Durán, América P.; Duffy, James P.; Gaston, Kevin J.
2014-01-01
Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation. PMID:25143040
Durán, América P; Duffy, James P; Gaston, Kevin J
2014-10-07
Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Bryan, Brett Anthony; Raymond, Christopher Mark; Crossman, Neville David; King, Darran
2011-02-01
Consideration of the social values people assign to relatively undisturbed native ecosystems is critical for the success of science-based conservation plans. We used an interview process to identify and map social values assigned to 31 ecosystem services provided by natural areas in an agricultural landscape in southern Australia. We then modeled the spatial distribution of 12 components of ecological value commonly used in setting spatial conservation priorities. We used the analytical hierarchy process to weight these components and used multiattribute utility theory to combine them into a single spatial layer of ecological value. Social values assigned to natural areas were negatively correlated with ecological values overall, but were positively correlated with some components of ecological value. In terms of the spatial distribution of values, people valued protected areas, whereas those natural areas underrepresented in the reserve system were of higher ecological value. The habitats of threatened animal species were assigned both high ecological value and high social value. Only small areas were assigned both high ecological value and high social value in the study area, whereas large areas of high ecological value were of low social value, and vice versa. We used the assigned ecological and social values to identify different conservation strategies (e.g., information sharing, community engagement, incentive payments) that may be effective for specific areas. We suggest that consideration of both ecological and social values in selection of conservation strategies can enhance the success of science-based conservation planning. ©2010 Society for Conservation Biology.
Sutton, N J; Armsworth, P R
2014-12-01
Facing tight resource constraints, conservation organizations must allocate funds available for habitat protection as effectively as possible. Often, they combine spatially referenced economic and biodiversity data to prioritize land for protection. We tested how sensitive these prioritizations could be to differences in the spatial grain of these data by demonstrating how the conclusion of a classic debate in conservation planning between cost and benefit targeting was altered based on the available information. As a case study, we determined parcel-level acquisition costs and biodiversity benefits of land transactions recently undertaken by a nonprofit conservation organization that seeks to protect forests in the eastern United States. Then, we used hypothetical conservation plans to simulate the types of ex ante priorities that an organization could use to prioritize areas for protection. We found the apparent effectiveness of cost and benefit targeting depended on the spatial grain of the data used when prioritizing parcels based on local species richness. However, when accounting for complementarity, benefit targeting consistently was more efficient than a cost targeting strategy regardless of the spatial grain of the data involved. More pertinently for other studies, we found that combining data collected over different spatial grains inflated the apparent effectiveness of a cost targeting strategy and led to overestimation of the efficiency gain offered by adopting a more integrative return-on-investment approach. © 2014 Society for Conservation Biology.
Field, Christopher R; Dayer, Ashley A; Elphick, Chris S
2017-08-22
The human aspects of conservation are often overlooked but will be critical for identifying strategies for biological conservation in the face of climate change. We surveyed the behavioral intentions of coastal landowners with respect to various conservation strategies aimed at facilitating ecosystem migration for tidal marshes. We found that several popular strategies, including conservation easements and increasing awareness of ecosystem services, may not interest enough landowners to allow marsh migration at the spatial scales needed to mitigate losses from sea-level rise. We identified less common conservation strategies that have more support but that are unproven in practice and may be more expensive. Our results show that failure to incorporate human dimensions into ecosystem modeling and conservation planning could lead to the use of ineffective strategies and an overly optimistic view of the potential for ecosystem migration into human dominated areas.
Field, Christopher R.; Dayer, Ashley A.; Elphick, Chris S.
2017-01-01
The human aspects of conservation are often overlooked but will be critical for identifying strategies for biological conservation in the face of climate change. We surveyed the behavioral intentions of coastal landowners with respect to various conservation strategies aimed at facilitating ecosystem migration for tidal marshes. We found that several popular strategies, including conservation easements and increasing awareness of ecosystem services, may not interest enough landowners to allow marsh migration at the spatial scales needed to mitigate losses from sea-level rise. We identified less common conservation strategies that have more support but that are unproven in practice and may be more expensive. Our results show that failure to incorporate human dimensions into ecosystem modeling and conservation planning could lead to the use of ineffective strategies and an overly optimistic view of the potential for ecosystem migration into human dominated areas. PMID:28790190
Understanding the effects of different social data on selecting priority conservation areas.
Karimi, Azadeh; Tulloch, Ayesha I T; Brown, Greg; Hockings, Marc
2017-12-01
Conservation success is contingent on assessing social and environmental factors so that cost-effective implementation of strategies and actions can be placed in a broad social-ecological context. Until now, the focus has been on how to include spatially explicit social data in conservation planning, whereas the value of different kinds of social data has received limited attention. In a regional systematic conservation planning case study in Australia, we examined the spatial concurrence of a range of spatially explicit social values and land-use preferences collected using a public participation geographic information system and biological data. We used Zonation to integrate the social data with the biological data in a series of spatial-prioritization scenarios to determine the effect of the different types of social data on spatial prioritization compared with biological data alone. The type of social data (i.e., conservation opportunities or constraints) significantly affected spatial prioritization outcomes. The integration of social values and land-use preferences under different scenarios was highly variable and generated spatial prioritizations 1.2-51% different from those based on biological data alone. The inclusion of conservation-compatible values and preferences added relatively few new areas to conservation priorities, whereas including noncompatible economic values and development preferences as costs significantly changed conservation priority areas (48.2% and 47.4%, respectively). Based on our results, a multifaceted conservation prioritization approach that combines spatially explicit social data with biological data can help conservation planners identify the type of social data to collect for more effective and feasible conservation actions. © 2017 Society for Conservation Biology.
Integrating biological and social values when prioritizing places for biodiversity conservation.
Whitehead, Amy L; Kujala, Heini; Ives, Christopher D; Gordon, Ascelin; Lentini, Pia E; Wintle, Brendan A; Nicholson, Emily; Raymond, Christopher M
2014-08-01
The consideration of information on social values in conjunction with biological data is critical for achieving both socially acceptable and scientifically defensible conservation planning outcomes. However, the influence of social values on spatial conservation priorities has received limited attention and is poorly understood. We present an approach that incorporates quantitative data on social values for conservation and social preferences for development into spatial conservation planning. We undertook a public participation GIS survey to spatially represent social values and development preferences and used species distribution models for 7 threatened fauna species to represent biological values. These spatially explicit data were simultaneously included in the conservation planning software Zonation to examine how conservation priorities changed with the inclusion of social data. Integrating spatially explicit information about social values and development preferences with biological data produced prioritizations that differed spatially from the solution based on only biological data. However, the integrated solutions protected a similar proportion of the species' distributions, indicating that Zonation effectively combined the biological and social data to produce socially feasible conservation solutions of approximately equivalent biological value. We were able to identify areas of the landscape where synergies and conflicts between different value sets are likely to occur. Identification of these synergies and conflicts will allow decision makers to target communication strategies to specific areas and ensure effective community engagement and positive conservation outcomes. © 2014 Society for Conservation Biology.
Sandor F. Toth; Robert Haight; Stephanie A. Snyder; Sonney George; James R. Miller; Mark S. Gregory; Adam M. Skibbe
2009-01-01
Conservation efforts often require site or parcel selection strategies that lead to spatially cohesive reserves. Although habitat contiguity is thought to be conducive to the persistence of many sensitive species, availability of funding and suitable land may restrict the extent to which this spatial attribute can be pursued in land management or conservation. Using...
Huang, Lin; Cao, Wei; Xu, Xinliang; Fan, Jiangwen; Wang, Junbang
2018-09-15
The maintenance and improvement of ecosystem services on the Tibet Plateau are critical for national ecological security in China and are core objectives of ecological conservation in this region. In this paper, ecosystem service benefits of the Tibet Ecological Conservation Project were comprehensively assessed by estimating and mapping the spatiotemporal variation patterns of critical ecosystem services on the Tibet Plateau from 2000 to 2015. Furthermore, we linked the benefit assessment to the sustainable spatial planning of future ecological conservation strategies. Comparing the 8 years before and after the project, the water retention and carbon sink services of the forest, grassland and wetland ecosystems were slightly increased after the project, and the ecosystem sand fixation service has been steadily enhanced. The increasing forage supply service of grassland significantly reduced the grassland carrying pressure and eased the conflict between grassland and livestock. However, enhanced rainfall erosivity occurred due to increased rainfall, and root-layer soils could not recover in a short period of time, both factors have led to a decline in soil conservation service. The warm and humid climate is beneficial for the restoration of ecosystems on the Tibet Plateau, and the implementation of the Tibet Ecological Conservation Project has had a positive effect on the local improvement of ecosystem services. A new spatial planning strategy for ecological conservation was introduced and aims to establish a comprehensive, nationwide system to protect important natural ecosystems and wildlife, and to promote the sustainable use of natural resources. Copyright © 2018 Elsevier Ltd. All rights reserved.
Laura Phillips-Mao; Susan M. Galatowitsch; Stephanie A. Snyder; Robert G. Haight
2016-01-01
Incorporating climate change into conservation decision-making at site and population scales is challenging due to uncertainties associated with localized climate change impacts and population responses to multiple interacting impacts and adaptation strategies. We explore the use of spatially explicit population models to facilitate scenario analysis, a conservation...
Setting conservation priorities for migratory networks under uncertainty.
Dhanjal-Adams, Kiran L; Klaassen, Marcel; Nicol, Sam; Possingham, Hugh P; Chadès, Iadine; Fuller, Richard A
2017-06-01
Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian-Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites. © 2016 Society for Conservation Biology.
Conservation businesses and conservation planning in a biological diversity hotspot.
Di Minin, Enrico; Macmillan, Douglas Craig; Goodman, Peter Styan; Escott, Boyd; Slotow, Rob; Moilanen, Atte
2013-08-01
The allocation of land to biological diversity conservation competes with other land uses and the needs of society for development, food, and extraction of natural resources. Trade-offs between biological diversity conservation and alternative land uses are unavoidable, given the realities of limited conservation resources and the competing demands of society. We developed a conservation-planning assessment for the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biological diversity hotspot. Our objective was to enhance biological diversity protection while promoting sustainable development and providing spatial guidance in the resolution of potential policy conflicts over priority areas for conservation at risk of transformation. The conservation-planning assessment combined spatial-distribution models for 646 conservation features, spatial economic-return models for 28 alternative land uses, and spatial maps for 4 threats. Nature-based tourism businesses were competitive with other land uses and could provide revenues of >US$60 million/year to local stakeholders and simultaneously help meeting conservation goals for almost half the conservation features in the planning region. Accounting for opportunity costs substantially decreased conflicts between biological diversity, agricultural use, commercial forestry, and mining. Accounting for economic benefits arising from conservation and reducing potential policy conflicts with alternative plans for development can provide opportunities for successful strategies that combine conservation and sustainable development and facilitate conservation action. © 2013 Society for Conservation Biology.
Interacting Social and Environmental Predictors for the Spatial Distribution of Conservation Lands
Baldwin, Robert F.; Leonard, Paul B.
2015-01-01
Conservation decisions should be evaluated for how they meet conservation goals at multiple spatial extents. Conservation easements are land use decisions resulting from a combination of social and environmental conditions. An emerging area of research is the evaluation of spatial distribution of easements and their spatial correlates. We tested the relative influence of interacting social and environmental variables on the spatial distribution of conservation easements by ownership category and conservation status. For the Appalachian region of the United States, an area with a long history of human occupation and complex land uses including public-private conservation, we found that settlement, economic, topographic, and environmental data associated with spatial distribution of easements (N = 4813). Compared to random locations, easements were more likely to be found in lower elevations, in areas of greater agricultural productivity, farther from public protected areas, and nearer other human features. Analysis of ownership and conservation status revealed sources of variation, with important differences between local and state government ownerships relative to non-governmental organizations (NGOs), and among U.S. Geological Survey (USGS) GAP program status levels. NGOs were more likely to have easements nearer protected areas, and higher conservation status, while local governments held easements closer to settlement, and on lands of greater agricultural potential. Logistic interactions revealed environmental variables having effects modified by social correlates, and the strongest predictors overall were social (distance to urban area, median household income, housing density, distance to land trust office). Spatial distribution of conservation lands may be affected by geographic area of influence of conservation groups, suggesting that multi-scale conservation planning strategies may be necessary to satisfy local and regional needs for reserve networks. Our results support previous findings and provide an ecoregion-scale view that conservation easements may provide, at local scales, conservation functions on productive, more developable lands. Conservation easements may complement functions of public protected areas but more research should examine relative landscape-level ecological functions of both forms of protection. PMID:26465155
Interacting Social and Environmental Predictors for the Spatial Distribution of Conservation Lands.
Baldwin, Robert F; Leonard, Paul B
2015-01-01
Conservation decisions should be evaluated for how they meet conservation goals at multiple spatial extents. Conservation easements are land use decisions resulting from a combination of social and environmental conditions. An emerging area of research is the evaluation of spatial distribution of easements and their spatial correlates. We tested the relative influence of interacting social and environmental variables on the spatial distribution of conservation easements by ownership category and conservation status. For the Appalachian region of the United States, an area with a long history of human occupation and complex land uses including public-private conservation, we found that settlement, economic, topographic, and environmental data associated with spatial distribution of easements (N = 4813). Compared to random locations, easements were more likely to be found in lower elevations, in areas of greater agricultural productivity, farther from public protected areas, and nearer other human features. Analysis of ownership and conservation status revealed sources of variation, with important differences between local and state government ownerships relative to non-governmental organizations (NGOs), and among U.S. Geological Survey (USGS) GAP program status levels. NGOs were more likely to have easements nearer protected areas, and higher conservation status, while local governments held easements closer to settlement, and on lands of greater agricultural potential. Logistic interactions revealed environmental variables having effects modified by social correlates, and the strongest predictors overall were social (distance to urban area, median household income, housing density, distance to land trust office). Spatial distribution of conservation lands may be affected by geographic area of influence of conservation groups, suggesting that multi-scale conservation planning strategies may be necessary to satisfy local and regional needs for reserve networks. Our results support previous findings and provide an ecoregion-scale view that conservation easements may provide, at local scales, conservation functions on productive, more developable lands. Conservation easements may complement functions of public protected areas but more research should examine relative landscape-level ecological functions of both forms of protection.
Use of single large or several small policies as strategies to manage people-park interactions.
Mackenzie, Catrina A; Baird, Timothy D; Hartter, Joel
2014-12-01
Biodiversity conservation has been criticized for undermining or ignoring social well-being. Currently efforts to mutually promote social justice, rural development, and biodiversity conservation, which have been contentious and yielded mixed results, continue to spread despite a general dearth of effective management strategies. We contend that social and economic concerns should be integral to conservation planning and propose that the scale of these phenomena is also critical. To evaluate the merit of this proposal, we adopted and expanded a conservation management strategy framework developed by Joel Heinen and examined how population density, economic disparity, and ethnic heterogeneity vary spatially surrounding 2 contrasting protected areas in East Africa: Kibale National Park in Uganda and Tarangire National Park in Tanzania. Analyses of demographic, wealth, and ethnicity data from regional censuses and household surveys conducted in 2009 and 2010 indicated that choice of scale (landscape or community) changed the management strategies recommended by the model. Therefore, "several small" people-park management strategies varying around a given protected area may be more appropriate than a "single large" people-park strategy applied across an entire protected area. Correspondingly, scale adjusted Heinen recommendations offered new strategies for effective conservation management within these human landscapes not incorporated in current in situ management plans. © 2014 Society for Conservation Biology.
Fine-resolution conservation planning with limited climate-change information.
Shah, Payal; Mallory, Mindy L; Ando, Amy W; Guntenspergen, Glenn R
2017-04-01
Climate-change induced uncertainties in future spatial patterns of conservation-related outcomes make it difficult to implement standard conservation-planning paradigms. A recent study translates Markowitz's risk-diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate-change scenarios for carrying out fine-resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk-return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate-change information and full climate-change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate-change forecasts such that the best possible risk-return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate-change information could be reduced by 17% relative to other iterative approaches. © 2016 Society for Conservation Biology.
Fine‐resolution conservation planning with limited climate‐change information
Shah, Payal; Mallory, Mindy L.; Ando , Amy W.; Guntenspergen, Glenn R.
2017-01-01
Climate‐change induced uncertainties in future spatial patterns of conservation‐related outcomes make it difficult to implement standard conservation‐planning paradigms. A recent study translates Markowitz's risk‐diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate‐change scenarios for carrying out fine‐resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk‐return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate‐change information and full climate‐change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate‐change forecasts such that the best possible risk‐return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate‐change information could be reduced by 17% relative to other iterative approaches.
Incorporating threat in hotspots and coldspots of biodiversity and ecosystem services.
Schröter, Matthias; Kraemer, Roland; Ceauşu, Silvia; Rusch, Graciela M
2017-11-01
Spatial prioritization could help target conservation actions directed to maintain both biodiversity and ecosystem services. We delineate hotspots and coldspots of two biodiversity conservation features and five regulating and cultural services by incorporating an indicator of 'threat', i.e. timber harvest profitability for forest areas in Telemark (Norway). We found hotspots, where high values of biodiversity, ecosystem services and threat coincide, ranging from 0.1 to 7.1% of the area, depending on varying threshold levels. Targeting of these areas for conservation follows reactive conservation approaches. In coldspots, high biodiversity and ecosystem service values coincide with low levels of threat, and cover 0.1-3.4% of the forest area. These areas might serve proactive conservation approaches at lower opportunity cost (foregone timber harvest profits). We conclude that a combination of indicators of biodiversity, ecosystem services and potential threat is an appropriate approach for spatial prioritization of proactive and reactive conservation strategies.
Effects of payments for ecosystem services on wildlife habitat recovery.
Tuanmu, Mao-Ning; Viña, Andrés; Yang, Wu; Chen, Xiaodong; Shortridge, Ashton M; Liu, Jianguo
2016-08-01
Conflicts between local people's livelihoods and conservation have led to many unsuccessful conservation efforts and have stimulated debates on policies that might simultaneously promote sustainable management of protected areas and improve the living conditions of local people. Many government-sponsored payments-for-ecosystem-services (PES) schemes have been implemented around the world. However, few empirical assessments of their effectiveness have been conducted, and even fewer assessments have directly measured their effects on ecosystem services. We conducted an empirical and spatially explicit assessment of the conservation effectiveness of one of the world's largest PES programs through the use of a long-term empirical data set, a satellite-based habitat model, and spatial autoregressive analyses on direct measures of change in an ecosystem service (i.e., the provision of wildlife species habitat). Giant panda (Ailuropoda melanoleuca) habitat improved in Wolong Nature Reserve of China after the implementation of the Natural Forest Conservation Program. The improvement was more pronounced in areas monitored by local residents than those monitored by the local government, but only when a higher payment was provided. Our results suggest that the effectiveness of a PES program depends on who receives the payment and on whether the payment provides sufficient incentives. As engagement of local residents has not been incorporated in many conservation strategies elsewhere in China or around the world, our results also suggest that using an incentive-based strategy as a complement to command-and-control, community- and norm-based strategies may help achieve greater conservation effectiveness and provide a potential solution for the park versus people conflict. © 2016 Society for Conservation Biology.
Hot Spots and Hot Times: Wildlife Road Mortality in a Regional Conservation Corridor.
Garrah, Evelyn; Danby, Ryan K; Eberhardt, Ewen; Cunnington, Glenn M; Mitchell, Scott
2015-10-01
Strategies to reduce wildlife road mortality have become a significant component of many conservation efforts. However, their success depends on knowledge of the temporal and spatial patterns of mortality. We studied these patterns along the 1000 Islands Parkway in Ontario, Canada, a 37 km road that runs adjacent to the St. Lawrence River and bisects the Algonquin-to-Adirondacks international conservation corridor. Characteristics of all vertebrate road kill were recorded during 209 bicycle surveys conducted from 2008 to 2011. We estimate that over 16,700 vertebrates are killed on the road from April to October each year; most are amphibians, but high numbers of birds, mammals, and reptiles were also found, including six reptiles considered at-risk in Canada. Regression tree analysis was used to assess the importance of seasonality, weather, and traffic on road kill magnitude. All taxa except mammals exhibited distinct temporal peaks corresponding to phases in annual life cycles. Variations in weather and traffic were only important outside these peak times. Getis-Ord analysis was used to identify spatial clusters of mortality. Hot spots were found in all years for all taxa, but locations varied annually. A significant spatial association was found between multiyear hot spots and wetlands. The results underscore the notion that multi-species conservation efforts must account for differences in the seasonality of road mortality among species and that multiple years of data are necessary to identify locations where the greatest conservation good can be achieved. This information can be used to inform mitigation strategies with implications for conservation at regional scales.
Hot Spots and Hot Times: Wildlife Road Mortality in a Regional Conservation Corridor
NASA Astrophysics Data System (ADS)
Garrah, Evelyn; Danby, Ryan K.; Eberhardt, Ewen; Cunnington, Glenn M.; Mitchell, Scott
2015-10-01
Strategies to reduce wildlife road mortality have become a significant component of many conservation efforts. However, their success depends on knowledge of the temporal and spatial patterns of mortality. We studied these patterns along the 1000 Islands Parkway in Ontario, Canada, a 37 km road that runs adjacent to the St. Lawrence River and bisects the Algonquin-to-Adirondacks international conservation corridor. Characteristics of all vertebrate road kill were recorded during 209 bicycle surveys conducted from 2008 to 2011. We estimate that over 16,700 vertebrates are killed on the road from April to October each year; most are amphibians, but high numbers of birds, mammals, and reptiles were also found, including six reptiles considered at-risk in Canada. Regression tree analysis was used to assess the importance of seasonality, weather, and traffic on road kill magnitude. All taxa except mammals exhibited distinct temporal peaks corresponding to phases in annual life cycles. Variations in weather and traffic were only important outside these peak times. Getis-Ord analysis was used to identify spatial clusters of mortality. Hot spots were found in all years for all taxa, but locations varied annually. A significant spatial association was found between multiyear hot spots and wetlands. The results underscore the notion that multi-species conservation efforts must account for differences in the seasonality of road mortality among species and that multiple years of data are necessary to identify locations where the greatest conservation good can be achieved. This information can be used to inform mitigation strategies with implications for conservation at regional scales.
Ecosystem-based analysis of a marine protected area where fisheries and protected species coexist.
Espinoza-Tenorio, Alejandro; Montaño-Moctezuma, Gabriela; Espejel, Ileana
2010-04-01
The Gulf of California Biosphere Reserve (UGC&CRDBR) is a Marine Protected Area that was established in 1993 with the aim of preserving biodiversity and remediating environmental impacts. Because remaining vigilant is hard and because regulatory measures are difficult to enforce, harvesting has been allowed to diminish poaching. Useful management strategies have not been implemented, however, and conflicts remain between conservation legislation and the fisheries. We developed a transdisciplinary methodological scheme (pressure-state-response, loop analysis, and Geographic Information System) that includes both protected species and fisheries modeled together in a spatially represented marine ecosystem. We analyzed the response of this marine ecosystem supposing that conservation strategies were successful and that the abundance of protected species had increased. The final aim of this study was to identify ecosystem-level management alternatives capable of diminishing the conflict between conservation measures and fisheries. This methodological integration aimed to understand the functioning of the UGC&CRDBR community as well as to identify implications of conservation strategies such as the recovery of protected species. Our results suggest research hypotheses related to key species that should be protected within the ecosystem, and they point out the importance of considering spatial management strategies. Counterintuitive findings underline the importance of understanding how the community responds to disturbances and the effect of indirect pathways on the abundance of ecosystem constituents. Insights from this research are valuable in defining policies in marine reserves where fisheries and protected species coexist.
Ecosystem-Based Analysis of a Marine Protected Area Where Fisheries and Protected Species Coexist
NASA Astrophysics Data System (ADS)
Espinoza-Tenorio, Alejandro; Montaño-Moctezuma, Gabriela; Espejel, Ileana
2010-04-01
The Gulf of California Biosphere Reserve (UGC&CRDBR) is a Marine Protected Area that was established in 1993 with the aim of preserving biodiversity and remediating environmental impacts. Because remaining vigilant is hard and because regulatory measures are difficult to enforce, harvesting has been allowed to diminish poaching. Useful management strategies have not been implemented, however, and conflicts remain between conservation legislation and the fisheries. We developed a transdisciplinary methodological scheme (pressure-state-response, loop analysis, and Geographic Information System) that includes both protected species and fisheries modeled together in a spatially represented marine ecosystem. We analyzed the response of this marine ecosystem supposing that conservation strategies were successful and that the abundance of protected species had increased. The final aim of this study was to identify ecosystem-level management alternatives capable of diminishing the conflict between conservation measures and fisheries. This methodological integration aimed to understand the functioning of the UGC&CRDBR community as well as to identify implications of conservation strategies such as the recovery of protected species. Our results suggest research hypotheses related to key species that should be protected within the ecosystem, and they point out the importance of considering spatial management strategies. Counterintuitive findings underline the importance of understanding how the community responds to disturbances and the effect of indirect pathways on the abundance of ecosystem constituents. Insights from this research are valuable in defining policies in marine reserves where fisheries and protected species coexist.
Using return on investment to maximize conservation effectiveness in Argentine grasslands.
Murdoch, William; Ranganathan, Jai; Polasky, Stephen; Regetz, James
2010-12-07
The rapid global loss of natural habitats and biodiversity, and limited resources, place a premium on maximizing the expected benefits of conservation actions. The scarcity of information on the fine-grained distribution of species of conservation concern, on risks of loss, and on costs of conservation actions, especially in developing countries, makes efficient conservation difficult. The distribution of ecosystem types (unique ecological communities) is typically better known than species and arguably better represents the entirety of biodiversity than do well-known taxa, so we use conserving the diversity of ecosystem types as our conservation goal. We define conservation benefit to include risk of conversion, spatial effects that reward clumping of habitat, and diminishing returns to investment in any one ecosystem type. Using Argentine grasslands as an example, we compare three strategies: protecting the cheapest land ("minimize cost"), maximizing conservation benefit regardless of cost ("maximize benefit"), and maximizing conservation benefit per dollar ("return on investment"). We first show that the widely endorsed goal of saving some percentage (typically 10%) of a country or habitat type, although it may inspire conservation, is a poor operational goal. It either leads to the accumulation of areas with low conservation benefit or requires infeasibly large sums of money, and it distracts from the real problem: maximizing conservation benefit given limited resources. Second, given realistic budgets, return on investment is superior to the other conservation strategies. Surprisingly, however, over a wide range of budgets, minimizing cost provides more conservation benefit than does the maximize-benefit strategy.
Dynamic conservation for migratory species
Reynolds, Mark D.; Sullivan, Brian L.; Hallstein, Eric; Matsumoto, Sandra; Kelling, Steve; Merrifield, Matthew; Fink, Daniel; Johnston, Alison; Hochachka, Wesley M.; Bruns, Nicholas E.; Reiter, Matthew E.; Veloz, Sam; Hickey, Catherine; Elliott, Nathan; Martin, Leslie; Fitzpatrick, John W.; Spraycar, Paul; Golet, Gregory H.; McColl, Christopher; Low, Candace; Morrison, Scott A.
2017-01-01
In an era of unprecedented and rapid global change, dynamic conservation strategies that tailor the delivery of habitat to when and where it is most needed can be critical for the persistence of species, especially those with diverse and dispersed habitat requirements. We demonstrate the effectiveness of such a strategy for migratory waterbirds. We analyzed citizen science and satellite data to develop predictive models of bird populations and the availability of wetlands, which we used to determine temporal and spatial gaps in habitat during a vital stage of the annual migration. We then filled those gaps using a reverse auction marketplace to incent qualifying landowners to create temporary wetlands on their properties. This approach is a cost-effective way of adaptively meeting habitat needs for migratory species, optimizes conservation outcomes relative to investment, and can be applied broadly to other conservation challenges. PMID:28845449
Using return on investment to maximize conservation effectiveness in Argentine grasslands
Murdoch, William; Ranganathan, Jai; Polasky, Stephen; Regetz, James
2010-01-01
The rapid global loss of natural habitats and biodiversity, and limited resources, place a premium on maximizing the expected benefits of conservation actions. The scarcity of information on the fine-grained distribution of species of conservation concern, on risks of loss, and on costs of conservation actions, especially in developing countries, makes efficient conservation difficult. The distribution of ecosystem types (unique ecological communities) is typically better known than species and arguably better represents the entirety of biodiversity than do well-known taxa, so we use conserving the diversity of ecosystem types as our conservation goal. We define conservation benefit to include risk of conversion, spatial effects that reward clumping of habitat, and diminishing returns to investment in any one ecosystem type. Using Argentine grasslands as an example, we compare three strategies: protecting the cheapest land (“minimize cost”), maximizing conservation benefit regardless of cost (“maximize benefit”), and maximizing conservation benefit per dollar (“return on investment”). We first show that the widely endorsed goal of saving some percentage (typically 10%) of a country or habitat type, although it may inspire conservation, is a poor operational goal. It either leads to the accumulation of areas with low conservation benefit or requires infeasibly large sums of money, and it distracts from the real problem: maximizing conservation benefit given limited resources. Second, given realistic budgets, return on investment is superior to the other conservation strategies. Surprisingly, however, over a wide range of budgets, minimizing cost provides more conservation benefit than does the maximize-benefit strategy. PMID:21098281
Reconciling biodiversity and carbon conservation.
Thomas, Chris D; Anderson, Barbara J; Moilanen, Atte; Eigenbrod, Felix; Heinemeyer, Andreas; Quaife, Tristan; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J
2013-05-01
Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process. © 2012 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Nackoney, J.; Hickey, J.; Williams, D.; Facheux, C.; Dupain, J.
2014-12-01
The bonobo (Pan paniscus), a great ape that is endemic to the Democratic Republic of the Congo (DRC), has been listed as Endangered on the IUCN Red List since 2007. Hunting and habitat loss are primary threats. Two recent wars and ongoing conflicts in the DRC have resulted in political and economic instability that hampers on-the-ground work, thereby accentuating the importance of spatial data and maps as tools for monitoring threats remotely and prioritizing locations for safeguarding bonobo habitat. Several regional and rangewide efforts have leveraged the utility of existing spatial data to help focus limited resources for effective broad-scale conservation of these great apes. At local scales, we developed spatial models to identify locations of highest hunting pressure, predict future human settlement and agricultural expansion, map areas of highest conservation value to bonobos, and identify the connective corridors linking them. We identified 42 least-disturbed wildland blocks meeting the minimum home range size needed for bonobos, and 32 potential corridors. At the range-wide scale, we developed a first range-wide spatial model of suitable conditions for the bonobo; this was a major contribution to the development of a Bonobo Conservation Strategy for 2012-2022, recently published by IUCN. The model used a forest edge density metric and other biotic and abiotic variables in conjunction with bonobo nest data collected during 2003-2010 by over 40 bonobo researchers. Approximately 28% of the range was predicted suitable; of that, about 27.5% was located in official protected areas. Highlighting these examples, this presentation will discuss the conservation status of bonobos and how spatial data and models are being utilized for the formation of strategic conservation plans.
Barnett, Adam; Abrantes, Kátya G.; Seymour, Jamie; Fitzpatrick, Richard
2012-01-01
Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (∼14 km away) and one grey reef shark completed a round trip of ∼250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef. PMID:22615782
Barnett, Adam; Abrantes, Kátya G; Seymour, Jamie; Fitzpatrick, Richard
2012-01-01
Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.
Optimal management of a multispecies shorebird flyway under sea-level rise.
Iwamura, Takuya; Fuller, Richard A; Possingham, Hugh P
2014-12-01
Every year, millions of migratory shorebirds fly through the East Asian-Australasian Flyway between their arctic breeding grounds and Australasia. This flyway includes numerous coastal wetlands in Asia and the Pacific that are used as stopover sites where birds rest and feed. Loss of a few important stopover sites through sea-level rise (SLR) could cause sudden population declines. We formulated and solved mathematically the problem of how to identify the most important stopover sites to minimize losses of bird populations across flyways by conserving land that facilitates upshore shifts of tidal flats in response to SLR. To guide conservation investment that minimizes losses of migratory bird populations during migration, we developed a spatially explicit flyway model coupled with a maximum flow algorithm. Migratory routes of 10 shorebird taxa were modeled in a graph theoretic framework by representing clusters of important wetlands as nodes and the number of birds flying between 2 nodes as edges. We also evaluated several resource allocation algorithms that required only partial information on flyway connectivity (node strategy, based on the impacts of SLR at nodes; habitat strategy, based on habitat change at sites; population strategy, based on population change at sites; and random investment). The resource allocation algorithms based on flyway information performed on average 15% better than simpler allocations based on patterns of habitat loss or local bird counts. The Yellow Sea region stood out as the most important priority for effective conservation of migratory shorebirds, but investment in this area alone will not ensure the persistence of species across the flyway. The spatial distribution of conservation investments differed enormously according to the severity of SLR and whether information about flyway connectivity was used to guide the prioritizations. With the rapid ongoing loss of coastal wetlands globally, our method provides insight into efficient conservation planning for migratory species. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.
Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing.
Bai, Yang; Ouyang, Zhiyun; Zheng, Hua; Li, Xiaoma; Zhuang, Changwei; Jiang, Bo
2012-01-01
Natural ecosystems provide society with important goods and services. With the rapid increase in human populations and excessive utilization of natural resources, humans frequently enhance the production of some services at the expense of the others. Although the need for tradeoffs between conservation and development is urgent, the lack of efficient methods to assess such tradeoffs has impeded progress. Three land use strategy scenarios (development scenario, plan trend scenario and conservation scenario) were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing, China. GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario. The provision of ecosystem services differed spatially, with significant changes being associated with different scenarios. Scenario analysis of water yield (as average annual yield) and soil retention (as retention rate per unit area) for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios. Annual yield/retention of forest, shrub, and grassland ranked the highest in the conservation scenario. Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios, especially the development scenario. The conservation scenario was the optimal land use strategy, resulting in the highest soil retention and water yield. Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development. Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services, which can be integrated into land use decision-making.
GIS, remote sensing and spatial modeling for conservation of stone forest landscape in Lunan, China
NASA Astrophysics Data System (ADS)
Zhang, Chuanrong
The Lunan Stone Forest is the World's premier pinnacle karst landscape, with considerable scientific and cultural importance. Because of its inherent ecological fragility and ongoing human disruption, especially recently burgeoning tourism development, the landscape is stressed and is in danger of being destroyed. Conservation policies have been implemented by the local and national governments, but many problems remain in the national park. For example, there is no accurate detailed map and no computer system to help authorities manage the natural resources. By integrating GIS, remote sensing and spatial modeling this dissertation investigates the issue of landscape conservation and develops some methodologies to assist in management of the natural resources in the national park. Four elements are involved: (1) To help decision-makers and residents understand the scope of resource exploitation and develop appropriate protective strategies, the dissertation documents how the landscape has been changed by human activities over the past 3 decades; (2) To help authorities scientifically designate different levels of protection in the park and to let the public actively participate in conservation decision making, a web-based Spatial Decision Support System for the conservation of the landscape was developed; (3) To make data sharing and integration easy in the future, a GML-based interoperable database for the park was implemented; and (4) To acquire more information and provide the uncertainty information to landscape conservation decision-makers, spatial land use patterns were modeled and the distributional uncertainty of land cover categories was assessed using a triplex Markov chain (TMC) model approach.
Eco-evolutionary population simulation models are powerful new forecasting tools for exploring management strategies for climate change and other dynamic disturbance regimes. Additionally, eco-evo individual-based models (IBMs) are useful for investigating theoretical feedbacks ...
Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew
2017-12-01
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.
Easy rider: monkeys learn to drive a wheelchair to navigate through a complex maze.
Etienne, Stephanie; Guthrie, Martin; Goillandeau, Michel; Nguyen, Tho Hai; Orignac, Hugues; Gross, Christian; Boraud, Thomas
2014-01-01
The neurological bases of spatial navigation are mainly investigated in rodents and seldom in primates. The few studies led on spatial navigation in both human and non-human primates are performed in virtual, not in real environments. This is mostly because of methodological difficulties inherent in conducting research on freely-moving monkeys in real world environments. There is some incertitude, however, regarding the extrapolation of rodent spatial navigation strategies to primates. Here we present an entirely new platform for investigating real spatial navigation in rhesus monkeys. We showed that monkeys can learn a pathway by using different strategies. In these experiments three monkeys learned to drive the wheelchair and to follow a specified route through a real maze. After learning the route, probe tests revealed that animals successively use three distinct navigation strategies based on i) the place of the reward, ii) the direction taken to obtain reward or iii) a cue indicating reward location. The strategy used depended of the options proposed and the duration of learning. This study reveals that monkeys, like rodents and humans, switch between different spatial navigation strategies with extended practice, implying well-conserved brain learning systems across different species. This new task with freely driving monkeys provides a good support for the electrophysiological and pharmacological investigation of spatial navigation in the real world by making possible electrophysiological and pharmacological investigations.
Efficiently enforcing artisanal fisheries to protect estuarine biodiversity.
Duarte de Paula Costa, Micheli; Mills, Morena; Richardson, Anthony J; Fuller, Richard A; Muelbert, José H; Possingham, Hugh P
2018-06-26
Artisanal fisheries support millions of livelihoods worldwide, yet ineffective enforcement can allow for continued environmental degradation due to overexploitation. Here, we use spatial planning to design an enforcement strategy for a pre-existing spatial closure for artisanal fisheries considering climate variability, existing seasonal fishing closures, representative conservation targets and enforcement costs. We calculated enforcement cost in three ways, based on different assumptions about who could be responsible for monitoring the fishery. We applied this approach in the Patos Lagoon estuary (Brazil), where we found three important results. First, spatial priorities for enforcement were similar under different climate scenarios. Second, we found that the cost and percentage of area enforced varied among scenarios tested by the conservation planning analysis, with only a modest increase in budget needed to incorporate climate variability. Third, we found that spatial priorities for enforcement depend on whether enforcement is carried out by a central authority or by the community itself. Here, we demonstrated a method that can be used to efficiently design enforcement plans, resulting in the conservation of biodiversity and estuarine resources. Also, cost of enforcement can be potentially reduced when fishers are empowered to enforce management within their fishing grounds. © 2018 by the Ecological Society of America.
Can We "Future-Proof" Marine Conservation Planning?
NASA Astrophysics Data System (ADS)
Pinsky, M. L.; Rogers, L. A.
2016-02-01
Marine conservation and marine spatial planning strategies worldwide are designed around biogeographic patterns, often under the assumption that these patterns are relatively stable. With climate change, however, distributions are shifting rapidly as species seek more suitable conditions. Here, we use distribution projections from 2006-2100 for 360 marine species in North America to evaluate the effectiveness of the current marine protected area (MPA) network and to test climate-ready planning approaches. We consider both expected community changes and the uncertainty in those projections. We find that existing MPAs are likely to lose more species over the coming century than other locations on the continental shelf. We also find substantial shifts in the location of high- and low-value regions, which can complicate conservation planning. However, planning portfolios can be developed that perform much better in the face of changes expected over the coming century. The theory and practice of marine spatial planning and marine conservation can be substantially more responsive to our dynamic ocean.
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Chacón, L.; Simakov, A. N.
2018-07-01
We consider a 1D-2V Vlasov-Fokker-Planck multi-species ionic description coupled to fluid electrons. We address temporal stiffness with implicit time stepping, suitably preconditioned. To address temperature disparity in time and space, we extend the conservative adaptive velocity-space discretization scheme proposed in [Taitano et al., J. Comput. Phys., 318, 391-420, (2016)] to a spatially inhomogeneous system. In this approach, we normalize the velocity-space coordinate to a temporally and spatially varying local characteristic speed per species. We explicitly consider the resulting inertial terms in the Vlasov equation, and derive a discrete formulation that conserves mass, momentum, and energy up to a prescribed nonlinear tolerance upon convergence. Our conservation strategy employs nonlinear constraints to enforce these properties discretely for both the Vlasov operator and the Fokker-Planck collision operator. Numerical examples of varying degrees of complexity, including shock-wave propagation, demonstrate the favorable efficiency and accuracy properties of the scheme.
NASA Astrophysics Data System (ADS)
Tomczyk, Aleksandra; Ewertowski, Marek
2014-05-01
The importance of conserving the natural environment has been known for a long time. It can be fulfilled by designation of protected areas as well as proper management of broader landscapes. During past two decades, conservation has shifted from a predominantly species- and habitat-focus to a more holistic "ecosystem approach" with an emphasis on "ecosystem services", which underpin the benefits which society can obtain (directly or indirectly) from ecosystems. This study aims to investigate and compare existing land use prioritization models and to develop new GIS-based frameworks for analysis for different spatial scales. Research were carried out in several conservation areas in UK and Poland. Main focus was on regulating (including regulation of soil erosion and landslide susceptibility) and recreation services. A new GIS-based model was developed which enabled to analysis of this services. Different spatial scales, ranging from whole conservation areas to single catchments were chosen for mapping and quantifying. Based on different scenarios three sets of ecosystem services were calculated. Data contained specific land-cover/land-use resulting from the different strategy of the natural conservation for each of the study sites. Modelling was carried out based on the trends identified on the basis of past changes in land-use/land-cover (based on analysis of time-series satellite images), and the probability of a particular class of land-use/land-cover for the chosen scenario. Comparison between results revealed ecosystem service tradeoffs (when the obtaining of one service results in the reducing of another service) and synergies (when multiple services can be provides simultaneously). Results of the study shows where (and under which condition): (1) conservation areas can accommodate more visitors and in the same time provide regulation of soil erosion and protection against landslide developments, (2) further development of recreation services will lead to inevitable degradation of environment. Based on these results several further activities were proposed: from changing of conservation strategy for some part of the areas to changing of the land cover/land use.
The conservation nexus: valuing interdependent water and energy savings in Arizona.
Bartos, Matthew D; Chester, Mikhail V
2014-02-18
Water and energy resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially explicit model of water-energy interdependencies in Arizona and assesses the potential for cobeneficial conservation programs. The interdependent benefits of investments in eight conservation strategies are assessed within the context of legislated renewable energy portfolio and energy efficiency standards. The cobenefits of conservation are found to be significant. Water conservation policies have the potential to reduce statewide electricity demand by 0.82-3.1%, satisfying 4.1-16% of the state's mandated energy-efficiency standard. Adoption of energy-efficiency measures and renewable generation portfolios can reduce nonagricultural water demand by 1.9-15%. These conservation cobenefits are typically not included in conservation plans or benefit-cost analyses. Many cobenefits offer negative costs of saved water and energy, indicating that these measures provide water and energy savings at no net cost. Because ranges of costs and savings for water-energy conservation measures are somewhat uncertain, future studies should investigate the cobenefits of individual conservation strategies in detail. Although this study focuses on Arizona, the analysis can be extended elsewhere as renewable portfolio and energy efficiency standards become more common nationally and internationally.
Liao, Jinbao; Ying, Zhixia; Woolnough, Daelyn A; Miller, Adam D; Li, Zhenqing; Nijs, Ivan
2016-05-11
Disturbance is key to maintaining species diversity in plant communities. Although the effects of disturbance frequency and extent on species diversity have been studied, we do not yet have a mechanistic understanding of how these aspects of disturbance interact with spatial structure of disturbance to influence species diversity. Here we derive a novel pair approximation model to explore competitive outcomes in a two-species system subject to spatially correlated disturbance. Generally, spatial correlation in disturbance favoured long-range dispersers, while distance-limited dispersers were greatly suppressed. Interestingly, high levels of spatial aggregation of disturbance promoted long-term species coexistence that is not possible in the absence of disturbance, but only when the local disperser was intrinsically competitively superior. However, spatial correlation in disturbance led to different competitive outcomes, depending on the disturbed area. Concerning ecological conservation and management, we theoretically demonstrate that introducing a spatially correlated disturbance to the system or altering an existing disturbance regime can be a useful strategy either to control species invasion or to promote species coexistence. Disturbance pattern analysis may therefore provide new insights into biodiversity conservation. © 2016 The Author(s).
2012-01-01
Background The detection of conserved residue clusters on a protein structure is one of the effective strategies for the prediction of functional protein regions. Various methods, such as Evolutionary Trace, have been developed based on this strategy. In such approaches, the conserved residues are identified through comparisons of homologous amino acid sequences. Therefore, the selection of homologous sequences is a critical step. It is empirically known that a certain degree of sequence divergence in the set of homologous sequences is required for the identification of conserved residues. However, the development of a method to select homologous sequences appropriate for the identification of conserved residues has not been sufficiently addressed. An objective and general method to select appropriate homologous sequences is desired for the efficient prediction of functional regions. Results We have developed a novel index to select the sequences appropriate for the identification of conserved residues, and implemented the index within our method to predict the functional regions of a protein. The implementation of the index improved the performance of the functional region prediction. The index represents the degree of conserved residue clustering on the tertiary structure of the protein. For this purpose, the structure and sequence information were integrated within the index by the application of spatial statistics. Spatial statistics is a field of statistics in which not only the attributes but also the geometrical coordinates of the data are considered simultaneously. Higher degrees of clustering generate larger index scores. We adopted the set of homologous sequences with the highest index score, under the assumption that the best prediction accuracy is obtained when the degree of clustering is the maximum. The set of sequences selected by the index led to higher functional region prediction performance than the sets of sequences selected by other sequence-based methods. Conclusions Appropriate homologous sequences are selected automatically and objectively by the index. Such sequence selection improved the performance of functional region prediction. As far as we know, this is the first approach in which spatial statistics have been applied to protein analyses. Such integration of structure and sequence information would be useful for other bioinformatics problems. PMID:22643026
Riparian Meadow Response to Modern Conservation Grazing Management
NASA Astrophysics Data System (ADS)
Oles, Kristin M.; Weixelman, Dave A.; Lile, David F.; Tate, Kenneth W.; Snell, Laura K.; Roche, Leslie M.
2017-09-01
Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions.
Riparian Meadow Response to Modern Conservation Grazing Management.
Oles, Kristin M; Weixelman, Dave A; Lile, David F; Tate, Kenneth W; Snell, Laura K; Roche, Leslie M
2017-09-01
Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions.
Rapid Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar
Andriamaro, Luciano; Cano, Carlos Andres; Grantham, Hedley S.; Hole, David; Juhn, Daniel; McKinnon, Madeleine; Rasolohery, Andriambolantsoa; Steininger, Marc; Wright, Timothy Max
2016-01-01
The importance of ecosystems for supporting human well-being is increasingly recognized by both the conservation and development sectors. Our ability to conserve ecosystems that people rely on is often limited by a lack of spatially explicit data on the location and distribution of ecosystem services (ES), the benefits provided by nature to people. Thus there is a need to map ES to guide conservation investments, to ensure these co-benefits are maintained. To target conservation investments most effectively, ES assessments must be rigorous enough to support conservation planning, rapid enough to respond to decision-making timelines, and often must rely on existing data. We developed a framework for rapid spatial assessment of ES that relies on expert and stakeholder consultation, available data, and spatial analyses in order to rapidly identify sites providing multiple benefits. We applied the framework in Madagascar, a country with globally significant biodiversity and a high level of human dependence on ecosystems. Our objective was to identify the ES co-benefits of biodiversity priority areas in order to guide the investment strategy of a global conservation fund. We assessed key provisioning (fisheries, hunting and non-timber forest products, and water for domestic use, agriculture, and hydropower), regulating (climate mitigation, flood risk reduction and coastal protection), and cultural (nature tourism) ES. We also conducted multi-criteria analyses to identify sites providing multiple benefits. While our approach has limitations, including the reliance on proximity-based indicators for several ES, the results were useful for targeting conservation investments by the Critical Ecosystem Partnership Fund (CEPF). Because our approach relies on available data, standardized methods for linking ES provision to ES use, and expert validation, it has the potential to quickly guide conservation planning and investment decisions in other data-poor regions. PMID:28006005
Restoration planning to guide Aichi targets in a megadiverse country.
Tobón, Wolke; Urquiza-Haas, Tania; Koleff, Patricia; Schröter, Matthias; Ortega-Álvarez, Rubén; Campo, Julio; Lindig-Cisneros, Roberto; Sarukhán, José; Bonn, Aletta
2017-10-01
Ecological restoration has become an important strategy to conserve biodiversity and ecosystems services. To restore 15% of degraded ecosystems as stipulated by the Convention on Biological Diversity Aichi target 15, we developed a prioritization framework to identify potential priority sites for restoration in Mexico, a megadiverse country. We used the most current biological and environmental data on Mexico to assess areas of biological importance and restoration feasibility at national scale and engaged stakeholders and experts throughout the process. We integrated 8 criteria into 2 components (i.e., biological importance and restoration feasibility) in a spatial multicriteria analysis and generated 11 scenarios to test the effect of assigning different component weights. The priority restoration sites were distributed across all terrestrial ecosystems of Mexico; 64.1% were in degraded natural vegetation and 6% were in protected areas. Our results provide a spatial guide to where restoration could enhance the persistence of species of conservation concern and vulnerable ecosystems while maximizing the likelihood of restoration success. Such spatial prioritization is a first step in informing policy makers and restoration planners where to focus local and large-scale restoration efforts, which should additionally incorporate social and monetary cost-benefit considerations. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Grech, Alana; Coles, Rob
2011-01-01
Background The Queensland East Coast Otter Trawl Fishery (ECOTF) for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA). The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS) provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. Methodology and Results We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS) to assess change in effort of the trawl fishery from 2001–2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. Conclusions/Significance Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention. PMID:21695155
USDA-ARS?s Scientific Manuscript database
Rangeland management strategies that allow for spatial and temporal interactions between fire and herbivores can achieve multiple management goals related to livestock production and wildlife conservation in mesic grasslands and savannas. Less is known about integrated management of herbivores and f...
Börner, Jan; Marinho, Eduardo; Wunder, Sven
2015-01-01
Annual forest loss in the Brazilian Amazon had in 2012 declined to less than 5,000 sqkm, from over 27,000 in 2004. Mounting empirical evidence suggests that changes in Brazilian law enforcement strategy and the related governance system may account for a large share of the overall success in curbing deforestation rates. At the same time, Brazil is experimenting with alternative approaches to compensate farmers for conservation actions through economic incentives, such as payments for environmental services, at various administrative levels. We develop a spatially explicit simulation model for deforestation decisions in response to policy incentives and disincentives. The model builds on elements of optimal enforcement theory and introduces the notion of imperfect payment contract enforcement in the context of avoided deforestation. We implement the simulations using official deforestation statistics and data collected from field-based forest law enforcement operations in the Amazon region. We show that a large-scale integration of payments with the existing regulatory enforcement strategy involves a tradeoff between the cost-effectiveness of forest conservation and landholder incomes. Introducing payments as a complementary policy measure increases policy implementation cost, reduces income losses for those hit hardest by law enforcement, and can provide additional income to some land users. The magnitude of the tradeoff varies in space, depending on deforestation patterns, conservation opportunity and enforcement costs. Enforcement effectiveness becomes a key determinant of efficiency in the overall policy mix. PMID:25650966
Börner, Jan; Marinho, Eduardo; Wunder, Sven
2015-01-01
Annual forest loss in the Brazilian Amazon had in 2012 declined to less than 5,000 sqkm, from over 27,000 in 2004. Mounting empirical evidence suggests that changes in Brazilian law enforcement strategy and the related governance system may account for a large share of the overall success in curbing deforestation rates. At the same time, Brazil is experimenting with alternative approaches to compensate farmers for conservation actions through economic incentives, such as payments for environmental services, at various administrative levels. We develop a spatially explicit simulation model for deforestation decisions in response to policy incentives and disincentives. The model builds on elements of optimal enforcement theory and introduces the notion of imperfect payment contract enforcement in the context of avoided deforestation. We implement the simulations using official deforestation statistics and data collected from field-based forest law enforcement operations in the Amazon region. We show that a large-scale integration of payments with the existing regulatory enforcement strategy involves a tradeoff between the cost-effectiveness of forest conservation and landholder incomes. Introducing payments as a complementary policy measure increases policy implementation cost, reduces income losses for those hit hardest by law enforcement, and can provide additional income to some land users. The magnitude of the tradeoff varies in space, depending on deforestation patterns, conservation opportunity and enforcement costs. Enforcement effectiveness becomes a key determinant of efficiency in the overall policy mix.
A spatial approach to combatting wildlife crime.
Faulkner, S C; Stevens, M C A; Romañach, S S; Lindsey, P A; Le Comber, S C
2018-06-01
Poaching can have devastating impacts on animal and plant numbers, and in many countries has reached crisis levels, with illegal hunters employing increasingly sophisticated techniques. We used data from an 8-year study in Savé Valley Conservancy, Zimbabwe, to show how geographic profiling-a mathematical technique originally developed in criminology and recently applied to animal foraging and epidemiology-can be adapted for use in investigations of wildlife crime. The data set contained information on over 10,000 incidents of illegal hunting and the deaths of 6,454 wild animals. We used a subset of data for which the illegal hunters' identities were known. Our model identified the illegal hunters' home villages based on the spatial locations of the hunting incidences (e.g., snares). Identification of the villages was improved by manipulating the probability surface inside the conservancy to reflect the fact that although the illegal hunters mostly live outside the conservancy, the majority of hunting occurs inside the conservancy (in criminology terms, commuter crime). These results combined with rigorous simulations showed for the first time how geographic profiling can be combined with GIS data and applied to situations with more complex spatial patterns, for example, where landscape heterogeneity means some parts of the study area are less likely to be used (e.g., aquatic areas for terrestrial animals) or where landscape permeability differs (e.g., forest bats tend not to fly over open areas). More broadly, these results show how geographic profiling can be used to target antipoaching interventions more effectively and more efficiently and to develop management strategies and conservation plans in a range of conservation scenarios. © 2017 Society for Conservation Biology.
A national geographic framework for guiding conservation on a landscape scale
Millard, Michael J.; Czarnecki, Craig A.; Morton, John M.; Brandt, Laura A.; Briggs, Jennifer S.; Shipley, Frank S.; Sayre, Roger G.; Sponholtz, Pamela J.; Perkins, David; Simpkins, Darin G.; Taylor, Janith
2012-01-01
The U.S. Fish and Wildlife Service, along with the global conservation community, has recognized that the conservation challenges of the 21st century far exceed the responsibilities and footprint of any individual agency or program. The ecological effects of climate change and other anthropogenic stressors do not recognize geopolitical boundaries and, as such, demand a national geographic framework to provide structure for cross-jurisdictional and landscape-scale conservation strategies. In 2009, a new map of ecologically based conservation regions in which to organize capacity and implement strategic habitat conservation was developed using rapid prototyping and expert elicitation by an interagency team of U.S. Fish and Wildlife Service and U.S. Geological Survey scientists and conservation professionals. Incorporating Bird Conservation Regions, Freshwater Ecoregions, and U.S. Geological Survey hydrologic unit codes, the new geographic framework provides a spatial template for building conservation capacity and focusing biological planning and conservation design efforts. The Department of Interior's Landscape Conservation Cooperatives are being organized in these new conservation regions as multi-stakeholder collaborations for improved conservation science and management.
Cronan, Christopher S; Lilieholm, Robert J; Tremblay, Jill; Glidden, Timothy
2010-05-01
Given the nature of modern conservation acquisitions, which often result from gifts and opportunistic purchases of full or partial property rights, there is a risk that the resulting mosaic of conserved resources may not represent a coherent set of public values and benefits. With different public and private entities engaged in land conservation, one would further expect that each organization would apply separate goals and criteria to the selection and acquisition of its conservation portfolio. This set of circumstances raises an important question: what is the aggregate outcome of this land conservation process? Retrospective assessments provide a means of reviewing cumulative historical decisions and elucidating lessons for improving future conservation strategies. This study used GIS-based spatial analysis to examine the relationships of private and public conservation lands in Maine to a variety of landscape metrics in order to determine the degree to which these lands represent core ecological and socioeconomic values that are meaningful to a wide cross-section of citizens. Results revealed that the gains of past conservation efforts in Maine are counter-balanced to some extent by apparent gaps in the existing fabric of conservation holdings. Conservation lands capture a representative sample of diverse habitat, provide a large measure of protection for multiple conservation values and indicators, and offer an unusual mix of outdoor recreational opportunities for residents and visitors alike. Yet, the majority of parcels are relatively small and isolated, and thus do not provide contiguous habitat blocks that offset ongoing processes of landscape fragmentation. Furthermore, the majority of area associated with many of the ecological metrics examined in this report is located outside the boundaries of current conservation holdings. The under-represented metrics identified in this investigation can be viewed as potential targets for new strategic conservation initiatives.
NASA Astrophysics Data System (ADS)
Cronan, Christopher S.; Lilieholm, Robert J.; Tremblay, Jill; Glidden, Timothy
2010-05-01
Given the nature of modern conservation acquisitions, which often result from gifts and opportunistic purchases of full or partial property rights, there is a risk that the resulting mosaic of conserved resources may not represent a coherent set of public values and benefits. With different public and private entities engaged in land conservation, one would further expect that each organization would apply separate goals and criteria to the selection and acquisition of its conservation portfolio. This set of circumstances raises an important question: what is the aggregate outcome of this land conservation process? Retrospective assessments provide a means of reviewing cumulative historical decisions and elucidating lessons for improving future conservation strategies. This study used GIS-based spatial analysis to examine the relationships of private and public conservation lands in Maine to a variety of landscape metrics in order to determine the degree to which these lands represent core ecological and socioeconomic values that are meaningful to a wide cross-section of citizens. Results revealed that the gains of past conservation efforts in Maine are counter-balanced to some extent by apparent gaps in the existing fabric of conservation holdings. Conservation lands capture a representative sample of diverse habitat, provide a large measure of protection for multiple conservation values and indicators, and offer an unusual mix of outdoor recreational opportunities for residents and visitors alike. Yet, the majority of parcels are relatively small and isolated, and thus do not provide contiguous habitat blocks that offset ongoing processes of landscape fragmentation. Furthermore, the majority of area associated with many of the ecological metrics examined in this report is located outside the boundaries of current conservation holdings. The under-represented metrics identified in this investigation can be viewed as potential targets for new strategic conservation initiatives.
Conserving tropical biodiversity via market forces and spatial targeting
Bateman, Ian J.; Coombes, Emma; Fitzherbert, Emily; Binner, Amy; Bad’ura, Tomáš; Carbone, Chris; Fisher, Brendan; Naidoo, Robin; Watkinson, Andrew R.
2015-01-01
The recent report from the Secretariat of the Convention on Biological Diversity [(2010) Global Biodiversity Outlook 3] acknowledges that ongoing biodiversity loss necessitates swift, radical action. Protecting undisturbed lands, although vital, is clearly insufficient, and the key role of unprotected, private land owned is being increasingly recognized. Seeking to avoid common assumptions of a social planner backed by government interventions, the present work focuses on the incentives of the individual landowner. We use detailed data to show that successful conservation on private land depends on three factors: conservation effectiveness (impact on target species), private costs (especially reductions in production), and private benefits (the extent to which conservation activities provide compensation, for example, by enhancing the value of remaining production). By examining the high-profile issue of palm-oil production in a major tropical biodiversity hotspot, we show that the levels of both conservation effectiveness and private costs are inherently spatial; varying the location of conservation activities can radically change both their effectiveness and private cost implications. We also use an economic choice experiment to show that consumers' willingness to pay for conservation-grade palm-oil products has the potential to incentivize private producers sufficiently to engage in conservation activities, supporting vulnerable International Union for Conservation of Nature Red Listed species. However, these incentives vary according to the scale and efficiency of production and the extent to which conservation is targeted to optimize its cost-effectiveness. Our integrated, interdisciplinary approach shows how strategies to harness the power of the market can usefully complement existing—and to-date insufficient—approaches to conservation. PMID:26077906
Conserving tropical biodiversity via market forces and spatial targeting.
Bateman, Ian J; Coombes, Emma; Fitzherbert, Emily; Binner, Amy; Bad'ura, Tomáš; Carbone, Chris; Fisher, Brendan; Naidoo, Robin; Watkinson, Andrew R
2015-06-16
The recent report from the Secretariat of the Convention on Biological Diversity [(2010) Global Biodiversity Outlook 3] acknowledges that ongoing biodiversity loss necessitates swift, radical action. Protecting undisturbed lands, although vital, is clearly insufficient, and the key role of unprotected, private land owned is being increasingly recognized. Seeking to avoid common assumptions of a social planner backed by government interventions, the present work focuses on the incentives of the individual landowner. We use detailed data to show that successful conservation on private land depends on three factors: conservation effectiveness (impact on target species), private costs (especially reductions in production), and private benefits (the extent to which conservation activities provide compensation, for example, by enhancing the value of remaining production). By examining the high-profile issue of palm-oil production in a major tropical biodiversity hotspot, we show that the levels of both conservation effectiveness and private costs are inherently spatial; varying the location of conservation activities can radically change both their effectiveness and private cost implications. We also use an economic choice experiment to show that consumers' willingness to pay for conservation-grade palm-oil products has the potential to incentivize private producers sufficiently to engage in conservation activities, supporting vulnerable International Union for Conservation of Nature Red Listed species. However, these incentives vary according to the scale and efficiency of production and the extent to which conservation is targeted to optimize its cost-effectiveness. Our integrated, interdisciplinary approach shows how strategies to harness the power of the market can usefully complement existing--and to-date insufficient--approaches to conservation.
