrarily modulation of the spatial spectra of light to obtain any distribution of interest. Using modulation instability as an example, we isolate the effect of different spectral shapes and observe distinct beam dynamics. Next, we turn to a thermodynamic description of the long-term evolution of statistical fields. For quantum systems, a major consequence is Bose-Einstein Condensation. However, recent theoretical studies have suggested that quantum mechanics is not necessary for the condensation process: classical waves with random phases can also self-organize into a coherent state. Starting from a random ensemble, nonlinear interactions can lead to a turbulent energy cascade towards longer spatial scales. In complete analogy with the kinetics of a gas system, there is a statistical dynamics of waves in which particle velocities map to wavepacket k-vectors while collisions are mimicked by four-wave mixing. As with collisions, each wave interaction is formally reversible, yet entropy principles mandate that the ensemble evolves towards an equilibrium state of maximum disorder. The result is an equipartition of energy, in the form of a Rayleigh-Jeans spectrum, with information about the condensation process recorded in small-scale fluctuations. Here, we give the first experimental observation of the condensation of classical waves in any media. Using classical light in a self-defocusing photorefractive, we observe all aspects of the condensation process, including the population of a coherent state, spectral redistribution towards the Rayleigh-Jeans spectrum, and formal reversibility of the interactions. The latter is proved experimentally by introducing a digital "Maxwell's Demon" to reverse (phase-conjugate) the momentum of each wavepacket and recover the original "thermal cloud". The results integrate digital and physical methods of nonlinear processing, confirm fundamental ideas in wave turbulence, and greatly extend the range of Bose-Einstein theory.
Stationary Temperature Distribution in a Rotating Ring-Shaped Target
NASA Astrophysics Data System (ADS)
Kazarinov, N. Yu.; Gulbekyan, G. G.; Kazacha, V. I.
2018-05-01
For a rotating ring-shaped target irradiated by a heavy-ion beam, a differential equation for computing the stationary distribution of the temperature averaged over the cross section is derived. The ion-beam diameter is assumed to be equal to the ring width. Solving this equation allows one to obtain the stationary temperature distribution along the ring-shaped target depending on the ion-beam, target, and cooling-gas parameters. Predictions are obtained for the rotating target to be installed at the DC-280 cyclotron. For an existing rotating target irradiated by an ion beam, our predictions are compared with the measured temperature distribution.
Eshraghi, Iman; Jalali, Seyed K.; Pugno, Nicola Maria
2016-01-01
Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs) is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ) method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs. PMID:28773911
Ackerman, Paul J.; Qi, Zhiyuan; Lin, Yiheng; Twombly, Christopher W.; Laviada, Mauricio J.; Lansac, Yves; Smalyukh, Ivan I.
2012-01-01
Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators. PMID:22679553
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, P. J.; Qi, Z. Y.; Lin, Y. H.
2012-06-07
Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable 'optical drawing' of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies ofmore » defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators.« less
NASA Astrophysics Data System (ADS)
Hubert, Maxime; Pacureanu, Alexandra; Guilloud, Cyril; Yang, Yang; da Silva, Julio C.; Laurencin, Jerome; Lefebvre-Joud, Florence; Cloetens, Peter
2018-05-01
In X-ray tomography, ring-shaped artifacts present in the reconstructed slices are an inherent problem degrading the global image quality and hindering the extraction of quantitative information. To overcome this issue, we propose a strategy for suppression of ring artifacts originating from the coherent mixing of the incident wave and the object. We discuss the limits of validity of the empty beam correction in the framework of a simple formalism. We then deduce a correction method based on two-dimensional random sample displacement, with minimal cost in terms of spatial resolution, acquisition, and processing time. The method is demonstrated on bone tissue and on a hydrogen electrode of a ceramic-metallic solid oxide cell. Compared to the standard empty beam correction, we obtain high quality nanotomography images revealing detailed object features. The resulting absence of artifacts allows straightforward segmentation and posterior quantification of the data.
Focal depth measurement of scanning helium ion microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp; Itoh, Hiroshi; Wang, Chunmei
2014-07-14
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at differentmore » focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.« less
LP01 to LP11 mode convertor based on side-polished small-core single-mode fiber
NASA Astrophysics Data System (ADS)
Liu, Yan; Li, Yang; Li, Wei-dong
2018-03-01
An all-fiber LP01-LP11 mode convertor based on side-polished small-core single-mode fibers (SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber (TCF) which spatially shapes the incident LP01 modes to the LP11 mode supported by the step-index few-mode fiber (FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method (BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method (FEM).
Focal depth measurement of scanning helium ion microscope
NASA Astrophysics Data System (ADS)
Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke
2014-07-01
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.
True Color Holography with Three Wavelengths
NASA Astrophysics Data System (ADS)
Swearingen, Jeremy R.
2006-12-01
Single wavelength holography provides a three-dimensional snapshot of an object?s size, shape, and position relative to the holographic medium. However, single wavelength holography is limited because it does not preserve the integrity of the original object?s color. When the hologram is played back, the object in the hologram will appear to be the color of the wavelength used to record the hologram. This can be remedied by employing multiple wavelengths, namely three: red, blue, and green as to create a ?pseudo white? laser beam. To achieve this pseudo white beam, the red, blue, and green lasers must be merged with the appropriate dichroic filters and passed through the same spatial filter to expose the hologram as if the light was all coming from the same source. I will discuss the setup used to record these ?true color? holograms and the difficulties in developing them.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-09
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-01-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2015-01-01
Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
NASA Astrophysics Data System (ADS)
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Spatially oriented plasmonic ‘nanograter’ structures
Liu, Zhe; Cui, Ajuan; Gong, Zhijie; Li, Hongqiang; Xia, Xiaoxiang; Shen, Tiehan H.; Li, Junjie; Yang, Haifang; Li, Wuxia; Gu, Changzhi
2016-01-01
One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented “Nanograter” structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm–14 μm) by the spatial orientation (0°–180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits. PMID:27357610
Kang, Minjung; Han, Heung Nam; Kim, Cheolhee
2018-04-23
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.
Kang, Minjung; Han, Heung Nam
2018-01-01
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630
Generation of hollow Gaussian beams by spatial filtering
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Zhao, Haifa; Liu, Jianlong; Lin, Jie; Ashfaq Ahmad, Muhammad; Liu, Shutian
2007-08-01
We demonstrate that hollow Gaussian beams can be obtained from Fourier transform of the differentials of a Gaussian beam, and thus they can be generated by spatial filtering in the Fourier domain with spatial filters that consist of binomial combinations of even-order Hermite polynomials. A typical 4f optical system and a Michelson interferometer type system are proposed to implement the proposed scheme. Numerical results have proved the validity and effectiveness of this method. Furthermore, other polynomial Gaussian beams can also be generated by using this scheme. This approach is simple and may find significant applications in generating the dark hollow beams for nanophotonic technology.
Generation of hollow Gaussian beams by spatial filtering.
Liu, Zhengjun; Zhao, Haifa; Liu, Jianlong; Lin, Jie; Ahmad, Muhammad Ashfaq; Liu, Shutian
2007-08-01
We demonstrate that hollow Gaussian beams can be obtained from Fourier transform of the differentials of a Gaussian beam, and thus they can be generated by spatial filtering in the Fourier domain with spatial filters that consist of binomial combinations of even-order Hermite polynomials. A typical 4f optical system and a Michelson interferometer type system are proposed to implement the proposed scheme. Numerical results have proved the validity and effectiveness of this method. Furthermore, other polynomial Gaussian beams can also be generated by using this scheme. This approach is simple and may find significant applications in generating the dark hollow beams for nanophotonic technology.
NASA Astrophysics Data System (ADS)
Sigurdardottir, Dorotea H.; Stearns, Jett; Glisic, Branko
2017-07-01
The deformed shape is a consequence of loading the structure and it is defined by the shape of the centroid line of the beam after deformation. The deformed shape is a universal parameter of beam-like structures. It is correlated with the curvature of the cross-section; therefore, any unusual behavior that affects the curvature is reflected through the deformed shape. Excessive deformations cause user discomfort, damage to adjacent structural members, and may ultimately lead to issues in structural safety. However, direct long-term monitoring of the deformed shape in real-life settings is challenging, and an alternative is indirect determination of the deformed shape based on curvature monitoring. The challenge of the latter is an accurate evaluation of error in the deformed shape determination, which is directly correlated with the number of sensors needed to achieve the desired accuracy. The aim of this paper is to study the deformed shape evaluated by numerical double integration of the monitored curvature distribution along the beam, and create a method to predict the associated errors and suggest the number of sensors needed to achieve the desired accuracy. The error due to the accuracy in the curvature measurement is evaluated within the scope of this work. Additionally, the error due to the numerical integration is evaluated. This error depends on the load case (i.e., the shape of the curvature diagram), the magnitude of curvature, and the density of the sensor network. The method is tested on a laboratory specimen and a real structure. In a laboratory setting, the double integration is in excellent agreement with the beam theory solution which was within the predicted error limits of the numerical integration. Consistent results are also achieved on a real structure—Streicker Bridge on Princeton University campus.
The investigation on mirrors maladjustment for RLG
NASA Astrophysics Data System (ADS)
He, Xiao-qing; Gao, Ai-hua; Hu, Shang-bin; Lu, Zhi-guo
2011-06-01
In order to meet the high demand of the entire technology processing, the error compensation method is usually used to correct them and is premised on a good understanding of error sources and the law of the errors. In this paper, based on the theories of Collins's Integral and Collins's EIKONAL Function and the MATLAB software, we simulated and calculated the spatial distribution of optical beam in the cavity of the ring laser gyro under the resonator's maladjustment caused by the technology processing. From the simulation results, we can get that to the small-gain lasers, the same amount of disorders in the different structures have different effects on the spatial distribution of the beam, and the structures using the spherical mirrors relatively have the small impact on the beam; under the same disorder in the same cavity shape, the signal light and the calibration light which are respectively detected from the mirror M1 and M4 are different; under the same structures, different mirrors with the same amount of disorder will cause the different beat frequency difference; because of the disorders, the spot centers of clockwise and counterclockwise waves happen shift and will seriously affect the normal operation of the laser gyro if the imbalance reaches a certain degree. This work has a guiding role in the mirror adjustment of the laser gyros' technology processing, and has a reference value to the survival rate of the laser gyros and the improvement of measurement accuracy.
Transmission beam characteristics of a Risso's dolphin (Grampus griseus).
Smith, Adam B; Kloepper, Laura N; Yang, Wei-Cheng; Huang, Wan-Hsiu; Jen, I-Fan; Rideout, Brendan P; Nachtigall, Paul E
2016-01-01
The echolocation system of the Risso's dolphin (Grampus griseus) remains poorly studied compared to other odontocete species. In this study, echolocation signals were recorded from a stationary Risso's dolphin with an array of 16 hydrophones and the two-dimensional beam shape was explored using frequency-dependent amplitude plots. Click source parameters were similar to those already described for this species. Centroid frequency of click signals increased with increasing sound pressure level, while the beamwidth decreased with increasing center frequency. Analysis revealed primarily single-lobed, and occasionally vertically dual-lobed, beam shapes. Overall beam directivity was found to be greater than that of the harbor porpoise, bottlenose dolphin, and a false killer whale. The relationship between frequency content, beam directivity, and head size for this Risso's dolphin deviated from the trend described for other species. These are the first reported measurements of echolocation beam shape and directivity in G. griseus.
Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Das, Abhijit; Boruah, Bosanta R.
2014-04-01
In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.
Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H
2016-11-22
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface
Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.
2016-01-01
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053
Effects of beam irregularity on uniform scanning
NASA Astrophysics Data System (ADS)
Kim, Chang Hyeuk; Jang, Sea duk; Yang, Tae-Keun
2016-09-01
An active scanning beam delivery method has many advantages in particle beam applications. For the beam is to be successfully delivered to the target volume by using the active scanning technique, the dose uniformity must be considered and should be at least 2.5% in the case of therapy application. During beam irradiation, many beam parameters affect the 2-dimensional uniformity at the target layer. A basic assumption in the beam irradiation planning stage is that the shape of the beam is symmetric and follows a Gaussian distribution. In this study, a pure Gaussian-shaped beam distribution was distorted by adding parasitic Gaussian distribution. An appropriate uniform scanning condition was deduced by using a quantitative analysis based on the gamma value of the distorted beam and 2-dimensional uniformities.
Graphene Oxide: A Perfect Material for Spatial Light Modulation Based on Plasma Channels
Tan, Chao; Wu, Xinghua; Wang, Qinkai; Tang, Pinghua; Shi, Xiaohui; Zhan, Shiping; Xi, Zaifang; Fu, Xiquan
2017-01-01
The graphene oxide (GO) is successfully prepared from a purified natural graphite through a pressurized oxidation method. We experimentally demonstrate that GO as an optical media can be used for spatial light modulation based on plasma channels induced by femtosecond pulses. The modulated beam exhibits good propagation properties in free space. It is easy to realize the spatial modulation on the probe beam at a high concentration of GO dispersion solutions, high power and smaller pulse width of the pump beam. We also find that the spatial modulation on the probe beam can be conveniently adjusted through the power and pulse width of pump lasers, dispersion solution concentration. PMID:28772712
Apparatus for direct-to-digital spatially-heterodyned holography
Thomas, Clarence E.; Hanson, Gregory R.
2006-12-12
An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.
End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.
Lin, Di; Andrew Clarkson, W
2017-08-01
A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-14
The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less
Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi
2015-11-01
In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc.
Faster processing of multiple spatially-heterodyned direct to digital holograms
Hanson, Gregory R.; Bingham, Philip R.
2006-10-03
Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
Faster processing of multiple spatially-heterodyned direct to digital holograms
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN
2008-09-09
Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
Numerical analysis of biosonar beamforming mechanisms and strategies in bats.
Müller, Rolf
2010-09-01
Beamforming is critical to the function of most sonar systems. The conspicuous noseleaf and pinna shapes in bats suggest that beamforming mechanisms based on diffraction of the outgoing and incoming ultrasonic waves play a major role in bat biosonar. Numerical methods can be used to investigate the relationships between baffle geometry, acoustic mechanisms, and resulting beampatterns. Key advantages of numerical approaches are: efficient, high-resolution estimation of beampatterns, spatially dense predictions of near-field amplitudes, and the malleability of the underlying shape representations. A numerical approach that combines near-field predictions based on a finite-element formulation for harmonic solutions to the Helmholtz equation with a free-field projection based on the Kirchhoff integral to obtain estimates of the far-field beampattern is reviewed. This method has been used to predict physical beamforming mechanisms such as frequency-dependent beamforming with half-open resonance cavities in the noseleaf of horseshoe bats and beam narrowing through extension of the pinna aperture with skin folds in false vampire bats. The fine structure of biosonar beampatterns is discussed for the case of the Chinese noctule and methods for assessing the spatial information conveyed by beampatterns are demonstrated for the brown long-eared bat.