Louys, Julien; Corlett, Richard T; Price, Gilbert J; Hawkins, Stuart; Piper, Philip J
2014-01-01
Alarm over the prospects for survival of species in a rapidly changing world has encouraged discussion of translocation conservation strategies that move beyond the focus of ‘at-risk’ species. These approaches consider larger spatial and temporal scales than customary, with the aim of recreating functioning ecosystems through a combination of large-scale ecological restoration and species introductions. The term ‘rewilding’ has come to apply to this large-scale ecosystem restoration program. While reintroductions of species within their historical ranges have become standard conservation tools, introductions within known paleontological ranges—but outside historical ranges—are more controversial, as is the use of taxon substitutions for extinct species. Here, we consider possible conservation translocations for nine large-bodied taxa in tropical Asia-Pacific. We consider the entire spectrum of conservation translocation strategies as defined by the IUCN in addition to rewilding. The taxa considered are spread across diverse taxonomic and ecological spectra and all are listed as ‘endangered’ or ‘critically endangered’ by the IUCN in our region of study. They all have a written and fossil record that is sufficient to assess past changes in range, as well as ecological and environmental preferences, and the reasons for their decline, and they have all suffered massive range restrictions since the late Pleistocene. General principles, problems, and benefits of translocation strategies are reviewed as case studies. These allowed us to develop a conservation translocation matrix, with taxa scored for risk, benefit, and feasibility. Comparisons between taxa across this matrix indicated that orangutans, tapirs, Tasmanian devils, and perhaps tortoises are the most viable taxa for translocations. However, overall the case studies revealed a need for more data and research for all taxa, and their ecological and environmental needs. Rewilding the Asian-Pacific tropics remains a controversial conservation strategy, and would be difficult in what is largely a highly fragmented area geographically. PMID:25540698
Forest management strategy, spatial heterogeneity, and winter birds in Washington.
B. Haveri; A.B. Carey
2000-01-01
Ecological management of second-growth forest holds great promise for conservation of biodiversity, yet little experimental evidence exists to compare alternative management approaches. Wintering birds are one of several groups of species most likely to be influenced by forest management activities. We compared species richness and proportion of stand area used over...
Expanded home ranges in a peripheral population: Space use by endangered Mt. Graham red squirrels
John L. Koprowski; Sarah R. B. King; Melissa J. Merrick
2008-01-01
Peripheral populations are often of increased conservation value; however, knowledge of the ecological and evolutionary consequences of a peripheral location is poor. Spatial dynamics are often interpreted as strategies to maximize access to fitness-limiting resources. Red squirrels Tamiasciurus hudsonicus are territorial in western portions of their...
Lidar: shedding new light on habitat characterization and modeling.
Kerri T. Vierling; Lee A. Vierling; William A. Gould; Sebastian Martinuzzi; Rick M. Clawges
2008-01-01
Ecologists need data on animalâhabitat associations in terrestrial and aquatic environments to design and implement effective conservation strategies. Habitat characteristics used in models typically incorporate (1) field data of limited spatial extent and/or (2) remote sensing data that do not characterize the vertical habitat structure. Remote sensing tools that...
Hanser, S.E.; Leu, M.; Knick, S.T.; Aldridge, Cameron L.
2011-01-01
The Wyoming Basins are one of the remaining strongholds of the sagebrush ecosystem. However, like most sagebrush habitats, threats to this region are numerous. This book adds to current knowledge about the regional status of the sagebrush ecosystem, the distribution of habitats, the threats to the ecosystem, and the influence of threats and habitat conditions on occurrence and abundance of sagebrush associated fauna and flora in the Wyoming Basins. Comprehensive methods are outlined for use in data collection and monitoring of wildlife and plant populations. Field and spatial data are integrated into a spatially explicit analytical framework to develop models of species occurrence and abundance for the egion. This book provides significant new information on distributions, abundances, and habitat relationships for a number of species of conservation concern that depend on sagebrush in the region. The tools and models presented in this book increase our understanding of impacts from land uses and can contribute to the development of comprehensive management and conservation strategies.
Zonneveld, Maarten van; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I
2012-01-01
There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at province and department level in Ecuador and Peru, respectively.
van Zonneveld, Maarten; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A.; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I.
2012-01-01
There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at province and department level in Ecuador and Peru, respectively. PMID:22253801
Egli, Lukas; Meyer, Carsten; Scherber, Christoph; Kreft, Holger; Tscharntke, Teja
2018-05-01
Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land-cover and land-use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land-use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land-use planning, implying huge efficiency gains through international cooperation. However, global-scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct "winners and losers" in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land-use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land-use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land-use conflicts, may offer an effective, yet politically feasible, avenue to better reconcile future trade-offs between agriculture and conservation. The efficiency gains of optimization remained robust when assuming that yields could only be increased to 80% of their potential. Our results highlight the need to better integrate real-world governance, political and economic challenges into sustainable development and global change mitigation research. © 2018 John Wiley & Sons Ltd.
Crist, Michele R.; Knick, Steven T.; Hanser, Steven E.
2017-01-01
The delineation of priority areas in western North America for managing Greater Sage-Grouse (Centrocercus urophasianus) represents a broad-scale experiment in conservation biology. The strategy of limiting spatial disturbance and focusing conservation actions within delineated areas may benefit the greatest proportion of Greater Sage-Grouse. However, land use under normal restrictions outside priority areas potentially limits dispersal and gene flow, which can isolate priority areas and lead to spatially disjunct populations. We used graph theory, representing priority areas as spatially distributed nodes interconnected by movement corridors, to understand the capacity of priority areas to function as connected networks in the Bi-State, Central, and Washington regions of the Greater Sage-Grouse range. The Bi-State and Central networks were highly centralized; the dominant pathways and shortest linkages primarily connected a small number of large and centrally located priority areas. These priority areas are likely strongholds for Greater Sage-Grouse populations and might also function as refugia and sources. Priority areas in the Central network were more connected than those in the Bi-State and Washington networks. Almost 90% of the priority areas in the Central network had ≥2 pathways to other priority areas when movement through the landscape was set at an upper threshold (effective resistance, ER12). At a lower threshold (ER4), 83 of 123 priority areas in the Central network were clustered in 9 interconnected subgroups. The current conservation strategy has risks; 45 of 61 priority areas in the Bi-State network, 68 of 123 in the Central network, and all 4 priority areas in the Washington network had ≤1 connection to another priority area at the lower ER4threshold. Priority areas with few linkages also averaged greater environmental resistance to movement along connecting pathways. Without maintaining corridors to larger priority areas or a clustered group, isolation of small priority areas could lead to regional loss of Greater Sage-Grouse
Colloca, Francesco; Garofalo, Germana; Bitetto, Isabella; Facchini, Maria Teresa; Grati, Fabio; Martiradonna, Angela; Mastrantonio, Gianluca; Nikolioudakis, Nikolaos; Ordinas, Francesc; Scarcella, Giuseppe; Tserpes, George; Tugores, M Pilar; Valavanis, Vasilis; Carlucci, Roberto; Fiorentino, Fabio; Follesa, Maria C; Iglesias, Magdalena; Knittweis, Leyla; Lefkaditou, Eugenia; Lembo, Giuseppe; Manfredi, Chiara; Massutí, Enric; Pace, Marie Louise; Papadopoulou, Nadia; Sartor, Paolo; Smith, Christopher J; Spedicato, Maria Teresa
2015-01-01
The identification of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on the exploited populations and ecosystems. The reduction in juvenile mortality is particularly relevant in the Mediterranean and is considered as one of the main prerequisites for the future sustainability of trawl fisheries. The distribution of nursery areas of 11 important commercial species of demersal fish and shellfish was analysed in the European Union Mediterranean waters using time series of bottom trawl survey data with the aim of identifying the most persistent recruitment areas. A high interspecific spatial overlap between nursery areas was mainly found along the shelf break of many different sectors of the Northern Mediterranean indicating a high potential for the implementation of conservation measures. Overlap of the nursery grounds with existing spatial fisheries management measures and trawl fisheries restricted areas was also investigated. Spatial analyses revealed considerable variation depending on species and associated habitat/depth preferences with increased protection seen in coastal nurseries and minimal protection seen for deeper nurseries (e.g. Parapenaeus longirostris 6%). This is partly attributed to existing environmental policy instruments (e.g. Habitats Directive and Mediterranean Regulation EC 1967/2006) aiming at minimising impacts on coastal priority habitats such as seagrass, coralligenous and maerl beds. The new knowledge on the distribution and persistence of demersal nurseries provided in this study can support the application of spatial conservation measures, such as the designation of no-take Marine Protected Areas in EU Mediterranean waters and their inclusion in a conservation network. The establishment of no-take zones will be consistent with the objectives of the Common Fisheries Policy applying the ecosystem approach to fisheries management and with the requirements of the Marine Strategy Framework Directive to maintain or achieve seafloor integrity and good environmental status.
Colloca, Francesco; Garofalo, Germana; Bitetto, Isabella; Facchini, Maria Teresa; Grati, Fabio; Martiradonna, Angela; Mastrantonio, Gianluca; Nikolioudakis, Nikolaos; Ordinas, Francesc; Scarcella, Giuseppe; Tserpes, George; Tugores, M. Pilar; Valavanis, Vasilis; Carlucci, Roberto; Fiorentino, Fabio; Follesa, Maria C.; Iglesias, Magdalena; Knittweis, Leyla; Lefkaditou, Eugenia; Lembo, Giuseppe; Manfredi, Chiara; Massutí, Enric; Pace, Marie Louise; Papadopoulou, Nadia; Sartor, Paolo; Smith, Christopher J.; Spedicato, Maria Teresa
2015-01-01
The identification of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on the exploited populations and ecosystems. The reduction in juvenile mortality is particularly relevant in the Mediterranean and is considered as one of the main prerequisites for the future sustainability of trawl fisheries. The distribution of nursery areas of 11 important commercial species of demersal fish and shellfish was analysed in the European Union Mediterranean waters using time series of bottom trawl survey data with the aim of identifying the most persistent recruitment areas. A high interspecific spatial overlap between nursery areas was mainly found along the shelf break of many different sectors of the Northern Mediterranean indicating a high potential for the implementation of conservation measures. Overlap of the nursery grounds with existing spatial fisheries management measures and trawl fisheries restricted areas was also investigated. Spatial analyses revealed considerable variation depending on species and associated habitat/depth preferences with increased protection seen in coastal nurseries and minimal protection seen for deeper nurseries (e.g. Parapenaeus longirostris 6%). This is partly attributed to existing environmental policy instruments (e.g. Habitats Directive and Mediterranean Regulation EC 1967/2006) aiming at minimising impacts on coastal priority habitats such as seagrass, coralligenous and maerl beds. The new knowledge on the distribution and persistence of demersal nurseries provided in this study can support the application of spatial conservation measures, such as the designation of no-take Marine Protected Areas in EU Mediterranean waters and their inclusion in a conservation network. The establishment of no-take zones will be consistent with the objectives of the Common Fisheries Policy applying the ecosystem approach to fisheries management and with the requirements of the Marine Strategy Framework Directive to maintain or achieve seafloor integrity and good environmental status. PMID:25785737
Jones-Farrand, D. Todd; Fearer, Todd M.; Thogmartin, Wayne E.; Thompson, Frank R.; Nelson, Mark D.; Tirpak, John M.
2011-01-01
Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and regression tree (CRT), habitat suitability index (HSI), forest structure database (FS), and habitat association database (HA). We focused our comparison on models for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region: Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of each species with which we could illuminate differences between approaches and provide strong grounds for recommending one approach over another, we used two approaches to compare models: rank correlations among model outputs and comparison of spatial correspondence. In general, rank correlations were significantly positive among models for each species, indicating general agreement among the models. Worm-eating Warblers had the highest pairwise correlations, all of which were significant (P , 0.05). Red-headed Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in the relative conservation value of areas within the region. We assessed model uncertainty by mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for each species and calculating the coefficient of variation across model ranks for each location. This allowed identification of areas more likely to be good targets of conservation effort for a species, those areas that were least likely, and those in between where uncertainty is higher and thus conservation action incorporates more risk. Based on our results, models developed independently for the same purpose (conservation planning for a particular species in a particular geography) yield different answers and thus different conservation strategies. We assert that using only one habitat model (even if validated) as the foundation of a conservation plan is risky. Using multiple models (i.e., ensemble prediction) can reduce uncertainty and increase efficacy of conservation action when models corroborate one another and increase understanding of the system when they do not.
The seed ecology of Iliamna logisepala (Torr.) Wiggins, an east Cascade endemic.
Richy J. Harrod; Charles B. Halpern
2005-01-01
We examined the seed ecology of Iliamna longisepala as an aid to developing a conservation strategy for this rare endemic forb of northcentral Washington. We conducted field, greenhouse, and laboratory studies to quantify: (1) densities of buried viable seed among sites with different histories of burning, (2) post-fire spatial distributions of...
USDA-ARS?s Scientific Manuscript database
The positive association between habitat heterogeneity and species diversity has been well-documented for many taxa at various spatial and temporal scales, and the maintenance of habitat heterogeneity in agricultural landscapes has been promoted as a key strategy in efforts to conserve biodiversity....
Nakahashi, Wataru; Wakano, Joe Yuichiro; Henrich, Joseph
2012-12-01
Long before the origins of agriculture human ancestors had expanded across the globe into an immense variety of environments, from Australian deserts to Siberian tundra. Survival in these environments did not principally depend on genetic adaptations, but instead on evolved learning strategies that permitted the assembly of locally adaptive behavioral repertoires. To develop hypotheses about these learning strategies, we have modeled the evolution of learning strategies to assess what conditions and constraints favor which kinds of strategies. To build on prior work, we focus on clarifying how spatial variability, temporal variability, and the number of cultural traits influence the evolution of four types of strategies: (1) individual learning, (2) unbiased social learning, (3) payoff-biased social learning, and (4) conformist transmission. Using a combination of analytic and simulation methods, we show that spatial-but not temporal-variation strongly favors the emergence of conformist transmission. This effect intensifies when migration rates are relatively high and individual learning is costly. We also show that increasing the number of cultural traits above two favors the evolution of conformist transmission, which suggests that the assumption of only two traits in many models has been conservative. We close by discussing how (1) spatial variability represents only one way of introducing the low-level, nonadaptive phenotypic trait variation that so favors conformist transmission, the other obvious way being learning errors, and (2) our findings apply to the evolution of conformist transmission in social interactions. Throughout we emphasize how our models generate empirical predictions suitable for laboratory testing.
Kelemen, András; Tóthmérész, Béla; Valkó, Orsolya; Miglécz, Tamás; Deák, Balázs; Török, Péter
2017-04-01
Classical old-field succession studies focused on vegetation changes after the abandonment of annual croplands or on succession after the elimination of cultivated crops. Perennial-crop-mediated succession, where fields are initially covered by perennial crops, reveals alternative aspects of old-field succession theories. We tested the validity of classical theories of old-field succession for perennial-crop-mediated succession. We formulated the following hypotheses: (1) functional diversity increases with increasing field age; (2) resource acquisition versus conservation trade-off shifts toward conservation at community level during the succession; (3) the importance of spatial and temporal seed dispersal decreases during the succession; and (4) competitiveness and stress-tolerance increases and ruderality decreases at community level during the succession. We studied functional diversity, trait distributions and plant strategies in differently aged old-fields using chronosequence method. We found increasing functional richness and functional divergence, but also unchanged or decreasing functional evenness. We detected a shift from resource acquisition to resource conservation strategy of communities during the succession. The role of spatial and temporal seed dispersal was found to be important not only at the initial but also at latter successional stages. We found an increasing stress-tolerance and a decreasing ruderality during succession, while the competitiveness remained unchanged at the community level. Despite the markedly different starting conditions, we found that classical and perennial-crop-mediated old-field successions have some similarities regarding the changes of functional diversity, resource acquisition versus conservation trade-off, and seed dispersal strategies. However, we revealed also the subsequent differences. The competitive character of communities remained stable during the succession; hence, the initial stages of perennial-crop-mediated succession can be similar to the middle stages of classical old-field succession. Moreover, the occupied functional niche space and differentiation were larger in the older stages, but resources were not effectively utilized within this space, suggesting that the stabilization of the vegetation requires more time.
Wiens, J. David; Schumaker, Nathan H.; Inman, Richard D.; Esque, Todd C.; Longshore, Kathleen M.; Nussear, Kenneth E
2017-01-01
Spatial demographic models can help guide monitoring and management activities targeting at-risk species, even in cases where baseline data are lacking. Here, we provide an example of how site-specific changes in land use and anthropogenic stressors can be incorporated into a spatial demographic model to investigate effects on population dynamics of Golden Eagles (Aquila chrysaetos). Our study focused on a population of Golden Eagles exposed to risks associated with rapid increases in renewable energy development in southern California, U.S.A. We developed a spatially explicit, individual-based simulation model that integrated empirical data on demography of Golden Eagles with spatial data on the arrangement of nesting habitats, prey resources, and planned renewable energy development sites. Our model permitted simulated eagles of different stage-classes to disperse, establish home ranges, acquire prey resources, prospect for breeding sites, and reproduce. The distribution of nesting habitats, prey resources, and threats within each individual's home range influenced movement, reproduction, and survival. We used our model to explore potential effects of alternative disturbance scenarios, and proposed conservation strategies, on the future distribution and abundance of Golden Eagles in the study region. Results from our simulations suggest that probable increases in mortality associated with renewable energy infrastructure (e.g., collisions with wind turbines and vehicles, electrocution on power poles) could have negative consequences for population trajectories, but that site-specific conservation actions could reduce the magnitude of negative effects. Our study demonstrates the use of a flexible and expandable modeling framework to incorporate spatially dependent processes when determining relative effects of proposed management options to Golden Eagles and their habitats.
Distribution, habitat and adaptability of the genus Tapirus.
García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S
2012-12-01
In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
NASA Astrophysics Data System (ADS)
Branciforte, R.; Weiss, S. B.; Schaefer, N.
2008-12-01
Climate change threatens California's vast and unique biodiversity. The Bay Area Upland Habitat Goals is a comprehensive regional biodiversity assessment of the 9 counties surrounding San Francisco Bay, and is designing conservation land networks that will serve to protect, manage, and restore that biodiversity. Conservation goals for vegetation, rare plants, mammals, birds, fish, amphibians, reptiles, and invertebrates are set, and those goals are met using the optimization algorithm MARXAN. Climate change issues are being considered in the assessment and network design in several ways. The high spatial variability at mesoclimatic and topoclimatic scales in California creates high local biodiversity, and provides some degree of local resiliency to macroclimatic change. Mesoclimatic variability from 800 m scale PRISM climatic norms is used to assess "mesoclimate spaces" in distinct mountain ranges, so that high mesoclimatic variability, especially local extremes that likely support range limits of species and potential climatic refugia, can be captured in the network. Quantitative measures of network resiliency to climate change include the spatial range of key temperature and precipitation variables within planning units. Topoclimatic variability provides a finer-grained spatial patterning. Downscaling to the topoclimatic scale (10-50 m scale) includes modeling solar radiation across DEMs for predicting maximum temperature differentials, and topographic position indices for modeling minimum temperature differentials. PRISM data are also used to differentiate grasslands into distinct warm and cool types. The overall conservation strategy includes local and regional connectivity so that range shifts can be accommodated.
Morzaria-Luna, Hem Nalini; Ainsworth, Cameron H.; Kaplan, Isaac C.; Levin, Phillip S.; Fulton, Elizabeth A.
2012-01-01
Background Minimizing fishery bycatch threats might involve trade-offs between maintaining viable populations and economic benefits. Understanding these trade-offs can help managers reconcile conflicting goals. An example is a set of bycatch reduction measures for the Critically Endangered vaquita porpoise (Phocoena sinus), in the Northern Gulf of California, Mexico. The vaquita is an endemic species threatened with extinction by artisanal net bycatch within its limited range; in this area fisheries are the chief source of economic productivity. Methodology/Principal Findings We analyze trade-offs between conservation of the vaquita and fisheries, using an end-to-end Atlantis ecosystem model for the Northern Gulf of California. Atlantis is a spatially-explicit model intended as a strategic tool to test alternative management strategies. We simulated increasingly restrictive fisheries regulations contained in the vaquita conservation plan: implementing progressively larger spatial management areas that exclude gillnets, shrimp driftnets and introduce a fishing gear that has no vaquita bycatch. We found that only the most extensive spatial management scenarios recovered the vaquita population above the threshold necessary to downlist the species from Critically Endangered. The scenario that excludes existing net gear from the 2008 area of vaquita distribution led to moderate decrease in net present value (US$ 42 million) relative to the best-performing scenario and a two-fold increase in the abundance of adult vaquita over the course of 30 years. Conclusions/Significance Extended spatial management resulted in the highest recovery of the vaquita population. The economic cost of proposed management actions was unequally divided between fishing fleets; the loss of value from finfish gillnet fisheries was never recovered. Our analysis shows that managers will have to confront difficult trade-offs between management scenarios for vaquita conservation. PMID:22916180
Dalleau, Mayeul; Andréfouët, Serge; Wabnitz, Colette C C; Payri, Claude; Wantiez, Laurent; Pichon, Michel; Friedman, Kim; Vigliola, Laurent; Benzoni, Francesca
2010-04-01
Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species' spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected-area site selections were derived from a rarity-complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species-habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat-mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space-borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.
How large is large enough for insects? Forest fragmentation effects at three spatial scales
NASA Astrophysics Data System (ADS)
Ribas, C. R.; Sobrinho, T. G.; Schoereder, J. H.; Sperber, C. F.; Lopes-Andrade, C.; Soares, S. M.
2005-02-01
Several mechanisms may lead to species loss in fragmented habitats, such as edge and shape effects, loss of habitat and heterogeneity. Ants and crickets were sampled in 18 forest remnants in south-eastern Brazil, to test whether a group of small remnants maintains the same insect species richness as similar sized large remnants, at three spatial scales. We tested hypotheses about alpha and gamma diversity to explain the results. Groups of remnants conserve as many species of ants as a single one. Crickets, however, showed a scale-dependent pattern: at small scales there was no significant or important difference between groups of remnants and a single one, while at the larger scale the group of remnants maintained more species. Alpha diversity (local species richness) was similar in a group of remnants and in a single one, at the three spatial scales, both for ants and crickets. Gamma diversity, however, varied both with taxa (ants and crickets) and spatial scale, which may be linked to insect mobility, remnant isolation, and habitat heterogeneity. Biological characteristics of the organisms involved have to be considered when studying fragmentation effects, as well as spatial scale at which it operates. Mobility of the organisms influences fragmentation effects, and consequently conservation strategies.
Earl, Julia E; Zollner, Patrick A
2017-09-01
Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Faulkner, Stephen P.
2010-01-01
Landscape patterns and processes reflect both natural ecosystem attributes and the policy and management decisions of individual Federal, State, county, and private organizations. Land-use regulation, water management, and habitat conservation and restoration efforts increasingly rely on landscape-level approaches that incorporate scientific information into the decision-making process. Since management actions are implemented to affect future conditions, decision-support models are necessary to forecast potential future conditions resulting from these decisions. Spatially explicit modeling approaches enable testing of different scenarios and help evaluate potential outcomes of management actions in conjunction with natural processes such as climate change. The ability to forecast the effects of changing land use and climate is critically important to land and resource managers since their work is inherently site specific, yet conservation strategies and practices are expressed at higher spatial and temporal scales that must be considered in the decisionmaking process.
Network modularity reveals critical scales for connectivity in ecology and evolution
Fletcher, Robert J.; Revell, Andre; Reichert, Brian E.; Kitchens, Wiley M.; Dixon, J.; Austin, James D.
2013-01-01
For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.
A spatial approach to combatting wildlife crime
Faulkner, Sally C.; Stevens, Michael C.A.; Romañach, Stephanie; Lindsey, Peter A.; LeComber, Steven C.
2018-01-01
Poaching can have devastating impacts on animal and plant numbers, and in many countries has reached crisis levels, with illegal hunters employing increasingly sophisticated techniques. Here, we show how geographic profiling – a mathematical technique originally developed in criminology and recently applied to animal foraging and epidemiology – can be adapted for use in investigations of wildlife crime, using data from an eight-year study in Savé Valley Conservancy, Zimbabwe that in total includes more than 10,000 incidents of illegal hunting and the deaths of 6,454 wild animals. Using a subset of these data for which the illegal hunters’ identities are known, we show that the model can successfully identify the illegal hunters’ home villages using the spatial locations of hunting incidences (for example, snares) as input, and show how this can be improved by manipulating the probability surface inside the Conservancy to reflect the fact that – although the illegal hunters mostly live outside the Conservancy, the majority of hunting occurs inside (in criminology, ‘commuter crime’). The results of this analysis – combined with rigorous simulations – show for the first time how geographic profiling can be combined with GIS data and applied to situations with more complex spatial patterns – for example, where landscape heterogeneity means that some parts of the study area are unsuitable (e.g. aquatic areas for terrestrial animals, or vice versa), or where landscape permeability differs (for example, forest bats tending not to fly over open areas). More broadly, these results show how geographic profiling can be used to target anti-poaching interventions more effectively and more efficiently, with important implications for the development of management strategies and conservation plans in a range of conservation scenarios.
Thogmartin, Wayne E.; Crimmins, Shawn M.; Pearce, Jennie
2014-01-01
Large-scale planning for the conservation of species is often hindered by a poor understanding of factors limiting populations. In regions with declining wildlife populations, it is critical that objective metrics of conservation success are developed to ensure that conservation actions achieve desired results. Using spatially explicit estimates of bird abundance, we evaluated several management alternatives for conserving bird populations in the Prairie Hardwood Transition of the United States. We designed landscapes conserving species at 50% of their current predicted abundance as well as landscapes attempting to achieve species population targets (which often required the doubling of current abundance). Conserving species at reduced (half of current) abundance led to few conservation conflicts. However, because of extensive modification of the landscape to suit human use, strategies for achieving regional population targets for forest bird species would be difficult under even ideal circumstances, and even more so if maintenance of grassland bird populations is also desired. Our results indicated that large-scale restoration of agricultural lands to native grassland and forest habitats may be the most productive conservation action for increasing bird population sizes but the level of landscape transition required to approach target bird population sizes may be societally unacceptable.
Sánchez-Fernández, David; Abellán, Pedro; Aragón, Pedro; Varela, Sara; Cabeza, Mar
2018-02-01
Recently, the European Commission adopted a new strategy to halt the loss of biodiversity. Member states are expected to favor a more effective collection and redistribution of European Union (EU) funds under the current Multiannual Financial Framework for 2014-2020. Because of the large spatial variation in the distribution of biodiversity and conservation needs at the continental scale, EU instruments should ensure that countries with higher biodiversity values get more funds and resources for the conservation than other countries. Using linear regressions, we assessed the association between conservation investments and biodiversity values across member states, accounting for a variety of conservation investment indicators, taxonomic groups (including groups of plants, vertebrates, and invertebrates), and indicators of biodiversity value. In general, we found clear overall associations between conservation investments and biodiversity variables. However, some countries received more or less investment than would be expected based on biodiversity values in those countries. We also found that the extensive use of birds as unique indicators of conservation effectiveness may lead to biased decisions. Our results can inform future decisions regarding funding allocation and thus improve distribution of EU conservation funds. © 2017 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Ramos Bendana, Zayra Sherlly
Tropical forests are of high conservation priority world-wide due their high value for harboring biodiversity and providing ecosystem services from the local to global scale. Financial resources for conservation are scarce. This challenges practitioners to design conservation networks encompassing spatial synergies between biodiversity and ecosystem services. Furthermore, conservation networks need to be robust to climate change impacts and the unpredictability of biodiversity response to these impacts. Methodologies for selecting locations that can help achieve multiple conservation objectives and can be easily integrated in current conservation practices are urgently needed. The first chapter of this study was focused on exploring the effect of integrating into conservation assessments two climate adaptation approaches based on environmental heterogeneity, as well as the effect of the selection of planning unit size on resultant conservation networks. With Costa Rica as planning region, our results showed that protecting the representation of the geophysical diversity resulted in conservation networks with over 25% more internal environmental heterogeneity, but more fragmented. Incorporating cross-environmental connectivity, on the other hand, resulted in low increases in environmental heterogeneity. Increasing the planning unit size reduced the effect of emphasizing connectivity between environmentally different locations. These results highlight the importance of testing environmental-heterogeneity-based approaches in each context due the specific characteristics of planning regions prior integrating them into formal conservation assessments. The second chapter focused on exploring synergies between biodiversity and carbon storage priorities, when integrating environmental-heterogeneity-based climate adaptation approaches. Results revealed very low synergies between targeting the representation of regional biodiversity and areas of high carbon content. However, spreading out across the country the selection of carbon priority areas by adding stratification improved the synergies with biodiversity priorities, and revealed locations that could be considered priorities for carbon storage in the distribution range of Dry Tropical Forests; one of the most threatened tropical ecosystem. The extent of gains for co-benefits between carbon-related ES and biodiversity conservation will depend in part on how priority areas are selected for implementing strategies, such as PES and REDD, and will determine the location and amount of tropical forest to be conserved. As indicated by the recent development of the spatial data used in Chapter 2, improving spatial datasets for supporting ES targeting is critical in tropical dry forests. As a result, we developed new phenological approaches to map tropical dry forest type using multitemporal Landsat 8 Operational Land Imager data. The major gains in mapping accuracy realized by the multitemporal analysis bodes well for the future of landscape level ES planning in tropical dry forest. Finally, the promising progress in the detection of functional traits through remote sensing offers further opportunities to improve on the quality of the inputs for the mapping of ES, a topic covered in Chapter 4.
Hindrikson, Maris; Remm, Jaanus; Männil, Peep; Ozolins, Janis; Tammeleht, Egle; Saarma, Urmas
2013-01-01
Spatial genetics is a relatively new field in wildlife and conservation biology that is becoming an essential tool for unravelling the complexities of animal population processes, and for designing effective strategies for conservation and management. Conceptual and methodological developments in this field are therefore critical. Here we present two novel methodological approaches that further the analytical possibilities of STRUCTURE and DResD. Using these approaches we analyse structure and migrations in a grey wolf (Canislupus) population in north-eastern Europe. We genotyped 16 microsatellite loci in 166 individuals sampled from the wolf population in Estonia and Latvia that has been under strong and continuous hunting pressure for decades. Our analysis demonstrated that this relatively small wolf population is represented by four genetic groups. We also used a novel methodological approach that uses linear interpolation to statistically test the spatial separation of genetic groups. The new method, which is capable of using program STRUCTURE output, can be applied widely in population genetics to reveal both core areas and areas of low significance for genetic groups. We also used a recently developed spatially explicit individual-based method DResD, and applied it for the first time to microsatellite data, revealing a migration corridor and barriers, and several contact zones.
Household energy management strategies in Bulgaria's transitioning energy sector
NASA Astrophysics Data System (ADS)
Carper, Mark Daniel Lynn
Recent transition literature of post-socialist states has addressed the shortcomings of a rapid blanket implementation of neo-liberal policies and practices placed upon a landscape barren of the needed institutions and experiences. Included in these observations are the policy-making oversight of spatial socioeconomic variations and their individual and diverse methods of coping with their individual challenges. Of such literature addressing the case of Bulgaria, a good portion deals with the spatial consequences of restructuring as well as with embedded disputes over access to and control of resources. With few exceptions, studies of Bulgaria's changing energy sector have largely been at the state level and have not been placed within the context of spatial disparities of socioeconomic response. By exploring the variations of household energy management strategies across space, my dissertation places this resource within such a theoretical context and offers analysis based on respective levels of economic and human development, inherited material infrastructures, the organization and activities of institutions, and fuel and technological availability. A closed survey was distributed to explore six investigational themes across four geographic realms. The investigational themes include materials of housing construction, methods of household heating, use of electrical appliances, energy conservation strategies, awareness and use of energy conservation technologies, and attitudes toward the transitioning energy sector. The geographic realms include countrywide results, the urban-rural divide, regional variations, and urban divisions of the capital city, Sofia. Results conclude that, indeed, energy management strategies at the household level have been shaped by multiple variables, many of which differ across space. These variables include price sensitivity, degree of dependence on remnant technologies, fuel and substitute availability, and level of human and socioeconomic development. Thus far, the state has taken a very limited role in improving residential energy efficiency despite the increased energy expenditure burdens that most households face. Yet lacking are affordable technologies, educational campaigns, and individual financing mechanisms or incentives. As shown, where there is an informed, active, and financially capable population, improved household efficiency is more likely to be the winning strategy for both the goals of the individual as well as of the state.
Solutions for ecosystem-level protection of ocean systems under climate change.
Queirós, Ana M; Huebert, Klaus B; Keyl, Friedemann; Fernandes, Jose A; Stolte, Willem; Maar, Marie; Kay, Susan; Jones, Miranda C; Hamon, Katell G; Hendriksen, Gerrit; Vermard, Youen; Marchal, Paul; Teal, Lorna R; Somerfield, Paul J; Austen, Melanie C; Barange, Manuel; Sell, Anne F; Allen, Icarus; Peck, Myron A
2016-12-01
The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta-analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co-mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem-level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long-term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate-ready and ecosystem-level policy options for conservation, suitable for changing oceans. © 2016 John Wiley & Sons Ltd.
ICT for smart evaluation of vernacular architecture in a stilt-house village
NASA Astrophysics Data System (ADS)
Almeida, Filipa; Virtudes, Ana Lídia
2016-12-01
Vernacular architecture typologies, such as wooden stilt-houses, have been threatened by the vulnerability to conservation status degradation. This problem is not an exception in Portugal, where the few remaining examples have been neglected, with the disappearance or abandonment of almost all buildings, damaging architectural and urban spatial features. This legacy is rapidly disappearing, weakening the European cultural map. This research presents the results from a smart evaluation method using an ICT (information and communication technology) platform designed for the smart evaluation of wooden stilt-houses, considering their conservation status. This platform was used in the five remaining stilthouse villages still existing in Portugal including about 90 buildings and 300 inhabitants, located along Tagus river banks. This article refers to one of these case studies, the village of Escaroupim, which was chosen because it is the most urban space in between all of them. On one hand, the results are an exhaustive survey of vernacular buildings, useful as guideline for spatial strategies and instruments to protect this legacy. On the other hand, it can be used in other similar wooden buildings, to check their conservation status and therefore to define best rehabilitation actions.
Herrera, José M; Alagador, Diogo; Salgueiro, Pedro; Mira, António
2018-01-01
Managing landscape connectivity is a widely recognized overarching strategy for conserving biodiversity in human-impacted landscapes. However, planning the conservation and management of landscape connectivity of multiple and ecologically distinct species is still challenging. Here we provide a spatially-explicit framework which identifies and prioritizes connectivity conservation and restoration actions for species with distinct habitat affinities. Specifically, our study system comprised three groups of common bird species, forest-specialists, farmland-specialists, and generalists, populating a highly heterogeneous agricultural countryside in the southwestern Iberian Peninsula. We first performed a comprehensive analysis of the environmental variables underlying the distributional patterns of each bird species to reveal generalities in their guild-specific responses to landscape structure. Then, we identified sites which could be considered pivotal in maintaining current levels of landscape connectivity for the three bird guilds simultaneously, as well as the number and location of sites that need to be restored to maximize connectivity levels. Interestingly, we found that a small number of sites defined the shortest connectivity paths for the three bird guilds simultaneously, and were therefore considered key for conservation. Moreover, an even smaller number of sites were identified as critical to expand the landscape connectivity at maximum for the regional bird assemblage as a whole. Our spatially-explicit framework can provide valuable decision-making support to conservation practitioners aiming to identify key connectivity and restoration sites, a particularly urgent task in rapidly changing landscapes such as agroecosystems.
Salgueiro, Pedro; Mira, António
2018-01-01
Managing landscape connectivity is a widely recognized overarching strategy for conserving biodiversity in human-impacted landscapes. However, planning the conservation and management of landscape connectivity of multiple and ecologically distinct species is still challenging. Here we provide a spatially-explicit framework which identifies and prioritizes connectivity conservation and restoration actions for species with distinct habitat affinities. Specifically, our study system comprised three groups of common bird species, forest-specialists, farmland-specialists, and generalists, populating a highly heterogeneous agricultural countryside in the southwestern Iberian Peninsula. We first performed a comprehensive analysis of the environmental variables underlying the distributional patterns of each bird species to reveal generalities in their guild-specific responses to landscape structure. Then, we identified sites which could be considered pivotal in maintaining current levels of landscape connectivity for the three bird guilds simultaneously, as well as the number and location of sites that need to be restored to maximize connectivity levels. Interestingly, we found that a small number of sites defined the shortest connectivity paths for the three bird guilds simultaneously, and were therefore considered key for conservation. Moreover, an even smaller number of sites were identified as critical to expand the landscape connectivity at maximum for the regional bird assemblage as a whole. Our spatially-explicit framework can provide valuable decision-making support to conservation practitioners aiming to identify key connectivity and restoration sites, a particularly urgent task in rapidly changing landscapes such as agroecosystems. PMID:29641610
Adaptive comanagement of a marine protected area network in Fiji.
Weeks, Rebecca; Jupiter, Stacy D
2013-12-01
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. Co-Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.
Tallis, Heather; Cole, Aaron; Schill, Steven; Martin, Erik; Heiner, Michael; Paiz, Marie-Claire; Aldous, Allison; Apse, Colin; Nickel, Barry
2017-01-01
Rapidly developing countries contain both the bulk of intact natural areas and biodiversity, and the greatest untapped natural resource stocks, placing them at the forefront of “green” economic development opportunities. However, most lack scientific tools to create development plans that account for biodiversity and ecosystem services, diminishing the real potential to be sustainable. Existing methods focus on biodiversity and carbon priority areas across large geographies (e.g., countries, states/provinces), leaving out essential services associated with water supplies, among others. These hydrologic ecosystem services (HES) are especially absent from methods applied at large geographies and in data-limited contexts. Here, we present a novel, spatially explicit, and relatively simple methodology to identify countrywide HES priority areas. We applied our methodology to the Gabonese Republic, a country undergoing a major economic transformation under a governmental commitment to balance conservation and development goals. We present the first national-scale maps of HES priority areas across Gabon for erosion control, nutrient retention, and groundwater recharge. Priority sub-watersheds covered 44% of the country’s extent. Only 3% of the country was identified as a priority area for all HES simultaneously, highlighting the need to conserve different areas for each different hydrologic service. While spatial tradeoffs occur amongst HES, we identified synergies with two other conservation values, given that 66% of HES priority areas intersect regions of above average area-weighted (by sub-watersheds) total forest carbon stocks and 38% intersect with terrestrial national parks. Considering implications for development, we identified HES priority areas overlapping current or proposed major roads, forestry concessions, and active mining concessions, highlighting the need for proactive planning for avoidance areas and compensatory offsets to mitigate potential conflicts. Collectively, our results provide insight into strategies to protect HES as part of Gabon’s development strategy, while providing a replicable methodology for application to new scales, geographies, and policy contexts. PMID:28594870
Mapping cumulative noise from shipping to inform marine spatial planning.
Erbe, Christine; MacGillivray, Alexander; Williams, Rob
2012-11-01
Including ocean noise in marine spatial planning requires predictions of noise levels on large spatiotemporal scales. Based on a simple sound transmission model and ship track data (Automatic Identification System, AIS), cumulative underwater acoustic energy from shipping was mapped throughout 2008 in the west Canadian Exclusive Economic Zone, showing high noise levels in critical habitats for endangered resident killer whales, exceeding limits of "good conservation status" under the EU Marine Strategy Framework Directive. Error analysis proved that rough calculations of noise occurrence and propagation can form a basis for management processes, because spending resources on unnecessary detail is wasteful and delays remedial action.
Veiga, Puri; Redondo, Waldo; Sousa-Pinto, Isabel; Rubal, Marcos
2017-08-01
We establish baseline knowledge of abundance, diversity and multivariate structure of macrobenthos from shallow sublitoral soft bottoms in the North Portuguese coast and elucidate main environmental factors that shape their spatial patterns. In this area distribution of soft bottoms is patchy, surrounded by boulders and rocky substrates. This particular landscape and the lack of significant anthropogenic disturbances are values for the conservation of this habitat. Sediment and physicochemical properties of the water column were studied to provide models for each studied macrobenthic variable. Our models highlighted that most of variation (59%-72%) in macrobenthic spatial patterns was explained by the studied environmental variables. Sedimentary variables were more relevant that those of the water column. Therefore, disturbances affecting sedimentary environment could cause dramatic changes in macrobenthic assemblages because of the limited availability of soft bottoms in the area. In this way, results are useful to adopt right management and conservation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas
2012-01-01
Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602
Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T
2017-03-01
Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard ( Panthera pardus ) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta ), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km 2 (smallest PA-Ndumo) to 8.4 ± 1.03/100 km 2 (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.
Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity
Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn
2014-01-01
Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951
Schröter, Matthias; Rusch, Graciela M; Barton, David N; Blumentrath, Stefan; Nordén, Björn
2014-01-01
Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.
Tracking of climatic niche boundaries under recent climate change.
La Sorte, Frank A; Jetz, Walter
2012-07-01
1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation strategies in particular will benefit through identifying and maintaining dispersal corridors that accommodate diverging dispersal strategies and timetables. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2015-03-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2014-11-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Evaluation of potential water conservation using site-specific irrigation
USDA-ARS?s Scientific Manuscript database
With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...
Paneque-Gálvez, Jaime; Pérez-Llorente, Irene; Luz, Ana Catarina; Guèze, Maximilien; Mas, Jean-François; Macía, Manuel J; Orta-Martínez, Martí; Reyes-García, Victoria
2018-03-12
It has been suggested that traditional ecological knowledge (TEK) may play a key role in forest conservation. However, empirical studies assessing to what extent TEK is associated with forest conservation compared with other variables are rare. Furthermore, to our knowledge, the spatial overlap of TEK and forest conservation has not been evaluated at fine scales. In this paper, we address both issues through a case study with Tsimane' Amerindians in the Bolivian Amazon. We sampled 624 households across 59 villages to estimate TEK and used remote sensing data to assess forest conservation. We ran statistical and spatial analyses to evaluate whether TEK was associated and spatially overlapped with forest conservation at the village level. We find that Tsimane' TEK is significantly and positively associated with forest conservation although acculturation variables bear stronger and negative associations with forest conservation. We also find a very significant spatial overlap between levels of Tsimane' TEK and forest conservation. We discuss the potential reasons underpinning our results, which provide insights that may be useful for informing policies in the realms of development, conservation, and climate. We posit that the protection of indigenous cultural systems is vital and urgent to create more effective policies in such realms.
Teillard, Félix; Jiguet, Frédéric; Tichit, Muriel
2015-01-01
The shape of the relationship between biodiversity and agricultural intensity determines the range of intensities that should be targeted by conservation policies to obtain the greatest environmental benefits. Although preliminary evidence of this relationship exists, the influence of the spatial arrangement of intensity on biodiversity remains untested. We conducted a nationwide study linking agricultural intensity and its spatial arrangement to a farmland bird community of 22 species. Intensity was described with a continuous indicator based on Input Cost per hectare, which was relevant for both livestock and crop production. We used the French Breeding Bird Survey to compute several descriptors of the farmland bird community along the intensity gradient and tested for the significance of an interaction effect between intensity and its spatial aggregation on these descriptors. We found that the bird community was comprised of both winner and loser species with regard to intensity. The community composition descriptors (trophic level, specialisation, and specialisation for grassland indices) displayed non-linear relationships to intensity, with steeper slopes in the lower intensity range. We found a significant interaction effect between intensity and its spatial aggregation on the grassland specialisation index of the bird community; the effect of agricultural intensity was strengthened by its spatial aggregation. We suggest that an opportunity to improve the effectiveness of conservation policies exists by targeting measures in areas where intensity is moderate to low and aggregated. The effect of the aggregation of agricultural intensity on biodiversity should be considered in other scales and taxa when developing optimal policy targeting and intensity allocation strategies. PMID:25799552
Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea.
Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk
2015-01-01
Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas.
Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea
Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk
2015-01-01
Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas. PMID:26221950
Conserving old-growth forest diversity in disturbance-prone landscapes.
Spies, Thomas A; Hemstrom, Miles A; Youngblood, Andrew; Hummel, Susan
2006-04-01
A decade after its creation, the Northwest Forest Plan is contributing to the conservation of old-growth forests on federal land. However the success and outlook for the plan are questionable in the dry provinces, where losses of old growth to wildfire have been relatively high and risks of further loss remain. We summarize the state of knowledge of old-growth forests in the plan area, identify challenges to conserve them, and suggest some conservation approaches that might better meet the goals of the plan. Historically, old-growth forests in these provinces ranged from open, patchy stands, maintained by frequent low-severity fire, to a mosaic of dense and open stands maintained by mixed-severity fires. Old-growth structure and composition were spatially heterogeneous, varied strongly with topography and elevation, and were shaped by a complex disturbance regime of fire, insects, and disease. With fire suppression and cutting of large pines (Pinus spp.) and Douglas-firs (Pseudotsuga menziesii [Mirbel] Franco), old-growth diversity has declined and dense understories have developed across large areas. Challenges to conserving these forests include a lack of definitions needed for planning of fire-dependent old-growth stands and landscapes, and conflicts in conservation goals that can be resolved only at the landscape level. Fire suppression has increased the area of the dense, older forest favored by Northern Spotted Owls (Strix occidentalis caurina) but increased the probability of high-severity fire. The plan allows for fuel reduction in late-successional reserves; fuel treatments, however apparently have not happened at a high enough rate or been applied in a landscape-level approach. Landscape-level strategies are needed that prioritize fuel treatments by vegetation zones, develop shaded fuel breaks in strategic positions, and thin and apply prescribed fire to reduce ladder fuels around remaining old trees. Evaluations of the current and alternative strategies are needed to determine whether the current reserve-matrix approach is the best strategy to meet plan goals in these dynamic landscapes.
Neal D. Niemuth; Michael E. Estey; Charles R. Loesch
2005-01-01
Conservation planning for birds is increasingly focused on landscapes. However, little spatially explicit information is available to guide landscape-level conservation planning for many species of birds. We used georeferenced 1995 Breeding Bird Survey (BBS) data in conjunction with land-cover information to develop a spatially explicit habitat model predicting the...
Landscape structure affects specialists but not generalists in naturally fragmented grasslands
Miller, Jesse E.D.; Damschen, Ellen Ingman; Harrison, Susan P.; Grace, James B.
2015-01-01
Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural landscapes become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. In this study, we asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure-defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index)-had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities, and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.
NASA Astrophysics Data System (ADS)
Osborne-Gowey, J.; Strittholt, J.; Bergquist, J.; Ward, B. C.; Sheehan, T.; Comendant, T.; Bachelet, D. M.
2009-12-01
The world’s aquatic resources are experiencing anthropogenic pressures on an unprecedented scale and aquatic organisms are experiencing widespread population changes and ecosystem-scale habitat alterations. Climate change is likely to exacerbate these threats, in some cases reducing the range of native North American fishes by 20-100% (depending on the location of the population and the model assumptions). Scientists around the globe are generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various temporal and spatial scales as scientists attempt to understand previous (and project future) human impacts to aquatic species and their habitats. Conservation scientists often struggle to synthesize this wealth of information for developing practical on-the-ground management strategies. As a result, the best available science is often not utilized in the decision-making and adaptive management processes. As aquatic conservation problems around the globe become more serious and the demand to solve them grows more urgent, scientists and land-use managers need a new way to bring strategic, science-based, and action-oriented approaches to aquatic conservation. The Conservation Biology Institute (CBI), with partners such as ESRI, is developing an Aquatic Center as part of a dynamic, web-based resource (Data Basin; http: databasin.org) that centralizes usable aquatic datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its utility, we present example datasets of varying spatial scales and synthesize multiple studies to arrive at novel solutions to aquatic threats.
Conserving tigers in working landscapes.
Chanchani, Pranav; Noon, Barry R; Bailey, Larissa L; Warrier, Rekha A
2016-06-01
Tiger (Panthera tigris) conservation efforts in Asia are focused on protected areas embedded in human-dominated landscapes. A system of protected areas is an effective conservation strategy for many endangered species if the network is large enough to support stable metapopulations. The long-term conservation of tigers requires that the species be able to meet some of its life-history needs beyond the boundaries of small protected areas and within the working landscape, including multiple-use forests with logging and high human use. However, understanding of factors that promote or limit the occurrence of tigers in working landscapes is incomplete. We assessed the relative influence of protection status, prey occurrence, extent of grasslands, intensity of human use, and patch connectivity on tiger occurrence in the 5400 km(2) Central Terai Landscape of India, adjacent to Nepal. Two observer teams independently surveyed 1009 km of forest trails and water courses distributed across 60 166-km(2) cells. In each cell, the teams recorded detection of tiger signs along evenly spaced trail segments. We used occupancy models that permitted multiscale analysis of spatially correlated data to estimate cell-scale occupancy and segment-scale habitat use by tigers as a function of management and environmental covariates. Prey availability and habitat quality, rather than protected-area designation, influenced tiger occupancy. Tiger occupancy was low in some protected areas in India that were connected to extensive areas of tiger habitat in Nepal, which brings into question the efficacy of current protection and management strategies in both India and Nepal. At a finer spatial scale, tiger habitat use was high in trail segments associated with abundant prey and large grasslands, but it declined as human and livestock use increased. We speculate that riparian grasslands may provide tigers with critical refugia from human activity in the daytime and thereby promote tiger occurrence in some multiple-use forests. Restrictions on human-use in high-quality tiger habitat in multiple-use forests may complement existing protected areas and collectively promote the persistence of tiger populations in working landscapes. © 2015 Society for Conservation Biology.
Veach, Victoria; Moilanen, Atte; Di Minin, Enrico
2017-01-01
Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results identify areas where limited resources should be allocated to mitigate risks to vertebrate species from habitat loss.
Moilanen, Atte; Di Minin, Enrico
2017-01-01
Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results identify areas where limited resources should be allocated to mitigate risks to vertebrate species from habitat loss. PMID:29182662
Characterizing spatial uncertainty when integrating social data in conservation planning.
Lechner, A M; Raymond, C M; Adams, V M; Polyakov, M; Gordon, A; Rhodes, J R; Mills, M; Stein, A; Ives, C D; Lefroy, E C
2014-12-01
Recent conservation planning studies have presented approaches for integrating spatially referenced social (SRS) data with a view to improving the feasibility of conservation action. We reviewed the growing conservation literature on SRS data, focusing on elicited or stated preferences derived through social survey methods such as choice experiments and public participation geographic information systems. Elicited SRS data includes the spatial distribution of willingness to sell, willingness to pay, willingness to act, and assessments of social and cultural values. We developed a typology for assessing elicited SRS data uncertainty which describes how social survey uncertainty propagates when projected spatially and the importance of accounting for spatial uncertainty such as scale effects and data quality. These uncertainties will propagate when elicited SRS data is integrated with biophysical data for conservation planning and may have important consequences for assessing the feasibility of conservation actions. To explore this issue further, we conducted a systematic review of the elicited SRS data literature. We found that social survey uncertainty was commonly tested for, but that these uncertainties were ignored when projected spatially. Based on these results we developed a framework which will help researchers and practitioners estimate social survey uncertainty and use these quantitative estimates to systematically address uncertainty within an analysis. This is important when using SRS data in conservation applications because decisions need to be made irrespective of data quality and well characterized uncertainty can be incorporated into decision theoretic approaches. © 2014 Society for Conservation Biology.
Samberg, Leah H; Fishman, Lila; Allendorf, Fred W
2013-01-01
Conservation strategies are increasingly driven by our understanding of the processes and patterns of gene flow across complex landscapes. The expansion of population genetic approaches into traditional agricultural systems requires understanding how social factors contribute to that landscape, and thus to gene flow. This study incorporates extensive farmer interviews and population genetic analysis of barley landraces (Hordeum vulgare) to build a holistic picture of farmer-mediated geneflow in an ancient, traditional agricultural system in the highlands of Ethiopia. We analyze barley samples at 14 microsatellite loci across sites at varying elevations and locations across a contiguous mountain range, and across farmer-identified barley types and management strategies. Genetic structure is analyzed using population-based and individual-based methods, including measures of population differentiation and genetic distance, multivariate Principal Coordinate Analysis, and Bayesian assignment tests. Phenotypic analysis links genetic patterns to traits identified by farmers. We find that differential farmer management strategies lead to markedly different patterns of population structure across elevation classes and barley types. The extent to which farmer seed management appears as a stronger determinant of spatial structure than the physical landscape highlights the need for incorporation of social, landscape, and genetic data for the design of conservation strategies in human-influenced landscapes. PMID:24478796
Barasona, José A.; Mulero-Pázmány, Margarita; Acevedo, Pelayo; Negro, Juan J.; Torres, María J.; Gortázar, Christian; Vicente, Joaquín
2014-01-01
Complex ecological and epidemiological systems require multidisciplinary and innovative research. Low cost unmanned aircraft systems (UAS) can provide information on the spatial pattern of hosts’ distribution and abundance, which is crucial as regards modelling the determinants of disease transmission and persistence on a fine spatial scale. In this context we have studied the spatial epidemiology of tuberculosis (TB) in the ungulate community of Doñana National Park (South-western Spain) by modelling species host (red deer, fallow deer and cattle) abundance at fine spatial scale. The use of UAS high-resolution images has allowed us to collect data to model the environmental determinants of host abundance, and in a further step to evaluate their relationships with the spatial risk of TB throughout the ungulate community. We discuss the ecological, epidemiological and logistic conditions under which UAS may contribute to study the wildlife/livestock sanitary interface, where the spatial aggregation of hosts becomes crucial. These findings are relevant for planning and implementing research, fundamentally when managing disease in multi-host systems, and focusing on risky areas. Therefore, managers should prioritize the implementation of control strategies to reduce disease of conservation, economic and social relevance. PMID:25551673
Global forest loss disproportionately erodes biodiversity in intact landscapes.
Betts, Matthew G; Wolf, Christopher; Ripple, William J; Phalan, Ben; Millers, Kimberley A; Duarte, Adam; Butchart, Stuart H M; Levi, Taal
2017-07-27
Global biodiversity loss is a critical environmental crisis, yet the lack of spatial data on biodiversity threats has hindered conservation strategies. Theory predicts that abrupt biodiversity declines are most likely to occur when habitat availability is reduced to very low levels in the landscape (10-30%). Alternatively, recent evidence indicates that biodiversity is best conserved by minimizing human intrusion into intact and relatively unfragmented landscapes. Here we use recently available forest loss data to test deforestation effects on International Union for Conservation of Nature Red List categories of extinction risk for 19,432 vertebrate species worldwide. As expected, deforestation substantially increased the odds of a species being listed as threatened, undergoing recent upgrading to a higher threat category and exhibiting declining populations. More importantly, we show that these risks were disproportionately high in relatively intact landscapes; even minimal deforestation has had severe consequences for vertebrate biodiversity. We found little support for the alternative hypothesis that forest loss is most detrimental in already fragmented landscapes. Spatial analysis revealed high-risk hot spots in Borneo, the central Amazon and the Congo Basin. In these regions, our model predicts that 121-219 species will become threatened under current rates of forest loss over the next 30 years. Given that only 17.9% of these high-risk areas are formally protected and only 8.9% have strict protection, new large-scale conservation efforts to protect intact forests are necessary to slow deforestation rates and to avert a new wave of global extinctions.
Pesek, Todd; Abramiuk, Marc; Garagic, Denis; Fini, Nick; Meerman, Jan; Cal, Victor
2009-03-01
Ethnobotanical surveys were conducted to locate culturally important, regionally scarce, and disappearing medicinal plants via a novel participatory methodology which involves healer-expert knowledge in interactive spatial modeling to prioritize conservation efforts and thus facilitate health promotion via medicinal plant resource sustained availability. These surveys, conducted in the Maya Mountains, Belize, generate ethnobotanical, ecological, and geospatial data on species which are used by Q'eqchi' Maya healers in practice. Several of these mountainous species are regionally scarce and the healers are expressing difficulties in finding them for use in promotion of community health and wellness. Based on healers' input, zones of highest probability for locating regionally scarce, disappearing, and culturally important plants in their ecosystem niches can be facilitated by interactive modeling. In the present study, this is begun by choosing three representative species to train an interactive predictive model. Model accuracy was then assessed statistically by testing for independence between predicted occurrence and actual occurrence of medicinal plants. A high level of accuracy was achieved using a small set of exemplar data. This work demonstrates the potential of combining ethnobotany and botanical spatial information with indigenous ecosystems concepts and Q'eqchi' Maya healing knowledge via predictive modeling. Through this approach, we may identify regions where species are located and accordingly promote for prioritization and application of in situ and ex situ conservation strategies to protect them. This represents a significant step toward facilitating sustained culturally relative health promotion as well as overall enhanced ecological integrity to the region and the earth.
Effects of preference heterogeneity among landowners on spatial conservation prioritization.
Nielsen, Anne Sofie Elberg; Strange, Niels; Bruun, Hans Henrik; Jacobsen, Jette Bredahl
2017-06-01
The participation of private landowners in conservation is crucial to efficient biodiversity conservation. This is especially the case in settings where the share of private ownership is large and the economic costs associated with land acquisition are high. We used probit regression analysis and historical participation data to examine the likelihood of participation of Danish forest owners in a voluntary conservation program. We used the results to spatially predict the likelihood of participation of all forest owners in Denmark. We merged spatial data on the presence of forest, cadastral information on participation contracts, and individual-level socioeconomic information about the forest owners and their households. We included predicted participation in a probability model for species survival. Uninformed and informed (included land owner characteristics) models were then incorporated into a spatial prioritization for conservation of unmanaged forests. The choice models are based on sociodemographic data on the entire population of Danish forest owners and historical data on their participation in conservation schemes. Inclusion in the model of information on private landowners' willingness to supply land for conservation yielded at intermediate budget levels up to 30% more expected species coverage than the uninformed prioritization scheme. Our landowner-choice model provides an example of moving toward more implementable conservation planning. © 2016 Society for Conservation Biology.
Sarkar, Mriganka Shekhar; Johnson, Jeyaraj A.; Sen, Subharanjan
2017-01-01
Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods. Based on threshold limits of habitat selection by the Boyce Index, we established that 83% of core and 47% of buffer areas are now suitable habitats for tiger in this reserve. Discussion Tiger management often focuses on large-scale measures, but this study for the first time highlights the behaviour and fine-scale individual-specific habitat selection strategies. Such knowledge is vital for management of critical tiger habitats and specifically for the success of reintroduction programs. Our spatially explicit habitat suitability map provides a baseline for conservation planning and optimizing carrying capacity of the tiger population in this reserve. PMID:29114438
Sarkar, Mriganka Shekhar; Krishnamurthy, Ramesh; Johnson, Jeyaraj A; Sen, Subharanjan; Saha, Goutam Kumar
2017-01-01
Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals' ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger ( Panthera tigris ), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly's selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D 2 method and the Boyce index. There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods. Based on threshold limits of habitat selection by the Boyce Index, we established that 83% of core and 47% of buffer areas are now suitable habitats for tiger in this reserve. Tiger management often focuses on large-scale measures, but this study for the first time highlights the behaviour and fine-scale individual-specific habitat selection strategies. Such knowledge is vital for management of critical tiger habitats and specifically for the success of reintroduction programs. Our spatially explicit habitat suitability map provides a baseline for conservation planning and optimizing carrying capacity of the tiger population in this reserve.
Cooke, Georgina M; Schlub, Timothy E; Sherwin, William B; Ord, Terry J
2016-01-01
Quantifying the spatial scale of population connectivity is important for understanding the evolutionary potential of ecologically divergent populations and for designing conservation strategies to preserve those populations. For marine organisms like fish, the spatial scale of connectivity is generally set by a pelagic larval phase. This has complicated past estimates of connectivity because detailed information on larval movements are difficult to obtain. Genetic approaches provide a tractable alternative and have the added benefit of estimating directly the reproductive isolation of populations. In this study, we leveraged empirical estimates of genetic differentiation among populations with simulations and a meta-analysis to provide a general estimate of the spatial scale of genetic connectivity in marine environments. We used neutral genetic markers to first quantify the genetic differentiation of ecologically-isolated adult populations of a land dwelling fish, the Pacific leaping blenny (Alticus arnoldorum), where marine larval dispersal is the only probable means of connectivity among populations. We then compared these estimates to simulations of a range of marine dispersal scenarios and to collated FST and distance data from the literature for marine fish across diverse spatial scales. We found genetic connectivity at sea was extensive among marine populations and in the case of A. arnoldorum, apparently little affected by the presence of ecological barriers. We estimated that ~5000 km (with broad confidence intervals ranging from 810-11,692 km) was the spatial scale at which evolutionarily meaningful barriers to gene flow start to occur at sea, although substantially shorter distances are also possible for some taxa. In general, however, such a large estimate of connectivity has important implications for the evolutionary and conservation potential of many marine fish communities.
Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M
2014-08-01
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. © 2014 Society for Conservation Biology.
Samson, Fred B.; Knopf, Fritz L.
1993-01-01
Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by viewing issues across biological, spatial, and temporal scales (Knopf and Smith 1992), natural resource managers find much conflicting information in the literature on strategies and programs for the conservation of biological diversity (Ehrlich 1992). Moreover, recommendations provided in much of the published information available for planning or decisions not only can be debated but may prove counterproductive if implemented. Current operational efforts beg for clearer focus on fundamental concepts central to daily decisions that impact native biological diversity. Recognizing that many biologists would provide different council and at the risk of oversimplification, we offer the following 4 topical issues as fundamental guidance to wise conservation action. These recommendations are based on our collective experiences working within conservation agencies since our original, collaborative essay (Samson and Knopf 1982). They are offered as initial, rather than authoritative, steps to better align research and management decisions with what we perceive as the critical issues in conserving biological diversity at the landscape and ecosystem levels of resolution.
Wu, Ruidong; Long, Yongcheng; Malanson, George P; Garber, Paul A; Zhang, Shuang; Li, Diqiang; Zhao, Peng; Wang, Longzhu; Duo, Hairui
2014-01-01
By addressing several key features overlooked in previous studies, i.e. human disturbance, integration of ecosystem- and species-level conservation features, and principles of complementarity and representativeness, we present the first national-scale systematic conservation planning for China to determine the optimized spatial priorities for biodiversity conservation. We compiled a spatial database on the distributions of ecosystem- and species-level conservation features, and modeled a human disturbance index (HDI) by aggregating information using several socioeconomic proxies. We ran Marxan with two scenarios (HDI-ignored and HDI-considered) to investigate the effects of human disturbance, and explored the geographic patterns of the optimized spatial conservation priorities. Compared to when HDI was ignored, the HDI-considered scenario resulted in (1) a marked reduction (∼9%) in the total HDI score and a slight increase (∼7%) in the total area of the portfolio of priority units, (2) a significant increase (∼43%) in the total irreplaceable area and (3) more irreplaceable units being identified in almost all environmental zones and highly-disturbed provinces. Thus the inclusion of human disturbance is essential for cost-effective priority-setting. Attention should be targeted to the areas that are characterized as moderately-disturbed, <2,000 m in altitude, and/or intermediately- to extremely-rugged in terrain to identify potentially important regions for implementing cost-effective conservation. We delineated 23 primary large-scale priority areas that are significant for conserving China's biodiversity, but those isolated priority units in disturbed regions are in more urgent need of conservation actions so as to prevent immediate and severe biodiversity loss. This study presents a spatially optimized national-scale portfolio of conservation priorities--effectively representing the overall biodiversity of China while minimizing conflicts with economic development. Our results offer critical insights for current conservation and strategic land-use planning in China. The approach is transferable and easy to implement by end-users, and applicable for national- and local-scale systematic conservation prioritization practices.
Wu, Ruidong; Long, Yongcheng; Malanson, George P.; Garber, Paul A.; Zhang, Shuang; Li, Diqiang; Zhao, Peng; Wang, Longzhu; Duo, Hairui
2014-01-01
By addressing several key features overlooked in previous studies, i.e. human disturbance, integration of ecosystem- and species-level conservation features, and principles of complementarity and representativeness, we present the first national-scale systematic conservation planning for China to determine the optimized spatial priorities for biodiversity conservation. We compiled a spatial database on the distributions of ecosystem- and species-level conservation features, and modeled a human disturbance index (HDI) by aggregating information using several socioeconomic proxies. We ran Marxan with two scenarios (HDI-ignored and HDI-considered) to investigate the effects of human disturbance, and explored the geographic patterns of the optimized spatial conservation priorities. Compared to when HDI was ignored, the HDI-considered scenario resulted in (1) a marked reduction (∼9%) in the total HDI score and a slight increase (∼7%) in the total area of the portfolio of priority units, (2) a significant increase (∼43%) in the total irreplaceable area and (3) more irreplaceable units being identified in almost all environmental zones and highly-disturbed provinces. Thus the inclusion of human disturbance is essential for cost-effective priority-setting. Attention should be targeted to the areas that are characterized as moderately-disturbed, <2,000 m in altitude, and/or intermediately- to extremely-rugged in terrain to identify potentially important regions for implementing cost-effective conservation. We delineated 23 primary large-scale priority areas that are significant for conserving China's biodiversity, but those isolated priority units in disturbed regions are in more urgent need of conservation actions so as to prevent immediate and severe biodiversity loss. This study presents a spatially optimized national-scale portfolio of conservation priorities – effectively representing the overall biodiversity of China while minimizing conflicts with economic development. Our results offer critical insights for current conservation and strategic land-use planning in China. The approach is transferable and easy to implement by end-users, and applicable for national- and local-scale systematic conservation prioritization practices. PMID:25072933
Sudhakar Reddy, C; Vazeed Pasha, S; Jha, C S; Dadhwal, V K
2015-07-01
Conservation of biodiversity has been put to the highest priority throughout the world. The process of identifying threatened ecosystems will search for different drivers related to biodiversity loss. The present study aimed to generate spatial information on deforestation and ecological degradation indicators of fragmentation and forest fires using systematic conceptual approach in Telangana state, India. Identification of ecosystems facing increasing vulnerability can help to safeguard the extinctions of species and useful for conservation planning. The technological advancement of satellite remote sensing and Geographical Information System has increased greatly in assessment and monitoring of ecosystem-level changes. The areas of threat were identified by creating grid cells (5 × 5 km) in Geographical Information System (GIS). Deforestation was assessed using multi-source data of 1930, 1960, 1975, 1985, 1995, 2005 and 2013. The forest cover of 40,746 km(2), 29,299 km(2), 18,652 km(2), 18,368 km(2), 18,006 km(2), 17,556 km(2) and 17,520 km(2) was estimated during 1930, 1960, 1975, 1985, 1995, 2005 and 2013, respectively. Historical evaluation of deforestation revealed that major changes had occurred in forests of Telangana and identified 1095 extinct, 397 critically endangered, 523 endangered and 311 vulnerable ecosystem grid cells. The fragmentation analysis has identified 307 ecosystem grid cells under critically endangered status. Forest burnt area information was extracted using AWiFS data of 2005 to 2014. Spatial analysis indicates total fire-affected forest in Telangana as 58.9% in a decadal period. Conservation status has been recorded depending upon values of threat for each grid, which forms the basis for conservation priority hotspots. Of existing forest, 2.1% grids had severe ecosystem collapse and had been included under the category of conservation priority hotspot-I, followed by 27.2% in conservation priority hotspot-II and 51.5% in conservation priority hotspot-III. This analysis complements assessment of ecosystems undergoing multiple threats. An integrated approach involving the deforestation and degradation indicators is useful in formulating the strategies to take appropriate conservation measures.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
...] Endangered and Threatened Wildlife and Plants; Draft Conservation Strategy for the Northern Continental... availability of a draft Conservation Strategy for the Northern Continental Divide Ecosystem grizzly bear (Ursus.... ADDRESSES: An electronic copy of the draft Conservation Strategy for the Northern Continental Divide grizzly...
Breckheimer, Ian; Haddad, Nick M; Morris, William F; Trainor, Anne M; Fields, William R; Jobe, R Todd; Hudgens, Brian R; Moody, Aaron; Walters, Jeffrey R
2014-12-01
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species-a bird (the umbrella), a butterfly, and a frog-inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. © 2014 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Siuda, A. N.; Smythe, T. C.
2016-12-01
The Sargasso Sea, at the center of the North Atlantic gyre, is recognized by the United Nations Convention on Biological Diversity as a globally unique ecosystem threatened by anthropogenic activity. In its stewardship capacity, the Sargasso Sea Commission works within the current system of international organizations and treaties to secure protection for particular species or areas. Without a single governing authority to implement and enforce protective measures across the region, a coordinated management plan for the region is lacking. A research team comprised of 20 advanced undergraduate scientists participating in the spring 2015 SEA Semester: Marine Biodiversity and Conservation program of Sea Education Association (Woods Hole, MA) engaged in a groundbreaking simulated high seas marine spatial planning process resulting in A Marine Management Proposal for the Sargasso Sea. Based on natural and social science research, the interdisciplinary Proposal outlines goals, objectives and realistic strategies that encompass ecological, economic, human use, and future use considerations. Notably, the Proposal is the product of a classroom-based simulation intended to improve emerging scientists' understanding of how research is integrated into the policy process and how organizations work across disciplinary boundaries to address complex ocean management problems. Student researchers identified several discrete management areas and associated policy recommendations for those areas, as well as strategies for coordinated management across the entire Sargasso Sea region. The latter include establishment of a United Nations Regional Ocean Management Organization as well as provisions for monitoring and managing high seas traffic. To make progress toward these strategies, significant attention to the importance of high seas regions for global-scale conservation will be necessary.
NASA Astrophysics Data System (ADS)
Siuda, A. N.; Smythe, T. C.
2016-02-01
The Sargasso Sea, at the center of the North Atlantic gyre, is recognized by the United Nations Convention on Biological Diversity as a globally unique ecosystem threatened by anthropogenic activity. In its stewardship capacity, the Sargasso Sea Commission works within the current system of international organizations and treaties to secure protection for particular species or areas. Without a single governing authority to implement and enforce protective measures across the region, a coordinated management plan for the region is lacking. A research team comprised of 20 advanced undergraduate scientists participating in the spring 2015 SEA Semester: Marine Biodiversity and Conservation program of Sea Education Association (Woods Hole, MA) engaged in a groundbreaking simulated high seas marine spatial planning process resulting in A Marine Management Proposal for the Sargasso Sea. Based on natural and social science research, the interdisciplinary Proposal outlines goals, objectives and realistic strategies that encompass ecological, economic, human use, and future use considerations. Notably, the Proposal is the product of a classroom-based simulation intended to improve emerging scientists' understanding of how research is integrated into the policy process and how organizations work across disciplinary boundaries to address complex ocean management problems. Student researchers identified several discrete management areas and associated policy recommendations for those areas, as well as strategies for coordinated management across the entire Sargasso Sea region. The latter include establishment of a United Nations Regional Ocean Management Organization as well as provisions for monitoring and managing high seas traffic. To make progress toward these strategies, significant attention to the importance of high seas regions for global-scale conservation will be necessary.
Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D
2017-09-11
Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.
Spatial education: improving conservation delivery through space-structured decision making
Moore, Clinton T.; Shaffer, Terry L.; Gannon, Jill J.
2013-01-01
Adaptive management is a form of structured decision making designed to guide management of natural resource systems when their behaviors are uncertain. Where decision making can be replicated across units of a landscape, learning can be accelerated, and biological processes can be understood in a larger spatial context. Broad-based partnerships among land management agencies, exemplified by Landscape Conservation Cooperatives (conservation partnerships created through the U.S. Department of the Interior), are potentially ideal environments for implementing spatially structured adaptive management programs.
Hamazaki, T.; Thompson, B.C.; Locke, B.A.; Boykin, K.G.
2003-01-01
In developing conservation strategies, it is important to maximize effects of conservation within a specified land tract and to maximize conservation effects on surrounding area (ecological context). The authors proposed two criteria to select biotic entities for conservation foci: (1) the relative occurrence of fauna or flora in a tract is greater than that of an ecological context region; and (2) occurrence of the fauna or flora is relatively limited in the ecological context region. Using extensive spatial data on vegetation and wildlife habitat distribution, the authors identified strategic vegetation and fauna conservation foci for the 400 000 ha Fort Bliss military reservation in New Mexico and Texas relative to a 164 km radius ecological context region intersecting seven ecological zones and the predicted habitat distribution of 616 animal species. The authors set two specific criteria: (1) predicted area of a species' occurrence is 5% (Fort Bliss is 4.2% of the region). These criteria selected one vegetation class and 40 animal species. Further, these vegetation and animal foci were primarily located in two areas of Fort Bliss. Sensitivity analyses with other analytical radii corroborated the context radius used. Conservation of the two areas and associated taxa will maximize the contribution of Fort Bliss's conservation efforts in its ecological proximity. This relatively simple but information-rich process represents economical and defensible preliminary contextual analysis for detailed conservation planning.
Kruse, Gordon H.; Dorn, Martin W.
2016-01-01
Catch quotas for walleye pollock Gadus chalcogrammus, the dominant species in the groundfish fishery off Alaska, are set by applying harvest control rules to annual estimates of spawning stock biomass (SSB) from age-structured stock assessments. Adult walleye pollock abundance and maturity status have been monitored in early spring in Shelikof Strait in the Gulf of Alaska for almost three decades. The sampling strategy for maturity status is largely characterized as targeted, albeit opportunistic, sampling of trawl tows made during hydroacoustic surveys. Trawl sampling during pre-spawning biomass surveys, which do not adequately account for spatial patterns in the distribution of immature and mature fish, can bias estimated maturity ogives from which SSB is calculated. Utilizing these maturity data, we developed mixed-effects generalized additive models to examine spatial and temporal patterns in walleye pollock maturity and the influence of these patterns on estimates of SSB. Current stock assessment practice is to estimate SSB as the product of annual estimates of numbers at age, weight at age, and mean maturity at age for 1983-present. In practice, we found this strategy to be conservative for a time period from 2003–2013 as, on average, it underestimates SSB by a 4.7 to 11.9% difference when compared to our estimates of SSB that account for spatial structure or both temporal and spatial structure. Inclusion of spatially explicit information for walleye pollock maturity has implications for understanding stock reproductive biology and thus the setting of sustainable harvest rates used to manage this valuable fishery. PMID:27736982
Optimal dynamic control of invasions: applying a systematic conservation approach.
Adams, Vanessa M; Setterfield, Samantha A
2015-06-01
The social, economic, and environmental impacts of invasive plants are well recognized. However, these variable impacts are rarely accounted for in the spatial prioritization of funding for weed management. We examine how current spatially explicit prioritization methods can be extended to identify optimal budget allocations to both eradication and control measures of invasive species to minimize the costs and likelihood of invasion. Our framework extends recent approaches to systematic prioritization of weed management to account for multiple values that are threatened by weed invasions with a multi-year dynamic prioritization approach. We apply our method to the northern portion of the Daly catchment in the Northern Territory, which has significant conservation values that are threatened by gamba grass (Andropogon gayanus), a highly invasive species recognized by the Australian government as a Weed of National Significance (WONS). We interface Marxan, a widely applied conservation planning tool, with a dynamic biophysical model of gamba grass to optimally allocate funds to eradication and control programs under two budget scenarios comparing maximizing gain (MaxGain) and minimizing loss (MinLoss) optimization approaches. The prioritizations support previous findings that a MinLoss approach is a better strategy when threats are more spatially variable than conservation values. Over a 10-year simulation period, we find that a MinLoss approach reduces future infestations by ~8% compared to MaxGain in the constrained budget scenarios and ~12% in the unlimited budget scenarios. We find that due to the extensive current invasion and rapid rate of spread, allocating the annual budget to control efforts is more efficient than funding eradication efforts when there is a constrained budget. Under a constrained budget, applying the most efficient optimization scenario (control, minloss) reduces spread by ~27% compared to no control. Conversely, if the budget is unlimited it is more efficient to fund eradication efforts and reduces spread by ~65% compared to no control.
Landscape associations of birds during migratory stopover
NASA Astrophysics Data System (ADS)
Diehl, Robert Howard
The challenge for migratory bird conservation is habitat preservation that sustains breeding, migration, and non-breeding biological processes. In choosing an appropriately scaled conservation arena for habitat preservation, a conservative and thorough examination of stopover habitat use patterns by migrants works back from the larger scales at which such relationships may occur. Because the use of stopover habitats by migrating birds occurs at spatial scales larger than traditional field techniques can easily accommodate, I quantify these relationship using the United States system of weather surveillance radars (popularly known as NEXRAD). To provide perspective on use of this system for biologists, I first describe the technical challenges as well as some of the biological potential of these radars for ornithological research. Using data from these radars, I then examined the influence of Lake Michigan and the distribution of woodland habitat on migrant concentrations in northeastern Illinois habitats during stopover. Lake Michigan exerted less influence on migrant abundance and density than the distribution and availability of habitat for stopover. There was evidence of post-migratory movement resulting in habitats within suburban landscapes experiencing higher migrant abundance but lower migrant density than habitats within nearby urban and agricultural landscapes. Finally, in the context of hierarchy theory, I examined the influence of landscape ecological and behavioral processes on bird density during migratory stopover. Migrant abundance did not vary across landscapes that differed considerably in the amount of habitat available for stopover. As a result, smaller, more isolated patches held higher densities of birds. Spatial models of migrant habitat selection based on migrant proximity to a patch explained nearly as much variance in the number of migrants occupying patches (R2 = 0.88) as selection models based on migrant interception of patches during flight (R2 = 0.90). Because migrant densities in specific patches were the consequence of biological processes operating at larger spatial scales, sound conservation strategies for migrating landbirds should consider the landscape context of stopover habitats that are potential targets for preservation.
Modeling the Capacity of Riverscapes to Support Dam-Building Beaver
NASA Astrophysics Data System (ADS)
Macfarlane, W.; Wheaton, J. M.
2012-12-01
Beaver (Castor canadensis) dam-building activities lead to a cascade of aquatic and riparian effects that increase the complexity of streams. As a result, beaver are increasingly being used as a critical component of passive stream and riparian restoration strategies. We developed the spatially-explicit Beaver Assessment and Restoration Tool (BRAT) to assess the capacity of the landscape in and around streams and rivers to support dam-building activity for beaver. Capacity was assessed in terms of readily available nation-wide GIS datasets to assess key habitat capacity indicators: water availability, relative abundance of preferred food/building materials and stream power. Beaver capacity was further refined by: 1) ungulate grazing capacity 2) proximity to human conflicts (e.g., irrigation diversions, settlements) 3) conservation/management objectives (endangered fish habitat) and 4) projected benefits related to beaver re-introductions (e.g., repair incisions). Fuzzy inference systems were used to assess the relative importance of these inputs which allowed explicit incorporation of uncertainty resulting from categorical ambiguity of inputs into the capacity model. Results indicate that beaver capacity varies widely within the study area, but follows predictable spatial patterns that correspond to distinct River Styles and landscape units. We present a case study application and verification/validation data from the Escalante River Watershed in southern Utah, and show how the models can be used to help resource managers develop and implement restoration and conservation strategies employing beaver that will have the greatest potential to yield increases in biodiversity and ecosystem services.
Waiting can be an optimal conservation strategy, even in a crisis discipline
Possingham, Hugh P.; Bode, Michael
2017-01-01
Biodiversity conservation projects confront immediate and escalating threats with limited funding. Conservation theory suggests that the best response to the species extinction crisis is to spend money as soon as it becomes available, and this is often an explicit constraint placed on funding. We use a general dynamic model of a conservation landscape to show that this decision to “front-load” project spending can be suboptimal if a delay allows managers to use resources more strategically. Our model demonstrates the existence of temporal efficiencies in conservation management, which parallel the spatial efficiencies identified by systematic conservation planning. The optimal timing of decisions balances the rate of biodiversity decline (e.g., the relaxation of extinction debts, or the progress of climate change) against the rate at which spending appreciates in value (e.g., through interest, learning, or capacity building). We contrast the benefits of acting and waiting in two ecosystems where restoration can mitigate forest bird extinction debts: South Australia’s Mount Lofty Ranges and Paraguay’s Atlantic Forest. In both cases, conservation outcomes cannot be maximized by front-loading spending, and the optimal solution recommends substantial delays before managers undertake conservation actions. Surprisingly, these delays allow superior conservation benefits to be achieved, in less time than front-loading. Our analyses provide an intuitive and mechanistic rationale for strategic delay, which contrasts with the orthodoxy of front-loaded spending for conservation actions. Our results illustrate the conservation efficiencies that could be achieved if decision makers choose when to spend their limited resources, as opposed to just where to spend them. PMID:28894004
Waiting can be an optimal conservation strategy, even in a crisis discipline.
Iacona, Gwenllian D; Possingham, Hugh P; Bode, Michael
2017-09-26
Biodiversity conservation projects confront immediate and escalating threats with limited funding. Conservation theory suggests that the best response to the species extinction crisis is to spend money as soon as it becomes available, and this is often an explicit constraint placed on funding. We use a general dynamic model of a conservation landscape to show that this decision to "front-load" project spending can be suboptimal if a delay allows managers to use resources more strategically. Our model demonstrates the existence of temporal efficiencies in conservation management, which parallel the spatial efficiencies identified by systematic conservation planning. The optimal timing of decisions balances the rate of biodiversity decline (e.g., the relaxation of extinction debts, or the progress of climate change) against the rate at which spending appreciates in value (e.g., through interest, learning, or capacity building). We contrast the benefits of acting and waiting in two ecosystems where restoration can mitigate forest bird extinction debts: South Australia's Mount Lofty Ranges and Paraguay's Atlantic Forest. In both cases, conservation outcomes cannot be maximized by front-loading spending, and the optimal solution recommends substantial delays before managers undertake conservation actions. Surprisingly, these delays allow superior conservation benefits to be achieved, in less time than front-loading. Our analyses provide an intuitive and mechanistic rationale for strategic delay, which contrasts with the orthodoxy of front-loaded spending for conservation actions. Our results illustrate the conservation efficiencies that could be achieved if decision makers choose when to spend their limited resources, as opposed to just where to spend them.
Drum, Ryan G; Ribic, Christine A; Koch, Katie; Lonsdorf, Eric; Grant, Evan; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, David C; Rideout, Catherine; Sample, David
2015-01-01
Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.
Drum, Ryan G.; Ribic, Christine A.; Koch, Katie; Lonsdorf, Eric; Grant, Evan; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, David C.; Rideout, Catherine; Sample, David
2015-01-01
Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds. PMID:26569108
Drum, Ryan G.; Ribic, Christine; Koch, Katie; Lonsdorf, Eric V.; Grant, Edward C.; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, D.C.; Rideout, Catherine; Sample, David W.
2015-01-01
Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.
Kareksela, Santtu; Moilanen, Atte; Tuominen, Seppo; Kotiaho, Janne S
2013-12-01
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on-the-ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land-use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land-use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape-level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land-use zoning in the province of Central Finland. © 2013 Society for Conservation Biology.
Douvere, Fanny; Ehler, Charles N
2009-01-01
Increased development pressures on the marine environment and the potential for multiple use conflicts, arising as a result of the current expansion of offshore wind energy, fishing and aquaculture, dredging, mineral extraction, shipping, and the need to meet international and national commitments to biodiversity conservation, have led to increased interest in sea use planning with particular emphasis on marine spatial planning. Several European countries, on their own initiative or driven by the European Union's Marine Strategy and Maritime Policy, the Bergen Declaration of the North Sea Conference, and the EU Recommendation on Integrated Coastal Zone Management, have taken global leadership in implementing marine spatial planning. Belgium, The Netherlands, and Germany in the North Sea, and the United Kingdom in the Irish Sea, have already completed preliminary sea use plans and zoning proposals for marine areas within their national jurisdictions. This paper discusses the nature and context of marine spatial planning, the international legal and policy framework, and the increasing need for marine spatial planning in Europe. In addition, the authors review briefly three marine spatial planning initiatives in the North Sea and conclude with some initial lessons learned from these experiences.
Effectiveness of conservation easements in agricultural regions.
Braza, Mark
2017-08-01
Conservation easements are a standard technique for preventing habitat loss, particularly in agricultural regions with extensive cropland cultivation, yet little is known about their effectiveness. I developed a spatial econometric approach to propensity-score matching and used the approach to estimate the amount of habitat loss prevented by a grassland conservation easement program of the U.S. federal government. I used a spatial autoregressive probit model to predict tract enrollment in the easement program as of 2001 based on tract agricultural suitability, habitat quality, and spatial interactions among neighboring tracts. Using the predicted values from the model, I matched enrolled tracts with similar unenrolled tracts to form a treatment group and a control group. To measure the program's impact on subsequent grassland loss, I estimated cropland cultivation rates for both groups in 2014 with a second spatial probit model. Between 2001 and 2014, approximately 14.9% of control tracts were cultivated and 0.3% of treated tracts were cultivated. Therefore, approximately 14.6% of the protected land would have been cultivated in the absence of the program. My results demonstrate that conservation easements can significantly reduce habitat loss in agricultural regions; however, the enrollment of tracts with low cropland suitability may constrain the amount of habitat loss they prevent. My results also show that spatial econometric models can improve the validity of control groups and thereby strengthen causal inferences about program effectiveness in situations when spatial interactions influence conservation decisions. © 2017 Society for Conservation Biology.
Metcalfe, Kristian; Vaughan, Gregory; Vaz, Sandrine; Smith, Robert J
2015-12-01
Marine protected areas (MPAs) are the cornerstone of most marine conservation strategies, but the effectiveness of each one partly depends on its size and distance to other MPAs in a network. Despite this, current recommendations on ideal MPA size and spacing vary widely, and data are lacking on how these constraints might influence the overall spatial characteristics, socio-economic impacts, and connectivity of the resultant MPA networks. To address this problem, we tested the impact of applying different MPA size constraints in English waters. We used the Marxan spatial prioritization software to identify a network of MPAs that met conservation feature targets, whilst minimizing impacts on fisheries; modified the Marxan outputs with the MinPatch software to ensure each MPA met a minimum size; and used existing data on the dispersal distances of a range of species found in English waters to investigate the likely impacts of such spatial constraints on the region's biodiversity. Increasing MPA size had little effect on total network area or the location of priority areas, but as MPA size increased, fishing opportunity cost to stakeholders increased. In addition, as MPA size increased, the number of closely connected sets of MPAs in networks and the average distance between neighboring MPAs decreased, which consequently increased the proportion of the planning region that was isolated from all MPAs. These results suggest networks containing large MPAs would be more viable for the majority of the region's species that have small dispersal distances, but dispersal between MPA sets and spill-over of individuals into unprotected areas would be reduced. These findings highlight the importance of testing the impact of applying different MPA size constraints because there are clear trade-offs that result from the interaction of size, number, and distribution of MPAs in a network. © 2015 Society for Conservation Biology.
Adaptive Comanagement of a Marine Protected Area Network in Fiji
WEEKS, REBECCA; JUPITER, STACY D
2014-01-01
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. PMID:24112643
Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China
NASA Astrophysics Data System (ADS)
Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He
2012-10-01
The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.
Smith, David R.; McRae, Sarah E.; Augspurger, Tom; Ratcliffe, Judith A.; Nichols, Robert B.; Eads, Chris B.; Savidge, Tim; Bogan, Arthur E.
2015-01-01
We used a structured decision-making process to develop conservation strategies to increase persistence of Dwarf Wedgemussel (Alasmidonta heterodon) in North Carolina, USA, while accounting for uncertainty in management effectiveness and considering costs. Alternative conservation strategies were portfolios of management actions that differed by location of management actions on the landscape. Objectives of the conservation strategy were to maximize species persistence, maintain genetic diversity, maximize public support, and minimize management costs. We compared 4 conservation strategies: 1) the ‘status quo’ strategy represented current management, 2) the ‘protect the best’ strategy focused on protecting the best populations in the Tar River basin, 3) the ‘expand the distribution’ strategy focused on management of extant populations and establishment of new populations in the Neuse River basin, and 4) the ‘hybrid’ strategy combined elements of each strategy to balance conservation in the Tar and Neuse River basins. A population model informed requirements for population management, and experts projected performance of alternative strategies over a 20-y period. The optimal strategy depended on the relative value placed on competing objectives, which can vary among stakeholders. The protect the best and hybrid strategies were optimal across a wide range of relative values with 2 exceptions: 1) if minimizing management cost was of overriding concern, then status quo was optimal, or 2) if maximizing population persistence in the Neuse River basin was emphasized, then expand the distribution strategy was optimal. The optimal strategy was robust to uncertainty in management effectiveness. Overall, the structured decision process can help identify the most promising strategies for endangered species conservation that maximize conservation benefit given the constraint of limited funding.
Oliva, Silvia; Farina, Simone; Pinna, Stefania; Guala, Ivan; Agnetta, Davide; Ariotti, Pierre Antoine; Mura, Francesco; Ceccherelli, Giulia
2016-06-01
Sea urchins may deeply shape the structure of macrophyte-dominated communities and require the implementation of sustainable management strategies. In the Mediterranean, the identification of the major recruitment determinants of the keystone sea urchin species Paracentrotus lividus is required, so that source areas of the populations can be identified and exploitation or programmed harvesting can be spatially managed. In this study a collection of eight possible determinants, these encompassing both the biotic (larvae, adult sea urchins, fish, encrusting coralline algae, habitat type and spatial arrangement of habitats) and abiotic (substrate complexity and nutritional status) realms was considered at different spatial scales (site, area, transect and quadrat). Data from a survey including sites subject to different levels of human influence (i.e. from urbanized to protected areas), but all corresponding to an oligotrophic and low-populated region were fitted by means of a generalized linear mixed model. Despite the extensive sampling effort of benthic quadrats, an overall paucity of recruits was found, recruits being aggregated in a very small number of quadrats and in few areas. The analysis of data detected substrate complexity, and adult sea urchin and predatory fish abundances as the momentous determinants of Paracentrotus lividus recruitment. Possible mechanisms of influence are discussed beyond the implications of conservation management. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Conservation Nexus: Valuing Interdependent Water and Energy Savings in Phoenix, Arizona
NASA Astrophysics Data System (ADS)
Chester, M.; Bartos, M.
2013-12-01
Energy and water resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially-explicit model of water-energy interdependencies in Arizona, and assesses the potential for co-beneficial conservation programs. Arizona consumes 2.8% of its water demand for thermoelectric power and 8% of its electricity demand for water infrastructure--roughly twice the national average. The interdependent benefits of investments in 7 conservation strategies are assessed. Deployment of irrigation retrofits and new reclaimed water facilities dominate potential water savings, while residential and commercial HVAC improvements dominate energy savings. Water conservation policies have the potential to reduce statewide electricity demand by 1.0-2.9%, satisfying 5-14% of mandated energy-efficiency goals. Likewise, adoption of energy-efficiency measures and renewable generation portfolios can reduce non-agricultural water demand by 2.0-2.6%. These co-benefits of conservation investments are typically not included in conservation plans or benefit-cost analyses. Residential water conservation measures produce significant water and energy savings, but are generally not cost-effective at current water prices. An evaluation of the true cost of water in Arizona would allow future water and energy savings to be compared objectively, and would help policymakers allocate scarce resources to the highest-value conservation measures. Water Transfers between Water Cycle Components in Arizona in 2008 Cumulative embedded energy in water cycle components in Arizona in 2008
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.
Reconciling global mammal prioritization schemes into a strategy.
Rondinini, Carlo; Boitani, Luigi; Rodrigues, Ana S L; Brooks, Thomas M; Pressey, Robert L; Visconti, Piero; Baillie, Jonathan E M; Baisero, Daniele; Cabeza, Mar; Crooks, Kevin R; Di Marco, Moreno; Redford, Kent H; Andelman, Sandy A; Hoffmann, Michael; Maiorano, Luigi; Stuart, Simon N; Wilson, Kerrie A
2011-09-27
The huge conservation interest that mammals attract and the large datasets that have been collected on them have propelled a diversity of global mammal prioritization schemes, but no comprehensive global mammal conservation strategy. We highlight some of the potential discrepancies between the schemes presented in this theme issue, including: conservation of species or areas, reactive and proactive conservation approaches, conservation knowledge and action, levels of aggregation of indicators of trend and scale issues. We propose that recently collected global mammal data and many of the mammal prioritization schemes now available could be incorporated into a comprehensive global strategy for the conservation of mammals. The task of developing such a strategy should be coordinated by a super-partes, authoritative institution (e.g. the International Union for Conservation of Nature, IUCN). The strategy would facilitate funding agencies, conservation organizations and national institutions to rapidly identify a number of short-term and long-term global conservation priorities, and act complementarily to achieve them.
Drechsler, Martin
2017-02-01
Auctions have been proposed as alternatives to payments for environmental services when spatial interactions and costs are better known to landowners than to the conservation agency (asymmetric information). Recently, an auction scheme was proposed that delivers optimal conservation in the sense that social welfare is maximized. I examined the social welfare and the budget efficiency delivered by this scheme, where social welfare represents the difference between the monetized ecological benefit and the conservation cost incurred to the landowners and budget efficiency is defined as maximizing the ecological benefit for a given conservation budget. For the analysis, I considered a stylized landscape with land patches that can be used for agriculture or conservation. The ecological benefit was measured by an objective function that increases with increasing number and spatial aggregation of conserved land patches. I compared the social welfare and the budget efficiency of the auction scheme with an agglomeration payment, a policy scheme that considers spatial interactions and that was proposed recently. The auction delivered a higher level of social welfare than the agglomeration payment. However, the agglomeration payment was more efficient budgetarily than the auction, so the comparative performances of the 2 schemes depended on the chosen policy criterion-social welfare or budget efficiency. Both policy criteria are relevant for conservation. Which one should be chosen depends on the problem at hand, for example, whether social preferences should be taken into account in the decision of how much money to invest in conservation or whether the available conservation budget is strictly limited. © 2016 Society for Conservation Biology.
Friedlander, Alan M; Stamoulis, Kostantinos A; Kittinger, John N; Drazen, Jeffrey C; Tissot, Brian N
2014-01-01
Ancient Hawaiians developed a sophisticated natural resource management system that included various forms of spatial management. Today there exists in Hawai'i a variety of spatial marine management strategies along a range of scales, with varying degrees of effectiveness. State-managed no-take areas make up less than 0.4% of nearshore waters, resulting in limited ecological and social benefits. There is increasing interest among communities and coastal stakeholders in integrating aspects of customary Hawaiian knowledge into contemporary co-management. A network of no-take reserves for aquarium fish on Hawai'i Island is a stakeholder-driven, adaptive management strategy that has been successful in achieving ecological objectives and economic benefits. A network of large-scale no-take areas for deepwater (100-400m) bottomfishes suffered from a lack of adequate data during their initiation; however, better technology, more ecological data, and stakeholder input have resulted in improvements and the ecological benefits are becoming clear. Finally, the Papahānaumokuākea Marine National Monument (PMNM) is currently the single largest conservation area in the United States, and one of the largest in the world. It is considered an unqualified success and is managed under a new model of collaborative governance. These case studies allow an examination of the effects of scale on spatial marine management in Hawai'i and beyond that illustrate the advantages and shortcomings of different management strategies. Ultimately a marine spatial planning framework should be applied that incorporates existing marine managed areas to create a holistic, regional, multi-use zoning plan engaging stakeholders at all levels in order to maximize resilience of ecosystems and communities.
Computer simulation of wolf-removal strategies for animal-damage control
Haight, R.G.; Travis, L.E.; Nimerfro, K.; Mech, L.D.
2002-01-01
Because of the sustained growth of the gray wolf (Canis lupus) population in the western Great Lakes region of the United States, management agencies are anticipating gray wolf removal from the federal endangered species list and are proposing strategies for wolf management. Strategies are needed that would balance public demand for wolf conservation with demand for protection against wolf depredation on livestock, poultry, and pets. We used a stochastic, spatially structured, individually based simulation model of a hypothetical wolf population, representing a small subset of the western Great Lakes wolves, to predict the relative performance of 3 wolf-removal strategies. Those strategies included reactive management (wolf removal occurred in summer after depredation), preventive management (wolves removed in winter from territories with occasional depredation), and population-size management (wolves removed annually in winter from all territories near farms). Performance measures included number of depredating packs and wolves removed, cost, and population size after 20 years. We evaluated various scenarios about immigration, trapping success, and likelihood of packs engaging in depredation. Four robust results emerged from the simulations: 1) each strategy reduced depredation by at least 40% compared with no action, 2) preventive and population-size management removed fewer wolves than reactive management because wolves were removed in winter before pups were born, 3)population-size management was least expensive because repeated annual removal kept most territories near farms free of wolves, and 4) none of the strategies threatened wolf populations unless they were isolated because wolf removal took place near farms and not in wild areas. For isolated populations, reactive management alone ensured conservation and reduced depredation. Such results can assist decision makers in managing gray wolves in the western Great Lakes states.
Applications of spatial statistical network models to stream data
Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal
2014-01-01
Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.
Sea snakes rarely venture far from home
Lukoschek, Vimoksalehi; Shine, Richard
2012-01-01
The extent to which populations are connected by dispersal influences all aspects of their biology and informs the spatial scale of optimal conservation strategies. Obtaining direct estimates of dispersal is challenging, particularly in marine systems, with studies typically relying on indirect approaches to evaluate connectivity. To overcome this challenge, we combine information from an eight-year mark-recapture study with high-resolution genetic data to demonstrate extremely low dispersal and restricted gene flow at small spatial scales for a large, potentially mobile marine vertebrate, the turtleheaded sea snake (Emydocephalus annulatus). Our mark-recapture study indicated that adjacent bays in New Caledonia (<1.15 km apart) contain virtually separate sea snake populations. Sea snakes could easily swim between bays but rarely do so. Of 817 recaptures of marked snakes, only two snakes had moved between bays. We genotyped 136 snakes for 11 polymorphic microsatellite loci and found statistically significant genetic divergence between the two bays (FST= 0.008, P < 0.01). Bayesian clustering analyses detected low mixed ancestry within bays and genetic relatedness coefficients were higher, on average, within than between bays. Our results indicate that turtleheaded sea snakes rarely venture far from home, which has strong implications for their ecology, evolution, and conservation. PMID:22833788
Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines
Grant, Evan H. Campbell; Miller, David A. W.; Schmidt, Benedikt R.; Adams, Michael J.; Amburgey, Staci M.; Chambert, Thierry A.; Cruickshank, Sam S.; Fisher, Robert N.; Green, David M.; Hossack, Blake R.; Johnson, Pieter T.J.; Joseph, Maxwell B.; Rittenhouse, Tracy A. G.; Ryan, Maureen E.; Waddle, J. Hardin; Walls, Susan C.; Bailey, Larissa L.; Fellers, Gary M.; Gorman, Thomas A.; Ray, Andrew M.; Pilliod, David S.; Price, Steven J.; Saenz, Daniel; Sadinski, Walt; Muths, Erin L.
2016-01-01
Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a “smoking gun” was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed.
Sea snakes rarely venture far from home.
Lukoschek, Vimoksalehi; Shine, Richard
2012-06-01
The extent to which populations are connected by dispersal influences all aspects of their biology and informs the spatial scale of optimal conservation strategies. Obtaining direct estimates of dispersal is challenging, particularly in marine systems, with studies typically relying on indirect approaches to evaluate connectivity. To overcome this challenge, we combine information from an eight-year mark-recapture study with high-resolution genetic data to demonstrate extremely low dispersal and restricted gene flow at small spatial scales for a large, potentially mobile marine vertebrate, the turtleheaded sea snake (Emydocephalus annulatus). Our mark-recapture study indicated that adjacent bays in New Caledonia (<1.15 km apart) contain virtually separate sea snake populations. Sea snakes could easily swim between bays but rarely do so. Of 817 recaptures of marked snakes, only two snakes had moved between bays. We genotyped 136 snakes for 11 polymorphic microsatellite loci and found statistically significant genetic divergence between the two bays (F(ST)= 0.008, P < 0.01). Bayesian clustering analyses detected low mixed ancestry within bays and genetic relatedness coefficients were higher, on average, within than between bays. Our results indicate that turtleheaded sea snakes rarely venture far from home, which has strong implications for their ecology, evolution, and conservation.
The Potential Impact of Labor Choices on the Efficacy of Marine Conservation Strategies
Hughes, Zachary D.; Fenichel, Eli P.; Gerber, Leah R.
2011-01-01
Conservation of marine resources is critical to the wellbeing of human communities. Coastal artisanal fishing communities are particularly reliant on marine resources for food and for their livelihoods. Management actions aimed at marine conservation may lead to unanticipated changes in human behavior that influence the ability of conservation programs to achieve their goals. We examine how marine conservation strategies may impact labor decisions that influence both the ecosystem and human livelihoods using simulation modeling. We consider two conservation strategies in the model: direct action through fisheries regulation enforcement, and indirect action through land conservation. Our results indicate that both strategies can increase the abundance of fish, and thus contribute to the maintenance of marine resources. However, our results also show that marine fisheries enforcement may negatively impact the livelihoods of human communities. Land conservation, on the other hand, potentially enhances the livelihood of the human populations. Thus, depending on management objectives, indirect or a combination of direct and indirect conservation strategies may be effective at achieving conservation and sustainability goals. These results highlight the importance of accounting for changes in human behavior resulting from management actions in conservation and management. PMID:21887306
Climate change adaptation benefits of potential conservation partnerships.
Monahan, William B; Theobald, David M
2018-01-01
We evaluate the world terrestrial network of protected areas (PAs) for its partnership potential in responding to climate change. That is, if a PA engaged in collaborative, trans-boundary management of species, by investing in conservation partnerships with neighboring areas, what climate change adaptation benefits might accrue? We consider core tenets of conservation biology related to protecting large areas with high environmental heterogeneity and low climate change velocity and ask how a series of biodiversity adaptation indicators change across spatial scales encompassing potential PA and non-PA partners. Less than 1% of current world terrestrial PAs equal or exceed the size of established and successful conservation partnerships. Partnering at this scale would increase the biodiversity adaptation indicators by factors up to two orders of magnitude, compared to a null model in which each PA is isolated. Most partnership area surrounding PAs is comprised of non-PAs (70%), indicating the importance of looking beyond the current network of PAs when promoting climate change adaptation. Given monumental challenges with PA-based species conservation in the face of climate change, partnerships provide a logical and achievable strategy for helping areas adapt. Our findings identify where strategic partnering efforts in highly vulnerable areas of the world may prove critical in safeguarding biodiversity.
Effectiveness of alternative management strategies in meeting conservation objectives
Richards S. Holthausen; Carolyn Hull Sieg
2007-01-01
This chapter evaluates how well various management strategies meet a variety of conservation objectives, summarizes their effectiveness in meeting objectives for rare or little-known (RLK) species, and proposes ways to combine strategies to meet overall conservation objectives. We address two broad categories of management strategies. Species approaches result in...
NASA Astrophysics Data System (ADS)
Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.
2015-04-01
Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine these strategies under predicted climate change scenarios in a few decades from now. The models are also used to evaluate historical erosion rates, and the long-term impact of soil erosion on olive yield due to the loss of soil profile. This is our second major line of research. Our their key line of research is the analysis of gully erosion processes, from field based observation to evaluation at regional scale, and the development of cost-effective strategies for gully control at farm scale. This includes the testing of some of these strategies with farmers. We integrate the use of vegetation in gully erosion control strategies to enhance biodiversity and landscape values; both severely degraded in many agricultural areas in the Mediterranean. The fourth, and last, major line of research is the development or improvement of technologies for soil erosion studies. Among them is the use of rainfall simulations, laboratory flumes, photoreconstruction techniques for 3D model, improved sampling devices, etc. Within this line we have improved the use of sediment tracers to understand the processes of sediment mobilization within the landscape, or at plot scale. This greatly improves our understanding of erosion processes and the actual effectiveness of erosion control strategies. The results of these lines of research are put together in the form of Good Agricultural Practices, and technical notes, software, for implementation by farmers and technicians working at the fields that are disseminated through seminars, cooperation with government and non-government agencies and other documents such as videos or web sites. In this communication we mention some of the our research in order to highlight the major problems and questions that are faced when trying to develop viable soil and water conservation techniques, specially the need for transdisciplinary research and the cooperation, form the start, with key stakeholders, specially farmers.
Reviewing Biosphere Reserves globally: effective conservation action or bureaucratic label?
Coetzer, Kaera L; Witkowski, Edward T F; Erasmus, Barend F N
2014-02-01
The Biosphere Reserve (BR) model of UNESCO's Man and the Biosphere Programme reflects a shift towards more accountable conservation. Biosphere Reserves attempt to reconcile environmental protection with sustainable development; they explicitly acknowledge humans, and human interests in the conservation landscape while still maintaining the ecological values of existing protected areas. Conceptually, this model is attractive, with 610 sites currently designated globally. Yet the practical reality of implementing dual 'conservation' and 'development' goals is challenging, with few examples successfully conforming to the model's full criteria. Here, we review the history of Biosphere Reserves from first inception in 1974 to the current status quo, and examine the suitability of the designation as an effective conservation model. We track the spatial expansion of Biosphere Reserves globally, assessing the influence of the Statutory Framework of the World Network of Biosphere Reserves and Seville strategy in 1995, when the BR concept refocused its core objectives on sustainable development. We use a comprehensive range of case studies to discuss conformity to the Programme, the social and ecological consequences associated with implementation of the designation, and challenges in aligning conservation and development. Given that the 'Biosphere Reserve' label is a relatively unknown designation in the public arena, this review also provides details on popularising the Biosphere Reserve brand, as well as prospects for further research, currently unexploited, but implicit in the designation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
Designing marine reserve networks for both conservation and fisheries management.
Gaines, Steven D; White, Crow; Carr, Mark H; Palumbi, Stephen R
2010-10-26
Marine protected areas (MPAs) that exclude fishing have been shown repeatedly to enhance the abundance, size, and diversity of species. These benefits, however, mean little to most marine species, because individual protected areas typically are small. To meet the larger-scale conservation challenges facing ocean ecosystems, several nations are expanding the benefits of individual protected areas by building networks of protected areas. Doing so successfully requires a detailed understanding of the ecological and physical characteristics of ocean ecosystems and the responses of humans to spatial closures. There has been enormous scientific interest in these topics, and frameworks for the design of MPA networks for meeting conservation and fishery management goals are emerging. Persistent in the literature is the perception of an inherent tradeoff between achieving conservation and fishery goals. Through a synthetic analysis across these conservation and bioeconomic studies, we construct guidelines for MPA network design that reduce or eliminate this tradeoff. We present size, spacing, location, and configuration guidelines for designing networks that simultaneously can enhance biological conservation and reduce fishery costs or even increase fishery yields and profits. Indeed, in some settings, a well-designed MPA network is critical to the optimal harvest strategy. When reserves benefit fisheries, the optimal area in reserves is moderately large (mode ≈30%). Assessing network design principals is limited currently by the absence of empirical data from large-scale networks. Emerging networks will soon rectify this constraint.
Enhancing Conservation with High Resolution Productivity Datasets for the Conterminous United States
NASA Astrophysics Data System (ADS)
Robinson, Nathaniel Paul
Human driven alteration of the earth's terrestrial surface is accelerating through land use changes, intensification of human activity, climate change, and other anthropogenic pressures. These changes occur at broad spatio-temporal scales, challenging our ability to effectively monitor and assess the impacts and subsequent conservation strategies. While satellite remote sensing (SRS) products enable monitoring of the earth's terrestrial surface continuously across space and time, the practical applications for conservation and management of these products are limited. Often the processes driving ecological change occur at fine spatial resolutions and are undetectable given the resolution of available datasets. Additionally, the links between SRS data and ecologically meaningful metrics are weak. Recent advances in cloud computing technology along with the growing record of high resolution SRS data enable the development of SRS products that quantify ecologically meaningful variables at relevant scales applicable for conservation and management. The focus of my dissertation is to improve the applicability of terrestrial gross and net primary productivity (GPP/NPP) datasets for the conterminous United States (CONUS). In chapter one, I develop a framework for creating high resolution datasets of vegetation dynamics. I use the entire archive of Landsat 5, 7, and 8 surface reflectance data and a novel gap filling approach to create spatially continuous 30 m, 16-day composites of the normalized difference vegetation index (NDVI) from 1986 to 2016. In chapter two, I integrate this with other high resolution datasets and the MOD17 algorithm to create the first high resolution GPP and NPP datasets for CONUS. I demonstrate the applicability of these products for conservation and management, showing the improvements beyond currently available products. In chapter three, I utilize this dataset to evaluate the relationships between land ownership and terrestrial production across the CONUS domain. The main results of this work are three publicly available datasets: 1) 30 m Landsat NDVI; 2) 250 m MODIS based GPP and NPP; and 3) 30 m Landsat based GPP and NPP. My goal is that these products prove useful for the wider scientific, conservation, and land management communities as we continue to strive for better conservation and management practices.
Functional planning units for the management of an endangered Brazilian titi monkey.
Gouveia, Sidney F; Souza-Alves, João Pedro; de Souza, Bruno B; Beltrão-Mendes, Raone; Jerusalinsky, Leandro; Ferrari, Stephen F
2017-05-01
Conservation practices in the tropics often rely on the data available for a few, better-known species and the adoption of an appropriate spatial scale. By defining a set of landscape units that account for critical aspects of the focal species, the information available on these conservation targets can support regional conservation policies. Here, we define and classify adjacent landscapes, termed planning units, to orientate management decisions within and among these landscapes, which are occupied by an endangered flagship primate species (Coimbra-Filho's titi monkey, Callicebus coimbrai) from eastern Brazil. We use landscape boundaries (highways and river systems), and a high-resolution map of forest remnants to identify continuous and manageable landscapes. We employed functional landscape metrics based on the species' dispersal ability and home range size to characterize and classify these landscapes. We classified planning units by scoring them according to a suite of selected metrics through a Principal Component Analysis. We propose 31 planning units, containing one to six C. coimbrai populations, most with low values of habitat availability, functional connectivity and carrying capacity, and a high degree of degradation. Due to this poor landscape configuration, basic management practices are recommendable. However, additional aspects of the landscapes and the populations they contain (e.g., matrix type and genetic variability) should improve the scheme, which will require a closer integration of research aims with socio-political strategies. Even so, our scheme should prove useful for the combination of information on conservation targets (i.e., focal species) with management strategies on an administrative scale. © 2017 Wiley Periodicals, Inc.
Di Minin, Enrico; Hunter, Luke T B; Balme, Guy A; Smith, Robert J; Goodman, Peter S; Slotow, Rob
2013-01-01
The ideal conservation planning approach would enable decision-makers to use population viability analysis to assess the effects of management strategies and threats on all species at the landscape level. However, the lack of high-quality data derived from long-term studies, and uncertainty in model parameters and/or structure, often limit the use of population models to only a few species of conservation concern. We used spatially explicit metapopulation models in conjunction with multi-criteria decision analysis to assess how species-specific threats and management interventions would affect the persistence of African wild dog, black rhino, cheetah, elephant, leopard and lion, under six reserve scenarios, thereby providing the basis for deciding on a best course of conservation action in the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biodiversity hotspot. Overall, the results suggest that current strategies of managing populations within individual, small, fenced reserves are unlikely to enhance metapopulation persistence should catastrophic events affect populations in the future. Creating larger and better-connected protected areas would ensure that threats can be better mitigated in the future for both African wild dog and leopard, which can disperse naturally, and black rhino, cheetah, elephant, and lion, which are constrained by electric fences but can be managed using translocation. The importance of both size and connectivity should inform endangered megafauna conservation and management, especially in the context of restoration efforts in increasingly human-dominated landscapes.
Di Minin, Enrico; Hunter, Luke T. B.; Balme, Guy A.; Smith, Robert J.; Goodman, Peter S.; Slotow, Rob
2013-01-01
The ideal conservation planning approach would enable decision-makers to use population viability analysis to assess the effects of management strategies and threats on all species at the landscape level. However, the lack of high-quality data derived from long-term studies, and uncertainty in model parameters and/or structure, often limit the use of population models to only a few species of conservation concern. We used spatially explicit metapopulation models in conjunction with multi-criteria decision analysis to assess how species-specific threats and management interventions would affect the persistence of African wild dog, black rhino, cheetah, elephant, leopard and lion, under six reserve scenarios, thereby providing the basis for deciding on a best course of conservation action in the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biodiversity hotspot. Overall, the results suggest that current strategies of managing populations within individual, small, fenced reserves are unlikely to enhance metapopulation persistence should catastrophic events affect populations in the future. Creating larger and better-connected protected areas would ensure that threats can be better mitigated in the future for both African wild dog and leopard, which can disperse naturally, and black rhino, cheetah, elephant, and lion, which are constrained by electric fences but can be managed using translocation. The importance of both size and connectivity should inform endangered megafauna conservation and management, especially in the context of restoration efforts in increasingly human-dominated landscapes. PMID:23977144
Krauss, Ken W.; Barr, Jordan G.; Engel, Victor C.; Fuentes, Jose D.; Wang, Hongqing
2014-01-01
Leaves from mangrove forests are often considered efficient in the use of water during photosynthesis, but less is known about whole-tree and stand-level water use strategies. Are mangrove forests as conservative in water use as experimental studies on seedlings imply? Here, we apply a simple model to estimate stand water use (S), determine the contribution of S to evapotranspiration (ET), and approximate the distribution of S versus ET over annual cycles for three mangrove forests in southwest Florida, USA. The value of S ranged from 350 to 511 mm year−1 for two mangrove forests in Rookery Bay to 872 mm year−1 for a mangrove forest along the Shark River in Everglades National Park. This represents 34–49% of ET for Rookery Bay mangroves, a rather conservative rate ofS, and 63–66% of ET for the Shark River mangroves, a less conservative rate of S. However, variability in estimates of S in mangroves is high enough to require additional study on the spatial changes related to forest structural shifts, different tidal regimes, and variable site-specific salinity concentrations in multiple mangrove forests before a true account of water use conservation strategies can be understood at the landscape scale. Evidence does suggest that large, well-developed mangrove forests have the potential to contribute considerably to the ET balance; however, regionally most mangrove forests are much smaller in stature in Florida and likely contribute less to regional water losses through stand-level transpiration.
Spatial and Temporal Habitat Use of an Asian Elephant in Sumatra
Sitompul, Arnold F.; Griffin, Curtice R.; Rayl, Nathaniel D.; Fuller, Todd K.
2013-01-01
Simple Summary A wild Sumatran elephant radio-monitored near a conservation center from August 2007–May 2008 used medium- and open-canopy land cover more than expected, but closed canopy forests were used more during the day than at night. When in closed canopy forests, elephants spent more time near the forest edge. Effective elephant conservation strategies in Sumatra need to focus on forest restoration of cleared areas and providing a forest matrix that includes various canopy types. Abstract Increasingly, habitat fragmentation caused by agricultural and human development has forced Sumatran elephants into relatively small areas, but there is little information on how elephants use these areas and thus, how habitats can be managed to sustain elephants in the future. Using a Global Positioning System (GPS) collar and a land cover map developed from TM imagery, we identified the habitats used by a wild adult female elephant (Elephas maximus sumatranus) in the Seblat Elephant Conservation Center, Bengkulu Province, Sumatra during 2007–2008. The marked elephant (and presumably her 40–60 herd mates) used a home range that contained more than expected medium canopy and open canopy land cover. Further, within the home range, closed canopy forests were used more during the day than at night. When elephants were in closed canopy forests they were most often near the forest edge vs. in the forest interior. Effective elephant conservation strategies in Sumatra need to focus on forest restoration of cleared areas and providing a forest matrix that includes various canopy types. PMID:26479527
Wei, Jianbing; Feng, Hao; Cheng, Quanguo; Gao, Shiqian; Liu, Haiyan
2017-02-01
The objective of this study was to test the hypothesis that environmental regulators of riparian zone soil denitrification potential differ according to spatial scale within a watershed; consequently, a second objective was to provide spatial strategies for conserving and restoring the purification function of runoff in riparian ecosystems. The results show that soil denitrification in riparian zones was more heterogeneous at the profile scale than at the cross-section and landscape scales. At the profile scale, biogeochemical factors (including soil total organic carbon, total nitrogen, and nitrate-nitrogen) were the major direct regulators of the spatial distribution of soil denitrification enzyme activity (DEA). At the cross-section scale, factors included distance from river bank and vegetation density, while landscape-scale factors, including topographic index, elevation, and land use types, indirectly regulated the spatial distribution of DEA. At the profile scale, soil DEA was greatest in the upper soil layers. At the cross-section scale, maximum soil DEA occurred in the mid-part of the riparian zone. At the landscape scale, soil DEA showed an increasing trend towards downstream sites, except for those in urbanized areas.
Sofaer, Helen R.; Skagen, Susan K.; Barsugli, Joseph J.; Rashford, Benjamin S.; Reese, Gordon C.; Hoeting, Jennifer A.; Wood, Andrew W.; Noon, Barry R.
2016-01-01
Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland complexes containing both small and relatively large wetland basins, which is an ongoing conservation strategy, may also act to hedge against uncertainty in the effects of climate change.
An approach to enhance the conservation-compatibility of solar energy development.
Cameron, D Richard; Cohen, Brian S; Morrison, Scott A
2012-01-01
The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California's current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.
An Approach to Enhance the Conservation-Compatibility of Solar Energy Development
Cameron, D. Richard; Cohen, Brian S.; Morrison, Scott A.
2012-01-01
The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California’s current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%) – an area that can meet California’s renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity. PMID:22685568
Estimating golden-cheeked warbler immigration: Implications for the spatial scale of conservation
Duarte, A.; Weckerly, F.W.; Schaub, M.; Hatfield, Jeffrey S.
2016-01-01
Understanding the factors that drive population dynamics is fundamental to species conservation and management. Since the golden-cheeked warbler Setophaga chrysoparia was first listed as endangered, much effort has taken place to monitor warbler abundance, occupancy, reproduction and survival. Yet, despite being directly related to local population dynamics, movement rates have not been estimated for the species. We used an integrated population model to investigate the relationship between immigration rate, fledging rate, survival probabilities and population growth rate for warblers in central Texas, USA. Furthermore, using a deterministic projection model, we examined the response required by vital rates to maintain a viable population across varying levels of immigration. Warbler abundance fluctuated with an overall positive trend across years. In the absence of immigration, the abundance would have decreased. However, the population could remain viable without immigration if both adult and juvenile survival increased by almost half or if juvenile survival more than doubled. We also investigated the response required by fledging rates across a range of immigration in order to maintain a viable population. Overall, we found that immigration was required to maintain warbler target populations, indicating that warbler conservation and management programs need to be implemented at larger spatial scales than current efforts to be effective. This study also demonstrates that by using limited data within integrated population models, biologists are able to monitor multiple key demographic parameters simultaneously to gauge the efficacy of strategies designed to maximize warbler viability in a changing landscape.
Unger, Shem D.; Rhodes, Olin E.; Sutton, Trent M.; Williams, Rod N.
2013-01-01
Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical) scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states). We identified two genetically differentiated groups at the range-wide scale: 1) the Ohio River drainage and 2) the Tennessee River drainage. An analysis of molecular variance (AMOVA) based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94–98%) occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD) at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species. PMID:24204565
Romeiras, Maria M.; Figueira, Rui; Duarte, Maria Cristina; Beja, Pedro; Darbyshire, Iain
2014-01-01
In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records) and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain a priority to update historical information. PMID:25061858
Romeiras, Maria M; Figueira, Rui; Duarte, Maria Cristina; Beja, Pedro; Darbyshire, Iain
2014-01-01
In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records) and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain a priority to update historical information.
Wan, Jizhong; Wang, Chunjing; Yu, Jinghua; Nie, Siming; Han, Shijie; Zu, Yuangang; Chen, Changmei; Yuan, Shusheng; Wang, Qinggui
2014-01-01
Climate change affects both habitat suitability and the genetic diversity of wild plants. Therefore, predicting and establishing the most effective and coherent conservation areas is essential for the conservation of genetic diversity in response to climate change. This is because genetic variance is a product not only of habitat suitability in conservation areas but also of efficient protection and management. Phellodendron amurense Rupr. is a tree species (family Rutaceae) that is endangered due to excessive and illegal harvesting for use in Chinese medicine. Here, we test a general computational method for the prediction of priority conservation areas (PCAs) by measuring the genetic diversity of P. amurense across the entirety of northeast China using a single strand repeat analysis of twenty microsatellite markers. Using computational modeling, we evaluated the geographical distribution of the species, both now and in different future climate change scenarios. Different populations were analyzed according to genetic diversity, and PCAs were identified using a spatial conservation prioritization framework. These conservation areas were optimized to account for the geographical distribution of P. amurense both now and in the future, to effectively promote gene flow, and to have a long period of validity. In situ and ex situ conservation, strategies for vulnerable populations were proposed. Three populations with low genetic diversity are predicted to be negatively affected by climate change, making conservation of genetic diversity challenging due to decreasing habitat suitability. Habitat suitability was important for the assessment of genetic variability in existing nature reserves, which were found to be much smaller than the proposed PCAs. Finally, a simple set of conservation measures was established through modeling. This combined molecular and computational ecology approach provides a framework for planning the protection of species endangered by climate change. PMID:25165526
De Barros, Alan E; MacDonald, Ewan A; Matsumoto, Marcelo H; Paula, Rogério C; Nijhawan, Sahil; Malhi, Y; MacDonald, David W
2014-04-01
A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co-benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co-benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. ©2013 Society for Conservation Biology.