Visualization of subcutaneous insulin injections by x-ray computed tomography
NASA Astrophysics Data System (ADS)
Thomsen, M.; Poulsen, M.; Bech, M.; Velroyen, A.; Herzen, J.; Beckmann, F.; Feidenhans'l, R.; Pfeiffer, F.
2012-11-01
We report how the three-dimensional structure of subcutaneous injections of soluble insulin can be visualized by x-ray computed tomography using an iodine based contrast agent. The injections investigated are performed ex vivo in porcine adipose tissue. Full tomography scans carried out at a laboratory x-ray source with a total acquisition time of about 1 min yield CT-images with an effective pixel size of 109 × 109 μm2. The depots are segmented using a modified Chan-Vese algorithm and we are able to observe differences in the shape of the injection depot and the position of the depot in the skin among equally performed injections. To overcome the beam hardening artefacts, which affect the quantitative prediction of the volume injected, we additionally present results concerning the visualization of two injections using synchrotron radiation. The spatial concentration distribution of iodine is calculated to show the dilution of the insulin drug inside the depot. Characterisation of the shape of the depot and the spatial concentration profile of the injected fluid is important knowledge when improving the clinical formulation of an insulin drug, the performance of injection devices and when predicting the effect of the drug through biomedical simulations.
To construct a stable and tunable optical trap in the focal region of a high numerical aperture lens
NASA Astrophysics Data System (ADS)
Kandasamy, Gokulakrishnan; Ponnan, Suresh; Sivasubramonia Pillai, T. V.; Balasundaram, Rajesh K.
2014-05-01
Based on the diffraction theory, the focusing properties of a radially polarized quadratic Bessel-Gaussian beam (QBG) with on-axis radial phase variance wavefront are investigated theoretically in the focal region of a high numerical aperture (NA) objective lens. The phase wavefront C and pupil beam parameter μ of QBG are the functions of the radial coordinate. The detailed numerical calculation of the focusing property of a QBG beam is presented. The numerical calculation shows that the beam parameter μ and phase parameter C have greater effect on the total electric field intensity distribution. It is observed that under the condition of different μ, evolution principle of focal pattern differs very remarkably on increasing C. Also, some different focal shapes may appear, including rhombic shape, quadrangular shape, two-spherical crust focus shape, two-peak shape, one dark hollow focus, two dark hollow focuses pattern, and triangle dark hollow focus, which find wide optical applications such as optical trapping and nanopatterning.
Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators
NASA Astrophysics Data System (ADS)
Mironov, S. Yu; Andrianov, A. V.; Gacheva, E. I.; Zelenogorskii, V. V.; Potemkin, A. K.; Khazanov, E. A.; Boonpornprasert, P.; Gross, M.; Good, J.; Isaev, I.; Kalantaryan, D.; Kozak, T.; Krasilnikov, M.; Qian, H.; Li, X.; Lishilin, O.; Melkumyan, D.; Oppelt, A.; Renier, Y.; Rublack, T.; Felber, M.; Huck, H.; Chen, Y.; Stephan, F.
2017-10-01
Methods for the spatio-temporal shaping of photocathode laser pulses for generating high brightness electron beams in modern linear accelerators are discussed. The possibility of forming triangular laser pulses and quasi-ellipsoidal structures is analyzed. The proposed setup for generating shaped laser pulses was realised at the Institute of Applied Physics (IAP) of the Russian Academy of Sciences (RAS). Currently, a prototype of the pulse-shaping laser system is installed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Preliminary experiments on electron beam generation using ultraviolet laser pulses from this system were carried out at PITZ, in which electron bunches with a 0.5-nC charge and a transverse normalized emittance of 1.1 mm mrad were obtained. A new scheme for the three-dimensional shaping of laser beams using a volume Bragg profiled grating is proposed at IAP RAS and is currently being tested for further electron beam generation experiments at the PITZ photoinjector.
TU-CD-207-10: Dedicated Cone-Beam Breast CT: Design of a 3-D Beam-Shaping Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedantham, S; Shi, L; Karellas, A
2015-06-15
Purpose: To design a 3 -D beam-shaping filter for cone-beam breast CT for equalizing x-ray photon fluence incident on the detector along both fan and cone angle directions. Methods: The 3-D beam-shaping filter was designed as the sum of two filters: a bow-tie filter assuming cylindrical breast and a 3D difference filter equivalent to the difference in projected thickness between the cylinder and the real breast. Both filters were designed with breast-equivalent material and converted to Al for the targeted x-ray spectrum. The bow-tie was designed for the largest diameter cylindrical breast by determining the fan-angle dependent path-length and themore » filter thickness needed to equalize the fluence. A total of 23,760 projections (180 projections of 132 binary breast CT volumes) were averaged, scaled for the largest breast, and subtracted from the projection of the largest diameter cylindrical breast to provide the 3D difference filter. The 3 -D beam shaping filter was obtained by summing the two filters. Numerical simulations with semi-ellipsoidal breasts of 10–18 cm diameter (chest-wall to nipple length=0.75 x diameter) were conducted to evaluate beam equalization. Results: The proposed 3-D beam-shaping filter showed a 140% -300% improvement in equalizing the photon fluence along the chest-wall to nipple (cone-angle) direction compared to a bow-tie filter. The improvement over bow-tie filter was larger for breasts with longer chest-wall to nipple length. Along the radial (fan-angle) direction, the performance of the 3-D beam shaping filter was marginally better than the bow-tie filter, with 4%-10% improvement in equalizing the photon fluence. For a ray traversing the chest-wall diameter of the breast, the filter transmission ratio was >0.95. Conclusion: The 3-D beam shaping filter provided substantial advantage over bow-tie filter in equalizing the photon fluence along the cone-angle direction. In conjunction with a 2-axis positioner, the filter can accommodate breasts of varying dimensions and chest-wall inclusion. Supported in part by NIH R01 CA128906 and R21 CA134128. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less
Beam masking to reduce cyclic error in beam launcher of interferometer
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Bell, Raymond Mark (Inventor); Dutta, Kalyan (Inventor)
2005-01-01
Embodiments of the present invention are directed to reducing cyclic error in the beam launcher of an interferometer. In one embodiment, an interferometry apparatus comprises a reference beam directed along a reference path, and a measurement beam spatially separated from the reference beam and being directed along a measurement path contacting a measurement object. The reference beam and the measurement beam have a single frequency. At least a portion of the reference beam and at least a portion of the measurement beam overlapping along a common path. One or more masks are disposed in the common path or in the reference path and the measurement path to spatially isolate the reference beam and the measurement beam from one another.
Learn, R; Feigenbaum, E
2016-06-01
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Learn, R.; Feigenbaum, E.
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
Learn, R.; Feigenbaum, E.
2016-05-27
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
New vistas in refractive laser beam shaping with an analytic design approach
NASA Astrophysics Data System (ADS)
Duerr, Fabian; Thienpont, Hugo
2014-05-01
Many commercial, medical and scientific applications of the laser have been developed since its invention. Some of these applications require a specific beam irradiance distribution to ensure optimal performance. Often, it is possible to apply geometrical methods to design laser beam shapers. This common design approach is based on the ray mapping between the input plane and the output beam. Geometric ray mapping designs with two plano-aspheric lenses have been thoroughly studied in the past. Even though analytic expressions for various ray mapping functions do exist, the surface profiles of the lenses are still calculated numerically. In this work, we present an alternative novel design approach that allows direct calculation of the rotational symmetric lens profiles described by analytic functions. Starting from the example of a basic beam expander, a set of functional differential equations is derived from Fermat's principle. This formalism allows calculating the exact lens profiles described by Taylor series coefficients up to very high orders. To demonstrate the versatility of this new approach, two further cases are solved: a Gaussian to at-top irradiance beam shaping system, and a beam shaping system that generates a more complex dark-hollow Gaussian (donut-like) irradiance profile with zero intensity in the on-axis region. The presented ray tracing results confirm the high accuracy of all calculated solutions and indicate the potential of this design approach for refractive beam shaping applications.
Shaping the beam profile of a partially coherent beam by a phase aperture
NASA Astrophysics Data System (ADS)
Wu, Gaofeng; Cai, Yangjian; Chen, Jun
2011-08-01
By use of a tensor method, an analytical formula for a partially coherent Gaussian Schell-model (GSM) beam truncated by a circular phase aperture propagating through a paraxial ABCD optical system is derived. The propagation properties of a GSM beam truncated by a circular phase aperture in free space are studied numerically. It is found that the circular phase aperture can be used to shape the beam profile of a GSM beam and generate partially coherent dark hollow or flat-topped beam, which is useful in many applications, e.g., optical trapping, free-space optical communication, and material thermal processing. The propagation factor of a GSM beam truncated by a circular phase aperture is also analyzed.
Spatially varying geometric phase in classically entangled vector beams of light
NASA Astrophysics Data System (ADS)
King-Smith, Andrew; Leary, Cody
We present theoretical results describing a spatially varying geometric (Pancharatnam) phase present in vector modes of light, in which the polarization and transverse spatial mode degrees of freedom exhibit classical entanglement. We propose an experimental setup capable of characterizing this effect, in which a vector mode propagates through a Mach-Zehnder interferometer with a birefringent phase retarder present in one arm. Since the polarization state of a classically entangled light beam exhibits spatial variation across the transverse mode profile, the phase retarder gives rise to a spatially varying geometric phase in the beam propagating through it. When recombined with the reference beam from the other interferometer arm, the presence of the geometric phase is exhibited in the resulting interference pattern. We acknowledge funding from the Research Corporation for Science Advancement by means of a Cottrell College Science Award.
Wu, Chensheng; Ko, Jonathan; Rzasa, John R; Paulson, Daniel A; Davis, Christopher C
2018-03-20
We find that ideas in optical image encryption can be very useful for adaptive optics in achieving simultaneous phase and amplitude shaping of a laser beam. An adaptive optics system with simultaneous phase and amplitude shaping ability is very desirable for atmospheric turbulence compensation. Atmospheric turbulence-induced beam distortions can jeopardize the effectiveness of optical power delivery for directed-energy systems and optical information delivery for free-space optical communication systems. In this paper, a prototype adaptive optics system is proposed based on a famous image encryption structure. The major change is to replace the two random phase plates at the input plane and Fourier plane of the encryption system, respectively, with two deformable mirrors that perform on-demand phase modulations. A Gaussian beam is used as an input to replace the conventional image input. We show through theory, simulation, and experiments that the slightly modified image encryption system can be used to achieve arbitrary phase and amplitude beam shaping within the limits of stroke range and influence function of the deformable mirrors. In application, the proposed technique can be used to perform mode conversion between optical beams, generate structured light signals for imaging and scanning, and compensate atmospheric turbulence-induced phase and amplitude beam distortions.
Resonantly diode-pumped eye-safe Er:YAG laser with fiber-shaped crystal
NASA Astrophysics Data System (ADS)
Němec, Michal; Šulc, Jan; Hlinomaz, Kryštof; Jelínková, Helena; Nejezchleb, Karel; Čech, Miroslav
2018-02-01
Solid-state eye-safe lasers are interesting sources for various applications, such as lidar, remote sensing, and ranging. A resonantly diode-pumped Er:YAG laser could be one of them allowing to reach a tunable laser emission in 1.6 μm spectral region. To overcome low pump absorption and poor pumping beam quality generated by commercially available laser diode, an active medium could be formed to long and thin laser rod guiding pumping radiation. Such an effective cooling during a high power pumping, which is a "crystal-fiber" benefit, may be useful for "standard" crystal active medium. The main goal of this work was to investigate the laser characteristics of new developed Er:YAG crystal with a special shape for diode-pumping. Er:YAG fiber-shape crystal with square cross-section (1x1mm) and 40mm in length was doped by 0.1% Er3+ ions. All sides of this crystal were polished and in addition the end-faces of it were antireflection coatings for the wavelength 1470 and 1645 nm. As a pump system, a fiber coupled laser diode (f = 10 Hz, t = 10 ms) emitting radiation at 1465 nm wavelength was used. Er:YAG fiber-shape crystal was placed onto a copper holder in the 85 mm long plan-concave resonator consisting of a pump flat mirror and output curved (r = 150 mm) coupler with a reflectivity of 96 % @ 1645 nm. The dependence of the output peak power on absorbed pump power was investigated and the maximum 0.8 W was obtained. The corresponding slope efficiency was 14.5 %. The emitting wavelength was equaled to 1645 nm (4 nm linewidth, FWHM). The spatial beam structure was close to the Gaussian mode.
Spatial properties of odd and even low order harmonics generated in gas.
Lambert, G; Andreev, A; Gautier, J; Giannessi, L; Malka, V; Petralia, A; Sebban, S; Stremoukhov, S; Tissandier, F; Vodungbo, B; Zeitoun, Ph
2015-01-14
High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.
Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures.
Gao, Yanqi; Zhu, Baoqiang; Liu, Daizhong; Lin, Zunqi
2009-07-20
A general model for different apertures and flat-topped laser beams based on the multi-Gaussian function is developed. The general analytical expression for the propagation of a flat-topped beam through a general double-lens system with apertures is derived using the above model. Then, the propagation characteristics of the flat-topped beam through a spatial filter are investigated by using a simplified analytical expression. Based on the Fluence beam contrast and the Fill factor, the influences of a pinhole size on the propagation of the flat-topped multi-Gaussian beam (FMGB) through the spatial filter are illustrated. An analytical expression for the propagation of the FMGB through the spatial filter with a misaligned pinhole is presented, and the influences of the pinhole offset are evaluated.
Laser beam-profile impression and target thickness impact on laser-accelerated protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schollmeier, M.; Harres, K.; Nuernberg, F.
Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained duringmore » the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.« less
Beam shaping for cosmetic hair removal
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.; Tuttle, Tracie
2007-09-01
Beam shaping has the potential to provide comfort to people who require or seek laser based cosmetic skin procedures. Of immediate interest is the procedure of aesthetic hair removal. Hair removal is performed using a variety of wavelengths from 480 to 1200 nm by means of filtered Xenon flash lamps (pulsed light) or 810 nm diode lasers. These wavelengths are considered the most efficient means available for hair removal applications, but current systems use simple reflector designs and plane filter windows to direct the light to the surface being exposed. Laser hair removal is achieved when these wavelengths at sufficient energy levels are applied to the epidermis. The laser energy is absorbed by the melanin (pigment) in the hair and hair follicle which in turn is transformed into heat. This heat creates the coagulation process, which causes the removal of the hair and prevents growth of new hair [1]. This paper outlines a technique of beam shaping that can be applied to a non-contact based hair removal system. Several features of the beam shaping technique including beam uniformity and heat dispersion across its operational treatment area will be analyzed. A beam shaper design and its fundamental testing will be discussed in detail.
Modeling and optimization of shape memory-superelastic antagonistic beam assembly
NASA Astrophysics Data System (ADS)
Tabesh, Majid; Elahinia, Mohammad H.
2010-04-01
Superelasticity (SE), shape memory effect (SM), high damping capacity, corrosion resistance, and biocompatibility are the properties of NiTi that makes the alloy ideal for biomedical devices. In this work, the 1D model developed by Brinson was modified to capture the shape memory effect, superelasticity and hysteresis behavior, as well as partial transformation in both positive and negative directions. This model was combined with the Euler beam equation which, by approximation, considers 1D compression and tension stress-strain relationships in different layers of a 3D beam assembly cross-section. A shape memory-superelastic NiTi antagonistic beam assembly was simulated with this model. This wire-tube assembly is designed to enhance the performance of the pedicle screws in osteoporotic bones. For the purpose of this study, an objective design is pursued aiming at optimizing the dimensions and initial configurations of the SMA wire-tube assembly.
Removal of central obscuration and spider arm effects with beam-shaping coronagraphy
NASA Astrophysics Data System (ADS)
Abe, L.; Murakami, N.; Nishikawa, J.; Tamura, M.
2006-05-01
This paper describes a method for removing the effect of a centrally obscured aperture with additional spider arms in arbitrary geometrical configurations. The proposed method is based on a two-stage process where the light beam is first shaped to remove the central obscuration and spider arms, in order to feed a second, highly efficient coronagraph. The beam-shaping stage is a combination of a diffraction mask in the first focal plane and a complex amplitude filter located in the conjugate pupil. This paper specifically describes the case of using Lyot occulting masks and circular phase-shifting masks as diffracting components. The basic principle of the method is given along with an analytical description and numerical simulations. Substantial improvement in the performance of high-contrast coronagraphs can be obtained with this method, even if the beam-shaping filter is not perfectly manufactured.
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam
NASA Astrophysics Data System (ADS)
Lin, Han; Gu, Min
2013-02-01
Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.
LLE Review Quarterly Report (January-March 1999). Volume 78
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, Sean P.
1999-03-01
This volume of the LLE Review, covering the period January-March 1999, features two articles concerning issues relevant to 2-D SSD laser-beam smoothing on OMEGA. In the first article J. D. Zuegel and J. A. Marozas present the design of an efficient, bulk phase modulator operating at approximately 10.5 GHz, which can produce substantial phase-modulated bandwidth with modest microwave drive power. This modulator is the cornerstone of the 1-THz UV bandwidth operation planned for OMEGA this year. In the second article J. A. Marozas and J. H. Kelly describe a recently developed code -- Waasese -- that simulates the collective behaviormore » of the optical components in the SSD driver line. The measurable signatures predicted by the code greatly enhance the diagnostic capability of the SSD driver line. Other articles in this volume are titled: Hollow-Shell Implosion Studies on the 60-Beam, UC OMEGA Laser System; Simultaneous Measurements of Fuel Areal Density, Shell Areal Density, and Fuel Temperature in D 3He-Filled Imploding Capsules; The Design of Optical Pulse Shapes with an Aperture-Coupled-Stripline Pulse-Shaping System; Measurement Technique for Characterization of Rapidly Time- and Frequency-Varying Electronic Devices; and, Damage to Fused-Silica, Spatial-Filter Lenses on the OMEGA Laser System.« less
Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene.
Knowles, Jeffrey M; Barchi, Jonathan R; Gaudette, Jason E; Simmons, James A
2015-08-01
Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80-100 cm wide and 2-4 m long. Using the two-choice Y-shaped paradigm to compensate for left-right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18-35 dB weaker than overlapping echoes from surrounding chains.
Todoroki, Shin-ichi
2008-01-01
Background Fiber fuse is a process of optical fiber destruction under the action of laser radiation, found 20 years ago. Once initiated, opical discharge runs along the fiber core region to the light source and leaves periodic voids whose shape looks like a bullet pointing the direction of laser beam. The relation between damage pattern and propagation mode of optical discharge is still unclear even after the first in situ observation three years ago. Methodology/Principal Findings Fiber fuse propagation over hetero-core splice point (Corning SMF-28e and HI 1060) was observed in situ. Sequential photographs obtained at intervals of 2.78 µs recorded a periodic emission at the tail of an optical discharge pumped by 1070 nm and 9 W light. The signal stopped when the discharge ran over the splice point. The corresponding damage pattern left in the fiber core region included a segment free of periodicity. Conclusions The spatial modulation pattern of the light emission agreed with the void train formed over the hetero-core splice point. Some segments included a bullet-shaped void pointing in the opposite direction to the laser beam propagation although the sequential photographs did not reveal any directional change in the optical discharge propagation. PMID:18815621
Impact of 4D image quality on the accuracy of target definition.
Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten
2016-03-01
Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.
A feasibility study of the Tehran research reactor as a neutron source for BNCT.
Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi
2014-08-01
Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
General shape optimization capability
NASA Technical Reports Server (NTRS)
Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson
1991-01-01
A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.
2015-11-01
Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.
Kloepper, Laura N; Nachtigall, Paul E; Quintos, Christopher; Vlachos, Stephanie A
2012-01-01
Recent studies indicate some odontocetes may produce echolocation beams with a dual-lobed vertical structure. The shape of the odontocete echolocation beam was further investigated in a false killer whale performing an echolocation discrimination task. Clicks were recorded with an array of 16 hydrophones and frequency-dependent amplitude plots were constructed to assess beam shape. The majority of the echolocation clicks were single-lobed in structure with most energy located between 20 and 80 kHz. These data indicate the false killer whale does not produce a dual-lobed structure, as has been shown in bottlenose dolphins, which may be a function of lowered frequencies in the emitted signal due to hearing loss. © 2012 Acoustical Society of America.
Beam-Forming Concentrating Solar Thermal Array Power Systems
NASA Technical Reports Server (NTRS)
Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)
2016-01-01
The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.
McLeod, Euan; Arnold, Craig B
2008-07-10
Current methods for generating Bessel beams are limited to fixed beam sizes or, in the case of conventional adaptive optics, relatively long switching times between beam shapes. We analyze the multiscale Bessel beams created using an alternative rapidly switchable device: a tunable acoustic gradient index (TAG) lens. The shape of the beams and their nondiffracting, self-healing characteristics are studied experimentally and explained theoretically using both geometric and Fourier optics. By adjusting the electrical driving signal, we can tune the ring spacings, the size of the central spot, and the working distance of the lens. The results presented here will enable researchers to employ dynamic Bessel beams generated by TAG lenses.
Generation of tunable radially polarized array beams by controllable coherence
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Jipeng; Zhu, Shijun; Li, Zhenhua
2017-05-01
In this paper, a new method for converting a single radial polarization beam into an arbitrary radially polarized array (RPA) beam such as a radial or rectangular symmetry array in the focal plane by modulating a periodic correlation structure is introduced. The realizability conditions for such source and the beam condition for radiation generated by such source are derived. It is illustrated that both the amplitude and the polarization are controllable by means of initial correlation structure and coherence parameter. Furthermore, by designing the source correlation structure, a tunable NUST-shaped RPA beam is demonstrated, which can find widespread applications in micro-nano engineering. Such a method for generation of arbitrary vector array beams is useful in beam shaping and optical tweezers.
Resolving runaway electron distributions in space, time, and energy
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.
2018-05-01
Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.
RF pulse shape control in the compact linear collider test facility
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Corsini, Roberto
2018-07-01
The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.
1988-01-01
Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.
Leveraging Internal Viscous Flow to Extend the Capabilities of Beam-Shaped Soft Robotic Actuators.
Matia, Yoav; Elimelech, Tsah; Gat, Amir D
2017-06-01
Elastic deformation of beam-shaped structures due to embedded fluidic networks (EFNs) is mainly studied in the context of soft actuators and soft robotic applications. Currently, the effects of viscosity are not examined in such configurations. In this work, we introduce an internal viscous flow and present the extended range of actuation modes enabled by viscosity. We analyze the interaction between elastic deflection of a slender beam and viscous flow in a long serpentine channel embedded within the beam. The embedded network is positioned asymmetrically with regard to the neutral plane and thus pressure within the channel creates a local moment deforming the beam. Under assumptions of creeping flow and small deflections, we obtain a fourth-order integro-differential equation governing the time-dependent deflection field. This relation enables the design of complex time-varying deformation patterns of beams with EFNs. Leveraging viscosity allows to extend the capabilities of beam-shaped actuators such as creation of inertia-like standing and moving wave solutions in configurations with negligible inertia and limiting deformation to a small section of the actuator. The results are illustrated experimentally.
SU-E-T-146: Beam Energy Spread Estimate Based On Bragg Peak Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anferov, V; Derenchuk, V; Moore, R
2015-06-15
Purpose: ProNova is installing and commissioning a two room proton therapy system in Knoxville, TN. Beam energy out of the 230MeV cyclotron was measured on Jan 24, 2015. Cyclotron beam was delivered into a Zebra multi layered IC detector calibrated in terms of penetration range in water. The analysis of the measured Bragg peak determines penetration range in water which can be subsequently converted into proton beam energy. We extended this analysis to obtain an estimate of the beam energy spread out of the cyclotron. Methods: Using Monte Carlo simulations we established the correlation between Bragg peak shape parameters (widthmore » at 50% and 80% dose levels, distal falloff) and penetration range for a monoenergetic proton beam. For large uniform field impinging on a small area detector, we observed linear dependence of each Bragg peak parameter on beam penetration range as shown in Figure A. Then we studied how this correlation changes when the shape of Bragg peak is distorted by the beam focusing conditions. As shown in Figure B, small field size or diverging beam cause Bragg peak deformation predominantly in the proximal region. The distal shape of the renormalized Bragg peaks stays nearly constant. This excludes usage of Bragg peak width parameters for energy spread estimates. Results: The measured Bragg peaks had an average distal falloff of 4.86mm, which corresponds to an effective range of 35.5cm for a monoenergetic beam. The 32.7cm measured penetration range is 2.8cm less. Passage of a 230MeV proton beam through a 2.8cm thick slab of water results in a ±0.56MeV energy spread. As a final check, we confirmed agreement between shapes of the measured Bragg peak and one generated by Monte-Carlo code for proton beam with 0.56 MeV energy spread. Conclusion: Proton beam energy spread can be estimated using Bragg peak analysis.« less
Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong
2018-01-01
Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356
Numerical examination of like-honeycomb structures
NASA Astrophysics Data System (ADS)
John, Małgorzata; John, Antoni; Skarka, Wojciech
2018-01-01
In the paper based on the analogy with the biological tissue of bones, it was decided to examine more homogenous structure and also a heterogeneous structure too. Here, a new approach is proposed based on results from literature obtained using topology optimization 2D and 3D structures like beam, girder and cantilever. Proposed model of structure is similar to spatial trusses with honeycomb-shape porous. Parameters varied not only uniformly throughout the volume of the sample, but also be modified depending on various factors. They underwent a change in cell dimensions, among other things, the thickness of the wall. The obtained results were compared with those obtained previously for homogeneous samples.
Numerical model for an epoxy beam reinforced with superelastic shape memory alloy wires
NASA Astrophysics Data System (ADS)
Viet, N. V.; Zaki, W.; Umer, R.
2018-03-01
We present a numerical solution for a smart composite beam consisting of an epoxy matrix reinforced with unidirectional superelastic shape memory alloy (SMA) fibers with uniform circular cross section. The beam is loaded by a tip load, which is then removed resulting in shape recovery due to superelasticity of the SMA wires. The analysis is carried out considering a representative volume element (RVE) of the beam consisting of one SMA wire embedded in epoxy. The analytical model is developed for a superelastic SMA/epoxy composite beam subjected to a complete loading cycle in bending. Using the proposed model, the moment-curvature profile, martensite volume fraction variation, and axial stress are determined. The results are validated against three-dimensional finite element analysis (3D FEA) for the same conditions. The proposed work is a contribution toward better understanding of the bending behavior of superelastic SMA-reinforced composites.
Precision shape modification of nanodevices with a low-energy electron beam
Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam
2010-03-09
Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.
NASA Astrophysics Data System (ADS)
Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo
2015-03-01
Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat
2017-01-01
For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.
Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo
2004-11-01
The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.
Optimum shape control of flexible beams by piezo-electric actuators
NASA Technical Reports Server (NTRS)
Baz, A.; Poh, S.
1987-01-01
The utilization of piezoelectric actuators in controlling the static deformation and shape of flexible beams is examined. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezoelectric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing structural deformation of beams using ceramic and polymeric piezoelectric actuators bonded to the beams with a typical bonding agent. The obtained results emphasize the importance of the devised rational produce in designing beam-actuator systems with minimal elastic distortions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan
2015-09-15
We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions ofmore » moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.« less
NASA Astrophysics Data System (ADS)
Moreno, I.; Davis, J. A.
2010-06-01
We review the use of a parallel aligned nematic liquid crystal spatial light modulator as a very useful and flexible device for polarimetric and interferometric applications. The device acts as a programmable pixelated waveplate, and the encoding of a linear grating permits its use as a polarization beam splitter. When a grating with a reduced period is encoded, the diffracted beams are spatially separated and the device can be used for polarimetric analysis. On the contrary when a large period grating is displayed, the beams are not spatially separated, and they are useful to realize a common path interferometric system with polarization sensitivity. The flexibility offered by the programmability of the display allows non-conventional uses, including the analysis of light beams with structured spatial polarizations.
Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere.
Dan, Youquan; Zhang, Bin
2008-09-29
The Wigner distribution function (WDF) has been used to study the beam propagation factor (M(2)-factor) for partially coherent flat-topped (PCFT) beams with circular symmetry in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle and the definition of the WDF, an expression for the WDF of PCFT beams in turbulence has been given. By use of the second-order moments of the WDF, the analytical formulas for the root-mean-square (rms) spatial width, the rms angular width, and the M(2)-factor of PCFT beams in turbulence have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The rms angular width and the M(2)-factor of PCFT beams in turbulence have been discussed with numerical examples. It can be shown that the M(2)-factor of PCFT beams in turbulence depends on the beam order, degree of global coherence of the source, waist width, wavelength, spatial power spectrum of the refractive index fluctuations, and propagation distance.
The Hohlraum Drive Campaign on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Moody, John D.
2013-10-01
The Hohlraum drive effort on the National Ignition Facility (NIF) laser has three primary goals: 1) improve hohlraum performance by improving laser beam propagation, reducing backscatter from laser plasma interactions (LPI), controlling x-ray and electron preheat, and modifying the x-ray drive spectrum; 2) improve understanding of crossbeam energy transfer physics to better evaluate this as a symmetry tuning method; and 3) improve modeling in order to find optimum designs. Our experimental strategy for improving performance explores the impact of significant changes to the hohlraum shape, wall material, gasfill composition, and gasfill density on integrated implosion experiments. We are investigating the performance of a rugby-shaped design that has a significantly larger diameter (7 mm) at the waist than our standard 5.75 mm diameter cylindrical-shaped hohlraum but maintains approximately the same wall area. We are also exploring changes to the gasfill composition in cylindrical hohlraums by using neopentane at room temperature to compare with our standard helium gasfill. In addition, we are also investigating higher He gasfill density (1.6 mg/cc vs nominal 0.96 mg/cc) and increased x-ray drive very early in the pulse. Besides these integrated experiments, our strategy includes experiments testing separate aspects of the hohlraum physics. These include time-resolved and time-integrated measurements of cross-beam transfer rates and laser-beam spatial power distribution at early and late times using modified targets. Non-local thermal equilibrium modeling and heat transport relevant to ignition experiments are being studied using sphere targets on the Omega laser system. These simpler targets provide benchmarks for improving our modeling tools. This talk will summarize the results of the Hohlraum Drive campaign and discuss future directions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2-344.
Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine
2005-01-01
Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element
Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars
NASA Astrophysics Data System (ADS)
Bajoria, Kamal M.; Kaduskar, Shreya S.
2017-04-01
In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.
Detecting photons in the dark region of Laguerre-Gauss beams.
Klimov, Vasily; Bloch, Daniel; Ducloy, Martial; Rios Leite, Jose R
2009-06-08
We show that a photon detector, sensitive to the magnetic field or to the gradient of electric field, can help to characterize the quantum properties of spatially-dependent optical fields. We discuss the excitation of an atom through magnetic dipole or electric quadrupole transitions with the photons of a Bessel beam or a Laguerre-Gauss (LG) beams. These spiral beams are shown to be not true hollow beams, due to the presence of magnetic fields and gradients of electric fields on beam axis. This approach paves the way to an analysis at the quantum level of the propagating light beams having a complicated spatial structure.
Optimization of shape control of a cantilever beam using dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Liu, Chong; Mao, Boyong; Huang, Gangting; Wu, Qichen; Xie, Shilin; Xu, Minglong
2018-05-01
Dielectric elastomer (DE) is a kind of smart soft material that has many advantages such as large deformation, fast response, lightweight and easy synthesis. These features make dielectric elastomer a suitable material for actuators. This article focuses on the shape control of a cantilever beam by using dielectric elastomer actuators. The shape control equation in finite element formulation of the cantilever beam partially covered with dielectric elastomer actuators is derived based on the constitutive equation of dielectric elastomer material by using Hamilton principle. The actuating forces produced by dielectric elastomer actuators depend on the number of layers, the position and the actuation voltage of dielectric elastomer actuators. First, effects of these factors on the shape control accuracy when one pair or multiple pairs of actuators are employed are simulated, respectively. The simulation results demonstrate that increasing the number of actuators or the number of layers can improve the control effect and reduce the actuation voltages effectively. Second, to achieve the optimal shape control effect, the position of the actuators and the drive voltages are all determined using a genetic algorithm. The robustness of the genetic algorithm is analyzed. Moreover, the implications of using one pair and multiple pairs of actuators to drive the cantilever beam to the expected shape are investigated. The results demonstrate that a small number of actuators with optimal placement and optimal voltage values can achieve the shape control of the beam effectively. Finally, a preliminary experimental verification of the control effect is carried out, which shows the correctness of the theoretical method.
Beam profiles measured with thermoluminescent dosimeters
NASA Technical Reports Server (NTRS)
Lucks, H.; Marcowitz, S. M.; Wheeler, R. W.
1969-01-01
Beam profilometer, using thermoluminescent dosimeters, gives a quantitative and qualitative representation of the focus of an external protron beam of a synchrotron. The total number of particles in the beam, particle distribution, and the shape of the beam are determined.
Extending calibration-free force measurements to optically-trapped rod-shaped samples
Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela
2017-01-01
Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens. PMID:28220855
NASA Astrophysics Data System (ADS)
Thampy, Anand Sreekantan; Dhamodharan, Sriram Kumar
2015-02-01
An indium-doped tin oxide (ITO) and a fluorine-doped tin oxide (FTO)-based optically transparent U-shaped patch antennas are designed to resonate at 750 GHz and their performances are analyzed. Impedance bandwidth, radiation efficiency, directivity and gain of the proposed antennas are investigated. The proposed transparent antenna's characteristics are compared with the copper-based non-transparent U-shaped patch antenna, which is also designed to resonate at 750 GHz. Terahertz antennas are essential for inter-satellite communications systems to enable the adequate spatial resolution, broad bandwidth, higher data rates and highly directional beam with secured data transfer. The proposed ITO- and FTO-based transparent antennas have yielded impedance bandwidth of 9.54% and 11.49%, respectively, in the band 719-791 GHz and 714-801 GHz, respectively. The peak gain for ITO and FTO based transparent antennas is 3.35 dB and 2.26 dB at 732 GHz and 801 GHz, respectively. The proposed antennas are designed and simulated by using a finite element method based electromagnetic solver, Ansys - HFSS.
A succinct method to generate multi-type HCV beams with a spatial spiral varying retardation-plate
NASA Astrophysics Data System (ADS)
Qi, Junli; Zhang, Hui; Pan, Baoguo; Deng, Haifei; Yang, Jinhong; Shi, Bo; Wang, Hui; Du, Ang; Wang, Weihua; Li, Xiujian
2018-03-01
A simple novel and practical scheme is presented to generate high-power cylindrical vector (HCV) beams with a 36-segment spiral varying retardation-plate sandwiched between two quarter-wave plates (QWPs). Four kinds of HCV beams, such as radially polarized beam and azimuthally polarized beam, are formed by simply rotating two QWPs. A segmented spiral varying phase-plate with isotropy is used to modulate spatial phase distribution to generate in-phase HCV beams. The intensity distributions and polarizing properties of HCV beams are investigated and analyzed in detail. It is demonstrated experimentally that the system can effectively generate multi-type HCV beams with high purity up to 99%, and it can be manufactured as cylindrical vector beam converter commercially.
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
SU-F-T-336: A Quick Auto-Planning (QAP) Method for Patient Intensity Modulated Radiotherapy (IMRT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, J; Zhang, Z; Wang, J
2016-06-15
Purpose: The aim of this study is to develop a quick auto-planning system that permits fast patient IMRT planning with conformal dose to the target without manual field alignment and time-consuming dose distribution optimization. Methods: The planning target volume (PTV) of the source and the target patient were projected to the iso-center plane in certain beameye- view directions to derive the 2D projected shapes. Assuming the target interior was isotropic for each beam direction boundary analysis under polar coordinate was performed to map the source shape boundary to the target shape boundary to derive the source-to-target shape mapping function. Themore » derived shape mapping function was used to morph the source beam aperture to the target beam aperture over all segments in each beam direction. The target beam weights were re-calculated to deliver the same dose to the reference point (iso-center) as the source beam did in the source plan. The approach was tested on two rectum patients (one source patient and one target patient). Results: The IMRT planning time by QAP was 5 seconds on a laptop computer. The dose volume histograms and the dose distribution showed the target patient had the similar PTV dose coverage and OAR dose sparing with the source patient. Conclusion: The QAP system can instantly and automatically finish the IMRT planning without dose optimization.« less
Yeung, Edward S.; Chen, Guoying
1990-05-01
A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.
Characterization of plasma parameters in shaped PBX-M discharges
NASA Astrophysics Data System (ADS)
England, A. C.; Bell, R. E.; Hirshman, S. P.; Kaita, R.; Kugel, H. W.; LeBlanc, B. L.; Lee, D. K.; Okabayashi, M.; Sun, Y.-C.; Takahashi, H.
1997-09-01
The Princeton Beta Experiment-Modification (PBX-M) was run both with elliptical and with bean-shaped plasmas during the 1992 and 1993 operating periods. Two deuterium-fed neutral beams were used for auxiliary heating, and during 1992 the average power was 0741-3335/39/9/008/img13. This will be referred to as the lower neutral-beam power (LNBP) period. As many as four deuterium-fed neutral beams were used during 1993, and the average power was 0741-3335/39/9/008/img14. This will be referred to as the medium neutral-beam power (MNBP) period. The neutron source strength, Sn, showed a scaling with injected power 0741-3335/39/9/008/img15, 0741-3335/39/9/008/img16 for both the LMBP and MNBP periods. A much wider range of shaping parameters was studied during the MNBP as compared with the LNBP period. A weak positive dependence on bean shaping was observed for the LNBP, and a stronger positive dependence on shaping was observed for MNBP, viz 0741-3335/39/9/008/img17. High values of Sn were obtained in bean-shaped plasmas for the highest values of 0741-3335/39/9/008/img18 at 0741-3335/39/9/008/img19 for the LNBP. For the MNBP the highest values of Sn and stored energy were obtained at 0741-3335/39/9/008/img19, and the highest values of 0741-3335/39/9/008/img18 were obtained at 0741-3335/39/9/008/img22. The achievement of high Sn is aided by high neutral-beam power, high toroidal field, strong shaping, high electron temperature, and broad profiles. The achievement of high 0741-3335/39/9/008/img18 is aided by low toroidal field, high density, less shaping, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img24. The achievement of high 0741-3335/39/9/008/img25 is aided by strong shaping, high density, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img26. Some comparisons with the previous higher neutral-beam (HNBP) period in 1989 are also made.
Hollow Gaussian Schell-model beam and its propagation
NASA Astrophysics Data System (ADS)
Wang, Li-Gang; Wang, Li-Qin
2008-03-01
In this paper, we present a new model, hollow Gaussian Schell-model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.
Average characteristics of partially coherent electromagnetic beams.
Seshadri, S R
2000-04-01
Average characteristics of partially coherent electromagnetic beams are treated with the paraxial approximation. Azimuthally or radially polarized, azimuthally symmetric beams and linearly polarized dipolar beams are used as examples. The change in the mean squared width of the beam from its value at the location of the beam waist is found to be proportional to the square of the distance in the propagation direction. The proportionality constant is obtained in terms of the cross-spectral density as well as its spatial spectrum. The use of the cross-spectral density has advantages over the use of its spatial spectrum.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Nunley, Hayden; Marino, Alberto
2016-05-01
Quantum noise reduction (QNR) below the standard quantum limit (SQL) has been a subject of interest for the past two to three decades due to its wide range of applications in quantum metrology and quantum information processing. To date, most of the attention has focused on the study of QNR in the temporal domain. However, many areas in quantum optics, specifically in quantum imaging, could benefit from QNR not only in the temporal domain but also in the spatial domain. With the use of a high quantum efficiency electron multiplier charge coupled device (EMCCD) camera, we have observed spatial QNR below the SQL in bright narrowband twin light beams generated through a four-wave mixing (FWM) process in hot rubidium atoms. Owing to momentum conservation in this process, the twin beams are momentum correlated. This leads to spatial quantum correlations and spatial QNR. Our preliminary results show a spatial QNR of over 2 dB with respect to the SQL. Unlike previous results on spatial QNR with faint and broadband photon pairs from parametric down conversion (PDC), we demonstrate spatial QNR with spectrally and spatially narrowband bright light beams. The results obtained will be useful for atom light interaction based quantum protocols and quantum imaging. Work supported by the W.M. Keck Foundation.
Prediction on flexural strength of encased composite beam with cold-formed steel section
NASA Astrophysics Data System (ADS)
Khadavi, Tahir, M. M.
2017-11-01
A flexural strength of composite beam designed as boxed shaped section comprised of lipped C-channel of cold-formed steel (CFS) facing each other with reinforcement bars is proposed in this paper. The boxed shaped is kept restrained in position by a profiled metal decking installed on top of the beam to form a slab system. This profiled decking slab is cast by using self-compacting concrete where the concrete is in compression when load is applied to the beam. Reinforcement bars are used as shear connector between slab and CFS as beam. A numerical analysis method proposed by EC4 is used to predict the flexural strength of the proposed composite beam. It was assumed that elasto-plastic behaviour is developed in the cross -sectional of the proposed beam. The calculated predicted flexural strength of the proposed beam shows reasonable flexural strength for cold-formed composite beam.
Systems and methods of varying charged particle beam spot size
Chen, Yu-Jiuan
2014-09-02
Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.
Laser beam shaping for biomedical microscopy techniques
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei
2016-04-01
Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to be realized by an imaging optical system which can include microscope objectives and tube lenses. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in microscopy systems. Examples of real implementations and experimental results will be presented as well.
A maximum likelihood method for high resolution proton radiography/proton CT
NASA Astrophysics Data System (ADS)
Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K. N.; Beaulieu, Luc; Seco, Joao
2016-12-01
Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography’s spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm-1 to 4.53 lp cm-1 in the 200 MeV beam and from 3.49 lp cm-1 to 5.76 lp cm-1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm-1 to 5.76 lp cm-1) or conical beam (from 3.49 lp cm-1 to 5.56 lp cm-1). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm-1 for the parallel beam and from 3.03 to 5.15 lp cm-1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65 % ) in proton radiography and greatly accelerate proton computed tomography reconstruction.
A maximum likelihood method for high resolution proton radiography/proton CT.
Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao
2016-12-07
Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography's spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm -1 to 4.53 lp cm -1 in the 200 MeV beam and from 3.49 lp cm -1 to 5.76 lp cm -1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm -1 to 5.76 lp cm -1 ) or conical beam (from 3.49 lp cm -1 to 5.56 lp cm -1 ). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm -1 for the parallel beam and from 3.03 to 5.15 lp cm -1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65[Formula: see text]) in proton radiography and greatly accelerate proton computed tomography reconstruction.
Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.
Minsky, D M; Kreiner, A J
2014-06-01
Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.
Laser Beam Steering/shaping for Free Space Optical Communication
NASA Technical Reports Server (NTRS)
Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.
2004-01-01
The 2-D Optical Phased Array (OPA) antenna based on a Liquid Crystal On Silicon (LCoS) device can be considered for use in free space optical communication as an active beam controlling device. Several examples of the functionality of the device include: beam steering in the horizontal and elevation direction; high resolution wavefront compensation in a large telescope; and beam shaping with the computer generated kinoform. Various issues related to the diffraction efficiency, steering range, steering accuracy as well as the magnitude of wavefront compensation are discussed.
Piezoelectric energy harvesting from an L-shaped beam-mass structure
NASA Astrophysics Data System (ADS)
Erturk, Alper; Renno, Jamil M.; Inman, Daniel J.
2008-03-01
Cantilevered piezoelectric harvesters have been extensively considered in the energy harvesting literature. Mostly, a traditional cantilevered beam with one or more piezoceramic layers is located on a vibrating host structure. Motion of the host structure results in vibrations of the harvester beam and that yields an alternating voltage output. As an alternative to classical cantilevered beams, this paper presents a novel harvesting device; a flexible L-shaped beam-mass structure that can be tuned to have a two-to-one internal resonance to a primary resonance ω II ≅ 2ω I which is not possible for classical cantilevers). The L-shaped structure has been well investigated in the literature of nonlinear dynamics since the two-to-one internal resonance, along with the consideration of quadratic nonlinearities, may yield modal energy exchange (for excitation frequency ω≅ ω Ior the so-called saturation phenomenon (for ω≅ω II). As a part of our ongoing research on piezoelectric energy harvesting, we are investigating the possibility of improving the electrical outputs in energy harvesting by employing these features of the L-shaped structure. This paper aims to introduce the idea, describes the important features of the L-shaped harvester configuration and develops a linear distributed parameter model for predicting the electromechanically coupled response. In addition, this work proposes a direct application of the L-shaped piezoelectric energy harvester configuration for use as landing gears in unmanned air vehicle applications.