REVIEW: The evolving linkage between conservation science and practice at The Nature Conservancy.
Kareiva, Peter; Groves, Craig; Marvier, Michelle
2014-10-01
The Nature Conservancy (TNC) was founded by ecologists as a United States land trust to purchase parcels of habitat for the purpose of scientific study. It has evolved into a global organization working in 35 countries 'to conserve the lands and waters on which all life depends'. TNC is now the world 's largest conservation non-governmental organization (NGO), an early adopter of advances in ecological theory and a producer of new science as a result of practising conservation.The Nature Conservancy 's initial scientific innovation was the use of distributional data for rare species and ecological communities to systematically target lands for conservation. This innovation later evolved into a more rigorous approach known as 'Conservation by Design' that contained elements of systematic conservation planning, strategic planning and monitoring and evaluation.The next scientific transition at TNC was a move to landscape-scale projects, motivated by ideas from landscape ecology. Because the scale at which land could be set aside in areas untouched by humans fell far short of the spatial scale demanded by conservation, TNC became involved with best management practices for forestry, grazing, agriculture, hydropower and other land uses.A third scientific innovation at TNC came with the pursuit of multiobjective planning that accounts for economic and resource needs in the same plans that seek to protect biodiversity.The Millennium Ecosystem Assessment prompted TNC to become increasingly concerned with ecosystem services and the material risk to people posed by ecosystem deterioration.Finally, because conservation depends heavily upon negotiation, TNC has recently recruited social scientists, economists and communication experts. One aspect still missing, however, is a solid scientific understanding of thresholds that should be averted. Synthesis and applications . Over its 60-plus year history, scientific advances have informed The Nature Conservancy (TNC) 's actions and strategies, and in turn the evolving practice of conservation has altered the type of science sought by TNC in order to maximize its conservation effectiveness.
REVIEW: The evolving linkage between conservation science and practice at The Nature Conservancy
Kareiva, Peter; Groves, Craig; Marvier, Michelle
2014-01-01
The Nature Conservancy (TNC) was founded by ecologists as a United States land trust to purchase parcels of habitat for the purpose of scientific study. It has evolved into a global organization working in 35 countries ‘to conserve the lands and waters on which all life depends’. TNC is now the world 's largest conservation non-governmental organization (NGO), an early adopter of advances in ecological theory and a producer of new science as a result of practising conservation.The Nature Conservancy 's initial scientific innovation was the use of distributional data for rare species and ecological communities to systematically target lands for conservation. This innovation later evolved into a more rigorous approach known as ‘Conservation by Design’ that contained elements of systematic conservation planning, strategic planning and monitoring and evaluation.The next scientific transition at TNC was a move to landscape-scale projects, motivated by ideas from landscape ecology. Because the scale at which land could be set aside in areas untouched by humans fell far short of the spatial scale demanded by conservation, TNC became involved with best management practices for forestry, grazing, agriculture, hydropower and other land uses.A third scientific innovation at TNC came with the pursuit of multiobjective planning that accounts for economic and resource needs in the same plans that seek to protect biodiversity.The Millennium Ecosystem Assessment prompted TNC to become increasingly concerned with ecosystem services and the material risk to people posed by ecosystem deterioration.Finally, because conservation depends heavily upon negotiation, TNC has recently recruited social scientists, economists and communication experts. One aspect still missing, however, is a solid scientific understanding of thresholds that should be averted.Synthesis and applications. Over its 60-plus year history, scientific advances have informed The Nature Conservancy (TNC) 's actions and strategies, and in turn the evolving practice of conservation has altered the type of science sought by TNC in order to maximize its conservation effectiveness. PMID:25641980
Thogmartin, W.E.; Knutson, M.G.
2007-01-01
Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.
Suzuki, Takumi; Sato, Makoto
2017-11-15
Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Salient Ecological Sensitive Regions of Central Western Ghats, India
NASA Astrophysics Data System (ADS)
Ramachandra, T. V.; Bharath, Setturu; Subash Chandran, M. D.; Joshi, N. V.
2018-05-01
Ecologically sensitive regions (ESRs) are the `ecological units' with the exceptional biotic and abiotic elements. Identification of ESRs considering spatially both ecological and social dimensions of environmental variables helps in ecological and conservation planning as per Biodiversity Act, 2002, Government of India. The current research attempts to integrate ecological and environmental considerations into administration, and prioritizes regions at Panchayat levels (local administrative unit) in Uttara Kannada district, Central Western Ghats, Karnataka state considering attributes (biological, Geo-climatic, Social, etc.) as ESR (1-4) through weightage score metrics. The region has the distinction of having highest forest area (80.48%) in Karnataka State, India and has been undergoing severe anthropogenic pressures impacting biogeochemistry, hydrology, food security, climate and socio-economic systems. Prioritisation of ESRs helps in the implementation of the sustainable developmental framework with the appropriate conservation strategies through the involvement of local stakeholders.
Salient Ecological Sensitive Regions of Central Western Ghats, India
NASA Astrophysics Data System (ADS)
Ramachandra, T. V.; Bharath, Setturu; Subash Chandran, M. D.; Joshi, N. V.
2018-02-01
Ecologically sensitive regions (ESRs) are the `ecological units' with the exceptional biotic and abiotic elements. Identification of ESRs considering spatially both ecological and social dimensions of environmental variables helps in ecological and conservation planning as per Biodiversity Act, 2002, Government of India. The current research attempts to integrate ecological and environmental considerations into administration, and prioritizes regions at Panchayat levels (local administrative unit) in Uttara Kannada district, Central Western Ghats, Karnataka state considering attributes (biological, Geo-climatic, Social, etc.) as ESR (1-4) through weightage score metrics. The region has the distinction of having highest forest area (80.48%) in Karnataka State, India and has been undergoing severe anthropogenic pressures impacting biogeochemistry, hydrology, food security, climate and socio-economic systems. Prioritisation of ESRs helps in the implementation of the sustainable developmental framework with the appropriate conservation strategies through the involvement of local stakeholders.
Baena, Susana; Moat, Justin; Whaley, Oliver; Boyd, Doreen S
2017-01-01
The Pacific Equatorial dry forest of Northern Peru is recognised for its unique endemic biodiversity. Although highly threatened the forest provides livelihoods and ecosystem services to local communities. As agro-industrial expansion and climatic variation transform the region, close ecosystem monitoring is essential for viable adaptation strategies. UAVs offer an affordable alternative to satellites in obtaining both colour and near infrared imagery to meet the specific requirements of spatial and temporal resolution of a monitoring system. Combining this with their capacity to produce three dimensional models of the environment provides an invaluable tool for species level monitoring. Here we demonstrate that object-based image analysis of very high resolution UAV images can identify and quantify keystone tree species and their health across wide heterogeneous landscapes. The analysis exposes the state of the vegetation and serves as a baseline for monitoring and adaptive implementation of community based conservation and restoration in the area.
Landscape level analysis of disturbance regimes in protected areas of Rajasthan, India
NASA Astrophysics Data System (ADS)
Krishna, P. Hari; Reddy, C. Sudhakar; Singh, Randeep; Jha, C. S.
2014-04-01
There is an urgent need to identify the human influence on landscape as disturbance regimes was realized for prioritization of the protected areas. The present study has attempted to describe the landscape level assessment of fragmentation and disturbance index in protected areas of Rajasthan using remote sensing and GIS techniques. Geospatial analysis of disturbance regimes indicates 61.75% of the total PAs are under moderate disturbance index followed by 28.64% and 9.61% under low and high respectively. Among the 28 protected areas- National Chambal WLS, Jaisamand WLS, Kumbhalgarh WLS, Sawai Man Singh WLS, Kailadevi WLS and Bandh Baratha WLS are representing high level of disturbance. The present study has emphasized the moderate to low disturbance regimes in protected areas, which infer low biotic pressure and conservation effectiveness of PA network in Rajasthan. The spatial information generated on PAs is of valuable use for forest management and developing conservation strategies.
Ramberg, Ellinor; Strengbom, Joachim; Granath, Gustaf
2018-04-01
Prescribed fires are a common nature conservation practice. They are executed by several parties with limited coordination among them, and little consideration for wildfire occurrences and habitat requirements of fire-dependent species. Here, we gathered data on prescribed fires and wildfires in Sweden during 2011-2015 to (i) evaluate the importance and spatial extent of prescribed fires compared to wildfires and (ii) illustrate how a database can be used as a management tool for prescribed fires. We found that on average only 0.006% (prescribed 65%, wildfires 35%) of the Swedish forest burns per year, with 58% of the prescribed fires occurring on clearcuts. Also, both wildfires and prescribed fires seem to be important for the survival of fire-dependent species. A national fire database would simplify coordination and make planning and evaluation of prescribed fires more efficient. We propose an adaptive management strategy to improve the outcome of prescribed fires.
A Landscape Approach to Invasive Species Management.
Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A
2016-01-01
Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our modelling framework provides a simple approach for identifying the best possible management strategy for invasive species based on metapopulation structure and control capacity. This information can be used by managers trying to devise efficient landscape-oriented management strategies for invasive species and can also generate insights for conservation purposes.
SAS procedures for designing and analyzing sample surveys
Stafford, Joshua D.; Reinecke, Kenneth J.; Kaminski, Richard M.
2003-01-01
Complex surveys often are necessary to estimate occurrence (or distribution), density, and abundance of plants and animals for purposes of re-search and conservation. Most scientists are familiar with simple random sampling, where sample units are selected from a population of interest (sampling frame) with equal probability. However, the goal of ecological surveys often is to make inferences about populations over large or complex spatial areas where organisms are not homogeneously distributed or sampling frames are in-convenient or impossible to construct. Candidate sampling strategies for such complex surveys include stratified,multistage, and adaptive sampling (Thompson 1992, Buckland 1994).
Density and nest survival of golden-cheeked warblers: Spatial scale matters
Jennifer L. Reidy; Frank R., III Thompson; Lisa O' Donnell
2017-01-01
Conservation and management plans often rely on indicators such as species occupancy or density to define habitat quality, ignoring factors that influence reproductive success, and potentially limiting conservation achievements. We examined relationships between predicted density and nest survival with environmental features at multiple spatial scales for the golden-...
Zafra-Calvo, Noelia; Moreno-Peñaranda, Raquel
2018-01-15
It is broadly acknowledged that natural resources conservation strategies affect the livelihoods of local communities. Moreover, evidence suggests that these livelihood impacts, in turn, can influence conservation achievements. Yet, what constitutes a conservation strategy that communities perceive as acceptable and thus they would be willing to commit to over time remains poorly understood. This study explores the perceptions of communities regarding the effects of two different conservation strategies in the Ruvuma landscape: governmental land concessions and licenses to private tourist operators in North Mozambique, versus community-managed protected areas supported by NGOs in South Tanzania. The study engages communities in a series of semi-structured discussions about natural resource use, impact of the conservation strategies on their livelihoods, pressures on natural resources, and ways to address such pressures and reach an acceptable conservation strategy, from a community perspective. Our findings suggest that communities perceive as non-affordable current opportunity and damage costs in subsistence agriculture. A strategy integrating improved agricultural production, common use of the forest managed by communities, and joint ventures between communities and private companies for getting more benefits from trophy hunting are identified as acceptable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schweizer, Manuel; Ayé, Raffael; Kashkarov, Roman; Roth, Tobias
2014-01-01
Although phylogenetic diversity has been suggested to be relevant from a conservation point of view, its role is still limited in applied nature conservation. Recently, the practice of investing conservation resources based on threatened species was identified as a reason for the slow integration of phylogenetic diversity in nature conservation planning. One of the main arguments is based on the observation that threatened species are not evenly distributed over the phylogenetic tree. However this argument seems to dismiss the fact that conservation action is a spatially explicit process, and even if threatened species are not evenly distributed over the phylogenetic tree, the occurrence of threatened species could still indicate areas with above average phylogenetic diversity and consequently could protect phylogenetic diversity. Here we aim to study the selection of important bird areas in Central Asia, which were nominated largely based on the presence of threatened bird species. We show that although threatened species occurring in Central Asia do not capture phylogenetically more distinct species than expected by chance, the current spatially explicit conservation approach of selecting important bird areas covers above average taxonomic and phylogenetic diversity of breeding and wintering birds. We conclude that the spatially explicit processes of conservation actions need to be considered in the current discussion of whether new prioritization methods are needed to complement conservation action based on threatened species. PMID:25337861
Gil-Sánchez, J M; Jaramillo, J; Barea-Azcón, J M
2015-12-01
The European wildcat (Felis silvestris silvestris) is an endangered felid impacted by genetic introgression with the domestic cat (Felis silvestris catus). The problem of hybridization has had different effects in different areas. In non-Mediterranean regions pure forms of wildcats became almost extinct, while in Mediterranean regions genetic introgression is a rare phenomenon. The study of the potential factors that prevent the gene flow in areas of lower hybridization may be key to wildcat conservation. We studied the population size and spatial segregation of wildcats and domestic cats in a typical Mediterranean area of ancient sympatry, where no evidence of hybridization had been detected by genetic studies. Camera trapping of wild-living cats and walking surveys of stray cats in villages were used for capture-recapture estimations of abundance and spatial segregation. Results showed (i) a low density of wildcats and no apparent presence of putative hybrids; (ii) a very low abundance of feral cats in spite of the widespread and large population sources of domestic cats inhabiting villages; (iii) strong spatial segregation between wildcats and domestic/feral cats; and (iv) no relationship between the size of the potential population sources and the abundance of feral cats. Hence, domestic cats were limited in their ability to become integrated into the local habitat of wildcats. Ecological barriers (habitat preferences, food limitations, intra-specific and intra-guild competition, predation) may explain the severe divergences of hybridization impact observed at a biogeographic level. This has a direct effect on key conservation strategies for wildcats (i.e., control of domestic cats). Copyright © 2015 Elsevier GmbH. All rights reserved.
Resource partitioning by evergreen and deciduous species in a tropical dry forest.
Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin
2017-02-01
Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.
NASA Astrophysics Data System (ADS)
Clark, M. R.; Gardner, J.; Holland, L.; Zeng, C.; Hamilton, J. S.; Rowden, A. A.
2016-02-01
In the New Zealand region vulnerable marine ecosystems (VMEs) are at risk from commercial fishing activity and future seabed mining. Understanding connectivity among VMEs is important for the design of effective spatial management strategies, i.e. a network of protected areas. To date however, genetic connectivity in the New Zealand region has rarely been documented. As part of a project developing habitat suitability models and spatial management options for VMEs we used DNA sequence data and microsatellite genotyping to assess genetic connectivity for a range of VME indicator taxa, including the coral Desmophyllum dianthus, and the sponges Poecilastra laminaris and Penares palmatoclada. Overall, patterns of connectivity were inconsistent amonst taxa. Nonetheless, genetic data from each taxon were relevant to inform management at a variety of spatial scales. D. dianthus populations in the Kermadec volcanic arc and the Louisville Seamount Chain were indistinguishable, highlighting the importance of considering source-sink dynamics between populations beyond the EEZ in conservation planning. Poecilastra laminaris populations showed significant divergence across the Chatham Rise, in contrast to P. palmatoclada, which had a uniform haplotypic distribution. However, both sponge species exhibited the highest genetic diversity on the Chatham Rise, suggesting that this area is a genetic hotspot. The spatial heterogeneity of genetic patterns of structure suggest that inclusion of several taxa is necessary to facilitate understanding of regional connectivity patterns, variation in which may be attributed to alternate life history strategies, local hydrodynamic regimes, or in some cases, suboptimal sample sizes. Our findings provide important information for use by environmental managers, including summary maps of genetic diversity and barriers to gene flow, which will be used in spatial management decision-support tools.
NASA Astrophysics Data System (ADS)
Cinner, J. E.
2007-12-01
Coral reef conservation strategies such as marine protected areas have met limited success in many developing countries. Some researchers attribute part of these shortcomings to inadequate attention to the social context of conserving marine resources. To gain insights into applying Western conservation theory more successfully in the socioeconomic context of developing countries, this study examines how long-enduring, customary reef closures appear to reflect local socioeconomic conditions in two Papua New Guinean communities. Attributes of the customary management (including size, shape, permanence, and gear restrictions) are examined in relation to prevailing socioeconomic conditions (including resource users’ ability to switch gears, fishing grounds, and occupations). Customary closures in the two communities appear to reflect local socioeconomic circumstances in three ways. First, in situations where people can readily switch between occupations, full closures are acceptable with periodic harvests to benefit from the closure. In comparison, communities with high dependence on the marine resources are more conducive to employing strategies that restrict certain gear types while still allowing others. Second, where there is multiple clan and family spatial ownership of resources, the communities have one closure per clan/family; one large no-take area would have disproportionate affect on those compared to the rest of the community. In contrast, communities that have joint ownership can establish one large closure as long as there are other areas available to harvest. Third, historical and trade relationships with neighboring communities can influence regulations by creating the need for occasional harvests to provide fish for feasts. This study further demonstrates the importance of understanding the socioeconomic context of factors such as community governance and levels of dependence for the conservation of marine resources.
Setting Priorities for Regional Conservation Planning in the Mediterranean Sea
Micheli, Fiorenza; Levin, Noam; Giakoumi, Sylvaine; Katsanevakis, Stelios; Abdulla, Ameer; Coll, Marta; Fraschetti, Simonetta; Kark, Salit; Koutsoubas, Drosos; Mackelworth, Peter; Maiorano, Luigi; Possingham, Hugh P.
2013-01-01
Spatial prioritization in conservation is required to direct limited resources to where actions are most urgently needed and most likely to produce effective conservation outcomes. In an effort to advance the protection of a highly threatened hotspot of marine biodiversity, the Mediterranean Sea, multiple spatial conservation plans have been developed in recent years. Here, we review and integrate these different plans with the goal of identifying priority conservation areas that represent the current consensus among the different initiatives. A review of six existing and twelve proposed conservation initiatives highlights gaps in conservation and management planning, particularly within the southern and eastern regions of the Mediterranean and for offshore and deep sea habitats. The eighteen initiatives vary substantially in their extent (covering 0.1–58.5% of the Mediterranean Sea) and in the location of additional proposed conservation and management areas. Differences in the criteria, approaches and data used explain such variation. Despite the diversity among proposals, our analyses identified ten areas, encompassing 10% of the Mediterranean Sea, that are consistently identified among the existing proposals, with an additional 10% selected by at least five proposals. These areas represent top priorities for immediate conservation action. Despite the plethora of initiatives, major challenges face Mediterranean biodiversity and conservation. These include the need for spatial prioritization within a comprehensive framework for regional conservation planning, the acquisition of additional information from data-poor areas, species or habitats, and addressing the challenges of establishing transboundary governance and collaboration in socially, culturally and politically complex conditions. Collective prioritised action, not new conservation plans, is needed for the north, western, and high seas of the Mediterranean, while developing initial information-based plans for the south and eastern Mediterranean is an urgent requirement for true regional conservation planning. PMID:23577060
Pressey, Robert L.; Weeks, Rebecca; Andréfouët, Serge; Moloney, James
2016-01-01
Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors—planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs—on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs. PMID:27829042
Cheok, Jessica; Pressey, Robert L; Weeks, Rebecca; Andréfouët, Serge; Moloney, James
2016-01-01
Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors-planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs-on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs.
Celis, Gerardo; Branch, Lyn C.
2018-01-01
Roads are a main threat to biodiversity conservation in the Amazon, in part, because roads increase access for hunters. We examine how increased landscape access by hunters may lead to cascading effects that influence the prey community and abundance of the jaguar (Panthera onca), the top Amazonian terrestrial predator. Understanding such ecological effects originating from anthropogenic actions is essential for conservation and management of wildlife populations in areas undergoing infrastructure development. Our study was conducted in Yasuní Biosphere Reserve, the protected area with highest potential for jaguar conservation in Ecuador, and an area both threatened by road development and inhabited by indigenous groups dependent upon bushmeat. We surveyed prey and jaguar abundance with camera traps in four sites that differed in accessibility to hunters and used site occupancy and spatially explicit capture-recapture analyses to evaluate prey occurrence and estimate jaguar density, respectively. Higher landscape accessibility to hunters was linked with lower occurrence and biomass of game, particularly white-lipped peccary (Tayassu pecari) and collared peccary (Pecari tajacu), the primary game for hunters and prey for jaguars. Jaguar density was up to 18 times higher in the most remote site compared to the most accessible site. Our results provide a strong case for the need to: 1) consider conservation of large carnivores and other wildlife in policies about road construction in protected areas, 2) coordinate conservation initiatives with local governments so that development activities do not conflict with conservation objectives, and 3) promote development of community-based strategies for wildlife management that account for the needs of large carnivores. PMID:29298311
Espinosa, Santiago; Celis, Gerardo; Branch, Lyn C
2018-01-01
Roads are a main threat to biodiversity conservation in the Amazon, in part, because roads increase access for hunters. We examine how increased landscape access by hunters may lead to cascading effects that influence the prey community and abundance of the jaguar (Panthera onca), the top Amazonian terrestrial predator. Understanding such ecological effects originating from anthropogenic actions is essential for conservation and management of wildlife populations in areas undergoing infrastructure development. Our study was conducted in Yasuní Biosphere Reserve, the protected area with highest potential for jaguar conservation in Ecuador, and an area both threatened by road development and inhabited by indigenous groups dependent upon bushmeat. We surveyed prey and jaguar abundance with camera traps in four sites that differed in accessibility to hunters and used site occupancy and spatially explicit capture-recapture analyses to evaluate prey occurrence and estimate jaguar density, respectively. Higher landscape accessibility to hunters was linked with lower occurrence and biomass of game, particularly white-lipped peccary (Tayassu pecari) and collared peccary (Pecari tajacu), the primary game for hunters and prey for jaguars. Jaguar density was up to 18 times higher in the most remote site compared to the most accessible site. Our results provide a strong case for the need to: 1) consider conservation of large carnivores and other wildlife in policies about road construction in protected areas, 2) coordinate conservation initiatives with local governments so that development activities do not conflict with conservation objectives, and 3) promote development of community-based strategies for wildlife management that account for the needs of large carnivores.
NASA Astrophysics Data System (ADS)
Dozier, André Q.; Arabi, Mazdak; Wostoupal, Benjamin C.; Goemans, Christopher G.; Zhang, Yao; Paustian, Keith
2017-08-01
In rapidly urbanizing semi-arid regions, increasing amounts of historically irrigated cropland lies permanently fallowed due to water court policies as agricultural water rights are voluntarily being sold to growing cities. This study develops an integrative framework for assessing the effects of population growth and land use change on agricultural production and evaluating viability of alternative management strategies, including alternative agricultural transfer methods, regional water ownership restrictions, and urban conservation. A partial equilibrium model of a spatially-diverse regional water rights market is built in application of the framework to an exemplary basin. The model represents agricultural producers as profit-maximizing suppliers and municipalities as cost-minimizing consumers of water rights. Results indicate that selling an agricultural water right today is worth up to two times more than 40 years of continued production. All alternative policies that sustain agricultural cropland and crop production decrease total agricultural profitability by diminishing water rights sales revenue, but in doing so, they also decrease municipal water acquisition costs. Defining good indicators and incorporating adequate spatial and temporal detail are critical to properly analyzing policy impacts. To best improve agricultural profit from production and sale of crops, short-term solutions include alternative agricultural transfer methods while long-term solutions incorporate urban conservation.
Sokolow, Sharona; Godwin, Hilary; Cole, Brian L
2016-05-01
To determine how urban water conservation strategies in California cities can affect water and energy conservation efforts, reduce greenhouse gas emissions, and benefit public health. We expanded upon our 2014 health impact assessment of California's urban water conservation strategies by comparing the status quo to 2 options with the greatest potential impact on the interrelated issues of water and energy in California: (1) banning landscape irrigation and (2) expanding alternative water sources (e.g., desalination, recycled water). Among the water conservation strategies evaluated, expanded use of recycled water stood out as the water conservation strategy with potential to reduce water use, energy use, and greenhouse gas emissions, with relatively small negative impacts for the public's health. Although the suitability of recycled water for urban uses depends on local climate, geography, current infrastructure, and finances, analyses similar to that presented here can help guide water policy decisions in cities across the globe facing challenges of supplying clean, sustainable water to urban populations.
The World Conservation Strategy and Environmental Education.
ERIC Educational Resources Information Center
Nature Conservation Education Committee, Rijswijk (Netherlands).
On March 5, 1980, the "World Conservation Strategy: Living Resource Conservation for Sustainable Development" (WCS) report was submitted to the Dutch government. The Nature Conservation Education Committee (CNBE) was then asked to prepare another report based on its initial reactions to the WCS, particularly to section 13, which deals…
Oberhauser, Karen; Wiederholt, Ruscena; Diffendorfer, James E.; Semmens, Darius J.; Ries, Leslie; Thogmartin, Wayne E.; Lopez-Hoffman, Laura; Semmens, Brice
2017-01-01
1. The monarch has undergone considerable population declines over the past decade, and the governments of Mexico, Canada, and the United States have agreed to work together to conserve the species.2. Given limited resources, understanding where to focus conservation action is key for widespread species like monarchs. To support planning for continental-scale monarch habitat restoration, we address the question of where restoration efforts are likely to have the largest impacts on monarch butterfly (Danaus plexippus Linn.) population growth rates.3. We present a spatially explicit demographic model simulating the multi-generational annual cycle of the eastern monarch population, and use the model to examine management scenarios, some of which focus on particular regions of North America.4. Improving the monarch habitat in the north central or southern parts of the monarch range yields a slightly greater increase in the population growth rate than restoration in other regions. However, combining restoration efforts across multiple regions yields population growth rates above 1 with smaller simulated improvements in habitat per region than single-region strategies.5. Synthesis and applications: These findings suggest that conservation investment in projects across the full monarch range will be more effective than focusing on one or a few regions, and will require international cooperation across many land use categories.
Uniting paradigms of connectivity in marine ecology.
Brown, Christopher J; Harborne, Alastair R; Paris, Claire B; Mumby, Peter J
2016-09-01
The connectivity of marine organisms among habitat patches has been dominated by two independent paradigms with distinct conservation strategies. One paradigm is the dispersal of larvae on ocean currents, which suggests networks of marine reserves. The other is the demersal migration of animals from nursery to adult habitats, requiring the conservation of connected ecosystem corridors. Here, we suggest that a common driver, wave exposure, links larval and demersal connectivity across the seascape. To study the effect of linked connectivities on fish abundance at reefs, we parameterize a demographic model for The Bahamas seascape using maps of habitats, empirically forced models of wave exposure and spatially realistic three-dimensional hydrological models of larval dispersal. The integrated empirical-modeling approach enabled us to study linked connectivity on a scale not currently possible by purely empirical studies. We find sheltered environments not only provide greater nursery habitat for juvenile fish but larvae spawned on adjacent reefs have higher retention, thereby creating a synergistic increase in fish abundance. Uniting connectivity paradigms to consider all life stages simultaneously can help explain the evolution of nursery habitat use and simplifies conservation advice: Reserves in sheltered environments have desirable characteristics for biodiversity conservation and can support local fisheries through adult spillover. © 2016 by the Ecological Society of America.
Vimal, Ruppert; Pluvinet, Pascal; Sacca, Céline; Mazagol, Pierre-Olivier; Etlicher, Bernard; Thompson, John D
2012-03-01
In this study, we developed a multi-criteria assessment of spatial variability of the vulnerability of three different biodiversity descriptors: sites of high conservation interest by virtue of the presence of rare or remarkable species, extensive areas of high ecological integrity, and landscape diversity in grid cells across an entire region. We assessed vulnerability in relation to (a) direct threats in and around sites to a distance of 2 km associated with intensive agriculture, building and road infrastructure and (b) indirect effects of human population density on a wider scale (50 km). The different combinations of biodiversity and threat indicators allowed us to set differential priorities for biodiversity conservation and assess their spatial variation. For example, with this method we identified sites and grid cells which combined high biodiversity with either high threat values or low threat values for the three different biodiversity indicators. In these two classes the priorities for conservation planning will be different, reduce threat values in the former and restrain any increase in the latter. We also identified low priority sites (low biodiversity with either high or low threats). This procedure thus allows for the integration of a spatial ranking of vulnerability into priority setting for regional conservation planning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pérez-Collazos, Ernesto; Catalán, Pilar
2006-04-01
Vella pseudocytisus subsp. paui (Cruciferae) is a narrow endemic plant to the Teruel province (eastern Spain), which is listed in the National Catalogue of Endangered Species. Two distinct ploidy levels (diploid, 2n = 34, and tetraploid, 2n = 68) have been reported for this taxon that belongs to the core subtribe Vellinae, a western Mediterranean group of shrubby taxa with a chromosome base number of x = 17. Allozyme and AFLP analyses were conducted (a) to test for the ploidy and putative palaeo-allopolyploid origin of this taxon, (b) to explore levels of genetic diversity and spatial structure of its populations, and (c) to address in-situ and ex-situ strategies for its conservation. Six populations that covered the entire geographical range of this taxon were sampled and examined for 19 allozyme loci and three AFLP primer pair combinations. In addition, the gametic progenies of five individuals were analysed for two allozyme loci that showed fixed heterozygosity. Multiple banded allozyme profiles for most of the surveyed loci indicated the polyploidy of this taxon. Co-inherited fixed heterozygous patterns were exhibited by the gametophytic tissues of the mother plants. Both allozyme and AFLP markers detected high levels of genetic diversity, and a strong micro-spatial genetic structure was recovered from AFLP phenetic analyses and Mantel correlograms. Allozyme data support the hypothesis of an allotetraploid origin of Vella pseudocytisus subsp. paui that could be representative of other taxa of the core Vellinae group. AFLP data distinguished three geographically distinct groups with no genetic interaction among them. Allotetraploidy and outcrossing reproduction have probably contributed to maintenance of high levels of genetic variability of the populations, whereas habitat fragmentation may have enhanced the high genetic isolation observed among groups. In-situ microgenetic reserves and a selective sampling of germplasm stocks for ex-situ conservation of this taxon are proposed.
Pomara, Lars Y; LeDee, Olivia E; Martin, Karl J; Zuckerberg, Benjamin
2014-07-01
Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back-cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long-term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long-term demographic decline and range contraction for a species of high-conservation concern. Range-wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal-limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management. © 2013 John Wiley & Sons Ltd.
PÉREZ-COLLAZOS, ERNESTO; CATALÁN, PILAR
2006-01-01
• Background and Aims Vella pseudocytisus subsp. paui (Cruciferae) is a narrow endemic plant to the Teruel province (eastern Spain), which is listed in the National Catalogue of Endangered Species. Two distinct ploidy levels (diploid, 2n = 34, and tetraploid, 2n = 68) have been reported for this taxon that belongs to the core subtribe Vellinae, a western Mediterranean group of shrubby taxa with a chromosome base number of x = 17. Allozyme and AFLP analyses were conducted (a) to test for the ploidy and putative palaeo-allopolyploid origin of this taxon, (b) to explore levels of genetic diversity and spatial structure of its populations, and (c) to address in-situ and ex-situ strategies for its conservation. • Methods Six populations that covered the entire geographical range of this taxon were sampled and examined for 19 allozyme loci and three AFLP primer pair combinations. In addition, the gametic progenies of five individuals were analysed for two allozyme loci that showed fixed heterozygosity. • Key Results Multiple banded allozyme profiles for most of the surveyed loci indicated the polyploidy of this taxon. Co-inherited fixed heterozygous patterns were exhibited by the gametophytic tissues of the mother plants. Both allozyme and AFLP markers detected high levels of genetic diversity, and a strong micro-spatial genetic structure was recovered from AFLP phenetic analyses and Mantel correlograms. • Conclusions Allozyme data support the hypothesis of an allotetraploid origin of Vella pseudocytisus subsp. paui that could be representative of other taxa of the core Vellinae group. AFLP data distinguished three geographically distinct groups with no genetic interaction among them. Allotetraploidy and outcrossing reproduction have probably contributed to maintenance of high levels of genetic variability of the populations, whereas habitat fragmentation may have enhanced the high genetic isolation observed among groups. In-situ microgenetic reserves and a selective sampling of germplasm stocks for ex-situ conservation of this taxon are proposed. PMID:16495317
Asefa, Mengesha; Cao, Min; Zhang, Guocheng; Ci, Xiuqin; Li, Jie; Yang, Jie
2017-03-09
Environmental filtering consistently shapes the functional and phylogenetic structure of species across space within diverse forests. However, poor descriptions of community functional and lineage distributions across space hamper the accurate understanding of coexistence mechanisms. We combined environmental variables and geographic space to explore how traits and lineages are filtered by environmental factors using extended RLQ and fourth-corner analyses across different spatial scales. The dispersion patterns of traits and lineages were also examined in a 20-ha tropical rainforest dynamics plot in southwest China. We found that environmental filtering was detected across all spatial scales except the largest scale (100 × 100 m). Generally, the associations between functional traits and environmental variables were more or less consistent across spatial scales. Species with high resource acquisition-related traits were associated with the resource-rich part of the plot across the different spatial scales, whereas resource-conserving functional traits were distributed in limited-resource environments. Furthermore, we found phylogenetic and functional clustering at all spatial scales. Similar functional strategies were also detected among distantly related species, suggesting that phylogenetic distance is not necessarily a proxy for functional distance. In summary, environmental filtering considerably structured the trait and lineage assemblages in this species-rich tropical rainforest.
de Aranzabal, Itziar; Schmitz, María F; Pineda, Francisco D
2009-11-01
Tourism and landscape are interdependent concepts. Nature- and culture-based tourism are now quite well developed activities and can constitute an excellent way of exploiting the natural resources of certain areas, and should therefore be considered as key objectives in landscape planning and management in a growing number of countries. All of this calls for careful evaluation of the effects of tourism on the territory. This article focuses on an integrated spatial method for landscape analysis aimed at quantifying the relationship between preferences of visitors and landscape features. The spatial expression of the model relating types of leisure and recreational preferences to the potential capacity of the landscape to meet them involves a set of maps showing degrees of potential visitor satisfaction. The method constitutes a useful tool for the design of tourism planning and management strategies, with landscape conservation as a reference.
Hybrid cardiac imaging with MR-CAT scan: a feasibility study.
Hillenbrand, C; Sandstede, J; Pabst, T; Hahn, D; Haase, A; Jakob, P M
2000-06-01
We demonstrate the feasibility of a new versatile hybrid imaging concept, the combined acquisition technique (CAT), for cardiac imaging. The cardiac CAT approach, which combines new methodology with existing technology, essentially integrates fast low-angle shot (FLASH) and echoplanar imaging (EPI) modules in a sequential fashion, whereby each acquisition module is employed with independently optimized imaging parameters. One important CAT sequence optimization feature is the ability to use different bandwidths for different acquisition modules. Twelve healthy subjects were imaged using three cardiac CAT acquisition strategies: a) CAT was used to reduce breath-hold duration times while maintaining constant spatial resolution; b) CAT was used to increase spatial resolution in a given breath-hold time; and c) single-heart beat CAT imaging was performed. The results obtained demonstrate the feasibility of cardiac imaging using the CAT approach and the potential of this technique to accelerate the imaging process with almost conserved image quality. Copyright 2000 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Farzan, Shahla; Young, Derek J. N.; Dedrick, Allison G.; Hamilton, Matthew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel
2015-09-01
Western juniper ( Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse ( Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.
Farzan, Shahla; Young, Derek J.N.; Dedrick, Allison G.; Hamilton, Mattew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel
2015-01-01
Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.
Farzan, Shahla; Young, Derek J N; Dedrick, Allison G; Hamilton, Matthew; Porse, Erik C; Coates, Peter S; Sampson, Gabriel
2015-09-01
Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.
Skagen, Susan K.; Granfors, Diane A.; Melcher, Cynthia P.
2008-01-01
Conservation challenges enhance the need for quantitative information on dispersed bird populations in extensive landscapes, for techniques to monitor populations and assess environmental effects, and for conservation strategies at appropriate temporal and spatial scales. By estimating population sizes of shorebirds in the U.S. portion of the prairie pothole landscape in central North America, where most migrating shorebirds exhibit a highly dispersed spatial pattern, we determined that the region may play a vital role in the conservation of shorebirds. During northward and southward migration, 7.3 million shorebirds (95% CI: 4.3–10.3 million) and 3.9 million shorebirds (95% CI: 1.7–6.0 million) stopped to rest and refuel in the study area; inclusion of locally breeding species increases the estimates by 0.1 million and 0.07 million shorebirds, respectively. Seven species of calidridine sandpipers, including Semipalmated Sandpipers (Calidris pusilla), White-rumped Sandpipers (C. fuscicollis), and Stilt Sandpipers (C. himantopus), constituted 50% of northbound migrants in our study area. We present an approach to population estimation and monitoring, based on stratified random selection of townships as sample units, that is well suited to 11 migratory shorebird species. For extensive and dynamic wetland systems, we strongly caution against a monitoring program based solely on repeated counts of known stopover sites with historically high numbers of shorebirds. We recommend refinements in methodology to address sample-size requirements and potential sources of bias so that our approach may form the basis of a rigorous migration monitoring program in this and other prairie wetland regions.
Mapping the economic costs and benefits of conservation.
Naidoo, Robin; Ricketts, Taylor H
2006-10-01
Resources for biodiversity conservation are severely limited, requiring strategic investment. Understanding both the economic benefits and costs of conserving ecosystems will help to allocate scarce dollars most efficiently. However, although cost-benefit analyses are common in many areas of policy, they are not typically used in conservation planning. We conducted a spatial evaluation of the costs and benefits of conservation for a landscape in the Atlantic forests of Paraguay. We considered five ecosystem services (i.e., sustainable bushmeat harvest, sustainable timber harvest, bioprospecting for pharmaceutical products, existence value, and carbon storage in aboveground biomass) and compared them to estimates of the opportunity costs of conservation. We found a high degree of spatial variability in both costs and benefits over this relatively small (approximately 3,000 km(2)) landscape. Benefits exceeded costs in some areas, with carbon storage dominating the ecosystem service values and swamping opportunity costs. Other benefits associated with conservation were more modest and exceeded costs only in protected areas and indigenous reserves. We used this cost-benefit information to show that one potential corridor between two large forest patches had net benefits that were three times greater than two otherwise similar alternatives. Spatial cost-benefit analysis can powerfully inform conservation planning, even though the availability of relevant data may be limited, as was the case in our study area. It can help us understand the synergies between biodiversity conservation and economic development when the two are indeed aligned and to clearly understand the trade-offs when they are not.
Mapping the Economic Costs and Benefits of Conservation
Naidoo, Robin; Ricketts, Taylor H
2006-01-01
Resources for biodiversity conservation are severely limited, requiring strategic investment. Understanding both the economic benefits and costs of conserving ecosystems will help to allocate scarce dollars most efficiently. However, although cost-benefit analyses are common in many areas of policy, they are not typically used in conservation planning. We conducted a spatial evaluation of the costs and benefits of conservation for a landscape in the Atlantic forests of Paraguay. We considered five ecosystem services (i.e., sustainable bushmeat harvest, sustainable timber harvest, bioprospecting for pharmaceutical products, existence value, and carbon storage in aboveground biomass) and compared them to estimates of the opportunity costs of conservation. We found a high degree of spatial variability in both costs and benefits over this relatively small (~3,000 km2) landscape. Benefits exceeded costs in some areas, with carbon storage dominating the ecosystem service values and swamping opportunity costs. Other benefits associated with conservation were more modest and exceeded costs only in protected areas and indigenous reserves. We used this cost-benefit information to show that one potential corridor between two large forest patches had net benefits that were three times greater than two otherwise similar alternatives. Spatial cost-benefit analysis can powerfully inform conservation planning, even though the availability of relevant data may be limited, as was the case in our study area. It can help us understand the synergies between biodiversity conservation and economic development when the two are indeed aligned and to clearly understand the trade-offs when they are not. PMID:17076583
Cost-effectiveness of conservation payment schemes for species with different range sizes.
Drechsler, Martin; Smith, Henrik G; Sturm, Astrid; Wätzold, Frank
2016-08-01
Payments to compensate landowners for carrying out costly land-use measures that benefit endangered biodiversity have become an important policy instrument. When designing such payments, it is important to take into account that spatially connected habitats are more valuable for many species than isolated ones. One way to incentivize provision of connected habitats is to offer landowners an agglomeration bonus, that is, a bonus on top of payments they are receiving to conserve land if the land is spatially connected. Researchers have compared the cost-effectiveness of the agglomeration bonus with 2 alternatives: an all-or-nothing, agglomeration payment, where landowners receive a payment only if the conserved land parcels have a certain level of spatial connectivity, and a spatially homogeneous payment, where landowners receive a payment for conserved land parcels irrespective of their location. Their results show the agglomeration bonus is rarely the most cost-effective option, and when it is, it is only slightly better than one of the alternatives. This suggests that the agglomeration bonus should not be given priority as a policy design option. However, this finding is based on consideration of only 1 species. We examined whether the same applied to 2 species, one for which the homogeneous payment is best and the other for which the agglomeration payment is most cost-effective. We modified a published conceptual model so that we were able to assess the cost-effectiveness of payment schemes for 2 species and applied it to a grassland bird and a grassland butterfly in Germany that require the same habitat but have different spatial-connectivity needs. When conserving both species, the agglomeration bonus was more cost-effective than the agglomeration and the homogeneous payment; thus, we showed that as a policy the agglomeration bonus is a useful conservation-payment option. © 2016 Society for Conservation Biology.
2015-12-01
FINAL REPORT Integrated spatial models of non-native plant invasion, fire risk, and wildlife habitat to support conservation of military and...as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service...2. REPORT TYPE Final 3. DATES COVERED (From - To) 26/4/2010 – 25/10/2015 4. TITLE AND SUBTITLE Integrated Spatial Models of Non-Native Plant
2018-01-01
Rapid urbanization and agricultural development has resulted in the degradation of ecosystems, while also negatively impacting ecosystem services (ES) and urban sustainability. Identifying conservation priorities for ES and applying reasonable management strategies have been found to be effective methods for mitigating this phenomenon. The purpose of this study is to propose a comprehensive framework for identifying ES conservation priorities and associated management strategies for these planning areas. First, we incorporated 10 ES indicators within a systematic conservation planning (SCP) methodology in order to identify ES conservation priorities with high irreplaceability values based on conservation target goals associated with the potential distribution of ES indicators. Next, we assessed the efficiency of the ES conservation priorities for meeting the designated conservation target goals. Finally, ES conservation priorities were clustered into groups using a K-means clustering analysis in an effort to identify the dominant ES per location before formulating management strategies. We effectively identified 12 ES priorities to best represent conservation target goals for the ES indicators. These 12 priorities had a total areal coverage of 13,364 km2 representing 25.16% of the study area. The 12 priorities were further clustered into five significantly different groups (p-values between groups < 0.05), which helped to refine management strategies formulated to best enhance ES across the study area. The proposed method allows conservation and management plans to easily adapt to a wide variety of quantitative ES target goals within urban and agricultural areas, thereby preventing urban and agriculture sprawl and guiding sustainable urban development. PMID:29682412
Qu, Yi; Lu, Ming
2018-01-01
Rapid urbanization and agricultural development has resulted in the degradation of ecosystems, while also negatively impacting ecosystem services (ES) and urban sustainability. Identifying conservation priorities for ES and applying reasonable management strategies have been found to be effective methods for mitigating this phenomenon. The purpose of this study is to propose a comprehensive framework for identifying ES conservation priorities and associated management strategies for these planning areas. First, we incorporated 10 ES indicators within a systematic conservation planning (SCP) methodology in order to identify ES conservation priorities with high irreplaceability values based on conservation target goals associated with the potential distribution of ES indicators. Next, we assessed the efficiency of the ES conservation priorities for meeting the designated conservation target goals. Finally, ES conservation priorities were clustered into groups using a K-means clustering analysis in an effort to identify the dominant ES per location before formulating management strategies. We effectively identified 12 ES priorities to best represent conservation target goals for the ES indicators. These 12 priorities had a total areal coverage of 13,364 km 2 representing 25.16% of the study area. The 12 priorities were further clustered into five significantly different groups ( p -values between groups < 0.05), which helped to refine management strategies formulated to best enhance ES across the study area. The proposed method allows conservation and management plans to easily adapt to a wide variety of quantitative ES target goals within urban and agricultural areas, thereby preventing urban and agriculture sprawl and guiding sustainable urban development.
Constraints of philanthropy on determining the distribution of biodiversity conservation funding.
Larson, Eric R; Howell, Stephen; Kareiva, Peter; Armsworth, Paul R
2016-02-01
Caught between ongoing habitat destruction and funding shortfalls, conservation organizations are using systematic planning approaches to identify places that offer the highest biodiversity return per dollar invested. However, available tools do not account for the landscape of funding for conservation or quantify the constraints this landscape imposes on conservation outcomes. Using state-level data on philanthropic giving to and investments in land conservation by a large nonprofit organization, we applied linear regression to evaluate whether the spatial distribution of conservation philanthropy better explained expenditures on conservation than maps of biodiversity priorities, which were derived from a planning process internal to the organization and return on investment (ROI) analyses based on data on species richness, land costs, and existing protected areas. Philanthropic fund raising accounted for considerably more spatial variation in conservation spending (r(2) = 0.64) than either of the 2 systematic conservation planning approaches (r(2) = 0.08-0.21). We used results of one of the ROI analyses to evaluate whether increases in flexibility to reallocate funding across space provides conservation gains. Small but plausible "tax" increments of 1-10% on states redistributed to the optimal funding allocation from the ROI analysis could result in gains in endemic species protected of 8.5-80.2%. When such increases in spatial flexibility are not possible, conservation organizations should seek to cultivate increased support for conservation in priority locations. We used lagged correlations of giving to and spending by the organization to evaluate whether investments in habitat protection stimulate future giving to conservation. The most common outcome at the state level was that conservation spending quarters correlated significantly and positively with lagged fund raising quarters. In effect, periods of high fund raising for biodiversity followed (rather than preceded) periods of high expenditure on land conservation projects, identifying one mechanism conservation organizations could explore to seed greater activity in priority locations. Our results demonstrate how limitations on the ability of conservation organizations to reallocate their funding across space can impede organizational effectiveness and elucidate ways conservation planning tools could be more useful if they quantified and incorporated these constraints. © 2015 Society for Conservation Biology.
Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong
2015-08-07
Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.
Shorebird roost-site selection at two temporal scales: Is human disturbance a factor?
Peters, K.A.; Otis, D.L.
2007-01-01
1. Roost-site selection in shorebirds is governed by ambient factors, including environmental conditions and human disturbance. Determination of the extent to which these factors affect roost use and the associated implications for shorebird habitat protection is important for conservation strategies and informed management of human recreational use of these habitats. Shorebird conservation as a whole is a high priority world-wide because a large proportion of shorebird species is in decline. However, little is understood about the consistency of roost use by different species, what conditions affect species-specific roost-site selection, and at what spatial and temporal scales conditions influence selection. 2. We studied high-tide roost-site selection by eight species of non-breeding shorebirds on a critically important stopover and wintering refuge. We calculated spatial and temporal variability in roost use for each species based on counts and consistency of incidence. We then examined roost-site selection in relation to structural, environmental and human disturbance factors, and how this varied across spatial and temporal scales. 3. Most roosts were used less than 50% of the time, although larger roosts were used more consistently. This varied among species, with red knot Calidris canutus tending to concentrate at a few roosts and American oystercatcher Haematopus palliatus, dowitcher Limnodromus griseus and Limnodromus scolopaceus and ruddy turnstone Arenaria interpres more diffusely distributed among roosts. 4. At an annual scale, the principal factors affecting shorebird presence at roosts were roost length (size), local region, substrate and aspect. The extent and direction of these effects varied among species. Among years, red knots avoided roosts that had high average boat activity within 1000 m, but disturbance did not appear to be a factor for other species. 5. Daily roost use was influenced primarily by wind speed and the ability of roosts to provide shelter from the wind. Only dowitchers appeared to track daily disturbance, avoiding prospective roosts when boat activity within 100 m was high. 6. Synthesis and applications. Our findings emphasize the need to consider species-specific differences in temporal- and spatial-scale effects of roost-site selection factors, including human disturbance, when employing conservation measures for shorebirds. We suggest that conservation management should aim to provide a wide range of potential roosts (both natural and artificial) that could be used under different wind conditions and that are within reasonable travelling distance of preferred feeding areas. Roost use is often highly variable, and monitoring efforts must take this into account before making inferences about changes in use or selection of roost sites. ?? 2006 The Authors.
Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F
2010-07-01
The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.
The Fire Learning Network: A promising conservation strategy for forestry
Bruce E. Goldstein; William H. Butler; R. Bruce Hull
2010-01-01
Conservation Learning Networks (CLN) are an emerging conservation strategy for addressing complex resource management challenges that face the forestry profession. The US Fire Learning Network (FLN) is a successful example of a CLN that operates on a national scale. Developed in 2001 as a partnership between The Nature Conservancy, the US Forest Service, and land-...
Sokolow, Sharona; Godwin, Hilary
2016-01-01
Objectives. To determine how urban water conservation strategies in California cities can affect water and energy conservation efforts, reduce greenhouse gas emissions, and benefit public health. Methods. We expanded upon our 2014 health impact assessment of California's urban water conservation strategies by comparing the status quo to 2 options with the greatest potential impact on the interrelated issues of water and energy in California: (1) banning landscape irrigation and (2) expanding alternative water sources (e.g., desalination, recycled water). Results. Among the water conservation strategies evaluated, expanded use of recycled water stood out as the water conservation strategy with potential to reduce water use, energy use, and greenhouse gas emissions, with relatively small negative impacts for the public’s health. Conclusions. Although the suitability of recycled water for urban uses depends on local climate, geography, current infrastructure, and finances, analyses similar to that presented here can help guide water policy decisions in cities across the globe facing challenges of supplying clean, sustainable water to urban populations. PMID:26985606
Sofaer, Helen R; Skagen, Susan K; Barsugli, Joseph J; Rashford, Benjamin S; Reese, Gordon C; Hoeting, Jennifer A; Wood, Andrew W; Noon, Barry R
2016-09-01
Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species' vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland complexes containing both small and relatively large wetland basins, which is an ongoing conservation strategy, may also act to hedge against uncertainty in the effects of climate change. © 2016 by the Ecological Society of America.
Teaching for a World Conservation Strategy.
ERIC Educational Resources Information Center
Kirk, John J.
1982-01-01
The World Conservation Strategy calls upon international, national, and regional efforts to balance development with conservation of the world's living resources (e.g., forests, water, farmland, coastal resources). Environmental educators must inform themselves, establish adequate teacher training programs, and develop curriculum materials to…
Local replenishment of coral reef fish populations in a marine reserve.
Almany, Glenn R; Berumen, Michael L; Thorrold, Simon R; Planes, Serge; Jones, Geoffrey P
2007-05-04
The scale of larval dispersal of marine organisms is important for the design of networks of marine protected areas. We examined the fate of coral reef fish larvae produced at a small island reserve, using a mass-marking method based on maternal transmission of stable isotopes to offspring. Approximately 60% of settled juveniles were spawned at the island, for species with both short (<2 weeks) and long (>1 month) pelagic larval durations. If natal homing of larvae is a common life-history strategy, the appropriate spatial scales for the management and conservation of coral reefs are likely to be much smaller than previously assumed.
Achieving full connectivity of sites in the multiperiod reserve network design problem
Jafari, Nahid; Nuse, Bryan L.; Moore, Clinton; Dilkina, Bistra; Hepinstall-Cymerman, Jeffrey
2017-01-01
The conservation reserve design problem is a challenge to solve because of the spatial and temporal nature of the problem, uncertainties in the decision process, and the possibility of alternative conservation actions for any given land parcel. Conservation agencies tasked with reserve design may benefit from a dynamic decision system that provides tactical guidance for short-term decision opportunities while maintaining focus on a long-term objective of assembling the best set of protected areas possible. To plan cost-effective conservation over time under time-varying action costs and budget, we propose a multi-period mixed integer programming model for the budget-constrained selection of fully connected sites. The objective is to maximize a summed conservation value over all network parcels at the end of the planning horizon. The originality of this work is in achieving full spatial connectivity of the selected sites during the schedule of conservation actions.
Optimization and universality of Brownian search in a basic model of quenched heterogeneous media
NASA Astrophysics Data System (ADS)
Godec, Aljaž; Metzler, Ralf
2015-05-01
The kinetics of a variety of transport-controlled processes can be reduced to the problem of determining the mean time needed to arrive at a given location for the first time, the so-called mean first-passage time (MFPT) problem. The occurrence of occasional large jumps or intermittent patterns combining various types of motion are known to outperform the standard random walk with respect to the MFPT, by reducing oversampling of space. Here we show that a regular but spatially heterogeneous random walk can significantly and universally enhance the search in any spatial dimension. In a generic minimal model we consider a spherically symmetric system comprising two concentric regions with piecewise constant diffusivity. The MFPT is analyzed under the constraint of conserved average dynamics, that is, the spatially averaged diffusivity is kept constant. Our analytical calculations and extensive numerical simulations demonstrate the existence of an optimal heterogeneity minimizing the MFPT to the target. We prove that the MFPT for a random walk is completely dominated by what we term direct trajectories towards the target and reveal a remarkable universality of the spatially heterogeneous search with respect to target size and system dimensionality. In contrast to intermittent strategies, which are most profitable in low spatial dimensions, the spatially inhomogeneous search performs best in higher dimensions. Discussing our results alongside recent experiments on single-particle tracking in living cells, we argue that the observed spatial heterogeneity may be beneficial for cellular signaling processes.
Jeanne C. Chambers; Jeffrey L. Beck; Steve Campbell; John Carlson; Thomas J. Christiansen; Karen J. Clause; Michele R. Crist; Jonathan B. Dinkins; Kevin E. Doherty; Shawn Espinosa; Kathleen A. Griffin; Steven E. Hanser; Douglas W. Havlina; Kenneth F. Henke; Jacob D. Hennig; Laurie L. Kurth; Jeremy D. Maestas; Mary Manning; Kenneth E. Mayer; Brian A. Mealor; Clinton McCarthy; Mike Pellant; Marco A. Perea; Karen L. Prentice; David A. Pyke; Lief A. Wiechman; Amarina Wuenschel
2016-01-01
The Science Framework for the Conservation and Restoration Strategy of the Department of the Interior, Secretarial Order 3336 (SO 3336), Rangeland Fire Prevention, Management and Restoration, provides a strategic, multiscale approach for prioritizing areas for management and determining effective management strategies across the sagebrush biome. The emphasis of this...
Dynamic conservation of forest genetic resources in 33 European countries.
Lefèvre, François; Koskela, Jarkko; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C; Schüler, Silvio; Bozzano, Michele; Alizoti, Paraskevi; Bakys, Remigijus; Baldwin, Cathleen; Ballian, Dalibor; Black-Samuelsson, Sanna; Bednarova, Dagmar; Bordács, Sándor; Collin, Eric; de Cuyper, Bart; de Vries, Sven M G; Eysteinsson, Thröstur; Frýdl, Josef; Haverkamp, Michaela; Ivankovic, Mladen; Konrad, Heino; Koziol, Czesław; Maaten, Tiit; Notivol Paino, Eduardo; Oztürk, Hikmet; Pandeva, Ivanova Denitsa; Parnuta, Gheorghe; Pilipovič, Andrej; Postolache, Dragos; Ryan, Cathal; Steffenrem, Arne; Varela, Maria Carolina; Vessella, Federico; Volosyanchuk, Roman T; Westergren, Marjana; Wolter, Frank; Yrjänä, Leena; Zariŋa, Inga
2013-04-01
Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we developed ecogeographic indicators, a marginality index, and demographic indicators to assess and monitor forest conservation efforts. The pan-European network has 1967 conservation units, 2737 populations of target trees, and 86 species of target trees. We detected a poor coincidence between FGR conservation and other biodiversity conservation objectives within this network. We identified 2 complementary strategies: a species-oriented strategy in which national conservation networks are specifically designed for key target species and a site-oriented strategy in which multiple-target units include so-called secondary species conserved within a few sites. The network is highly unbalanced in terms of species representation, and 7 key target species are conserved in 60% of the conservation units. We performed specific gap analyses for 11 tree species, including assessment of ecogeographic, demographic, and genetic criteria. For each species, we identified gaps, particularly in the marginal parts of their distribution range, and found multiple redundant conservation units in other areas. The Mediterranean forests and to a lesser extent the boreal forests are underrepresented. Monitoring the conservation efficiency of each unit remains challenging; however, <2% of the conserved populations seem to be at risk of extinction. On the basis of our results, we recommend combining species-oriented and site-oriented strategies. © 2012 Society for Conservation Biology.
Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media.
Sonter, Laura J; Watson, Keri B; Wood, Spencer A; Ricketts, Taylor H
2016-01-01
Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18-20.2 at 95% confidence) to Vermont's tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making.
NASA Astrophysics Data System (ADS)
Rudiastuti, A. W.; Munawaroh; Setyawan, I. E.; Pramono, G. H.
2018-04-01
Sustainable coastal management is playing an important role in coastal resources conservation, particularly on small islands. Karimata archipelago has unique characteristics and great potential to be developed as a tourism object, one of which is Karimata Island as the largest island and also reserve area. The concept of ecotourism focuses on the ecology conservation, economic benefits, and social life. Ecotourism aims to build sustainable tourism that provides economically viable and social benefits to the community. This study aims to develop coastal management strategy based on ecotourism at Karimata Island. Spatial approaching through coastal type was done. Qualitative descriptive analysis and SWOT are used to develop sustainable management strategies for the coast of Karimata Island, where the opportunities and challenges to the development of coastal ecotourism Karimata Island also included. If this potential is optimally utilized, it can be relied as an economic opportunity for local communities. Structurally shaped coast, marine depositional coast and coast build by organism are several of coastal types found at Karimata Island. Coastal ecosystems inhabited Karimata Island are mangroves, coral reefs, and macro-algae. Karimata Island have not been optimally utilized for tourist destinations. The biggest obstacle encountered is the accessibility from Kalimantan or other island at Karimata islands. Several problems related to the utilization of coastal resources were found such as mangrove and coral reef damage, also regulation that less supportive. The results of this study are expected to provide an overview of solutions for the development of coastal tourism potentials in Karimata Island.
Gjertsen, Heidi; Squires, Dale; Dutton, Peter H; Eguchi, Tomoharu
2014-02-01
Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost-effectiveness of nesting site and at-sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost-effectiveness measures. Nesting beach protection was the most cost-effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high-bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low-cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost-effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost-effective, particularly, if fisheries in the area are small and of little commercial value. © 2014 Society for Conservation Biology.
Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems
NASA Astrophysics Data System (ADS)
Costantini, E. A. C.; Branquinho, C.; Nunes, A.; Schwilch, G.; Stavi, I.; Valdecantos, A.; Zucca, C.
2015-12-01
Soil indicators may be used for assessing both land suitability for restoration and the effectiveness of restoration strategies in restoring ecosystem functioning and services. In this review paper, several soil indicators, which can be used to assess the effectiveness of restoration strategies in dryland ecosystems at different spatial and temporal scales, are discussed. The selected indicators represent the different viewpoints of pedology, ecology, hydrology, and land management. The recovery of soil capacity to provide ecosystem services is primarily obtained by increasing soil rooting depth and volume, and augmenting water accessibility for vegetation. Soil characteristics can be used either as indicators of suitability, that is, inherently slow-changing soil qualities, or as indicators for modifications, namely dynamic, thus "manageable" soil qualities. Soil organic matter forms, as well as biochemistry, micro- and meso-biology, are among the most utilized dynamic indicators. On broader territorial scales, the Landscape Function Analysis uses a functional approach, where the effectiveness of restoration strategies is assessed by combining the analysis of spatial pattern of vegetation with qualitative soil indicators. For more holistic and comprehensive projects, effective strategies to combat desertification should integrate soil indicators with biophysical and socio-economic evaluation and include participatory approaches. The integrated assessment protocol of Sustainable Land Management developed by the World Overview of Conservation Approaches and Technologies network is thoroughly discussed. Two overall outcomes stem from the review: (i) the success of restoration projects relies on a proper understanding of their ecology, namely the relationships between soil, plants, hydrology, climate, and land management at different scales, which is particularly complex due to the heterogeneous pattern of ecosystems functioning in drylands, and (ii) the selection of the most suitable soil indicators follows a clear identification of the different and sometimes competing ecosystem services that the project is aimed at restoring.
Designing coastal conservation to deliver ecosystem and human well-being benefits.