Spatial filter system as an optical relay line
Hunt, John T.; Renard, Paul A.
1979-01-01
A system consisting of a set of spatial filters that are used to optically relay a laser beam from one position to a downstream position with minimal nonlinear phase distortion and beam intensity variation. The use of the device will result in a reduction of deleterious beam self-focusing and produce a significant increase in neutron yield from the implosion of targets caused by their irradiation with multi-beam glass laser systems.
An online, energy-resolving beam profile detector for laser-driven proton beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzkes, J.; Rehwald, M.; Obst, L.
In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energymore » can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.« less
An online, energy-resolving beam profile detector for laser-driven proton beams.
Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U
2016-08-01
In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, Aliaksei; Edstrom, Dean; Gai, Wei
2016-06-01
In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.
Active Vibration Control of Elastic Beam by Means of Shape Memory Alloy Layers
NASA Technical Reports Server (NTRS)
Chen, Q.; Levy, C.
1996-01-01
The mathematical model of a flexible beam covered with shape memory alloy (SMA) layers is presented. The SMA layers are used as actuators, which are capable of changing their elastic modulus and recovery stress, thus changing the natural frequency of, and adjusting the excitation to, the vibrating beam. The frequency factor variation as a function of SMA Young's modulus, SMA layer thickness and beam thickness is discussed. Also control of the beam employing an optimal linear control law is evaluated. The control results indicate how the system reacts to various levels of excitation input through the non-homogeneous recovery shear term of the governing differential equation.
WE-EF-303-08: Proton Radiography Using Pencil Beam Scanning and Novel Micromegas Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolney, D; Lustig, R; Teo, B
Purpose: While the energy of therapeutic proton beams can be adjusted to penetrate to any given depth in water, range uncertainties arise in patients due in part to imprecise knowledge of the stopping power of protons in human tissues. Proton radiography is one approach to reduce the beam range uncertainty, thereby allowing for a reduction in treatment margins and dose escalation. Methods: The authors have adapted a novel detector technology based on Micromesh Gaseous Structure (“Micromegas”) for proton therapy beams and have demonstrated fine spatial and time resolution of magnetically scanned proton pencil beams, as well as wide dynamic rangemore » for dosimetry. In this work, proton radiographs were obtained using Micromegas 2D planes positioned downstream of solid water assemblies. The position-sensitive monitor chambers in the IBA proton delivery nozzle provide the beam entrance position. Results: Radiography with Micromegas detectors and actively scanned beams provide spatial resolution of up to 300 µm and water-equivalent thickness (WET) resolution as good as 0.02% (60 µm out of 31 cm total thickness), with the dose delivered to the patient kept below 2 cGy. The spatial resolution as a function of sample rate and number of delivered protons is found to be near the theoretical Cramer-Rao lower bound. Using the CR bound, we argue that the imaging dose could be further lowered to 1 mGy, while still achieving sub-mm spatial resolution, by relatively simple instrumentation upgrades and beam delivery modifications. Conclusion: For proton radiography, high spatial and WET resolution can be achieved, with minimal additional dose to patient, by using magnetically scanned proton pencil beams and Micromegas detectors.« less
Improved safety of retinal photocoagulation with a shaped beam and modulated pulse
NASA Astrophysics Data System (ADS)
Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel
2010-02-01
Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.
Improved Gaussian Beam-Scattering Algorithm
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Anand Kumar; Boyd, Robert W.
2010-01-15
We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less
Multifractality of laser beam spatial intensity in a turbulent medium
NASA Astrophysics Data System (ADS)
Barille, Régis; Lapenna, Paolo
2006-05-01
We present the results of a laser beam passing through a turbulent medium. First we measure the geometric parameters and the spatial coherence of the beam as a function of wind velocities. A multifractal detrended fluctuation analysis algorithm is applied to determine the multifractal scaling behavior of the intensity patterns. The measurements are fitted with models used in the analysis of river runoff records. We show the surprising result that the multifractality decreases when the spatial coherence of the laser is decreased. Universal scaling properties could be applied to the spatial characterization of a laser propagating in a turbulent medium or random medium.
NASA Astrophysics Data System (ADS)
Harder, Dietrich
2010-02-01
In their recent paper (Venkataraman et al 2009 Phys. Med. Biol. 54 3173-83) the authors reported on photon beam attenuation and secondary electron production in the novel transmission detector COMPASS, to be placed in the accessory holder of the linac treatment head. In the interest of IMRT patient safety, space-resolved measurements by transmission detectors analysing the MLC-shaped photon fluence pattern in real time are in fact an urgent item for equipment designers. However, there are some constraints for the construction of such devices. The COMPASS system, at its present stage of development, has difficulties in complying with the constraints that the spatial sampling rate should fit the desired task and that the enhanced secondary electron contamination of the photon beam due to the presence of the device should be minimized. The authors also missed to mention a forerunner in this field, the DAVID transmission detector (Poppe et al 2006 Phys. Med. Biol. 51 1237-48), serving for the real-time supervision of the MLC aperture during patient treatment and ever since proven in clinical practice. The DAVID system, a transparent multiwire ionization chamber placed in the accessory holder, will be shortly described.
Optical diffraction interpretation: an alternative to interferometers
NASA Astrophysics Data System (ADS)
Bouillet, S.; Audo, F.; Fréville, S.; Eupherte, L.; Rouyer, C.; Daurios, J.
2015-08-01
The Laser MégaJoule (LMJ) is a French high power laser project that requires thousands of large optical components. The wavefront performances of all those optics are critical to achieve the desired focal spot shape and to limit the hot spots that could damage the components. Fizeau interferometers and interferometric microscopes are the most commonly used tools to cover the whole range of interesting spatial frequencies. Anyway, in some particular cases like diffractive and/or coated and/or aspheric optics, an interferometric set-up becomes very expensive with the need to build a costly reference component or a specific to-the-wavelength designed interferometer. Despite the increasing spatial resolution of Fizeau interferometers, it may even not be enough, if you are trying to access the highest spatial frequencies of a transmitted wavefront for instance. The method we developed is based upon laser beam diffraction intermediate field measurements and their interpretation with a Fourier analysis and the Talbot effect theory. We demonstrated in previous papers that it is a credible alternative to classical methods. In this paper we go further by analyzing main error sources and discussing main practical difficulties.
Vector vortex beam generation with dolphin-shaped cell meta-surface.
Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang
2017-09-18
We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.
Amplitude and phase beam shaping for highest sensitivity in sidewall angle detection.
Cisotto, Luca; Paul Urbach, H
2017-01-01
In integrated circuits manufacturing, specific structures are used as tools to evaluate the quality of the lithographic process, and the shape of these structures is often described by a few parameters, of which in particular the sidewall angle suffers from considerable inaccuracies. Using scalar diffraction theory, we investigate whether a properly shaped cylindrically focused probing beam could increase the ability to detect tiny changes in this angle in the case of a cliff-like structure, modeled as a phase object. This paper describes the theoretical formulation used to calculate the optimized beam and compares its performance with the case of a focused plane wave.
Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode
NASA Technical Reports Server (NTRS)
Philipp-Rutz, E. M.
1975-01-01
Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.
NASA Astrophysics Data System (ADS)
Tortora, M.; Biasiol, G.; Cautero, G.; Menk, R. H.; Plaisier, J. R.; Antonelli, M.
2017-03-01
In order to improve the characterisation of the delivered beams in many types of photon sources, innovative beam profilers based on III/V semiconductor materials (InGaAs/InAlAs) have been deeply investigated. Owing to a tunable and direct band gap these devices allow radiation detection in a wide spectral range. In order to increase the sensitivity of the device in radiation detection charge amplification on the sensor level is implemented. This is obtained by exploiting In0.75Ga0.25As/In0.75Al0.25As quantum wells (QW) hosting a two-dimensional electron gas (2DEG) through molecular beam epitaxy (MBE). Internal charge-amplification mechanism can be achieved for very low applied voltages, while the high carrier mobility allows the design of very fast photon detectors with sub-nanosecond response times. This technology has been preliminarily exploited to fabricate prototype beam profilers with a strip geometry (with 50-μm-wide strips). Tests were carried out both with conventional X-ray tubes and at the Elettra synchrotron facility. The results testify how these profilers are capable of reconstructing the shape of the beam, as well as estimating the position of the beam centroid with a precision of about 400 nm. Further measurements with different samples of decreasing thickness have shown how this precision could be further improved by an optimised microfabrication. For this reason a new design, based on a membrane-photodetector, is proposed. Results regarding the spatial resolution as function of the sensor thickness will be presented and discussed.
Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect
NASA Astrophysics Data System (ADS)
Georgiev, V. B.; Cuenca, J.; Gautier, F.; Simon, L.; Krylov, V. V.
2011-05-01
Flexural waves in beams and plates slow down if their thickness decreases. Such property was used in the past for establishing the theory of acoustic black holes (ABH). The aim of the present paper is to establish reliable numerical and experimental approaches for designing, modelling and manufacturing an effective passive vibration damper using the ABH effect. The effectiveness of such vibration absorbers increases with frequency. Initially, the dynamic behaviour of an Euler-Bernoulli beam is expressed using the Impedance Method, which in turn leads to a Riccati equation for the beam impedance. This equation is numerically integrated using an adaptive Runge-Kutta-Fehlberg method, yielding the frequency- and spatially-dependent impedance matrix of the beam, from which the reflection matrix is obtained. Moreover, the mathematical model can be extended to incorporate an absorbing film that assists for reducing reflected waves from the truncated edge. Therefore, the influence of the geometrical and material characteristics of the absorbing film is then studied and an optimal configuration of these parameters is proposed. An experiment consisting of an elliptical plate with a pit of power-law profile placed in one of its foci is presented. The elliptical shape of the plate induces a complete focalisation of the waves towards ABH in case they are generated in the other focus. Consequently, the derived 1-D method for an Euler-Bernoulli beam can be used as a phenomenological model assisting for better understanding the complex processes in 2-D elliptical structure. Finally, both, numerical simulations and experimental measurements show significant reduction of vibration levels.
Biener, Gabriel; Stoneman, Michael R; Acbas, Gheorghe; Holz, Jessica D; Orlova, Marianna; Komarova, Liudmila; Kuchin, Sergei; Raicu, Valerică
2013-12-27
Multiphoton micro-spectroscopy, employing diffraction optics and electron-multiplying CCD (EMCCD) cameras, is a suitable method for determining protein complex stoichiometry, quaternary structure, and spatial distribution in living cells using Förster resonance energy transfer (FRET) imaging. The method provides highly resolved spectra of molecules or molecular complexes at each image pixel, and it does so on a timescale shorter than that of molecular diffusion, which scrambles the spectral information. Acquisition of an entire spectrally resolved image, however, is slower than that of broad-bandwidth microscopes because it takes longer times to collect the same number of photons at each emission wavelength as in a broad bandwidth. Here, we demonstrate an optical micro-spectroscopic scheme that employs a laser beam shaped into a line to excite in parallel multiple sample voxels. The method presents dramatically increased sensitivity and/or acquisition speed and, at the same time, has excellent spatial and spectral resolution, similar to point-scan configurations. When applied to FRET imaging using an oligomeric FRET construct expressed in living cells and consisting of a FRET acceptor linked to three donors, the technique based on line-shaped excitation provides higher accuracy compared to the point-scan approach, and it reduces artifacts caused by photobleaching and other undesired photophysical effects.
Minimal-effort planning of active alignment processes for beam-shaping optics
NASA Astrophysics Data System (ADS)
Haag, Sebastian; Schranner, Matthias; Müller, Tobias; Zontar, Daniel; Schlette, Christian; Losch, Daniel; Brecher, Christian; Roßmann, Jürgen
2015-03-01
In science and industry, the alignment of beam-shaping optics is usually a manual procedure. Many industrial applications utilizing beam-shaping optical systems require more scalable production solutions and therefore effort has been invested in research regarding the automation of optics assembly. In previous works, the authors and other researchers have proven the feasibility of automated alignment of beam-shaping optics such as collimation lenses or homogenization optics. Nevertheless, the planning efforts as well as additional knowledge from the fields of automation and control required for such alignment processes are immense. This paper presents a novel approach of planning active alignment processes of beam-shaping optics with the focus of minimizing the planning efforts for active alignment. The approach utilizes optical simulation and the genetic programming paradigm from computer science for automatically extracting features from a simulated data basis with a high correlation coefficient regarding the individual degrees of freedom of alignment. The strategy is capable of finding active alignment strategies that can be executed by an automated assembly system. The paper presents a tool making the algorithm available to end-users and it discusses the results of planning the active alignment of the well-known assembly of a fast-axis collimator. The paper concludes with an outlook on the transferability to other use cases such as application specific intensity distributions which will benefit from reduced planning efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-15
We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less
Spatially scanned two-color mid-infrared interferometer for FTU
NASA Astrophysics Data System (ADS)
Canton, A.; Innocente, P.; Martini, S.; Tasinato, L.; Tudisco, O.
2001-01-01
The design of a scanning beam two-color mid-infrared (MIR) interferometer is presented. The diagnostic is being developed for the Frascati Tokamak Upgrade (FTU) which calls for a new interferometer to perform detailed study of advanced confinement regimes in D-shaped plasmas. After performing a feasibility study and a prototype test, we designed a scanning interferometer based on a resonant tilting mirror providing 40 chords of ≈1 cm diameter and a full profile every 62 μs. Such a high number of chords is obtained with a very simple optical scheme, resulting in a system which is compact, low cost, and easy to align. An important feature of the interferometer is its higher immunity to fringe jumps compared to conventional far infrared (FIR) systems. Three main factors contribute to that: the high critical density associated to MIR beams, the large bandwidth provided by 40 MHz heterodyne detection, and the fact that each scan provides a "self-consistent" profile.
High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Robert; Lewis, Brett B.; Fowlkes, Jason Davidson
While 3D-printing is currently experiencing significant growth and having a significant impact on science and technology, the expansion into the nanoworld is still a highly challenging task. Among the increasing number of approaches, focused electron-beam-induced deposition (FEBID) was recently demonstrated to be a viable candidate toward a generic direct-write fabrication technology with spatial nanometer accuracy for complex shaped 3D-nanoarchitectures. In this comprehensive study, we explore the parameter space for 3D-FEBID and investigate the implications of individual and interdependent parameters on freestanding nanosegments, which act as a fundamental building block for complex 3D-structures. In particular, the study provides new basic insightsmore » such as precursor transport limitations and angle dependent growth rates, both essential for high-fidelity fabrication. In conclusion, complemented by practical aspects, we provide both basic insights in 3D-growth dynamics and technical guidance for specific process adaption to enable predictable and reliable direct-write synthesis of freestanding 3D-nanoarchitectures.« less
High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
Winkler, Robert; Lewis, Brett B.; Fowlkes, Jason Davidson; ...
2018-02-14
While 3D-printing is currently experiencing significant growth and having a significant impact on science and technology, the expansion into the nanoworld is still a highly challenging task. Among the increasing number of approaches, focused electron-beam-induced deposition (FEBID) was recently demonstrated to be a viable candidate toward a generic direct-write fabrication technology with spatial nanometer accuracy for complex shaped 3D-nanoarchitectures. In this comprehensive study, we explore the parameter space for 3D-FEBID and investigate the implications of individual and interdependent parameters on freestanding nanosegments, which act as a fundamental building block for complex 3D-structures. In particular, the study provides new basic insightsmore » such as precursor transport limitations and angle dependent growth rates, both essential for high-fidelity fabrication. In conclusion, complemented by practical aspects, we provide both basic insights in 3D-growth dynamics and technical guidance for specific process adaption to enable predictable and reliable direct-write synthesis of freestanding 3D-nanoarchitectures.« less
Spectral structure of a polycapillary lens shaped X-ray beam
NASA Astrophysics Data System (ADS)
Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.
2018-04-01
Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.
NASA Technical Reports Server (NTRS)
Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.;
2013-01-01
We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T(149/U) = 106.7 +/- 2.2 K and T(219/U) = 100.1 +/- 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T(149/S) = 137.3 +/- 3.2 K and T(219/S) = 137.3 +/- 4.7 K.
Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.
Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L
2016-12-16
We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.
Yeung, E.S.; Chen, G.
1990-05-01
A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.
Applications of OALCLV in the high power laser systems
NASA Astrophysics Data System (ADS)
Huang, Dajie; Fan, Wei; Cheng, He; Wei, Hui; Wang, Jiangfeng; An, Honghai; Wang, Chao; Cheng, Yu; Xia, Gang; Li, Xuechun; Lin, Zunqi
2017-10-01
This paper introduces the recent development of our integrated optical addressed spatial light modulator and its applications in the high power laser systems. It can be used to convert the incident beam into uniform beam for high energy effiency, or it can realize special distribution to meet the requirements of physical experiment. The optical addressing method can avoid the problem of the black matrix effect of the electric addressing device. Its transmittance for 1053nm light is about 85% and the aperture of our device has reached 22mm× 22mm. As a transmissive device, it can be inserted into the system without affecting the original optical path. The applications of the device in the three laser systems are introduced in detail in this paper. In the SGII-Up laser facility, this device demonstrates its ability to shape the output laser beam of the fundamental frequency when the output energy reaches about 2000J. Meanwhile, there's no change in the time waveform and far field distribution. This means that it can effectively improve the capacity of the maximum output energy. In the 1J1Hz Nd-glass laser system, this device has been used to improve the uniformity of the output beam. As a result, the PV value reduces from 1.4 to 1.2, which means the beam quality has been improved effectively. In the 9th beam of SGII laser facility, the device has been used to meet the requirements of sampling the probe light. As the transmittance distribution of the laser beam can be adjusted, the sampling spot can be realized in real time. As a result, it's easy to make the sampled spot meet the requirements of physics experiment.
Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter
2013-01-01
X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298
Photonic crystal microchip laser
NASA Astrophysics Data System (ADS)
Gailevicius, D.; Koliadenko, V.; Purlys, V.; Peckus, M.; Taranenko, V.; Staliunas, K.
2017-02-01
The microchip lasers, being sources of coherent light, suffer from one serious drawback: low spatial quality of the beam, strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here we propose that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. We experimentally show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by factor of 2, and thus increase the brightness of radiation by a factor of 4. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial high brightness radiation.
Photonic Crystal Microchip Laser.
Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis
2016-09-29
The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M 2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.
Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications
NASA Astrophysics Data System (ADS)
Flynn, Daniel Christopher
The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic techniques are used to characterize structure-function relationships of two-photon absorbing GFP-type probes and optical limiting materials. Fluorescence lifetimes of GFP-type probes are shown to depend on functional group substitution position, therefore, enabling the synthesis of designer probes for the possible study of conformation changes and aggregation in biological systems. Similarly, it is determined that small differences in the structure and dimensionality of organometallic macrocycles result in a diverse set of optical properties, which serves as a basis for the molecular level design of nonlinear optical materials.
NASA Astrophysics Data System (ADS)
Milione, Giovanni; Dudley, Angela; Nguyen, Thien An; Chakraborty, Ougni; Karimi, Ebrahim; Forbes, Andrew; Alfano, Robert R.
2015-03-01
We experimentally measured the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams. Radially and azimuthally polarized vector Bessel beams were experimentally generated via a digital version of Durnin's method, using a spatial light modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and spatially inhomogeneous states of polarization were experimentally measured using Stokes polarimetry as they propagated through two disparate obstructions. It was found, similar to their intensities, that their spatially inhomogeneous states of polarization self-healed. The self-healing can be understood via geometric optics, i.e., the interference of the unobstructed conical rays in the shadow region of the obstruction, and may have applications in, for example, optical trapping.
Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Zhong, Hongying
2015-03-03
Identification of endogenous and exogenous chemicals contained in latent fingerprints is important for forensic science in order to acquire evidence of criminal identities and contacts with specific chemicals. Mass spectrometry has emerged as a powerful technique for such applications without any derivatization or fluorescent tags. Among these techniques, MALDI (Matrix Assisted Laser Desorption Ionization) provides small beam size but has interferences with MALDI matrix materials, which cause ion suppressions as well as limited spatial resolution resulting from uneven distribution of MALDI matrix crystals with different sizes. LAET (Laser Activated Electron Tunneling) described in this work offers capabilities for chemical imaging through electron-directed soft ionization. A special film of semiconductors has been designed for collection of fingerprints. Nanoparticles of bismuth cobalt zinc oxide were compressed on a conductive metal substrate (Al or Cu sticky tape) under 10 MPa pressure. Resultant uniform thin films provide tight and shining surfaces on which fingers are impressed. Irradiation of ultraviolet laser pulses (355 nm) on the thin film instantly generates photoelectrons that can be captured by adsorbed organic molecules and subsequently cause electron-directed ionization and fragmentation. Imaging of latent fingerprints is achieved by visualization of the spatial distribution of these molecular ions and structural information-rich fragment ions. Atomic electron emission together with finely tuned laser beam size improve spatial resolution. With the LAET technique, imaging analysis not only can identify physical shapes but also reveal endogenous metabolites present in females and males, detect contacts with prohibited substances, and resolve overlapped latent fingerprints.
Adaptive array antenna for satellite cellular and direct broadcast communications
NASA Technical Reports Server (NTRS)
Horton, Charles R.; Abend, Kenneth
1993-01-01
Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.
Proton beam shaped by “particle lens” formed by laser-driven hot electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, S. H.; Shen, B. F., E-mail: bfshen@mail.shcnc.ac.cn, E-mail: wwpvin@hotmail.com, E-mail: yqgu@caep.cn; Wang, W. P., E-mail: bfshen@mail.shcnc.ac.cn, E-mail: wwpvin@hotmail.com, E-mail: yqgu@caep.cn
2016-05-23
Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.
High efficiency and high-energy intra-cavity beam shaping laser
NASA Astrophysics Data System (ADS)
Yang, Hailong; Meng, Junqing; Chen, Weibiao
2015-09-01
We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.
2016-08-15
Photographs of cross sections of an electron beam scattered from thin foils have been obtained on a dosimetric film. The procession of images makes it possible to obtain the spatial distribution of particles both reflected from a foil and passed through it. The spatial distribution of electrons incident on aluminum, copper, and lead foils, as well as on bimetallic foils composed of aluminum and lead layers and of aluminum and copper layers, has been measured. The effect of the material and thickness of the foil, as well as of the angle between the initial beam trajectory and the target plane,more » on the spatial distribution of electrons has been studied. The effect of the sequence of the metal layers in bimetallic foils on the distribution of beams has been analyzed. A 7.4-MeV microtron has been used as a source of electrons.« less
Independent polarisation control of multiple optical traps
Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan
2009-01-01
We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226
SU-C-207A-02: Proton Radiography Using Pencil Beam Scanning and a Novel, Low-Cost Range Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolney, D; Mayers, G; Newcomer, M
Purpose: While the energy of therapeutic proton beams can be adjusted to penetrate to any given depth in water, range uncertainties arise in patients due in part to imprecise knowledge of the stopping power of protons in human tissues [1]. Proton radiography is one approach to reduce the beam range uncertainty [2], thereby allowing for a reduction in treatment margins and dose escalation. Methods: The authors have adapted a novel detector technology based on Micromesh Gaseous Structure (“Micromegas”) for proton therapy beams and have demonstrated fine spatial and time resolution of magnetically scanned proton pencil beams, as well as widemore » dynamic range for dosimetry [3]. The authors have constructed a prototype imaging system comprised of 5 Micromegas layers. Proton radiographs were obtained downstream of solid water assemblies. The position-sensitive monitor chambers in the IBA proton delivery nozzle provide the beam entrance position. Results: Our technique achieves spatial resolution as low as 300 µm and water-equivalent thickness (WET) resolution as good as 0.02% (60 µm out of 31 cm total thickness). The dose delivered to the patient is kept below 2 cGy. The spatial resolution as a function of sample rate and number of delivered protons is found to be near the theoretical Cramer-Rao lower bound. By extrapolating the CR bound, we argue that the imaging dose could be further lowered to 1 mGy, while still achieving submillimeter spatial resolution, by achievable instrumentation and beam delivery modifications. Conclusion: For proton radiography, high spatial and WET resolution can be achieved, with minimal additional dose to patient, by using magnetically scanned proton pencil beams and Micromegas detectors.« less
Spatially modulated interferometer and beam shearing device therefor
NASA Technical Reports Server (NTRS)
Reininger, Francis M. (Inventor)
2004-01-01
A spatially modulated interferometer incorporates a beam shearing system having a plurality of reflective surfaces defining separate light paths of equal optical path length for two separate output beams. The reflective surfaces are arranged such that when the two beams emerge from the beam shearing system they contain more than 50 percent of the photon flux within the selected spectral pass band. In one embodiment, the reflective surfaces are located on a number of prism elements combined to form a beam shearing prism structure. The interferometer utilizing the beam sharing system of the invention includes fore-optics for collecting light and focusing it into a beam to be sheared, and a detector located at an exit pupil of the device. In a preferred embodiment, the interferometer has no moving parts.
Lechuga, Lawrence; Weidlich, Georg A
2016-09-12
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.
Scintillator-based transverse proton beam profiler for laser-plasma ion sources.
Dover, N P; Nishiuchi, M; Sakaki, H; Alkhimova, M A; Faenov, A Ya; Fukuda, Y; Kiriyama, H; Kon, A; Kondo, K; Nishitani, K; Ogura, K; Pikuz, T A; Pirozhkov, A S; Sagisaka, A; Kando, M; Kondo, K
2017-07-01
A high repetition rate scintillator-based transverse beam profile diagnostic for laser-plasma accelerated proton beams has been designed and commissioned. The proton beam profiler uses differential filtering to provide coarse energy resolution and a flexible design to allow optimisation for expected beam energy range and trade-off between spatial and energy resolution depending on the application. A plastic scintillator detector, imaged with a standard 12-bit scientific camera, allows data to be taken at a high repetition rate. An algorithm encompassing the scintillator non-linearity is described to estimate the proton spectrum at different spatial locations.
InN island shape and its dependence on growth condition of molecular-beam epitaxy
NASA Astrophysics Data System (ADS)
Cao, Y. G.; Xie, M. H.; Liu, Y.; Ng, Y. F.; Wu, H. S.; Tong, S. Y.
2003-12-01
During molecular-beam epitaxy of InN films on GaN(0001) surface, three-dimensional (3D) islands are observed following an initial wetting layer formation. Depending on deposition condition, the 3D islands take different shapes. Pyramidal islands form when excess nitrogen fluxes are used, whereas pillar-shaped islands are obtained when excess indium fluxes are employed. The pillar-shaped islands are identified to represent the equilibrium shape, whereas the pyramidal ones are limited by kinetics. As the size of islands increases, their aspect ratio shows a decreasing trend, which is attributed to a gradual relaxation of strain in the layer by defects.
Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.
1976-06-15
A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.
NASA Astrophysics Data System (ADS)
Hamid, Nubailah Abd; Ibrahim, Azmi; Adnan, Azlan; Ismail, Muhammad Hussain
2018-05-01
This paper discusses the superelastic behavior of shape memory alloy, NiTi when used as reinforcement in concrete beams. The ability of NiTi to recover and reduce permanent deformations of concrete beams was investigated. Small-scale concrete beams, with NiTi reinforcement were experimentally investigated under monotonic loads. The behaviour of simply supported reinforced concrete (RC) beams hybrid with NiTi rebars and the control beam subject to monotonic loads were experimentally investigated. This paper is to highlight the ability of the SMA bars to recover and reduce permanent deformations of concrete flexural members. The size of the control beam is 125 mm × 270 mm × 1000 mm with 3 numbers of 12 mm diameter bars as main reinforcement for compression and 3 numbers of 12 mm bars as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars for control beam respectively. While, the minimal provision of 200mm using the 12.7mm of superelastic Shape Memory Alloys were employed to replace the steel rebar at the critical region of the beam. In conclusion, the contribution of the SMA bar in combination with high-strength steel to the conventional reinforcement showed that the SMA beam has exhibited an improve performance in term of better crack recovery and deformation. Therefore the usage of hybrid NiTi with the steel can substantially diminish the risk of the earthquake and also can reduce the associated cost aftermath.
Gain measurements and spatial coherence in neon-like x-ray lasers
NASA Astrophysics Data System (ADS)
Krishnan, J.; Cairns, C.; Dwivedi, L.; Holden, M.; Key, M. H.; Lewis, C. L. S.; MacPhee, A.; Neely, D.; Norreys, P. A.; Pert, G. J.; Ramsden, S. A.; Smith, C. G.; Tallents, G. J.; Zhang, J.
1995-05-01
Many of the applications with x-ray lasers require high quality output radiation with properties such as short wavelength and a high degree of coherence (longitudinal and spatial). Ne-like Yttrium (Z=39) is potentially a bright and monochromatic XUV lasing medium. The output at 15.5 nm is monochromatic due to the overlap of the J=2-1 and J=0-1 lines. A gain coefficient of 3±1 was obtained at 15.5 nm by irradiating 100 μm wide yttrium stripes at 6×1013 W/cm2 with 1.06 μm, 650 ps pulses from the Rutherford Appleton Laboratory VULCAN laser. We have investigated improving x-ray laser spatial coherence utilizing a series of amplifiers instead of the standard double target configuration. An ``injector-amplifier'' scheme was successfully demonstrated with the Ne-like Ge x-ray laser. A spatially small and coherent part of the 23 nm beam from the standard double target geometry has been relayed using a W/Si multilayer mirror onto a single or double target configuration situated at a distance of ˜1.5 m from the mirror and pumped by two 150 mm diameter beams of VULCAN laser. A beam ``foot-print monitor'' was employed with a flat mirror to relay 23 nm output onto a film pack to record the spatial variation of the x-ray laser beam. Analyzing the fringes obtained through a cross-wire placed in front of the beam shows that an increase in spatial coherence was achieved by adding amplifiers to the x-ray laser beam line.