Annis, Gust M; Pearsall, Douglas R; Kahl, Katherine J; Washburn, Erika L; May, Christopher A; Franks Taylor, Rachael; Cole, James B; Ewert, David N; Game, Edward T; Doran, Patrick J
2017-01-01
Conservation scientists increasingly recognize that incorporating human values into conservation planning increases the chances for success by garnering broader project acceptance. However, methods for defining quantitative targets for the spatial representation of human well-being priorities are less developed. In this study we employ an approach for identifying regionally important human values and establishing specific spatial targets for their representation based on stakeholder outreach. Our primary objective was to develop a spatially-explicit conservation plan that identifies the most efficient locations for conservation actions to meet ecological goals while sustaining or enhancing human well-being values within the coastal and nearshore areas of the western Lake Erie basin (WLEB). We conducted an optimization analysis using 26 features representing ecological and human well-being priorities (13 of each), and included seven cost layers. The influence that including human well-being had on project results was tested by running five scenarios and setting targets for human well-being at different levels in each scenario. The most important areas for conservation to achieve multiple goals are clustered along the coast, reflecting a concentration of existing or potentially restorable coastal wetlands, coastal landbird stopover habitat and terrestrial biodiversity, as well as important recreational activities. Inland important areas tended to cluster around trails and high quality inland landbird stopover habitat. Most concentrated areas of importance also are centered on lands that are already conserved, reflecting the lower costs and higher benefits of enlarging these conserved areas rather than conserving isolated, dispersed areas. Including human well-being features in the analysis only influenced the solution at the highest target levels.
Designing coastal conservation to deliver ecosystem and human well-being benefits
Pearsall, Douglas R.; Kahl, Katherine J.; Washburn, Erika L.; May, Christopher A.; Franks Taylor, Rachael; Cole, James B.; Ewert, David N.; Game, Edward T.; Doran, Patrick J.
2017-01-01
Conservation scientists increasingly recognize that incorporating human values into conservation planning increases the chances for success by garnering broader project acceptance. However, methods for defining quantitative targets for the spatial representation of human well-being priorities are less developed. In this study we employ an approach for identifying regionally important human values and establishing specific spatial targets for their representation based on stakeholder outreach. Our primary objective was to develop a spatially-explicit conservation plan that identifies the most efficient locations for conservation actions to meet ecological goals while sustaining or enhancing human well-being values within the coastal and nearshore areas of the western Lake Erie basin (WLEB). We conducted an optimization analysis using 26 features representing ecological and human well-being priorities (13 of each), and included seven cost layers. The influence that including human well-being had on project results was tested by running five scenarios and setting targets for human well-being at different levels in each scenario. The most important areas for conservation to achieve multiple goals are clustered along the coast, reflecting a concentration of existing or potentially restorable coastal wetlands, coastal landbird stopover habitat and terrestrial biodiversity, as well as important recreational activities. Inland important areas tended to cluster around trails and high quality inland landbird stopover habitat. Most concentrated areas of importance also are centered on lands that are already conserved, reflecting the lower costs and higher benefits of enlarging these conserved areas rather than conserving isolated, dispersed areas. Including human well-being features in the analysis only influenced the solution at the highest target levels. PMID:28241018
Spatial strategies for managing visitor impacts in National Parks
Leung, Y.-F.; Marion, J.L.
1999-01-01
Resource and social impacts caused by recreationists and tourists have become a management concern in national parks and equivalent protected areas. The need to contain visitor impacts within acceptable limits has prompted park and protected area managers to implement a wide variety of strategies and actions, many of which are spatial in nature. This paper classifies and illustrates the basic spatial strategies for managing visitor impacts in parks and protected areas. A typology of four spatial strategies was proposed based on the recreation and park management literature. Spatial segregation is a common strategy for shielding sensitive resources from visitor impacts or for separating potentially conflicting types of use. Two forms of spatial segregation are zoning and closure. A spatial containment strategy is intended to minimize the aggregate extent of visitor impacts by confining use to limited designated or established Iocations. In contrast, a spatial dispersal strategy seeks to spread visitor use, reducing the frequency of use to levels that avoid or minimize permanent resource impacts or visitor crowding and conflict. Finally, a spatial configuration strategy minimizes impacting visitor behavior though the judicious spatial arrangement of facilities. These four spatial strategics can be implemented separately or in combination at varying spatial scales within a single park. A survey of national park managers provides an empirical example of the diversity of implemented spatial strategies in managing visitor impacts. Spatial segregation is frequently applied in the form of camping restrictions or closures to protect sensitive natural or cultural resources and to separate incompatible visitor activities. Spatial containment is the most widely applied strategy for minimizing the areal extent of resource impacts. Spatial dispersal is commonly applied to reduce visitor crowding or conflicts in popular destination areas but is less frequently applied or effective in minimizing resource impacts. Spatial configuration was only minimally evaluated, as it was not included in the survey. The proposed typology of spatial strategies offers a useful means of organizing and understanding the wide variety of management strategies and actions applied in managing visitor impacts in parks and protected areas. Examples from U.S. national parks demonstrate the diversity of these basic strategies and their flexibility in implementation at various spatial scales. Documentation of these examples helps illustrate their application and inform managers of the multitude of options. Further analysis from the spatial perspective is needed Io extend the applicability of this typology to other recreational activities and management issues.
The Conservation Efforts Database: Improving our knowledge of landscape conservation actions
Heller, Matthew M.; Welty, Justin; Wiechman , Lief A.
2017-01-01
The Conservation Efforts Database (CED) is a secure, cloud-based tool that can be used to document and track conservation actions across landscapes. A recently released factsheet describes this tool ahead of the rollout of CED version 2.0. The CED was developed by the U.S. Fish and Wildlife Service, the USGS, and the Great Northern Landscape Conservation Cooperative to support the 2015 Endangered Species Act status review for greater sage-grouse. Currently, the CED accepts policy-level data, such as Land Use Plans, and treatment level data, such as conifer removals and post-fire recovery efforts, as custom spatial and non-spatial records. In addition to a species assessment tool, the CED can also be used to summarize the extent of restoration efforts within a specific area or to strategically site conservation actions based on the location of other implemented actions. The CED can be an important tool, along with post-conservation monitoring, for implementing landscape-scale adaptive management.
Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian
2014-01-01
Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252
Role of Tibetan Buddhist monasteries in snow leopard conservation.
Li, Juan; Wang, Dajun; Yin, Hang; Zhaxi, Duojie; Jiagong, Zhala; Schaller, George B; Mishra, Charudutt; McCarthy, Thomas M; Wang, Hao; Wu, Lan; Xiao, Lingyun; Basang, Lamao; Zhang, Yuguang; Zhou, Yunyun; Lu, Zhi
2014-02-01
The snow leopard (Panthera uncia) inhabits the rugged mountains in 12 countries of Central Asia, including the Tibetan Plateau. Due to poaching, decreased abundance of prey, and habitat degradation, it was listed as endangered by the International Union for Conservation of Nature in 1972. Current conservation strategies, including nature reserves and incentive programs, have limited capacities to protect snow leopards. We investigated the role of Tibetan Buddhist monasteries in snow leopard conservation in the Sanjiangyuan region in China's Qinghai Province on the Tibetan Plateau. From 2009 to 2011, we systematically surveyed snow leopards in the Sanjiangyuan region. We used the MaxEnt model to determine the relation of their presence to environmental variables (e.g., elevation, ruggedness) and to predict snow leopard distribution. Model results showed 89,602 km(2) of snow leopard habitat in the Sanjiangyuan region, of which 7674 km(2) lay within Sanjiangyuan Nature Reserve's core zones. We analyzed the spatial relation between snow leopard habitat and Buddhist monasteries and found that 46% of monasteries were located in snow leopard habitat and 90% were within 5 km of snow leopard habitat. The 336 monasteries in the Sanjiangyuan region could protect more snow leopard habitat (8342 km(2) ) through social norms and active patrols than the nature reserve's core zones. We conducted 144 household interviews to identify local herders' attitudes and behavior toward snow leopards and other wildlife. Most local herders claimed that they did not kill wildlife, and 42% said they did not kill wildlife because it was a sin in Buddhism. Our results indicate monasteries play an important role in snow leopard conservation. Monastery-based snow leopard conservation could be extended to other Tibetan Buddhist regions that in total would encompass about 80% of the global range of snow leopards. © 2013 Society for Conservation Biology.
GRA prospectus: optimizing design and management of protected areas
Bernknopf, Richard; Halsing, David
2001-01-01
Protected areas comprise one major type of global conservation effort that has been in the form of parks, easements, or conservation concessions. Though protected areas are increasing in number and size throughout tropical ecosystems, there is no systematic method for optimally targeting specific local areas for protection, designing the protected area, and monitoring it, or for guiding follow-up actions to manage it or its surroundings over the long run. Without such a system, conservation projects often cost more than necessary and/or risk protecting ecosystems and biodiversity less efficiently than desired. Correcting these failures requires tools and strategies for improving the placement, design, and long-term management of protected areas. The objective of this project is to develop a set of spatially based analytical tools to improve the selection, design, and management of protected areas. In this project, several conservation concessions will be compared using an economic optimization technique. The forest land use portfolio model is an integrated assessment that measures investment in different land uses in a forest. The case studies of individual tropical ecosystems are developed as forest (land) use and preservation portfolios in a geographic information system (GIS). Conservation concessions involve a private organization purchasing development and resource access rights in a certain area and retiring them. Forests are put into conservation, and those people who would otherwise have benefited from extracting resources or selling the right to do so are compensated. Concessions are legal agreements wherein the exact amount and nature of the compensation result from a negotiated agreement between an agent of the conservation community and the local community. Funds are placed in a trust fund, and annual payments are made to local communities and regional/national governments. The payments are made pending third-party verification that the forest expanse and quality have been maintained.
Creating a stakeholder-driven unified conservation blueprint for 15 southeastern states.
NASA Astrophysics Data System (ADS)
Hopkins, T. E.
2017-12-01
The dramatic changes sweeping the Southeastern United States — such as urbanization, competition for water resources, extreme weather events, sea-level rise, and climate change — pose unprecedented challenges for sustaining our natural and cultural resources. Defining the conservation landscape of the future requires a new model of working together across entities, factions, and political boundaries through a collaborative process. We will illustrate how ecosystem service valuation can be built using a stakeholder-drive process which has united the conservation community through a shared, long-term vision for the future through the Southeast Conservation Adaptation Strategy (SECAS). Through SECAS, diverse public and private partners have worked together to design and achieve a connected network of landscapes and seascapes that supports thriving fish and wildlife populations and improved quality of life for people across the southeastern U.S. and the Caribbean. The scope of SECAS is the fifteen southeastern states that comprise the Southeast Association of Fish and Wildlife Agencies (SEAFWA) plus Puerto Rico and the United States Virgin Islands. SECAS was initiated by SEAFWA and the federal Southeast Natural Resource Leaders Group with support from six Landscape Conservation Cooperatives (LCCs), the Southeast Climate Science Center, and the Southeast Aquatic Resources Partnership. In October of 2016, SECAS achieved a major milestone with the release of a first draft of a conservation blueprint for the Southeast and Caribbean. This blueprint stitches together the conservation and restoration priorities of multiple LCCs in the region into one unifying map — a living spatial plan to make the SECAS vision a reality. Whether you are an urban planner, a private landowner, a non-profit advocate, a public lands manager, or anyone else committed to sustaining our natural and cultural heritage for future generations, join the SECAS conversation at www.secassoutheast.org
Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J; Wilson, Timothy D
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among learners beyond the classification of spatial visualization ability alone, and help elucidate what, if anything, high- and low-spatial visualization ability learners do differently while solving spatial anatomy task problems. Forty-two students completed a standardized measure of spatial visualization ability, a novel spatial anatomy task, and a questionnaire involving personal self-analysis of the processes and strategies used while performing the spatial anatomy task. Strategy reports revealed that there were different ways students approached answering the spatial anatomy task problems. However, chi-square test analyses established that differences in problem-solving strategies did not contribute to differences in task performance. Therefore, underlying spatial visualization ability is the main source of variation in spatial anatomy task performance, irrespective of strategy. In addition to scoring higher and spending less time on the anatomy task, participants with high spatial visualization ability were also more accurate when solving the task problems. © 2013 American Association of Anatomists.
Fine- and coarse-filter conservation strategies in a time of climate change.
Tingley, Morgan W; Darling, Emily S; Wilcove, David S
2014-08-01
As species adapt to a changing climate, so too must humans adapt to a new conservation landscape. Classical frameworks have distinguished between fine- and coarse-filter conservation strategies, focusing on conserving either the species or the landscapes, respectively, that together define extant biodiversity. Adapting this framework for climate change, conservationists are using fine-filter strategies to assess species vulnerability and prioritize the most vulnerable species for conservation actions. Coarse-filter strategies seek to conserve either key sites as determined by natural elements unaffected by climate change, or sites with low climate velocity that are expected to be refugia for climate-displaced species. Novel approaches combine coarse- and fine-scale approaches--for example, prioritizing species within pretargeted landscapes--and accommodate the difficult reality of multiple interacting stressors. By taking a diversified approach to conservation actions and decisions, conservationists can hedge against uncertainty, take advantage of new methods and information, and tailor actions to the unique needs and limitations of places, thereby ensuring that the biodiversity show will go on. © 2014 New York Academy of Sciences.
Large-scale conservation planning in a multinational marine environment: cost matters.
Mazor, Tessa; Giakoumi, Sylvaine; Kark, Salit; Possingham, Hugh P
2014-07-01
Explicitly including cost in marine conservation planning is essential for achieving feasible and efficient conservation outcomes. Yet, spatial priorities for marine conservation are still often based solely on biodiversity hotspots, species richness, and/or cumulative threat maps. This study aims to provide an approach for including cost when planning large-scale Marine Protected Area (MPA) networks that span multiple countries. Here, we explore the incorporation of cost in the complex setting of the Mediterranean Sea. In order to include cost in conservation prioritization, we developed surrogates that account for revenue from multiple marine sectors: commercial fishing, noncommercial fishing, and aquaculture. Such revenue can translate into an opportunity cost for the implementation of an MPA network. Using the software Marxan, we set conservation targets to protect 10% of the distribution of 77 threatened marine species in the Mediterranean Sea. We compared nine scenarios of opportunity cost by calculating the area and cost required to meet our targets. We further compared our spatial priorities with those that are considered consensus areas by several proposed prioritization schemes in the Mediterranean Sea, none of which explicitly considers cost. We found that for less than 10% of the Sea's area, our conservation targets can be achieved while incurring opportunity costs of less than 1%. In marine systems, we reveal that area is a poor cost surrogate and that the most effective surrogates are those that account for multiple sectors or stakeholders. Furthermore, our results indicate that including cost can greatly influence the selection of spatial priorities for marine conservation of threatened species. Although there are known limitations in multinational large-scale planning, attempting to devise more systematic and rigorous planning methods is especially critical given that collaborative conservation action is on the rise and global financial crisis restricts conservation investments.
Winterbach, Christiaan W.; Boast, Lorraine K.; Klein, Rebecca; Somers, Michael J.
2015-01-01
Prey availability and human-carnivore conflict are strong determinants that govern the spatial distribution and abundance of large carnivore species and determine the suitability of areas for their conservation. For wide-ranging large carnivores such as cheetahs (Acinonyx jubatus), additional conservation areas beyond protected area boundaries are crucial to effectively conserve them both inside and outside protected areas. Although cheetahs prefer preying on wild prey, they also cause conflict with people by predating on especially small livestock. We investigated whether the distribution of cheetahs’ preferred prey and small livestock biomass could be used to explore the potential suitability of agricultural areas in Botswana for the long-term persistence of its cheetah population. We found it gave a good point of departure for identifying priority areas for land management, the threat to connectivity between cheetah populations, and areas where the reduction and mitigation of human-cheetah conflict is critical. Our analysis showed the existence of a wide prey base for cheetahs across large parts of Botswana’s agricultural areas, which provide additional large areas with high conservation potential. Twenty percent of wild prey biomass appears to be the critical point to distinguish between high and low probable levels of human-cheetah conflict. We identified focal areas in the agricultural zones where restoring wild prey numbers in concurrence with effective human-cheetah conflict mitigation efforts are the most immediate conservation strategies needed to maintain Botswana’s still large and contiguous cheetah population. PMID:26213646
Winterbach, Hanlie E K; Winterbach, Christiaan W; Boast, Lorraine K; Klein, Rebecca; Somers, Michael J
2015-01-01
Prey availability and human-carnivore conflict are strong determinants that govern the spatial distribution and abundance of large carnivore species and determine the suitability of areas for their conservation. For wide-ranging large carnivores such as cheetahs (Acinonyx jubatus), additional conservation areas beyond protected area boundaries are crucial to effectively conserve them both inside and outside protected areas. Although cheetahs prefer preying on wild prey, they also cause conflict with people by predating on especially small livestock. We investigated whether the distribution of cheetahs' preferred prey and small livestock biomass could be used to explore the potential suitability of agricultural areas in Botswana for the long-term persistence of its cheetah population. We found it gave a good point of departure for identifying priority areas for land management, the threat to connectivity between cheetah populations, and areas where the reduction and mitigation of human-cheetah conflict is critical. Our analysis showed the existence of a wide prey base for cheetahs across large parts of Botswana's agricultural areas, which provide additional large areas with high conservation potential. Twenty percent of wild prey biomass appears to be the critical point to distinguish between high and low probable levels of human-cheetah conflict. We identified focal areas in the agricultural zones where restoring wild prey numbers in concurrence with effective human-cheetah conflict mitigation efforts are the most immediate conservation strategies needed to maintain Botswana's still large and contiguous cheetah population.
Discrete Variational Approach for Modeling Laser-Plasma Interactions
NASA Astrophysics Data System (ADS)
Reyes, J. Paxon; Shadwick, B. A.
2014-10-01
The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.
The spatial distribution of threats to plant species with extremely small populations
NASA Astrophysics Data System (ADS)
Wang, Chunjing; Zhang, Jing; Wan, Jizhong; Qu, Hong; Mu, Xianyun; Zhang, Zhixiang
2017-03-01
Many biological conservationists take actions to conserve plant species with extremely small populations (PSESP) in China; however, there have been few studies on the spatial distribution of threats to PSESP. Hence, we selected distribution data of PSESP and made a map of the spatial distribution of threats to PSESP in China. First, we used the weight assignment method to evaluate the threat risk to PSESP at both country and county scales. Second, we used a geographic information system to map the spatial distribution of threats to PSESP, and explored the threat factors based on linear regression analysis. Finally, we suggested some effective conservation options. We found that the PSESP with high values of protection, such as the plants with high scientific research values and ornamental plants, were threatened by over-exploitation and utilization, habitat fragmentation, and a small sized wild population in broad-leaved forests and bush fallows. We also identified some risk hotspots for PSESP in China. Regions with low elevation should be given priority for ex- and in-situ conservation. Moreover, climate change should be considered for conservation of PSESP. To avoid intensive over-exploitation or utilization and habitat fragmentation, in-situ conservation should be practiced in regions with high temperatures and low temperature seasonality, particularly in the high risk hotspots for PSESP that we proposed. Ex-situ conservation should be applied in these same regions, and over-exploitation and utilization of natural resources should be prevented. It is our goal to apply the concept of PSESP to the global scale in the future.
Multiscale analysis of restoration priorities for marine shoreline planning.
Diefenderfer, Heida L; Sobocinski, Kathryn L; Thom, Ronald M; May, Christopher W; Borde, Amy B; Southard, Susan L; Vavrinec, John; Sather, Nichole K
2009-10-01
Planners are being called on to prioritize marine shorelines for conservation status and restoration action. This study documents an approach to determining the management strategy most likely to succeed based on current conditions at local and landscape scales. The conceptual framework based in restoration ecology pairs appropriate restoration strategies with sites based on the likelihood of producing long-term resilience given the condition of ecosystem structures and processes at three scales: the shorezone unit (site), the drift cell reach (nearshore marine landscape), and the watershed (terrestrial landscape). The analysis is structured by a conceptual ecosystem model that identifies anthropogenic impacts on targeted ecosystem functions. A scoring system, weighted by geomorphic class, is applied to available spatial data for indicators of stress and function using geographic information systems. This planning tool augments other approaches to prioritizing restoration, including historical conditions and change analysis and ecosystem valuation.
Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Tucker, Anton D.; Carthy, Raymond R.
2012-01-01
Designing conservation strategies that protect wide-ranging marine species is a significant challenge, but integrating regional telemetry datasets and synthesizing modeled movements and behavior offer promise for uncovering distinct at-sea areas that are important habitats for imperiled marine species. Movement paths of 10 satellite-tracked female loggerheads (Caretta caretta) from three separate subpopulations in the Gulf of Mexico, USA, revealed migration to discrete foraging sites in two common areas at-sea in 2008, 2009, and 2010. Foraging sites were 102–904 km away from nesting and tagging sites, and located off southwest Florida and the northern Yucatan Peninsula, Mexico. Within 3–35 days, turtles migrated to foraging sites where they all displayed high site fidelity over time. Core-use foraging areas were 13.0–335.2 km2 in size, in water <50 m deep, within a mean distance to nearest coastline of 58.5 km, and in areas of relatively high net primary productivity. The existence of shared regional foraging sites highlights an opportunity for marine conservation strategies to protect important at-sea habitats for these imperiled marine turtles, in both USA and international waters. Until now, knowledge of important at-sea foraging areas for adult loggerheads in the Gulf of Mexico has been limited. To better understand the spatial distribution of marine turtles that have complex life-histories, we propose further integration of disparate tracking data-sets at the oceanic scale along with modeling of movements to identify critical at-sea foraging habitats where individuals may be resident during non-nesting periods.
Ecomarkets for conservation and sustainable development in the coastal zone.
Fujita, Rod; Lynham, John; Micheli, Fiorenza; Feinberg, Pasha G; Bourillón, Luis; Sáenz-Arroyo, Andrea; Markham, Alexander C
2013-05-01
Because conventional markets value only certain goods or services in the ocean (e.g. fish), other services provided by coastal and marine ecosystems that are not priced, paid for, or stewarded tend to become degraded. In fact, the very capacity of an ecosystem to produce a valued good or service is often reduced because conventional markets value only certain goods and services, rather than the productive capacity. Coastal socio-ecosystems are particularly susceptible to these market failures due to the lack of clear property rights, strong dependence on resource extraction, and other factors. Conservation strategies aimed at protecting unvalued coastal ecosystem services through regulation or spatial management (e.g. Marine Protected Areas) can be effective but often result in lost revenue and adverse social impacts, which, in turn, create conflict and opposition. Here, we describe 'ecomarkets' - markets and financial tools - that could, under the right conditions, generate value for broad portfolios of coastal ecosystem services while maintaining ecosystem structure and function by addressing the unique problems of the coastal zone, including the lack of clear management and exclusion rights. Just as coastal tenure and catch-share systems generate meaningful conservation and economic outcomes, it is possible to imagine other market mechanisms that do the same with respect to a variety of other coastal ecosystem goods and services. Rather than solely relying on extracting goods, these approaches could allow communities to diversify ecosystem uses and focus on long-term stewardship and conservation, while meeting development, food security, and human welfare goals. The creation of ecomarkets will be difficult in many cases, because rights and responsibilities must be devolved, new social contracts will be required, accountability systems must be created and enforced, and long-term patterns of behaviour must change. We argue that efforts to overcome these obstacles are justified, because these deep changes will strongly complement policies and tools such as Marine Protected Areas, coastal spatial management, and regulation, thereby helping to bring coastal conservation to scale. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
2014-01-01
Background Local Ecological Knowledge (LEK) of traditional fishermen may be the only source of information regarding the conservation of the marine ecosystem and its endangered species. One of these species is Epinephelus itajara, which can exceed 2 m in length and 400 kg weight, is classified by the IUCN as a critically endangered. In Brazil, there is currently a moratorium that prohibits the capture of this specie, and in the northeastern coast, a Marine Protected Area was recently established properly justified by the existence a one spawning aggregation. The scope of the present study was the analysis the LEK of fishers with the goal of contributing to the conservation of E. Itajara. Methods The Knowledge of 24 “experts” was recorded through semi-structured interviews with fishermen selected based on their expertise. LEK regarding some aspects of the life history of E. itajara, such as its morphology, spatial distribution, feeding, breeding and conservation, was systematized. The interviews were conducted in synchronic and diachronic situations. The data analysis followed the model of unity of the various individual skills, while the consistency of the analysis was tested using a matrix of methods employed in comparative cognitive science. Potential reproductive aggregation sites were identified by experts through projective interviews conducted based on a cartographic database and transferred to a geographic information system (GIS). Results The LEK of these specialists in relation to the biological and ecological characteristics of E. itajara showed a high level of detail and a high agreement with the scientific literature. Projective interviews are presented as a promising tool allowing spatialization of the information generated through the registration of LEK. Therefore, the visualization of information from the fishermen, as well as its analysis and comparison with other databases, is simplified, thereby contributing to the decision-making process concerning the conservation of marine ecosystem in Brazil. Conclusions Integration of LEK with scientific knowledge is an efficient strategy for the conservation of endangered species, as it provides important additional biological information that can be used in the process of participative and sustainable management of marine resources. PMID:24965849
Identifying species from the air: UAVs and the very high resolution challenge for plant conservation
Moat, Justin; Whaley, Oliver; Boyd, Doreen S.
2017-01-01
The Pacific Equatorial dry forest of Northern Peru is recognised for its unique endemic biodiversity. Although highly threatened the forest provides livelihoods and ecosystem services to local communities. As agro-industrial expansion and climatic variation transform the region, close ecosystem monitoring is essential for viable adaptation strategies. UAVs offer an affordable alternative to satellites in obtaining both colour and near infrared imagery to meet the specific requirements of spatial and temporal resolution of a monitoring system. Combining this with their capacity to produce three dimensional models of the environment provides an invaluable tool for species level monitoring. Here we demonstrate that object-based image analysis of very high resolution UAV images can identify and quantify keystone tree species and their health across wide heterogeneous landscapes. The analysis exposes the state of the vegetation and serves as a baseline for monitoring and adaptive implementation of community based conservation and restoration in the area. PMID:29176860
NASA Astrophysics Data System (ADS)
Castro-Nunez, Augusto; Mertz, Ole; Sosa, Chrystian C.
2017-05-01
Of the countries considering national-level policies for incentivizing reductions in forest-based greenhouse gas emissions (REDD+), some 25 are experiencing (or are emerging from) armed-conflicts. It has been hypothesized that the outcomes of the interactions between carbon-storage and peacebuilding efforts could result in either improved or worsened forest conservation and likewise increased or decreased conflict. Hence, for this study we explore potential interactions between forest carbon-storage and peacebuilding efforts, with Colombia as a case study. Spatial associations between biomass carbon and three conflict-related variables suggest that such interactions may exist. Nonetheless, while priority areas for carbon-focused conservation are presumably those at highest risks of deforestation, our research indicates that forests with lower risk of deforestation are typically those affected by armed-conflict. Our findings moreover highlight three possible roles played by Colombian forested municipalities in armed groups’ military strategies: venues for battle, hideouts, and sources of natural resources to finance war.
Biology and ecology of Neosho Smallmouth Bass and the genetically distinct Ouachita lineage
Brewer, Shannon K.; Long, James M.; Tringali, Michael D.; Long, James M.; Birdsong, Timothy W.; Allen, Michael S.
2015-01-01
We reviewed the published and gray literature associated with Neosho Smallmouth Bass and the genetically-distinct Ouachita lineage. Substantial inter-stream variation appears to occur among these populations, particularly related to age. The Neosho subspecies is more abundant, grows faster, and lives longer than the genetically-distinct Ouachita lineage. Recruitment is highly variable among streams for both populations and appears to be related to some undescribed aspects of hydrology but also likely reflect bias due to sampling gear. Information on annual and seasonal trends is lacking for the Neosho subspecies and the Ouachita lineages, particularly as related to the spawning period. Conservation efforts for these lineages might benefit from agencies partnering to achieve goals that extend beyond a particular agencies responsibilities and state boundaries. Recognition of spatial and temporal considerations, combined with a better understanding of the population dynamics as related to abundance, growth, mortality and reproduction would benefit the creation of more effective conservation and management strategies for genetically-distinct populations of Smallmouth Bass.
Core concepts of spatial prioritisation in systematic conservation planning.
Kukkala, Aija S; Moilanen, Atte
2013-05-01
Systematic conservation planning (SCP) is a field of conservation biology concerned with delivering on-the-ground actions that achieve conservation goals. It describes a set of operational models that cover both design and implementation of conservation, with a strong focus on mobilising the collective action typically required to implement conservation. SCP, as it was originally described, was composed of six different stages: collection of data, identification of conservation goals, evaluation of the existing protected area network, design of expansions, implementation of conservation action, and long-term maintenance of biodiversity in the network. Since then, the operational model has been expanded into several different variants. Conservation actions applied inside SCP include establishment and expansion of reserve networks and allocation of habitat restoration and management. Within the broader context of SCP, there is a fundamental biogeographic-economic analysis frequently called spatial conservation prioritisation or conservation assessment, which is used for identifying where important areas for biodiversity are and how conservation goals might be achieved efficiently. Here, we review the usage and meaning of the 12 biogeographic-economic core concepts of SCP: adequacy, complementarity, comprehensiveness, effectiveness, efficiency, flexibility, irreplaceability, replacement cost, representation, representativeness, threat, and vulnerability. Some of the concepts have clear definitions whereas others may have alternative and possibly conflicting definitions. With a comprehensive literature review literature, we elucidate the historical backgrounds of these concepts, the first definitions and usages, alternative later definitions, key applications, and prior reviews. This review reduces linguistic uncertainty in the application of SCP. Since SCP is a global activity with a multitude of different stakeholders involved, it is vital that those involved can speak the same language. Through these concepts, this review serves as a source of information about the historical development of SCP. It provides a comprehensive review for anyone wishing to understand the key concepts of spatial prioritisation within SCP. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Core concepts of spatial prioritisation in systematic conservation planning
Kukkala, Aija S; Moilanen, Atte
2013-01-01
Systematic conservation planning (SCP) is a field of conservation biology concerned with delivering on-the-ground actions that achieve conservation goals. It describes a set of operational models that cover both design and implementation of conservation, with a strong focus on mobilising the collective action typically required to implement conservation. SCP, as it was originally described, was composed of six different stages: collection of data, identification of conservation goals, evaluation of the existing protected area network, design of expansions, implementation of conservation action, and long-term maintenance of biodiversity in the network. Since then, the operational model has been expanded into several different variants. Conservation actions applied inside SCP include establishment and expansion of reserve networks and allocation of habitat restoration and management. Within the broader context of SCP, there is a fundamental biogeographic-economic analysis frequently called spatial conservation prioritisation or conservation assessment, which is used for identifying where important areas for biodiversity are and how conservation goals might be achieved efficiently. Here, we review the usage and meaning of the 12 biogeographic-economic core concepts of SCP: adequacy, complementarity, comprehensiveness, effectiveness, efficiency, flexibility, irreplaceability, replacement cost, representation, representativeness, threat, and vulnerability. Some of the concepts have clear definitions whereas others may have alternative and possibly conflicting definitions. With a comprehensive literature review literature, we elucidate the historical backgrounds of these concepts, the first definitions and usages, alternative later definitions, key applications, and prior reviews. This review reduces linguistic uncertainty in the application of SCP. Since SCP is a global activity with a multitude of different stakeholders involved, it is vital that those involved can speak the same language. Through these concepts, this review serves as a source of information about the historical development of SCP. It provides a comprehensive review for anyone wishing to understand the key concepts of spatial prioritisation within SCP. PMID:23279291
Arroyo-Rodríguez, Víctor; Melo, Felipe P L; Martínez-Ramos, Miguel; Bongers, Frans; Chazdon, Robin L; Meave, Jorge A; Norden, Natalia; Santos, Bráulio A; Leal, Inara R; Tabarelli, Marcelo
2017-02-01
Old-growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human-modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio-economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land-use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio-temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well-preserved biodiversity-rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales. © 2015 Cambridge Philosophical Society.
A Fuzzy Logic Approach to Marine Spatial Management
NASA Astrophysics Data System (ADS)
Teh, Lydia C. L.; Teh, Louise S. L.
2011-04-01
Marine spatial planning tends to prioritise biological conservation targets over socio-economic considerations, which may incur lower user compliance and ultimately compromise management success. We argue for more inclusion of human dimensions in spatial management, so that outcomes not only fulfill biodiversity and conservation objectives, but are also acceptable to resource users. We propose a fuzzy logic framework that will facilitate this task- The protected area suitability index (PASI) combines fishers' spatial preferences with biological criteria to assess site suitability for protection from fishing. We apply the PASI in a spatial evaluation of a small-scale reef fishery in Sabah, Malaysia. While our results pertain to fishers specifically, the PASI can also be customized to include the interests of other stakeholders and resource users, as well as incorporate varying levels of protection.
Mapping social-ecological vulnerability to inform local decision making.
Thiault, Lauric; Marshall, Paul; Gelcich, Stefan; Collin, Antoine; Chlous, Frédérique; Claudet, Joachim
2018-04-01
An overarching challenge of natural resource management and biodiversity conservation is that relationships between people and nature are difficult to integrate into tools that can effectively guide decision making. Social-ecological vulnerability offers a valuable framework for identifying and understanding important social-ecological linkages, and the implications of dependencies and other feedback loops in the system. Unfortunately, its implementation at local scales has hitherto been limited due at least in part to the lack of operational tools for spatial representation of social-ecological vulnerability. We developed a method to map social-ecological vulnerability based on information on human-nature dependencies and ecosystem services at local scales. We applied our method to the small-scale fishery of Moorea, French Polynesia, by combining spatially explicit indicators of exposure, sensitivity, and adaptive capacity of both the resource (i.e., vulnerability of reef fish assemblages to fishing) and resource users (i.e., vulnerability of fishing households to the loss of fishing opportunity). Our results revealed that both social and ecological vulnerabilities varied considerably through space and highlighted areas where sources of vulnerability were high for both social and ecological subsystems (i.e., social-ecological vulnerability hotspots) and thus of high priority for management intervention. Our approach can be used to inform decisions about where biodiversity conservation strategies are likely to be more effective and how social impacts from policy decisions can be minimized. It provides a new perspective on human-nature linkages that can help guide sustainability management at local scales; delivers insights distinct from those provided by emphasis on a single vulnerability component (e.g., exposure); and demonstrates the feasibility and value of operationalizing the social-ecological vulnerability framework for policy, planning, and participatory management decisions. © 2017 Society for Conservation Biology.
Carlisle, Jason D.; Chalfoun, Anna D.; Smith, Kurt T.; Beck, Jeffery L.
2018-01-01
The “umbrella species” concept is a conservation strategy in which creating and managing reserve areas to meet the needs of one species is thought to benefit other species indirectly. Broad-scale habitat protections on behalf of an umbrella species are assumed to benefit co-occurring taxa, but targeted management actions to improve local habitat suitability for the umbrella species may produce unintended effects on other species. Our objective was to quantify the effects of a common habitat treatment (mowing of big sagebrush [Artemisia tridentata]) intended to benefit a high-profile umbrella species (Greater Sage-Grouse [Centrocercus urophasianus]) on 3 sympatric songbird species of concern. We used a before–after control-impact experimental design spanning 3 yr in Wyoming, USA, to quantify the effect of mowing on the abundance, nest-site selection, nestling condition, and nest survival of 2 sagebrush-obligate songbirds (Brewer's Sparrow [Spizella breweri] and Sage Thrasher [Oreoscoptes montanus]) and one open-habitat generalist songbird (Vesper Sparrow [Pooecetes gramineus]). Mowing was associated with lower abundance of Brewer's Sparrows and Sage Thrashers but higher abundance of Vesper Sparrows. We found no Brewer's Sparrows or Sage Thrashers nesting in the mowed footprint posttreatment, which suggests complete loss of nesting habitat for these species. Mowing was associated with higher nestling condition and nest survival for Vesper Sparrows but not for the sagebrush-obligate species. Management prescriptions that remove woody biomass within a mosaic of intact habitat may be tolerated by sagebrush-obligate songbirds but are likely more beneficial for open-habitat generalist species. By definition, umbrella species conservation entails habitat protections at broad spatial scales. We caution that habitat manipulations to benefit Greater Sage-Grouse could negatively affect nontarget species of conservation concern if implemented across large spatial extents.
J.C. Chambers; J.L. Beck; J.B. Bradford; J. Bybee; S. Campbell; J. Carlson; T.J. Christiansen; K.J. Clause; G. Collins; M.R. Crist; J.B. Dinkins; K.E. Doherty; F. Edwards; S. Espinosa; K.A. Griffin; P. Griffin; J.R. Haas; S.E. Hanser; D.W. Havlina; K.F. Henke; J.D. Hennig; L.A. Joyce; F.M. Kilkenny; S.M. Kulpa; L.L. Kurth; J.D. Maestas; M. Manning; K.E. Mayer; B.A. Mealor; C. McCarthy; M. Pellant; M.A. Perea; K.L. Prentice; D.A. Pyke; L.A. Wiechman; A. Wuenschel
2017-01-01
The Science Framework is intended to link the Department of the Interiorâs Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis...
Keystone Species, Forest and Landscape: A Model to Select Protected Areas
NASA Astrophysics Data System (ADS)
Lins, Daniela Barbosa da Silva; Gardon, Fernando Ravanini; Meyer, João Frederico da Costa Azevedo; Santos, Rozely Ferreira dos
2017-06-01
The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.
Santos, Alesandro S; Cazetta, Eliana; Dodonov, Pavel; Faria, Deborah; Gaiotto, Fernanda A
2016-09-01
Habitat loss represents one of the main threats to tropical forests, which have reached extremely high rates of species extinction. Forest loss negatively impacts biodiversity, affecting ecological (e.g., seed dispersal) and genetic (e.g., genetic diversity and structure) processes. Therefore, understanding how deforestation influences genetic resources is strategic for conservation. Our aim was to empirically evaluate the effects of landscape-scale forest reduction on the spatial genetic structure and gene flow of Euterpe edulis Mart (Arecaceae), a palm tree considered a keystone resource for many vertebrate species. This study was carried out in nine forest remnants in the Atlantic Forest, northeastern Brazil, located in landscapes within a gradient of forest cover (19-83%). We collected leaves of 246 adults and 271 seedlings and performed genotyping using microsatellite markers. Our results showed that the palm populations had low spatial genetic structure, indicating that forest reduction did not influence this genetic parameter for neither seedlings nor adults. However, forest loss decreased the gene flow distance, which may negatively affect the genetic diversity of future generations by increasing the risk of local extinction of this keystone palm. For efficient strategies of genetic variability conservation and maintenance of gene flow in E. edulis , we recommend the maintenance of landscapes with intermediary to high levels of forest cover, that is, forest cover above 40%.
Galiano, Daniel; Bernardo-Silva, Jorge; de Freitas, Thales R. O.
2014-01-01
Conservation of small mammals requires knowledge of the genetically and ecologically meaningful spatial scales at which species respond to habitat modifications. Conservation strategies can be improved through the use of ecological niche models and genetic data to classify areas of high environmental suitability. In this study, we applied a Maxent model integrated with genetic information (nucleotide diversity, haplotype diversity and Fu's Fs neutrality tests) to evaluate potential genetic pool populations with highly suitable areas for two parapatric endangered species of tuco-tucos (Ctenomys minutus and C. lami). Our results demonstrated that both species were largely influenced by vegetation and soil variables at a landscape scale and inhabit a highly specific niche. Ctenomys minutus was also influenced by the variable altitude; the species was associated with low altitudes (sea level). Our model of genetic data associated with environmental suitability indicate that the genetic pool data were associated with highly suitable areas for C. minutus. This pattern was not evident for C. lami, but this outcome could be a consequence of the restricted range of the species. The preservation of species requires not only detailed knowledge of their natural history and genetic structure but also information on the availability of suitable areas where species can survive, and such knowledge can aid significantly in conservation planning. This finding reinforces the use of these two techniques for planning conservation actions. PMID:24819251
Dufresnes, Christophe; Wassef, Jérôme; Ghali, Karim; Brelsford, Alan; Stöck, Matthias; Lymberakis, Petros; Crnobrnja-Isailovic, Jelka; Perrin, Nicolas
2013-11-01
Documenting and preserving the genetic diversity of populations, which conditions their long-term survival, have become a major issue in conservation biology. The loss of diversity often documented in declining populations is usually assumed to result from human disturbances; however, historical biogeographic events, otherwise known to strongly impact diversity, are rarely considered in this context. We apply a multilocus phylogeographic study to investigate the late-Quaternary history of a tree frog (Hyla arborea) with declining populations in the northern and western part of its distribution range. Mitochondrial and nuclear polymorphisms reveal high genetic diversity in the Balkan Peninsula, with a spatial structure moulded by the last glaciations. While two of the main refugial lineages remained limited to the Balkans (Adriatic coast, southern Balkans), a third one expanded to recolonize Northern and Western Europe, loosing much of its diversity in the process. Our findings show that mobile and a priori homogeneous taxa may also display substructure within glacial refugia ('refugia within refugia') and emphasize the importance of the Balkans as a major European biodiversity centre. Moreover, the distribution of diversity roughly coincides with regional conservation situations, consistent with the idea that historically impoverished genetic diversity may interact with anthropogenic disturbances, and increase the vulnerability of populations. Phylogeographic models seem important to fully appreciate the risks of local declines and inform conservation strategies. © 2013 John Wiley & Sons Ltd.
Temporal and spatial variations of rainfall erosivity in Southern Taiwan
NASA Astrophysics Data System (ADS)
Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang
2014-05-01
Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.
Spread of plague among black-tailed prairie dogs is associated with colony spatial characteristics
Johnson, T.L.; Cully, J.F.; Collinge, S.K.; Ray, C.; Frey, C.M.; Sandercock, B.K.
2011-01-01
Sylvatic plague (Yersinia pestis) is an exotic pathogen that is highly virulent in black-tailed prairie dogs (Cynomys ludovicianus) and causes widespread colony losses and individual mortality rates >95%. We investigated colony spatial characteristics that may influence inter-colony transmission of plague at 3 prairie dog colony complexes in the Great Plains. The 4 spatial characteristics we considered include: colony size, Euclidean distance to nearest neighboring colony, colony proximity index, and distance to nearest drainage (dispersal) corridor. We used multi-state mark-recapture models to determine the relationship between these colony characteristics and probability of plague transmission among prairie dog colonies. Annual mapping of colonies and mark-recapture analyses of disease dynamics in natural colonies led to 4 main results: 1) plague outbreaks exhibited high spatial and temporal variation, 2) the site of initiation of epizootic plague may have substantially influenced the subsequent inter-colony spread of plague, 3) the long-term effect of plague on individual colonies differed among sites because of how individuals and colonies were distributed, and 4) colony spatial characteristics were related to the probability of infection at all sites although the relative importance and direction of relationships varied among sites. Our findings suggest that conventional prairie dog conservation management strategies, including promoting large, highly connected colonies, may need to be altered in the presence of plague. ?? 2011 The Wildlife Society.
Global priorities for conservation across multiple dimensions of mammalian diversity
Graham, Catherine H.; Costa, Gabriel C.; Hedges, S. Blair; Penone, Caterina; Radeloff, Volker C.; Rondinini, Carlo; Davidson, Ana D.
2017-01-01
Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to (i) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity—taxonomic, phylogenetic, and traits—and (ii) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts. PMID:28674013
Global priorities for conservation across multiple dimensions of mammalian diversity.
Brum, Fernanda T; Graham, Catherine H; Costa, Gabriel C; Hedges, S Blair; Penone, Caterina; Radeloff, Volker C; Rondinini, Carlo; Loyola, Rafael; Davidson, Ana D
2017-07-18
Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to ( i ) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity-taxonomic, phylogenetic, and traits-and ( ii ) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts.
Jia-Sheng, Wang; Jin-You, Lu; Feng-Yang, Min; Kong-Xian, Zhu
2017-04-27
The spread of schistosomiasis seriously threaten the health of people and hinder the economic and social development in China. The water conservancy combined with schistosomiasis prevention and control effectively controlled the spread of schistosomiasis by controlling the spread of Oncomelania hupensis , the only intermediate host of Schistosoma japonicum . This paper reviews the evolution of the strategy of schistosomiasis prevention and control in China and points out the historical role of water conservancy combined with schistosomiasis prevention and control. Furthermore, this article analyzes the problems and challenges of water conservancy combined with schistosomiasis prevention and control in the new period. In response to the challenges, the new strategy of water conservancy combined with schistosomiasis prevention and control is put forward, including: developing the research of the new strategy of water conservancy combined with schistosomiasis prevention and control, enhancing the research of water conservancy technology combined with schistosomiasis prevention and control, improving the efficiency and applicability of water conservancy projects combined with schistosomiasis prevention and control, strengthening the guidance of water conservancy technology combined with schistosomiasis prevention and control, and perfecting the evaluation system.
Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media
Watson, Keri B.; Wood, Spencer A.; Ricketts, Taylor H.
2016-01-01
Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18–20.2 at 95% confidence) to Vermont’s tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making. PMID:27611325
Stokes, Emma J.; Strindberg, Samantha; Bakabana, Parfait C.; Elkan, Paul W.; Iyenguet, Fortuné C.; Madzoké, Bola; Malanda, Guy Aimé F.; Mowawa, Brice S.; Moukoumbou, Calixte; Ouakabadio, Franck K.; Rainey, Hugo J.
2010-01-01
Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats - irrespective of land-use type - harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads – even subject to anti-poaching controls - were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or more mature forests and human disturbance had a negative influence on chimpanzee abundance, in spite of anti-poaching interventions. We caution against the pitfalls of missing and confounded co-variables in model-based estimation approaches and highlight the importance of spatial scale in the response of different species to landscape processes. We stress the importance of a stratified design-based approach to monitoring species status in response to conservation interventions and advocate a holistic framework for landscape-scale monitoring that includes smaller-scale targeted research and punctual assessment of threats. PMID:20428233
Stokes, Emma J; Strindberg, Samantha; Bakabana, Parfait C; Elkan, Paul W; Iyenguet, Fortuné C; Madzoké, Bola; Malanda, Guy Aimé F; Mowawa, Brice S; Moukoumbou, Calixte; Ouakabadio, Franck K; Rainey, Hugo J
2010-04-23
Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats--irrespective of land-use type--harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads--even subject to anti-poaching controls--were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or more mature forests and human disturbance had a negative influence on chimpanzee abundance, in spite of anti-poaching interventions. We caution against the pitfalls of missing and confounded co-variables in model-based estimation approaches and highlight the importance of spatial scale in the response of different species to landscape processes. We stress the importance of a stratified design-based approach to monitoring species status in response to conservation interventions and advocate a holistic framework for landscape-scale monitoring that includes smaller-scale targeted research and punctual assessment of threats.
Conservation in Saudi Arabia; moving from strategy to practice.
Barichievy, Chris; Sheldon, Rob; Wacher, Tim; Llewellyn, Othman; Al-Mutairy, Mohammed; Alagaili, Abdulaziz
2018-02-01
Conservation in the Kingdom of Saudi Arabia is relatively young, yet have made considerable gains in conservation through strategic proclamation and reintroductions. Changes in land use, illegal hunting and competition with domestic stock has decimated the native ungulates, meaning that the survival of the native ungulate species is now completely dependent on protected area network. The challenge is to sustain this network to make meaningful conservation impact into the future. We review the status of ungulate conservation in Saudi Arabia and highlight that the conservation strategy is well developed. The major challenge faced in conservation in Saudi Arabia now is to implement what has been sanctioned.
Spatial models reveal the microclimatic buffering capacity of old-growth forests
Frey, Sarah J. K.; Hadley, Adam S.; Johnson, Sherri L.; Schulze, Mark; Jones, Julia A.; Betts, Matthew G.
2016-01-01
Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming. PMID:27152339
Spatial models reveal the microclimatic buffering capacity of old-growth forests.
Frey, Sarah J K; Hadley, Adam S; Johnson, Sherri L; Schulze, Mark; Jones, Julia A; Betts, Matthew G
2016-04-01
Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming.
Brett G. Dickson; Thomas D. Sisk; Steven E. Sesnie; Richard T. Reynolds; Steven S. Rosenstock; Christina D. Vojta; Michael F. Ingraldi; Jill M. Rundall
2014-01-01
Conservation planners and land managers are often confronted with scale-associated challenges when assessing the relationship between land management objectives and species conservation. Conservation of individual species typically involves site-level analyses of habitat, whereas land management focuses on larger spatial extents. New models are needed to more...
The Need for Flexibility in Conservation Practices: Exotic Species as an Example
NASA Astrophysics Data System (ADS)
Prévot-Julliard, Anne-Caroline; Clavel, Joanne; Teillac-Deschamps, Pauline; Julliard, Romain
2011-03-01
To garner support for biodiversity from the World's human population, conservation biologists need an open-minded, integrated conservation strategy. We suggest that this strategy should include efforts to (1) preserve existing high quality, diverse ecosystems, (2) remediate impaired systems, (3) balance the needs of people and ecological resources, and (4) engender appreciation of nature and its services. We refer to these four key tenets as reservation, restoration, reconciliation, and reconnection. We illustrate these concepts by presenting the debate surrounding the management of exotic species from an unusual perspective, the benefits of exotic species. By this example we hope to encourage an integrated approach to conservation in which management strategies can be flexible, adjusting to society's needs and the overall goals of conservation.
Creation of Excitons Excited by Light with a Spatial Mode
NASA Astrophysics Data System (ADS)
Syouji, Atsushi; Saito, Shingo; Otomo, Akira
2017-12-01
When light is absorbed into matter, its degrees of freedom (i.e., energy, polarization, and phase) are transferred to the matter and conserved. In this study, we demonstrate that elementary excitations in matter, which are one-photon-forbidden transition states, become allowed states because of the phase conservation across the entire cross section of excitation light. In particular, when 1S orthoexcitons of the yellow series in the semiconductor cuprous oxide (Cu2O) were resonantly excited by light with a spatial mode, an increase in the Γ 3 - -phonon-emission peak intensity of the excitons was detected depending on the spatial mode. Using group-theory-based analysis, we show that the irreducible representation of a one-photon-forbidden exciton, which is one of the orthoexcitons, can be transmuted to an allowed state by taking the direct product with the polar vector produced from the spatial mode of the light. Although the transition process of the exciton is locally characterized by the usual quadrupole interaction, the phase conservation at each position at which the sample is irradiated causes the exciton to be in the same spatial-mode state. That causes a change in the transition selection rule. The selection rule relaxation due to the spatial mode of the light was also applied for paraexciton creation.
Using a spatially explicit analysis model to evaluate spatial variation of corn yield
USDA-ARS?s Scientific Manuscript database
Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...
Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Overton, Cory T.; Sanchez-Chopitea, Erika; Kroger, Travis; Mauch, Kimberly; Niell, Lara; Howe, Kristy; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.
2014-01-01
Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) populations are declining throughout the sagebrush (Artemisia spp.) ecosystem, including millions of acres of potential habitat across the West. Habitat maps derived from empirical data are needed given impending listing decisions that will affect both sage-grouse population dynamics and human land-use restrictions. This report presents the process for developing spatially explicit maps describing relative habitat suitability for sage-grouse in Nevada and northeastern California. Maps depicting habitat suitability indices (HSI) values were generated based on model-averaged resource selection functions informed by more than 31,000 independent telemetry locations from more than 1,500 radio-marked sage-grouse across 12 project areas in Nevada and northeastern California collected during a 15-year period (1998–2013). Modeled habitat covariates included land cover composition, water resources, habitat configuration, elevation, and topography, each at multiple spatial scales that were relevant to empirically observed sage-grouse movement patterns. We then present an example of how the HSI can be delineated into categories. Specifically, we demonstrate that the deviation from the mean can be used to classify habitat suitability into three categories of habitat quality (high, moderate, and low) and one non-habitat category. The classification resulted in an agreement of 93–97 percent for habitat versus non-habitat across a suite of independent validation datasets. Lastly, we provide an example of how space use models can be integrated with habitat models to help inform conservation planning. In this example, we combined probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek (traditional breeding ground) using count data to calculate a composite space use index (SUI). The SUI was then classified into two categories of use (high and low-to-no) and intersected with the HSI categories to create potential management prioritization scenarios based oninformation about sage-grouse occupancy coupled with habitat suitability. This provided an example of a conservation planning application that uses the intersection of the spatially-explicit HSI and empirically-based SUI to identify potential spatially explicit strategies for sage-grouse management. Importantly, the reported categories for the HSI and SUI can be reclassified relatively easily to employ alternative conservation thresholds that may be identified through decision-making processes with stake-holders, managers, and biologists. Moreover, the HSI/SUI interface map can be updated readily as new data become available.
Accounting for system dynamics in reserve design.
Leroux, Shawn J; Schmiegelow, Fiona K A; Cumming, Steve G; Lessard, Robert B; Nagy, John
2007-10-01
Systematic conservation plans have only recently considered the dynamic nature of ecosystems. Methods have been developed to incorporate climate change, population dynamics, and uncertainty in reserve design, but few studies have examined how to account for natural disturbance. Considering natural disturbance in reserve design may be especially important for the world's remaining intact areas, which still experience active natural disturbance regimes. We developed a spatially explicit, dynamic simulation model, CONSERV, which simulates patch dynamics and fire, and used it to evaluate the efficacy of hypothetical reserve networks in northern Canada. We designed six networks based on conventional reserve design methods, with different conservation targets for woodland caribou habitat, high-quality wetlands, vegetation, water bodies, and relative connectedness. We input the six reserve networks into CONSERV and tracked the ability of each to maintain initial conservation targets through time under an active natural disturbance regime. None of the reserve networks maintained all initial targets, and some over-represented certain features, suggesting that both effectiveness and efficiency of reserve design could be improved through use of spatially explicit dynamic simulation during the planning process. Spatial simulation models of landscape dynamics are commonly used in natural resource management, but we provide the first illustration of their potential use for reserve design. Spatial simulation models could be used iteratively to evaluate competing reserve designs and select targets that have a higher likelihood of being maintained through time. Such models could be combined with dynamic planning techniques to develop a general theory for reserve design in an uncertain world.
A functional protein retention and release multilayer with high stability
NASA Astrophysics Data System (ADS)
Nie, Kun; An, Qi; Zhang, Yihe
2016-04-01
Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device.Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device. Electronic supplementary information (ESI) available: UV-vis spectra of the substrate covered by only polymeric (PAH/PAA)5/(PAH/DAS)5 multilayers, UV-vis spectra of the covalently cross-linked (PAH/SiO2 NP)5/(PAH/DAS)5 hybrid multilayers and (CAT/PAH)5/(PAH/DAS)5 films. TEM of the mesoporous silica. See DOI: 10.1039/c6nr01671e
Shuey, John A.
2013-01-01
Because of their vast diversity, measured by both numbers of species as well as life history traits, insects defy comprehensive conservation planning. Thus, almost all insect conservation efforts target individual species. However, serious insect conservation requires goals that are set at the faunal level and conservation success requires strategies that conserve intact communities. This task is complicated in agricultural landscapes by high levels of habitat fragmentation and isolation. In many regions, once widespread insect communities are now functionally trapped on islands of ecosystem remnants and subject to a variety of stressors associated with isolation, small population sizes and artificial population fragmentation. In fragmented landscapes ecological restoration can be an effective strategy for reducing localized insect extinction rates, but insects are seldom included in restoration design criteria. It is possible to incorporate a few simple conservation criteria into restoration designs that enhance impacts to entire insect communities. Restoration can be used as a strategy to address fragmentation threats to isolated insect communities if insect communities are incorporated at the onset of restoration planning. Fully incorporating insect communities into restoration designs may increase the cost of restoration two- to three-fold, but the benefits to biodiversity conservation and the ecological services provided by intact insect communities justify the cost. PMID:26462535
Shuey, John A
2013-12-05
Because of their vast diversity, measured by both numbers of species as well as life history traits, insects defy comprehensive conservation planning. Thus, almost all insect conservation efforts target individual species. However, serious insect conservation requires goals that are set at the faunal level and conservation success requires strategies that conserve intact communities. This task is complicated in agricultural landscapes by high levels of habitat fragmentation and isolation. In many regions, once widespread insect communities are now functionally trapped on islands of ecosystem remnants and subject to a variety of stressors associated with isolation, small population sizes and artificial population fragmentation. In fragmented landscapes ecological restoration can be an effective strategy for reducing localized insect extinction rates, but insects are seldom included in restoration design criteria. It is possible to incorporate a few simple conservation criteria into restoration designs that enhance impacts to entire insect communities. Restoration can be used as a strategy to address fragmentation threats to isolated insect communities if insect communities are incorporated at the onset of restoration planning. Fully incorporating insect communities into restoration designs may increase the cost of restoration two- to three-fold, but the benefits to biodiversity conservation and the ecological services provided by intact insect communities justify the cost.
South to south learning in great ape conservation.
Schoneveld-de Lange, Nicolien; Meijaard, Erik; Löhr, Ansje
2016-06-01
Despite evidence that killing of Bornean Orangutan (Pongo pygmaeus) in South-East Asia is a major threat to the species, few researchers and non-governmental conservationists have addressed it in management and research, and there is virtually no implementation of anti-killing strategies. In large parts of the Congo Basin, Central Africa, instead, illegal killing of great apes is acknowledged to be their largest threat, and many conservation strategies have been used to reduce killing pressure. However, since these strategies have not been subject to systematic and comprehensive review, it remains unclear which of them have been successful and why. Knowledge of the success, failure, and practices of common conservation strategies to manage great ape killing is critical to ensure adaptive conservation management in the Congo Basin. Understanding the Congo context also facilitates simultaneously highlighting great ape killing in Borneo and suggesting solutions to manage orangutan killing. Here, we compile and analyze the available literature on great ape conservation strategies for reducing killing rates in the Congo Basin. Through a systematic literature review of 198 publications, we find that the most widely employed conservation strategies in the Congo Basin are legislation and law enforcement, protected area management, community-based conservation, alternatives to bushmeat consumption and trade, ecotourism, education, and capacity building. Despite lack of rigorous post-intervention evaluation of conservation impact, we derive several recommendations for addressing the orangutan killing issue in Borneo. A critical lesson, widely applicable to developing countries for conservationists and not limited to Congo Basin realities, is the need for rigorous post-intervention evaluations compared to pre-intervention baselines and over appropriate time frames. Am. J. Primatol. 78:669-678, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D
2013-11-01
Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The USDA Natural Resources Conservation Service is developing a Land Management and Operation Database (LMOD) which contains potential model input, howe...
Morin, Dana J.; Fuller, Angela K.; Royle, J. Andrew; Sutherland, Chris
2017-01-01
Conservation and management of spatially structured populations is challenging because solutions must consider where individuals are located, but also differential individual space use as a result of landscape heterogeneity. A recent extension of spatial capture–recapture (SCR) models, the ecological distance model, uses spatial encounter histories of individuals (e.g., a record of where individuals are detected across space, often sequenced over multiple sampling occasions), to estimate the relationship between space use and characteristics of a landscape, allowing simultaneous estimation of both local densities of individuals across space and connectivity at the scale of individual movement. We developed two model-based estimators derived from the SCR ecological distance model to quantify connectivity over a continuous surface: (1) potential connectivity—a metric of the connectivity of areas based on resistance to individual movement; and (2) density-weighted connectivity (DWC)—potential connectivity weighted by estimated density. Estimates of potential connectivity and DWC can provide spatial representations of areas that are most important for the conservation of threatened species, or management of abundant populations (i.e., areas with high density and landscape connectivity), and thus generate predictions that have great potential to inform conservation and management actions. We used a simulation study with a stationary trap design across a range of landscape resistance scenarios to evaluate how well our model estimates resistance, potential connectivity, and DWC. Correlation between true and estimated potential connectivity was high, and there was positive correlation and high spatial accuracy between estimated DWC and true DWC. We applied our approach to data collected from a population of black bears in New York, and found that forested areas represented low levels of resistance for black bears. We demonstrate that formal inference about measures of landscape connectivity can be achieved from standard methods of studying animal populations which yield individual encounter history data such as camera trapping. Resulting biological parameters including resistance, potential connectivity, and DWC estimate the spatial distribution and connectivity of the population within a statistical framework, and we outline applications to many possible conservation and management problems.
Putting people on the map through an approach that integrates social data in conservation planning.
Stephanson, Sheri L; Mascia, Michael B
2014-10-01
Conservation planning is integral to strategic and effective operations of conservation organizations. Drawing upon biological sciences, conservation planning has historically made limited use of social data. We offer an approach for integrating data on social well-being into conservation planning that captures and places into context the spatial patterns and trends in human needs and capacities. This hierarchical approach provides a nested framework for characterizing and mapping data on social well-being in 5 domains: economic well-being, health, political empowerment, education, and culture. These 5 domains each have multiple attributes; each attribute may be characterized by one or more indicators. Through existing or novel data that display spatial and temporal heterogeneity in social well-being, conservation scientists, planners, and decision makers may measure, benchmark, map, and integrate these data within conservation planning processes. Selecting indicators and integrating these data into conservation planning is an iterative, participatory process tailored to the local context and planning goals. Social well-being data complement biophysical and threat-oriented social data within conservation planning processes to inform decisions regarding where and how to conserve biodiversity, provide a structure for exploring socioecological relationships, and to foster adaptive management. Building upon existing conservation planning methods and insights from multiple disciplines, this approach to putting people on the map can readily merge with current planning practices to facilitate more rigorous decision making. © 2014 Society for Conservation Biology.