On the evolution of antiferromagnetic nanodomains in NiO thin films: A LEEM study
NASA Astrophysics Data System (ADS)
Das, Jayanta; Menon, Krishnakumar S. R.
2018-03-01
Fractional order (1/2, 0) spots appear in the electron diffraction from NiO/Ag(0 0 1) films due to exchange scattering of low energy electrons by the antiferromagnetically ordered surface Ni moments. Utilizing these beams, imaging of the nanosized surface magnetic domains were carried out employing the high spatial resolution (∼ 10 nm) of the Low Energy Electron Microscopy (LEEM) in the dark-field (DF) mode. While selected through a contrast aperture, the four magnetic reflections produced by the p (2 × 2) antiferromagnetic sub-lattice lead to the visualization of the different magnetic twin domains. The intensity variations of different twin domains were measured as a function of electron beam energies via domain resolved LEEM I-V plots. The surface Néel temperatures (TN) of the films were measured using the temperature dependence of these half-order spot intensities. Detailed morphological studies of the size and shape of these nanodomains and their evolution as a function of the film thickness have been carried out with the help of pair-correlation function and fractal analysis. The size, shape and distribution of these magnetic domains are modified significantly by the strain relaxation mechanism beyond the critical film thickness. A method to estimate the relative domain sizes from a quantitative measure of the half-order spot intensities is manifested well below TN .
Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene
Knowles, Jeffrey M.; Barchi, Jonathan R.; Gaudette, Jason E.; Simmons, James A.
2015-01-01
Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80–100 cm wide and 2–4 m long. Using the two-choice Y-shaped paradigm to compensate for left–right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18–35 dB weaker than overlapping echoes from surrounding chains. PMID:26328724
A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography
Altunbas, M. C.; Shaw, C. C.; Chen, L.; Lai, C.; Liu, X.; Han, T.; Wang, T.
2007-01-01
In cone beam breast computed tomography (CT), scattered radiation leads to nonuniform biasing of CT numbers known as a cupping artifact. Besides being visual distractions, cupping artifacts appear as background nonuniformities, which impair efficient gray scale windowing and pose a problem in threshold based volume visualization/segmentation. To overcome this problem, we have developed a background nonuniformity correction method specifically designed for cone beam breast CT. With this technique, the cupping artifact is modeled as an additive background signal profile in the reconstructed breast images. Due to the largely circularly symmetric shape of a typical breast, the additive background signal profile was also assumed to be circularly symmetric. The radial variation of the background signals were estimated by measuring the spatial variation of adipose tissue signals in front view breast images. To extract adipose tissue signals in an automated manner, a signal sampling scheme in polar coordinates and a background trend fitting algorithm were implemented. The background fits compared with targeted adipose tissue signal value (constant throughout the breast volume) to get an additive correction value for each tissue voxel. To test the accuracy, we applied the technique to cone beam CT images of mastectomy specimens. After correction, the images demonstrated significantly improved signal uniformity in both front and side view slices. The reduction of both intra-slice and inter-slice variations in adipose tissue CT numbers supported our observations. PMID:17822018
NASA Astrophysics Data System (ADS)
Schaeffner, Maximilian; Platz, Roland
2018-06-01
For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduled {{\\mathscr{H}}}∞ buckling control of a slender beam-column with circular cross-section subject to time-varying axial loads is investigated experimentally. Piezo-elastic supports with integrated piezoelectric stack actuators at the beam-column ends allow an active stabilization in arbitrary lateral directions. The axial loads on the beam-column influence its lateral dynamic behavior and, eventually, cause the beam-column to buckle. A reduced modal model of the beam-column subject to axial loads including the dynamics of the electrical components is set up and calibrated with experimental data. Particularly, the linear parameter-varying open-loop plant is used to design a model-based gain-scheduled {{\\mathscr{H}}}∞ buckling control that is implemented in an experimental test setup. The beam-column is loaded by ramp- and step-shaped time-varying axial compressive loads that result in a lateral deformation of the beam-column due to imperfections, such as predeformation, eccentric loading or clamping moments. The lateral deformations and the maximum bearable loads of the beam-column are analyzed and compared for the beam-column with and without gain-scheduled {{\\mathscr{H}}}∞ buckling control or, respectively, active and passive configuration. With the proposed gain-scheduled {{\\mathscr{H}}}∞ buckling control it is possible to increase the maximum bearable load of the active beam-column by 19% for ramp-shaped axial loads and to significantly reduce the beam-column deformations for step-shaped axial loads compared to the passive structure.
A high resolution hand-held focused beam profiler
NASA Astrophysics Data System (ADS)
Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.
2017-05-01
The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.
NASA Astrophysics Data System (ADS)
Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II
1995-05-01
Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.
Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David
2013-01-01
Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.
Design and simulation of multifunctional optical devices using metasurfaces
NASA Astrophysics Data System (ADS)
Alyammahi, Saleimah
In classical optics, optical components such as lenses and microscopes are unable to focus the light into deep subwavelength or nanometer scales due to the diffraction limit. However, recent developments in nanophotonics, have enabled researchers to control the light at subwavelength scales and overcome the diffraction limit. Using subwavelength structures, we can create a new class of optical materials with unusual optical responses or with new properties that are not attainable in nature. Such artificial materials can be created by structuring conventional materials on the subwavelength scale, giving rise to the unusual optical properties due to the electric and magnetic responses of each meta-atom. These materials are called metamaterials or engineered materials that exhibit exciting phenomena such as non-linear optical responses and negative refraction. Metasurfaces are two dimensional meta-atoms arranged as an array with subwavelength distances. Therefore, metasurfaces are planar, ultrathin version of metamaterials that offer fascinating possibilities of manipulating the wavefront of the optical fields. Recently, the control of light properties such as phase, amplitude, and polarization has been demonstrated by introducing abrupt phase change across a subwavelength scale. Phase discontinuities at the interface can be attained by engineered metasurfaces with new applications and functionalities that have not been realized with bulk or multilayer materials. In this work, high efficient, planar metasurfaces based on geometric phase are designed to realize various functionalities. The designs include metalenses, axicon lenses, vortex beam generators, and Bessel vortex beam generators. The capability of planar metasurfaces in focusing the incident beams and shaping the optical wavefront is numerically demonstrated. COMSOL simulations are used to prove the capability of these metasurfaces to transform the incident beams into complex beams that carry orbital angular momentum (OAM). New designs of ultrathin, planar metasurfaces may result in development of a new type of photonic devices with reduced loss and broad bandwidth. The advances in metasurface designs will lead to ultrathin devices with surprising functionalities and low cost. These novel designs may offer more possibilities for applications in quantum optic devices, pulse shaping, spatial light modulators, nano-scale sensing or imaging, and so on.
Speckle field as a multiple particle trap
NASA Astrophysics Data System (ADS)
Shvedov, V. G.; Rode, A. V.; Izdebskaya, Ya. V.; Desyatnikov, A. S.; Krolikowski, W.; Kivshar, Yu. S.
2010-04-01
We demonstrate that a speckle pattern in the spatially coherent laser field transmitted by a diffuser forms a multitude of three-dimensional bottle-shaped micro-traps. These multiple traps serve as a means for an effective trapping of large number of air-born absorbing particles. Confinement of up to a few thousand particles in air with a single beam has been achieved. The ability to capture light-absorbing particles suspended in gases by optical means opens up rich and diverse practical opportunities, including development of photonic shielding/fencing for environmental protection in nanotechnology industry and new methods of touch-free air transport of particles and small containers, which may hold dangerous substances, or viruses and living cells.
Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics.
Strozzi, D J; Bailey, D S; Michel, P; Divol, L; Sepke, S M; Kerbel, G D; Thomas, C A; Ralph, J E; Moody, J D; Schneider, M B
2017-01-13
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI-specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)-mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozzi, D. J.; Bailey, D. S.; Michel, P.
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less
NASA Astrophysics Data System (ADS)
Faghihi, F.; Khalili, S.
2013-08-01
This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.
Ibsen, Stuart D; Nachtigall, Paul E; Krause-Nehring, Jacqueline; Kloepper, Laura; Breese, Marlee; Li, Songhai; Vlachos, Stephanie
2012-08-01
A two-dimensional array of 16 hydrophones was created to map the spatial distribution of different frequencies within the echolocation beam of a Tursiops truncatus and a Pseudorca crassidens. It was previously shown that both the Tursiops and Pseudorca only paid attention to frequencies between 29 and 42 kHz while echolocating. Both individuals tightly focused the 30 kHz frequency and the spatial location of the focus was consistently pointed toward the target. At 50 kHz the beam was less focused and less precisely pointed at the target. At 100 kHz the focus was often completely lost and was not pointed at the target. This indicates that these individuals actively focused the beam toward the target only in the frequency range they paid attention to. Frequencies outside this range were left unfocused and undirected. This focusing was probably achieved through sensorimotor control of the melon morphology and nasal air sacs. This indicates that both morphologically different species can control the spatial distribution of different frequency ranges within the echolocation beam to create consistent ensonation of desired targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, S.; Mimura, H.; Yumoto, H.
We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8, the full width at half maximum of the focused beam was achieved to be 50x30 nm{sup 2} (VxH) under the best focusing conditions. The measured beam profiles were in good agreement with simulated results. Moreover, beam size was controllable within the wide range of 30-1400 nm by changing the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate SXFM performance, a fine test chart fabricated using focused ion beam system wasmore » observed to determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the test chart, which has a minimum linewidth of approximately 50-60 nm, was visualized with a spatial resolution better than 30 nm using the smallest focused x-ray beam.« less
Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, A., E-mail: link6@llnl.gov; Halvorson, C., E-mail: link6@llnl.gov; Schmidt, A.
2014-12-15
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off throughmore » the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.« less
Optical microscope using an interferometric source of two-color, two-beam entangled photons
Dress, William B.; Kisner, Roger A.; Richards, Roger K.
2004-07-13
Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.
Scanning ion imaging - a potent tool in SIMS U -Pb zircon geochronology
NASA Astrophysics Data System (ADS)
Whitehouse, M. J.; Fedo, C.; Kusiak, M.; Nemchin, A.
2012-12-01
The application of high spatial resolution (< 15-20 μm lateral) U-Pb data obtained by sec-ondary ion mass spectrometers (SIMS) coupled with textural information from scanning electron microscope (SEM) based cathodoluminescence (CL) and/or back-scattered elec-tron (BSE) characterisation, has revolutionised geochronology over the past 25 years, re-vealing complexities of crustal evolution from zoned zircons. In addition to ge-ochronology, such studies now commonly form the basis of broader investigations using O- and Hf- isotopes and trace elements obtained from the same growth zone as age, circumventing ambiguities commonly present in bulk-rock isotope studies. The choice of analytical beam diameter is often made to maximise the precision of data obtained from a given area of analysis within an identifiable growth zone. In cases where zircons yield poorly constrained internal structures in SEM, high spatial resolution spot analyses may yield uninterpretable and/or meaningless mixed ages by inadvertent sampling across regions with real age differences. Scanning ion imaging (SII) has the potential to generate accurate and precise geochrono-logical data with a spatial resolution down to ca. 2 μm, much higher than that of a normal spot analysis. SII acquisition utilises a rastered primary beam to image an area of the sample with a spatial resolution dependent on the selected primary beam diameter. On the Cameca ims1270/80 instruments, the primary beam scanning is coupled with the dynamic transfer optical system (DTOS) which deflects the secondary ions back on to the ion optical axis of the instrument regardless of where in the raster illuminated area the ions originated. This feature allows retention of a high field magnification (= high transmission) mode and the ability to operate the mass spectrometer at high mass resolution without any compromise in the quality of the peak shape. Secondary ions may be detected either in a sequential (peak hopping) mono-collection mode or simultaneous multicollection mode using low-noise pulse counting electron multipliers. Regardless of the detection mode, data are acquired over sufficient cycles to generate usable counting statistics from selected sub-areas of the image. In two case studies from southern west Greenland and Antarctica, Pb-isotope maps gen-erated using SII reveal considerable complexities of internal structure, age and isotope systematics that were not predictable from CL imaging of the grains (Fig. 1). Fig. 1. Scanning ion images of the 207Pb/206Pb ratio in zircons from (a) W. Greenland and (b) Antarctica (inset shows rastered area of grain corresponding to the image).
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Maggs, J. E.; Gallagher, D. L.; Kurth, W. S.; Scarf, F. L.
1981-01-01
Observations are presented of the parametric decay and spatial collapse of Langmuir waves driven by an electron beam streaming into the solar wind from the Jovian bow shock. Long wavelength Langmuir waves upstream of the bow shock are effectively converted into short wavelength waves no longer in resonance with the beam. The conversion is shown to be the result of a nonlinear interaction involving the beam-driven pump, a sideband emission, and a low level of ion-acoustic turbulence. The beam-driven Langmuir wave emission breaks up into a complex sideband structure with both positive and negative Doppler shifts. In some cases, the sideband emission consists of isolated wave packets with very short duration bursts, which are very intense and are thought to consist of envelope solitons which have collapsed to spatial scales of only a few Debye lengths.
Anguita, Jaime A; Neifeld, Mark A; Vasic, Bane V
2007-09-10
By means of numerical simulations we analyze the statistical properties of the power fluctuations induced by the incoherent superposition of multiple transmitted laser beams in a terrestrial free-space optical communication link. The measured signals arising from different transmitted optical beams are found to be statistically correlated. This channel correlation increases with receiver aperture and propagation distance. We find a simple scaling rule for the spatial correlation coefficient in terms of the propagation distance and we are able to predict the scintillation reduction in previously reported experiments with good accuracy. We propose an approximation to the probability density function of the received power of a spatially correlated multiple-beam system in terms of the parameters of the single-channel gamma-gamma function. A bit-error-rate evaluation is also presented to demonstrate the improvement of a multibeam system over its single-beam counterpart.
Photonic Crystal Microchip Laser
NASA Astrophysics Data System (ADS)
Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis
2016-09-01
The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.
Photonic Crystal Microchip Laser
Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis
2016-01-01
The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066
Curved singular beams for three-dimensional particle manipulation.
Zhao, Juanying; Chremmos, Ioannis D; Song, Daohong; Christodoulides, Demetrios N; Efremidis, Nikolaos K; Chen, Zhigang
2015-07-13
For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications.
Mechanical beam isolator for high-power laser systems
Post, Richard F.; Vann, Charles S.
1998-01-01
A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape.
Satellite communication antenna technology
NASA Technical Reports Server (NTRS)
Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)
1983-01-01
A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.
The Researches on I-beam of different web’s shapes
NASA Astrophysics Data System (ADS)
Shuang, Chao; Zhou, Dong Hua
2018-05-01
When the ratio of height to thickness of girder web is relatively high, generally the local stability of web is enhanced by setting up stiffeners. But setting up stiffeners not only increase the use of material, but also increases the welding work. Therefore, the web can be processed into trapezoid, curve, triangles and rectangle to improve its stability. In order to study the mechanical behavior of the web with different shapes and its local stable bearing capacity, the finite element analysis software ANSYS was used to analyze the six I-beam, and the stress characteristics under different web forms were obtained. The results show that the local stability bearing capacity of the I-beam is improved, especially the shape of the trapezoidal web and the shape of the curved web have a significant effect on the local stability of the I-beam. Finally, based on the study of the local stability of the trapezoidal web and the curved web, the influence of their geometrical dimensions on the local stable bearing capacity is also studied.