California's crisis: An exploratory analysis of lifestyle, energy use, and conservation
NASA Astrophysics Data System (ADS)
Gossard, Marcia Hill
Electricity is one of the most serious issues of the 21st century. Modern human societies have become completely dependent upon energy to power modern life---resulting in unwanted environmental effects. Although electricity itself is invisible, many of the most conspicuous household items consume the most electricity. The 2001 energy crisis in California provides a unique opportunity to study how people negotiated their lives during a time of perceived resource scarcity, increased electricity prices, and threats of blackouts. Combining cultural and environmental literatures, I argued that changes in resource availability (perceived or real) led to unsettled lives in which beliefs, rituals and ways of behaving began to be questioned---resulting in new patterns of action organized around lifestyle. As a conceptual framework, lifestyle can be useful for understanding the patterns of people's everyday lives, the objects they consume, and the degrees to which those lifestyles affect the environment. Using data from the California Residential Electricity Conservation Study (CRECS), this research explores the ways households navigated and used different conservation strategies during the summers of 2001 and 2002. Analysis of Behavioral Conservation Strategies (BCS) that require ongoing effort and attention by household residents in order to achieve successful conservation outcomes (e.g., turning off lights or regulating indoor temperature), and Consumer Investment Strategies (CIS) that are one-time purchases improving efficiency (e.g., purchase of an appliance or fixture) reveal different strategies of action over the two years. Wealth indicators and time constraints were less important for predicting conservation, while cultural differences and household composition were better predictors of conservation efforts. In addition, despite assumptions that people are unwilling to change their lifestyle in order to conserve electricity, households employed more strategies that required daily effort and vigilance than one-time consumer actions. Furthermore, many households continued many conservation efforts in the year following the crisis, and there was not an immediate "snap-back" to pre-crisis behaviors. Not only did households employ a variety of conservation strategies that required changes to their lifestyle, the majority did not believe that their quality of life had been reduced or that their conservation efforts involved sacrifices.
Multispecies genetic objectives in spatial conservation planning.
Nielsen, Erica S; Beger, Maria; Henriques, Romina; Selkoe, Kimberly A; von der Heyden, Sophie
2017-08-01
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear-cut guidance on how genetic features can be incorporated into conservation-planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation-priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected-area networks that appropriately preserve community-level evolutionary patterns. © 2016 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Gotovac, Hrvoje; Srzic, Veljko
2014-05-01
Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large linear system on adaptive grid because each Fup coefficient is obtained by predefined formulas equalizing Fup expansion around corresponding collocation point and particular collocation operator based on few surrounding solution values. Furthermore, each Fup coefficient can be obtained independently which is perfectly suited for parallel processing. Adaptive grid in each time step is obtained from solution of the last time step or initial conditions and advective Lagrangian step in the current time step according to the velocity field and continuous streamlines. On the other side, we implement explicit stabilized routine SERK2 for dispersive Eulerian part of solution in the current time step on obtained spatial adaptive grid. Overall adaptive concept does not require the solving of large linear systems for the spatial and temporal approximation of conservative transport. Also, this new Eulerian-Lagrangian-Collocation scheme resolves all mentioned numerical problems due to its adaptive nature and ability to control numerical errors in space and time. Proposed method solves advection in Lagrangian way eliminating problems in Eulerian methods, while optimal collocation grid efficiently describes solution and boundary conditions eliminating usage of large number of particles and other problems in Lagrangian methods. Finally, numerical tests show that this approach enables not only accurate velocity field, but also conservative transport even in highly heterogeneous porous media resolving all spatial and temporal scales of concentration field.
Beever, Erik A.; Woodward, Andrea
2011-01-01
Land ownership in Alaska includes a mosaic of federally managed units. Within its agency’s context, each unit has its own management strategy, authority, and resources of conservation concern, many of which are migratory animals. Though some units are geographically isolated, many are nevertheless linked by paths of abiotic and biotic flows, such as rivers, air masses, flyways, and terrestrial and aquatic migration routes. Furthermore, individual land units exist within the context of a larger landscape pattern of shifting conditions, requiring managers to understand at larger spatial scales the status and trends in the synchrony and spatial concurrence of species and associated suitable habitats. Results of these changes will determine the ability of Alaska lands to continue to: provide habitat for local and migratory species; absorb species whose ranges are shifting northward; and experience mitigation or exacerbation of climate change through positive and negative atmospheric feedbacks. We discuss the geographic and statutory contexts that influence development of ecological monitoring; argue for the inclusion of significant amounts of broad-scale monitoring; discuss the importance of defining clear programmatic and monitoring objectives; and draw from lessons learned from existing long-term, broad-scale monitoring programs to apply to the specific contexts relevant to high-latitude protected areas such as those in Alaska. Such areas are distinguished by their: marked seasonality; relatively large magnitudes of contemporary change in climatic parameters; and relative inaccessibility due to broad spatial extent, very low (or zero) road density, and steep and glaciated areas. For ecological monitoring to effectively support management decisions in high-latitude areas such as Alaska, a monitoring program ideally would be structured to address the actual spatial and temporal scales of relevant processes, rather than the artificial boundaries of individual land-management units. Heuristic models provide a means by which to integrate understanding of ecosystem structure, composition, and function, in the midst of numerous ecosystem drivers.
Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi
2013-10-01
The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation, stabilize agricultural production, promote sustainable use of cultivated land and guarantee food security.
Spatial evolution of quantum mechanical states
NASA Astrophysics Data System (ADS)
Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.
2018-02-01
The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.
The aquatic conservation strategy of the Northwest Forest Plan.
Gordon H. Reeves; Jack E. Williams; Kelly M. Burnett; Kirsten Gallo
2006-01-01
Implemented in 1994, the Aquatic Conservation Strategy of the Northwest Forest Plan was designed to restore and maintain ecological processes for aquatic and riparian area conservation on federal lands in the western portion of the Pacific Northwest. We used decision support models to quantitatively evaluate changes in the condition of selected watersheds. In the...
System-level strategies for conserving rare or little-known species
Bruce G. Marcot; Carolyn Hull Sieg
2007-01-01
In this chapter we review the literature on system-level strategies for conserving rare or little-known (RLK) species, continuing from the species-level approaches addressed in the previous chapter. We define system-level approaches as those that result in conservation actions focused on providing for community or ecosystem composition, structure, or function.
Individual Spatial Responses towards Roads: Implications for Mortality Risk
Grilo, Clara; Sousa, Joana; Ascensão, Fernando; Matos, Hugo; Leitão, Inês; Pinheiro, Paula; Costa, Monica; Bernardo, João; Reto, Dyana; Lourenço, Rui; Santos-Reis, Margarida; Revilla, Eloy
2012-01-01
Background Understanding the ecological consequences of roads and developing ways to mitigate their negative effects has become an important goal for many conservation biologists. Most mitigation measures are based on road mortality and barrier effects data. However, studying fine-scale individual spatial responses in roaded landscapes may help develop more cohesive road planning strategies for wildlife conservation. Methodology/Principal Findings We investigated how individuals respond in their spatial behavior toward a highway and its traffic intensity by radio-tracking two common species particularly vulnerable to road mortality (barn owl Tyto alba and stone marten Martes foina). We addressed the following questions: 1) how highways affected home-range location and size in the immediate vicinity of these structures, 2) which road-related features influenced habitat selection, 3) what was the role of different road-related features on movement properties, and 4) which characteristics were associated with crossing events and road-kills. The main findings were: 1) if there was available habitat, barn owls and stone martens may not avoid highways and may even include highways within their home-ranges; 2) both species avoided using areas near the highway when traffic was high, but tended to move toward the highway when streams were in close proximity and where verges offered suitable habitat; and 3) barn owls tended to cross above-grade highway sections while stone martens tended to avoid crossing at leveled highway sections. Conclusions Mortality may be the main road-mediated mechanism that affects barn owl and stone marten populations. Fine-scale movements strongly indicated that a decrease in road mortality risk can be realized by reducing sources of attraction, and by increasing road permeability through measures that promote safe crossings. PMID:22970143
NASA Astrophysics Data System (ADS)
Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco; Tarantino, Cristina; Lucas, Richard M.; Nagendra, Harini; Didham, Raphael K.
2015-05-01
Monitoring the status and future trends in biodiversity can be prohibitively expensive using ground-based surveys. Consequently, significant effort is being invested in the use of satellite remote sensing to represent aspects of the proximate mechanisms (e.g., resource availability) that can be related to biodiversity surrogates (BS) such as species community descriptors. We explored the potential of very high resolution (VHR) satellite Earth observation (EO) features as proxies for habitat structural attributes that influence spatial variation in habitat quality and biodiversity change. In a semi-natural grassland mosaic of conservation concern in southern Italy, we employed a hierarchical nested sampling strategy to collect field and VHR-EO data across three spatial extent levels (landscape, patch and plot). Species incidence and abundance data were collected at the plot level for plant, insect and bird functional groups. Spectral and textural VHR-EO image features were derived from a Worldview-2 image. Three window sizes (grains) were tested for analysis and computation of textural features, guided by the perception limits of different organisms. The modelled relationships between VHR-EO features and BS responses differed across scales, suggesting that landscape, patch and plot levels are respectively most appropriate when dealing with birds, plants and insects. This research demonstrates the potential of VHR-EO for biodiversity mapping and habitat modelling, and highlights the importance of identifying the appropriate scale of analysis for specific taxonomic groups of interest. Further, textural features are important in the modelling of functional group-specific indices which represent BS in high conservation value habitat types, and provide a more direct link to species interaction networks and ecosystem functioning, than provided by traditional taxonomic diversity indices.
Silva, C R S; Albuquerque, P S B; Ervedosa, F R; Mota, J W S; Figueira, A; Sebbenn, A M
2011-06-01
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (Ρ(p(m))=0.607) rather than among the fruits (Ρ(p(m))=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species.
Cárcamo, P Francisco; Gaymer, Carlos F
2013-12-01
Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.
Miller, Jennifer R. B.; Jhala, Yadvendradev V.; Schmitz, Oswald J.
2016-01-01
Human-carnivore conflict is challenging to quantify because it is shaped by both the realities and people’s perceptions of carnivore threats. Whether perceptions align with realities can have implications for conflict mitigation: misalignments can lead to heightened and indiscriminant persecution of carnivores whereas alignments can offer deeper insights into human-carnivore interactions. We applied a landscape-scale spatial analysis of livestock killed by tigers and leopards in India to model and map observed attack risk, and surveyed owners of livestock killed by tigers and leopards for their rankings of threats across habitats to map perceived attack risk. Observed tiger risk to livestock was greatest near dense forests and at moderate distances from human activity while leopard risk was greatest near open vegetation. People accurately perceived spatial differences between tiger and leopard hunting patterns, expected greater threat in areas with high values of observed risk for both carnivores. Owners’ perception of threats largely did not depend on environmental conditions surrounding their village (spatial location, dominant land-use or observed carnivore risk). Surveys revealed that owners who previously lost livestock to carnivores used more livestock protection methods than those who had no prior losses, and that owners who had recently lost livestock for the first time expressed greater interest in changing their protection methods than those who experienced prior losses. Our findings suggest that in systems where realities and perceptions of carnivore risk align, conservation programs and policies can optimize conservation outcomes by (1) improving the effectiveness of livestock protection methods and (2) working with owners who have recently lost livestock and are most willing to invest effort in adapting protection strategies to mitigate human-carnivore conflict. PMID:27617831
Miller, Jennifer R B; Jhala, Yadvendradev V; Schmitz, Oswald J
2016-01-01
Human-carnivore conflict is challenging to quantify because it is shaped by both the realities and people's perceptions of carnivore threats. Whether perceptions align with realities can have implications for conflict mitigation: misalignments can lead to heightened and indiscriminant persecution of carnivores whereas alignments can offer deeper insights into human-carnivore interactions. We applied a landscape-scale spatial analysis of livestock killed by tigers and leopards in India to model and map observed attack risk, and surveyed owners of livestock killed by tigers and leopards for their rankings of threats across habitats to map perceived attack risk. Observed tiger risk to livestock was greatest near dense forests and at moderate distances from human activity while leopard risk was greatest near open vegetation. People accurately perceived spatial differences between tiger and leopard hunting patterns, expected greater threat in areas with high values of observed risk for both carnivores. Owners' perception of threats largely did not depend on environmental conditions surrounding their village (spatial location, dominant land-use or observed carnivore risk). Surveys revealed that owners who previously lost livestock to carnivores used more livestock protection methods than those who had no prior losses, and that owners who had recently lost livestock for the first time expressed greater interest in changing their protection methods than those who experienced prior losses. Our findings suggest that in systems where realities and perceptions of carnivore risk align, conservation programs and policies can optimize conservation outcomes by (1) improving the effectiveness of livestock protection methods and (2) working with owners who have recently lost livestock and are most willing to invest effort in adapting protection strategies to mitigate human-carnivore conflict.
Silva, C R S; Albuquerque, P S B; Ervedosa, F R; Mota, J W S; Figueira, A; Sebbenn, A M
2011-01-01
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (r̂p(m)=0.607) rather than among the fruits (r̂p(m)=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species. PMID:21139632
NASA Astrophysics Data System (ADS)
Cárcamo, P. Francisco; Gaymer, Carlos F.
2013-12-01
Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.
NASA Astrophysics Data System (ADS)
Lukoschek, V.; Heatwole, H.; Grech, A.; Burns, G.; Marsh, H.
2007-06-01
Aipysurus laevis and Emydocephalus annulatus typically occur in spatially discrete populations, characteristic of metapopulations; however, little is known about the factors influencing the spatial and temporal stability of populations or whether specific conservation strategies, such as networks of marine protected areas, will ensure the persistence of species. Classification tree analyses of 35 years of distribution data (90 reefs, surveyed 1-11 times) in the southern Great Barrier Reef (GBR) revealed that longitude was a major factor determining the status of A. laevis on reefs (present = 38, absent = 38 and changed = 14). Reef exposure and reef area were also important; however, these factors did not specifically account for the population fluctuations and the recent local extinctions of A. laevis in this region. There were no relationships between the status of E. annulatus (present = 16, absent = 68 and changed = 6) and spatial or physical variables. Moreover, prior protection status of reefs did not account for the distribution of either species. Biotic factors, such as habitat and prey availability and the distribution of predators, which may account for the observed patterns of distribution, are discussed. The potential for inter-population exchange among sea snake populations is poorly understood, as is the degree of protection that will be afforded to sea snakes by the recently implemented network of No-take areas in the GBR. Data from this study provide a baseline for evaluating the responses of A. laevis and E. annulatus populations to changes in biotic factors and the degree of protection afforded on reefs within an ecosystem network of No-take marine protected areas in the southern GBR.
Pelletier, Dominique; Leleu, Kévin; Mallet, Delphine; Mou-Tham, Gérard; Hervé, Gilles; Boureau, Matthieu; Guilpart, Nicolas
2012-01-01
Observing spatial and temporal variations of marine biodiversity from non-destructive techniques is central for understanding ecosystem resilience, and for monitoring and assessing conservation strategies, e.g. Marine Protected Areas. Observations are generally obtained through Underwater Visual Censuses (UVC) conducted by divers. The problems inherent to the presence of divers have been discussed in several papers. Video techniques are increasingly used for observing underwater macrofauna and habitat. Most video techniques that do not need the presence of a diver use baited remote systems. In this paper, we present an original video technique which relies on a remote unbaited rotating remote system including a high definition camera. The system is set on the sea floor to record images. These are then analysed at the office to quantify biotic and abiotic sea bottom cover, and to identify and count fish species and other species like marine turtles. The technique was extensively tested in a highly diversified coral reef ecosystem in the South Lagoon of New Caledonia, based on a protocol covering both protected and unprotected areas in major lagoon habitats. The technique enabled to detect and identify a large number of species, and in particular fished species, which were not disturbed by the system. Habitat could easily be investigated through the images. A large number of observations could be carried out per day at sea. This study showed the strong potential of this non obtrusive technique for observing both macrofauna and habitat. It offers a unique spatial coverage and can be implemented at sea at a reasonable cost by non-expert staff. As such, this technique is particularly interesting for investigating and monitoring coastal biodiversity in the light of current conservation challenges and increasing monitoring needs.
Green campus management based on conservation program in Universitas Negeri Semarang
NASA Astrophysics Data System (ADS)
Prihanto, Teguh
2018-03-01
Universitas Negeri Semarang (UNNES) has a great commitment in the development of higher education programs in line with its vision as a conservation - minded and internationally reputable university. Implementation of conservation programs with respect to the rules or conservation aspects of sustainable use, preservation, provisioning, protection, restoration and conservation of nature. In order to support the implementation of UNNES conservation program more focused, development strategies and development programs for each conservation scope are covered: (1) Biodiversity management; (2) Internal transportation management; (3) energy management; (4) Green building management; (5) Waste and water management; (6) Cultural conservation management. All related to conservation development strategies and programs are managed in the form of green campus management aimed at realizing UNNES as a green campus, characterized and reputable at the regional and global level.
Bridging the gaps between agricultural policy, land-use and biodiversity.
Mattison, Elizabeth H A; Norris, Ken
2005-11-01
The fate of biodiversity is intimately linked to agricultural development. Policy reform is an important driver of changes in agricultural land-use, but there is considerable spatial variation in response to policy and its potential impact on biodiversity. We review the links between policy, land-use and biodiversity and advocate a more integrated approach. Ecologists need to recognize that wildlife-friendly farming is not the only land-use strategy that can be used to conserve biodiversity and to research alternative options such as land sparing. There is also a need for social scientists and ecologists to bring their approaches together, so that land-use change and its consequences can be investigated in a more holistic way.
Songhurst, Anna; Coulson, Tim
2014-03-01
Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.
Beta-globin locus activation regions: conservation of organization, structure, and function.
Li, Q L; Zhou, B; Powers, P; Enver, T; Stamatoyannopoulos, G
1990-01-01
The human beta-globin locus activation region (LAR) comprises four erythroid-specific DNase I hypersensitive sites (I-IV) thought to be largely responsible for activating the beta-globin domain and facilitating high-level erythroid-specific globin gene expression. We identified the goat beta-globin LAR, determined 10.2 kilobases of its sequence, and demonstrated its function in transgenic mice. The human and goat LARs share 6.5 kilobases of homologous sequences that are as highly conserved as the epsilon-globin gene promoters. Furthermore, the overall spatial organization of the two LARs has been conserved. These results suggest that the functionally relevant regions of the LAR are large and that in addition to their primary structure, the spatial relationship of the conserved elements is important for LAR function. Images PMID:2236034
[Strategies for Conservation of Endangered Amphibian and Reptile Species].
Anan'eva, N B; Uteshev, V K; Orlova, N L; Gakhova, E N
2015-01-01
Strategies for conservation of endangered amphibian and reptile species are discussed. One-fifth of all vertebrates belongs to the category of "endangered species," and amphibians are first on the list (41%). Every fifth reptile species is in danger of extinction, and insufficient information is characteristic of every other fifth. As has been demonstrated, efficient development of a network of nature conservation areas, cryopreservation, and methods for laboratory breeding and reintroduction play.the key roles in adequate strategies for preservation of amphibians and reptiles.
Aldinger, Kyle R.; Wood, Petra B.; Johnson, Catherine M.
2017-01-01
Golden-winged Warbler (Vermivora chrysoptera) populations in the Appalachian Mountains region of North America are imperiled, warranting species-specific conservation. However, management for Golden-winged Warblers can affect both early-successional and forest species, many of which are also declining in the region. We conducted point counts in sites representing a range of successional stages within the Golden-winged Warbler's breeding range in West Virginia, USA, during 2008–2015. We identified plausible models of Golden-winged Warbler density using covariates at 4 spatial scales representing annual dispersal (5-km radius), extraterritorial movement (1.5-km radius), intraterritorial movement (100-m radius), and local resource utilization (11.3-m radius). Golden-winged Warbler density peaked at an intermediate elevation at the 1.5-km radius scale, but was negatively associated with 100-m radius minimum elevation. Density was positively associated with 100-m radius shrubland cover. Southerly latitudes were associated with higher densities when modeled alone, but there was no association when controlling for other covariates. We then examined the relationship between covariates from these plausible models and avian community structure using canonical correspondence analysis to assess the value of Golden-winged Warbler conservation for the broader avian community. We identified 5 species likely to benefit from management for Golden-winged Warblers and 21 species likely to be affected positively or negatively to varying degrees depending on their affinity for early-successional vegetation communities. Golden-winged Warblers were plotted higher along the 100-m shrubland cover gradient than any other bird species, suggesting that they may be the most shrubland area–sensitive songbird in our study area. However, the species also requires heavily forested landscapes. Therefore, a species-specific conservation strategy that balances shrubland (patches of 9–13 ha in size, comprising 15% of the landscape) and contiguous forest area (≥75% of the landscape) could concurrently meet the needs of Golden-winged Warblers and the 26 other species identified.
A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.
Michnick, S W; Shakhnovich, E
1998-01-01
Nucleation-growth theory predicts that fast-folding peptide sequences fold to their native structure via structures in a transition-state ensemble that share a small number of native contacts (the folding nucleus). Experimental and theoretical studies of proteins suggest that residues participating in folding nuclei are conserved among homologs. We attempted to determine if this is true in proteins with highly diverged sequences but identical folds (superfamilies). We describe a strategy based on comparisons of residue conservation in natural superfamily sequences with simulated sequences (generated with a Monte-Carlo sequence design strategy) for the same proteins. The basic assumptions of the strategy were that natural sequences will conserve residues needed for folding and stability plus function, the simulated sequences contain no functional conservation, and nucleus residues make native contacts with each other. Based on these assumptions, we identified seven potential nucleus residues in ubiquitin superfamily members. Non-nucleus conserved residues were also identified; these are proposed to be involved in stabilizing native interactions. We found that all superfamily members conserved the same potential nucleus residue positions, except those for which the structural topology is significantly different. Our results suggest that the conservation of the nucleus of a specific fold can be predicted by comparing designed simulated sequences with natural highly diverged sequences that fold to the same structure. We suggest that such a strategy could be used to help plan protein folding and design experiments, to identify new superfamily members, and to subdivide superfamilies further into classes having a similar folding mechanism.
Broadening the focus of bat conservation and research in the USA for the 21st century
Weller, Theodore J.; Cryan, Paul M.; O'Shea, Thomas J.
2009-01-01
Appropriately, bat conservation in the USA during the 20th century focused on species that tend to aggregate in large numbers and locations (e.g. maternity roosts, hibernacula) where populations are most vulnerable. Extensive research into habitat needs (primarily for roosting) of reproductive females during the previous 2 decades has produced a wealth of information useful for developing conservation strategies for this group in their summer roost areas. However, the ecological needs of males, non-reproductive females, and juveniles have received far less attention, as have the ecological needs of all bats outside the pup-rearing season. Hence, it is unlikely that a single paradigm could comprehensively address conservation needs of all demographic groups within a species because they may have different seasonal distributions, reproductive strategies, and thermoregulatory needs. Herein, we recommend research into a wider spectrum of demographic groups and seasons to form a more holistic vision of the conservation needs of bats. We urge greater attention to understanding thermo-energetic and reproductive underpinnings of observed patterns of seasonal distribution and habitat selection by bats in the USA. Such understanding is instrumental for development of scientifically sound conservation strategies to confront emerging threats to conservation of bats in the 21st century: climate change, disease, habitat degradation, and environmental contaminants. We discuss interconnections among these emerging threats and the fundamental need to incorporate understanding of thermo-energetic strategies of bats in development of conservation strategies or legislation to mitigate potential impacts on bat populations of the USA.
Fitzsimons, James A; Carr, C Ben
2014-09-01
Conservation covenants and easements have become essential tools to secure biodiversity outcomes on private land, and to assist in meeting international protection targets. In Australia, the number and spatial area of conservation covenants has grown significantly in the past decade. Yet there has been little research or detailed policy analysis of conservation covenanting in Australia. We sought to determine how conservation covenanting agencies were measuring the biodiversity conservation outcomes achieved on covenanted properties, and factors inhibiting or contributing to measuring these outcomes. In addition, we also investigated the drivers and constraints associated with actually delivering the biodiversity outcomes, drawing on detailed input from covenanting programs. Although all conservation covenanting programs had the broad aim of maintaining or improving biodiversity in their covenants in the long term, the specific stated objectives of conservation covenanting programs varied. Programs undertook monitoring and evaluation in different ways and at different spatial and temporal scales. Thus, it was difficult to determine the extent Australian conservation covenanting agencies were measuring the biodiversity conservation outcomes achieved on covenanted properties on a national scale. Lack of time available to covenantors to undertake management was one of the biggest impediments to achieving biodiversity conservation outcomes. A lack of financial resources and human capital to monitor, knowing what to monitor, inconsistent monitoring methodologies, a lack of benchmark data, and length of time to achieve outcomes were all considered potential barriers to monitoring the biodiversity conservation outcomes of conservation covenants.
NASA Astrophysics Data System (ADS)
Fitzsimons, James A.; Carr, C. Ben
2014-09-01
Conservation covenants and easements have become essential tools to secure biodiversity outcomes on private land, and to assist in meeting international protection targets. In Australia, the number and spatial area of conservation covenants has grown significantly in the past decade. Yet there has been little research or detailed policy analysis of conservation covenanting in Australia. We sought to determine how conservation covenanting agencies were measuring the biodiversity conservation outcomes achieved on covenanted properties, and factors inhibiting or contributing to measuring these outcomes. In addition, we also investigated the drivers and constraints associated with actually delivering the biodiversity outcomes, drawing on detailed input from covenanting programs. Although all conservation covenanting programs had the broad aim of maintaining or improving biodiversity in their covenants in the long term, the specific stated objectives of conservation covenanting programs varied. Programs undertook monitoring and evaluation in different ways and at different spatial and temporal scales. Thus, it was difficult to determine the extent Australian conservation covenanting agencies were measuring the biodiversity conservation outcomes achieved on covenanted properties on a national scale. Lack of time available to covenantors to undertake management was one of the biggest impediments to achieving biodiversity conservation outcomes. A lack of financial resources and human capital to monitor, knowing what to monitor, inconsistent monitoring methodologies, a lack of benchmark data, and length of time to achieve outcomes were all considered potential barriers to monitoring the biodiversity conservation outcomes of conservation covenants.
Bird-community responses to habitat creation in a long-term, large-scale natural experiment.
Whytock, Robin C; Fuentes-Montemayor, Elisa; Watts, Kevin; Barbosa De Andrade, Patanjaly; Whytock, Rory T; French, Paul; Macgregor, Nicholas A; Park, Kirsty J
2018-04-01
Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Habitat-based conservation strategies cannot compensate for climate-change-induced range loss
NASA Astrophysics Data System (ADS)
Wessely, Johannes; Hülber, Karl; Gattringer, Andreas; Kuttner, Michael; Moser, Dietmar; Rabitsch, Wolfgang; Schindler, Stefan; Dullinger, Stefan; Essl, Franz
2017-11-01
Anthropogenic habitat fragmentation represents a major obstacle to species shifting their range in response to climate change. Conservation measures to increase the (meta-)population capacity and permeability of landscapes may help but the effectiveness of such measures in a warming climate has rarely been evaluated. Here, we simulate range dynamics of 51 species from three taxonomic groups (vascular plants, butterflies and grasshoppers) in Central Europe as driven by twenty-first-century climate scenarios and analyse how three habitat-based conservation strategies (establishing corridors, improving the landscape matrix, and protected area management) modify species' projected range size changes. These simulations suggest that the conservation strategies considered are unable to save species from regional extinction. For those persisting, they reduce the magnitude of range loss in lowland but not in alpine species. Protected area management and corridor establishment are more effective than matrix improvement. However, none of the conservation strategies evaluated could fully compensate the negative impact of climate change for vascular plants, butterflies or grasshoppers in central Europe.
Movement mysteries unveiled: spatial ecology of juvenile green sea turtles
Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Rubio, Cynthia; Sartain-Iverson, Autumn R.; Lutterschmidt, William I.
2013-01-01
Locations of important foraging areas are not well defined for many marine species. Unraveling these mysteries is vital to develop conservation strategies for these species, many of which are threatened or endangered. Satellite-tracking is a tool that can reveal movement patterns at both broad and fine spatial scales, in all marine environments. This chapter presents records of the longest duration track of an individual juvenile green turtle (434 days) and highest number of tracking days in any juvenile green turtle study (5483 tracking days) published to date. In this chapter, we use spatial modeling techniques to describe movements and identify foraging areas for juvenile green turtles (Chelonia mydas) captured in a developmental habitat in south Texas, USA. Some green turtles established residency in the vicinity of their capture and release site, but most used a specific habitat feature (i.e., a jettied pass) to travel between the Gulf of Mexico and a nearby bay. Still others moved southward within the Gulf of Mexico into Mexican coastal waters, likely in response to decreasing water temperatures. These movements to waters off the coast of Mexico highlight the importance of international cooperation in restoration efforts undertaken on behalf of this imperiled species.
A mapping and monitoring assessment of the Philippines' mangrove forests from 1990 to 2010
Long, Jordan; Napton, Darrell; Giri, Chandra; Graesser, Jordan
2014-01-01
Information on the present condition and spatiotemporal dynamics of mangrove forests is needed for land-change studies and integrated natural resources planning and management. Although several national mangrove estimates for the Philippines exist, information is unavailable at sufficient spatial and thematic detail for change analysis. Historical and contemporary mangrove distribution maps of the Philippines for 1990 and 2010 were prepared at nominal 30-m spatial resolution using Landsat satellite data. Image classification was performed using a supervised decision tree classification approach. Additionally, decadal land-cover change maps from 1990 to 2010 were prepared to depict changes in mangrove area. Total mangrove area decreased 10.5% from 1990 to 2010. Comparison of estimates produced from this study with selected historical mangrove area estimates revealed that total mangrove area decreased by approximately half (51.8%) from 1918 to 2010. This study provides the most current and reliable data regarding the Philippines mangrove area and spatial distribution and delineates where and when mangrove change has occurred in recent decades. The results from this study are useful for developing conservation strategies, biodiversity loss mitigation efforts, and future monitoring and analysis.
Wilson, Howard B; Meijaard, Erik; Venter, Oscar; Ancrenaz, Marc; Possingham, Hugh P
2014-01-01
The Sumatran orangutan is currently listed by the IUCN as critically endangered and the Bornean species as endangered. Unless effective conservation measures are enacted quickly, most orangutan populations without adequate protection face a dire future. Two main strategies are being pursued to conserve orangutans: (i) rehabilitation and reintroduction of ex-captive or displaced individuals; and (ii) protection of their forest habitat to abate threats like deforestation and hunting. These strategies are often mirrored in similar programs to save other valued and endangered mega-fauna. Through GIS analysis, collating data from across the literature, and combining this information within a modelling and decision analysis framework, we analysed which strategy or combination of strategies is the most cost-effective at maintaining wild orangutan populations, and under what conditions. We discovered that neither strategy was optimal under all circumstances but was dependent on the relative cost per orangutan, the timescale of management concern, and the rate of deforestation. Reintroduction, which costs twelve times as much per animal as compared to protection of forest, was only a cost-effective strategy at very short timescales. For time scales longer than 10-20 years, forest protection is the more cost-efficient strategy for maintaining wild orangutan populations. Our analyses showed that a third, rarely utilised strategy is intermediate: introducing sustainable logging practices and protection from hunting in timber production forest. Maximum long-term cost-efficiency is achieved by working in conservation forest. However, habitat protection involves addressing complex conservation issues and conflicting needs at the landscape level. We find a potential resolution in that well-managed production forests could achieve intermediate conservation outcomes. This has broad implications for sustaining biodiversity more generally within an economically productive landscape. Insights from this analysis should provide a better framework to prioritize financial investments, and facilitate improved integration between the organizations that implement these strategies.
Wilson, Howard B.; Meijaard, Erik; Venter, Oscar; Ancrenaz, Marc; Possingham, Hugh P.
2014-01-01
The Sumatran orangutan is currently listed by the IUCN as critically endangered and the Bornean species as endangered. Unless effective conservation measures are enacted quickly, most orangutan populations without adequate protection face a dire future. Two main strategies are being pursued to conserve orangutans: (i) rehabilitation and reintroduction of ex-captive or displaced individuals; and (ii) protection of their forest habitat to abate threats like deforestation and hunting. These strategies are often mirrored in similar programs to save other valued and endangered mega-fauna. Through GIS analysis, collating data from across the literature, and combining this information within a modelling and decision analysis framework, we analysed which strategy or combination of strategies is the most cost-effective at maintaining wild orangutan populations, and under what conditions. We discovered that neither strategy was optimal under all circumstances but was dependent on the relative cost per orangutan, the timescale of management concern, and the rate of deforestation. Reintroduction, which costs twelve times as much per animal as compared to protection of forest, was only a cost-effective strategy at very short timescales. For time scales longer than 10–20 years, forest protection is the more cost-efficient strategy for maintaining wild orangutan populations. Our analyses showed that a third, rarely utilised strategy is intermediate: introducing sustainable logging practices and protection from hunting in timber production forest. Maximum long-term cost-efficiency is achieved by working in conservation forest. However, habitat protection involves addressing complex conservation issues and conflicting needs at the landscape level. We find a potential resolution in that well-managed production forests could achieve intermediate conservation outcomes. This has broad implications for sustaining biodiversity more generally within an economically productive landscape. Insights from this analysis should provide a better framework to prioritize financial investments, and facilitate improved integration between the organizations that implement these strategies. PMID:25025134
Chapter 7: Information needs and a research strategy for conserving forest carnivores
Leonard F. Ruggiero; Steven W. Buskirk; Keith B. Aubry; L. Jack Lyon; William J. Zielinski
1994-01-01
This forest carnivore conservation assessment summarizes what is known about the biology and ecology of the American marten, fisher, lynx, and wolverine. It is the first step in ascertaining what information we need to develop a scientifically sound strategy for species conservation. Although this assessment implies that we know what information we need to prescribe...
Human Populations and the World Conservation Strategy. Commission on Ecology Paper Number 11.
ERIC Educational Resources Information Center
Hanks, J.
This document serves as a supplement to the World Conservation Strategy (WCS) and outlines some of the critical aspects of the interaction between human populations, natural resources, and social and economic conditions. Particular emphasis is placed on the importance of planning with people, and on packaging conservation programs so they are more…
Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T
2018-02-01
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.
Li, Xueyou; Bleisch, William V; Jiang, Xuelong
2016-01-01
Understanding the status and spatial distribution of endangered species in biologically and ethnologically diverse areas is important to address correlates of cultural and biological diversity. We developed models for endangered musk deer (Moschus spp.) abundance indices in and around protected areas inhabited by different ethnic groups in northwest Yunnan China to address different anthropogenic and management-related questions. We found that prediction of relative abundance of musk deer was best accomplished using ethnicity of settlements, conservation status and poaching pressure in an area. Musk deer were around 5 times more abundant in Tibetan regions relative to Lisu regions. We found no significant negative correlates of gathering and transhumance activities on musk deer abundance. Hunting pressure showed no significant differences between protected and non-protected areas, but showed significant differences among ethnic groups. Hunting pressures in areas adjacent to Lisu settlements was 7.1 times more than in areas adjacent to Tibetan settlements. Our findings indicate protected areas in southwest China are not fully effective in deterring human disturbance caused by traditional practices. We suggest that conservation and management strategies should engage traditional culture and practices with a positive conservation impact. Better understanding of indigenous culture may open up new opportunities for species conservation in much wider tracts of unprotected and human-dominated lands. Traditional practices that are not destructive to biodiversity should be allowed as a way of providing a link between the local communities and protected areas thereby creating incentives for conservation.
Saqib, Hafiz Sohaib Ahmed; You, Minsheng
2017-01-01
Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H)—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies. PMID:29085741
GLOBIL: WWF's Global Observation and Biodiversity Information Portal
NASA Astrophysics Data System (ADS)
Shapiro, A. C.; Nijsten, L.; Schmitt, S.; Tibaldeschi, P.
2015-04-01
Despite ever increasing availability of satellite imagery and spatial data, conservation managers, decision makers and planners are often unable to analyze data without special knowledge or software. WWF is bridging this gap by putting extensive spatial data into an easy to use online mapping environment, to allow visualization, manipulation and analysis of large data sets by any user. Consistent, reliable and repeatable ecosystem monitoring information for priority eco-regions is needed to increase transparency in WWF's global conservation work, to measure conservation impact, and to provide communications with the general public and organization members. Currently, much of this monitoring and evaluation data is isolated, incompatible, or inaccessible and not readily usable or available for those without specialized software or knowledge. Launched in 2013 by WWF Netherlands and WWF Germany, the Global Observation and Biodiversity Information Portal (GLOBIL) is WWF's new platform to unite, centralize, standardize and visualize geo-spatial data and information from more than 150 active GIS users worldwide via cloud-based ArcGIS Online. GLOBIL is increasing transparency, providing baseline data for monitoring and evaluation while communicating impacts and conservation successes to the public. GLOBIL is currently being used in the worldwide marine campaign as an advocacy tool for establishing more marine protected areas, and a monitoring interface to track the progress towards ocean protection goals. In the Kavango-Zambezi (KAZA) Transfrontier Conservation area, local partners are using the platform to monitor land cover changes, barriers to species migrations, potential human-wildlife conflict and local conservation impacts in vast wildlife corridor. In East Africa, an early warning system is providing conservation practitioners with real-time alerts of threats particularly to protected areas and World Heritage Sites by industrial extractive activities. And for globally consistent baseline ecosystem monitoring, MODIS-derived data are being combined with local information to provide visible advocacy for conservation. As GLOBIL is built up through the WWF network, the worldwide organization is able to provide open access to its data on biodiversity and remote sensing, spatial analysis and projects to support goal setting, monitoring and evaluation, and fundraising activities.
Kenward, R. E.; Whittingham, M. J.; Arampatzis, S.; Manos, B. D.; Hahn, T.; Terry, A.; Simoncini, R.; Alcorn, J.; Bastian, O.; Donlan, M.; Elowe, K.; Franzén, F.; Karacsonyi, Z.; Larsson, M.; Manou, D.; Navodaru, I.; Papadopoulou, O.; Papathanasiou, J.; von Raggamby, A.; Sharp, R. J. A.; Söderqvist, T.; Soutukorva, Å.; Vavrova, L.; Aebischer, N. J.; Leader-Williams, N.; Rutz, C.
2011-01-01
Conservation scientists, national governments, and international conservation groups seek to devise, and implement, governance strategies that mitigate human impact on the environment. However, few studies to date have systematically investigated the performance of different systems of governance in achieving successful conservation outcomes. Here, we use a newly-developed analytic framework to conduct analyses of a suite of case studies, linking different governance strategies to standardized scores for delivering ecosystem services, achieving sustainable use of natural resources, and conserving biodiversity, at both local and international levels. Our results: (i) confirm the benefits of adaptive management; and (ii) reveal strong associations for the role of leadership. Our work provides a critical step toward implementing empirically justified governance strategies that are capable of improving the management of human-altered environments, with benefits for both biodiversity and people. PMID:21402916
ERIC Educational Resources Information Center
Meneghetti, Chiara; De Beni, Rossana; Gyselinck, Valerie; Pazzaglia, Francesca
2013-01-01
The present study investigates the joint role of spatial ability, imagery strategy and visuospatial working memory (VSWM) in spatial text processing. A set of 180 participants, half of them trained on the use of imagery strategy (training vs no-training groups), was further divided according to participants' high or low mental rotation ability…
Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.
Magris, Rafael A; Heron, Scott F; Pressey, Robert L
2015-01-01
Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming.
McKenna, James E.; Schaeffer, Jeffrey S.; Stewart, Jana S.; Slattery, Michael T.
2015-01-01
Classifications are typically specific to particular issues or areas, leading to patchworks of subjectively defined spatial units. Stream conservation is hindered by the lack of a universal habitat classification system and would benefit from an independent hydrology-guided spatial framework of units encompassing all aquatic habitats at multiple spatial scales within large regions. We present a system that explicitly separates the spatial framework from any particular classification developed from the framework. The framework was constructed from landscape variables that are hydrologically and biologically relevant, covered all space within the study area, and was nested hierarchically and spatially related at scales ranging from the stream reach to the entire region; classifications may be developed from any subset of the 9 basins, 107 watersheds, 459 subwatersheds, or 10,000s of valley segments or stream reaches. To illustrate the advantages of this approach, we developed a fish-guided classification generated from a framework for the Great Lakes region that produced a mosaic of habitat units which, when aggregated, formed larger patches of more general conditions at progressively broader spatial scales. We identified greater than 1,200 distinct fish habitat types at the valley segment scale, most of which were rare. Comparisons of biodiversity and species assemblages are easily examined at any scale. This system can identify and quantify habitat types, evaluate habitat quality for conservation and/or restoration, and assist managers and policymakers with prioritization of protection and restoration efforts. Similar spatial frameworks and habitat classifications can be developed for any organism in any riverine ecosystem.
Using IBMs to Investigate Spatially-dependent Processes in Landscape Genetics Theory
Much of landscape and conservation genetics theory has been derived using non-spatialmathematical models. Here, we use a mechanistic, spatially-explicit, eco-evolutionary IBM to examine the utility of this theoretical framework in landscapes with spatial structure. Our analysis...
Taniguchi, Tomohiko; Morimoto, Takeshi; Shiomi, Hiroki; Ando, Kenji; Kanamori, Norio; Murata, Koichiro; Kitai, Takeshi; Kawase, Yuichi; Izumi, Chisato; Miyake, Makoto; Mitsuoka, Hirokazu; Kato, Masashi; Hirano, Yutaka; Matsuda, Shintaro; Inada, Tsukasa; Nagao, Kazuya; Murakami, Tomoyuki; Takeuchi, Yasuyo; Yamane, Keiichiro; Toyofuku, Mamoru; Ishii, Mitsuru; Minamino-Muta, Eri; Kato, Takao; Inoko, Moriaki; Ikeda, Tomoyuki; Komasa, Akihiro; Ishii, Katsuhisa; Hotta, Kozo; Higashitani, Nobuya; Kato, Yoshihiro; Inuzuka, Yasutaka; Maeda, Chiyo; Jinnai, Toshikazu; Morikami, Yuko; Saito, Naritatsu; Minatoya, Kenji; Kimura, Takeshi
2017-05-01
There is considerable debate on the management of patients with low-gradient severe aortic stenosis (LG-AS), defined as aortic valve area <1 cm 2 with peak aortic jet velocity ≤4.0 m/s, and mean aortic pressure gradient ≤40 mm Hg. In the CURRENT AS registry (Contemporary Outcomes After Surgery and Medical Treatment in Patients With Severe Aortic Stenosis), there were 2097 patients (initial aortic valve replacement [AVR] strategy: n=977, and conservative strategy: n=1120) with high-gradient severe aortic stenosis (HG-AS) and 1712 patients (initial AVR strategy: n=219, and conservative strategy: n=1493) with LG-AS. AVR was more frequently performed in HG-AS patients than in LG-AS patients (60% versus 28%) during the entire follow-up. In the comparison between the initial AVR and conservative groups, the propensity score-matched cohorts were developed in both HG-AS (n=887 for each group) and LG-AS (n=218 for each group) strata. The initial AVR strategy when compared with the conservative strategy was associated with markedly lower risk for a composite of aortic valve-related death or heart failure hospitalization in both HG-AS and LG-AS strata (hazard ratio, 0.30; 95% confidence interval, 0.25-0.37; P <0.001 and hazard ratio, 0.46; 95% confidence interval, 0.32-0.67; P <0.001, respectively). Among 1358 patients with LG-AS with preserved left ventricular ejection fraction, the initial AVR strategy was associated with a better outcome than the conservative strategy (adjusted hazard ratio, 0.37; 95% confidence interval, 0.23-0.59; P <0.001). The initial AVR strategy was associated with better outcomes than the conservative strategy in both HG-AS and LG-AS patients, although AVR was less frequently performed in LG-AS patients than in HG-AS patients. The favorable effect of initial AVR strategy was also seen in patients with LG-AS with preserved left ventricular ejection fraction. URL: http://www.umin.ac.jp/ctr/index.htm. Unique identifier: UMIN000012140. © 2017 American Heart Association, Inc.
Genomic variation among populations of threatened coral: Acropora cervicornis.
Drury, C; Dale, K E; Panlilio, J M; Miller, S V; Lirman, D; Larson, E A; Bartels, E; Crawford, D L; Oleksiak, M F
2016-04-13
Acropora cervicornis, a threatened, keystone reef-building coral has undergone severe declines (>90 %) throughout the Caribbean. These declines could reduce genetic variation and thus hamper the species' ability to adapt. Active restoration strategies are a common conservation approach to mitigate species' declines and require genetic data on surviving populations to efficiently respond to declines while maintaining the genetic diversity needed to adapt to changing conditions. To evaluate active restoration strategies for the staghorn coral, the genetic diversity of A. cervicornis within and among populations was assessed in 77 individuals collected from 68 locations along the Florida Reef Tract (FRT) and in the Dominican Republic. Genotyping by Sequencing (GBS) identified 4,764 single nucleotide polymorphisms (SNPs). Pairwise nucleotide differences (π) within a population are large (~37 %) and similar to π across all individuals. This high level of genetic diversity along the FRT is similar to the diversity within a small, isolated reef. Much of the genetic diversity (>90 %) exists within a population, yet GBS analysis shows significant variation along the FRT, including 300 SNPs with significant FST values and significant divergence relative to distance. There are also significant differences in SNP allele frequencies over small spatial scales, exemplified by the large FST values among corals collected within Miami-Dade county. Large standing diversity was found within each population even after recent declines in abundance, including significant, potentially adaptive divergence over short distances. The data here inform conservation and management actions by uncovering population structure and high levels of diversity maintained within coral collections among sites previously shown to have little genetic divergence. More broadly, this approach demonstrates the power of GBS to resolve differences among individuals and identify subtle genetic structure, informing conservation goals with evolutionary implications.
Genetic diversity and divergence at the Arbutus unedo L. (Ericaceae) westernmost distribution limit.
Ribeiro, Maria Margarida; Piotti, Andrea; Ricardo, Alexandra; Gaspar, Daniel; Costa, Rita; Parducci, Laura; Vendramin, Giovanni Giuseppe
2017-01-01
Mediterranean forests are fragile ecosystems vulnerable to recent global warming and reduction of precipitation, and a long-term negative effect is expected on vegetation with increasing drought and in areas burnt by fires. We investigated the spatial distribution of genetic variation of Arbutus unedo in the western Iberia Peninsula, using plastid markers with conservation and provenance regions design purposes. This species is currently undergoing an intense domestication process in the region, and, like other species, is increasingly under the threat from climate change, habitat fragmentation and wildfires. We sampled 451 trees from 15 natural populations from different ecological conditions spanning the whole species' distribution range in the region. We applied Bayesian analysis and identified four clusters (north, centre, south, and a single-population cluster). Hierarchical AMOVA showed higher differentiation among clusters than among populations within clusters. The relatively low within-clusters differentiation can be explained by a common postglacial history of nearby populations. The genetic structure found, supported by the few available palaeobotanical records, cannot exclude the hypothesis of two independent A. unedo refugia in western Iberia Peninsula during the Last Glacial Maximum. Based on the results we recommend a conservation strategy by selecting populations for conservation based on their allelic richness and diversity and careful seed transfer consistent with current species' genetic structure.
Genetic diversity and divergence at the Arbutus unedo L. (Ericaceae) westernmost distribution limit
Ribeiro, Maria Margarida; Piotti, Andrea; Ricardo, Alexandra; Gaspar, Daniel; Costa, Rita; Parducci, Laura; Vendramin, Giovanni Giuseppe
2017-01-01
Mediterranean forests are fragile ecosystems vulnerable to recent global warming and reduction of precipitation, and a long-term negative effect is expected on vegetation with increasing drought and in areas burnt by fires. We investigated the spatial distribution of genetic variation of Arbutus unedo in the western Iberia Peninsula, using plastid markers with conservation and provenance regions design purposes. This species is currently undergoing an intense domestication process in the region, and, like other species, is increasingly under the threat from climate change, habitat fragmentation and wildfires. We sampled 451 trees from 15 natural populations from different ecological conditions spanning the whole species’ distribution range in the region. We applied Bayesian analysis and identified four clusters (north, centre, south, and a single-population cluster). Hierarchical AMOVA showed higher differentiation among clusters than among populations within clusters. The relatively low within-clusters differentiation can be explained by a common postglacial history of nearby populations. The genetic structure found, supported by the few available palaeobotanical records, cannot exclude the hypothesis of two independent A. unedo refugia in western Iberia Peninsula during the Last Glacial Maximum. Based on the results we recommend a conservation strategy by selecting populations for conservation based on their allelic richness and diversity and careful seed transfer consistent with current species’ genetic structure. PMID:28384294
Doherty, Kevin E.; Evans, Jeffrey S.; Walker, Johann; Devries, James H.; Howerter, David W.
2015-01-01
We used publically available data on duck breeding distribution and recently compiled geospatial data on upland habitat and environmental conditions to develop a spatially explicit model of breeding duck populations across the entire Prairie Pothole Region (PPR). Our spatial population models were able to identify key areas for duck conservation across the PPR and predict between 62.1 – 79.1% (68.4% avg.) of the variation in duck counts by year from 2002 – 2010. The median difference in observed vs. predicted duck counts at a transect segment level was 4.6 ducks. Our models are the first seamless spatially explicit models of waterfowl abundance across the entire PPR and represent an initial step toward joint conservation planning between Prairie Pothole and Prairie Habitat Joint Ventures. Our work demonstrates that when spatial and temporal variation for highly mobile birds is incorporated into conservation planning it will likely increase the habitat area required to support defined population goals. A major goal of the current North American Waterfowl Management Plan and subsequent action plan is the linking of harvest and habitat management. We contend incorporation of spatial aspects will increase the likelihood of coherent joint harvest and habitat management decisions. Our results show at a minimum, it is possible to produce spatially explicit waterfowl abundance models that when summed across survey strata will produce similar strata level population estimates as the design-based Waterfowl Breeding Pair and Habitat Survey (r2 = 0.977). This is important because these design-based population estimates are currently used to set duck harvest regulations and to set duck population and habitat goals for the North American Waterfowl Management Plan. We hope this effort generates discussion on the important linkages between spatial and temporal variation in population size, and distribution relative to habitat quantity and quality when linking habitat and population goals across this important region. PMID:25714747
ERIC Educational Resources Information Center
Ardoin, Nicole M.; Heimlich, Joe E.
2013-01-01
This article presents data from a mixed-methods study that collected data through surveys (n = 656), interviews (n = 15), and discussion groups (n = 75) to explore the use of social strategies such as education and outreach by non-governmental organizations and government agencies to reach outcomes related to biodiversity conservation and resource…
Global patterns of evolutionary distinct and globally endangered amphibians and mammals.
Safi, Kamran; Armour-Marshall, Katrina; Baillie, Jonathan E M; Isaac, Nick J B
2013-01-01
Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED) and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE). Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.
The Role of Spatial Ability and Strategy Preference for Spatial Problem Solving in Organic Chemistry
ERIC Educational Resources Information Center
Stieff, Mike; Ryu, Minjung; Dixon, Bonnie; Hegarty, Mary
2012-01-01
In organic chemistry, spatial reasoning is critical for reasoning about spatial relationships in three dimensions and representing spatial information in diagrams. Despite its importance, little is known about the underlying cognitive components of spatial reasoning and the strategies that students employ to solve spatial problems in organic…
Adding a landscape ecology perspective to conservation and management planning
Kathryn E. Freemark; John R. Probst; John B. Dunning; Salllie J. Hejl
1993-01-01
We briefly review concepts in landscape ecology and discuss their relevance to the conservation and management of neotropical migrant landbirds. We then integrate a landscape perspective into a spatially-hierarchical framework for conservation and management planning for neotropical migrant landbirds (and other biota). The framework outlines a comprehensive approach by...
Adams, Vanessa M.; Pressey, Robert L.; Stoeckl, Natalie
2014-01-01
The need to integrate social and economic factors into conservation planning has become a focus of academic discussions and has important practical implications for the implementation of conservation areas, both private and public. We conducted a survey in the Daly Catchment, Northern Territory, to inform the design and implementation of a stewardship payment program. We used a choice model to estimate the likely level of participation in two legal arrangements - conservation covenants and management agreements - based on payment level and proportion of properties required to be managed. We then spatially predicted landholders’ probability of participating at the resolution of individual properties and incorporated these predictions into conservation planning software to examine the potential for the stewardship program to meet conservation objectives. We found that the properties that were least costly, per unit area, to manage were also the least likely to participate. This highlights a tension between planning for a cost-effective program and planning for a program that targets properties with the highest probability of participation. PMID:24892520
Discrete conservation properties for shallow water flows using mixed mimetic spectral elements
NASA Astrophysics Data System (ADS)
Lee, D.; Palha, A.; Gerritsma, M.
2018-03-01
A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.
Spatial Strategies and Spatial Training in the Collegiate Curriculum.
ERIC Educational Resources Information Center
Baker, Justine C.
This paper discusses the results of two studies both dealing with spatial abilities and training. The first investigated the kinds of spatial strategies and personal experiences, both nonacademic and academic, that distinguish students preparing for high spatial careers from others. The second study focused on the effectiveness of spatial training…
Identifying species conservation strategies to reduce disease-associated declines
Gerber, Brian D.; Converse, Sarah J.; Muths, Erin L.; Crockett, Harry J.; Mosher, Brittany A.; Bailey, Larissa L.
2018-01-01
Emerging infectious diseases (EIDs) are a salient threat to many animal taxa, causing local and global extinctions, altering communities and ecosystem function. The EID chytridiomycosis is a prominent driver of amphibian declines, which is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). To guide conservation policy, we developed a predictive decision-analytic model that combines empirical knowledge of host-pathogen metapopulation dynamics with expert judgment regarding effects of management actions, to select from potential conservation strategies. We apply our approach to a boreal toad (Anaxyrus boreas boreas) and Bd system, identifying optimal strategies that balance tradeoffs in maximizing toad population persistence and landscape-level distribution, while considering costs. The most robust strategy is expected to reduce the decline of toad breeding sites from 53% to 21% over 50 years. Our findings are incorporated into management policy to guide conservation planning. Our online modeling application provides a template for managers of other systems challenged by EIDs.
Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India.
Manaswini, G; Sudhakar Reddy, C
2015-10-01
Forest fire has been identified as one of the key environmental issue for long-term conservation of biodiversity and has impact on global climate. Spatially multiple observations are necessary for monitoring of forest fires in tropics for understanding conservation efficacy and sustaining biodiversity in protected areas. The present work was carried out to estimate the spatial extent of forest burnt areas and fire frequency using Resourcesat Advanced Wide Field Sensor (AWiFS) data (2009, 2010, 2012, 2013 and 2014) in Andhra Pradesh, India. The spatio-temporal analysis shows that an area of 7514.10 km(2) (29.22% of total forest cover) has been affected by forest fires. Six major forest types are distributed in Andhra Pradesh, i.e. semi-evergreen, moist deciduous, dry deciduous, dry evergreen, thorn and mangroves. Of the total forest burnt area, dry deciduous forests account for >75%. District-wise analysis shows that Kurnool, Prakasam and Cuddapah have shown >100 km(2) of burnt area every year. The total forest burnt area estimate covering protected areas ranges between 6.9 and 22.3% during the study period. Spatial burnt area analysis for protected areas in 2014 indicates 37.2% of fire incidences in the Nagarjunasagar Srisailam Tiger Reserve followed by 20.2 % in the Sri Lankamalleswara Wildlife Sanctuary, 20.1% in the Sri Venkateswara Wildlife Sanctuary and 17.4% in the Gundla Brahmeswaram Wildlife Sanctuary. The analysis of cumulative fire occurrences from 2009 to 2014 has helped in delineation of conservation priority hotspots using a spatial grid cell approach. Conservation priority hotspots I and II are distributed in major parts of study area including protected areas of the Nagarjunasagar Srisailam Tiger Reserve and Gundla Brahmeswaram Wildlife Sanctuary. The spatial database generated will be useful in studies related to influence of fires on species adaptability, ecological damage assessment and conservation planning.
Where have all the people gone? Enhancing global conservation using night lights and social media.
Levin, Noam; Kark, Salit; Crandall, David
2015-12-01
Conservation prioritization at large scales is complex, combining biological, environmental, and social factors. While conservation scientists now more often aim to incorporate human-related factors, a critical yet unquantified challenge remains: to identify which areas people use for recreation outside urban centers. To address this gap in applied ecology and conservation, we developed a novel approach for quantifying human presence beyond populated areas by combining social media "big data" and remote sensing tools. We used data from the Flickr photo-sharing website as a surrogate for identifying spatial variation in visitation globally, and complemented this estimate with spatially explicit information on stable night lights between 2004 and 2012, used as a proxy for identifying urban and industrial centers. Natural and seminatural areas attracting visitors were defined as areas both highly photographed and non-lit. The number of Flickr photographers within protected areas was found to be a reliable surrogate for estimating visitor numbers as confirmed by local authority censuses (r = 0.8). Half of all visitors' photos taken in protected areas originated from under 1% of all protected areas on Earth (250 of -27 000). The most photographed protected areas globally included Yosemite and Yellowstone National Parks (USA), and the Lake and Peak Districts (UK). Factors explaining the spatial variation in protected areas Flickr photo coverage included their type (e.g., UNESCO World Heritage sites have higher visitation) and accessibility to roads and trails. Using this approach, we identified photography hotspots, which draw many visitors and are also unlit (i.e., are located outside urban centers), but currently remain largely unprotected, such as Brazil's Pantanal and Bolivia's Salar de Uyuni. The integrated big data approach developed here demonstrates the benefits of combining remote sensing sources and novel geo-tagged and crowd-sourced information from social media in future efforts to identify spatial conservation gaps and pressures in real time, and their spatial and temporal variation globally.
Holmes, George; Scholfield, Katherine; Brockington, Dan
2012-08-01
In recent decades, various conservation organizations have developed models to prioritize locations for conservation. Through a survey of the spending patterns of 281 conservation nongovernmental organizations (NGOs), we examined the relation between 2 such models and spatial patterns of spending by conservation NGOs in 44 countries in sub-Saharan Africa. We tested whether, at the country level, the proportion of a country designated as a conservation priority was correlated with where NGOs spent money. For one model (the combination of Conservation International's hotspots and High Biodiversity Wilderness Areas, which are areas of high endemism with high or low levels of vegetation loss respectively), there was no relation between the proportion of a country designated as a priority and levels of NGO spending, including by the NGO associated with the model. In the second model (Global 200), the proportion of a country designated as a priority and the amount of money spent by NGOs were significantly and positively related. Less money was spent in countries in northern and western sub-Saharan Africa than countries in southern and eastern Africa, relative to the proportion of the country designated as a conservation priority. We suggest that on the basis of our results some NGOs consider increasing their spending on the areas designated as of conservation priority which are currently relatively underfunded, although there are economic, political, cultural, historical, biological, and practical reasons why current spending patterns may not align with priority sites. ©2012 Society for Conservation Biology.