Improving the fiber coupling efficiency for DARWIN by loss-less shaping of the receive beams
NASA Astrophysics Data System (ADS)
Voland, Ch.; Weigel, Th.; Dreischer, Th.; Wallner, O.; Ergenzinger, K.; Ries, H.; Jetter, R.; Vosteen, A.
2017-11-01
For the DARWIN mission the extremely low planet signal levels require an optical instrument design with utmost efficiency to guarantee the required science performance. By shaping the transverse amplitude and phase distributions of the receive beams, the singlemode fibre coupling efficiency can be increased to almost 100%, thus allowing for a gain of more than 20% compared to conventional designs. We show that the use of "tailored freeform surfaces" for purpose of beam shaping dramatically reduces the coupling degradations, which otherwise result from mode mismatch between the Airy pattern of the image and the fibre mode, and therefore allows for achieving a performance close to the physical limitations. We present an application of tailored surfaces for building a beam shaping optics that shall enhance fibre coupling performance as core part of a space based interferometer in the future DARWIN mission and present performance predictions by wave-optical simulations. We assess the feasibility of manufacturing the corresponding tailored surfaces and describe the proof of concept demonstrator we use for experimental performance verification.
Surface-active element effects on the shape of GTA, laser, and electron-beam welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiple, C.R.; Roper, J.R.; Stagner, R.T.
1983-03-01
Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effectmore » of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.« less
Axicons, prisms and integrators: searching for simple laser beam shaping solutions
NASA Astrophysics Data System (ADS)
Lizotte, Todd
2010-08-01
Over the last thirty five years there have been many papers presented at numerous conferences and published within a host of optical journals. What is presented in many cases is either too exotic or technically challenging in practical application terms and it could be said both are testaments to the imagination of engineers and researchers. For many brute force laser processing applications such as paint stripping, large area ablation or general skiving of flex circuits, the opportunity to use a beam shaper that is inexpensive is a welcomed tool. Shaping the laser beam for less demanding applications, provides for a more uniform removal rate and increases the overall quality of the part being processed. It is a well known fact customers like their parts to look good. Many times, complex optical beam shaping techniques are considered because no one is aware of the historical solutions that have been lost to the ages. These complex solutions can range in price from 10,000 to 60,000 and require many months to design and fabricate. This paper will provide an overview of various beam shaping techniques that are both elegant and simple in concept and design. Optical techniques using axicons, prisms and reflective integrators will be discussed in an overview format.
Computer Generated Holography with Intensity-Graded Patterns
Conti, Rossella; Assayag, Osnath; de Sars, Vincent; Guillon, Marc; Emiliani, Valentina
2016-01-01
Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light. PMID:27799896
On the Fringe Field of Wide Angle LC Optical Phased Array
NASA Technical Reports Server (NTRS)
Wang, Xighua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.
2004-01-01
For free space laser communication, light weighted large deployable optics is a critical component for the transmitter. However, such an optical element will introduce large aberrations due to the fact that the surface figure of the large optics is susceptable to deformation in the space environment. We propose to use a high-resolution liquid crystal spatial light modulator to correct for wavefront aberrations introduced by the primary optical element, and to achieve very fine beam steering and shaping at the same time. A 2-D optical phased array (OPA) antenna based on a Liquid Crystal on Silicon (LCOS) spatial light modulator is described. This device offers a combination of low cost, high resolution, high accuracy, high diffraction efficiency at video speed. To quantitatively understand the influence factor of the different design parameters, a computer simulation of the device is given by the 2-D director simulation and the Finite Difference Time domain (FDTD) simulation. For the 1-D OPA, we define the maximum steering angle to have a grating period of 8 pixel/reset scheme; as for larger steering angles than this criterion, the diffraction efficiency drops dramatically. In this case, the diffraction efficiency of 0.86 and the Strehl ratio of 0.9 are obtained in the simulation. The performance of the device in achieving high resolution wavefront correction and beam steering is also characterized experimentally.
NASA Astrophysics Data System (ADS)
Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.
2010-08-01
In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.
Xu, Wei; Cao, Maosen; Ding, Keqin; Radzieński, Maciej; Ostachowicz, Wiesław
2017-01-01
Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates. PMID:28773016
Weidlich, Georg A.
2016-01-01
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404
Generation of electron Airy beams.
Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady
2013-02-21
Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishikawa, K.; Frank, L.A.; Huang, C.Y.
Plasma data from ISEE 1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electronmore » beam and the ion beam excite ion acoustic waves with the Doppler-shifted real frequency ..omega..approx. = +- k/sub parallel/(c/sub s/-V/sub i//sub //sub parallel/). However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion beam is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points for simulations show turbulence generated by growing waves. The frequency of these spectra ranges from ..cap omega../sub i/ to ..omega../sub p//sub e/, which is in qualitative agreement with the satellite data. copyright American Geophysical Union 1988« less
Optical beam forming techniques for phased array antennas
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Chandler, C.
1993-01-01
Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid amplifier for RF power. The advantages are no SLM is required for this approach, and the complete antenna system is capable of full monolithic integration.
A proposal of image slicer designed for integral field spectroscopy with NIRSpec/JSWT
NASA Astrophysics Data System (ADS)
Prieto, E.; Vivès, S.
2006-06-01
Integral field spectroscopy (IFS) provides a spectrum simultaneously for each spatial sample of an extended, two-dimensional field. It consists of an integral field unit (IFU) which slices and re-arranges the initial field along the entrance slit of a spectrograph. This article presents a deviation of the classical design of IFU based on the advanced image slicer concept [Content, R., 1997. A new design for integral field spectroscopy with 8-m telescopes. Proc. SPIE 2871, 1295]. To reduce optical aberrations, pupil and slit mirrors are disposed in a fan-shaped configuration that means that angles between incident and reflected beams on each elements are minimized. The fan-shaped image slicer is explained more in details in [Vivès, S., Prieto, E. submitted for publication. An original image slicer designed for Integral Field Spectroscopy with NIRSpec/JSWT. Opt Eng. Available from: ArXiv Physics e-prints, arXiv:0512002.] As an example, we are presenting the design LAM used for its proposal at the NIRSPEC/IFU invitation of tender.
NASA Astrophysics Data System (ADS)
Beheshtipour, Saleheh; Safari, Ebrahim; Majdabadi, Abbas; Silakhori, Kaveh
2018-02-01
Transversely Excited Atmospheric (TEA) CO2 laser pulses were used in order to generate an optical breakdown in a variety of mono- and polyatomic molecules using different focusing powers. The dependence of the spark kernel geometry and the transmitted pulse shapes on the focusing power as well as the pressure, molecular weight, and ionization energy of the gases was investigated in detail. Partial removal of the transmitted pulse tail in the 0.05-2.6 μs range together with shortened spikes in the 10-60 ns range has been observed by applying a 2.5 cm focal length lens for all the gases. At higher focal lengths, this effect is only incompletely observed for He gas. Spatial-temporal analyses of the laser beams and the relevant plasma plumes indicate that this behavior is due to the drop in the plasma density below the critical level, before the laser pulse tail is completed.
A cusp electron gun for millimeter wave gyrodevices
NASA Astrophysics Data System (ADS)
Donaldson, C. R.; He, W.; Cross, A. W.; Li, F.; Phelps, A. D. R.; Zhang, L.; Ronald, K.; Robertson, C. W.; Whyte, C. G.; Young, A. R.
2010-04-01
The experimental results of a thermionic cusp electron gun, to drive millimeter and submillimeter wave harmonic gyrodevices, are reported in this paper. Using a "smooth" magnetic field reversal formed by two coils this gun generated an annular-shaped, axis-encircling electron beam with 1.5 A current, and an adjustable velocity ratio α of up to 1.56 at a beam voltage of 40 kV. The beam cross-sectional shape and transported beam current were measured by a witness plate technique and Faraday cup, respectively. These measured results were found to be in excellent agreement with the simulated results using the three-dimensional code MAGIC.
NASA Astrophysics Data System (ADS)
Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Luparia, A.; Marchette, F.; Peroni, C.; Raffaele, L.; Sabini, M. G.; Valastro, L.
2006-01-01
Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.
Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas
NASA Astrophysics Data System (ADS)
Körner, H. S.; Stigloher, J.; Back, C. H.
2017-09-01
We experimentally demonstrate by time-resolved scanning magneto-optical Kerr microscopy the possibility to locally excite multiple spin-wave beams in the dipolar-dominated regime in metallic NiFe films. For this purpose we employ differently shaped nonuniform microwave antennas consisting of several coplanar waveguide sections different in size, thereby adapting an approach for the generation of spin-wave beams in the exchange-dominated regime suggested by Gruszecki et al. [Sci. Rep. 6, 22367 (2016), 10.1038/srep22367]. The occurring spin-wave beams are diffractive and we show that the width of the beam and its widening as it propagates can be tailored by the shape and the length of the nonuniformity. Moreover, the propagation direction of the diffractive beams can be manipulated by changing the bias field direction.
Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki
2010-07-05
We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.
Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles
NASA Astrophysics Data System (ADS)
Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd
2013-12-01
Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).
NASA Astrophysics Data System (ADS)
Geints, Yu. E.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Zemlyanov, A. A.
2017-01-01
Experimental and theoretical study of the post-filamentation stage of focused high-power Ti:Sa laser pulses in air is presented. Angular divergence of the laser beam, as well as angular and spatial characteristics of specific spatially localized light structures, the post-filament channels (PFCs), under different initial focusing conditions and laser beam energy are investigated. We show that PFC angular divergence is always less than that of the whole laser beam and tends to decrease with laser pulse energy increase and beam focal length elongation.
High brightness KW-class direct diode laser
NASA Astrophysics Data System (ADS)
Xu, Dan; Guo, Zhijie; Ma, Di; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Xu, Ray; Chen, Xiaohua
2018-02-01
With certain emitter beam quality and BPP allowed by fiber, we have derived a spatial beam combination structure that approaches the BPP limit of the fiber. Using the spatial beam combination structure and polarization beam combination, BWT has achieved 1.1KW output from a fiber (one end coated) with NA 0.22 and core diameter of 200μm. The electro- optical efficiency is nearly 47%. Multiple emitters with wavelength of 976nm are packaged in a module with size of 600 ×350×80mm3.
NASA Astrophysics Data System (ADS)
Buske, Ivo; Riede, Wolfgang
2006-09-01
We compare active optical elements based on different technologies to accomplish the requirements of a 2-dim. fine tracking control system. A cascaded optically and electrically addressable spatial light modulator (OASLM) based on liquid crystals (LC) is used for refractive beam steering. Spatial light modulators provide a controllable phase wedge to generate a beam deflection. Additionally, a tip/tilt mirror approach operating with piezo-electric actuators is investigated. A digital PID controller is implemented for closed-loop control. Beam tracking with a root-mean-squared accuracy of Δα=30 nrad has been laboratory-confirmed.
Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. L.; Tran, Van t.
2007-01-01
Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.L.
1976-01-06
The shutter and beam expander for diverting the output of a high power laser into an absorption body comprises a onepiece metallic structure having a convex spherically shaped portion adapted to be moved into the beam path for simultaneously reflecting and expanding the beam into energy absorption material.
Apodization of beams in an optical interferometer
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Dutta, Kalyan (Inventor)
2006-01-01
An interferometry apparatus comprises one or more beam generators, a detector, and a plurality of optical paths along which one or more beams of light propagate. Disposed along at least one of the optical paths is an apodization mask to shape one of the beams.
Prefocused objective-pinhole unit for beam expanding and spatial filtering.
Antes, G P
1973-03-01
A beam-expanding and spatial-filtering device, the prefocused objective-pinhole unit (POP unit), is presented. The design is primarily aimed at greater simplicity in handling and construction than the commercially available lens-pinhole spatial filters (LPSF), for once the pinhole is fixed in the correct position with respect to the objective, the alignment of the whole unit can be made an easy matter.
Rethinking CMB foregrounds: systematic extension of foreground parametrizations
NASA Astrophysics Data System (ADS)
Chluba, Jens; Hill, James Colin; Abitbol, Maximilian H.
2017-11-01
Future high-sensitivity measurements of the cosmic microwave background (CMB) anisotropies and energy spectrum will be limited by our understanding and modelling of foregrounds. Not only does more information need to be gathered and combined, but also novel approaches for the modelling of foregrounds, commensurate with the vast improvements in sensitivity, have to be explored. Here, we study the inevitable effects of spatial averaging on the spectral shapes of typical foreground components, introducing a moment approach, which naturally extends the list of foreground parameters that have to be determined through measurements or constrained by theoretical models. Foregrounds are thought of as a superposition of individual emitting volume elements along the line of sight and across the sky, which then are observed through an instrumental beam. The beam and line-of-sight averages are inevitable. Instead of assuming a specific model for the distributions of physical parameters, our method identifies natural new spectral shapes for each foreground component that can be used to extract parameter moments (e.g. mean, dispersion, cross terms, etc.). The method is illustrated for the superposition of power laws, free-free spectra, grey-body and modified blackbody spectra, but can be applied to more complicated fundamental spectral energy distributions. Here, we focus on intensity signals but the method can be extended to the case of polarized emission. The averaging process automatically produces scale-dependent spectral shapes and the moment method can be used to propagate the required information across scales in power spectrum estimates. The approach is not limited to applications to CMB foregrounds, but could also be useful for the modelling of X-ray emission in clusters of galaxies.
The guidance of visual search by shape features and shape configurations.
McCants, Cody W; Berggren, Nick; Eimer, Martin
2018-03-01
Representations of target features (attentional templates) guide attentional object selection during visual search. In many search tasks, targets objects are defined not by a single feature but by the spatial configuration of their component shapes. We used electrophysiological markers of attentional selection processes to determine whether the guidance of shape configuration search is entirely part-based or sensitive to the spatial relationship between shape features. Participants searched for targets defined by the spatial arrangement of two shape components (e.g., hourglass above circle). N2pc components were triggered not only by targets but also by partially matching distractors with one target shape (e.g., hourglass above hexagon) and by distractors that contained both target shapes in the reverse arrangement (e.g., circle above hourglass), in line with part-based attentional control. Target N2pc components were delayed when a reverse distractor was present on the opposite side of the same display, suggesting that early shape-specific attentional guidance processes could not distinguish between targets and reverse distractors. The control of attention then became sensitive to spatial configuration, which resulted in a stronger attentional bias for target objects relative to reverse and partially matching distractors. Results demonstrate that search for target objects defined by the spatial arrangement of their component shapes is initially controlled in a feature-based fashion but can later be guided by templates for spatial configurations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method
NASA Technical Reports Server (NTRS)
Smith, James P.
1996-01-01
A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.