Kyriazi, Zacharoula; Lejano, Raul; Maes, Frank; Degraer, Steven
2017-02-01
Marine spatial allocation has become, in recent decades, a political flashpoint, fuelled by political power struggles, as well as the continuously increasing demand for marine space by both traditional and emerging marine uses. To effectively address this issue, we develop a decision-making procedure, that facilitates the distribution of disputed areas of specific size among heterogeneous players in a transparent and ethical way, while considering coalitional formations through coexistence. To do this, we model players' alternative strategies and payoffs within a cooperative game-theoretic framework. Depending on whether transferable utility (TU) or non-transferable utility (NTU) is the more appropriate assumption, we illustrate the use of the TU Shapley value and the Lejano's fixed point NTU Shapley value to solve for the ideal allocations. The applicability and effectiveness of the process has been tested in a case study area, the Dogger Bank Special Area of Conservation in the North Sea, which involves three totally or partially conflicting activities, i.e. fishing, nature conservation and wind farm development. The findings demonstrate that the process is capable of providing a unique, fair and equitable division of space Finally, among the two solution concepts proposed the fixed point NTU Shapley value manages to better address the heterogeneity of the players and thus to provide a more socially acceptable allocation that favours the weaker player, while demonstrating the importance of the monetary valuation attributed by each use to the area. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tam-Tham, Helen; Hemmelgarn, Brenda R; Campbell, David J T; Thomas, Chandra M; Fruetel, Karen; Quinn, Robert R; King-Shier, Kathryn M
2016-11-01
Although primary care physicians (PCPs) are often responsible for the routine care of older adults with chronic kidney disease (CKD), there is a paucity of evidence regarding their perspectives and practice of conservative (non-dialysis) care. We undertook a qualitative study to describe barriers, facilitators and strategies to enhance conservative, non-dialysis, CKD care by PCPs in the community. Semi-structured telephone and face-to-face interviews were conducted with PCPs from Alberta, Canada. Participants were identified using a snowball sampling strategy and purposively sampled based on sex, age and rural/urban location of clinical practice. Eligible participants had managed at least one patient ≥75 years with Stage 5 CKD (estimated glomerular filtration rate <15 mL/min/1.73 m 2 , not on dialysis) in the prior year. Participant recruitment ceased when data saturation was reached. Transcripts were analyzed thematically using conventional content analysis. In total, 27 PCPs were interviewed. The majority were male (15/27), were aged 40-60 years (15/27) and had practiced in primary care for >20 years (14/27). Perceived barriers to conservative CKD care included: managing expectations of kidney failure for patients and their families; dealing with the complexity of medical management of patients requiring conservative care; and challenges associated with managing patients jointly with specialists. Factors that facilitated conservative CKD care included: establishing patient/family expectations early; preserving continuity of care; and utilizing a multidisciplinary team approach. Suggested strategies for improving conservative care included having: direct telephone access to clinicians familiar with conservative care; treatment decision aids for patients and their families; and a conservative care clinical pathway to guide management. PCPs identified important barriers and facilitators to conservative care for their older patients with Stage 5 CKD. Further investigation of potential strategies that address barriers and enable facilitators is required to improve the quality of conservative care for older adults in the community. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Critical Review of Spatial Planning of CAT Watuputih, Rembang Zone, Central Java, Indonesia
NASA Astrophysics Data System (ADS)
Hadi, Sudharto P.
2018-02-01
The Act 26 of 2007 on spatial planning stipulates that spatial planning at national, provincial and local level must be based on environmental carrying capacity and environmental carrying capability. Provincial governments generally finished its spatial planning in 2010 and the city and regency's governments in 2011.This paper reviews the spatial planning of Central Java and Rembang Regency regarding the use of CAT (ground water basin) Watuputih, Rembang Zone. Both spatial planning determined that CAT Watuputih was allocated for conservation and for mining. The mixed use zoning stimulates conflict between private sector and government on one side and local people along with academician and NGOs on another side. The SEA (Strategic Environmental Assessment) studies initiated by central government found that CAT Watuputih has strong indication to be KBAK (natural landscape area of karst) need to be conserved while at the moment there have been 21 mining permit holders operating since 1998. The lesson learned from the review is that formulation of spatial planning must be conducted participatory by involving relevant stakeholder, objective and accountable.
Assessing spatial variation of corn response to irrigation using a bayesian semiparametric model
USDA-ARS?s Scientific Manuscript database
Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...
Charles Flower; Jeremie Fant; Sean Hoban; Kathleen Knight; Laura Steger; Elijah Aubihl; Miquel Gonzalez-Meler; Stephen Forry; Andrea Hille; Alejandro Royo
2018-01-01
Forest resources face numerous threats that require costly management. Hence, there is an increasing need for data-informed strategies to guide conservation practices. The introduction of the emerald ash borer to North America has caused rapid declines in ash populations (Fraxinus spp. L.). Natural resource managers are faced with a choice of...
ERIC Educational Resources Information Center
Hofman, Karen; Hughes, Karen
2018-01-01
Nature-based tourism experiences have the potential to change the environmental knowledge, attitudes and behavior of visitors; but such experiences may be beyond the physical and/or financial reach of many people. To influence the conservation behavior of populations world-wide, a more accessible yet equally effective strategy is required. Using…
NASA Astrophysics Data System (ADS)
Agee, E.; Ivanov, V. Y.; Oliveira, R. S.; Brum, M., Jr.; Saleska, S. R.; Bisht, G.; Prohaska, N.; Taylor, T.; Oliveira Junior, R. C.; Restrepo-Coupe, N.
2017-12-01
The increased intensity and severity of droughts within the Amazon Basin region has emphasized the question of vulnerability and resilience of tropical forests to water limitation. During the recent 2015-2016 drought caused by the anomalous El Nino episode, we monitored a large, diverse sample of trees within the Tapajos National Forest, Brazil, in the footprint of the K67 eddy covariance tower. The observed trees exhibited differential responses in terms of stem water potential and sap flow among species: their regulation of ecophysiological strategies varied from very conservative (`isohydric') behavior, to much less restrained, atmosphere-controlled (`anisohydric') type of response. While much attention has been paid to forest canopies, it remains unclear how the regulation of individual tree root system and root spatial interactions contribute to the emergent individual behavior and the ecosystem-scale characterization of drought resilience. Given the inherent difficulty in monitoring below-ground phenomena, physically-based models are valuable for examining different strategies and properties to reduce the uncertainty of characterization. We use a modified version of the highly parallel DOE PFLOTRAN model to simulate the three-dimensional variably saturated flows and root water uptake for over one thousand individuals within a two-hectare area. Root morphology and intrinsic hydraulic properties are assigned based on statistical distributions developed for tropical trees, which account for the broad spectrum of hydraulic strategies in biodiverse environments. The results demonstrate the dynamic nature of active zone of root water uptake based on local soil water potential gradients. The degree of the corresponding shifts in uptake and root collar potential depend not only on assigned hydraulic properties but also on spatial orientation and size relative to community members. This response highlights the importance of not only tree individual hydraulic traits, but also dynamic spatial interactions in assessing forest drought resilience.
Beever, Erik A.; Tausch, Robin J.; Brussard, Peter F.
2003-01-01
Although management and conservation strategies continue to move toward broader spatial scales and consideration of many taxonomic groups simultaneously, researchers have struggled to characterize responses to disturbance at these scales. Most studies of disturbance by feral grazers investigate effects on only one or two ecosystem elements across small spatial scales, limiting their applicability to ecosystem-level management. To address this inadequacy, in 1997 and 1998 we examined disturbance created by feral horses (Equus caballus) in nine mountain ranges of the western Great Basin, USA, using plants, small mammals, ants, and soil compaction as indicators. Nine horse-occupied and 10 horse-removed sites were stratified into high- and low-elevation groups, and all sites at each elevation had similar vegetation type, aspect, slope gradient, and recent (≥15-yr) fire and livestock-grazing histories. Using reciprocal averaging and TWINSPAN analyses, we compared relationships among sites using five data sets: abiotic variables, percent cover by plant species, an index of abundance by plant species, 10 disturbance-sensitive response variables, and grass and shrub species considered “key” indicators by land managers. Although reciprocal averaging and TWINSPAN analyses of percent cover, abiotic variables, and key species suggested relationships between sites influenced largely by biogeography (i.e., mountain range), disturbance-sensitive variables clearly segregated horse-occupied and horse-removed sites. These analyses suggest that the influence of feral horses on many Great Basin ecosystem attributes is not being detected by monitoring only palatable plant species. We recommend development of an expanded monitoring strategy based not only on established vegetation measurements investigating forage consumption, but also including disturbance-sensitive variables (e.g., soil surface hardness, abundance of ant mounds) that more completely reflect the suite of effects that a large-bodied grazer may impose on mountain ecosystems, independent of vegetation differences. By providing a broader-based mechanism for detection of adverse effects, this strategy would provide management agencies with defensible data in a sociopolitical arena that has been embroiled in conflict for several decades.
Pollock, Laura J; Rosauer, Dan F; Thornhill, Andrew H; Kujala, Heini; Crisp, Michael D; Miller, Joseph T; McCarthy, Michael A
2015-02-19
Evolutionary and genetic knowledge is increasingly being valued in conservation theory, but is rarely considered in conservation planning and policy. Here, we integrate phylogenetic diversity (PD) with spatial reserve prioritization to evaluate how well the existing reserve system in Victoria, Australia captures the evolutionary lineages of eucalypts, which dominate forest canopies across the state. Forty-three per cent of remaining native woody vegetation in Victoria is located in protected areas (mostly national parks) representing 48% of the extant PD found in the state. A modest expansion in protected areas of 5% (less than 1% of the state area) would increase protected PD by 33% over current levels. In a recent policy change, portions of the national parks were opened for development. These tourism development zones hold over half the PD found in national parks with some species and clades falling entirely outside of protected zones within the national parks. This approach of using PD in spatial prioritization could be extended to any clade or area that has spatial and phylogenetic data. Our results demonstrate the relevance of PD to regional conservation policy by highlighting that small but strategically located areas disproportionally impact the preservation of evolutionary lineages.
Evidence for fish dispersal from spatial analysis of stream network topology
Hitt, N.P.; Angermeier, P.L.
2008-01-01
Developing spatially explicit conservation strategies for stream fishes requires an understanding of the spatial structure of dispersal within stream networks. We explored spatial patterns of stream fish dispersal by evaluating how the size and proximity of connected streams (i.e., stream network topology) explained variation in fish assemblage structure and how this relationship varied with local stream size. We used data from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program in wadeable streams of the Mid-Atlantic Highlands region (n = 308 sites). We quantified stream network topology with a continuous analysis based on the rate of downstream flow accumulation from sites and with a discrete analysis based on the presence of mainstem river confluences (i.e., basin area >250 km2) within 20 fluvial km (fkm) from sites. Continuous variation in stream network topology was related to local species richness within a distance of ???10 fkm, suggesting an influence of fish dispersal within this spatial grain. This effect was explained largely by catostomid species, cyprinid species, and riverine species, but was not explained by zoogeographic regions, ecoregions, sampling period, or spatial autocorrelation. Sites near mainstem river confluences supported greater species richness and abundance of catostomid, cyprinid, and ictalurid fishes than did sites >20 fkm from such confluences. Assemblages at sites on the smallest streams were not related to stream network topology, consistent with the hypothesis that local stream size regulates the influence of regional dispersal. These results demonstrate that the size and proximity of connected streams influence the spatial distribution of fish and suggest that these influences can be incorporated into the designs of stream bioassessments and reserves to enhance management efficacy. ?? 2008 by The North American Benthological Society.
A VSA-based strategy for placing conservation buffers in agricultural watersheds.
Qiu, Zeyuan
2003-09-01
Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the able source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer's capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.
Ando, Amy W; Mallory, Mindy L
2012-04-24
Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit-cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change-induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area.
Ando, Amy W.; Mallory, Mindy L.
2012-01-01
Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit–cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change–induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area. PMID:22451914
NASA Astrophysics Data System (ADS)
Mezzino, D.; Pei, W.; Santana Quintero, M.; Reyes Rodriguez, R.
2015-08-01
This contribution describes the results of an International workshop on documentation of historic and cultural heritage developed jointly between Universidad de Guadalajara's Centro Universitario de Arte, Arquitectura y Diseño (CUAAD) and Carleton University's Architectural Conservation and Sustainability Program. The objective of the workshop was to create a learning environment for emerging heritage professionals through the use of advanced recording techniques for the documentation of modern architectural heritage in Guadalajara, Mexico. The selected site was Casa Cristo, one of the several architectural projects by Luis Barragán in Guadalajara. The house was built between 1927 and 1929 for Gustavo R. Cristo, mayor of the city. The style of the building reflects the European influences derived from the architect's travel experience, as well as the close connection with local craftsmanship. All of these make the house an outstanding example of modern regional architecture. A systematic documentation strategy was developed for the site, using different survey equipment and techniques to capture the shape, colour, spatial configuration, and current conditions of Casa Cristo for its eventual rehabilitation and conservation.
Sage-grouse habitat selection during winter in Alberta
Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.
2010-01-01
Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.
Community turnover of wood-inhabiting fungi across hierarchical spatial scales.
Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel
2014-01-01
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.
Community Turnover of Wood-Inhabiting Fungi across Hierarchical Spatial Scales
Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel
2014-01-01
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence. PMID:25058128
Stakeholder Participation in Marine Spatial Plan Making Process in Lampung Province
NASA Astrophysics Data System (ADS)
Asirin; Asbi, A. M.; Pakpahan, V. H.
2018-05-01
Lampung Province has coastal areas, seas and small islands facing conflicts of interest between tourism, conservation areas for defense, environmental conservation, and the threat of unsustainable marine resource utilization. Indonesia (including Lampung Province) has committed itself to achieving the objectives of conservation and sustainable use of oceans, seas and marine resources in view of sustainable development. One of the instruments used to achieve this goal is by using marine spatial planning (MSP). The purpose of this research was to analyse the marine spatial plan making process in Lampung Province. This research also evaluated the participation process and participation level based on plan-making process criteria and the stakeholder participation ladder. This research can be useful as a recommendation in the evaluation step to improve the plan-making process in order to address conflicts of interest between various related interest groups, so that planning can be accomplished with the involvement of all relevant parties to reach consensus on how to achieve a sustainable marine environment. This research used a qualitative research method as well as a case study approach. The scope of this study was limited by the conceptual framework of marine spatial planning and the stakeholder participation ladder. The authors recommend study of the preparation of marine spatial planning in addition to a technocratic approach considering the results of the study aspects of spatial allocation and physical aspects of marine resources, while prioritizing building consensus among various interest groups related to the utilization of marine resources. Thus, it is necessary to develop technical steps to build consensus in the marine spatial plan-making process.
Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances
Magris, Rafael A.; Heron, Scott F.; Pressey, Robert L.
2015-01-01
Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586
Native fish conservation areas: a vision for large-scale conservation of native fish communities
Jack E. Williams; Richard N. Williams; Russell F. Thurow; Leah Elwell; David P. Philipp; Fred A. Harris; Jeffrey L. Kershner; Patrick J. Martinez; Dirk Miller; Gordon H. Reeves; Christopher A. Frissell; James R. Sedell
2011-01-01
The status of freshwater fishes continues to decline despite substantial conservation efforts to reverse this trend and recover threatened and endangered aquatic species. Lack of success is partially due to working at smaller spatial scales and focusing on habitats and species that are already degraded. Protecting entire watersheds and aquatic communities, which we...
D. Todd Jones-Farrand; Todd M. Fearer; Wayne E. Thogmartin; Frank R. Thompson; Mark D. Nelson; John M. Tirpak
2011-01-01
Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and...
Chemical genetics and regeneration.
Sengupta, Sumitra; Zhang, Liyun; Mumm, Jeff S
2015-01-01
Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled.
How effective are biodiversity conservation payments in Mexico?
Costedoat, Sébastien; Corbera, Esteve; Ezzine-de-Blas, Driss; Honey-Rosés, Jordi; Baylis, Kathy; Castillo-Santiago, Miguel Angel
2015-01-01
We assess the additional forest cover protected by 13 rural communities located in the southern state of Chiapas, Mexico, as a result of the economic incentives received through the country's national program of payments for biodiversity conservation. We use spatially explicit data at the intra-community level to define a credible counterfactual of conservation outcomes. We use covariate-matching specifications associated with spatially explicit variables and difference-in-difference estimators to determine the treatment effect. We estimate that the additional conservation represents between 12 and 14.7 percent of forest area enrolled in the program in comparison to control areas. Despite this high degree of additionality, we also observe lack of compliance in some plots participating in the PES program. This lack of compliance casts doubt on the ability of payments alone to guarantee long-term additionality in context of high deforestation rates, even with an augmented program budget or extension of participation to communities not yet enrolled.
Paiva, Vitor H; Geraldes, Pedro; Rodrigues, Isabel; Melo, Tommy; Melo, José; Ramos, Jaime A
2015-01-01
Large Marine Ecosystems such as the Canary Current system off West Africa sustains high abundance of small pelagic prey, which attracts marine predators. Seabirds are top predators often used as biodiversity surrogates and sentinel species of the marine ecosystem health, thus frequently informing marine conservation planning. This study presents the first data on the spatial (GPS-loggers) and trophic (stable isotope analysis) ecology of a tropical seabird-the endangered Cape Verde shearwater Calonectris edwardsii-during both the incubation and the chick-rearing periods of two consecutive years. This information was related with marine environmental predictors (species distribution models), existent areas of conservation concern for seabirds (i.e. marine Important Bird Areas; marine IBAs) and threats to the marine environment in the West African areas heavily used by the shearwaters. There was an apparent inter-annual consistency on the spatial, foraging and trophic ecology of Cape Verde shearwater, but a strong alteration on the foraging strategies of adult breeders among breeding phases (i.e. from incubation to chick-rearing). During incubation, birds mostly targeted a discrete region off West Africa, known by its enhanced productivity profile and thus also highly exploited by international industrial fishery fleets. When chick-rearing, adults exploited the comparatively less productive tropical environment within the islands of Cape Verde, at relatively close distance from their breeding colony. The species enlarged its trophic niche and increased the trophic level of their prey from incubation to chick-rearing, likely to provision their chicks with a more diversified and better quality diet. There was a high overlap between the Cape Verde shearwaters foraging areas with those of European shearwater species that overwinter in this area and known areas of megafauna bycatch off West Africa, but very little overlap with existing Marine Important Bird Areas. Further investigation on the potential nefarious effects of fisheries on seabird communities exploiting the Canary Current system off West Africa is needed. Such negative effects could be alleviated or even dissipated if the 'fisheries-conservation hotspots' identified for the region, would be legislated as Marine Protected Areas.
Paiva, Vitor H.; Geraldes, Pedro; Rodrigues, Isabel; Melo, Tommy; Melo, José; Ramos, Jaime A.
2015-01-01
Large Marine Ecosystems such as the Canary Current system off West Africa sustains high abundance of small pelagic prey, which attracts marine predators. Seabirds are top predators often used as biodiversity surrogates and sentinel species of the marine ecosystem health, thus frequently informing marine conservation planning. This study presents the first data on the spatial (GPS-loggers) and trophic (stable isotope analysis) ecology of a tropical seabird—the endangered Cape Verde shearwater Calonectris edwardsii–during both the incubation and the chick-rearing periods of two consecutive years. This information was related with marine environmental predictors (species distribution models), existent areas of conservation concern for seabirds (i.e. marine Important Bird Areas; marine IBAs) and threats to the marine environment in the West African areas heavily used by the shearwaters. There was an apparent inter-annual consistency on the spatial, foraging and trophic ecology of Cape Verde shearwater, but a strong alteration on the foraging strategies of adult breeders among breeding phases (i.e. from incubation to chick-rearing). During incubation, birds mostly targeted a discrete region off West Africa, known by its enhanced productivity profile and thus also highly exploited by international industrial fishery fleets. When chick-rearing, adults exploited the comparatively less productive tropical environment within the islands of Cape Verde, at relatively close distance from their breeding colony. The species enlarged its trophic niche and increased the trophic level of their prey from incubation to chick-rearing, likely to provision their chicks with a more diversified and better quality diet. There was a high overlap between the Cape Verde shearwaters foraging areas with those of European shearwater species that overwinter in this area and known areas of megafauna bycatch off West Africa, but very little overlap with existing Marine Important Bird Areas. Further investigation on the potential nefarious effects of fisheries on seabird communities exploiting the Canary Current system off West Africa is needed. Such negative effects could be alleviated or even dissipated if the ‘fisheries-conservation hotspots’ identified for the region, would be legislated as Marine Protected Areas. PMID:26436804
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring
Carlos Carroll; Devin S. Johnson; Jeffrey R. Dunk; William J. Zielinski
2010-01-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their dataâs spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and...
Borst, Grégoire; Simon, Grégory; Vidal, Julie; Houdé, Olivier
2013-01-01
The present high-density event-related potential (ERP) study on 13 adults aimed to determine whether number conservation relies on the ability to inhibit the overlearned length-equals-number strategy and then imagine the shortening of the row that was lengthened. Participants performed the number-conservation task and, after the EEG session, the mental imagery task. In the number-conservation task, first two rows with the same number of tokens and the same length were presented on a computer screen (COV condition) and then, the tokens in one of the two rows were spread apart (INT condition). Participants were instructed to determine whether the two rows had an identical number of tokens. In the mental imagery task, two rows with different lengths but the same number of tokens were presented and participants were instructed to imagine the tokens in the longer row aligning with the tokens in the shorter row. In the number-conservation task, we found that the amplitudes of the centro-parietal N2 and fronto-central P3 were higher in the INT than in the COV conditions. In addition, the differences in response times between the two conditions were correlated with the differences in the amplitudes of the fronto-central P3. In light of previous results reported on the number-conservation task in adults, the present results suggest that inhibition might be necessary to succeed the number-conservation task in adults even when the transformation of the length of one of the row is displayed. Finally, we also reported correlations between the speed at which participants could imagine the shortening of one of the row in the mental imagery task, the speed at which participants could determine that the two rows had the same number of tokens after the tokens in one of the row were spread apart and the latency of the late positive parietal component in the number-conservation task. Therefore, performing the number-conservation task might involve mental transformation processes in adults. PMID:24409135
Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem?
Sarker, Swapan K; Reeve, Richard; Thompson, Jill; Paul, Nirmal K; Matthiopoulos, Jason
2016-02-16
The Sundarbans, the largest mangrove ecosystem in the world, is under threat from historical and future human exploitation and sea level rise. Limited scientific knowledge on the spatial ecology of the mangroves in this world heritage ecosystem has been a major impediment to conservation efforts. Here, for the first time, we report on habitat suitability analyses and spatial density maps for the four most prominent mangrove species--Heritiera fomes, Excoecaria agallocha, Ceriops decandra and Xylocarpus mekongensis. Globally endangered H. fomes abundances declined as salinity increased. Responses to nutrients, elevation, and stem density varied between species. H. fomes and X. mekongensis preferred upstream habitats. E. agallocha and C. decandra preferred down-stream and mid-stream habitats. Historical harvesting had negative influences on H. fomes, C. decandra and X. mekongensis abundances. The established protected area network does not support the most suitable habitats of these threatened species. We therefore recommend a reconfiguration of the network to include these suitable habitats and ensure their immediate protection. These novel habitat insights and spatial predictions can form the basis for future forest studies and spatial conservation planning, and have implications for more effective conservation of the Sundarbans mangroves and the many other species that rely on them.
Telles, M P C; Collevatti, R G; Braga, R S; Guedes, L B S; Castro, T G; Costa, M C; Silva-Júnior, N J; Barthem, R B; Diniz-Filho, J A F
2014-05-09
Geographical genetics allows the evaluation of evolutionary processes underlying genetic variation within and among local populations and forms the basis for establishing more effective strategies for biodiversity conservation at the population level. In this study, we used explicit spatial analyses to investigate molecular genetic variation (estimated using 7 microsatellite markers) of Pseudoplatystoma punctifer, by using samples obtained from 15 localities along the Madeira River and Solimões, Amazon Basin. A high genetic diversity was observed associated with a relatively low FST (0.057; P < 0.001), but pairwise FST values ranged from zero up to 0.21 when some pairs of populations were compared. These FST values have a relatively low correlation with geographic distances (r = 0.343; P = 0.074 by Mantel test), but a Mantel correlogram revealed that close populations (up to 80 km) tended to be more similar than expected by chance (r = 0.360; P = 0.015). The correlogram also showed a exponential-like decrease of genetic similarity with distance, with a patch-size of around 200 km, compatible with isolation-by-distance and analogous processes related to local constraints of dispersal and spatially structured levels of gene flow. The pattern revealed herein has important implications for establishing strategies to maintain genetic diversity in the species, especially considering the threats due to human impacts caused by building large dams in this river system.
NASA Astrophysics Data System (ADS)
Baum, Rachel; Characklis, Gregory W.; Serre, Marc L.
2018-04-01
As the costs and regulatory barriers to new water supply development continue to rise, drought management strategies have begun to rely more heavily on temporary conservation measures. While these measures are effective, they often lead to intermittent and unpredictable reductions in revenues that are financially disruptive to water utilities, raising concerns over lower credit ratings and higher rates of borrowing for this capital intensive sector. Consequently, there is growing interest in financial risk management strategies that reduce utility vulnerabilities. This research explores the development of financial index insurance designed to compensate a utility for drought-related losses. The focus is on analyzing candidate hydrologic indices that have the potential to be used by utilities across the US, increasing the potential for risk pooling, which would offer the possibility of both lower risk management costs and more widespread implementation. This work first analyzes drought-related financial risks for 315 publicly operated water utilities across the country and examines the effectiveness of financial contracts based on several indices both in terms of their correlation with utility revenues and their spatial autocorrelation across locations. Hydrologic-based index insurance contracts are then developed and tested over a 120 year period. Results indicate that risk pooling, even under conditions in which droughts are subject to some level of spatial autocorrelation, has the potential to significantly reduce the cost of managing financial risk.
Baeza Román, Anna; Latour Pérez, Jaime; de Miguel Balsa, Eva; Pino Izquierdo, Karel; Coves Orts, Francisco Javier; García Ochando, Luis; de la Torre Fernández, Maria José
2014-05-20
In the management of non-ST-segment elevation acute coronary syndromes (NSTE-ACS), several studies have shown a reduction in mortality with the use of an invasive strategy in high-risk patients, including diabetic patients. Paradoxically, other studies have shown an under-utilization of this invasive strategy in these patients. The aim of this study is to determine the characteristics of patients managed conservatively and identify determinants of the use of invasive or conservative strategy. Retrospective cohort study conducted in diabetic patients with NSTE-ACS included in the ARIAM-SEMICYUC registry (n=531) in 2010 and 2011. We performed crude and adjusted unconditional logistic regression. We analyzed 531 diabetic patients, 264 (49.7%) of which received invasive strategy. Patients managed conservatively were a subgroup characterized by older age and cardiovascular comorbidity, increased risk of bleeding and the absence of high-risk electrocardiogram (ECG). In diabetic patients with NSTE-ACS, independent predictors associated with conservative strategy were low-risk ECG, initial Killip class>1, high risk of bleeding and pretreatment with clopidogrel. The fear of bleeding complications or advanced coronary lesions could be the cause of the underutilization of an invasive strategy in diabetic patients with NSTE-ACS. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Neves, Leonardo M; Teixeira-Neves, Tatiana P; Pereira-Filho, Guilherme H; Araújo, Francisco G
2016-01-01
The conservation and management of site-attached assemblages of coastal reefs are particularly challenging because of the tremendous environmental variation that exists at small spatial scales. In this sense, understanding the primary sources of variation in spatial patterns of the biota is fundamental for designing effective conservation policies. We investigated spatial variation in fish assemblages around the windward and leeward sides of coastal islands situated across a gradient of riverine influence (13 km in length). Specifically, relationships between rocky reef fish assemblages and benthic, topographic and physical predictors were assessed. We hypothesized that river induced disturbances may overcome local habitat features in modeling spatial patterns of fish distribution. Fish assemblages varied primarily due to the strong directional gradient of riverine influence (22.6% of the estimated components of variation), followed by topographic complexity (15%), wave exposure (9.9%), and benthic cover (8%). The trophic structure of fish assemblages changed from having a high abundance of invertebrate feeders in macroalgae-dominated reefs close to river mouths to a high proportion of herbivores, planktivores and invertebrate feeder species in reefs with large boulders covered by epilithic algal matrices, as the distance from rivers increased. This gradient led to an increase of 4.5-fold in fish richness and fish trophic group diversity, 11-fold in fish biomass and 10-fold in fish abundance. Our results have implications for the conservation and monitoring of assemblages patchily distributed at small spatial scales. The major role of distance from river influences on fish assemblages rather than benthic cover and topographic complexity suggest that managing land-based activities should be a conservation priority toward reef restoration.
Neves, Leonardo M.; Teixeira-Neves, Tatiana P.; Pereira-Filho, Guilherme H.; Araújo, Francisco G.
2016-01-01
The conservation and management of site-attached assemblages of coastal reefs are particularly challenging because of the tremendous environmental variation that exists at small spatial scales. In this sense, understanding the primary sources of variation in spatial patterns of the biota is fundamental for designing effective conservation policies. We investigated spatial variation in fish assemblages around the windward and leeward sides of coastal islands situated across a gradient of riverine influence (13 km in length). Specifically, relationships between rocky reef fish assemblages and benthic, topographic and physical predictors were assessed. We hypothesized that river induced disturbances may overcome local habitat features in modeling spatial patterns of fish distribution. Fish assemblages varied primarily due to the strong directional gradient of riverine influence (22.6% of the estimated components of variation), followed by topographic complexity (15%), wave exposure (9.9%), and benthic cover (8%). The trophic structure of fish assemblages changed from having a high abundance of invertebrate feeders in macroalgae-dominated reefs close to river mouths to a high proportion of herbivores, planktivores and invertebrate feeder species in reefs with large boulders covered by epilithic algal matrices, as the distance from rivers increased. This gradient led to an increase of 4.5-fold in fish richness and fish trophic group diversity, 11-fold in fish biomass and 10-fold in fish abundance. Our results have implications for the conservation and monitoring of assemblages patchily distributed at small spatial scales. The major role of distance from river influences on fish assemblages rather than benthic cover and topographic complexity suggest that managing land-based activities should be a conservation priority toward reef restoration. PMID:27907017
Solving fatigue-related problems with cardiac arrest survivors living in the community.
Kim, Young Joo; Rogers, Joan C; Raina, Ketki D; Callaway, Clifton W; Rittenberger, Jon C; Leibold, Mary Lou; Holm, Margo B
2017-09-01
The aim was to describe fatigue-related problems reported by post-cardiac arrest adults with chronic fatigue and energy conservation strategies generated using an Energy Conservation plus Problem Solving Therapy intervention. Following an introduction to the intervention process outlined in a Participant Workbook, participants engaged in the telephone intervention by identifying one to two fatigue-related problems. They then brainstormed with the interventionist to identify potential strategies to reduce fatigue, tested them, and either modified the strategies or moved to the next problem over three to five sessions. Eighteen cardiac arrest survivors with chronic fatigue identified instrumental activities of daily living and leisure activities as fatigue-related activities more frequently than basic activities of daily living. Energy Conservation strategies used most frequently were: plan ahead, pace yourself, delegate to others, and simplify the task. Post-cardiac arrest adults living in the community with chronic fatigue can return to previous daily activities by using energy conservation strategies such as planning ahead, pacing tasks, delegating tasks, and simplifying tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
Ferraro, Paul J; Hanauer, Merlin M; Miteva, Daniela A; Nelson, Joanna L; Pattanayak, Subhrendu K; Nolte, Christoph; Sims, Katharine R E
2015-06-16
Scholars have made great advances in modeling and mapping ecosystem services, and in assigning economic values to these services. This modeling and valuation scholarship is often disconnected from evidence about how actual conservation programs have affected ecosystem services, however. Without a stronger evidence base, decision makers find it difficult to use the insights from modeling and valuation to design effective policies and programs. To strengthen the evidence base, scholars have advanced our understanding of the causal pathways between conservation actions and environmental outcomes, but their studies measure impacts on imperfect proxies for ecosystem services (e.g., avoidance of deforestation). To be useful to decision makers, these impacts must be translated into changes in ecosystem services and values. To illustrate how this translation can be done, we estimated the impacts of protected areas in Brazil, Costa Rica, Indonesia, and Thailand on carbon storage in forests. We found that protected areas in these conservation hotspots have stored at least an additional 1,000 Mt of CO2 in forests and have delivered ecosystem services worth at least $5 billion. This aggregate impact masks important spatial heterogeneity, however. Moreover, the spatial variability of impacts on carbon storage is the not the same as the spatial variability of impacts on avoided deforestation. These findings lead us to describe a research program that extends our framework to study other ecosystem services, to uncover the mechanisms by which ecosystem protection benefits humans, and to tie cost-benefit analyses to conservation planning so that we can obtain the greatest return on scarce conservation funds.
Ferraro, Paul J.; Hanauer, Merlin M.; Miteva, Daniela A.; Nelson, Joanna L.; Pattanayak, Subhrendu K.; Nolte, Christoph; Sims, Katharine R. E.
2015-01-01
Scholars have made great advances in modeling and mapping ecosystem services, and in assigning economic values to these services. This modeling and valuation scholarship is often disconnected from evidence about how actual conservation programs have affected ecosystem services, however. Without a stronger evidence base, decision makers find it difficult to use the insights from modeling and valuation to design effective policies and programs. To strengthen the evidence base, scholars have advanced our understanding of the causal pathways between conservation actions and environmental outcomes, but their studies measure impacts on imperfect proxies for ecosystem services (e.g., avoidance of deforestation). To be useful to decision makers, these impacts must be translated into changes in ecosystem services and values. To illustrate how this translation can be done, we estimated the impacts of protected areas in Brazil, Costa Rica, Indonesia, and Thailand on carbon storage in forests. We found that protected areas in these conservation hotspots have stored at least an additional 1,000 Mt of CO2 in forests and have delivered ecosystem services worth at least $5 billion. This aggregate impact masks important spatial heterogeneity, however. Moreover, the spatial variability of impacts on carbon storage is the not the same as the spatial variability of impacts on avoided deforestation. These findings lead us to describe a research program that extends our framework to study other ecosystem services, to uncover the mechanisms by which ecosystem protection benefits humans, and to tie cost-benefit analyses to conservation planning so that we can obtain the greatest return on scarce conservation funds. PMID:26082549
A review of selection-based tests of abiotic surrogates for species representation.
Beier, Paul; Sutcliffe, Patricia; Hjort, Jan; Faith, Daniel P; Pressey, Robert L; Albuquerque, Fabio
2015-06-01
Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change. © 2015 Society for Conservation Biology.
Mapping the Rainforest of the Sea: Global Coral Reef Maps for Global Conservation
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2006-01-01
Coral reefs are the center of marine biodiversity, yet are under threat with an estimated 60% of coral reef habitats considered at risk by the World Resources Institute. The location and extent of coral reefs in the world are the basic information required for resource management and as a baseline for monitoring change. A NASA sponsored partnership between remote sensing scientists, international agencies and NGOs, has developed a new generation of global reef maps based on data collected by satellites. The effort, dubbed the Millennium Coral Reef Map aims to develop new methods for wide distribution of voluminous satellite data of use to the conservation and management communities. We discuss the tradeoffs between remote sensing data sources, mapping objectives, and the needs for conservation and resource management. SeaWiFS data were used to produce a composite global shallow bathymetry map at 1 km resolution. Landsat 7/ETM+ data acquisition plans were modified to collect global reefs and new operational methods were designed to generate the firstever global coral reef geomorphology map. We discuss the challenges encountered to build these databases and in implementing the geospatial data distribution strategies. Conservation applications include a new assessment of the distribution of the world s marine protected areas (UNEPWCMC), improved spatial resolution in the Reefs at Risk analysis for the Caribbean (WRI), and a global basemap for the Census of Marine Life's OBIS database. The Millennium Coral Reef map and digital image archive will pay significant dividends for local and regional conservation projects around the globe. Complete details of the project are available at http://eol.jsc.nasa.gov/reefs.
Pacicco, Luca; Bodesmo, Mara; Torricelli, Renzo
2018-01-01
Agro-biodiversity is seriously threatened worldwide and strategies to preserve it are dramatically required. We propose here a methodological approach aimed to identify areas with a high level of agro-biodiversity in which to set or enhance in situ conservation of plant genetic resources. These areas are identified using three criteria: Presence of Landrace diversity, Presence of wild species and Agro-ecosystem ecological diversity. A Restrictive and an Additive prioritization strategy has been applied on the entire Italian territory and has resulted in establishing nationwide 53 and 197 agro-biodiversity hotspots respectively. At present the strategies can easily be applied at a European level and can be helpful to develop conservation strategies everywhere. PMID:29856765
Spatiotemporal trends of illegal activities from ranger-collected data in a Ugandan national park.
Critchlow, R; Plumptre, A J; Driciru, M; Rwetsiba, A; Stokes, E J; Tumwesigye, C; Wanyama, F; Beale, C M
2015-10-01
Within protected areas, biodiversity loss is often a consequence of illegal resource use. Understanding the patterns and extent of illegal activities is therefore essential for effective law enforcement and prevention of biodiversity declines. We used extensive data, commonly collected by ranger patrols in many protected areas, and Bayesian hierarchical models to identify drivers, trends, and distribution of multiple illegal activities within the Queen Elizabeth Conservation Area (QECA), Uganda. Encroachment (e.g., by pastoralists with cattle) and poaching of noncommercial animals (e.g., snaring bushmeat) were the most prevalent illegal activities within the QECA. Illegal activities occurred in different areas of the QECA. Poaching of noncommercial animals was most widely distributed within the national park. Overall, ecological covariates, although significant, were not useful predictors for occurrence of illegal activities. Instead, the location of illegal activities in previous years was more important. There were significant increases in encroachment and noncommercial plant harvesting (nontimber products) during the study period (1999-2012). We also found significant spatiotemporal variation in the occurrence of all activities. Our results show the need to explicitly model ranger patrol effort to reduce biases from existing uncorrected or capture per unit effort analyses. Prioritization of ranger patrol strategies is needed to target illegal activities; these strategies are determined by protected area managers, and therefore changes at a site-level can be implemented quickly. These strategies should also be informed by the location of past occurrences of illegal activity: the most useful predictor of future events. However, because spatial and temporal changes in illegal activities occurred, regular patrols throughout the protected area, even in areas of low occurrence, are also required. © 2015 Society for Conservation Biology.
Climate change adaptation strategies for resource management and conservation planning.
Lawler, Joshua J
2009-04-01
Recent rapid changes in the Earth's climate have altered ecological systems around the globe. Global warming has been linked to changes in physiology, phenology, species distributions, interspecific interactions, and disturbance regimes. Projected future climate change will undoubtedly result in even more dramatic shifts in the states of many ecosystems. These shifts will provide one of the largest challenges to natural resource managers and conservation planners. Managing natural resources and ecosystems in the face of uncertain climate requires new approaches. Here, the many adaptation strategies that have been proposed for managing natural systems in a changing climate are reviewed. Most of the recommended approaches are general principles and many are tools that managers are already using. What is new is a turning toward a more agile management perspective. To address climate change, managers will need to act over different spatial and temporal scales. The focus of restoration will need to shift from historic species assemblages to potential future ecosystem services. Active adaptive management based on potential future climate impact scenarios will need to be a part of everyday operations. And triage will likely become a critical option. Although many concepts and tools for addressing climate change have been proposed, key pieces of information are still missing. To successfully manage for climate change, a better understanding will be needed of which species and systems will likely be most affected by climate change, how to preserve and enhance the evolutionary capacity of species, how to implement effective adaptive management in new systems, and perhaps most importantly, in which situations and systems will the general adaptation strategies that have been proposed work and how can they be effectively applied.
Individual differences in spatial relation processing: effects of strategy, ability, and gender
van der Ham, Ineke J. M.; Borst, Gregoire
2011-01-01
Numerous studies have focused on the distinction between categorical and coordinate spatial relations. Categorical relations are propositional and abstract, and often related to a left hemisphere advantage. Coordinate relations specify the metric information of the relative locations of objects, and can be linked to right hemisphere processing. Yet, not all studies have reported such a clear double dissociation; in particular the categorical left hemisphere advantage is not always reported. In the current study we investigated whether verbal and spatial strategies, verbal and spatial cognitive abilities, and gender could account for the discrepancies observed in hemispheric lateralization of spatial relations. Seventy-five participants performed two visual half field, match-to-sample tasks (Van der Ham et al., 2007; 2009) to study the lateralization of categorical and coordinate relation processing. For each participant we determined the strategy they used in each of the two tasks. Consistent with previous findings, we found an overall categorical left hemisphere advantage and coordinate right hemisphere advantage. The lateralization pattern was affected selectively by the degree to which participants used a spatial strategy and by none of the other variables (i.e., verbal strategy, cognitive abilities, and gender). Critically, the categorical left hemisphere advantage was observed only for participants that relied strongly on a spatial strategy. This result is another piece of evidence that categorical spatial relation processing relies on spatial and not verbal processes. PMID:21353361
IUCN (International Union for Conservation of Nature and Natural Resources) Yearbook, 1975-76.
ERIC Educational Resources Information Center
International Union for Conservation of Nature and Natural Resources, Morges, (Switzerland).
This yearbook covers the period from January 1975 to May 1976. It reviews the International Union for Conservation of Nature and Natural Resources' (IUCN) conservation strategy for the coming years, important international conservation treaties, IUCN organizational reforms, and the financial report for 1975. Conservation discussions include…
Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül
2015-01-01
In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.
Bird Habitat Conservation at Various Scales in the Atlantic Coast Joint Venture
Andrew Milliken; Craig Watson; Chuck Hayes
2005-01-01
The Atlantic Coast Joint Venture is a partnership focused on the conservation of habitats for migratory birds within the Atlantic Flyway/Atlantic Coast Region from Maine south to Puerto Rico. In order to be effective in planning and implementing conservation in this large and diverse area, the joint venture must work at multiple spatial scales, from the largest ?...
Sudha, Govindarajan; Singh, Prashant; Swapna, Lakshmipuram S; Srinivasan, Narayanaswamy
2015-01-01
Residue types at the interface of protein–protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures. PMID:26311309
Mabey, S.; Watts, B.; Paxton, B.; Smith, F.; Truitt, B.; Dawson, D.
2005-01-01
Many conservation organizations and initiatives including Partners-in-Flight and the U.S. Fish and Wildlife Service's regional Joint Ventures have identified migratory songbird stopover habitat as a priority conservation target. However, the spatial and temporal variability inherent in migration presents a number of challenges to both identifying and characterizing stopover habitat. Scarce conservation resources further demand that stopover sites be classified on a scale of priority so that conservation action can proceed according to ecological value. We are applying weather surveillance radar data collected from the National Weather Service WSR-88D at Wakefield, VA, and NASA's Doppler radar, NPOL, in Oyster, VA, to identify passerine stopover sites in the lower Chesapeake Bay region and develop spatial models to characterize these sites based on relative migrant abundance and consistency of use between and within seasons. We are using the stopover patterns to generate hypotheses regarding the habitat, geographic, and stochastic factors contributing to the distribution of migrants at a regional scale. We are testing these hypotheses with detailed habitat data and ground surveys of migrating birds with the goal of creating a generalized prioritization system for stopover site conservation.
Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.
2016-01-01
Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.
García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory
2016-07-05
Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.
Yagi, Shunya; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M
2016-01-01
Adult neurogenesis in the dentate gyrus (DG) plays a crucial role for pattern separation, and there are sex differences in the regulation of neurogenesis. Although sex differences, favoring males, in spatial navigation have been reported, it is not known whether there are sex differences in pattern separation. The current study was designed to determine whether there are sex differences in the ability for separating similar or distinct patterns, learning strategy choice, adult neurogenesis, and immediate early gene (IEG) expression in the DG in response to pattern separation training. Male and female Sprague-Dawley rats received a single injection of the DNA synthesis marker, bromodeoxyuridine (BrdU), and were tested for the ability of separating spatial patterns in a spatial pattern separation version of delayed nonmatching to place task using the eight-arm radial arm maze. Twenty-seven days following BrdU injection, rats received a probe trial to determine whether they were idiothetic or spatial strategy users. We found that male spatial strategy users outperformed female spatial strategy users only when separating similar, but not distinct, patterns. Furthermore, male spatial strategy users had greater neurogenesis in response to pattern separation training than all other groups. Interestingly, neurogenesis was positively correlated with performance on similar pattern trials during pattern separation in female spatial strategy users but negatively correlated with performance in male idiothetic strategy users. These results suggest that the survival of new neurons may play an important positive role for pattern separation of similar patterns in females. Furthermore, we found sex and strategy differences in IEG expression in the CA1 and CA3 regions in response to pattern separation. These findings emphasize the importance of studying biological sex on hippocampal function and neural plasticity. © 2015 Wiley Periodicals, Inc.
Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo
2018-06-18
Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.
HexSim: a modeling environment for ecology and conservation.
HexSim is a powerful and flexible new spatially-explicit, individual based modeling environment intended for use in ecology, conservation, genetics, epidemiology, toxicology, and other disciplines. We describe HexSim, illustrate past applications that contributed to our >10 year ...
NASA Astrophysics Data System (ADS)
Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.
2017-11-01
Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.
Martin-Collado, D; Diaz, C; Drucker, A G; Carabaño, M J; Zander, K K
2014-08-01
Livestock breed-related public good functions are often used to justify support for endangered breed conservation despite the fact that little is known about such non-market values. We show how stated preference techniques can be used to assess the non-market values that people place on livestock breeds. Through the application of a case study choice experiment survey in Zamora province, Spain, the total economic value (TEV) of the threatened Alistana-Sanabresa (AS) cattle breed was investigated. An analysis of the relative importance of the non-market components of its TEV and an assessment of the socio-economic variables that influence people's valuation of such components is used to inform conservation strategy design. Overall, the findings reveal that the AS breed had significant non-market values associated with it and that the value that respondents placed on each specific public good function also varied significantly. Functions related with indirect use cultural and existence values were much more highly valued than landscape maintenance values. These high cultural and existence values (totalling over 80% of TEV) suggest that an AS in situ conservation strategy will be required to secure such values. As part of such a strategy, incentive mechanisms will be needed to permit farmers to capture some of these public good values and thus be able to afford to maintain breed population numbers at socially desirable levels. One such mechanism could be related to the development of breed-related agritourism initiatives, with a view to enhancing private good values and providing an important addition to continued direct support. Where linked with cultural dimensions, niche product market development, including through improving AS breed-related product quality and brand recognition may also have a role to play as part of such an overall conservation and use strategy. We conclude that livestock breed conservation strategies with the highest potential to maximise societal welfare would be those that secure the breed-related functions that people value most, with appropriate in situ conservation interventions and strategies being identified accordingly.
Rogers, Jake; Churilov, Leonid; Hannan, Anthony J; Renoir, Thibault
2017-03-01
Using a Matlab classification algorithm, we demonstrate that a highly salient distal cue array is required for significantly increased likelihoods of spatial search strategy selection during Morris water maze spatial learning. We hypothesized that increased spatial search strategy selection during spatial learning would be the key measure demonstrating the formation of an allocentric map to the escape location. Spatial memory, as indicated by quadrant preference for the area of the pool formally containing the hidden platform, was assessed as the main measure that this allocentric map had formed during spatial learning. Our C57BL/6J wild-type (WT) mice exhibit quadrant preference in the highly salient cue paradigm but not the low, corresponding with a 120% increase in the odds of a spatial search strategy selection during learning. In contrast, quadrant preference remains absent in serotonin 1A receptor (5-HT 1A R) knockout (KO) mice, who exhibit impaired search strategy selection during spatial learning. Additionally, we also aimed to assess the impact of the quality of the distal cue array on the spatial learning curves of both latency to platform and path length using mixed-effect regression models and found no significant associations or interactions. In contrast, we demonstrated that the spatial learning curve for search strategy selection was absent during training in the low saliency paradigm. Therefore, we propose that allocentric search strategy selection during spatial learning is the learning parameter in mice that robustly indicates the formation of a cognitive map for the escape goal location. These results also suggest that both latency to platform and path length spatial learning curves do not discriminate between allocentric and egocentric spatial learning and do not reliably predict spatial memory formation. We also show that spatial memory, as indicated by the absolute time in the quadrant formerly containing the hidden platform alone (without reference to the other areas of the pool), was not sensitive to cue saliency or impaired in 5-HT 1A R KO mice. Importantly, in the absence of a search strategy analysis, this suggests that to establish that the Morris water maze has worked (i.e. control mice have formed an allocentric map to the escape goal location), a measure of quadrant preference needs to be reported to establish spatial memory formation. This has implications for studies that claim hippocampal functioning is impaired using latency to platform or path length differences within the existing Morris water maze literature. Copyright © 2016 Elsevier Inc. All rights reserved.
Application of models to conservation planning for terrestrial birds in North America
Fitzgerald, Jane A.; Thogmartin, Wayne E.; Dettmers, Randy; Jones, Tim; Rustay, Christopher; Ruth, Janet M.; Thompson, Frank R.; Will, Tom; Millspaugh, Joshua J.; Thompson, Frank R.
2009-01-01
Partners in Flight (PIF), a public–private coalition for the conservation of land birds, has developed one of four international bird conservation plans recognized under the auspices of the North American Bird Conservation Initiative (NABCI). Partners in Flight prioritized species most in need of conservation attention and set range-wide population goals for 448 species of terrestrial birds. Partnerships are now tasked with developing spatially explicit estimates of the distribution, and abundance of priority species across large ecoregions and identifying habitat acreages needed to support populations at prescribed levels. The PIF Five Elements process of conservation design identifies five steps needed to implement all bird conservation at the ecoregional scale. Habitat assessment and landscape characterization describe the current amounts of different habitat types and summarize patch characteristics, and landscape configurations that define the ability of a landscape to sustain healthy bird populations and are a valuable first step to describing the planning area before pursuing more complex species-specific models. Spatially linked database models, landscape-scale habitat suitability models, and statistical models are viable alternatives for predicting habitat suitability or bird abundance across large planning areas to help assess conservation opportunities, design landscapes to meet population objectives, and monitor change in habitat suitability or bird numbers over time.Bird conservation in the United States is a good example of the use of models in large-scale wildlife conservation planning because of its geographic extent, focus on multiple species, involvement of multiple partners, and use of simple to complex models. We provide some background on the recent development of bird conservation initiatives in the United States and the approaches used for regional conservation assessment and planning. We focus on approaches being used for landscape characterization and assessment, and bird population response modeling.
Zhang, Jinju; Li, Zuozhou; Fritsch, Peter W.; Tian, Hua; Yang, Aihong; Yao, Xiaohong
2015-01-01
Background and Aims The phylogeography of plant species in sub-tropical China remains largely unclear. This study used Tapiscia sinensis, an endemic and endangered tree species widely but disjunctly distributed in sub-tropical China, as a model to reveal the patterns of genetic diversity and phylogeographical history of Tertiary relict plant species in this region. The implications of the results are discussed in relation to its conservation management. Methods Samples were taken from 24 populations covering the natural geographical distribution of T. sinensis. Genetic structure was investigated by analysis of molecular variance (AMOVA) and spatial analysis of molecular variance (SAMOVA). Phylogenetic relationships among haplotypes were constructed with maximum parsimony and haplotype network methods. Historical population expansion events were tested with pairwise mismatch distribution analysis and neutrality tests. Species potential range was deduced by ecological niche modelling (ENM). Key Results A low level of genetic diversity was detected at the population level. A high level of genetic differentiation and a significant phylogeographical structure were revealed. The mean divergence time of the haplotypes was approx. 1·33 million years ago. Recent range expansion in this species is suggested by a star-like haplotype network and by the results from the mismatch distribution analysis and neutrality tests. Conclusions Climatic oscillations during the Pleistocene have had pronounced effects on the extant distribution of Tapiscia relative to the Last Glacial Maximum (LGM). Spatial patterns of molecular variation and ENM suggest that T. sinensis may have retreated in south-western and central China and colonized eastern China prior to the LGM. Multiple montane refugia for T. sinense existing during the LGM are inferred in central and western China. The populations adjacent to or within these refugia of T. sinense should be given high priority in the development of conservation policies and management strategies for this endangered species. PMID:26187222
Bedrosian, Geoffrey; Watson, James W.; Steenhof, Karen; Kochert, Michael N.; Preston, Charles R.; Woodbridge, Brian; Williams, Gary E.; Keller, Kent R.; Crandall, Ross H.
2017-01-01
Detailed information on diets and predatory ecology of Golden Eagles (Aquila chrysaetos) is essential to prioritize prey species management and to develop landscape-specific conservation strategies, including mitigation of the effects of energy development across the western United States. We compiled published and unpublished data on Golden Eagle diets to (1) summarize available information on Golden Eagle diets in the western U.S., (2) compare diets among biogeographic provinces, and (3) discuss implications for conservation planning and future research. We analyzed 35 studies conducted during the breeding season at 45 locations from 1940–2015. Golden Eagle diet differed among western ecosystems. Lower dietary breadth was associated with desert and shrub-steppe ecosystems and higher breadth with mountain ranges and the Columbia Plateau. Correlations suggest that percentage of leporids in the diet is the factor driving overall diversity of prey and percentage of other prey groups in the diet of Golden Eagles. Leporids were the primary prey of breeding Golden Eagles in 78% of study areas, with sciurids reported as primary prey in 18% of study areas. During the nonbreeding season, Golden Eagles were most frequently recorded feeding on leporids and carrion. Golden Eagles can be described as both generalist and opportunistic predators; they can feed on a wide range of prey species but most frequently feed on abundant medium-sized prey species in a given habitat. Spatial variations in Golden Eagle diet likely reflect regional differences in prey community, whereas temporal trends likely reflect responses to long-term change in prey populations. Evidence suggests dietary shifts from traditional (leporid) prey can have adverse effects on Golden Eagle reproductive rates. Land management practices that support or restore shrub-steppe ecosystem diversity should benefit Golden Eagles. More information is needed on nonbreeding-season diet to determine what food resources, such as carrion, are important for overwinter survival.
Ramos, Raul; Carlile, Nicholas; Madeiros, Jeremy; Ramirez, Ivan; Paiva, Vitor H.; Dinis, Herculano A.; Zino, Francis; Biscoito, Manuel; Leal, Gustavo R.; Bugoni, Leandro; Jodice, Patrick G.R.; Ryan, Peter G.; Gonzalez-Solis, Jacob
2017-01-01
AimAnthropogenic activities alter and constrain the structure of marine ecosystems with implications for wide-ranging marine vertebrates. In spite of the environmental importance of vast oceanic ecosystems, most conservation efforts mainly focus on neritic areas. To identify relevant oceanic areas for conservation, we assessed the year-round spatial distribution and spatio-temporal overlap of eight truly oceanic seabird species of gadfly petrels (Pterodroma spp.) inhabiting the Atlantic Ocean.LocationAtlantic Ocean.MethodsUsing tracking data (mostly from geolocators), we examined year-round distributions, the timing of life-cycle events, and marine habitat overlap of eight gadfly petrel species that breed in the Atlantic Ocean.ResultsWe compiled 125 year-round tracks. Movement strategies ranged from non-migratory to long-distance migrant species and from species sharing a common non-breeding area to species dispersing among multiple non-breeding sites. Gadfly petrels occurred throughout the Atlantic Ocean but tended to concentrate in subtropical regions. During the boreal summer, up to three species overlapped spatio-temporally over a large area around the Azores archipelago. During the austral summer, up to four species coincided in a core area in subtropical waters around Cape Verde, and three species shared habitat over two distinct areas off Brazil. The petrels used many national Exclusive Economic Zones, although they also exploited offshore international waters.Main conclusionsTracking movements of highly mobile vertebrates such as gadfly petrels can provide a powerful tool to evaluate and assess the potential need for and location of protected oceanic areas. As more multispecies, year-round data sets are collected from wide-ranging vertebrates, researchers and managers will have greater insight into the location of biodiversity hotspots. These can subsequently inform and guide marine spatial planning efforts that account for both conservation and sustainable use of resources such as commercial fisheries.
Dercon, G; Mabit, L; Hancock, G; Nguyen, M L; Dornhofer, P; Bacchi, O O S; Benmansour, M; Bernard, C; Froehlich, W; Golosov, V N; Haciyakupoglu, S; Hai, P S; Klik, A; Li, Y; Lobb, D A; Onda, Y; Popa, N; Rafiq, M; Ritchie, J C; Schuller, P; Shakhashiro, A; Wallbrink, P; Walling, D E; Zapata, F; Zhang, X
2012-05-01
This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002-2008) coordinated research project (CRP) on "Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides" (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of different soil conservation measures on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of ¹³⁷Cs (half-life of 30.2 years), ²¹⁰Pb(ex) (half-life of 22.3 years) and ⁷Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably--a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Jinju; Li, Zuozhou; Fritsch, Peter W; Tian, Hua; Yang, Aihong; Yao, Xiaohong
2015-10-01
The phylogeography of plant species in sub-tropical China remains largely unclear. This study used Tapiscia sinensis, an endemic and endangered tree species widely but disjunctly distributed in sub-tropical China, as a model to reveal the patterns of genetic diversity and phylogeographical history of Tertiary relict plant species in this region. The implications of the results are discussed in relation to its conservation management. Samples were taken from 24 populations covering the natural geographical distribution of T. sinensis. Genetic structure was investigated by analysis of molecular variance (AMOVA) and spatial analysis of molecular variance (SAMOVA). Phylogenetic relationships among haplotypes were constructed with maximum parsimony and haplotype network methods. Historical population expansion events were tested with pairwise mismatch distribution analysis and neutrality tests. Species potential range was deduced by ecological niche modelling (ENM). A low level of genetic diversity was detected at the population level. A high level of genetic differentiation and a significant phylogeographical structure were revealed. The mean divergence time of the haplotypes was approx. 1·33 million years ago. Recent range expansion in this species is suggested by a star-like haplotype network and by the results from the mismatch distribution analysis and neutrality tests. Climatic oscillations during the Pleistocene have had pronounced effects on the extant distribution of Tapiscia relative to the Last Glacial Maximum (LGM). Spatial patterns of molecular variation and ENM suggest that T. sinensis may have retreated in south-western and central China and colonized eastern China prior to the LGM. Multiple montane refugia for T. sinense existing during the LGM are inferred in central and western China. The populations adjacent to or within these refugia of T. sinense should be given high priority in the development of conservation policies and management strategies for this endangered species. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt
2015-01-01
Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and –51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change. PMID:26237220
Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt
2015-01-01
Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change.
METAPOPULATION DYNAMICS AND AMPHIBIAN CONSERVATION
In many respects, amphibian spatial dynamics resemble classical metapopulation models, where subpopulations in breeding ponds blink in and out of existance and where extinction and colonization rates are functions of pond spatial arrangement. This "ponds-as-patches" view of amphi...
Simulating the Effects of Alternative Forest Management Strategies on Landscape Structure
Eric J. Gustafson; Thomas Crow
1996-01-01
Quantitative, spatial tools are needed to assess the long-term spatial consequences of alternative management strategies for land use planning and resource management. We constructed a timber harvest allocation model (HARVEST) that provides a visual and quantitative means to predict the spatial pattern of forest openings produced by alternative harvest strategies....
ERIC Educational Resources Information Center
Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J.; Wilson, Timothy D.
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among…
Spatial Localization in Dissipative Systems
NASA Astrophysics Data System (ADS)
Knobloch, E.
2015-03-01
Spatial localization is a common feature of physical systems, occurring in both conservative and dissipative systems. This article reviews the theoretical foundations of our understanding of spatial localization in forced dissipative systems, from both a mathematical point of view and a physics perspective. It explains the origin of the large multiplicity of simultaneously stable spatially localized states present in a parameter region called the pinning region and its relation to the notion of homoclinic snaking. The localized states are described as bound states of fronts, and the notions of front pinning, self-pinning, and depinning are emphasized. Both one-dimensional and two-dimensional systems are discussed, and the reasons behind the differences in behavior between dissipative systems with conserved and nonconserved dynamics are explained. The insights gained are specific to forced dissipative systems and are illustrated here using examples drawn from fluid mechanics (convection and shear flows) and a simple model of crystallization.
ECASTAR: Energy Conservation; an Assessment of Systems, Technologies and Requirements
NASA Technical Reports Server (NTRS)
1975-01-01
A methodology for a systems approach display and assessment of the potential for energy conservation actions and the impacts of those actions was presented. The U.S. economy is divided into four sectors: energy industry, industry, residential/commercial and transportation. Each sector is assessed with respect to energy conservation actions and impacts. The four sectors are combined and three strategies for energy conservation actions for the combined sectors are assessed. The three strategies (national energy conservation, electrification and diversification) represent energy conservation actions for the near term (now to 1985), the mid term (1985 to 2000) and the far term (2000 and beyond). The assessment procedure includes input/output analysis to bridge the flows between the sectors, and net economics and net energetics as performance criteria for the conservation actions. Targets of opportunity for large net energy net energy savings and the application of technology to achieve these savings are discussed.
Call, J; Rochat, P
1996-09-01
Four orangutans (1 juvenile, 2 subadults, and 1 adult) and ten 6-8-year-old children were tested in 4 liquid conservation tasks of increasing levels of difficulty. Task difficulty depended on the type of transformation (continuous vs. discontinuous quantities) and the relative contrast between the shapes of the containers. Results indicate that orangutans did not display conservation in the strict sense; instead they showed "partial" conservation (intermediate reactions according to J. Piaget & B. Inhelder, 1941). In contrast, some of the children provided evidence of conservation in all 4 tasks, showing "true" or logically necessary conservation in the original sense proposed by J. Piaget and B. Inhelder (1941). Although orangutans did not show conservation in the strict sense, as J. Piaget (1955) and others have generally agreed it should be defined, orangutans behaved as individual and creative problem solvers, adopting different perceptual strategies depending on the task.
Upstream solutions to coral reef conservation: The payoffs of smart and cooperative decision-making.
Oleson, Kirsten L L; Falinski, Kim A; Lecky, Joey; Rowe, Clara; Kappel, Carrie V; Selkoe, Kimberly A; White, Crow
2017-04-15
Land-based source pollutants (LBSP) actively threaten coral reef ecosystems globally. To achieve the greatest conservation outcome at the lowest cost, managers could benefit from appropriate tools that evaluate the benefits (in terms of LBSP reduction) and costs of implementing alternative land management strategies. Here we use a spatially explicit predictive model (InVEST-SDR) that quantifies change in sediment reaching the coast for evaluating the costs and benefits of alternative threat-abatement scenarios. We specifically use the model to examine trade-offs among possible agricultural road repair management actions (water bars to divert runoff and gravel to protect the road surface) across the landscape in West Maui, Hawaii, USA. We investigated changes in sediment delivery to coasts and costs incurred from management decision-making that is (1) cooperative or independent among landowners, and focused on (2) minimizing costs, reducing sediment, or both. The results illuminate which management scenarios most effectively minimize sediment while also minimizing the cost of mitigation efforts. We find targeting specific "hotspots" within all individual parcels is more cost-effective than targeting all road segments. The best outcomes are achieved when landowners cooperate and target cost-effective road repairs, however, a cooperative strategy can be counter-productive in some instances when cost-effectiveness is ignored. Simple models, such as the one developed here, have the potential to help managers make better choices about how to use limited resources. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Scientists' opinions on the global status and management of biological diversity.
Rudd, Murray A
2011-12-01
The large investments needed if loss of biological diversity is to be stemmed will likely lead to increased public and political scrutiny of conservation strategies and the science underlying them. It is therefore crucial to understand the degree of consensus or divergence among scientists on core scientific perceptions and strategies most likely to achieve given objectives. I developed an internet survey designed to elucidate the opinions of conservation scientists. Conservation scientists (n =583) were unanimous (99.5%) in their view that a serious loss of biological diversity is likely, very likely, or virtually certain. Scientists' agreement that serious loss is very likely or virtually certain ranged from 72.8% for Western Europe to 90.9% for Southeast Asia. Tropical coral ecosystems were perceived as the most seriously affected by loss of biological diversity; 88.0% of respondents familiar with that ecosystem type agreed that a serious loss is very likely or virtually certain. With regard to conservation strategies, scientists most often viewed understanding how people and nature interact in certain contexts and the role of biological diversity in maintaining ecosystem function as their priorities. Protection of biological diversity for its cultural and spiritual values and because of its usefulness to humans were low priorities, which suggests that many scientists do not fully support the utilitarian concept of ecosystem services. Many scientists expressed a willingness to consider conservation triage, engage in active conservation interventions, and consider reframing conservation goals and measures of success for conservation of biological diversity in an era of climate change. Although some heterogeneity of opinion is evident, results of the survey show a clear consensus within the scientific community on core issues of the extent and geographic scope of loss of biological diversity and on elements that may contribute to successful conservation strategies in the future. ©2011 Society for Conservation Biology.
Copeland, Holly E; Pocewicz, Amy; Naugle, David E; Griffiths, Tim; Keinath, Doug; Evans, Jeffrey; Platt, James
2013-01-01
Increasing energy and housing demands are impacting wildlife populations throughout western North America. Greater sage-grouse (Centrocercus urophasianus), a species known for its sensitivity to landscape-scale disturbance, inhabits the same low elevation sage-steppe in which much of this development is occurring. Wyoming has committed to maintain sage-grouse populations through conservation easements and policy changes that conserves high bird abundance "core" habitat and encourages development in less sensitive landscapes. In this study, we built new predictive models of oil and gas, wind, and residential development and applied build-out scenarios to simulate future development and measure the efficacy of conservation actions for maintaining sage-grouse populations. Our approach predicts sage-grouse population losses averted through conservation action and quantifies return on investment for different conservation strategies. We estimate that without conservation, sage-grouse populations in Wyoming will decrease under our long-term scenario by 14-29% (95% CI: 4-46%). However, a conservation strategy that includes the "core area" policy and $250 million in targeted easements could reduce these losses to 9-15% (95% CI: 3-32%), cutting anticipated losses by roughly half statewide and nearly two-thirds within sage-grouse core breeding areas. Core area policy is the single most important component, and targeted easements are complementary to the overall strategy. There is considerable uncertainty around the magnitude of our estimates; however, the relative benefit of different conservation scenarios remains comparable because potential biases and assumptions are consistently applied regardless of the strategy. There is early evidence based on a 40% reduction in leased hectares inside core areas that Wyoming policy is reducing potential for future fragmentation inside core areas. Our framework using build-out scenarios to anticipate species declines provides estimates that could be used by decision makers to determine if expected population losses warrant ESA listing.
Copeland, Holly E.; Pocewicz, Amy; Naugle, David E.; Griffiths, Tim; Keinath, Doug; Evans, Jeffrey; Platt, James
2013-01-01
Increasing energy and housing demands are impacting wildlife populations throughout western North America. Greater sage-grouse (Centrocercus urophasianus), a species known for its sensitivity to landscape-scale disturbance, inhabits the same low elevation sage-steppe in which much of this development is occurring. Wyoming has committed to maintain sage-grouse populations through conservation easements and policy changes that conserves high bird abundance “core” habitat and encourages development in less sensitive landscapes. In this study, we built new predictive models of oil and gas, wind, and residential development and applied build-out scenarios to simulate future development and measure the efficacy of conservation actions for maintaining sage-grouse populations. Our approach predicts sage-grouse population losses averted through conservation action and quantifies return on investment for different conservation strategies. We estimate that without conservation, sage-grouse populations in Wyoming will decrease under our long-term scenario by 14–29% (95% CI: 4–46%). However, a conservation strategy that includes the “core area” policy and $250 million in targeted easements could reduce these losses to 9–15% (95% CI: 3–32%), cutting anticipated losses by roughly half statewide and nearly two-thirds within sage-grouse core breeding areas. Core area policy is the single most important component, and targeted easements are complementary to the overall strategy. There is considerable uncertainty around the magnitude of our estimates; however, the relative benefit of different conservation scenarios remains comparable because potential biases and assumptions are consistently applied regardless of the strategy. There is early evidence based on a 40% reduction in leased hectares inside core areas that Wyoming policy is reducing potential for future fragmentation inside core areas. Our framework using build-out scenarios to anticipate species declines provides estimates that could be used by decision makers to determine if expected population losses warrant ESA listing. PMID:23826250
A capture-recapture model of amphidromous fish dispersal
Smith, W.; Kwak, Thomas J.
2014-01-01
Adult movement scale was quantified for two tropical Caribbean diadromous fishes, bigmouth sleeper Gobiomorus dormitor and mountain mullet Agonostomus monticola, using passive integrated transponders (PITs) and radio-telemetry. Large numbers of fishes were tagged in Rio Mameyes, Puerto Rico, U.S.A., with PITs and monitored at three fixed locations over a 2-5 year period to estimate transition probabilities between upper and lower elevations and survival probabilities with a multistate Cormack-Jolly-Seber model. A sub-set of fishes were tagged with radio-transmitters and tracked at weekly intervals to estimate fine-scale dispersal. Changes in spatial and temporal distributions of tagged fishes indicated that neither G. dormitor nor A. monticola moved into the lowest, estuarine reaches of Rio Mameyes during two consecutive reproductive periods, thus demonstrating that both species follow an amphidromous, rather than catadromous, migratory strategy. Further, both species were relatively sedentary, with restricted linear ranges. While substantial dispersal of these species occurs at the larval stage during recruitment to fresh water, the results indicate minimal dispersal in spawning adults. Successful conservation of diadromous fauna on tropical islands requires management at both broad basin and localized spatial scales.
Complex neural codes in rat prelimbic cortex are stable across days on a spatial decision task
Powell, Nathaniel J.; Redish, A. David
2014-01-01
The rodent prelimbic cortex has been shown to play an important role in cognitive processing, and has been implicated in encoding many different parameters relevant to solving decision-making tasks. However, it is not known how the prelimbic cortex represents all these disparate variables, and if they are simultaneously represented when the task requires it. In order to investigate this question, we trained rats to run the Multiple-T Left Right Alternate (MT-LRA) task and recorded multi-unit ensembles from their prelimbic regions. Significant populations of cells in the prelimbic cortex represented the strategy controlling reward receipt on a given lap, whether the animal chose to go right or left on a given lap, and whether the animal made a correct decision or an error on a given lap. These populations overlapped in the cells recorded, with several cells demonstrating differential firing to all three variables. The spatial and strategic firing patterns of individual prelimbic cells were highly conserved across several days of running this task, indicating that each cell encoded the same information across days. PMID:24795579
Analysis of alternative strategies for energy conservation in new buildings
NASA Astrophysics Data System (ADS)
Fang, J. M.; Tawil, J.
1980-12-01
The policy instruments considered include: greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) Building Energy Performance Standards (BEPS) with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings.
Sequencing Conservation Actions Through Threat Assessments in the Southeastern United States
Robert D. Sutter; Christopher C. Szell
2006-01-01
The identification of conservation priorities is one of the leading issues in conservation biology. We present a project of The Nature Conservancy, called Sequencing Conservation Actions, which prioritizes conservation areas and identifies foci for crosscutting strategies at various geographic scales. We use the term âSequencingâ to mean an ordering of actions over...
Digital spatial soil and land information for agriculture development
NASA Astrophysics Data System (ADS)
Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath
2006-12-01
Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.
Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal
2016-01-01
The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011–12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales. PMID:28005942
Kajzer-Bonk, Joanna; Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal
2016-01-01
The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011-12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales.
Wheeler, Kit; Wengerd, Seth J.; Walsh, Stephen J.; Martin, Zachary P.; Jelks, Howard L.; Freeman, Mary C.
2018-01-01
Many species have distributions that span distinctly different physiographic regions, and effective conservation of such taxa will require a full accounting of all factors that potentially influence populations. Ecologists recognize effects of physiographic differences in topography, geology and climate on local habitat configurations, and thus the relevance of landscape heterogeneity to species distributions and abundances. However, research is lacking that examines how physiography affects the processes underlying metapopulation dynamics. We used data describing occupancy dynamics of stream fishes to evaluate evidence that physiography influences rates at which individual taxa persist in or colonize stream reaches under different flow conditions. Using periodic survey data from a stream fish assemblage in a large river basin that encompasses multiple physiographic regions, we fit multi-species dynamic occupancy models. Our modeling results suggested that stream fish colonization but not persistence was strongly governed by physiography, with estimated colonization rates considerably higher in Coastal Plain streams than in Piedmont and Blue Ridge systems. Like colonization, persistence was positively related to an index of stream flow magnitude, but the relationship between flow and persistence did not depend on physiography. Understanding the relative importance of colonization and persistence, and how one or both processes may change across the landscape, is critical information for the conservation of broadly distributed taxa, and conservation strategies explicitly accounting for spatial variation in these processes are likely to be more successful for such taxa.
Cho, Woo-Hyun; Park, Jung-Cheol; Chung, ChiHye; Jeon, Won Kyung; Han, Jung-Soo
2014-10-15
Learning strategy preference was assessed in 5XFAD mice, which carry 5 familial Alzheimer's disease (AD) mutations. Mice were sequentially trained in cued and place/spatial versions of the water maze task. After training, a strategy preference test was conducted in which mice were required to choose between the spatial location where the platform had previously been during the place/spatial training, and a visible platform in a new location. 5XFAD and non-transgenic control mice showed equivalent escape performance in both training tasks. However, in the strategy preference test, 5XFAD mice preferred a cued strategy relative to control mice. When the training sequence was presented in the reverse order (i.e., place/spatial training before cued training), 5XFAD mice showed impairments in place/spatial training, but no differences in cued training or in the strategy preference test comparing to control. Analysis of regional Aβ42 deposition in brains of 5XFAD mice showed that the hippocampus, which is involved in the place/spatial learning strategy, had the highest levels of Aβ42 and the dorsal striatum, which is involved in cued learning strategy, showed a small increase in Aβ42 levels. The effect of training protocol order on performance, and regional differences in Aβ42 deposition observed in 5XFAD mice, suggest differential functional recruitment of brain structures related to learning in healthy and AD individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
Biswas, Shampa; Vacik, Harald; Swanson, Mark E; Haque, S M Sirajul
2012-05-01
Criteria and indicators assessment is one of the ways to evaluate management strategies for mountain watersheds. One framework for this, Integrated Watershed Management (IWM), was employed at Chittagong Hill Tracts region of Bangladesh using a multi-criteria analysis approach. The IWM framework, consisting of the design and application of principles, criteria, indicators, and verifiers (PCIV), facilitates active participation by diverse professionals, experts, and interest groups in watershed management, to explicitly address the demands and problems to measure the complexity of problems in a transparent and understandable way. Management alternatives are developed to fulfill every key component of IWM considering the developed PCIV set and current situation of the study area. Different management strategies, each focusing on a different approach (biodiversity conservation, flood control, soil and water quality conservation, indigenous knowledge conservation, income generation, watershed conservation, and landscape conservation) were assessed qualitatively on their potential to improve the current situation according to each verifier of the criteria and indicator set. Analytic Hierarchy Process (AHP), including sensitivity analysis, was employed to identify an appropriate management strategy according to overall priorities (i.e., different weights of each principle) of key informants. The AHP process indicated that a strategy focused on conservation of biodiversity provided the best option to address watershed-related challenges in the Chittagong Hill Tracts, Bangladesh.
Wearn, Oliver R; Carbone, Chris; Rowcliffe, J Marcus; Bernard, Henry; Ewers, Robert M
2016-07-01
Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains. © 2016 by the Ecological Society of America.
Acute administration of THC impairs spatial but not associative memory function in zebrafish.
Ruhl, Tim; Prinz, Nicole; Oellers, Nadine; Seidel, Nathan Ian; Jonas, Annika; Albayram, Onder; Bilkei-Gorzo, Andras; von der Emde, Gerhard
2014-10-01
The present study examined the effect of acute administration of endocannabinoid receptor CB1 ligand ∆-9-tetrahydrocannabinol (THC) on intracellular signalling in the brain and retrieval from two different memory systems in the zebrafish (Danio rerio). First, fish were treated with THC and changes in the phosphorylation level of mitogen-activated protein (MAP) kinases Akt and Erk in the brain were determined 1 h after drug treatment. Next, animals of a second group learned in a two-alternative choice paradigm to discriminate between two colours, whereas a third group solved a spatial cognition task in an open-field maze by use of an ego-allocentric strategy. After memory acquisition and consolidation, animals were pharmacologically treated using the treatment regime as in the first group and then tested again for memory retrieval. We found an enhanced Erk but not Akt phosphorylation suggesting that THC treatment specifically activated Erk signalling in the zebrafish telencephalon. While CB1 agonist THC did not affect behavioural performance of animals in the colour discrimination paradigm, spatial memory was significantly impaired. The effect of THC on spatial learning is probably specific, since neither motor activity nor anxiety-related behaviour was influenced by the drug treatment. That indicates a striking influence of the endocannabinoid system (ECS) on spatial cognition in zebrafish. The results are very coincident with reports on mammals, demonstrating that the ECS is functional highly conserved during vertebrate evolution. We further conclude that the zebrafish provides a promising model organism for ongoing research on the ECS.
Gordon H. Reeves; Deanna H. Olson; Steven M. Wondzell; Peter A. Bisson; Sean Gordon; Stephanie A. Miller; Jonathan W. Long; Michael J. Furniss
2018-01-01
The Aquatic Conservation Strategy (ACS) is a regional strategy applied to aquatic and riparian ecosystems across the area covered by the Northwest Forest Plan (NWFP, or Plan), encompassing broad landscapes of public lands administered by the U.S. Department of Agriculture Forest Service and the U.S. Department of the Interior Bureau of Land Management (BLM) (USDA and...
Godoy, B S; Queiroz, L L; Lodi, S; Oliveira, L G
2017-04-01
The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.
O'Connell, Allan F.; Gardner, Beth; Oppel, Steffen; Meirinho, Ana; Ramírez, Iván; Miller, Peter I.; Louzao, Maite
2012-01-01
Knowledge about the spatial distribution of seabirds at sea is important for conservation. During marine conservation planning, logistical constraints preclude seabird surveys covering the complete area of interest and spatial distribution of seabirds is frequently inferred from predictive statistical models. Increasingly complex models are available to relate the distribution and abundance of pelagic seabirds to environmental variables, but a comparison of their usefulness for delineating protected areas for seabirds is lacking. Here we compare the performance of five modelling techniques (generalised linear models, generalised additive models, Random Forest, boosted regression trees, and maximum entropy) to predict the distribution of Balearic Shearwaters (Puffinus mauretanicus) along the coast of the western Iberian Peninsula. We used ship transect data from 2004 to 2009 and 13 environmental variables to predict occurrence and density, and evaluated predictive performance of all models using spatially segregated test data. Predicted distribution varied among the different models, although predictive performance varied little. An ensemble prediction that combined results from all five techniques was robust and confirmed the existence of marine important bird areas for Balearic Shearwaters in Portugal and Spain. Our predictions suggested additional areas that would be of high priority for conservation and could be proposed as protected areas. Abundance data were extremely difficult to predict, and none of five modelling techniques provided a reliable prediction of spatial patterns. We advocate the use of ensemble modelling that combines the output of several methods to predict the spatial distribution of seabirds, and use these predictions to target separate surveys assessing the abundance of seabirds in areas of regular use.
Using environmental DNA to assess population-wide spatiotemporal reserve use.
Stewart, Kathryn; Ma, Hongjuan; Zheng, Jinsong; Zhao, Jianfu
2017-10-01
Scientists increasingly rely on protected areas to assist in biodiversity conservation, yet the efficacy of these areas is rarely systematically assessed, often because of underfunding. Still, adaptive management strategies to maximize conservation success often rely on understanding the temporal and spatial dynamism of populations therein. Examination of environmental DNA (eDNA) is a time and cost-effective way to monitor species' distribution, and quantitative polymerase chain reaction (qPCR) provides information on organismal abundance. To date, however, such techniques remain underused for population assessments in protected areas. We determined eDNA concentration of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) to describe its occurrence, range, and use of the Tian e-Zhou National Nature Reserve in Hubei, China, across seasons and hydrological depths. Despite the observation that total eDNA concentrations were highest in surface waters in summer, finless porpoise eDNA concentrations were significantly higher in deeper waters than in surface waters in summer. During the breeding season (spring), eDNA signals were site specific and restricted to the core area of the reserve. However, postbreeding eDNA concentrations were widespread across the reserve, encompassing sites previously thought to be unfrequented by the species. Our results suggest spatiotemporal idiosyncrasies in site, depth, and seasonal use of the reserve and a propensity for postbreeding population dispersal. With eDNA and qPCR we were able to assess an entire population's use of a protected area. Illuminating nuances in habitat use via eDNA could be valuable to set pragmatic conservation goals for this, and other, species. © 2017 Society for Conservation Biology.
Multiple function benefit - cost comparison of conservation buffer placement strategies
Z. Qiu; M.G. Dosskey
2012-01-01
Conservation buffers are considered to be effective practices for repairing impaired streams and restoring multiple ecosystem functions in degraded agricultural watersheds. Six different planning strategies for targeting their placement within watersheds were compared in terms of cost-effectiveness for environmental improvement in the 144 km² Neshanic River...
Implications of different shorebird migration strategies for habitat conservation
Susan K. Skagen; Stephen Brown; Rex Johnson
2005-01-01
Shorebird migration strategies vary by species, migration distance and route, time of year, and resources at staging and stopover sites. The Western Hemisphere Shorebird Reserve Network has been highly successful in the identification, designation, and protection of important migration habitats for many species that stage in traditional areas. Recently, conservation...
Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning
Officer, Rick; Clarke, Maurice; Reid, David G.; Brophy, Deirdre
2017-01-01
Boosted Regression Trees. Excellent for data-poor spatial management but hard to use Marine resource managers and scientists often advocate spatial approaches to manage data-poor species. Existing spatial prediction and management techniques are either insufficiently robust, struggle with sparse input data, or make suboptimal use of multiple explanatory variables. Boosted Regression Trees feature excellent performance and are well suited to modelling the distribution of data-limited species, but are extremely complicated and time-consuming to learn and use, hindering access for a wide potential user base and therefore limiting uptake and usage. BRTs automated and simplified for accessible general use with rich feature set We have built a software suite in R which integrates pre-existing functions with new tailor-made functions to automate the processing and predictive mapping of species abundance data: by automating and greatly simplifying Boosted Regression Tree spatial modelling, the gbm.auto R package suite makes this powerful statistical modelling technique more accessible to potential users in the ecological and modelling communities. The package and its documentation allow the user to generate maps of predicted abundance, visualise the representativeness of those abundance maps and to plot the relative influence of explanatory variables and their relationship to the response variables. Databases of the processed model objects and a report explaining all the steps taken within the model are also generated. The package includes a previously unavailable Decision Support Tool which combines estimated escapement biomass (the percentage of an exploited population which must be retained each year to conserve it) with the predicted abundance maps to generate maps showing the location and size of habitat that should be protected to conserve the target stocks (candidate MPAs), based on stakeholder priorities, such as the minimisation of fishing effort displacement. Gbm.auto for management in various settings By bridging the gap between advanced statistical methods for species distribution modelling and conservation science, management and policy, these tools can allow improved spatial abundance predictions, and therefore better management, decision-making, and conservation. Although this package was built to support spatial management of a data-limited marine elasmobranch fishery, it should be equally applicable to spatial abundance modelling, area protection, and stakeholder engagement in various scenarios. PMID:29216310
NASA Astrophysics Data System (ADS)
MacDonald, Garrick Richard
To limit biodiversity loss caused by human activity, conservation planning must protect biodiversity while considering socio-economic cost criteria. This research aimed to determine the effects of socio-economic criteria and spatial configurations on the development of CANs for three species with different distribution patterns, while simultaneously attempting to address the uncertainty and sensitivity of CANs produced by ConsNet. The socio-economic factors and spatial criteria included the cost of land, population density, agricultural output value, area, average cluster area, number of clusters, shape, and perimeter. Three sensitive mammal species with different distribution patterns were selected and included the Bobcat, Ringtail, and a custom created mammal distribution. Forty problems and the corresponding number of CANs were formulated and computed by running each predicted presence species model with and without the four different socioeconomic threshold groups at two different resolutions. Thirty-two percent less area was conserved after considering multiple socio-economic constraints and spatial configurations in comparison to CANs that did not consider multiple socio-economic constraints and spatial configurations. Without including socio-economic costs, ConsNet's ALL_CELLS heuristic solution was the highest ranking CAN. After considering multiple socio-economic costs, the number one ranking CAN was no longer the ALL_CELLS heuristic solution, but a spatially different meta-heuristic solution. The effects of multiple constraints and objectives on the design of CANs with different distribution patterns did not vary significantly across the criteria. The CANs produced by ConsNet appeared to demonstrate some uncertainty surrounding particular criteria, but did not demonstrate substantial uncertainty across all criteria used to rank the CANs. Similarly, the range of socio-economic criteria thresholds did not have a substantial impact. ConsNet was very applicable to the research project, however, it did exhibit a few limitations. Both the advantages and disadvantages of ConsNet should be considered before using ConsNet for future conservation planning projects. The research project is an example of a large data scenario undertaken with a multiple criteria decision analysis (MCDA) approach.
A new flux conserving Newton's method scheme for the two-dimensional, steady Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Scott, James R.; Chang, Sin-Chung
1993-01-01
A new numerical method is developed for the solution of the two-dimensional, steady Navier-Stokes equations. The method that is presented differs in significant ways from the established numerical methods for solving the Navier-Stokes equations. The major differences are described. First, the focus of the present method is on satisfying flux conservation in an integral formulation, rather than on simulating conservation laws in their differential form. Second, the present approach provides a unified treatment of the dependent variables and their unknown derivatives. All are treated as unknowns together to be solved for through simulating local and global flux conservation. Third, fluxes are balanced at cell interfaces without the use of interpolation or flux limiters. Fourth, flux conservation is achieved through the use of discrete regions known as conservation elements and solution elements. These elements are not the same as the standard control volumes used in the finite volume method. Fifth, the discrete approximation obtained on each solution element is a functional solution of both the integral and differential form of the Navier-Stokes equations. Finally, the method that is presented is a highly localized approach in which the coupling to nearby cells is only in one direction for each spatial coordinate, and involves only the immediately adjacent cells. A general third-order formulation for the steady, compressible Navier-Stokes equations is presented, and then a Newton's method scheme is developed for the solution of incompressible, low Reynolds number channel flow. It is shown that the Jacobian matrix is nearly block diagonal if the nonlinear system of discrete equations is arranged approximately and a proper pivoting strategy is used. Numerical results are presented for Reynolds numbers of 100, 1000, and 2000. Finally, it is shown that the present scheme can resolve the developing channel flow boundary layer using as few as six to ten cells per channel width, depending on the Reynolds number.
Predicting occurrence of juvenile shark habitat to improve conservation planning.
Oh, Beverly Z L; Sequeira, Ana M M; Meekan, Mark G; Ruppert, Jonathan L W; Meeuwig, Jessica J
2017-06-01
Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km 2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across multiple maritime jurisdictions, and our approach provides a simple for method for testing the effectiveness of MPAs. © 2016 Society for Conservation Biology.
Mawdsley, Jonathan R; O'Malley, Robin; Ojima, Dennis S
2009-10-01
The scientific literature contains numerous descriptions of observed and potential effects of global climate change on species and ecosystems. In response to anticipated effects of climate change, conservation organizations and government agencies are developing "adaptation strategies" to facilitate the adjustment of human society and ecological systems to altered climate regimes. We reviewed the literature and climate-change adaptation plans that have been developed in United States, Canada, England, México, and South Africa and found 16 general adaptation strategies that relate directly to the conservation of biological diversity. These strategies can be grouped into four broad categories: land and water protection and management; direct species management; monitoring and planning; and law and policy. Tools for implementing these strategies are similar or identical to those already in use by conservationists worldwide (land and water conservation, ecological restoration, agrienvironment schemes, species translocation, captive propagation, monitoring, natural resource planning, and legislation/regulation). Although our review indicates natural resource managers already have many tools that can be used to address climate-change effects, managers will likely need to apply these tools in novel and innovative ways to meet the unprecedented challenges posed by climate change.
Griesemer, Marc; Petzold, Linda R.; Briggs, Cheryl J.
2017-01-01
Recent outbreaks of chytridiomycosis, the disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), have contributed to population declines of numerous amphibian species worldwide. The devastating impacts of this disease have led researchers to attempt drastic conservation measures to prevent further extinctions and loss of biodiversity. The conservation measures can be labour-intensive or expensive, and in many cases have been unsuccessful. We developed a mathematical model of Bd outbreaks that includes the effects of demographic stochasticity and within-host fungal load dynamics. We investigated the impacts of one-time treatment conservation strategies during the disease outbreak that occurs following the initial arrival of Bd into a previously uninfected frog population. We found that for all versions of the model, for a large fraction of parameter space, none of the one-time treatment strategies are effective at preventing disease-induced extinction of the amphibian population. Of the strategies considered, treating frogs with antifungal agents to reduce their fungal load had the greatest likelihood of a beneficial outcome and the lowest risk of decreasing the persistence of the frog population, suggesting that this disease mitigation strategy should be prioritized over disinfecting the environment or reducing host density. PMID:28855388
Influence of Design Training and Spatial Solution Strategies on Spatial Ability Performance
ERIC Educational Resources Information Center
Lin, Hanyu
2016-01-01
Numerous studies have reported that spatial ability improves through training. This study investigated the following: (1) whether design training enhances spatial ability and (2) whether differing solution strategies are applied or generated following design training. On the basis of these two research objectives, this study divided the…
Research and management priorities for Hawaiian forest birds
Paxton, Eben H.; Laut, Megan; Vetter, John P.; Kendall, Steve J.
2018-01-01
Hawai‘i's forest birds face a number of conservation challenges that, if unaddressed, will likely lead to the extinction of multiple species in the coming decades. Threats include habitat loss, invasive plants, non-native predators, and introduced diseases. Climate change is predicted to increase the geographic extent and intensity of these threats, adding urgency to implementation of tractable conservation strategies. We present a set of actionable research and management approaches, identified by conservation practitioners in Hawai'i, that will be critical for the conservation of Hawaiian forest birds in the coming years. We also summarize recent progress on these conservation priorities. The threats facing Hawai‘i's forest birds are not unique to Hawai‘i, and successful conservation strategies developed in Hawai‘i can serve as a model for other imperiled communities around the world, especially on islands.
Essential coastal habitats for fish in the Baltic Sea
NASA Astrophysics Data System (ADS)
Kraufvelin, Patrik; Pekcan-Hekim, Zeynep; Bergström, Ulf; Florin, Ann-Britt; Lehikoinen, Annukka; Mattila, Johanna; Arula, Timo; Briekmane, Laura; Brown, Elliot John; Celmer, Zuzanna; Dainys, Justas; Jokinen, Henri; Kääriä, Petra; Kallasvuo, Meri; Lappalainen, Antti; Lozys, Linas; Möller, Peter; Orio, Alessandro; Rohtla, Mehis; Saks, Lauri; Snickars, Martin; Støttrup, Josianne; Sundblad, Göran; Taal, Imre; Ustups, Didzis; Verliin, Aare; Vetemaa, Markus; Winkler, Helmut; Wozniczka, Adam; Olsson, Jens
2018-05-01
Many coastal and offshore fish species are highly dependent on specific habitat types for population maintenance. In the Baltic Sea, shallow productive habitats in the coastal zone such as wetlands, vegetated flads/lagoons and sheltered bays as well as more exposed rocky and sandy areas are utilized by fish across many life history stages including spawning, juvenile development, feeding and migration. Although there is general consensus about the critical importance of these essential fish habitats (EFH) for fish production along the coast, direct quantitative evidence for their specific roles in population growth and maintenance is still scarce. Nevertheless, for some coastal species, indirect evidence exists, and in many cases, sufficient data are also available to carry out further quantitative analyses. As coastal EFH in the Baltic Sea are often found in areas that are highly utilized and valued by humans, they are subjected to many different pressures. While cumulative pressures, such as eutrophication, coastal construction and development, climate change, invasive species and fisheries, impact fish in coastal areas, the conservation coverage for EFH in these areas remains poor. This is mainly due to the fact that historically, fisheries management and nature conservation are not integrated neither in research nor in management in Baltic Sea countries. Setting joint objectives for fisheries management and nature conservation would hence be pivotal for improved protection of EFH in the Baltic Sea. To properly inform management, improvements in the development of monitoring strategies and mapping methodology for EFH are also needed. Stronger international cooperation between Baltic Sea states will facilitate improved management outcomes across ecologically arbitrary boundaries. This is especially important for successful implementation of international agreements and legislative directives such as the Baltic Sea Action Plan, the Marine Strategy Framework Directive, the Habitats Directive, and the Maritime Spatial Planning Directive, but also for improving the communication of information related to coastal EFH among researchers, stakeholders, managers and decision makers. In this paper, efforts are made to characterize coastal EFH in the Baltic Sea, their importance and the threats/pressures they face, as well as their current conservation status, while highlighting knowledge gaps and outlining perspectives for future work in an ecosystem-based management framework.
McLellan, Eileen; Schilling, Keith; Robertson, Dale M.
2015-01-01
We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.
Planning for population viability on Northern Great Plains national grasslands
Samson, F.B.; Knopf, F.L.; McCarthy, C.W.; Noon, B.R.; Ostlie, W.R.; Rinehart, S.M.; Larson, S.; Plumb, G.E.; Schenbeck, G.L.; Svingen, D.N.; Byer, T.W.
2003-01-01
Broad-scale information in concert with conservation of individual species must be used to develop conservation priorities and a more integrated ecosystem protection strategy. In 1999 the United States Forest Service initiated an approach for the 1.2× 106 ha of national grasslands in the Northern Great Plains to fulfill the requirement to maintain viable populations of all native and desirable introduced vertebrate and plant species. The challenge was threefold: 1) develop basic building blocks in the conservation planning approach, 2) apply the approach to national grasslands, and 3) overcome differences that may exist in agency-specific legal and policy requirements. Key assessment components in the approach included a bioregional assessment, coarse-filter analysis, and fine-filter analysis aimed at species considered at-risk. A science team of agency, conservation organization, and university personnel was established to develop the guidelines and standards and other formal procedures for implementation of conservation strategies. Conservation strategies included coarse-filter recommendations to restore the tallgrass, mixed, and shortgrass prairies to conditions that approximate historical ecological processes and landscape patterns, and fine-filter recommendations to address viability needs of individual and multiple species of native animals and plants. Results include a cost-effective approach to conservation planning and recommendations for addressing population viability and biodiversity concerns on national grasslands in the Northern Great Plains.
Robillard, Cassandra M; Kerr, Jeremy T
2017-08-01
High costs of land in agricultural regions warrant spatial prioritization approaches to conservation that explicitly consider land prices to produce protected-area networks that accomplish targets efficiently. However, land-use changes in such regions and delays between plan design and implementation may render optimized plans obsolete before implementation occurs. To measure the shelf life of cost-efficient conservation plans, we simulated a land-acquisition and restoration initiative aimed at conserving species at risk in Canada's farmlands. We accounted for observed changes in land-acquisition costs and in agricultural intensity based on censuses of agriculture taken from 1986 to 2011. For each year of data, we mapped costs and areas of conservation priority designated using Marxan. We compared plans to test for changes through time in the arrangement of high-priority sites and in the total cost of each plan. For acquisition costs, we measured the savings from accounting for prices during site selection. Land-acquisition costs and land-use intensity generally rose over time independent of inflation (24-78%), although rates of change were heterogeneous through space and decreased in some areas. Accounting for spatial variation in land price lowered the cost of conservation plans by 1.73-13.9%, decreased the range of costs by 19-82%, and created unique solutions from which to choose. Despite the rise in plan costs over time, the high conservation priority of particular areas remained consistent. Delaying conservation in these critical areas may compromise what optimized conservation plans can achieve. In the case of Canadian farmland, rapid conservation action is cost-effective, even with moderate levels of uncertainty in how to implement restoration goals. © 2016 Society for Conservation Biology.
Maciejewski, Kristine; De Vos, Alta; Cumming, Graeme S; Moore, Christine; Biggs, Duan
2015-01-01
Protected areas are a central strategy for achieving global conservation goals, but their continued existence depends heavily on maintaining sufficient social and political support to outweigh economic interests or other motives for land conversion. Thus, the resilience of protected areas can be considered a function of their perceived benefits to society. Nature-based tourism (NBT), a cultural ecosystem service, provides a key source of income to protected areas, facilitating a sustainable solution to conservation. The ability of tourism to generate income depends, however, on both the scales at which this cultural service is provided and the scales at which tourists respond to services on offer. This observation raises a set of location-, context-, and scale-related questions that need to be confronted before we can understand and value cultural service provision appropriately. We combine elements of resilience analysis with a systems ecology framework and apply this to NBT in protected areas to investigate cross-scale interactions and scale mismatches. We postulate that cross-scale effects can either have a positive effect on protected area resilience or lead to scale mismatches, depending on their interactions with cross-scale feedbacks. To demonstrate this, we compare spatial scales and nested levels of institutions to develop a typology of scale mismatches for common scenarios in NBT. In our new typology, the severity of a scale mismatch is expressed as the ratio of spatial scale to institutional level, producing 25 possible outcomes with differing consequences for system resilience. We predict that greater differences between interacting scales and levels, and greater magnitudes of cross-scale interactions, will lead to greater magnitudes of scale mismatch. Achieving a better understanding of feedbacks and mismatches, and finding ways of aligning spatial and institutional scales, will be critical for strengthening the resilience of protected areas that depend on NBT.
Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W
2018-07-01
Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.
Globalization and multi-spatial trends in the coverage of protected-area conservation (1980-2000).
Zimmerer, Karl S; Galt, Ryan E; Buck, Margaret V
2004-12-01
This study is focused on the global expansion of protected-area coverage that occurred during the 1980--2000 period. We examine the multi-scale patterning of four of the basic facets of this expansion: i) estimated increases at the world-regional and country-level scales of total protected-area coverage; ii) transboundary protected areas; iii) conservation corridor projects; and iv) type of conservation management. Geospatial patterning of protected-area designations is a reflection of the priorities of global conservation organizations and the globalization of post-Cold War political and economic arrangements. Local and national-level factors (political leadership and infrastructure) as well as international relations such as multilateral and bilateral aid combine with these globalization processes to impact the extent, type, and location of protected-area designations. We conclude that the interaction of these factors led to the creation and reinforcement of marked spatial differences (rather than tendencies toward worldwide evenness or homogenization) in the course of protected-area expansion during the 1980--2000 period.
How Effective Are Biodiversity Conservation Payments in Mexico?
Costedoat, Sébastien; Corbera, Esteve; Ezzine-de-Blas, Driss; Honey-Rosés, Jordi; Baylis, Kathy; Castillo-Santiago, Miguel Angel
2015-01-01
We assess the additional forest cover protected by 13 rural communities located in the southern state of Chiapas, Mexico, as a result of the economic incentives received through the country's national program of payments for biodiversity conservation. We use spatially explicit data at the intra-community level to define a credible counterfactual of conservation outcomes. We use covariate-matching specifications associated with spatially explicit variables and difference-in-difference estimators to determine the treatment effect. We estimate that the additional conservation represents between 12 and 14.7 percent of forest area enrolled in the program in comparison to control areas. Despite this high degree of additionality, we also observe lack of compliance in some plots participating in the PES program. This lack of compliance casts doubt on the ability of payments alone to guarantee long-term additionality in context of high deforestation rates, even with an augmented program budget or extension of participation to communities not yet enrolled. PMID:25807118
Spatio-mechanical EphA2/ephrin-A1 Signaling in Cancer Cells
NASA Astrophysics Data System (ADS)
Xu, Qian
2011-12-01
Communication strategies in nature are an integral part to the survival of multi-cellular organisms. Cell membranes provide the chemical environment in which intercellular signaling begins. The vast complexity of this signaling requires that a relatively conserved set of chemical constituents be able to generate enormous signal diversity. Spatial sorting of signaling molecules within the membrane allows for this diversity. My research uses synthetic lipid membranes, solid-state nanostructures, and high-resolution imaging to study a potentially novel spatio-mechanical regulatory mechanism in the EphA2 signaling pathway. My hypothesis is that the multi-scale organization of the EphA2 receptor in the cell membrane regulates its biochemical function. This hypothesis is motivated by the idea that extracellular mechanical inputs have an important role in intracellular signaling cascades.
Effects of hedgerows on bats and bush crickets at different spatial scales
NASA Astrophysics Data System (ADS)
Lacoeuilhe, Aurélie; Machon, Nathalie; Julien, Jean-François; Kerbiriou, Christian
2016-02-01
Biodiversity is threatened by the loss and fragmentation of habitats. The role of hedgerows in maintaining biodiversity is well established, but few studies have addressed the importance for biodiversity of the intrinsic characteristics of hedgerows and the quality of hedgerow networks along a spatial scale. We examined three quality indices providing information at different territorial levels: density in the landscape, structural diversity and wood production. We performed an acoustic survey in a grassland to estimate the species abundance and community composition of bats (9 taxa) and bush crickets (11 species). Using an approach based on species and traits, we assessed how hedgerow quality influenced the activity of these taxa at different spatial scales (from 50 to 1000 m) and focused on three types of traits: bush cricket mobility ability, bat foraging strategy and habitat specialization. In general, our results showed the importance of hedgerow quality for bats and bush crickets, but the strength of the association between taxa and hedgerows varied substantially among the species and the spatial scales. Although it depends on the taxa, the production, density and structural diversity of hedgerows each had an overall positive effect. Our results suggested that these effects were generally more important at large scales. The scale effect of the production index is the best predictor of activity for bat and bush cricket taxa and traits. Our results showed the importance of hedgerow quality for the ecology of bat and bush cricket communities and could be used to improve conservation management.
Uncertainty in spatially explicit animal dispersal models
Mooij, Wolf M.; DeAngelis, Donald L.
2003-01-01
Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.
Johnston, David W.; Christiansen, Fredrik
2017-01-01
Selective forces shape the evolution of wildlife behavioural strategies and influence the spatial and temporal partitioning of behavioural activities to maximize individual fitness. Globally, wildlife is increasingly exposed to human activities which may affect their behavioural activities. The ability of wildlife to compensate for the effects of human activities may have implications for their resilience to disturbance. Resilience theory suggests that behavioural systems which are constrained in their repertoires are less resilient to disturbance than flexible systems. Using behavioural time-series data, we show that spinner dolphins (Stenella longirostris) spatially and temporally partition their behavioural activities on a daily basis. Specifically, spinner dolphins were never observed foraging during daytime, where resting was the predominant activity. Travelling and socializing probabilities were higher in early mornings and late afternoons when dolphins were returning from or preparing for nocturnal feeding trips, respectively. The constrained nature of spinner dolphin behaviours suggests they are less resilient to human disturbance than other cetaceans. These dolphins experience the highest exposure rates to human activities ever reported for any cetaceans. Over the last 30 years human activities have increased significantly in Hawaii, but the spinner dolphins still inhabit these bays. Recent abundance estimates (2011 and 2012) however, are lower than all previous estimates (1979–1981, 1989–1992 and 2003), indicating a possible long-term impact. Quantification of the spatial and temporal partitioning of wildlife behavioural schedules provides critical insight for conservation measures that aim to mitigate the effects of human disturbance. PMID:28280561
Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems
NASA Astrophysics Data System (ADS)
Randhir, Timothy O.; Tsvetkova, Olga
2011-06-01
SummaryLand use change is influenced by spatial and temporal factors that interact with watershed resources. Modeling these changes is critical to evaluate emerging land use patterns and to predict variation in water quantity and quality. The objective of this study is to model the nature and emergence of spatial patterns in land use and water resource impacts using a spatially explicit and dynamic landscape simulation. Temporal changes are predicted using a probabilistic Markovian process and spatial interaction through cellular automation. The MCMC (Monte Carlo Markov Chain) analysis with cellular automation is linked to hydrologic equations to simulate landscape patterns and processes. The spatiotemporal watershed dynamics (SWD) model is applied to a subwatershed in the Blackstone River watershed of Massachusetts to predict potential land use changes and expected runoff and sediment loading. Changes in watershed land use and water resources are evaluated over 100 years at a yearly time step. Results show high potential for rapid urbanization that could result in lowering of groundwater recharge and increased storm water peaks. The watershed faces potential decreases in agricultural and forest area that affect open space and pervious cover of the watershed system. Water quality deteriorated due to increased runoff which can also impact stream morphology. While overland erosion decreased, instream erosion increased from increased runoff from urban areas. Use of urban best management practices (BMPs) in sensitive locations, preventive strategies, and long-term conservation planning will be useful in sustaining the watershed system.
Tyne, Julian A; Johnston, David W; Christiansen, Fredrik; Bejder, Lars
2017-01-01
Selective forces shape the evolution of wildlife behavioural strategies and influence the spatial and temporal partitioning of behavioural activities to maximize individual fitness. Globally, wildlife is increasingly exposed to human activities which may affect their behavioural activities. The ability of wildlife to compensate for the effects of human activities may have implications for their resilience to disturbance. Resilience theory suggests that behavioural systems which are constrained in their repertoires are less resilient to disturbance than flexible systems. Using behavioural time-series data, we show that spinner dolphins ( Stenella longirostris ) spatially and temporally partition their behavioural activities on a daily basis. Specifically, spinner dolphins were never observed foraging during daytime, where resting was the predominant activity. Travelling and socializing probabilities were higher in early mornings and late afternoons when dolphins were returning from or preparing for nocturnal feeding trips, respectively. The constrained nature of spinner dolphin behaviours suggests they are less resilient to human disturbance than other cetaceans. These dolphins experience the highest exposure rates to human activities ever reported for any cetaceans. Over the last 30 years human activities have increased significantly in Hawaii, but the spinner dolphins still inhabit these bays. Recent abundance estimates (2011 and 2012) however, are lower than all previous estimates (1979-1981, 1989-1992 and 2003), indicating a possible long-term impact. Quantification of the spatial and temporal partitioning of wildlife behavioural schedules provides critical insight for conservation measures that aim to mitigate the effects of human disturbance.
NASA Astrophysics Data System (ADS)
Pennino, Maria Grazia; Mérigot, Bastien; Fonseca, Vinícius Prado; Monni, Virginia; Rotta, Andrea
2017-07-01
Effective management and conservation of wild populations requires knowledge of their habitats, especially by mean of quantitative analyses of their spatial distributions. The Pelagos Sanctuary is a dedicated marine protected area for Mediterranean marine mammals covering an area of 90,000 km2 in the north-western Mediterranean Sea between Italy, France and the Principate of Monaco. In the south of the Sanctuary, i.e. along the Sardinian coast, a range of diverse human activities (cities, industry, fishery, tourism) exerts several current ad potential threats to cetacean populations. In addition, marine mammals are recognized by the EU Marine Strategy Framework Directive as essential components of sustainable ecosystems. Yet, knowledge on the spatial distribution and ecology of cetaceans in this area is quite scarce. Here we modeled occurrence of the three most abundant species known in the Sanctuary, i.e. the striped dolphin (Stenella coeruleoalba), the bottlenose dolphin (Tursiops truncatus) and the fin whales (Balaenoptera physalus), using sighting data from scientific surveys collected from 2012 to 2014 during summer time. Bayesian site-occupancy models were used to model their spatial distribution in relation to habitat taking into account oceanographic (sea surface temperature, primary production, photosynthetically active radiation, chlorophyll-a concentration) and topographic (depth, slope, distance of the land) variables. Cetaceans responded differently to the habitat features, with higher occurrence predicted in the more productive areas on submarine canyons. These results provide ecological information useful to enhance management plans and establish baseline for future population trend studies.
Effects of Governance on Availability of Land for Agriculture and Conservation in Brazil.
Sparovek, Gerd; Barretto, Alberto Giaroli de Oliveira Pereira; Matsumoto, Marcelo; Berndes, Göran
2015-09-01
The 2012 revision of the Brazilian Forest Act changed the relative importance of private and public governance for nature conservation and agricultural production. We present a spatially explicit land-use model for Brazilian agricultural production and nature conservation that considers the spatial distribution of agricultural land suitability, technological and management options, legal command, and control frameworks including the Atlantic Forest Law, the revised Forest Act, and the Amazonian land-titling, "Terra Legal," and also market-driven land use regulations. The model is used to analyze land use allocation under three scenarios with varying priorities among agricultural production and environmental protection objectives. In all scenarios, the legal command and control frameworks were the most important determinants of conservation outcomes, protecting at least 80% of the existing natural vegetation. Situations where such frameworks are not expected to be effective can be identified and targeted for additional conservation (beyond legal requirements) through voluntary actions or self-regulation in response to markets. All scenarios allow for a substantial increase in crop production, using an area 1.5-2.7 times the current cropland area, with much of new cropland occurring on current pastureland. Current public arrangements that promote conservation can, in conjunction with voluntary schemes on private lands where conversion to agriculture is favored, provide important additional nature conservation without conflicting with national agricultural production objectives.
Impacts of climate change on prioritizing conservation areas of hydrological ecosystem services
NASA Astrophysics Data System (ADS)
Lien, Wan Yu; Lin, Yu Pin
2015-04-01
Ecosystem services (ESs) including hydrological services play important roles in our daily life and provide a lot of benefits for human beings from ecological systems. The systems and their services may be threatened by climate change from global to local scales. We herein developed a systematic approach to assess the impacts of climate change on the hydrological ecosystem services, such as water yield, nutrient (nitrogen and phosphorous) retention, and soil retention in a watershed in Northern Taiwan. We first used an ecosystem service evaluation model, InVEST, to estimate the amount and spatial patterns of annual and monthly hydrological ecosystem services under historical weather data, and different climate change scenarios based on five GMSs. The monthly and annual spatiotemporal variations of the ESs were analyzed in this study. Finally, the multiple estimated ESs were considered as the protection conservation targets and regarded as the input data of the systematic conservation planning software, Zonation, to systematically prioritize reserve areas of the ESs under the climate change scenarios. The ES estimation results indicated that the increasing rainfall in wet season leads to the higher water yield and results in the higher sediment and nutrient export indirectly. The Zonation successfully fielded conservation priorities of the ESs. The conservation priorities of the ESs significantly varied spatially and monthly under the climate change scenarios. The ESs results also indicated that the areas where ESs values and conservation priorities with low resilience under climate change should be considered as high priority protected area to ensure the hydrological services in future. Our proposed approach is a novel systematic approach which can be applied to assess impacts of climate change on spatiotemporal variations of ESs as well as prioritize protected area of the ESs under various climate change scenarios. Keyword: climate change, ecosystem service, conservation planning, spatial analysis.
Mazor, Tessa; Possingham, Hugh P.; Edelist, Dori; Brokovich, Eran; Kark, Salit
2014-01-01
Successful implementation of marine conservation plans is largely inhibited by inadequate consideration of the broader social and economic context within which conservation operates. Marine waters and their biodiversity are shared by a host of stakeholders, such as commercial fishers, recreational users and offshore developers. Hence, to improve implementation success of conservation plans, we must incorporate other marine activities while explicitly examining trade-offs that may be required. In this study, we test how the inclusion of multiple marine activities can shape conservation plans. We used the entire Mediterranean territorial waters of Israel as a case study to compare four planning scenarios with increasing levels of complexity, where additional zones, threats and activities were added (e.g., commercial fisheries, hydrocarbon exploration interests, aquaculture, and shipping lanes). We applied the marine zoning decision support tool Marxan to each planning scenario and tested a) the ability of each scenario to reach biodiversity targets, b) the change in opportunity cost and c) the alteration of spatial conservation priorities. We found that by including increasing numbers of marine activities and zones in the planning process, greater compromises are required to reach conservation objectives. Complex plans with more activities incurred greater opportunity cost and did not reach biodiversity targets as easily as simplified plans with less marine activities. We discovered that including hydrocarbon data in the planning process significantly alters spatial priorities. For the territorial waters of Israel we found that in order to protect at least 10% of the range of 166 marine biodiversity features there would be a loss of ∼15% of annual commercial fishery revenue and ∼5% of prospective hydrocarbon revenue. This case study follows an illustrated framework for adopting a transparent systematic process to balance biodiversity goals and economic considerations within a country's territorial waters. PMID:25102177
Slanted snaking of localized Faraday waves
NASA Astrophysics Data System (ADS)
Pradenas, Bastián; Araya, Isidora; Clerc, Marcel G.; Falcón, Claudio; Gandhi, Punit; Knobloch, Edgar
2017-06-01
We report on an experimental, theoretical, and numerical study of slanted snaking of spatially localized parametrically excited waves on the surface of a water-surfactant mixture in a Hele-Shaw cell. We demonstrate experimentally the presence of a hysteretic transition to spatially extended parametrically excited surface waves when the acceleration amplitude is varied, as well as the presence of spatially localized waves exhibiting slanted snaking. The latter extend outside the hysteresis loop. We attribute this behavior to the presence of a conserved quantity, the liquid volume trapped within the meniscus, and introduce a universal model based on symmetry arguments, which couples the wave amplitude with such a conserved quantity. The model captures both the observed slanted snaking and the presence of localized waves outside the hysteresis loop, as demonstrated by numerical integration of the model equations.
Using Mental Transformation Strategies for Spatial Scaling: Evidence from a Discrimination Task
ERIC Educational Resources Information Center
Möhring, Wenke; Newcombe, Nora S.; Frick, Andrea
2016-01-01
Spatial scaling, or an understanding of how distances in different-sized spaces relate to each other, is fundamental for many spatial tasks and relevant for success in numerous professions. Previous research has suggested that adults use mental transformation strategies to mentally scale spatial input, as indicated by linear increases in response…
Robust network design for multispecies conservation
Ronan Le Bras; Bistra Dilkina; Yexiang Xue; Carla P. Gomes; Kevin S. McKelvey; Michael K. Schwartz; Claire A. Montgomery
2013-01-01
Our work is motivated by an important network design application in computational sustainability concerning wildlife conservation. In the face of human development and climate change, it is important that conservation plans for protecting landscape connectivity exhibit certain level of robustness. While previous work has focused on conservation strategies that result...
Species conservation and natural variation among populations [Chapter 5
Leonard F. Ruggiero; Michael K. Schwartz; Keith B. Aubry; Charles J. Krebs; Amanda Stanley; Steven W. Buskirk
2000-01-01
In conservation planning, the importance of natural variation is often given inadequate consideration. However, ignoring the implications of variation within species may result in conservation strategies that jeopardize, rather than conserve, target species (see Grieg 1979; Turcek 1951; Storfer 1999). Natural variation in the traits of individuals and populations is...
NASA Astrophysics Data System (ADS)
Moore, Cordelia H.; Radford, Ben T.; Possingham, Hugh P.; Heyward, Andrew J.; Stewart, Romola R.; Watts, Matthew E.; Prescott, Jim; Newman, Stephen J.; Harvey, Euan S.; Fisher, Rebecca; Bryce, Clay W.; Lowe, Ryan J.; Berry, Oliver; Espinosa-Gayosso, Alexis; Sporer, Errol; Saunders, Thor
2016-08-01
Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia-a biodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation.
Moore, Cordelia H; Radford, Ben T; Possingham, Hugh P; Heyward, Andrew J; Stewart, Romola R; Watts, Matthew E; Prescott, Jim; Newman, Stephen J; Harvey, Euan S; Fisher, Rebecca; Bryce, Clay W; Lowe, Ryan J; Berry, Oliver; Espinosa-Gayosso, Alexis; Sporer, Errol; Saunders, Thor
2016-08-24
Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia-a biodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation.
Moore, Cordelia H.; Radford, Ben T.; Possingham, Hugh P.; Heyward, Andrew J.; Stewart, Romola R.; Watts, Matthew E.; Prescott, Jim; Newman, Stephen J.; Harvey, Euan S.; Fisher, Rebecca; Bryce, Clay W.; Lowe, Ryan J.; Berry, Oliver; Espinosa-Gayosso, Alexis; Sporer, Errol; Saunders, Thor
2016-01-01
Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia–a biodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation. PMID:27556689
Conservation strategies for forest gene resources
F. Thomas Ledig
1986-01-01
Gene conservation has three facets: (1) the maintenance of diversity in production plantations to buffer against vulnerability to pests and climatic extremes; (2) the preservation of genes for their future value in breeding; (3) the protection of species to promote ecosystem stability. Maintaining diversity as a hedge against damaging agents is a simple strategy in...
Public perceptions of risk to forest biodiversity.
McFarlane, Bonita L
2005-06-01
This study examines the perceived risks to forest biodiversity and perceived effectiveness of biodiversity conservation strategies among the general public. It tests the hypotheses that perceived risk to forest biodiversity is influenced by cognitive factors (value orientation and knowledge) and social-cultural factors (such as gender and environmental membership) and that risk perceptions influence other cognitive constructs such as support for natural resource policy and management. Data were collected from a sample of the general public (n= 596) in British Columbia, Canada by mail survey in 2001. Results show that insects and disease were perceived as the greatest risk. Educating the public and industry about biodiversity issues was perceived as a more effective conservation strategy than restricting human uses of the forest. Value orientation was a better predictor of perceptions of risk and perceived effectiveness of conservation strategies than knowledge indicators or social-cultural variables. Examining the indirect effects of social-cultural variables, however, revealed that value orientation may amplify the effect of these variables and suggests that alternative paths of influence should be included. Perceived risk showed an inconsistent association with perceived effectiveness of conservation strategies.
Spatial and temporal variability in the water column nutrients and pesticides of Jobos Bay
USDA-ARS?s Scientific Manuscript database
The Conservation Effects Assessment Project (CEAP) is a national, multi-agency effort to quantify the environmental benefits of best management practices used by agricultural producers participating in selected U.S. Department of Agriculture (USDA) conservation programs, including programs such as t...
A Regional Assessment of the Effects of Conservation Practices on In-stream Water Quality
NASA Astrophysics Data System (ADS)
Garcia, A. M.; Alexander, R. B.; Arnold, J.; Norfleet, L.; Robertson, D. M.; White, M.
2011-12-01
The Conservation Effects Assessment Program (CEAP), initiated by USDA Natural Resources Conservation Service (NRCS), has the goal of quantifying the environmental benefits of agricultural conservation practices. As part of this effort, detailed farmer surveys were compiled to document the adoption of conservation practices. Survey data showed that up to 38 percent of cropland in the Upper Mississippi River basin is managed to reduce sediment, nutrient and pesticide loads from agricultural activities. The broader effects of these practices on downstream water quality are challenging to quantify. The USDA-NRCS recently reported results of a study that combined farmer surveys with process-based models to deduce the effect of conservation practices on sediment and chemical loads in farm runoff and downstream waters. As a follow-up collaboration, USGS and USDA scientists conducted a semi-empirical assessment of the same suite of practices using the USGS SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling framework. SPARROW is a hybrid statistical and mechanistic stream water quality model of annual conditions that has been used extensively in studies of nutrient sources and delivery. In this assessment, the USDA simulations of the effects of conservation practices on loads in farm runoff were used as an explanatory variable (i.e., change in farm loads per unit area) in a component of an existing a SPARROW model of the Upper Midwest. The model was then re-calibrated and tested to determine whether the USDA estimate of conservation adoption intensity explained a statistically significant proportion of the spatial variability in stream nutrient loads in the Upper Mississippi River basin. The results showed that the suite of conservation practices that NRCS has catalogued as complete nutrient and sediment management are a statistically significant feature in the Midwestern landscape associated with phosphorous runoff and delivery to downstream waters. Effects on the delivery of nitrogen will be also be studied. Estimates of the magnitude of this effect using SPARROW indicated that phosphorus load reductions ranged from about 2 - 38% for various spatial scales. This is less than reported by the USDA CEAP simulations, which ranged from 15 - 49%. Nevertheless, the results indicated that conservation practices play a significant role in reducing phosphorus pollution from agricultural activities to downstream receiving water bodies.
Turvey, Samuel T; Pettorelli, Nathalie
2014-12-07
Languages share key evolutionary properties with biological species, and global-level spatial congruence in richness and threat is documented between languages and several taxonomic groups. However, there is little understanding of the functional connection between diversification or extinction in languages and species, or the relationship between linguistic and species richness across different spatial scales. New Guinea is the world's most linguistically rich region and contains extremely high biological diversity. We demonstrate significant positive relationships between language and mammal richness in New Guinea across multiple spatial scales, revealing a likely functional relationship over scales at which infra-island diversification may occur. However, correlations are driven by spatial congruence between low levels of language and species richness. Regional biocultural richness may have showed closer congruence before New Guinea's linguistic landscape was altered by Holocene demographic events. In contrast to global studies, we demonstrate a significant negative correlation across New Guinea between areas with high levels of threatened languages and threatened mammals, indicating that landscape-scale threats differ between these groups. Spatial resource prioritization to conserve biodiversity may not benefit threatened languages, and conservation policy must adopt a multi-faceted approach to protect biocultural diversity as a whole.
Effects of disputes and easement violations on the cost-effectiveness of land conservation
Arcese, Peter
2015-01-01
Conservation initiatives to protect and restore valued species communities in human-dominated landscapes face challenges linked to their potential costs. Conservation easements on private land may represent a cost-effective alternative to land purchase, but long-term costs to monitor and enforce easements, or defend legal challenges, remain uncertain. We explored the cost-effectiveness of conservation easements, defined here as the fraction of the high-biodiversity landscape potentially protected via investment in easements versus land purchase. We show that easement violation and dispute rates substantially affect the estimated long-term cost-effectiveness of an easement versus land purchase strategy. Our results suggest that conservation easements can outperform land purchase as a strategy to protect biodiversity as long as the rate of disputes and legal challenges is low, pointing to a critical need for monitoring data to reduce costs and maximize the value of conservation investments. PMID:26413430
Path length differencing and energy conservation of the S[sub N] Boltzmann/Spencer-Lewis equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.; Monahan, S.P.
It is shown that the S[sub N] Boltzmann/Spencer-Lewis equations conserve energy locally if and only if they satisfy particle balance and diamond differencing is used in path length. In contrast, the spatial differencing schemes have no bearing on the energy balance. Energy is conserved globally if it is conserved locally and the multigroup cross sections are energy conserving. Although the coupled electron-photon cross sections generated by CEPXS conserve particles and charge, they do not precisely conserve energy. It is demonstrated that these cross sections can be adjusted such that particles, charge, and energy are conserved. Finally, since a conventional negativemore » flux fixup destroys energy balance when applied to path legend, a modified fixup scheme that does not is presented.« less
Developing a Bird Conservation Plan for the Diverse Coniferous Forests of California
John C. Robinson
2005-01-01
Bird conservation plans represent one of the pillars of the National Partners in Flight (PIF) bird conservation strategy known as the Flight Plan. The Flight Plan provides the framework for bird conservation plans that, in turn, set conservation priorities and specific objectives for bird populations and habitat for each state or eco-region in the nation. Many of...
Spatial aggregations arising from gregarious behavior are common in nature and have important implications for population dynamics, community stability, and conservation. However, the translation of aggregation behaviors into emergent properties of populations and communities de...